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ABSTRACT 

For diesel engines, based on the legislative emission limits set by Euro I to Euro VI, the 

reductions required in particulate matter and nitrogen oxide are 80% and 90%, respectively. 

Meanwhile, fuel-consumption efficiency is still an important consideration for customers due 

to ever-increasing fuel prices. Modern diesel engines employ advanced fuel-injection systems 

which can efficiently reduce emissions and fuel consumption, as they have good fuel 

distribution in the combustion chamber and produce a close-to-homogeneous charger-

compression ignition. However, ideal combustion conditions can be achieved only in 

combination with optimal control of the air-path system of the engine. Therefore, the aim of 

this study is to research, design and develop a new algorithm for the nonlinear, model-

predictive control of air-path systems of diesel engines. In this study, which is conducted on 

the basis of measurements taken from a virtual test-bench under near-real load conditions, a 

linear parameter-varying model is created and parameterised by dynamical system 

identification. The results of simulation show that a linear parameter-varying modelling 

approach can be used to represent this air-path system more precisely than is possible with 

other, more conventional methods. The data-based modelling approach through an engine-

simulation platform and the model-based optimisation framework developed in this study are 

used to design an innovative, non-linear, model-predictive controller for a diesel-engine air-

path. The idea behind the proposed non-linear model-predictive control strategy is to 

represent the plant model as a linear parameter-varying model, and the control-objective 

function in searching for an optimal solution to the quadratic programming problem is 

extended to the parameter-varying cost function by utilising the given linear parameter-

varying model. This concept is aimed at optimising the efficiency of engine-air-path systems 

with respect to intake-manifold pressure and air-mass flow tracking in transient operations. 

The problems of a prediction-model mismatch and the cross-coupling effects of two actuators 

are overcome by the application of a multiple-input, multiple-output linear parameter-varying 

model. The results reveal that, compared to existing approaches, the proposed non-linear 

model-predictive control method significantly improves the accuracy and computational 

efficiency of engine-air-path system control—even in large, transient operations. Finally, 

significant potential exists to improve the performance of the control. Thus, emissions and 

fuel consumption in the certification driving cycle of the vehicle can be optimised on the basis 

of the model.  
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Chapter 1. INTRODUCTION 

1.1 Background 

The European car market is currently experiencing a strong business growth towards the end 

of 2017, and prospects for 2018 and 2019 look cautiously optimistic. New passenger-car 

registrations, which reached 1,088,498 units in 2017 increased by 3.4% to a six-year high 

according to data published by the European Automobile Manufacturers’ Association 

(ACEA) in December of 2017. The five major car markets in Europe have all contributed to 

solid growth, with Italy and Spain leading the way with 7.9% and 7.7%, respectively (ACEA, 

2018). However, the overall market volume may remain at a lower level despite this positive 

trend (Integer Research, 2018). 

 

Note that the emissions industry has been dominated by news of the Volkswagen Group 

(VW) emissions scandal ever since it broke in September of 2015. Industry stakeholders have 

commented that they feel that the entire industry not just the passenger car sector is under 

intense scrutiny from regulatory officials, the media and the public. It leads to increasingly 

stringent in-service conformity limits to prevent any similar situations (Integer Research, 

2018). Whether customers will trust the performance of diesel vehicles is in question, as is the 

potential for such vehicles to face heavy restrictions or to be banned from some urban areas of 

big cities such as London and Shanghai. The reputation of the emissions-control industry is 

under question, and swift action is being taken—and will continue for the foreseeable 

future—to assure the public and regulatory officials that emissions-control manufacturers can 

be trusted to develop low-emissions, fuel-efficient technology and vehicles (Integer Research, 

2018).  

 

In recent years, climate change has often dominated the headlines of newspapers and 

television broadcasts all around the world. The result is an increased environmental 

awareness—especially in industrialised countries (Jacob, Goettel, Kotlarski, Lorenz, & Sieck, 

2008; WWF, 2018).  

 

Diesel engines offer many advantages over gasoline engines in many respects (Song, 2015; 

Zhao, 2010); however, the weakness of emissions cannot be ignored. Diesel vehicles bore the 

brunt of recent bad press surrounding emissions, and the admission of VW has only 
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compounded this. Nitric oxides (NOx) and particulate matter (PM)1 are the main ingredients 

of air emitted by the tailpipe of the vehicles. Due to their specific combustion characteristics, 

the diesel engines release more NOx and more PM as compared to gasoline engines. These 

emissions are known to cause cancer as well as severe respiratory issues (WWF, 2018). 

 

 

Figure 1.1: US, EU and China vehicle emissions standards (Transport Resources Interational 

Limited, 2017) 

 

As shown in Figure 1.1, for Euro VI (Transport Resources Interational Limited, 2017) 

regulations and vehicles, the mandatory standards for new type approvals and registrations 

have been in place since 2016 and are showing good results in vehicles in the reduction of 

critical pollutants. For example, good results have been noted with respect to NOx and PM 

from diesel engines and overall vehicle efficiency.  

