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Dynamics of Evanescently-Coupled Laser 
Pairs with Unequal Pumping: Analysis 

Using a Three-Variable Reduction of the 
Coupled Rate Equations 

 
Mike Adams, Rihab Al Seyab, Ian Henning, Hadi Susanto, and Martin Vaughan  

 
Abstract: The five coupled rate equations used to describe laterally-coupled pairs of lasers with weak 
coupling and unequal pumping are reduced to a new system of three equations. This enables 
approximate closed-form steady-state solutions and explicit expressions for the boundaries between 
regions of stable and unstable dynamics to be found. The results of applying these approximations to 
specific cases of coupled laser pairs are shown to be in good agreement with results obtained from 
numerical solutions of the original set of five equations as well as earlier results from the literature. In 
addition the approximations based on the reduced set of equations allow a systematic investigation of 
the effects of material, device and operating conditions on trends and novel features in the dynamics of 
laterally-coupled laser pairs. The algebraic results give insight into trends with parameters without the 
need for extensive numerical computation and should therefore be of use in modelling two-element 
VCSEL arrays for numerous potential applications.   

Index Terms: Laser dynamics semiconductor laser arrays, stability analysis.  

I. INTRODUCTION 

HE study of small arrays of coupled semiconductor lasers, especially those with independent control of 
pumping for each element [1-4], is an area which is receiving increasing interest and attention. For the 
case of VCSEL arrays this has been driven by attractive properties including phase front engineering and 

beam-steering [5,6], extended bandwidth [7,8] and enhanced digital modulation [9,4], with one 
exemplar application being the prospect of tunable ultrafast photonic oscillators [10,11]. At the 
fundamental level, such arrays have been shown to exhibit non-Hermiticity [12,13], exceptional points 
[13-15] and parity-time symmetry breaking [1]. Theoretical understanding and modelling of these effects 
has been largely based on coupled rate equations [1,2,10-12,14-16]. These apply in the general case of 
unequal pumping and have also been extended to include asymmetry in coupling coefficient and photon 
and carrier lifetimes [17]. Since there is a dearth of analytical solutions, numerical methods have largely 
been necessary to explore the importance of key physical design and material parameters. While 
numerical methods have proved effective in many cases, analytic solutions can often provide more 
accessible routes and clearer insights towards understanding the system. For the particular case of 
weakly coupled 2-element arrays with equal pumping, approximate steady-state solutions as well as 

T 



analytic expressions for the boundaries of regions of stability have been presented [16]. Thus the 
objective of the present contribution is to extend that work so as to provide approximations for these 
quantities in the case of unequal pumping in weakly-coupled laser pairs with symmetric real coupling.  

This paper is organised as follows. Section 2 presents the main theoretical results in terms of a 
reduction of the five coupled rate equations to a new system of three equations, as well as the 
approximate algebraic solutions of these equations and three stability conditions for their dynamics. 
Details of the derivations of these results are given in Appendices A and B. Section 3 presents first some 
tests of these results against published work and then proceeds to give some examples of the use of the 
approximate stability boundaries for a specific example. The accuracy of these approximations is 
demonstrated by comparison with stability maps calculated using the method of Langrangian descriptors 
[18] as well as by numerical integration of the rate equations combined with a bifurcation method [19].  
It is shown that the approximate solutions permit novel features of the dynamic maps to be identified 
and their dependence on coupling coefficient and pumping asymmetry to be explored in a systematic 
manner. These features are summarised in the concluding section 4.  

II. THEORY 

We begin with the rate equations for a pair of coupled lasers whose coupling rate η is real [16]:   

 

 
 

where YA, YB are the normalised fields and MA, MB are the normalised carrier densities in lasers A, B, 
respectively, φ is the phase difference between the fields in B and A, ∆Ω is the detuning between the 
cavity resonances of lasers B and A, τN is the carrier lifetime, τp is the photon lifetime, αH is the linewidth 
enhancement factor and QA, QB are the normalised pumping rates. We assume weak coupling, hence ητp 
<< 1.  

