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Climate warming and human impacts are thought to be causing peatlands to dry, 

potentially converting them from sinks to sources of carbon. However, it is unclear 

whether the hydrological status of peatlands has moved beyond their natural envelope. 

Here we show that European peatlands have undergone substantial, widespread drying 

during the last ~300 years. We analyse testate amoeba-derived hydrological 

reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and continental 

Europe to examine changes in peatland surface wetness during the last 2000 years. 

60% of our study sites were drier during the period CE 1800-2000 than they have been 

for the last 600 years; 40% of sites were drier than they have been for 1000 years; and 

24% of sites were drier than they have been for 2000 years. This marked recent 

transition in the hydrology of European peatlands is concurrent with compound 

pressures including climatic drying, warming and direct human impacts on peatlands, 

although these factors vary between regions and individual sites. Our results suggest 

that the wetness of many European peatlands may now be moving away from natural 

baselines. Our findings highlight the need for effective management and restoration of 

European peatlands. 

Peatlands have acted as globally-important carbon (C) sinks since the Last Glacial 

Maximum1,2 and contain ~20% of the soil C pool, despite only covering ~3% of the global 

landmass3,4. Peatlands accumulate C when the production of plant litter exceeds losses from 

microbial decomposition5. The maintenance of a shallow water table and near-saturated 

surface conditions are important for inhibiting C losses from microbial respiration in peatlands6. 

Several factors threaten the persistence of peatland ecosystem services: climate change, peat 

extraction, drainage, burning and land-use modification7. Field manipulations8 and modelling 

studies9 have indicated that the deepening of peatland water-tables leads to increasing peat 

oxidation, in turn causing the peat C stock that has built up over millennia to be decomposed 

and released to the atmosphere as carbon dioxide, with likely global-scale implications for 

climate change8,10. In Europe, peatlands store approximately five times more carbon than 
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forests11 and about half of Europe’s total soil organic C12. These huge C stores deserve an 

important place in Europe’s climate mitigation measures and greenhouse gas emissions 

policies. 

The current stability of peatland ecosystem services is poorly understood. In particular, it is 

unclear whether the current hydrological condition of peatlands has been substantially 

influenced by recent climate change and human impacts. Peatland hydrological processes are 

involved in multiple negative feedbacks at the site scale that may confer a degree of resistance 

and resilience against climate-induced drying13. This is set against clear shifts in 

palaeohydrological conditions in peat records, which are mostly interpreted as reflecting 

periods of past climate change14. Although monitoring of peatland water tables is now 

relatively commonplace, the longest instrumental records cover no more than a few decades, 

and are thus unable to provide any long-term context for the role of climate and human impacts 

in peatland drying. For example, one of the longest instrumental peatland water-table records 

in the world is from Männikjärve bog in Estonia. However, this record only began in CE 1951 

and is therefore still too short to show long-term changes (Supplementary Section 1).  

Hydrological change in European peatlands 

In the absence of long-term hydrological monitoring data, testate (or shell-forming) amoebae 

can be used to reconstruct past water-table depths (WTDs) from peat profiles using statistical 

transfer function models15. Several such studies in Europe have reported deepening water 

tables in recent centuries14,16,17. We carried out a preliminary meta-analysis of 84 

published testate-amoeba-based reconstructions (Methods) in order to assess general 

trends reported in the literature. The meta-analysis shows that shifts to drier conditions in 

European peatlands over the last 300 years have been reported in 69% of study sites; 

while shifts to wetter conditions have been reported in just 7% of sites; the remaining 

24% of the records have either shown unclear trends or lack the chronological quality or 

sampling resolution needed to determine any shift (Supplementary Section 2). The most 

commonly reported ages of dry 
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shifts in the last ~200 years are CE 1850 (8%), 1900 (13%) and 1950 (13%) (Supplementary 

Section 2). However, these records are difficult to compare because of variations 

in chronological precision, temporal resolutions, transfer functions, and age 

modelling approaches. Here we present the first European-wide network of WTD 

reconstructions using high-quality, high-resolution testate amoeba data (Methods, 

Supplementary Section 3 and 4), and develop accurate chronological models for each 

site using Bayesian methods (Supplementary Section 5). We use the reconstructions to 

examine hydrological changes in European peatlands over the last two millennia and to 

determine the state of peatland hydrology in recent centuries in the context of longer-term 

baselines. Reconstructions from a range of peatland types (raised bogs, blanket peatland, 

poor fens and permafrost plateaus) were included in the analysis.  