 

Figure 1.2: Key technology for clean and economical diesel engine (Azam, Ali, & Iqbal, 

2016) 

                                            
1  Using the AVL micro-soot sensor and opacimeter, the PM can be measured as opacity (OPAC) in % to describe the opacity of 

contaminated air (in particular, of diesel-engine exhaust emissions). 
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Further reduction in pollutants can be made by improving engine-control systems and after-

treatment systems, as shown in Figure 1.2. Advanced control method in engine control unit 

(ECU), diesel particulate filters (DPF) and selective catalytic reduction (SCR) are widely used 

in vehicle applications to solve space issues and improve vehicle efficiency. The 

harmonisation and the development of a common product is a priority for vehicle, engine and 

technology manufacturers. The aim of the manufacturers is to develop and sell a common 

product through the global market; however, differing regulations and staggered 

advancements in different countries make this goal hard to achieve (Integer Research, 2018). 

 

From an engineering aspect, there is some concern that global legislative emission targets are 

becoming increasingly stringent more quickly than the technology can be developed. Electric 

and hybrid vehicles are making inroads, but there two main problems. One is that the higher-

complexity system architecture of a combustion system leads to higher vehicle weight and 

manufacturing costs. The other is that the battery still has a limited capacity and regularly 

requires time-consuming charging. So far, there is no significant improvement and reasonable 

solution. Therefore, periodic inspections must rely on improved engine hardware and control 

systems to enforce and act on emissions results. However, some engine-management 

technology manufacturers are lobbying against enforcement, as the technology needed to 

support this is not ready (JRC, 2016). Given the relatively close deadline for compliance with 

further emission standards, the industry focus has already turned to producing engines with 

advance control systems and after-treatment technology.  

 

To achieve these targets, exhaust after-treatment systems such as DPF and SCR have made 

considerable progress in improving efficiency and decreasing emissions in recent years. 

However, the heart of the engine system is still the combustion itself, which has to be 

controlled as well as possible. Modern diesel engines employ advanced fuel-injection systems 

which can efficiently reduce emission and fuel consumption, as they have a better fuel 

distribution in the combustion chamber and produce a nearly homogeneous charger 

compression ignition. However, this ideal combustion condition can only be met by 

cooperating with an optimally controlled engine-air-path system2. There has been a strong 

trend toward developing an improved engine-air-path system for diesel engines, combining 

the advance turbocharger technology and optimised air-path control system on diesel engines, 

                                            
2 Engine-air-path system refers to diesel engine-air-path system in this whole document, unless otherwise noted. 
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which boast space-saving, increased efficiency and improved emissions reduction and thermal 

management. To reduce diesel-engine emissions, advanced control strategies are needed to 

adjust the transient peaks when the engine changes from one working state to another. 

However, as reviewed in Chapter 2, the diesel engine-air-path is a highly coupled, nonlinear, 

multi-input multi-output (MIMO) system with constraints, hysteresis and a limited feasible 

working range  (Baines, 2005; Robert Bosch, 2006; Wang, Waschl, Alberer, & Del Re, 2012; 

Yang, Winward, Zhao, & Stobart, 2016; Skarke, Auerbach, Bargende, & Berner, 2017)—all 

of which make engine control more difficult. In a modern diesel engine, a turbocharger 

consists of two parts: a compressor and a variable geometry turbine (VGT). The compressor 

pumps the fresh air to the engine intake manifold to boost the pressure. The fuel is directly 

injected into the combustion chamber by a high-pressure fuel injection unit and is burnt with 

the delivered air. Part of the exhaust gas is re-circulated into the intake manifold by an 

exhaust-gas-recirculation (EGR) system that is aimed to reduce the NOx emission. VGT 

absorbs the heat energy from the exhaust gas and propels the compressor. An inter cooler is 

used to lower the fresh-air temperature, and an EGR cooler is used to lower the re-circulated 

gas temperature (Wei, 2006). The main control targets of the engine-air-path are to adjust the 

VGT vane position and the EGR valve, thereby regulating the compressor speed and exhaust-

gas circulation rate to meet the standards for manifold air pressure (MAP) and air-mass flow 

(MAF), thereby producing as much energy per fuel unit as possible while keeping emissions 

below a given threshold. 

 

The applications of diesel engine-air-path control have been presented in many works, 

Nieuwstadt, Moraal, Kolmanovsky and Stefanopoulou (1998) report a multivariable design 

for VGT and EGR control in combination with a gain scheduled approach. Atam (2018) 

develops an extended linear parameter-varying (LPV) model to design an LPV controller for 

engine-air-path system control in diesel engines. Analytical model-based control approaches 

and data-driven disturbance observers for the diesel-engine air-path are applied in (Aran & 

Unel, 2017). Different treatments of the nonlinear modelling and fuzzy control of the engine-

air-path are applied in (Abidi, Bosche, & El Hajjaji, 2013). They are applied more in detail in 

(Zhao & Pan, 2012), in which a fuzzy proportional–integral–derivative (PID) controller is 

performed by real-time system with a guaranteed robustness property and coupled with a GT-

Power engine model. Lyapunov-based nonlinear control is presented in several works 

(Jankovic & Kolmanovsky, 2000; Jung, 2003; Liu & Wei, 2007). Wei (2006) presents linear 

parameter-varying (LPV) techniques for an air-path H-infinity (Hinf) controller.  



