
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document, © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. and is licensed under Creative Commons: Attribution-Noncommercial-No Derivative
Works 4.0 license:

Ahmed, Awais, Hameed, Sufian, Muhammad, Rafi and Ali
Mirza, Qublai Khan ORCID logoORCID: https://orcid.org/0000-
0003-3403-2935 (2020) An Intelligent and Time-Efficient DDoS
Identification Framework for Real-Time Enterprise Networks
SAD-F: Spark Based Anomaly Detection Framework. IEEE
Access, 8. pp. 219483-219502.
doi:10.1109/access.2020.3042905

Official URL: https://ieeexplore.ieee.org/document/9284427
DOI: http://dx.doi.org/10.1109/access.2020.3042905
EPrint URI: https://eprints.glos.ac.uk/id/eprint/9116

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

An Intelligent and Time-Efficient DDoS

Identification Framework for Real-Time

Enterprise Networks

SAD-F: Spark Based Anomaly Detection Framework

AWAIS AHMED, SUFIAN HAMEED, MUHAMMAD RAFI, and QUBLAI ALI MIRZA

ABSTRACT

Enterprise networks face a large number of threats that are managed and mitigated with a combination of proprietary and

third-party security tools and services. However, the techniques and principles employed by the said tools, processes, and

services are quite conventional. They lack the rapid evolution, as required to protect against modern, state-of-the-art threats

faced, specifically, against distributed denial of service (DDoS) attacks. The lack of efficiency of a network is directly

proportional to the number of applications and services it hosts, mainly to protect against external and internal threats.

Moreover, the effectiveness of such security mechanisms relies on their independent and proactive approach, which is useful

for known malware and their attack vectors, but become obsolete when there is a new malware or zero-day vulnerability is

exploits.

This paper presents an intelligent, highly responsive, and scalable security framework for enterprise networks. The proposed

framework incorporates Apache Spark Framework for security analytics. It accurately identifies anomalies related to DDoS

attacks from real-time network traffic by using customized machine learning algorithms, meticulously trained against selected

feature-set. Encouraging results are obtained when tested against different scenarios and bench-marked with the results

achieved by related studies in similar scenarios.

INDEX TERMS Anomaly Detection, Apache Spark, Big Data Analytics, DDoS, Machine Learning, Malware, Network Security,

Security Analytics

INTRODUCTION

HE heterogeneity in modern enterprise networks has enabled organizations to not only expand their business operations,

but it has also provided an opportunity for businesses to efficiently use their skilled resources to optimize the effectiveness

of every operation. The inclusion of a diverse set of devices and tools in regular enterprise networks has significantly increased

the efficacy of the majority of related operations. This level of heterogeneity has also diminished physical and geographical

boundaries generally faced by enterprises in the past [1].

The benefits of loosely coupled infrastructure to modern enterprises outweighed the regular network policies and

compliance, which were followed by such enterprises to enhance performance and security [2]. However, securing such a

T

loosely coupled enterprise network is significantly complicated and requires a combination of tools and techniques that can

detect and prevent proactively with minimum to no human dependency.

In the current security ecosystem, if an organization is infected, it takes approximately six months to identify that infection

[3], and that too, if there is a predefined malicious behavior identified by intrusion detection systems (IDS). Generally, the

technique of exploiting enterprise networks without triggering security alerts with malicious activities is used by attackers

with an intent of distributed denial of service (DDoS) attacks [4].

To timely detect DDoS or similar attacks, enterprises heavily rely on tools based on security analytics techniques, which

means identification based on; signatures, heuristics, and behaviors of known malware, along with their attack vectors [5].

This approach is quite effective and can protect against

FIGURE 1. Antivirus Evaluation w.r.t. CPU Usage and Detection Rate [7]

numerous attacks, as the majority of malware released every day are variants of previously known malware [6]. Therefore,

using signature, heuristics, and brief behavioral feature-set is quite effective. However, if the attack is originated by a

new/unknown malware, exploiting a zero-day vulnerability in a network, can bypass the said security measures without

getting detected.

The effectiveness of Intrusion detection systems, antiviruses, and other similar security tools, against unknown malware,

has been practically evaluated several times, and the results are quite different from what is claimed by vendors of said tools.

The lack of threat and anomaly detection is not the only issue. The network and computing resources consumed by the

network security tools, along with the level of privilege they require, give them the highest priority infrastructure. According

to a recent evaluation, enterprise antiviruses consume 45% of CPU resources while scanning for threats, and they can detect

less than 60% of threats [7]. These statistics quite accurately depict the performance of security tools, along with the

implications they can have on host networks.

The issues related to network security tools are not recent, but it is an on-going discussion in the security community. There

are several solutions proposed by different researchers that quite accurately detect previously unknown malware using novel

techniques—additionally, the implementation of machine learning (ML) algorithms, artificial neural networks. To accurately

detect malicious activity is quite successfully proposed and evaluated by several studies. In some selected studies, the level

of accuracy for malware identification is 97% - 98% [8], which is significantly higher than the conventional security tools.

On the other hand, similar machine learning techniques used by other selected studies, as discussed in upcoming sections,

to detect malicious activities in network logs of DDoS and other similar attacks accurately. The said approaches train ML

algorithms against heuristics to accurately identify anomalies in network logs. The results of these techniques also surpass

the identification statistics associated with conventional security tools.

The techniques, as mentioned earlier, proposed and self-evaluated by many studies depict promising results while

accurately detecting malware in a single machine or anomalies in network logs, associated with DDoS. However, there are

two critical aspects of enterprise network security; live anomaly detection and energy efficiency these were commonly

overlooked.

A. MOTIVATION

There exists a significant gap in security mechanisms that are currently used and even proposed to fill the existing gaps in

network security.

• It is required to have a solution that independently and accurately identifies threats and anomalies in live network traffic

with a minimum amount of time.

• To propose and thoroughly evaluate a solution that incorporates the implementation of SPARK with selected machine

learning algorithms to provide effective and energy efficient anomaly detection

• To prefer SPARK over HADOOP to differentiate the batch and stream processing, benefit from streaming by deploying

the proposed framework in near real-time.

B. CONTRIBUTION

This paper initially presents a comparative analysis for streaming NetFlow traffic, including KDD, and UNSW-NB15, and later

it is used for training supervised machine learning models for early anomaly detection. Moreover, UNSWNB-15 NetFlow

dataset is then incorporate with the Hadoop Framework: Spark, the results of this integration are compared with the existing

Hadoop Framework: MapReduce. This comparative analysis presents a significant improvement in real-time data analysis

w.r.t. Time and accuracy, by accurately detecting anomalies in a very short interval.

The framework, SAD-F: Spark-based Automated Anomaly Detection Framework, proposed in this paper, is specifically

designed to befit real-time network security scenarios, namely; anomaly detection in live enterprise networks within a very

short interval and anomaly identification through analysis of stored indicators of compromise (IoC). These two primary

features of the proposed framework are the key elements that address the gap mentioned above in the research in the area

of network security. Moreover, to ensure that the proposed framework meets the performance parameters initially set, a

thorough evaluation is performed. Additionally, the results of the evaluation used to compare with the results of existing

solutions and benchmarking.

SAD-F is more appealing and close to real-time network security requirements, as compared to similar approaches for the

following reasons:

• Although the frameworks, solutions, tools, and techniques currently used in conventional enterprise network

environments, and proposed to fill the gaps in the existing security solutions, do address the issues. However, the current

solutions lack the incorporation

of entropy associated with the real-time network traffic, and the approach incorporating real-time entropy to achieve a

high level of accuracy has a lasting and scalable impact.