Now, following earlier approaches for VCSELs [20,21], ring lasers [22] and spin-VCSELS [23], assume 
that τp << τN and MA,B – 1 << 1. Hence define MA = 1 + mA, MB = 1 + mB with mA, mB << 1. It follows that 
(1) – (4) can be reduced to three rate equations and one conservation relation, as follows:  

 



 

The new variables are defined by q = (QA – QB)/ ( QA + QB – 2), m = mA – mB and Y B/YA = tan(ψ/2 + π/ 4) , 
and the details of the derivation of these equations are given in Appendix A. Equation (8) is an energy 
conservation law that holds on the timescale of the carrier recombination time, whilst shorter timescale 
dynamics are included in (5)-(7). The steady state solutions of (5) – (7) can be found explicitly by using 
the approximation sinψs ≅−q which is consistent with ητp << 1, ms << 1, where the subscript ‘s’ denotes  
the steady-state value. The results can then be written as  
 

 
 
In the limit of equal pumping QA = QB, q = 0, (9) and (11) reduce to the forms in (25), (26) and (29) of [16], 
whilst (10) reduces to the forms of (27) and (28) of [16] but without the terms of order ητp which appear 
in the latter. Since we assume ητp << 1, this omission should only result in a very small error in the 
accuracy of (10).  

We distinguish between the situations of ‘tilted in-phase’ and ‘tilted out-of-phase’ solutions of (5) – 
(7), following the nomenclature introduced by Gao et al [12]. It follows from (11) that the steady-state 
phase values, denoted φs+ and φs-, respectively, for these solutions are given by  

 

 
 



For equal pumping these reduce to the forms 
 
 φs+ = arcsin(∆Ω 2αHη ), φs− = π − φ s+ given in [12].  
 
 
By performing a small-signal analysis of (5) – (7) (see Appendix B), approximate expressions for the 

stability boundaries of the system can be found as:  

 

 
 

Equation (15), in combination with (11), corresponds to the Hopf bifurcation. Equation (14) describes the 
saddle-node (SN) bifurcation. For this upper limit of detuning, (12a) and (12b) show that the phase values 
for the in-phase and out-of-phase solutions are equal:  

 

In the limit of equal pumping the results of (14) and (15) can be reduced to the forms of (30) and (31) of 
[16] for real coupling rate, i.e.  

 

 
 

Equations (5) – (15) are the main results of this paper. In the following we test them against results in 
the literature and give some numerical examples of their use. The accuracy of results for these examples 
is verified using different numerical methods of solution.  

 

 



III. RESULTS 

A. Comparison with results from the literature 
The accuracy of the approximations used in deriving (9) – (15) can be tested by comparing some results 

with those in the literature. First, for the steady-state solutions we compare with the results of Erneux 
and Lenstra [24] in their special case of zero time delay of mutually delay-coupled quantum cascade 
lasers. These authors use similar assumptions of weak coupling to reduce the six rate equations for that 
system to two coupled equations for the phase of the electric fields; for the case of zero time delay these 
can be combined into a single equation. It is straightforward to show that our (10) and (11) can be 
combined in the form 

 

 
 
 
 

where θo = tan-1(αH) - π/2. This result matches the steady-state solution of the corresponding phase 
equation (12) of [24], allowing for the differences in notation.   

Contours of constant phase φs+, φs- and field ratio YB/YA in the plane of QB versus ∆Ω for fixed QA, 
calculated from a numerical root searching technique, have been presented by Gao et al in [12]. The 
steady-state results (10) and (12) can be used to allow comparison with these; similarly the boundaries 
of stable operation can be found from (14) and (15). Using the parameter values corresponding to the 
weakly-coupled “array 1” (ητp = 0.002) of [12] with QA = 3.2, the results of applying our equations to find 
tilted in-phase and out-of-phase solutions show good agreement for contours of constant phase. 
Encouraging agreement is also found for the limits of stability using the SN bifurcation approximation 
from (14). In addition we calculated the Hopf bifurcation using (15) and (11). For this we needed the 
value of τN which is not given in [12]; since in other publications, e.g. [8,17,25], these authors use τN = 2 
ns, that value was assumed here. Our results indicate that only the out-of-phase case shows stability and 
moreover the range of stable solutions, as bounded these bifurcations, is very limited for this array. 
Stability is restricted to two narrow regions: one at negative detuning for QB > QA with phase close to 
3π/2 and the other at positive detuning for QB < QA with phase close to π/2. 