  24 

Recently, the application of model predictive control (MPC) for engine control has attracted 

much interest due to its ability to handle constrained MIMO control problems and to 

explicitly minimise emissions, fuel consumptions and control errors by a cost function. In 

contrast to classical feedback controllers, MPC could provide a promising control technique 

for the air-path system due to its ability to handle disturbances, system constraints, time-delay 

processes and MIMO systems. Several engine controls based on linear MPCs have been 

proposed in the literature (Kristoffersson, 2006; Maruyama, Shimura, Ejiri, & Ikai, 2011; 

Zhao, 2013; Wissel, Talon, Grangier, Lansky, & Uchanski, 2016). However, the improvement 

of technology-and-control theory facilitates the application of MPC to problems that often 

require a nonlinear MPC (NMPC) because of the complicated transients involved (Grüne & 

Pannek, 2017). Therefore, NMPC is a logical extension of MPC in which the linear model is 

substituted by a nonlinear one (Wang, Waschl, Alberer, & Del Re, 2012). But integrating the 

nonlinear model into the MPC optimisation task normally leads to a non-convex quadratic-

programs (QP) problem, which is computationally expensive and is accordingly hard to solve 

in a short time for practical applications (Diehl, Bock, & Schloeder, 2005). 

 

Fortunately, some faster optimisation algorithms have been developed, and more computing 

power is available for ECU. Therefore, it is now feasible to adopt and implement an NMPC 

approach to the engine-control system. An explicit MPC strategy for air-path control is 

implemented in (Ortner, Langthaler, Ortiz, & del Re, 2006). The explicit MPC design 

considers multiple models, which are selected by way of a performance cost for each engine-

operating region. But what should not be neglected is that the explicit MPC has to search in 

the polyhedral partition, which needs long time, when many regions are present. In (Ferreau, 

2006) a fast method of QP-solver is presented. The results show that an upper computation 

bound of optimal problem can be ensured in real-time, which is very suitable for the air-path 

control application. But implementing a more precise prediction modelling to MPC is still a 

challenge task. In further developments, Wang, Waschl, Alberer and Del Re (2012), Wang, 

Zhang and Bechkoum (2016) and Wang, Zhang and Bechkoum (2019) develop a cost 

function combined with LPV structure for air-path control. The advantage of the LPV 

structure is that the cost function is evaluated at each iteration by using the current external 

parameters. However, until now, most LPV models used in MPC are independently identified 

as single-input single-output (SISO) and multi-input single-output (MISO) forms with limited 

range of inputs and outputs. So far as the author knows, no global engine-air-path model 

exists which is suitable for NMPC in terms of model quality and computational performance.  
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Based on the above discussion, in this study, a more efficient NMPC solution for air-path 

control is proposed and developed by way of a model-based development process combined 

with a consistent test strategy to ensure the development quality. The problems of prediction 

model mismatch are overcome by the application of a MIMO LPV model. Compared with a 

general MPC, this new NMPC can be used to achieve optimum closed-loop performance by 

using only one plant and one controller combination in the whole engine operation area—

even during plant operation in regions with some distance from the linearisation point. 

Besides, the controller-development time could be reduced significantly, as the switching 

strategy between different linear controllers is avoided. Last but not least, impressive 

improvement can also be expected with respect to MAF and MAP tracking, thereby 

optimising the exhaust emissions and fuel consumption in the driving cycles while 

maintaining high engine power and efficiency performance. 

 

1.2 Research Questions and Objectives 

 

 

Figure 1.3: Research questions 

 

Research is a process of accessible disciplined inquiry. The process described here is 

essentially generic, but it should be framed and customised by the particular discipline and 

RQ1
• Is the accuracy of the LPV model good enough as a 

prediction model for the NMPC?

RQ2

• Can a LPV model be integrated in the cost function of 
NMPC that helps ensure quality outcomes and 
deliverables? 

RQ3

• How does using the LPV-based NMPC overcome the 
cross-coupling and tracking problem in the diesel-engine-
air-path control, thereby reducing emissions and 
maintaining engine performance?



  26 

subject area (Cray & Malins, 2004). The process is usually shaped by three apparently simple 

words: what, why and how. Based on the finding on literature review, the research questions 

(RQs) in this research project are defined (see Figure 1.3). 

 

Corresponding to the three research questions, four main objectives of this research are as 

follows: 

 

1. Analyse and evaluate the LPV system-identification method with an emphasis on 

the theory and applications of LPV method to identify the engine-air-path system.  

 

2. Analyse and evaluate the existing engine-air-path control methods with an 

emphasis on using the theory and applications of NMPC to identify the research 

problems and best practices of existing methods.  

 

3. Design a new algorithm for the NMPC controller based on the LPV model, with 

the objective function of high fuel consumption efficiency and low emission, by 

mapping the intermediate variables of the air-path.  

 

4. Implement the NMPC controller on a mean-value model of engine-air-path in the 

simulation environment to reduce the emissions while maintaining engine 

performance. Then critically evaluate the new algorithm by simulation and 

comparison of various configurations of the controllers. 