• Enterprise networks have a requirement of immediate identification of anomalies that can lead to malicious entities in

the network, specifically, the ones leading to DDoS. The incorporation of security analytics, supported by machine

learning models, trained against customized feature-set, enable SAD-F to identify anomalies in a live network traffic

stream in a responsive manner. The following are the machine learning algorithms that support the proposed

framework.

– K-Nearest Neighbour (KNN)

– Naïve Bayes (NB)

– Random Forest (RF)

– Decision Tree (DT)

– Support Vector Machine (SVM)

• The response time offered by SAD-F is benchmarked against existing solutions, which means that the effectiveness of

the proposed framework is to check against accuracy and timeliness. These are the two parameters that complement

each other while identifying the effectiveness of such a framework.

• The proposed framework is implemented using an opensource highly responsive analytics engine designed for large-

scale data processing, known as Spark. Therefore, the results presented, discussed, and benchmarked later in this paper

are not limited to the experimental dataset, it is also highly scalable to accommodate any form of packet stream in a

real-time heterogeneous network.

The rest of the paper is structured as follows; Section II presents a discussion on the literature work. Section III presents an

in-depth discussion of the proposed framework and how different aspects of the framework implemented. Section IV

presents a discussion on the datasets used in the experiments and benchmarking. Section IV presents a step-by-step walk-

through of testbed design. Section VI is comprises of experiments performed, analysis of results, along with the critical

evaluation of the proposed framework and benchmarking based on related research results. Finally, section VII presents the

conclusion of the study.

RELATED WORK

tion [12].

In this study [13] Romain et al. proposed a new framework; Hashdoop (extension to Hadoop MapReduce). Hashdoop

suggests a solution over a drawback of Hadoop (Spatial and Temporal structure) when it comes to the point of splits of

network traffic over different nodes for distributed processing. Hashdoop splits traffic with a hash function to preserve traffic

structure which leads to outstanding performance over the detection of network anomalies. Hashdoop evaluates with two

anomaly detectors and fifteen traces of Internet backbone traffic captured between 2001 and 2013. Hashdoop with 6node

cluster increased the throughput and enabled real-time detection of large analyzed traces. Hashdoop improves the overall

accuracy of the anomalies detection process.

Hashdoop, experiments were conducted on MAWI archive dataset and more precisely, traffic captured between U.S and

Japan on Sample point B and Sample point F. Authors noted performance trade-off that dividing traffic into many small splits

can cause for adverse results because each split may contain insufficient traffic for the statistical analysis, they left this gap

for future work or considered to be an open challenge.

Considering the above-stated gap as our research study, we are expecting a step ahead solution; instead of using the

MapReduce technique we will utilize distributed computing stream processing for analysis of the same data and bears better

results from an existing study.

In this paper [14] Juliette et al. stated in their study, the problem of unsupervised network anomaly has studied since the

last decade. Many studies were proposed from time to time. Furthermore, they commented mostly unsupervised network

anomaly detectors depended on clustering techniques. Clustering algorithms group similar flows on to the same cluster and

the study presented a novel technique, unsupervised Network Anomaly Detectors Analysis (UNADA). UNADA took advantage

of the distributed computing system to speed up their process.

Dividing the features space into subspaces which allows UNADA to run in multiple parallel DBSCANs and EA algorithms.

Lastly, the authors claimed that their proposed technique UNADA’s deployment in real-time stream tool ’Spark’ can improve

execution time by a factor of 13. Experiments conducted on grid’ 5000 testbeds.

Extensive work has proposed in the field of SDN for

DDoS mitigation. In paper [15] authors proposed a collabo-

In the literature, significant research efforts have been conducted over the years in an attempt to improve the

quality/accuracy of network anomaly detection techniques.

There are some solutions published on network anomaly detection techniques [9], including studies incorporating machine

learning in their solutions. There are also such studies that focus on anomaly detection in big-data related domains [10], [11].

In recent studies, many different techniques studied to solve the traffic classification problem. The majority of current

classification approaches still rely on packet header based anomaly detection and protocol-based anomaly detecrative

distributed denial of service (DDoS) attack mitigation scheme using a software-defined network. They design a secure

controller to controller (C-to-C) protocol that allows software-defined network controllers exists in different autonomous

systems (AS) to communicate and transfer attack information with each other securely. Further, as in extension, they

proposed another scientific work [16]. They introduced three different deployment approaches, i.e., linear, central, and

mesh, which enables efficient notification along the path of an ongoing attack and active filtering of traffic near the source

of the attack, thus saving valuable time and network resources. In experiments, they showed SDN based collaborative scheme

is capable of efficiently mitigating DDoS.

In this paper, [9] Ahmad et al. .presented in their work, one of the challenging modules of the intrusion detection system

known as feature extraction, and presented comparative analysis/results for TCP based traffic. They implemented their

system by using Apache Spark and Netmap. Authors claimed that their proposed system works well for a small organization.

This system has designed on the top of the CAIDA NetFlow attack dataset. Limitations of their work overlooked by deploying

the same system for large scale NetFlow traffic datasets, specifically for large organizations.

In this study [17] Milan et al. proposed a new performance benchmark based on standard security analysis algorithms for

NetFlow data to show the suitability of the distributed stream processing system. Hadoop based system works only for batch

processing and does not offer stream processing (real-time) analysis.

In order to overcome the limitations of Hadoop, three of the most used distributed systems taken for stream processing

experiments such as Spark, Samza, and Storm and experiments conducted on the top of the CAIDA NetFlow dataset. Lastly,

this study presents a performance benchmark chart to justify the outcome.

In paper [10] and [18] Pedro Crass et al. introduced a new framework for network analytic named BIG-DAMA, a Big Data

Analytic framework (BDAF) for network traffic monitoring and analysis applications (NTMA). BIG-DAMA is a new and flexible

framework, which is capable of analyzing and storing extensive data, including stream and batch. This study also implements

multiple data analytic techniques for network security and anomaly detection. Different machine learning used. Authors

claimed that they applied their technique with different types of attacks and benchmark outcomes. Experiments conducted

on the top of the MAWI dataset. Further, the authors claimed that BIG-DAMA could speed up computation by a factor of 10

to existing solutions. Proposed system; BIG-DAMA can easily deployable in a cloud environment using virtualization

techniques.

In study [19], the authors state that machine learning is a useful proactive/reactive analysis tool to detect anomalous

activities if observed. They are considering machine learning as a suitable framework and Apache Spark data processing

framework that can quickly perform processing tasks on substantial data sets. In results, the authors presented experimental

results on the UNSW-NB15 dataset and evaluated in terms of detection accuracy, building time, and prediction time. This

paper uses mainly four classification algorithms, namely: SVM, Naïve Bayes, Decision Tree, and Random Forest. This paper

aims to reduce training and detection time. This paper also aims to develop a detection algorithm to classify the incoming

network traffic into one of the nine attack categories.

In this paper [20] authors stated that with machine learning techniques for network traffic anomalies can be detected with

reasonable accuracy. They continued that most of the previous work has focused on detecting anomalies using traditional

machine learning frameworks. However, this paper used an Apache Spark framework to cope with the high volume. This

paper investigated the feasibility of Apache Spark and to classify different attacks. In this paper, they applied traditional

machine learning algorithms namely: Multinomial Logistic Regression, Decision Tree, Random Forest, Multilayer perceptron,

and Naïve Bayes using a dataset presented by MAWILab and classify 15 different attack types. Further, this paper investigates

the efficiency of Apache Spark in terms of accuracy and speed with different settings of spark. They investigated the

performance of the detection system by varying executor cores and memory size. In the results of the future work, authors

would like to extend their work using spark streaming and aim for real-time detection of network traffic anomalies.

In this study [21], authors proposed an intelligent framework based on the RF- Random Forest Classifier for quick and

precise anomaly-based intrusion detection system with the help of high volume data processing framework, i.e. Apache

Spark. This paper used the NSL-KDD train and test dataset from the University of New Brunswick, respectively for training

and testing the model. In results, this paper presented high accuracy, low false alarm, low false negative, and high precision

which is promising for applying in anomaly detection systems.

