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Abstract 

In this work a nonlinear model predictive control based on Wiener model has been developed and used to control the ALSTOM 
gasifier. The 0% load condition was identified as the most difficult case to control among three operating conditions. A linear model 
of the plant at 0% load is adopted as a base model for prediction. A nonlinear static gain represented by a feedforward neural 
network was identified for a particular output channel—namely, fuel gas pressure, to compensate its strong nonlinear behaviour 
observed in open loop simulations. By linearising the neural network at each sampling time, the static nonlinear model provides 
certain adaptation to the linear base model at all other load conditions. The resulting controller showed noticeable performance 
improvement when compared with pure linear model based predictive control.  2006 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Model predictive control (MPC) has become a first choice of control strategy in industry because it is intuitive and 
can explicitly handle multi-variable systems with constraints. The basic control strategy in MPC is the selection of a 
set of future control moves (control horizon) and minimise a cost function based on the desired output trajectory 
over a prediction horizon with a chosen length. This requires a reasonably accurate internal model, that captures the 
essential nonlinearities of the process under control and predict the dynamic behaviour multi-step ahead [1]. 

Until recently, industrial applications of MPC have relied on linear dynamic models even though most processes 
are nonlinear. Linear MPC (LMPC) is probably acceptable and sometime desirable when the process operates at a 
single setpoint and the primary use of the controller is the rejection of small disturbances [2]. If the plant exhibits 
severe nonlinearities, the usefulness of MPC based on a linear model is limited, particularly if it is used to transfer the 
plant from one operating point to another as in the case under study. The obvious solution is to use a nonlinear 
model. However, the extension to nonlinear model based predictive control has not been always very successful. The 
main hurdle facing this extension is the significant computational burden associated with solving a set of nonlinear 
differential equations and a nonlinear dynamic optimisation problem online. In addition, the convexity of the 
optimisation problem in this case is not guaranteed, which is a serious drawback for online applications [3].  

A number of researchers have developed NMPC approaches based on a linearisation of the plant model for the 
prediction phase. In this solution, the model equations are linearised around the operating point and solved within an 
efficient convex optimisation method to obtain the optimum control step. The linearisation step is performed once 
over the prediction horizon [3,4], or further at a number of time steps inside the prediction horizon [5,6]. This 
strategy has proved to be highly successful in controlling mildly nonlinear processes [7]. 

The internal Model in NMPC can be based on the physical laws governing the behaviour of the true system and often 
referred to as a first-principle model [8,9]. Alternatively the model is derived from measurements of input and output 
data from the real plant. This method relies heavily on system identification and the resulting model is called an 
empirical or black-box model [10,11]. First-principle models are valid globally and can predict system dynamics over the 
entire operating range. The development of a reliable firstprinciple model is, in general, a difficult and time consuming 



 

task. The nonlinear black-box models, on the other hand, have certain advantages over the first-principle models in 
terms of development time and efforts. If chosen wisely, it can simplify and accelerate the controller as well. 

There are many different black-box nonlinear models utilised for NMPC include: Volterra models [12], Polynomial 
autoregressive moving average model with exogenous inputs (polynomial ARMAX) [13], Hammerstein and Wiener type 
models [14,15,7,16], artificial neural networks [10], and others. Among these types of models Hammerstein and Wiener 
models have a special structure that facilitates their application to NMPC. Wiener model is particularly useful in 
representing the nonlinearities of process without introducing the complications associated with general nonlinear 
operators [7,16]. This model consists of a linear dynamic element followed in series by a static nonlinear element. 
Hammerstein model contains the same elements in the reverse order. 

These models have been shown to adequately represent many of the nonlinearities commonly encountered in 
industrial processes such as distillation and pH neutralisation [17]. Wiener models may be incorporated into MPC 
schemas in a unique way which effectively removes the nonlinearity from the control problem, preserving many of the 
favourable properties of linear MPC [15,7,18,16]. An approach of identification and control using a Wiener model was 
proposed by Al-Duwaish et al. [15]. The authors proposed a Wiener model consisting of an autoregressive moving 
average (ARMA) model as a linear dynamic model in cascade with a multi-layer feedforward neural network (FFNN). A 
controller using the Wiener model is constructed by inserting the inverse nonlinearity of the FFNN in an appropriate 
loop location. The inverse of the static nonlinearity is modelled by another FFNN. A linear controller was designed for 
the ARMA model using linear control theory. Norquay et al. [7] proposed another system identification and model 
predictive control approach using Wiener model. Two linear models were chosen for the linear dynamic element of the 
Wiener model: autoregressive with exogenous (ARX) model and the stepresponse model. While a low-order piecewise 
polynomial is used for the nonlinear static element of the model. The model is incorporated into an unconstrained 
LMPC algorithm by removing the nonlinear element from the control problem via using a static inverse nonlinearity. A 
similar NMPC approach is proposed in [18] but with input and output constraints. The nonlinear constraints of the 
outputs were linearised using the inverse static nonlinearity in that work. 