 

The overall aim of this thesis is to research, design and develop a model-based design 

approach to optimising emissions of diesel engines through nonlinear model-predictive 

control. Various modern control techniques are used for the diesel engine to optimise the 

VGT and EGR control and finally to reduce emissions and fuel consumption. The tasks are 

carried out in simulation according to the model-based design approach, but they are mainly 

conducted at the virtual engine-test-bench presented in Chapter 4. The engine management 

structure of a modern engine is not constant but changes with the operation state. This thesis 

does not consider special engine-operation states like cold start, warm up, idle speed and 

smoke-limitation operation. Only the control of the air-path is considered, which is essentially 

about the path which provides a mixture of fresh air plus additional substance (typically 

recirculated exhaust gas from EGR). Control of the fuel path and control of exhaust gas after 
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treatment are not exploited in the proposed controllers and are not further elaborated in this 

thesis.  

1.3 Contributions  

 

 

Figure 1.4: The purposed engine-air-path control structure 

 

The purposed engine-air-path control structure is illustrated in Figure 1.4. It results from work 

related to this thesis, whereas the purposed control layout is based on the following key 

understandings: 

 

1. The important quantities of engine-air-path control are the MAF, MAP, exhaust-gas 

pressure and emissions. The main characteristics of these can be captured by the 
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mean-value model and the data-base modelling approach for faster computing speed 

and higher accuracy. 

 

2. NMPC - an optimal control method for the highly nonlinear, MIMO-constrained, 

engine-air-path system - is the right choice for this setup, and the NMPC internal 

mathematical model can be improved even more by using a nonlinear LPV model.  

 

3. MAF and MAP as selected control references play an important role in achievable 

emission performance. For emission optimisation, they can be determined by 

numerical approaches based on the dynamical emission model. 

 

The main contributions of this thesis are in the purposed control structure, which is itself new 

and contains completely new elements, including the following 

 

1. Accurate system identification. The LPV system-identification and data-based 

modelling approach is developed for engine-air-path and emissions. 

 

2. New NMPC control strategy. NMPC is for engine-air-path control, which derives 

from the coupled VGT and EGR control problem. The extension of classical linear 

MPC to new NMPC makes it possible to include a nonlinear LPV model into the 

optimal cost function and to thereby obtain substantial performance increases.  

 

3. Time-efficient optimisation procedure. The optimal determination of reference of 

MAF and MAP by offline numerical methods based on the dynamical emission model 

opens a new aspect for emission and fuel-consumption optimisation which is not yet 

ready for production, but which nevertheless shows impressive potential for small-

scale problems. 

 

1.4 Structure of the Thesis 

This thesis is structured as follows: First, Chapter 2 introduces the control objective by 

discussing problems and solutions for emissions via a systematic literature review. In Chapter 

3, the research proposition, methodology and design are presented. And a new model-based 
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method for optimising emissions of diesel engines through nonlinear-model-predictive control 

is explicitly proposed. Chapter 4 is about modelling. It gives insight into the physical nature 

of the plant and the possibility of data-based modelling. Chapter 5 shows the new formulation 

of NMPC and different control strategies on a diesel engine-air-path. Chapter 6 discusses a 

model-based emissions and fuel-optimisation approach to engine-air-path control.  

 

Chapter 2 – Literature Review 

This chapter reviews existing literature about engine-air-path control methods with an 

emphasis on the theory and applications of MPC—in particular, on the state-of-the-art 

concerning diesel-engine emissions. Different control methods, which have been applied to 

engine-air-path system, are classified in different groups. Detailed surveys are introduced to 

each group. The performances of MPC are compared with other existing air-path control 

methods. The critical factors affecting MPC performances in air-path control are reviewed 

based on different literature concerning prediction models, cost functions, optimisation, 

constraints, feasibility and stability. Gaps in the NMPC-based engine-air-path-control study 

are identified, and research directions are highlighted. 

 

Chapter 3 – Research Proposition, Methodology and Design 

Based on existing modelling and control strategies, a new model-based method for optimising 

the emissions of diesel engines through nonlinear model-predictive control is proposed. This 

chapter covers the research proposition, methodology and design of the project, which 

includes consideration of testing, system modelling and analysis and simulation methods. A 

variety of methodological viewpoints are discussed for collecting and analysing data toward 

developing a systematic understanding to this specific research project. In addition, a mastery 

of the project proposal design is demonstrated with respect to the practical issues of RQs, 

data-collection methods, data presentation and ethical issues. 

 

Chapter 4 – Simulation Model for Engine-air-path 

This chapter presents a mean-value model of a three-cylinder diesel engine. Adapting this 

model to other engines is possible without great extra effort. After describing the control-

oriented model structure, the typical engine-air-path characteristics are described by physical 

equations; afterwards, the emissions and torque are modelled via a data-based approach. A 

comparison of measurement from the test-bench and simulation results from the engine model 

is provided in this chapter. 