A recent study [22] proposed an efficient spark-based anomaly detection by working on UNSW-NB15 dataset. Authors

stated that proposed approach gives better accuracy even using a small subset of features of the UNSW-NB15.

In this survey paper [23] authors stated nowadays anomaly detection in high-dimensional data is becoming a fundamental

research problem and to addressed this mentioned gap and to understand the core problem it is necessary to identify the

unique challenges in perspective anomaly detection with both high dimensionality and big data problems. Author’s

contributions of this survey are such as: 1.Reviewed theoretical background of existing work 2.Identified unique challenges.

3. Reviewed techniques or algorithms of anomaly detection which addressed the problems of high dimensionality and big

data. 4. Reviewed the big data tools.

A recent study [24] proposed a novel approach for real time DDoS detection. Authors stated that traditional frameworks

are not capable of processing live traffic in the big data environment. To cater the stated gap a streaming-based distributed

and real-time DDoS detection system called S-DDoS were proposed. S-DDoS system uses K-Means clustering algorithm to

recognize the DDoS attack traffic in real-time. The model were designed on the Apache Hadoop framework. The results show

that the proposed S-DDoS detection system efficiently detects the DDoS attack from network traffic flows with higher

detection accuracy 98%.

Readers are encouraged to refer upcoming both tables 1 and II for a comparative overview of related work with our

proposed work. Table II is an excellent start to find research gaps in existing as it lists five technical questions about the

related work: only a few and most relevant papers listed in the literature table II.

After going through from related work, we came up with a system and expects efficiency in terms of the time of

computation and accurate enough from the existing system. To achieve the objective, we deployed two of the streaming

dataset including KDD99 and UNSW-NB15, and predicting accurate results for anomalies such as DoS, DDoS, IP Scanning, Port

Scanning, etc. This paper investigates existing and proposed work and benchmark the difference. Lastly, this paper also lists

literature work on the Netflow data preprocessing techniques.

SPARK BASED ANOMALY DETECTION

FRAMEWORK - (SAD-F)

The purpose of this study is to contribute and to fill the research gap as highlighted from [10], [25], [26] discussed above in

section Problem Statement. The follow-up sections describe the subsections, including the proposed framework, dataset

selection, data preprocessing techniques, model selection, results, conclusion, and future work.

A. PROPOSED FRAMEWORK

In this study, we propose a successor of our previously purposed framework in base study [25], [26], which comprise of five

major phases implemented as separate components including:

1) Netflow traffic capturing server and or NetFlow traffic selector

2) Preprocessing of Netflow data

3) Spark cluster simulation phase

4) Anomaly detector

5) Result in the form of graph or notification to the concerned body

.PCAP, or CSV) this file will pass over the "Preprocessing and Detection stage", which further discussed in the upcoming

subsection.

Live traffic may contain some of the predefined filters to capture required network traffic. For example, parameters could

be packet size, no of frames and desired protocol filter. As admin finalized the parameter-tuning/ filter-setting capturing tool

begins to capture as depicted in figure-3. Along with the traffic capturing process that file will be logged and will be transferred

further for the preprocessing and detection process, which is further discussed below in subsection. Example filters as shown

in figure-4 as reference these filters may help future researchers to begin with live capturing.

C. DATA PREPROCESSING TECHNIQUES

The hard part of the anomaly detection process is the preprocessing of network traces and the data preprocessing techniques

is an essential step in anomaly detection, and review shows that preprocessing needs domain experts for better features

selection which leads to improvements in results. The review also finds that many studies limit their preprocessing steps and

do not discuss in details in their work [10]. As network traffic files will arrive at this stage, the preprocessing and anomaly

detection process will begin. Data preprocessing is a must step in all knowledge discovery tasks from which preprocessing of

network-based intrusion detection took 50 percent [12] efforts of the overall process which produced a better classification

of network traffic as normal or anomalous. Removing strong co-relate, irrelevant, and redundant features also improve the

detection rate for learning-based algorithms. This study focuses on the Netflow preprocessing stage, and for that, we

designed a novel approach for preprocessing. We studied various formal process models that proposed for knowledge

discovery and data

As per limitations discussed, we upgraded framework 2 adding stream processing by spark and removing counterbased

algorithm, which was supposed to find listed anomalies. However, this proposed SAD-Framework mainly focuses on finding

a nomalies f rom k nown a s w ell a s unknown data with preferred low-level hardware, also known as commodity hardware.

One can see the difference between proposed framework components and previous work 2 and 3.

B. NETFLOW TRAFFIC CAPTURING SERVER AND OR NETFLOW TRAFFIC SELECTOR

In this phase, one may suppose to pass the NetFlow dataset directly or captures live traffic with the help of network capturing

tool Wireshark with predefined filters to filter network traffic.

This framework is flexible and offers an admin perspective mining (KDDM) as discussed in [27]. After thoroughly reviewing

studies [12], [27], we found standard preprocessing steps include dataset creation, data cleaning, integration, feature

construction to derive new higher-level features, feature selection to choose the optimal subset of relevant features,

reduction. The most important steps for network intrusion deduction systems briefly discussed below:

• Dataset creation: Involves identifying representative network traffic for training and testing. These datasets should be

labelled, indicating whether the connection is normal or anomalous. Labelling network traffic can be a very time

consuming and difficult task.

• Feature construction: It aims to create needed additional features with better discriminating ability than the initial

feature set. This step can bring significant improvement to machine learning algorithms. Features

web interface through which admin can tune the capturing process by parameter tuning for desired live traffic. However, at

this stage, we are not designing the admin portal; instead, we will use passive NetFlow data to the file transfer stage. After

loading the capture file, file format could be (.CAP, can also created manually, or by using data mining methods such as

sequence analysis, association mining, and frequent episode mining

S.No Paper Title Publication

Year
1 Hadoop-based live DDoS detection framework 2018
2 Efficacy of live ddos detection with hadoop 2016
3 Network security and anomaly detection with Big-DAMA, a big data analytics framework 2017
4 Performance evaluation of intrusion detection based on machine learning using Apache Spark 2018
5 Network Traffic Anomaly Detection based on Apache Spark 2019
6 Network Anomaly Detection by Means of Machine Learning: Random Forest Approach with Apache Spark 2018
7 Network intrusion detection in big dataset using Spark 2018
8 A comprehensive survey of anomaly detection techniques for high dimensional big data 2020
9 S-DDoS: Apache spark based real-time DDoS detection system 2020
10 An efficient spark-based network anomaly detection 2020

TABLE 1. Listing of Referenced Papers

S.No Does paper

propose any

framework to

present their

work?

Repeatedly used
Dataset(s):
1)UNW-NB15
2)NSL-KDD
3)MAWILAB
4)Others(please

specify)

Machine Learning
Algorithms:
1)RF
2)DT
3)SVM
4)NB
5)LR
6)Others(please

specify)

Mostly evaluation
techniques used:
1)Model accuracy
2)Building time
3)Prediction time
4)Tweaking
 of
executor cores and
memory size 5)Low
false alarm
6)High precision

Mostly highlighted
future work: 1)Less
training/detection
time
2)Live traffic
3)Spark streaming

Gaps filled by SADF

 or

 compariso

n with SAD-F

1 HADEC N/A Counter Based

Algorithm
1 1 and 2 1 and 2

2 N/A N/A HADEC Reducer
Job and Counter
Based Algorithm

1 1 and 2 1 and 2

3 Big-DAMA 3 1,3,4 CART and
MLP

1 and 3 1 and 2 1 and 2

4 Apache Spark 3 1-2,4-5 and MLP 1 and 4 1 and 3 1 and 2
5 Apache Spark 2 1 5 and 6 N/A 1
6 Apache Spark 1 1 1 and 3 1 1
7 Apache Spark 1 1-4 1-3 1 and 2 1 and 3

TABLE 2. Literature Work

• Reduction: It is a commonly used technique to decrease the dimensionality of the dataset by discarding

any redundant or irrelevant features. This process of feature optimization is called feature selection, and is commonly

used to alleviate “the curse of dimensionality”. Data reduction can also be achieved with feature extraction, which

transforms the original feature set into a reduced number of new features. Principal component analysis (PCA) is a

conventional linear method used for data reduction.