Recently, Cervantes et al. [16] presented a Wiener model based NMPC approach with an invertible piecewise 
linear gain. The inverse of the piecewise linear function is used to map the setpoint, output upper and lower bounds, 
and the measured outputs so that linear relationship is retained with these signals. Then a quadratic programming 
(QP) routine is used to solve the optimisation problem online. 

In this paper, another Wiener model based NMPC approach is developed to control the ALSTOM gasifier. A Wiener 
structure consisting of a linear multi-input multi-output (MIMO) state-space part followed by a partially nonlinear 
static part is used to identify a black-box model of the gasifier plant. By linearising the static part of Wiener model at 
each optimisation step, the nonlinear model becomes linear and the NMPC is simplified to a classical LMPC which 
keeps computation easier to perform. 

The rest of this paper is organised as follows. Section 2 gives an introduction to the ALSTOM gasifier benchmark 
problem and an overview of the work. A short description of the nonlinear plant is presented in Section 3. Section 4 
discusses the partially nonlinear internal model. The formulation used for model predictive control is provided in 
Section 5. Section 6 explains the procedures of nonlinear system identification and controller design for the gasifier. 
Section 7 presents the simulation results, and in Section 8 some conclusions are drawn from this work. 

2. The ALSTOM gasifier 

The coal gasifier is essentially a chemical reactor where coal reacts with air and steam to produce low calorific 
value fuel gas, which then can be burnt in a suitably adapted gas turbine, and char. Limestone (sorbent) is also added 
to the vessel to capture the majority of sulphur present in the coal [19]. In modern advanced power generating plants 
gasification helps burning coal in a new and environmentally friendly process. 

The ALSTOM gasifier was issued as a benchmark problem by the ALSTOM Power Technology Center [20]. This 
process involves several challenging issues, such as high order, high nonlinearity and strong interactions between 



 

process variables. Furthermore, this process has very stringent upper, lower and rate constraints on the process input 
and output variables because of safety and environmental issues and the physical nature of the variables themselves. 

Based on an industrial scale gasifier, the ALSTOM Power Technology Center issued a benchmark challenge in 1997 
and a second round challenge in 2002. The first challenge included three linear models representing three operating 
conditions of the gasifier at 0%, 50% and 100% load respectively. The challenge required the controller to control the 
gasifier at three load conditions to satisfy input and output constraints in the presence of step and sinusoidal 
disturbances [20]. An overview and comparison of various control approaches submitted to the first round challenge 
are given in [19]. 

None of the controllers proposed in the first round managed to satisfy all the performance criteria within specified 
constraints. The only MPC approach [21] proposed at the first round challenge involved the use of a LMPC with an 
additional inner loop to stabilise the process. The inner loop controller is supervised by an outer loop to handle the 
process constraints. 

The second round of the challenge issued in 2002 extended the original problem by providing participants with a 
nonlinear simulation model of the gasifier in MATLAB/SIMULINK [22]. In addition to the original disturbance tests, 
two extra tests: load change and coal quality disturbance tests were added. Recently, a group of control solutions for 
the benchmark problem were presented at ‘‘Control-2004’’ at Bath University, UK in September 2004. Most 
controllers were reported as capable to control the system in the specified tests except in the coal quality 
disturbance test because of a char flow-rate saturation behaviour. Among the solutions, a linear MPC employing 
generalised predictive control (GPC) strategy was proposed 
[23]. 