There is considerable variability in the water-table records between sites owing to regional 

climatic variability, differences in site response and chronological uncertainties. 78% of sites 

in Britain, Ireland, Scandinavia and the Baltics have undergone significant drying in the last 

400 years (Fig. 1); while the other 22% of sites in these regions exhibited no significant 

change. 46% of sites in continental Europe have undergone significant drying in the last 400 

years, 31% exhibited no significant change, while the remaining 23% have become 

significantly wetter – the only three sites in the entire dataset to do so. For each site we binned 

the reconstructed WTDs into 200-year intervals and calculated the average WTD for each bin. 

The use of 200-year bins strikes an appropriate balance between sufficient data points within 

each bin to allow statistical confidence, and enough bins to allow the identification of temporal 

trends. Considering all sites together, we found that 60% were drier in the period CE 1800-

2000 (200-year average bins) than they have been for the last 600 years (CE 1400-2000); 

40% of sites were drier than they have been for 1000 years (CE 1000-2000); and 24% were 

drier than they had been during the entire 2000-year record (since CE 1). We recognise that 

some of the individual peatlands in our dataset have exhibited high-magnitude dry- (and 
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indeed wet-) shifts earlier in the record, but it is only during the last 300 years that a consistent 

and coherent drying trend has emerged across multiple sites.  

Local regression (loess) models highlight general trends in the compiled data (Fig. 2). 

Compiled records from all three regions show shallow water tables during the Little Ice Age 

(LIA) followed by rapid drying to present day. Deep water tables are evident during the 

Medieval Warm Period (MWP) in Britain, Ireland and Scandinavia, although there is no clear 

response to the MWP in Continental Europe. British and Irish sites show shallow water tables 

towards the end of the Dark Age Cold Period (DACP), but this is not apparent in other regions. 

In Scandinavia, this lack of signal may reflect low data density at this time and large 

chronological errors. Changepoint analysis identifies significant transitions to drier conditions 

during the past 300 years in the compiled data: CE 1914 in Britain and Ireland; CE 1777 and 

1990 in Scandinavia and the Baltics; and CE 1756 in Continental Europe. When all sites are 

combined a change-point at CE 1751 is identified. 

Potential climatic drivers 

The shifts are closely linked with recent climate change as evidenced through comparison 

with reanalysis of instrumental climate data (Fig. 3; Supplementary Section 6). In Britain 

and Ireland, increased dryness in peatlands corresponds with a major decrease in summer 

(June-July-August: JJA) precipitation (up to 25 mm quarter-1) and an overall increase in 

summer temperature (up to 1ºC), when we compare the second halves of the 19th and 20th 

centuries. In Scandinavia and the Baltics, most peatlands that have undergone deepening 

water tables over the same time period have also experienced a major increase in 

mean annual temperature of up to 2.5ºC (Fig. 3B; Supplementary Section 6). In 

Continental Europe, the sites that have become drier are in areas that have warmed by up 

to 1ºC (JJA). The five sites in Continental Europe that have become wetter between the 

second halves of the 19th and 20th centuries are located in regions that have experienced 

an increase in rainfall over this interval (Fig. 3A).  Fig. 3C shows that most study sites have 

undergone significant drying from 
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the 17th to the 20th centuries, except three in continental Europe. Gridded climate proxy data 

suggest that precipitation has decreased across Europe over the last ~400 

years (Supplementary Section 6), which is consistent with this trend.  The variation in 

response of our study sites to precipitation and temperature may reflect the finding that 

summer water deficit is controlled by summer precipitation in mid-latitude oceanic 

peatlands whereas summer temperature plays a greater role in higher latitude, continental 

settings18.   