Preprocessing converts network traffic into a series of observations, where each observation represents a feature vector.

Observations optionally labeled with its classes, such as “normal” or “anomalous.” These feature vectors are then suitable as

input to data mining or machine learning algorithms. Machine learning is the use of algorithms that evolve according to the

labeled data instances (observations) provided to it. The algorithms can generalize from these observations, hence allowing

future observations to be automatically classified. Machine learning is widely used in anomaly-based NIDs with examples

including [28] and the Principal Component Classifier by [29]

After a successful process, the preprocessed file will transfer further to spark cluster manager for further classification

process, and the file will test against the pre-trained model.

Results logged for the further notification process, which further discussed in detail in the upcoming section.

D. ANOMALY DETECTION TECHNIQUES: NETWORK INTRUSION DETECTION SYSTEMS

To the best of the literature review, we are concluding that intrusion prevention techniques are imperfect, so monitoring for

security compromises is required, and it is an essential role of network intrusion detection systems (IDSs). Our proposed NIDs

aims to detect malicious activity in near *realtime and raise an alert. Anomaly detection in intrusion based detection systems

provides a way to detect several attacks, which results in network failures in real-time or be the basis for future mishaps.

Curing anomaly detection at early stages is preferable due to many factors including cost, the response time of system and

customer satisfaction.

In this paper, we are utilizing the following listed supervised techniques for anomaly detection.

• k-nearest neighbors algorithm

• Naive bayes

• Random forest

• Decision Tree

• Support Vector Machine

In this section, we are not supposed to discuss models details from the perspective of machine learning, although interested

readers referred to these [30], [31]

E. SPARK CLUSTER SIMULATION PHASE

According to our architecture, after preprocessing of the dataset, Spark comes in action to deliver the requested work. In this

paper, we are considering that the standalone spark cluster consists of five worker nodes, including one of them working as

a master node. Apache Spark is a cluster computing platform as stated in [19], [32] designed to be as fast as near real-time

response rate, Spark extends the popular MapReduce model to efficiently support more types of computations, including

interactive queries and stream processing. Its speed is important in processing large datasets, as it means the difference

between exploring data interactively and waiting minutes or hours. One of the main features Spark offers for speed is the

ability to run computations in memory. Still, the system is also more efficient than MapReduce for complex applications

running on disk. Apache Spark also designed to cover a wide range of workloads that previously required separate distributed

systems, including batch applications, iterative algorithms, interactive queries, and streaming. By supporting these workloads

FIGURE 2. HADEC: Hadoop based Live DDoS Detection framework;figure reused from scientific paper [25], [26]

FIGURE 3. SAD-F: Spark Based Anomaly Detection Framework

in the same engine, Spark makes it easy and cost-effective to combine different processing types, which is often necessary

for production data analysis pipelines. Besides, Apache spark reduces the management burden of maintaining separate tools.

Spark also supports the collection of different programming languages, including R, Python, Scala, etc. Refer to the following

subsection for configuration guidelines for getting started with Spark.

1) Spark Cluster Configuration

Spark cluster is a network of computers. A cluster consists of a master and n* slaves. (N is limited)

Master: Master is the leader of all servers that monitors how slaves are working. It divides the task and takes care of rest.

Slaves: These are the computers that receive a job from the master node and perform a job. They are responsible for

processing chunks of your massive datasets following the MapReduce paradigm. A computer can be a master and slave at

the same time.

Spark offers/supports three types of clusters, including standalone, Yarn, and Mesos. Standalone: Spark is responsible for

managing its cluster.

Yarn: Spark uses Hadoop’s Yarn resource manager. Mesos: Spark Apache dedicated resource manager.

F. RESULT AND NOTIFICATION

In this stage, our proposed framework suggests generating a notification to avoid future vulnerabilities and to mitigate from

current attacks. On successful completion of learning tasks, the final result file transferred, and the admin (server) gets

notified for anomalies (for this, we are using a commandline based interface to track all interaction). Figure-3 presents a

complete illustration of our proposed framework.

FIGURE 4. Wireshark (T-Shark)- Example filters for Live Capturing;"figure reused from scientific paper" [25], [26]

IV. SAD-F: SCIENTIFIC DATASETS

Network anomaly detection is a challenging task due to the dynamic nature of NetFlow traffic. The paper focuses on the

general analytics/techniques to detect anomalies in the network. The study exploring the following datasets

• KDD Cup 99

• UNSW-NB15

All of the mentioned datasets are in .pcap format provided by sources [33], [34]. The following further subsection describes

the detailed discussion of the listed dataset individually.

A. DATASETS FOR SYSTEM EVALUATION

This study does not require any specific traffic data because, in this paper, we propose a general framework. But we

recommend these Netflow datasets KDD-CUP 99 and UNSWNB15. Even though KDD-CUP 99 is not entirely usable anymore

because it lacks most of the new types of attacks, we took this dataset for testing and proof of concept of our deployed

framework.

• KDD Cup 99: Since 1999, KDD99 noticed to be the widely used dataset for evaluation of anomaly detection methods [35]–

[37]. This dataset is prepared by [35] and is built based on the data captured in DARPA’98 IDS evaluation program [35].

"This is the data set used for The Third International Knowledge Discovery and Data Mining Tools Competition, which

held in conjunction with KDD-99 The Fifth International Conference on Knowledge Discovery and Data Mining. The

competition task was to build a network intrusion detector, a predictive model that distinguished between “bad”

connections, called intrusions or attacks, and “good” normal connections. This database contains a standard set of data

to be audited, which includes a wide variety of intrusions simulated in a military network environment." The dataset’s

attacks fall into four categories:

– Denial of Service Attack (DoS): DoS is one the attack type in which the intruder makes some computing or memory

resource too busy to handle legitimate requests, or denies legitimate users access to a machine.

– User to Root Attack (U2R): It is a class of exploit in which the attacker starts with access to a standard user account

on the system (perhaps gained by sniffing passwords, a dictionary attack, or social engineering) and can exploit

some vulnerability to gain root access to the system.

– Remote to Local Attack (R2L): It occurs when an attacker who can send packets to a machine over a network but

who does not have an account on that machine exploits some vulnerability to gain local access as a user of that

machine.

– Probing Attack: Probing is an attempt to gather information about a network of computers for the apparent purpose

of circumventing its security controls.

• UNSW-NB15: For the evaluation of the performance and effectiveness of the network intrusion detection system, we

require a comprehensive dataset that contains both normal and abnormal behaviors. Much research work has done

using older benchmark data sets like KDDCUP 99 and NSLKDD, but these data sets do not offer realistic output

performance. The reason is that KDD CUP 99 has lots of redundant and missing records in the training set. So these

8 VOLUME 4, 2016

datasets are not a comprehensive representation of the modern low footprint attack environment, which concludes

that we need a dataset that fulfills the requirements.

The UNSW-NB 15 data set created by utilizing an "IXIA PerfectStorm tool" to extract a hybrid of modern and

contemporary attack activities of network traffic. A tcpdump tool used to capture "100 GB" of raw network traffic (pcap

files). Each pcap file contains "1000 MB" to make the analysis of packets easier.