In the previous work [23], the operating condition at 0% load point was considered to be the most difficult case to 
control and a linearised model around this load condition was adopted for the internal model. The controller was 
able to maintain all the required performance specifications within the input and output constraints at all load 
conditions. In this work, it is shown that the plant/model mismatch can further be reduced by developing a partially 
nonlinear Wiener type model instead of a pure linear model. More specifically, a FFNN is developed as a nonlinear 
static gain for one of four output channels, fuel gas pressure (PGAS) to compensate its strong nonlinear behaviour 
observed in the open-loop simulation (see Fig. 1). The FFNN was then linearised at every sampling instance and used 
as constant over the prediction horizon to provide an adaptation to the main linear controller. A similar strategy can 
be used for the other output variables but this was found neither necessary nor very productive. The partially 
nonlinear model leads to considerable performance improvement compared with the pure linear MPC. Also, the 
proposed controller was able to control the plant without any constraints violation and satisfied all the benchmark 
challenge requirements. 
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3. Plant description 

A schematic of the plant [24] is shown in Fig. 2. The gasifier is a nonlinear, multi-variable system, having five 
controllable inputs (coal, limestone, air, steam and char extraction), and four outputs (pressure, temperature, bedmass 
and gas quality) with a high degree of cross-coupling between them. One of its inputs, the limestone feed (WLS) is used 
to absorb sulphur in the coal and its flow rate must be set to a fixed ratio of 1:10 against the coal feed (WCOL). This 
leaves effectively 4 degrees of freedom for the control design. The plant inputs and outputs with their limits are given in 
Tables 1 and 2, respectively. The gasifier is openloop stable system, has a very complex dynamic behaviour with mixed 
fast and slow modes. All the output variables take approximately 104 s to reach their steady-state values (see Fig. 3). On 
the other hand, the rising time for gas pressure (PGAS) is very short comparing with other variables. The gasifier proved 
to be difficult to control as it is both multi-variable and nonlinear with a significant cross-coupling between the input 
and output variables [20]. The full model of the gasifier has 25 states and the aim of the benchmark challenge is to 
design a controller to work with the given SIMULINK model as ‘the plant’ to satisfy the control performance. The control 
specification includes sink pressure step and sinusoidal disturbance tests (at the three different operating points), load 
ramp change from 50% to 100%, and coal quality change by ±18%. The specifications of these tests are given in details 
in [20]. 

4. Internal model description 

In this work, the original linear MPC design [23] is extended to include some of the plant nonlinearities by developing 
a static nonlinear model in the form of Wiener configuration as shown in Fig. 1. Linear static gains are used for three 
outputs, CVGAS, MASS, TGAS, while, a feedforward neural network model is created for the fourth output PGAS. The 
output selection is based on the open-loop step response (within the prediction horizon length) comparison between 
the linear and nonlinear simulation model (see Fig. 4). The results showed that the linear model can almost correctly 
capture the dynamic behaviour in three of the four outputs for up to 20 s (the prediction horizon length) under all load 
conditions. However, the fourth output PGAS exhibits salient nonlinearities which cannot be predicted by the linear 
model. It is also observed that the effect of the unmeasured disturbance PSINK on the output variable PGAS is quite 
large, whilst the time constant of the response is very short compared to that of other outputs. 

Assuming that the plant considered has manipulable input, ~u 2 R4 and measured output, ~y 2 R4, which have steady-
state values, ~u0 and ~y0 at the nominal operating 

 

Fig. 2. Gasifier schematic [24]. 
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Table 1 
Output variables and limits 
Outputs Description Allowed fluctuations 

CVGAS Fuel gas calorific 
value 

±0.01 MJ/kg 

MASS Bed-mass ±500 kg  

PGAS Fuel gas pressure ±0.1 bar  

TGAS Fuel gas temperature ±1 K  

Table 2 
Input 
variables and limits 

  

Inputs Description Maximum 
value (kg/s) 

Peak rate 
(kg/s2) 

WCHR Char extraction rate 3.5 0.2 
WAIR Air flow rate 20 1.0 
WCOL Coal flow rate 10 0.2 
WSTM Steam flow rate 6 1.0 
point respectively. Around the operating point, the dynamic behaviour of the plant can be approximated by the 
following partially nonlinear discrete-time state-space equations: 

 

where k stands for kth sampling time,  and are deviation variables, and x(k) is the 
internal state of the model. Outputs are divided into two groups: yL(k) outputs vector corresponding to the linear 
variables PGAS, MASS and TGAS, and yNL(k) corresponding to nonlinear output, PGAS. The matrix CL represents the 
linear static gain, while fNN is the nonlinear function modelled by a neural network. Of course, other forms of nonlinear 
function may be used as the static gain. The choice of neural network here is motivated by its ability to model any 
nonlinear function to any desired accuracy 
[10,25]. 