Contours of constant phase as well as boundaries of stable operation in the plane of normalised 
detuning versus normalised pumping difference are presented by Kominis et al in [14] for very weak 
coupling (ητp  = 0.000315). Hence for a further test of our approximate results (13) – (15) we used the 
same parameters as [14]. The plot that appears as Figure 9(b) of [14], calculated by utilising a numerical 
continuation algorithm, applies to the range (0 ≤ q ≤ 1, 0 ≤ -∆Ωτp/0.05 ≤ 0.15) in the plane of normalised 
detuning -∆Ωτp/0.05 (≡ ‘∆’ [14]) versus q (≡ 2 x‘∆P’ [14]). For this range our results for the tilted out-
ofphase solutions of this system are in very good agreement with those presented in [14]. Note that 
comparison of our (3) with (6) of [14] indicates that the minus sign in the detuning is needed for 
comparison of results. 

Comparison of the results discussed above using parameters from [12] and [14], leaving aside the 
difference of axes related to pumping rate, reveals a significant difference between the topology of the 



regions of stability for each case. As mentioned above, in the case of parameters from [12] there are 
separate distinct regions of stability for positive q (QA > QB) and negative q (QA < QB), each bounded by a 
pair of SN and Hopf bifurcations. In contrast, we find for parameters from [14] there is a single stable 
region that includes both negative and positive q and is bounded by two SN and two Hopf bifurcations. 
This difference can be traced to the difference in relative sets of parameters and can be quantified in 
terms of a critical value ηc of the coupling rate given by the condition that the square root in (17) vanishes 
for the case of equal pumping, i.e. ηc =Q (2τN αH ) where Q = QA = QB. For values of coupling rate that are 
greater than or equal to ηc the argument of the square root in (17) is greater than zero and the regions 
of stability are similar to those for parameters of [12] where η = 1 and ηc = 0.2 with our assumption of τN 
= 2 ns. For values of coupling rate that are less than ηc the regions of stability are similar to those for 
parameters of [14] where ητp = 0.000315 and ηcτp = 0.0005.  

 
B. Numerical results for a specific example 

Consider the case of real index slab wave-guiding [16] with αH = 2, τN = 1 ns, τp = 1.53 ps and η = 83.6 
exp(-2.52 d/a) ns-1 where 2d is the edge-to-edge separation of the laser waveguides and 2a is the width 
of each. The normalised pumping rate QA,B in each laser is related to the physical pumping rate PA,B by Qj 
= 11.4(Pj/Pjth – 1) + Pj/Pjth where the subscript ‘th’ denotes the value at lasing threshold. We will consider 
only the tilted outof-phase solutions since these are the only ones allowed for these parameters at q = 0 
[16]. First we consider the case of laser separation given by d = 1.5a, which yields η = 1.908 ns-1 (ητp = 
0.00292), with QA + QB = 26.8 which corresponds to both lasers at twice threshold when q = 0. Fig. 1 
shows a stability map in the plane of linear frequency detuning ∆Ω/2π versus q, where the dotted red, 
solid black and broken black lines correspond to the stability boundaries defined by (13), (14) and (15), 
respectively. The region of stable operation is bounded by two SN and two Hopf bifurcations, as defined 
by (14) and (15). This is because the critical value of coupling ηc for these parameters is 3.35 ns-1 which 
is greater than the value of 1.908 ns-1 used to calculate Fig. 1. There are two points in Fig. 1 where the 3 
boundary lines touch tangentially; these SN-Hopf points are at (0.7072, -1.822 GHz) and (-0.7072, 1.822 
GHz). It is easy to show that these points are given by tanφs = αH/q.  