Human impacts on peatland ecosystems 

We tested for other possible influences on peatland hydrology in addition to climate (Fig. 

4). We classify 42% of our sites as having been significantly damaged by human activities; 

29% have minor damage; and 29% are relatively undamaged. The human activities that 

have contributed to site degradation include peat cutting, drainage, burning, grazing, 

afforestation and scientific activities (e.g. installation of infrastructure and equipment). All 

these factors may have contributed to site-scale drying in recent centuries. It is clear that our 

sites in Britain and Ireland have seen more extensive degradation than elsewhere, 

particularly through cutting, drainage, burning and grazing. Two sites in Scandinavia have 

suffered severe damage from afforestation. Only two of our 31 sites (6%) have had no 

damage to the best of our knowledge (Lappmyran, Sweden and Jelenia Wyspa, Poland).  

All global land areas have experienced an increase in atmospheric N deposition over 

the timeframe of our reconstructions20. Atmospheric N deposition has been shown to cause 

shifts in peatland plant communities, and increases in plant productivity through 

fertilisation21 (Berendse et al., 2001). Conversely, ecosystem respiration also increases with 

N deposition through removal of nutritional constraints on microbial activity and the 

production of more labile plant litter22,23. However, we are aware of no field or modelling 

evidence for changes in peatland WTD as a direct result of N deposition. 
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Climate-driven drying of European peatlands is likely to have been exacerbated by direct 

human impacts during recent centuries. The hydrological shifts occurred at a time of rapidly 

expanding human populations across Europe24, expanding cropland, and increasing land-use 

intensity25. It is impossible to separate the effects of climate and direct human impacts in our 

records, as they are superimposed upon one another. Global and regional climate model 

projections for Europe generally agree on continued warming and reduced growing season 

moisture availability into the 21st century26. This may lead to continued water-table drawdown, 

which has been linked to catastrophic loss of peat C stocks through enhanced aerobic 

decomposition9. Our study sites include several of the least damaged peatlands in Europe; 

however, it is clear that almost all peatlands in Europe have been affected by human activities 

to some extent. The compound pressures of climate change and human impacts may push 

European peatlands beyond their capacity for resistance by overriding negative feedbacks 

amongst ecohydrological processes13. Furthermore, a hydrological tipping point may exist in 

peatlands where irreversible changes in plant communities and a shift from C sink to source 

is triggered in response to drying27,28. Indeed, many European peatlands have already 

undergone shifts in vegetation composition over the last 300 years, including changes in 

Sphagnum communities29, and increases in grass, sedge30 and shrub (e.g. Calluna vulgaris)31 

cover. 

Projects are underway to restore peatlands across Europe, in order to maintain and enhance 

their vital ecosystem services, primarily through damming or blocking of artificial drains and 

gullies32.  These actions may be vital in mitigating against soil C stock loss due to both 

anthropogenic impacts and future climatic warming. Our data suggest that European 

peatlands are in a state of transition, which may cause them to become drier than their natural 

baselines. Management strategies and restoration efforts (e.g. drain blocking) need to take 

these findings into account.  
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Figure Captions 

Fig. 1. Standardised water-table depth data from each site classified into three broad 

geographic regions (Britain and Ireland; Scandinavia and Baltics; Continental Europe). Data 

from the last 2ka and CE 1600-present day are shown. Linear regression trend lines for the 

period CE 1600 to present day are illustrated: solid trend lines indicate statistically-significant 

models (p<0.05); dashed trend lines indicate non-significant models.  The percentage of sites 

which have become significantly drier or wetter, and the percentage of those with 

non-significant linear models, are shown.  Please see Methods for references to 

previously published data.  