  30 

Chapter 5 – Nonlinear Model Predictive Control of a diesel Engine-air-path System 

NMPC is one of the latest and widest research fields of model predictive. First, this chapter 

considers the theory and gives the fundamentals of the MPC by focusing on the state-space 

formulation-based prediction model, the cost function, the QP problem and the optimisation 

algorithms. Because of the nonlinearity of the plant, the linear MPC is extended to NMPC. 

The main difference from the linear case is the inclusion of a nonlinear prediction model in 

the NMPC algorithm. An LPV model structure for the internal prediction model has been 

investigated. The new mathematical formulation of the NMPC control problem is presented 

based on the LPV model structure. This chapter investigates a NMPC for the control of a 

diesel engine-air-path. The control object is the virtual engine-test-bench developed in 

Chapter 4 with actuators VGT and EGR, which measures disturbances in engine speed and 

fuel injection and target quantities MAF and MAP. Due to the possibility of treating 

constraints and nonlinear MIMO systems directly, the NMPC is chosen for this feedback-

control problem. Afterwards, the application of NMPC to the air-path is compared to the 

nominal MPC and standard ECU functions. Various tracking-performance measures of MAF 

and MAP are analysed and evaluated by simulation on the virtual engine-test-bench.  

 

Chapter 6 – Application of Model-based Emissions and Fuel Optimisation on Engine-

air-path Control  

This chapter implements the data-based emission model for NOx and PM to complete the 

software simulation environment in Matlab/Simulink with the design-of-experiment (DOE) 

method. Afterwards, a model-based optimisation approach to computing the ideal references 

is shown. The optimal references of MAF and MAP are determined based on the emission 

models. The NMPC developed in Chapter 5 is used to validate the potentials of this 

optimisation method with the aim of reducing the emissions and fuel consumption of the 

driving cycle.  

 

Chapter 7 – Conclusions and Further Work 

Chapter 7 draws conclusions and presents the main achievements of this study, including its 

contribution to the new knowledge generation. In addition, areas of further research and 

investigation are discussed.   
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Chapter 2. LITERATURE REVIEW 

This chapter presents a review of literature on engine-air-path control methods with an 

emphasis on the theory and applications of model-predictive control. Research in this field is 

actively ongoing. Different control methods which have been applied to engine-air-path 

system are identified from a wide range of literature. However, because of their simplicity, 

PID control structures are still used in many engine-air-path systems, thereby resulting in the 

inconsistent performance of such systems. With advances in computing technology and data-

processing devices, it is now feasible to adopt and implement an advanced control approach 

to overcome the issues inherent to engine-air-path control. The focus of this chapter is on a 

survey of control methods of engine-air-path systems using VGT and EGR. Emphasis is 

placed on the MPC approach because research on MPC methods in nonlinear system control 

(such as engine-air-path systems) has intensified in recent years due to its many inherent 

advantages.  

 

However, a comprehensive literature review of MPC approaches for engine-air-path systems 

is still lacking. In particular, selected trends and issues related to engine path and controller 

design must be identified. This literature review is followed by a structured process to ensure 

that all relevant input concerning the defined RQs are shown in Figure 1.3. First, a review of 

engine-air-path systems and emissions of diesel engine are presented to outline the spectrum 

of control tasks in engine-air-path systems. Then, a review and classification of previous 

surveys related to engine-air-path control is given. Furthermore, the performance of MPC is 

compared with that of other existing air-path control methods, and the critical factors 

affecting MPC performances are discussed concerning the prediction model, cost function, 

optimisation, constrains, feasibility and stability. Despite considerable work on engine-air-

path control development, areas that require further investigation still exit and are summarised 

in this literature review. Therefore, the final section includes a summary of important factors 

that govern MPC design and outlines open design problems for engine-air-path control. The 

gaps in MPC-based air-path control are identified, and research directions for extension the 

MPC to NMPC are highlighted. The investigation of techniques for comprehensive nonlinear 

model, accurate estimates of disturbances, integrating dynamical optimisation techniques and 

their impact on NMPC performance in engine-air-path control have to be done in this 

research.  
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2.1 Diesel Engine-air-path  

The engine-air-path is one of the most important parts of diesel engine system. It is 

responsible for the management of intake and exhaust-air quality, combustion efficiency and 

emission reduction. Robert Bosch (2006) publishes an overview paper which details the state-

of-art of the engine-air-path principle. It reports that, for the performance and emission of the 

engine, control of the VGT and EGR is critical. It explains that, in a typical gas exchange 

process inside the diesel engine-air-path, fresh ambient air is aspirated through an air filter 

and compressed by the turbocharger, which is driven by the exhaust gas. The compressed 

fresh air is cooled by the intercooler to provide higher air density and thereby to increase air 

mass inside the cylinders. After the combustion process, the exhaust gas leaves the cylinders 

through the exhaust manifold. Part of the exhaust gas is recirculated by the EGR path and 

cooled by the EGR cooler. It is finally mixed with the compressed fresh air in the intake 

manifold. The rest of the exhaust gas-flows go through the turbine into the exhaust pipe. 

Therefore, the VGT and EGR naturally form a coupled system. The control targets are to 

adjust the VGT and EGR valves for regulating the compressor speed and exhaust-gas 

recirculation rate, thereby to meet the required manifold pressure and the expected air-mass 

flow.  