UNSW-NB15 dataset is available in comma-separated values(CSV) file format.This data set contains 2,540,044 records,

which stored in four CSV files. Moreover, apart from this data set was divided into a training set and a testing set. The

training set involved 175,341 records, while the testing set contained 82,332 records with all different nine types of

attack and normal records. There are 45-49 attributes or features with 10 class values in this dataset. All records divided

into two major categories of the records - normal and attack. Furthermore, the attack categories subdivided into nine

categories of attack types. [38].

– Fuzzers: It is an attack in which the attacker attempts to discover security loopholes in an application, operating

system, or a network by feeding it with the massive inputting of random data to make it crash.

– Worms: It is an attack in which the attacker replicates itself to spread on other computers. It often utilizes a

computer network to spread itself, depending on the security failures of the target computer used to access it.

– Reconnaissance: This attack category is also known as a probe, and it is an attack that gathers information about a

computer network to evade its security controls.

– Analysis: It is a type of variety intrusions that penetrate the web applications via ports (e.g., port scans), emails (e.g.,

spam), and web scripts (e.g., HTML files).

– Backdoors: It is a technique of bypassing a stealthy normal authentication, securing unauthorized remote access to

a device, locating the entrance to plain text, as it struggles to continue unobserved.

– DoS: It is an intrusion which disrupts the computer resources via memory to cause excessive business, to prevent

authorized requests from accessing a device.

– Exploits: It is a sequence of instructions that takes advantage of a glitch, bug, or vulnerability, causing an

unintentional or unsuspected behavior on a host or a network.

– Generic: It is a technique that establishes against every block-cipher using a hash function to cause a collision

without respect to the configuration of the block cipher.

– Shellcode: It is a malware in which the attacker penetrates a slight piece of code starting from a shell to control the

compromised machine.

Furthermore, research studies [6], [38] divided this dataset in to six different categories as follows:

– Flow features: This group includes the identifier attributes between hosts, such as client-to-serve or server-to-client.

– Basic features: this category involves the attributes that represent protocols connections.

– Content features: this group encapsulates the attributes of TCP/IP and contains some attributes of HTTP services.

– Time features: this category contains the attributes of time, for example, arrival time between packets, start/end

packet time, and round trip time of TCP protocol.

– Additional generated features: it includes generalpurpose features and connection features.

– Labelled Features: this group represents the label of each record.

From the selected datasets, we focus on a specific group of attacks, as discussed above in subsection IV. Considered

algorithms trained to detect each of these attack types independently and in parallel, in the same fashion as in [10], [39]. As

a result, each detection approach can detect the occurrence of an attack and also classify its nature.

SNo Feature

Name
Feature Description

1 srcip Source IP address.
2 sport Source port number.
3 dstip Destinations IP address.
4 dsport Destination port number.

5 proto Protocol type, such as TCP, UDP.

TABLE 3. Flow Features; Table reproduced from scientific papers [34] and [6], [38]

SNo Feature
Name

Feature Description

6 state The states and its dependent protocol e.g., CON.
7 dur total duration.
8 sbytes Source to destination bytes.
9 dbytes Destination to source bytes.

10 sttl Source to destination time to live.
11 dttl Destination to source time to live.
12 sloss Source packets retransmitted or dropped.
13 dloss Destination packets retransmitted or dropped.
14 service Such as http, ftp, smtp, ssh, dns and ftpdata.
15 sload Source bits per second.
16 dload Destination bits per second.
17 spkts Source to destination packet count.
18 dpkts Destination to source packet count.

TABLE 4. Basic Features; Table reproduced from scientific papers [34] and [6], [38]

SNo Feature
Name

Feature Description

19 swin Source TCP window advertisement value.
20 dwin Destination TCP window advertisement value.
21 Stcpb Source TCP base sequence number.
22 dtcpb Destination TCP base sequence number.
23 smeansz Mean of the packet size transmitted by the srcip.
24 dmeansz Mean of the packet size transmitted by the dstip.
25 transdepth The connection of http request or response

transaction.
26 resbdylen The content size of the data transferred from http

TABLE 5. Content Features;Table reproduced from scientific papers [34] and [6], [38]

SNo Feature
Name

Feature Description

27 sjit Source jitter.
28 djit Destination jitter.
29 stime start time.
30 ltime last time.
31 sintpkt Source inter-packet arrival time.
32 dintpkt Destination inter-packet arrival time.
33 tcprtt Setup round-trip time, the sum of ’synack’ and

’ackdat’.
34 synack The time between the SYN and the SYN-ACK packets.

35 ackdat The time between the SYN-ACK and the ACK packets.

36 ismipports If srcip (1) = dstip (3) and sport (2) = dsport (4),

assign 1 else 0.

TABLE 6. Time Features; Table reproduced from scientific papers [34] and[6], [38]

SNo Feature
Name

Feature Description

37 ctstatettl No. of each state (6) according to values of sttl

(10) and dttl (11).
38 ctflwhttpmthd No. of methods such as Get and Post in http

service.
39 isftplogin If the ftp session is accessed by user and

password then 1 else 0.
40 ctftpcmd No of flows that has a command in ftp session.
41 ctsrvsrc No. of rows of the same service (14) and srcip

(1) in 100 rows.
42 ctsrvdst No. of rows of the same service (14) and dstip

(3) in 100 rows.
43 ctdstltm No. of rows of the same dstip (3) in 100 rows.
44 ctsrcltm No. of rows of the srcip (1) in 100 rows.
45 ctsrcdportltm No of rows of the same srcip (1) and the dsport

(4) in 100 rows.
46 ctdstsportltm No of rows of the same dstip (3) and the sport

(2) in 100 rows.
47 ctdstsrcltm No of rows of the same srcip (1) and the dstip

(3) in 100 records.

TABLE 7. Additional generated Features;Table reproduced from scientific papers [34] and [6], [38]

SNo Feature
Name

Feature Description

48 Attackcat The name of each attack category.
49 Label 0 for normal and 1 for attack records.

TABLE 8. Labelled Features;Table reproduced from scientific papers [34] and [6], [38]

V. TESTBED DESIGN STEPS

This section highlights and discusses the implementation design steps of the proposed framework. The following subsections

discuss overall components that need to configure before the execution of the system.

A. TESTBED SETUP

We design and test our framework on two different testbeds we named one as "low end" testbed and "high end" testbed.

Both have different specifications in terms of hardware.

For low-end testbed, we configured three worker nodes and one master node. Each node is physically independent of each

other. Each system contains 8GB of memory and 500 GB of Hard Disk and 2.7 GHz of processor. This cluster setup collectively

consists of 10*16 GB of memory, 10*500 GB of space, and 3*3.5 GHz of the processor as per the previous study’s

configuration [10].

For high-end testbed, we configured two worker nodes and one master node. Each node is physically independent of each

other. Each system contains 16GB of memory and 1TB of Hard Disk and 3.5 GHz of processor. This cluster setup collectively

consists of 2*16 GB of memory, 2*1 TB of space, and 3*3.5 GHz of processor.

B. NETFLOW TRAFFIC SELECTOR

As shown in figure-3, our proposed framework is flexible with either live traffic or passive traffic selector. At the current stage,

we only used a passive traffic selector. At this step, the system requires the required traffic file after that system will transfer

that file to the log file for further processing. The following two options are available as traffic selectors.

• Live network traffic capturing server

• Passive traffic

C. LOG SERVER

After receiving the file at this stage log server will keep that file for future need; if there is any discrepancy in results,

admin/network administrator can do manual work to take respective actions.

D. PREPROCESSING FILE

We designed a preprocessing function that is efficient, and it is designed for the specific NetFlow dataset. However, it is quite

easy to change its parameters to fit with a new NetFlow dataset; the following are the few steps we considered while

designing the preprocessing module.