Initially, the plant is assumed to be at the nominal operating point with x(0) = 0, u(0) = 0, y(0) = 0. The matrices A, 
B, and CL are obtained by linearising the nonlinear plant model at 0% load condition. The neural network model 
consists of two hidden layers and one output layer. A FFNN with single layer is usually sufficient to capture the 
nonlinearity of the model for most applications. However, it was found that, for the gasifier case, a network with two 
layers was more capable to model the plant than a single layer network (see Section 6.1 for more details). The 
transfer function of the hidden layers is a sigmoid-tanh nonlinear function while a linear transfer function is used for 
the output layer. The mathematical form of the function fNN can be represented in a vector form as 

 



 

where O1, O2 and yNL are the output values of each layer. The values W1, W2, and W3 are the weight parameters while 
b1, b2, and b3 are the bias parameters. The function rs(Æ) is the sigmoid-tanh function which is defined as 
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Fig. 3. Open-loop response of the ALSTOM gasifier for a +20% step change in the air flow rate. 
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Fig. 4. Open-loop response of the gasifier at 0% load condition to a step change in WAIR. Plant output (solid), Wiener model (dashed), linear 
model (dotted). 

 
Because the model in (1) is nonlinear, the convexity of the optimisation problem is not guaranteed. In order to use 
efficient QP algorithm to solve the online optimisation problem, local linearisation of the static FFNN model around 
the current states is performed. Future predictions of output based on current measurement yNL(k) can be 
approximated by the first two terms of the Taylor series expansion: 

 

 The value of the function fNN(x) and the partial derivative can be efficiently calculated from the neural 
network structure in Eq. (2) using the chain rule as  

This results in a time-varying linear state-space form to be used in the predictive controller. Note that, CNL is 
treated as constant over the entire prediction horizon for an optimisation problem to be solved at each sampling 
time and updated only when new plant measurement available. 

The static gain inversion method used by many researchers [15,18,7,16] to linearised the Wiener model is not 
applicable here as the model is partially nonlinear. To use this method the linear static gain (i.e. matrix CL) should be 
invertible which is not the case since CL is not square. On the other hand, the inverse neural network should map one 
output to 16 states. Training such a network is not trivial. For simplicity, the sequential linearisation approach is 
adopted here. 
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5. Predictive control formulation 

The prediction model to be used can be represented by the following state-space equation:  
 

 
 

is the virtual output disturbance estimated from the 
outputs measurement to reduce the plant-model mismatch. Note, the term nk in Eq. (4) is absorbed into d(k). At the 

kth sampling time, with currently measured outputs and the current states x(k), the future output 
within the prediction horizon, P can be estimated from the future input u(k) to be determined within the moving 
horizon, M as follows. Taking 

 

where 

 

Future input, U is determined to follow the output reference,  yr(k), and the input reference 

, where Define input and output reference vectors as 

 

 



 

 

The optimisation problem is to minimise the performance cost: 

 

where output and input weighting matrices, Q and R are positive definite and are the lower, upper and 
maximum rate bounds of the input respectively. 

Using the predictive equation (10), the optimisation problem is equivalent to a standard QP problem: 



 

 

Fig. 5. Validation data, plant output (solid), Wiener model (dashed), linear model (dotted): (a) 0% load, (b) 50% load, (c) 100% load. 

 

Fig. 6. Open-loop output response to a step disturbance at 30 s at 0% (solid), 50% (dashed) and 100% (dash-dotted) load conditions. 