 

 

 

Figure 2.1: Diesel engine-air-path layout (Dorling, 2016) 
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Abidi, Bosche and El Hajjaji (2013) offer an overview of the dependencies of the two 

actuators, EGR and VGT, and the outputs, MAF and MAP. It is believed that the diesel 

engine-air-path is a strongly nonlinear MIMO coupled system in which both actuators 

influence both output variables. However, these effects are still not fully considered in a 

production-car ECU. Figure 2.1 shows a typical layout of a modern diesel engine, which 

includes an intake and exhaust manifold, a common rail-fuel injection module, an EGR, an 

EGR cooler, a VGT and an after-treatments system. The following sections present a review 

of literature on the major subsystems of a diesel engine-air-path.  

2.1.1 Variable Geometry Turbocharger 

A variable-geometry turbocharger (VGT) is a turbocharger that can change the angles of the 

turbine vanes to control engine air flow on turbine blades. This helps the engine-air-path 

control to balance the mass flow of air with the fuel along the entire engine-operation range. 

Baines (2006) has shown that the modern turbocharger is a highly-developed industrial 

product that has become almost indispensable to diesel and gasoline engines. The first 

turbocharged diesel-engine passenger car is brought to the market by VW in 1981 

(Srinivasan, 2014). Since then, the focus of turbocharger development is not primarily on 

performance improvement but on reducing fuel consumption and emissions. In 1988 in Japan, 

Honda has produced the first VGT-equipped diesel engine (Wan, 2017). Since then, the VGT 

has been successfully used on modern diesel engines—primarily due to its ability to reduce 

‘turbo lag’ at low engine speed by using adjustable guiding vanes and to its ability to reduce 

emissions in combination with EGR. It can be deduced that the focus of attention is now on 

ever more complex engine-boosting systems that are used to match the engine with high boost 

and maintain good exhaust-energy utilisation over wide ranges of load and speed operation. 

This includes VGT, EGR, enhanced materials and a high degree of sophistication in control 

systems.  

 

Baines (2005) mentions one way to improve the turbine performance. By adjusting the angle 

of the VGT guiding vanes, the flow through the turbine can be more or less restricted. The 

compressed fresh air is then cooled by the intercooler to provide a higher air density and 

thereby an increased air mass inside the cylinders. Baines (2005) explains that one goal of a 

VGT is to expand the usable flow-rate range in practical applications while maintaining a 

high level of efficiency. A VGT system usually consists of three main parts: the compressor, 
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the turbine with a variable vane, and the rotor that connects the compressor and turbine 

wheels. It may be assumed that the thermodynamic behaviour of the turbocharger is quasi-

stationary phenomena event such that steady-state maps can precisely describe its process. 

Thus, the angle of the inlet guide vanes of the turbine can be adjusted to follow a required 

turbine mass flow, as shown in the Figure 2.2 (Wan, 2017).  

 

a) VGT close 

 

 

b) VGT open 

 

 

Figure 2.2: a) VGT close at low engine speed and b) VGT open at high engine speed 

 (Wan, 2017) 

 

The effect of VGT is almost the same as can be reached with the wastegate (WG), but the 

efficiency is much higher—especially at the low rotor speed condition of the engine—due to a 

relatively large bearing friction in the low-temperature lubrication circuit. Compared with 

conventional turbochargers, the advantage of VGT is that the entire exhaust mass flow is 

always directed through the turbine and can be converted to energy. Adjustment of the VGT 
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guide vanes can be controlled by a series of different pneumatic or electrical regulators. This 

leads to a higher mechanical-structure demands than conventional turbochargers provide, 

since the rotary vanes need to move functionally as a highly precise controlled actuator 

(Nguyen-Schaefer, 2013). Compared with the WG-EGR diesel engine, the EGR rate of the 

VGT-EGR diesel engine has a significant increase and the VGT turbocharger has a certain 

effect on controlling the EGR rate (Baines, 2005). In the low load region, the increase of EGR 

rate has a very significant effect on the decrease of fuel consumption. At the same engine 

speed, the increase of VGT opening degree is conducive to reducing the pumping loss without 

affecting the combustion process. Therefore, the VGT opening degree increases with the 

decrease of the load, which reduces the effective fuel consumption of the diesel engine. VGT-

EGR also reduces NOx emissions and PM emissions and improves the trade-off relationship 

for NOx and PM emissions of diesel engines. Using controlled VGT can improve the intake 

performance of the engine as well as the combustion conditions in the cylinder, thereby 

reducing PM emissions; the VGT turbocharger is more capable of utilising exhaust energy 

than the WG turbocharger. 

 

Generally, VGT engines with the same original power can save nearly 10% on fuel 

consumption by reducing the cylinder volume by 25% (Nguyen-Schaefer, 2013). The direct 

effect of this boost in pressure is to increase the intake air density such that a turbocharged 

engine of smaller capacity can be used to achieve the same power output. This reduces the 

engine size and weight with a consequent improvement in power-to-weight ratio that is 

strongly advantageous—particularly, but not exclusively, in vehicle applications (Baines, 

2005). The aerodynamics of a vehicle can be improved with a small and light engine, which 

leads to efficient fuel combustion and low emission. Furthermore, in modern diesel engines, 

the VGT is usually combined with EGR, which means that a part of the exhaust gas is mixed 

with fresh air and brought back to the combustion chamber to decrease the peak temperature 

during combustion. Indirectly, the greater intake air density combining with EGR allows for a 

leaner mixture, and lower combustion temperatures lead to a favourable influence on NOx 

emissions.  