• Data file splitting by timestamp

• Calculating hash of features at run-time

• Converting features into OneHotEncoding at run-time

Before beginning for further network traffic classification, we split targeted data by time-slot to reduce the size of the file.

For example, a one hour network trace file split into multiple 10-Seconds files. The general command to split network trace

file based on time-slot. "editcap -i file-splittime filename.pcap file-split-time.pcap"

For preprocessing, we designed our own methodology which aims to read the data file and load it into data-frame. Then

data-frame were read individually by features set. By Deep feature inspection we noticed data type of each feature after that

we used appropriate conversion method for each feature refer to tables [3, 4, 5, 6, 7 and 8] for detailed dataset feature set.

E. FILE TRANSFER TO SPARK CLUSTER

After taking all the necessary steps, the preprocessed file arrives at the spark phase on which the system distributes the file

to the worker node, which is one of the spark’s core job.

F. MODEL SELECTION

We implemented five supervised learning algorithms KNN, RF, DT, NB and SVM to train testbeds as referenced in [10].

G. MODEL TESTING

We used the training model as our base model to classify whether the incoming network traffic to the server or main node is

normal or an attack.

H. ADMIN PANEL

Whoever will deploy our framework to improve their network operation in terms of DDoS detection; they can design their

admin panel as per requirements. The framework is capable of further integration. At this stage, we used Ubuntu command

prompt system to tackle admin related tasks like start/stop the operations.

VI. EXPERIMENTS AND RESULT ANALYSIS

The framework is independent of Netflow dataset selection. However, we explored and practically implemented the UNSW-

NB-15 dataset is publicly available at [34] since 2015. UNSW-NB-15 is the most suitable and welldescribed dataset available

for researchers to work to the best of our knowledge. Apache Spark Framework: Apache Spark-based anomaly detection

framework and MLib libraries used. Five well-known machine learning algorithms used, namely [KNearestNeighbour,

NaïveBayes, DecisionTree, SuportVectorMachine, and RandomForest], used for performance evaluation. Recently, similar

work has been proposed by [19]. One may compare the significant result difference between our proposed work with this

work.

A. PERFORMANCE EVALUATION:

The overall performance of SAD-F depends upon the time taken to capture and transfer the log file to the testbed in real-

time mode. The system depends upon the time taken to read a chunk of traffic volume and time taken to classify each chunk

and moves forward for the next chunk of traffic as in upcoming tables [1-3], we presented two variations of chunk size i-e

300 and 1000. It also depends upon the time taken by a specific classifier to detect chunk and generate false alarm + negligible

overhead of the system.

For performance evaluations, we benchmark our results, which focuses on the selection of classifier, file size, the total

volume of traffic, false alarm rate, chunk size of traffic volume, and detection time.

Figure-5 depicts the total time taken to capture and transfer real traffic (using Wireshark T-Shark library) on our deployed

primary node. Traffic capturing time is almost linear to the file size; as the file size is increasing, it is also increasing. It took

almost 20 seconds to capture a file size of 10MB while it took 420 seconds to capture 1 GB file. On the other hand, it is clear

that as the file size is increasing, the volume of traffic is also increasing, so both relations are linear co-related. It shows a

definite improvement in throughput with the increase in file size and volume of traffic.

At this stage, these calculations are proof of concept while we did not continue with real-time strategy. However, we are

reading a chunk of data and simulating like a real-time (near real-time) these measurements will be entirely useful for the

future researcher.

Figure-6 list dataset volume w.rt. to file size and packets count.

1) Comparison of preprocessing, training and testing cost on local machine vs. SAD-Framework

Scientific reading presented in this Table 9 taken from local machine (8GB of RAM and 2.50 GHz of processor) while reading

presented in Table 11 and 13 are taken from SADFramework. Measurements of KNN is not presented in above tables 11 and

13 because kNN is not supported by SPARK distributed architecture [40]. By analysing readings from above presented tables

9, 11 and 13 which clearly shows

TABLE 9.

Relationship of train/test time (in seconds) and Accuracy of model in percentage on a local machine

Model Train/Test file size and Traffic volume Overall Time Accuracy SET SEA
DT 150 MB 40 MB (999999, 300000) 90 94.40 ±1.074 ±0.758
RF 150 MB 40 MB (999999, 300000) 360 92.98 ±1.747 ±0.760
NB 150 MB 40 MB (999999, 300000) 204 72.6 ±1.945 ±0.447

SVM 150 MB 40 MB (500000, 200000) 14400 87.62 ±5.145 ±0.756

TABLE 10.

Measurements from Confusion Matrix

TABLE 11. Relationship

of train/test time (in seconds) and Accuracy of model in percentage on a low end testbed

Model Accuracy or
Detection

Rate

Precision False
Positive

Rate

True Positive

Rate
True

Negative
Rate

False

Negative

Rate

FScore

DT 0.9407 0.9697 0.0302 0.9674 0.4937 0.0325 0.9685
RF 0.9298 0.9474 0.0525 0.9790 0.2493 0.0209 0.9629
NB 0.7269 0.8698 0.1301 0.7903 0.4103 0.2096 0.8282

SVM 0.82621 0.8648 0.1351 0.9069 0.5956 0.0930 0.8854

TABLE 12. Measurements from Confusion Matrix

FIGURE 5. Capture and transfer time of a log file

Model Accuracy or
Detection

Rate

Precision False
Positive

Rate

True Positive

Rate
True

Negative
Rate

False

Negative

Rate

FScore

kNN 0.9206 0.9471 0.0528 0.9654 0.5258 0.0345 0.9562
DT 0.9407 0.9697 0.0302 0.9674 0.4937 0.0325 0.9685
RF 0.9298 0.9474 0.0525 0.9790 0.2493 0.0209 0.9629
NB 0.7269 0.8698 0.1301 0.7903 0.4103 0.2096 0.8282

 SVM 0.82621 0.8648 0.1351 0.9069 0.5956 0.0930 0.8854

Model Train/Test file size and Traffic volume Overall Time Accuracy SET SEA
kNN 150 MB 40 MB (999999, 300000) 12605 92 ±2.265 ±1.235
DT 150 MB 40 MB (999999, 300000) 6565 94.40 ±3.185 ±1.050
RF 150 MB 40 MB (999999, 300000) 6549 92.98 ±3.417 ±1.050
NB 150 MB 40 MB (999999, 300000) 6536 72.6 ±1.586 ±0.448

SVM 150 MB 40 MB (500000, 200000) 71317 87.62 ±1.732 ±0.756

FIGURE 6. Relationship of Dataset Size and Traffic Volume

the improvement. Here we conclude our proof of work that our deployed frameworks. The next section focuses on actual

error calculations are as per standard calculations [?]. scientific reading taken from SAD-F on both testbeds individually by

simulating near real-time traffic. Calculated standard

Model Train/Test file size and Traffic volume Overall Time Accuracy SET SEA
DT 150 MB 40 MB (999999, 300000) 32 92.23 ±0.981 ±0.564
RF 150 MB 40 MB (999999, 300000) 200 91.68 ±1.236 ±0.525
NB 150 MB 40 MB (999999, 300000) 104 78.54 ±1.826 ±0.671
SVM 150 MB 40 MB (500000, 200000) 2890 86.52 ±3.235 ±0.721

TABLE 13. Relationship of train/test time (in seconds) and Accuracy of model in percentage on a high-end testbed

Model Accuracy or
Detection
Rate

Precision False
Positive
Rate

True Positive

Rate
True
Negative
Rate

False

Negative

Rate

FScore

DT 0.9223 0.9645 0.0354 0.9508 0.5823 0.0491 0.9576
RF 0.9168 0.9465 0.0534 0.9645 0.3274 0.0354 0.9554
NB 0.7854 0.8791 0.1208 0.8607 0.4103 0.1392 0.8698
SVM 0.8652 0.8716 0.1283 0.9594 0.5956 0.0405 0.9134

TABLE 14. Measurements from Confusion Matrix

B. NEAR REAL-TIME TRAFFIC CLASSIFICATION BY SAD-F:

Our system can simulate traffic in the form of single or many rows (a.k.a instances and a chunk of traffic volume. After that,

our program will pass this traffic to classifier/function to classify the traffic behavior and generate a false alarm if the system

detected as any malware available in the selected chunk of data and repeats the process to select another chunk of volume

till the end of the file.