 

where u(k  1) is the previous input, and other variables are defined as follows: 

 
 
Table 3 
 

 

 LMPC NMPC LMPC NMPC  

Step, 100% load 
CVGAS 7.33 5.69 96.275 84.986 0.8827 
MASS 16.00 10.613 3148 1711 0.5435 
PGAS 0.067 0.0735 0.262 0.266 1.0153 
TGAS 0.5194 0.5193 12.619 10.842 0.8592 
Step, 50% load 
CVGAS 7.447 4.231 75.112 64.775 0.8624 
MASS 12.42 4.054 1569 372.686 0.2089 
PGAS 0.076 0.081 0.336 0.3128 0.9310 
TGAS 0.611 0.542 10.813 9.819 0.9081 
Step, 0% load 
CVGAS 8.98 2.943 106.12 47.054 0.4434 
MASS 29.26 8.090 5587 1505 0.2694 
PGAS 0.0954 0.1006 0.471 0.449 0.9533 
TGAS 0.525 0.6005 31.13 22.325 0.7172 
Sine, 100% load 
CVGAS 5.065 5.348 858.052 898.07 1.0466 
MASS 3.588 3.1789 452.835 434.991 0.9606 
PGAS 0.0315 0.0354 5.146 5.245 1.0192 
TGAS 0.302 0.321 43.805 45.957 1.0491 

    



 

 
 

Note, in the above formulation, output constraints are neglected to simplify the algorithm and to fully use the plant 
capability. The QP problem (12) is efficiently solvable by off-the-shelf software. The only tunable parameters in the 
above formulation are Q, R, P, M and the sampling time. Thus, the control strategy can be easily implemented and 
tuned to satisfy required performance. In vector U, only the first nu rows, corresponds to u(k) are applied to the plant. 
The whole procedure is repeated at the next sampling instance. 
 
It should be noted here, the initial state vector required to solve the optimisation problem at every sampling time is 
estimated by a state updated using the linear dynamic part 3 of model (8). The remain estimation error is further 
corrected via the output disturbance model dk where in the model nonlinearity is included (see Eq. (9). Note, this is a 
standard treatment in offset-free MPC and has been recognised as a sufficient alternative of traditional state 
estimation approaches in MPC [26]. 
 
For the unconstrained case, the optimal solution, corresponding to a state feedback control law, can be obtained 
analytically:  

Sine, 50% load 
CVGAS 4.317 4.720 695.382 760.38 1.0935 
MASS 6.663 6.191 948.47 1010.7 1.0656 
PGAS 0.034 0.040 5.7903 6.417 1.1082 
TGAS 0.349 0.440 57.327 66.176 1.1544 
Sine, 0% load 
CVGAS 8.0745 3.916 649.430 295.29 0.4547 
MASS 48.642 46.207 7510 9292 1.2373 
PGAS 0.0774 0.099 9.899 13.616 1.3755 
TGAS 0.7138 0.7705 111.17 101.388 0.9120 
The mean IAE ratio     0.8780 



 

 then the nominal stability (perfect model 

without input saturation) of the closed-loop can be checked by calculating the eigenvalue of the matrix,  

6. Gasifier control using NMPC 

6.1. Nonlinear system identification 

The first step to implement the above algorithm is to get an internal model in the form of (8). Three operating 
conditions are specified in the gasifier benchmark problem: 0%, 50%, and 100% load conditions. The performance 
requirements at 50% and 100% load conditions were found relatively easier to achieve. It was then decided to use 
the 0% load point as the nominal point to get the linearised state-space model. The resulting model was then 
reduced to 16 states via pole-zero cancellation (using Control System Toolbox functions, ssbal and minreal). The 16 
states model is discretized with the sampling time selected. 

 
For the FFNN static model of PGAS, the number of nodes in the first or second hidden layers was 10 with one node 

in the output layer. Note for comparison, a FFNN with a single hidden layer and 18 hidden nodes is also trained to 
capture the static nonlinearity of PGAS. Data fitting using the network with two hidden layers was considerably 
better than use the single layer network. In addition, the number of parameters need to be trained (weights and 
biases) in the two-layer network (i.e. (10 · 16 + 10) + (10 · 10 + 10) + 11 = 291) is smaller than the number of 
parameters for the single layer network, which is ((16 · 18 + 18) + 19 = 325). Therefore, the twolayer network was 
selected as the internal model. Training, validating and testing data were generated through applying a sequence of 
zero mean normalised random pulses to input channels. The periods and amplitudes of these pulses vary according 
to their expected maximum and minimum variations under different load conditions. Datasets over different loads 
were then linked together and used in training and validation of the FFNN. The performance of the trained PGAS 
model at 0% load is shown in 



 

 

Fig. 7. The gasifier response at 50% load condition, NMPC (solid), LMPC (dotted). 

 



 

Fig. 4, while Fig. 5 shows the output pressure response at the three load conditions, where a significant improvement in 
model accuracy is observed. 
 