 

Wahlstrom, Eriksson, Nielsen and Pettersson (2005) describe the non-linear effect of the VGT 

and the MAP. Decrease of the VGT raises the resistance for the exhaust gas. This results in an 

acceleration of the turbine rotor and a higher MAP. Furthermore, the higher resistance for the 

exhaust gas also causes a higher pressure inside the exhaust manifold and thereby causes a 
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higher re-circulated gas flow through the EGR valve. As discussed above, this higher re-

circulated gas pressure can reduce the MAF again. If the EGR valve is closed, all the exhaust 

gas must pass the turbine. These non-linearities make control of the engine-air-path more 

difficult. 

 

In summary, a significant challenge with a VGT system is the control of the angles of the 

turbine vanes to control air mass flow and to obtain low fuel consumption and emissions. 

Given the engine-air-path characteristics and the coupling effect with MAP and MAF, range-

limit constraints and hysteresis in the VGT mechanisms can lead to a strong non-linearity. 

Therefore, the development and implementation of effective control techniques for engine-air-

path control is of primary importance.  

2.1.2 Exhaust Gas Recirculation  

In automotive applications, modern diesel engines work with EGR, which means that a part of 

the exhaust gas is mixed with fresh air and brought back to the cylinder to reduce the NOx 

emissions (Sher, 1998). By means of this method, the burning temperature peak of the 

exhaust is lowed, thereby reducing NOx. The first application of EGR to a gasoline engine is 

made by Chrysler in 1973. With an exhaust gas re-circulation unit, the engine reached 

favourable operation temperatures to reduce NOx emissions. In 1990 in the United States, 

Ford fires the first production diesel engine equipped with EGR. Due to the high exhaust-gas 

temperature, a cooler installed after the EGR valve is needed to ensure high air density inside 

the cylinder (Sher, 1998). Additionally, the EGR cooler increases the re-circulated flow 

density where the effects of heat capacity and oxygen again provide benefit (Ladommatos, 

Balian, Horrocks, & Cooper, 1996). Hence, the cooled EGR has become very common in 

heavy-duty diesel engines in the United States. However, Ladommatos, Balian, Horrocks and 

Cooper (1996) experimentally analyse the influence of EGR on the reduction of NOx, and 

find that, through the EGR cooler, the exhaust gas acts as an inert gas in the cylinder and 

thereby decreases the peak temperature during combustion. They believe that too low a 

combustion temperature leads to a low oxidation rate and probably to higher soot when EGR 

increases. So, they suggest that, during the design of EGR, NOx reduction should be 

considered, and efforts should be made to achieve PM-NOx trade-off and fuel economy. But 

they have not further investigated how to achieve this trade-off. This means that it is 

necessary to study a control method that can be used to reduce both NOx and PM without also 
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reducing engine-power efficiency. After 2008, the application of EGR is expanded to 

passenger cars, and not only for NOx reduction but also for PM-NOx trade-off and fuel 

economy.    

 

 

 

Figure 2.3: EGR system for diesel engines (Jaeskelaeinen, 2017) 

 

Figure 2.3 shows a VGT diesel engine with EGR in which the exhaust gas partly returns to 

the engine with a maximum of 50% EGR before entering the turbine (Jaeskelaeinen, 2017). 

The EGR rate is defined by the ratio of the recirculation mass flow to the exhaust mass flow. 

A typical, modern diesel-engine EGR system includes an EGR control valve, an EGR cooler 

and piping. According to ECU control, the EGR valve is an electro-pneumatic actuator which 

affects the rate of re-circulated exhaust gas. The EGR valve uses a vacuum to open the valve 

and to regulate re-circulated exhaust gas-flow. The EGR valves are mainly electrically 

operated and can be opened in various increments so that NOx emission fulfils the current 

emission requirements (Grimm, 2010). In case of a turbocharger with EGR, the re-circulated 

exhaust gas-pressure after the EGR cooler must be higher than the charge-air pressure at the 

compressor intercooler outlet. It can be assumed that the pressure ratio of the turbine is 

required to be high enough to overcome the charge air pressure. This obviously shows that the 

engine must work against the high exhaust gas-pressure at the engine exhaust manifold. It is 

believed that the high exhaust gas-pressure leads to an increase of emissions and fuel 

consumption when the engine is under a full load. Therefore, they suggest that, to improve the 

emissions and fuel efficiency, the EGR valve can be controlled so as to be opened as soon as 

the exhaust gas-pressure reaches the required maximal pressure limits (Nguyen-Schaefer, 



  38 

2013). This means that in engine-air-path it is required to improve the existing control 

strategy to optimise the EGR control. 