NetFlow Traffic can be real-time traffic refer to figure-5. However, it needs an extra effort in terms of time for preprocessing

to include all the required features set for proper working and to increase accuracy and time taken by logging and transferring

such traffic volume to the testbed/deployed framework.

We evaluated the performance of our framework based on different sizes of the log file, as in figure-6. For testbed

evaluation, we individually noted spark file loading and distributing time, file preprocessing time, detection time of the

algorithm, and total time is taken by spark cluster to complete the experiment. For scientific reasons, we calculated an

average of three measurements for individual experiments. The following paragraphs show low-end testbed and highend

testbed results, respectively.

C. LOW END TESTBED RESULT CHARTS

Packet Count DT RF NB SVM

100K 1.2008 0.9705 0.7536 153.2593
450K 1.5635 1.5776 5.9583 543.8486

1000K 3.3746 2.8163 21.0618 946.4972
1800K 179.453 66.4375 38.9206 1176.6666
2500K 428.3554 376.1895 442.9408 2008.8368
3400K 643.8411 613.1385 850.6137 2900.5085

TABLE 15. Detection time taken by different classifier w.r.t Packet Size

FIGURE 7. Detection time taken by different classifier w.r.t Packet Size

Table 15 shows the average detection time taken by different detection models, namely [DT: Decision Tree, RF: Random

Forest, NB: Naive Bayes and SVM: Support Vector Machine]. We noticed that NB performed better than all three remaining

models and took 0.6 and 2.5 seconds for 100K and 450K packets count, respectively, and RF took 4.46 seconds for 1000K

packets count. We also noticed that RF performed well w.r.t all three models and took a maximum of 335 seconds for 3400K

packets count while SVM is taking maximum time w.r.t all three models. SVM took almost 90 seconds for a 10MB log file,

which consist of 100K packets count, and it took approx 860 seconds for 500 MB file, which reflects 3400K packet count. We

also presented these results in a pictorial form, which is present in figure-7.

Figure figure-7 shows complete picture of detection time taken by different detection models. On horizontal axis we placed

total packet counts I.e [100K, 450K, 1000K, 1800K, 2500K and 3400K]. On vertical axis we placed time in seconds. This figure-

7 is exact representation of the above 15.

Table 16 shows the average file loading and distribution time taken by spark cluster w.r.t to file size in megabytes. However,

reading shows that the least time taken by spark 0.204 seconds for 10MB file while the maximum time taken by spark for the

file size of 500MB is 98 seconds, is almost 1.5 minutes. We also presented the above tubular form results in the pictorial form

below refer to the figure figure-8. It shows a complete picture of file time taken by different models and log file size. On the

horizontal axis, we placed the log file size in megabytes, i.e., [10M, 50MB, 100M, 400MB, and 500MB]. On the vertical axis,

we placed time in seconds, i.e., varies from 1 second to 120 seconds. Table 17 and figure-9 respectively show the average of

three scientific readings of time taken by each model to the total packets count. We noticed that preprocessing time increases

as the file size or packets count increases in every case.

TABLE 16. File loading and distributing time taken by spark w.r.t file size

File Size DT RF NB SVM
10MB 0.3833 0.204 0.4069 1.0088
50MB 4.1349 0.5576 1.7388 1.2349

100MB 5.4611 0.5618 2.6002 3.2608
200MB 8.8026 0.5812 4.5489 9.1338
400MB 53.7333 2.9055 32.6329 15.5418
500MB 98.2872 60.3406 121.6788 26.4873

FIGURE 8. File loading and distributing time taken by spark w.r.t file size

Packet Count DT RF NB SVM
100K 1.5676 1.2247 0.5849 89.9029
450K 3.4877 2.5367 2.5141 137.0856

1000K 7.7287 4.4672 4.4725 281.1723
1800K 25.3764 9.1906 8.7517 642.9673
2500K 180.3885 216.0378 94.5724 724.8311
3400K 295.8082 335.2831 338.404 861.5172

TABLE 17. Preprocessing time taken by model w.r.t file size

FIGURE 9. Preprocessing time taken by model w.r.t file size

File Size DT RF NB SVM
10MB 6.3333 5.0001 4.1666 352.6666
50MB 11.0002 7.3333 11.3333 706.6666

100MB 19.0001 11.3333 36.0001 1270.3333
200MB 252.6666 105.6666 165.6666 2086.6666
400MB 707.3333 644.3333 614.3333 3466.6666
500MB 1079.3333 1075.6666 1550.6666 4460.3333

TABLE 18. Time taken by spark w.r.t file size a.k.a SPARK UI TIME

 However, at the same time, we noticed that it is not directly proportional to packets count. However, it is only

dependent upon the machine learning model how fast it preprocess the small chunk of packet count and how much time it

will take for a large chunk of data. Naive Bayes remains the best preprocessing model for 100K packets, and it took only 0.6

seconds to preprocess while at the same time it took approx 338 seconds for 3400K packets count. On average, RF

remained the best model among all; it took only [1.23 seconds and 335 seconds] for 100K and 3400K packets counts,

respectively. SVM remains the worst preprocessor as well as worst classifier refer to table 15 and figure-7.

File Size DT RF NB SVM
10MB 6.3333 5.0001 4.1666 352.6666
50MB 11.0002 7.3333 11.3333 706.6666

100MB 19.0001 11.3333 36.0001 1270.3333
200MB 252.6666 105.6666 165.6666 2086.6666
400MB 707.3333 644.3333 614.3333 3466.6666
500MB 1079.3333 1075.6666 1550.6666 4460.3333

TABLE 18. Time taken by spark w.r.t file size a.k.a SPARK UI TIME

FIGURE 10. Time taken by spark w.r.t file size a.k.a SPARK UI TIME

 Table 18 lists the total time taken by the spark user interface, which is the actual sum of all individual times, including

(file time, preprocessing time, and detection/classification time). Figure-10 is the pictorial presentation of the above-

mentioned table. Refer to Figure [7, 8, 9, 10, 11 and 12] for low testbed results conclusion. figure-7 and Table 15 shows

detection time taken by a specific model/classifier to classify packets with respect to the packet count. We noticed that

for both [Decision Tree and Random Forest] models took less 5 seconds to classify 100K packets while [Random Forest]

model took approx 21 seconds and SVM took maximum time than all three. We also noticed that overall [Random

Forest] perform better than all other classifier in terms of detection packets counts per second.

ODDNESS needs to go here

Figure 11. Throughput Analysis (Packets/second) w.r.l Packet Count

Figure 12. Detailed throughput analysis packets/second

Table 19. Detection time taken by different classifier w.r.l Packet Size

Figure 13. Detection time taken by different classifier w.r.l Packet Size

D. HIGH END TESTBED RESULT CHARTS

 Table 19 shows the average detection time taken by different detection models, namely [DT: Decision Tree, RF: Random

Forest, NB: Naive Bayes and SVM: Support Vector Machine]. We noticed that DT performed better than all three remaining

models and took 0.17 and 0.5 seconds for 100K and 450K packets count respectively. In contrast, DT took only 80 seconds to

process 3400K packets, which is far better than our previous spark cluster i.e., low-end testbed. On the other hand, RF took

0.4 seconds for 100K packets count. We also noticed that on average, RF performed well w.r.t NB and SVM while SVM is

taking maximum time w.r.t all three models. SVM took almost 305 seconds for a 10MB log file, consisting of 100K packets

count, and it took 1844 seconds for 500MB file, which reflects 3400K packet count. We also presented these results in a

pictorial form in Figure-13.