6.2. Predictive controller design 

Normally, the sampling time should be less than one tenth of where  is the required bandwidth of the 
closed-loop. The benchmark requires to reject a sinusoidal disturbance with a period of 25 s (0.04 Hz). Therefore, the 
sampling time should be less than 2.5 s. Further, the sampling time should not be too large so that in step disturbance 
tests, the output variables do not deviate from setpoints more than the specified constraints before the controller can 
start to response. Several open-loop tests for a step disturbance of PSINK at three load conditions were performed. The 
outputs response results are shown in Fig. 6. The results show that, the worst response case is the 0% condition, where, 
without control, the output PGAS is within specified range for only 1.2 s. Hence, the sampling time is selected as 1 s. 
This satisfies the requirements of both disturbance tests. 

 

 
Fig. 8. The gasifier response at 0% load condition, NMPC (solid), LMPC (dotted). 

 
The predictive controller is implemented in MATLAB as a SIMULINK s-function to replace the control block in the 

nonlinear simulation model provided in the benchmark suit. The QP problem is solved by calling quadprog of the 
Optimisation Toolbox at each sampling time. This is the major computation burden in the above algorithm and is 
solely determined by the control horizon, M. The prediction horizon, P has little effect on computation time, thus can 
be selected relatively large to benefit stability. To tune M and P, initially let P = M. By varying M from 1 s to 12 s, a 



 

stable performance is obtained which satisfies all control specifications for When the 
improvement on the system performance is negligible but computation time increases significantly. Therefore M = 7 s 
is selected, which gives a good performance in all tests. To choose a suitable prediction horizon P, a reasonable range 
from the minimum value (P = M = 7 s) to P = 25 s has been tested. A stable response without any constraint violation 
is found within the range No performance improvement can be observed when P

(the maximum value of the range) is chosen to ensure that both the system 
stability and satisfactory control performance achieved within a reasonable computation time. 

 

The weighting matrix, Q = diag(Q0,...,Q0), where Q0 is diagonal and initially set to the inverse of the output error 
bounds. After online tuning, the final values are: 

 

Also, the input weighting matrix R = diag(R0,...,R0), where R0 is diagonal and set to the following value after online 
tuning: 

 

 

Using the above configuration, nominal stability is achieved at all three load conditions, i.e. the magnitudes of all eigen 

values of  and  are the discrete states and control matrices at different 
load conditions.  

One of the advantages of MPC is that future setpoint change information is incorporable into the QP 
optimisation problem to improve setpoint tracking performance. This is implemented in the gasifier controller.  
 
7. Simulation results  
 
7.1. Disturbance tests  
 
The following two disturbance tests are performed for three load conditions for 300 s: 1. step change in sink pressure of 
0.2 bar at 30 s; 2. 0.04 Hz sinusoidal variation in sink pressure of amplitude 0.2 bar beginning at 30 s. All the results to 
follow are compared with the linear MPC. The maximum and minimum values as well as the peak rate change of the 
input variables of two disturbance tests under different load conditions are shown in Table 4. The maximum absolute 
error between output variables and their setpoints and the integral of absolute error (IAE) of these variables are 
calculated in Table 3. 



 

 

their setpoints and the integral of absolute error (IAE) of these variables are calculated in Table 3. To quantify the 
performance improvement, the IAE ratio, defined as IAE(NMPC)/IAE(LMPC) is calculated for all output variables. The 
mean value of these ratios is given at the bottom of Table 3. These ratios indicate that the most significant 
improvement are relating to the step tests for all three load conditions and sinusoidal test for 0% load condition. 
Response for step test under 50% load condition and sinusoidal test under 0% load condition are shown in Figs. 7 and 
8, respectively. In the step disturbance test, the results are plotted for t 6 100 s to present the control performance in 
more details. After this time period, all the outputs response remained constant. The results in Tables 4 and 3 
however are calculated until t = 300 s as required in the original challenge issue. 
 
For 0% load sinusoidal test, results with extra simulation time (until t = 600 s) are provided to confirm the satisfactory 

performance of output in meeting the given specifications. The results show that both linear and nonlinear controllers 
are capable of maintaining the output variables within the limits for the tests specified by ALSTOM. 