Fig. 2. Compiled standardised water-table data from all sites and the three broad geographic 

regions (Britain and Ireland; Scandinavia and Baltics; Continental Europe). Greyscale 

indicates the chronological precision of each data point (determined through Bayesian age 

modelling). A locally-estimated scatterplot smoothing (loess) model is shown as a yellow line. 

The red shading indicates 95% confidence limits on the loess function. The timings of the Dark 

Ages Cold Period (DACP), Medieval Warm Period (MWP) and Little Ice Age (LIA) 

are illustrated. Significant change point years are illustrated. Please see Methods for 

references to previously published data. 

Fig. 3. Comparison of peatland and climatic datasets. Changes in summer (June-July-August) 

precipitation totals (A) and temperatures (B) interpolated from 2° latitude x 2° longitude grids 

across Europe between the second half of the 19th and 20th centuries: (CE 1950-1999 

15 
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average) minus (CE 1850-1899 average). Data taken from NOAA-CIRES Twentieth Century 

Reanalysis (V2c)19. The points in (A) and (B) represent (CE 1950-1999 average) minus (CE 

1850-1899 average) standardised water-table depths. Panel C shows (CE 1950-1999 

average) minus (CE 1600-1699 average) standardised water-table depths. Literature-

based sites reporting a drying or wetting trend in the last ~200 years are also shown 

(Supplementary Section 2). Please see Methods for references to previously published data. 

Fig. 4. Matrix indicating the type and level (major, moderate, minor, none known) of human 

impacts on each study site. A damage index was calculated as the total sum of all impacts. 

The type of peatland is indicated in superscript font.  Please see Methods for references to 

previously published data. 

Methods 

1. Justification of approach

Peat profiles that span the most recent centuries are commonly within the aerobic zone 

(previously referred to as the “acrotelm” in the diplotelmic peat model); therefore, semi-

quantitative reconstructions based on the degree of peat humification were excluded from the 

meta-analysis as peat within the aerobic zone is subject to further decomposition. 

Reconstructions using plant macrofossil approaches were also discounted as no European 

transfer function currently exists for peatland plants. Therefore, only testate amoeba data are 

considered here as 1) hydrology has consistently been shown to be the primary environmental 

control of community composition over other factors in ombrotrophic peatlands33, 34; 2) levels 

of pollution associated with atmospheric deposition do not bias reconstructions35; and 3) direct 

comparison of records is possible between transfer-function based water table 

reconstructions. 
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2. Literature-based analysis

To support our primary analysis of high-quality data we conducted a comprehensive literature-

based review of peat-based palaeohydrological reconstructions covering the last 300 

years from northwest Europe (Supplementary Section 2).   

2.1 Chronological quality 

Records were rated on chronological certainty and proxy resolution.  Radiocarbon age-depth 

models substantiated with known age stratigraphic markers (Hekla 1947 tephra, bomb-pulse), 

or inferred age stratigraphic markers (Spheroidal Carbonaceous Particles (SCPs), Pinus rise) 

bolstered with further radiometric dating (210Pb, 241Am), were rated the most chronologically 

secure (rating = 1); records with radiocarbon-based age-depth models with a single inferred 

age marker (SCPs or Pinus rise), or short records (200 years or less) with SCP-based 

chronology where rated as chronologically good (rating = 2); those based on linear 

interpolation of radiocarbon dates were assigned low chronological confidence (rating = 3).  

2.2 Human impacts 

The main human impacts recorded in the literature for each site (e.g. peat cutting, drainage, 

burning, afforestation) were noted.  

2.3 Analysis 

The timing of any reported change to drier or wetter conditions in the last 300 years from each 

paper was reported.  
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3. Quantitative analysis

3.1 Water-table reconstruction 

Testate amoeba data from European peatlands were compiled and quality checked before 

having their taxonomies harmonised to the taxonomic system of Amesbury et al. (2016)36 for 

transfer function application. Only datasets with high quality absolute chronologies for the last 

~200 years were selected for further analysis. Water-table reconstructions were carried out 

using the pan-European transfer function of Amesbury et al. (2016)36 with a weighted 

averaging tolerance-downweighted model with inverse deshrinking. Water-table depth 

reconstructions were converted to standard units (z-scores) following Swindles et al. (2015)37. 