 Figure-13 shows complete picture of detection time taken total packet counts i.e. [100K, 450K, 1000K, 1800K 2500K and

3400K]. On vertical axis we placed time in seconds. This figure-13 is exact representation of the above 19.

TABLE 20. File loading and distributing time taken by spark w.r.t file size

Table 20 presents the average file loading and distribution time taken by spark cluster w.r.t to file size in megabytes,

reading shows that least time taken by spark 0.2865 seconds for 10MB file while the maximum time taken by spark for the

file size of 500MB is approx 12 seconds which is also better than our low-end cluster.

We also presented the above tubular form results in the pictorial form below refer to the figure-14. It shows a complete

picture of file time taken by different models and log file size. On the horizontal axis, we placed a log file size in megabytes,

i.e., [10M, 50MB, 100M, 400MB, and 500MB]. On the vertical axis, we placed time in seconds, i.e., varies from 1 second to

120 seconds. Table 21 and figure-15 respectively show the average of three scientific reading of time taken by each model to

the total packets count. We noticed that preprocessing time increases as the file size or packets count increases in every

case. However, at the same time, we noticed that it is not directly proportional to packets count.

Packet Count DT RF NB SVM
100K 0.5234 0.5074 1.1769 2.6776
450K 1.5384 1.433 3.1147 4.5669

1000K 3.4672 3.2363 5.259 6.524
1800K 8.9085 6.0414 11.2844 82.0879
2500K 18.3818 11.5615 94.2082 359.9464
3400K 20.7432 19.8323 122.1618 564.5891

TABLE 21. Preprocessing time taken by model w.r.t file size

However, it is only dependent upon the machine learning model how fast it preprocess the small chunk of packet count

and how much time it will take for a large chunk of data.

Random Forest remains the overall best preprocessing model for 100K till 3400K packets, and it took only 0.5 seconds to

preprocess 100K while at the same time it took approx 19.8 seconds for 3400K packets count. While DT, NB performed well

w.r.t low-end testbed and SVM remains the worst preprocessor as well as worst classifier refer to table 19 and figure-13.

File Size DT RF NB SVM
10MB 0.4007 0.2865 0.4239 0.5681
50MB 1.0771 0.2757 1.0425 0.7659

100MB 1.7559 0.2793 1.7353 1.7181
200MB 4.2826 0.2687 3.4016 3.1394
400MB 5.305 0.272 7.3116 9.2446
500MB 11.4324 0.2751 9.8913 11.9497

File Size DT RF NB SVM
10MB 4.3333 5.3333 6.0001 311.6666
50MB 6.0001 7.0001 12.0001 522.3333

100MB 8.0001 9.3333 19.0001 965.6666
200MB 19.3333 16.6666 44.6666 1648
400MB 32.3333 126.3333 289.3333 2118.3333
500MB 191.0001 201.3333 647.3333 2493

TABLE 22. Time taken by spark w.r.t file size a.k.a SPARK UI TIME

Table 22 lists the complete time taken by spark user interface which is actual sum of all individual times including (file time,

preprocessing time and detection/classification time). figure-16 is the pictorial presentation of above mentioned table.

FIGURE 16. Time taken by spark w.r.t file size a.k.a SPARK UI TIME

 Refer to figures[13, 14, 15, 16, 17 and 18] for low testbed results conclusion. figure-13 and Table 19 shows detection time

taken by specific model/classifier to classify packets with respect to the packet count. We noticed that for both [Decision

Tree and Random Forest] models took less than five seconds to classify 1800K packets while [Random Forest] model took

approx 27 seconds, and SVM took maximum time than all three. The reader can notice the actual difference in time to detect

several packets with low-end and high-end testbeds. We also noticed that overall, [Random Forest] performs better than all

other classifiers in terms of detection packets counts per second. It took only 156 seconds to detect 3400K packets, which is

400 percent better than the low-end.

FIGURE 17. Throughput Analysis (Packets/second) w.r.t Packet Count

FIGURE 18. Detailed throughput analysis packets/second

E. OVERALL DISCUSSION

 We computed and presented actual results in terms of detection time and remaining referenced figures[14, 15 and 16],

and tables[20, 21 and 22] are for reference to the reader for self understanding that how much time (in seconds) our

framework took to load file, to preprocess and last but not the least how much actual time taken by spark testbed on each

run.

Figures[11 and 17] are representing throughput of both testbeds respectively. While figures[12 and 18] are showing

additional information of throughput and referenced both charts are additional efforts to understand results in better

manner.

In addition to the system execution, figure 19, figure 20, figure 21 and figure 22 present a step by step result of the testbed,

which includes "view of Spark executor after submitting job to testbed", "preprocessing of data","snapshot of spark user

interface after submission of job to testbed" and "view of simulated traffic".

After submission of spark job, one can see its status, including worker node information, spark cluster specification, running

jobs, and completed the job by visiting spark webuser interface using REST URL or SPARK URL.

Spark executors are proof that the job is being executed in the right manner, as reflected in figure 19. Figure-20 reflects

the snapshot of preprocessing work, which is impressive for detailed working information of the preprocessor module to the

model/classifier.

In Figure-22 vulnerable traffic is highlighted with red color to distinguish from normal traffic. The proposed framework is

not generating any automated notifications for manual action, but this can be extend and incorporated in the framework for

further actions.

VII. CONCLUSION

In this paper, we present SAD-F, a scalable Spark-based live DDoS detection framework capable of analyzing potential DDoS

attacks with no time delays, as the performance of the framework tested against live and passive traffic. SAD-F captures live

network traffic, preprocesses it to extract relevant information in brief form, and uses ML-Spark algorithms to run detection

algorithms for DDoS flooding attacks. SAD-F solves the scalability, memory inefficiency, and the process complexity issues of

the conventional solution by utilizing parallel data processing with low latency and high efficiency.

Before deployment of the framework, we test the dataset on a local machine having a specification of (8GB of RAM and

2.50 GHz of a processor). The test results show that SAD-F would take a maximum time of 12605 sec, i.e., 210 minutes to

train and test the overall file for the worst case with 92% accuracy with the KNN model. It took 6536 seconds, i.e., 108 minutes

for the best case with 72% accuracy, with an NB classifier for the maximum file size of 150MB, which comprised an estimated

1300K packets count. However, our suggested SAD-F framework with [low-end] testbed configuration took [5.0001 seconds

and 1075.6666 seconds] to process (file loading, preprocessing to classification) for 100K and 3400K packets count

respectively with RF classifier as the best case. While the proposed framework showed best results, according to proof of

study, SAD-F framework with [high-end] testbed configuration took [4.3333 seconds and 191.0001 seconds] to process (file

loading, preprocessing to detecting) for 100K and 3400K packets count respectively, with DT classifier as the best case. Based

on the framework benchmarks, we conclude that the active mode of our proposed framework is significantly efficient in

terms of preprocessing and DDoS detection than the passive mode, the traffic selector method.

Further, we noticed that the data capturing phase consumes more memory than the preprocessing phase. Moreover, the

appropriate increase in cluster size can increase the lack of CPU utilization, which will improve each stage of this framework.

The proposed framework can be useful in parallel with conventional security mechanisms to optimize the results and

detection time.

FIGURE 19. View of Spark Executor after submitting job to testbed

FIGURE 20. SAD-F: View of Preprocessing of Data

FIGURE 21. Spark-UI: After submitting a job to testbed

FIGURE 22. Snapshot view of simulated traffic: SAD-F-Result