The mean IAE ratio given in Table 3 shows that the system performance, comparing with LMPC results, is 
significantly improved (overall IAE index is reduced by more than 10%) by using the NMPC. In fact, most of the 
improvement happened during the step disturbance test. In the sinusoidal disturbance test a little improvement in 
the system response is observed. In addition, the linear controller was the best at 50% and 100% load conditions. This 
result can be explained as follow. A Wiener model mainly captures static nonlinearity of the system by introducing a 
static nonlinear gain. In the step disturbance test, signal change of the system is relatively slow at the most of time. 
Therefore, the nonlinearity associated with such a dynamic mode can be well captured by the identified Wiener 
model. This leads to the performance improvement in all load conditions. However, in the sinusoidal disturbance test, 



 

signals fluctuate all the time and relatively faster than in the step test. Nonlinearity associated with such dynamic 
behaviour is relatively difficult to be captured by the Wiener model, 

 
Fig. 9. The gasifier response at setpoint ramp test, NMPC (solid), setpoint (dashed), LMPC (dotted). (a)–(d) Outputs, (e)–(f) inputs and 
limits. 
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hence it results some sort of performance deterioration in these tests particularly for 50% and 100% load conditions, 
where the model mismatch is relatively large because the linear model is based on the 0% load condition. To further 
demonstrate this, extra simulation is performed by reducing the frequency of the sinusoidal disturbance to the half of 
the specified value. A performance improvement in all load conditions is obtained using the NMPC approach (the 
results are not included here to save space). 

Also, due to the strong interactions between the system variables, the improvement in other output variables 
sometimes is even larger than that in PGAS itself (see Figs. 7 and 8). This is explained as follows. The response of 
PGAS, particularly to disturbance PSINK is much faster than other output variables (Fig. 6). The improvement of 
nonlinear model is mainly in long term prediction (Fig. 4). Hence, it has more effect on slow-response variables than 
on PGAS, which is a fast-response variable. Moreover, the maximum drop of PGAS in the step disturbance test is a 
response to the disturbance before the controller can take any action, hence is not able to be reduced by changing 
internal model only. 

The partially nonlinear model does not only improve the output performance, it also results smaller excursion 
behaviour in NMPC than that in LMPC as shown in Figs. 7 and 8. 



 

6.3. Load change test 

In this test, the load is required to increase from 50% to 100% within time from 100 s to 700 s. The actual response 
is collected from the simulation and compared with the results when using LMPC controller. For both controllers, 
good setpoint tracking performance is obtained. The outputs results in Fig. 9 show approximately similar behaviours 
for the two controllers, with a small improvement in the bed-mass response when using the NMPC approach. It can 
be seen that with the exception of the bed-mass the outputs track their demanded levels reasonably well. It takes 
significant time (beyond the length of simulation shown) for the bed-mass to return to the setpoint. This is due to the 
saturation of the coal feed input (Fig. 9(g)). Note that, the coal flow-rate saturation on its upper limit is not avoidable 
as explained by other researchers [24,27,28]. Therefore, the achievable improvement in the bed-mass response is 
limited due to the inherent characteristics of the process. However, the manipulated variables response appears 
smoother in this test as shown in (e)– (h) of Fig. 9. 

7. Conclusion 

A nonlinear predictive controller has been developed to control the ALSTOM gasifier benchmark process. The 
LMPC approach employing GPC strategy of [23] is modified to use a partially nonlinear model as the internal model. A 
nonlinear Wiener model is used to identify one of the process output variables (PGAS) which has strong nonlinearity 
while a linear model at 0% load condition is adopted for the other output variables. A multi-layer feedforward neural 
network is used as the nonlinear static element of the Wiener model. To regain the convex feature of the QP 
optimisation problem, the nonlinear static gain of PGAS model is linearised at every sampling time to update the 
linear model for each new optimisation problem. Thus, the resulting internal model is a linear time-varying model. 
The new controller meets all the required performance specifications within given input and output constraints 
during sink pressure disturbance and load change tests and the results show a significant improvement in the system 
performance compared with the results obtained when only linear timeinvariant model is used. 
The proposed method is useful if only part of a MIMO system exhibits a strong nonlinearity. In this case, only this 
part need to be modelled using a nonlinear Wiener model. This will reduce the efforts and time to identified a much 
more complicated MIMO nonlinear model which may not be necessary for the overall system. 
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