Werkhausen, Amelie, Albracht, Kirsten, Cronin, Neil ORCID: 0000-0002-5332-1188, Meier, Rahel, Bojsen-Møller, Jens and Seynnes, Olivier R. (2017) Modulation of muscle–tendon interaction in the human triceps surae during an energy dissipation task. Journal of Experimental Biology, 220 (22). pp. 4141-4149. doi:10.1242/jeb.164111
|
Text (Published version)
8894-Cronin-(2017)-Modulation-of-muscle-tendon-interaction.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (756kB) | Preview |
Abstract
The compliance of elastic elements allows muscles to dissipate energy safely during eccentric contractions. This buffering function is well documented in animal models but our understanding of its mechanism in humans is confined to non-specific tasks, requiring a subsequent acceleration of the body. The present study aimed to examine the behaviour of the human triceps surae muscle–tendon unit (MTU) during a pure energy dissipation task, under two loading conditions. Thirty-nine subjects performed a single-leg landing task, with and without added mass. Ultrasound measurements were combined with three-dimensional kinematics and kinetics to determine instantaneous length changes of MTUs, muscle fascicles, Achilles tendon and combined elastic elements. Gastrocnemius and soleus MTUs lengthened during landing. After a small concentric action, fascicles contracted eccentrically during most of the task, whereas plantar flexor muscles were activated. Combined elastic elements lengthened until peak ankle moment and recoiled thereafter, whereas no recoil was observed for the Achilles tendon. Adding mass resulted in greater negative work and MTU lengthening, which were accompanied by a greater stretch of tendon and elastic elements and a greater recruitment of the soleus muscle, without any further fascicle strain. Hence, the buffering action of elastic elements delimits the maximal strain and lengthening velocity of active muscle fascicles and is commensurate with loading constraints. In the present task, energy dissipation was modulated via greater MTU excursion and more forceful eccentric contractions. The distinct strain pattern of the Achilles tendon supports the notion that different elastic elements may not systematically fulfil the same function.
Item Type: | Article |
---|---|
Article Type: | Article |
Uncontrolled Keywords: | Achilles tendon; Energy absorption; Mechanical buffer |
Subjects: | Q Science > QP Physiology > QP301.H75 Physiology. Sport R Medicine > RC Internal medicine > RC1200 Sports Medicine |
Divisions: | Schools and Research Institutes > School of Education and Science |
Research Priority Areas: | Health, Life Sciences, Sport and Wellbeing |
Depositing User: | Rhiannon Goodland |
Date Deposited: | 16 Oct 2020 16:03 |
Last Modified: | 31 Aug 2023 09:08 |
URI: | https://eprints.glos.ac.uk/id/eprint/8894 |
University Staff: Request a correction | Repository Editors: Update this record