Reconstructions were carried out on the full dataset and also a dataset after the weak silicic 

idiosomic tests (Corythion-Trinema type, Euglypha ciliata type and Euglypha rotunda type38) 

were removed. In reality, there is virtually no difference between the two reconstructions 

showing that the features observed in the uppermost peat profiles are not related to 

poor preservation of weak siliceous tests (Supplementary Section 3 and 4). The 

reconstructions ran on the data without the weak silicic idiosomic tests were used for 

subsequent analysis.  

3.2 Age modelling 

Age models were constructed for each site using chronological data including 14C, 210Pb, 

and other age-equivalent stratigraphic markers such as SCPs. Bayesian age models 

were generated for each site to achieve good accuracy and quantification of age 

errors (Supplementary Section 5) using R version 3.4.139, and the rbacon package (version 

2.3.4)40. Bacon uses a priori information of peat accumulation rate, over multiple short 

sections of the core to produce flexible, robust chronologies. We modelled all cores to 

determine the age probability for each depth. Hereafter, all references to ages or years 

refer to the maximum probability age at a given depth, as determined from the age 

model, unless otherwise specified. We also used the age models to generate age error 

ranges for each depth.  
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3.3 Trend lines 

A linear least-squares regression was carried out for each record for the period CE 1600-

present to determine whether there was a drying or wetting trend over this timeframe. An F-

test was used to determine whether each model provided a better fit to the data than a model 

containing no independent variables. A standard t-test was used to evaluate the slope and 

intercept coefficients. The analysis was completed using R version 3.4.139. 

3.4 Data compilation analysis 

All data were compiled within 4 groups: All sites; Britain and Ireland; Scandinavia and Baltics; 

and Continental Europe. A LOESS smoothing function41 with an f-value (degree of smoothing) 

setting of 0.02 was calculated for the compiled regional datasets. Changepoint analysis42 was 

performed on the compiled data to identify major changes in mean and variance over time 

(function cpt.meanvar) in the datasets using the package ‘Package ‘changepoint’42 in R 

version 3.4.139. The temporal span used in this analysis was 1000 cal. CE to present.  The 

singular most likely changepoint in mean and variance was then identified using an “At Most 

One Change” (AMOC) method under default settings. In addition, multiple changepoints in 

mean and variance of the time series were then identified using “Pruned Exact Linear Time” 

(PELT)43 method under default settings, with the number of changepoints limited to a 

maximum of 4.  

3.5 Climate analysis 

Temperature and precipitation data representing the period 1851-2010 were downloaded from 

KNMI Climate Explorer (https://climexp.knmi.nl/). We used the NOAA-CIRES Twentieth 

Century Reanalysis (V2c) dataset19 – a comprehensive global atmospheric circulation dataset 

based on the assimilation of four-dimensional weather maps and their uncertainty from the 

https://climexp.knmi.nl/
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mid-19th century to the 21st century. Data were downloaded at a monthly temporal resolution 

and at a spatial resolution of 2° latitude x 2° longitude for the spatial domain 40-70°N and 

10°W-30°E. Maps showing change in summer temperature and precipitation across Europe 

were produced by first splitting data into two 50-year time periods from 1850-1899 and 1950-

1999 respectively for the summer months of June, July and August. The difference between 

these periods was then calculated and kriging was used within ArcMap to interpolate between 

grid points to produce surface temperature and precipitation maps for Europe that represent 

the change in summer temperature and precipitation between the second half of the 19th and 

20th centuries. Graphs showing temporal changes in temperature and precipitation across 

Europe were produced by first splitting data into four different spatial domains encompassing 

(1) Britain and Ireland, (2) Scandinavia, (3) Continental Europe, and (4) the three regions 

combined. 