 

Fig. 1. Stability boundaries from (13) – (15) in the plane of normalised  
detuning versus  q  for parameters  α H  = 2,  τ N  = 1 ns,  τ p  = 1.53 ps,  η  =  
1.908  ns -1  and  Q A  +  Q B  = 26.8. ‘S’ denotes the region of stable  
operation.  



In order to verify the accuracy of our approximations, stability maps have been calculated using the 
method of Lagrangian descriptors (LDs) [18]. These are shown in Fig. 2 for the reduced equations (5) – 
(7), and the full set of equations (1) – (4). Only the positive q half-plane is shown in each case. The colour 
shading indicates the contours of the Lagrangian descriptor for the system. Bifurcations are indicated by 
abrupt changes in these contours. Fig. 2(top) thus tests the accuracy of the approximation sinψs ≅−q 
which is used in deriving the stability boundaries (13) – (15) (see Appendix B). These boundaries are seen 
to be in good agreement with the LD result in defining the region of stable operation (denoted by blue 
colour). Fig. 2(bottom)  verifies the accuracy of the reduced set of equations (5) – (7) since there is good 
agreement with Fig. 2(top), the only small difference occurring in the position of the Hopf bifurcation at 
its region of lowest q (around 0.5).  

 
For the next example, we take the coupling rate to be the critical value of 3.35 ns-1 (ητp = 0.00513), 

keeping the other parameter values the same as those for Fig. 1. This value of η corresponds to a spacing 
of d = 1.2766a in the model of coupled slab waveguides [16]. Fig. 3 shows the boundaries defined by (13) 
– (15) superimposed on an LD stability map using (4) – (7). Only the positive q half-plane is shown since 
the negative half-plane can be found by simply reversing the signs of the axes. There are two regions of 

Fig. 2. Stability maps in the plane of normalised detuning versus positive  
q  for the same parameters as in Fig. 1, calculated using the method of  
Lagrangian descriptors: (top) for the 3 reduced equations (5) – (7), and  
( bottom) for the full set of equations (1) – (4). Blue colour denotes the  
region of stable operation. The stability boundaries from (13) – (15) are  
also shown.  



stable behaviour (in blue) each of which is enclosed by saddle-node and Hopf bifurcations, and the latter 
boundaries intersect at q = 0. In this case the points of contact of lines defined by (13) – (15) are at 
(0.5818, -2.7308 GHz) and (-0.5818, 2.7308 GHz). There is a good level of agreement between the 
approximate boundaries and those found from the LD method with an error increasing at values of q 
close to  1.   

 

 
To complete this set of results we consider a higher rate of coupling given by η = 6.726 ns-1 (ητp = 

0.0103), corresponding to a spacing of d = a, i.e. the edge-to-edge spacing is equal to the full width of 
each waveguide. Fig. 4 shows two regions of stable behaviour each of which is enclosed by SN and Hopf 



bifurcations which meet at the points (0.3977, -4.7585 GHz) and (-0.3977, 4.7585 GHz). Again the 
agreement between approximation and LD boundaries is good except at higher values of q.  

Another way to present these results is in terms of detuning versus normalised laser spacing d/a for 
various values of the normalised pumping difference q. Fig. 5 shows plots of this type for q values of 0.4 
and 0.8, using the same parameters as those used previously. In Fig. 5(top) the condition for equality of 
the boundaries occurs for d/a = 1 at q = 0.3977 as mentioned in the discussion of Fig. 4; hence for the 
value of q = 0.4 used here the curve for (13) is barely observable. For q = 0.8 in Fig. 5(bottom) the change 
of all boundaries is clearly seen, as expected from the discussion of Figs. 1 – 4.  

 

In order to test the accuracy of the approximations used to produce Fig. 5, a numerical (Runge-Kutta) 
solution of the rate equations (1) – (4) was used. From the extrema of the time series of  YA2 + +YB2 2YYA 

B cosφ at each value of d/a and detuning, one-parameter bifurcation diagrams are used to construct the 
stability maps in Fig. 5. Examples of one parameter bifurcation diagrams are given in Figs 5 and 9 of [16] 
and details of how these are used to construct stability maps are given in [19]. White colour is used to 
denote the regions of stability; other colours denoting regions of period 1, 2 and 3 oscillation and chaos 
are marked in Fig. 5 (top). It is clear that there is a very good level of agreement for the larger values of 

Fig. 5. Stability maps and boundaries from equations (13) – (15) in the  
plane of normalised detuning versus normalised spacing  d / a  for  q  = 0.4  
( top) and 0.8 (bottom) and other parameters as for Figure 1. The scale  
on the colour bar shows the numbers of extrema in the time series.  



d/a, whilst at smaller values the approximate results tend to underestimate the frequency range of the 
stable region. The SN bifurcations agree well and the underestimate is associated with error in the Hopf 
curves at higher coupling rates. This is thought to be associated with the small error (of order ητp) which 
was noted in the discussion of (10) in section 2 and implies an error of the same order in the 
approximation  sinψs ≅−q . Thus, based on this evidence and that from the comparisons of results in Fig. 
4, we estimate that the approximation of (15) for the Hopf bifurcation is very accurate provided ητp is 
less than about  
0.005. No such limit appears to apply to the approximation of (14) for the SN bifurcation which retains 
its accuracy over the entire range tested here. 

IV. CONCLUSION 

In this paper we report on how the five coupled rate equations which describe laterally coupled laser 
pairs with weak real coupling (ητp << 1) can be reduced to a system of three equations The variables in 
these equations are the phase difference between the fields in the two lasers, the ratio of the field 
amplitudes (expressed as an angle) and the difference in normalised excess carrier densities in the two 
lasers. The underlying physical parameters are the coupling rate η, the linewidth enhancement factor αH, 
the carrier lifetime τN, the photon lifetime τp, the detuning ∆Ω between the cavity resonances of the 
lasers and the normalised pumping rates expressed in terms of their sum (QA + QB) and relative difference 
q = (QA – QB)/ (QA + QB – 2). The approximate steady-state solutions of this reduced set of equations have 
been tested against published results which were found using numerical methods. Additionally, the use 
of a small-signal analysis has revealed closed-form expressions which predict the boundaries of stable 
operation. These have also been compared against published results and our own numerical solutions 
for the case of weakly-coupled laser pairs, and good agreement between the numerical methods and 
those from the approximations are found. Finally, in the limit of equal pumping the algebraic 
approximations are shown to reduce to those already known from earlier work [16,26].  

The new closed-form expressions allow a systematic investigation of the dependence of the dynamics 
on parameters such as pumping rates, coupling rate and linewidth factor. Results have been presented 
for a specific example showing the effect of varying η and q whilst keeping (QA + QB) fixed. These results 
show novel effects in terms of the asymmetric behaviour of the stability boundaries and how this 
develops as the parameter values are changed. In all cases analysed it is found that pairs of saddle-node 
and Hopf bifurcations touch tangentially at points whose co-ordinates can be found algebraically. In 
addition the new expressions offer a route for future exploration of the various forms of nonlinear 
dynamics that exist in a system of coupled laser pairs in terms of physical designs and materials 
parameters, and via external control using differential pumping. Such results should be useful in 
modelling 2-element VCSEL arrays for applications such as beam steering, enhanced modulation 
response, etc., since trends with various parameters can easily be tracked without the need for extensive 
numerical simulation.   

The approach used here follows a method applied previously to VCSELs [20,21,23] and ring lasers [22] 
in that a reduction in the number of rate equations is achieved by assuming a power conservation law 
and a new variable that is related to the ratio of the field amplitudes. This approach would also be 
applicable  
to coupled nanowire lasers which have been predicted to have potential for ultra-high frequency 
modulation [27]. Whilst the present contribution has been limited to the case of real coupling rates, it is 



straightforward to extend this to take account also of the phase of the coupling in order to give a more 
general description of the effects of gain-guiding and index anti-guiding [16]. Further generalisation to 
deal with larger arrays of weakly-coupled lasers, including two-dimensional arrays of VCSELs, is also 
possible but in all cases it is only possible to reduce the number of rate equations by two.   