Changes for these four domains were then plotted as time series along with a smoothed line 

based on loess smoothing. Linear trends were calculated using linear regression. Using the 

years of the time series as the known x values and the climate data as the known y values, a 

linear regression equation was constructed and then used to predict y values (i.e. 

temperatures or precipitation) for the start and end years of the time series. The difference 

between the values for these years was then computed and expressed as a percentage of the 

temperature/precipitation value for the starting year.  

Another set of time series for the same four regions was produced for the longer period of 

1500-2000 based on temperature and precipitation reconstructions downloaded from KNMI 

Climate Explorer based on datasets from Luterbacher et al. (2004)44 and Pauling et al. 

(2006)45 respectively. Please also see Supplementary Section 6.  
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3.6 Human impacts 

It is widely acknowledged that the majority of peatlands across Europe have been affected by 

human activity to at least some degree.  Evidence of human activity for each site was recorded 

in several categories: cutting, drainage, burning, grazing, afforestation, and scientific activity 

(e.g. installation of scientific and monitoring equipment) within a matrix. The damage level for 

each individual category was noted as major (score 3), moderate (score 2), minor (score 1) 

and none known (score 0). A damage index for each site was calculated by summing the 

scores for each category (>4 = damaged site; 3-4 = minor damage; 0-2 = relatively 

undamaged).  

3.7 Data sources 

All published data sources are provided below: 

Site Region Country Latitude Longitude Reference 

Ardkill Britain and Ireland Ireland 53.3653 -6.9532 46 

Ballyduff Britain and Ireland Ireland 53.0807 -7.9925 47 

Butterburn Britain and Ireland England 55.0875 -2.5036 48 

Cloonoolish Britain and Ireland Ireland 53.1865 -8.2569 46 

Dead Island Britain and Ireland Ireland 54.8862 -6.5487 49 

Derragh Britain and Ireland Ireland 53.7667 -7.4083 50 

Keighley Britain and Ireland England 54.4253 -2.0369 51 

Malham Britain and Ireland England 54.0964 -2.1750 52 

Slieveanorra Britain and Ireland Ireland 55.0848 -6.1921 49 

Bagno Kusowo Continental Europe Poland 53.8078 16.5872 53 

Barschpfuhl Continental Europe Germany 53.0558 13.8494 54 

Combe des Amburnex Continental Europe Switzerland 46.5397 6.2317 55 

Gązwa Continental Europe Poland 53.8726 21.2201 56 

Izery Continental Europe Poland 50.8519 15.3602 57 

Jelenia Wyspa Continental Europe Poland 53.5918 17.9821 58 

Linje Continental Europe Poland 53.1880 18.3098 59 

Mauntschas Continental Europe Switzerland 46.4900 9.8544 60 

Mechacz Continental Europe Poland 54.3314 22.4419 61 

Praz-Rodet Continental Europe Switzerland 46.5667 6.1736 62 

Słowińskie Continental Europe Poland 54.3619 16.4785 63 

Stążki Continental Europe Poland 54.4244 18.0833 64 

Tăul Muced Continental Europe Romania 47.5739 24.5450 65 

Akerlänna Römosse Scandinavia and Baltic Sweden 60.0167 17.3667 66 

Ältabergsmossen Scandinavia and Baltic Sweden 59.9667 18.6833 67 
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Gullbergbymossen Scandinavia and Baltic Sweden 59.6333 18.4333 67 

Kontolanrahka Scandinavia and Baltic Finland 60.4783 22.4783 68 

Lappmyran Scandinavia and Baltic Sweden 64.1647 19.5828 69 

Lille Vildmose Scandinavia and Baltic Denmark 56.8391 10.1896 70 

Männikjärve Scandinavia and Baltic Estonia 58.8667 26.2500 71 

Stordalen 1 Scandinavia and Baltic Sweden 68.3568 19.0484 72 

Stordalen 2 Scandinavia and Baltic Sweden 68.3564 19.0441 73 

Water-table reconstruction data are provided in Supplementary Section 7. 

Data availability statement 

The data that support the findings of this study are provided in Supplementary Section 7. 
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