 

APPENDIX A. DERIVATION OF THE REDUCED SET OF COUPLED RATE EQUATIONS  

Defining MA = 1 + mA, MB = 1 + mB with mA, mB << 1, adding and subtracting the two versions of (4) yields  
 

 
 
For the situation of ητp << 1 we will assume that (A1) can be replaced by a conservation law that holds 
for dynamic time scales longer than the relaxation oscillation period:  

 

 
 
We have thus assumed that the time derivative in (A1) is zero and that the final two terms on the RHS 
can be neglected. We show below in (A5) that the penultimate term is zero.   
From (A3) it follows that  

 

Following the example of [22], we define a new variable ψ by using again the conservation law (A3):  

 

Hence, neglecting the trivial (threshold) case QA + QB = 2, it follows that in general  



 
 
Using this result and the definitions (A6), (A2) becomes  

 

Also, (3) becomes  

 

 



These are the reduced set of equations given as (5) – (7) in the main text. The steady state versions are 

 

 

where the subscript ‘s’ denotes the steady-state value. Since we assume that ητp << 1, ms << 1, it follows 
that a good approximation for the solution of (A19) is  
sinψs ≅−q                                   (A22)  
 
Using this approximation in (A21) and (A8) it follows that  

 

In the limit of equal pumping q = 0, these results reduce to the expressions given in [16] in the case of 
real coupling. In the limits of q tending to 1 or -1, which correspond, respectively, to QB = 1 or QA = 1, i.e. 
one or other laser at threshold, the result in (A23) for the laser above threshold suggests that the quantity 
mj tends to infinity. However, this is also the case for the steadystate solutions of (1) and (2) since at 
threshold the field amplitude is zero.  

 

APPENDIX B. STABILITY ANALYSIS OF THE REDUCED SET OF EQUATIONS  
 
The perturbed solutions of (A16) – (A18) are m = ms + ∆m eλt, φ = φs + ∆φeλt and ψ = ψs + ∆ψeλt where 
∆m << ms, ∆φ << φs and ∆ψ << ψs. It follows that, to first order in small quantities, the resulting 
quations can be combined into a cubic equation of the form  
 
 

 



 

 
 
For non-zero detuning, the value of φs from the solution of (B6) can be used to find the corresponding 
condition on detuning from (A20), again with (A22), as  
 

 
 
 

  solution has positive  
 

   
(B6) gives  

 

 
 

For zero detuning, the tilted antiphase solution gives the result  

 

 



 
 

Using the approximation for sinψs from (A23), the second condition of (B5) becomes  

 

 

For non-zero detuning, the LHS of (B10) is normally much less than the RHS since ητp << 1. Hence (B10) 
implies that the RHS is less than zero, i.e. the SN bifurcation is given by αH cosφ s <qsinφs . Substituting 
this into (B7) yields the result for the SN bifurcation  
 
 

 
 
For equal pumping (B11) reduces to (30) of [16] (with ηi = 0). For zero detuning, the tilted in-phase 
solution for the second condition of (B5) becomes  

 
 
For equal pumping (B12) reduces to η > α H (Q−1)/(2τpQ), a result first derived by Winful and Wang in 
1988 [26]. For zero detuning, the tilted antiphase solution for the second condition of (B5) becomes 
 

 
 
The third condition of (B5) can be simplified by only retaining the terms in 1/τp. Using the approximation 
for sinψs from (A22), this gives  

 

For the case of equal pumping, (B14) reduces to equation (B27) of [16] (with ηi = 0).   
Equations (B6), (B11) and (B14) correspond, respectively, to equations (13) – (15) of the main text.  
For zero detuning, in the tilted in-phase case the result is  



 

For zero detuning, in the tilted antiphase case the result is  

  

For equal pumping, (B16) reduces to η<Q (2ατH N), also first derived in [26]. Note that these and other 
authors use the notation P = (Q – 1)/2 for the normalised excess currents.  
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