 

In case of an engine with EGR and VGT, the pressure of the re-circulated exhaust gas behind 

the EGR cooler must be high enough to overcome the charge-air pressure (Nguyen-Schaefer, 

2013). Research shows that an opening of the EGR valve will increase the re-circulated gas 

flow; otherwise the re-circulated exhaust gas-pressure works against the compressed charge-

air pressure at the compressor outlet. As a result, the MAF through the compressor can be 

reduced by gas flow from the EGR (Guzzella & Onder, 2004). Meanwhile, by means of a 

lower MAF in the cylinder, the exhaust gas-pressure at the EGR inlet and turbine inlet is 

reduced. Furthermore, the lower pressure gradient at the turbine inlet reduces the turbine rotor 

speed and thereby reduces the MAP in the intake manifold.  

 

Jung (2003) has analysed the non-linear dependency of EGR on MAF in detail. The EGR 

valve regulates the re-circulated gas flow. Variation of the EGR valve at a lower rate can 

cause a higher variation of the re-circulated gas flow through the EGR valve than variation at 

a higher EGR rate. The mathematical formulation of this problem delivers the non-linear 

valve equation presented in Section 4.4.3 As described in the previous sections, a higher re-

circulated gas flow can reduce the MAF in the intake manifold. This means that the MAF is 

reciprocal proportional to the re-circulated gas flow.  

 

Furthermore, as mentioned in (Wahlstroem, 2006), the non-linear behaviour of EGR and 

MAF also depends on the position of the VGT. If VGT is opened further, the resistance to the 

exhaust gas-flow becomes less, which results in a reduced exhaust gas-pressure and thereby in 

a decreased pressure drop between the exhaust and intake manifolds. Consequently, the non-

linear effect decreases by a smaller VGT rate.  

 

In the engine-air-path system, another non-linear effect is the dependency of MAF on the 

VGT. Ortner (2006) analyses the influence of VGT on MAF for different positions of the 

EGR valve. If the VGT rate is less than 50%, the increasing of the VGT leads to a higher 

MAP in the intake manifold. A higher MAP results in an increased MAF. Additionally, the 

pressure drops over the EGR valve reduces the re-circulated gas flow. Meanwhile, this 

circumstance raises the MAF as well. The second circumstance, which is part of the cross-

coupling control problem, is the non-linear dependency of the EGR and the MAP. This 
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behaviour is tangentially identical to the relationship between EGR and MAF. A closing of 

the EGR valve can raise the MAP because all the exhaust gas must pass the turbine, and the 

resulting acceleration of the compressor rotor increases the MAP.  

 

From the above discussion, it can be seen that, to meet the more stringent emission law in 

diesel engine applications, engine manufactures must continually adopt new technologies 

such as those using advanced-control strategies, increase of fuel-injection pressure, diesel-

oxidation catalysts and so on.  

 

2.2 Emissions of Diesel Engine 

However, the biggest drawback of diesel engines is pollution. Song (2015) shows that diesel 

engines are too noisy and produce a lot of unburned soot, which is dirty and hazardous. 

According to (The European Parliament, 2007), based on the legislative emission limits 

specified from Euro I to Euro VI, the reduction of PM and NOx are 80% and 90% for diesel 

engines, respectively. Meanwhile, fuel-consumption efficiency remains an important 

consideration for customers due to ever-increasing fuel prices. To reach these targets, after-

treatment systems such as oxidation catalysts (DOC) (Duprez & Cavani, 2014), diesel-

particulate filters (DPF) (Czerwinski & Zimmerli, 2015) and SCR (Nova & Tronconi, 2014) 

have in recent years made huge steps in efficiency and provide tools necessary to decrease 

emissions. Many engine manufactures have pursued after-treatment technology as their main 

emissions-control solution, but the increasing cost of using after treatment will likely affect 

vehicle sales once further emission standard is implemented. However, the heart of the engine 

system is still the combustion itself, which has to be controlled as optimally as possible. 

Therefore, a further important contribution can be offered by improved engine control, which 

can lead to an abatement of raw emissions and a reduction of consumption. Criens (2014) 

shows that engine control generally concerns two different paths: the so-called air-path 

(which is essentially the path that supplies the combustion chamber with a mixture of fresh 

and re-circulated combusted air at the given temperature and pressure), and the fuel-injection 

path (which is typically regulated by the rail pressure and the opening time of the injectors). 

Modern diesel engines allow for advanced injection system which can dramatically reduce 

noise, emissions and fuel consumption, as they allow for a better distribution and produce a 

close to homogeneous charger-compression ignition (HCCI) that can only be met by 
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cooperating with an exactly controlled air-path system which includes a throttle, valve-timing, 

VGT and EGR (Reif, 2014). It is suggested that using advanced combustion with optimised 

engine-air-path control is currently the best solution for emission control in diesel engines. 

Therefore, to improve the control system, this section provides a review of the principles of 

NOx and PM formation in diesel engines and of how the emission can be affected via the 

available actuators in the diesel engine-air-path.  

2.2.1 Nitrogen Oxides 

Nitrogen oxide is one of the main pollutants of diesel engines. Van Basshuysen and Schäfer 

(2004) provide an overview detailing the NOx-formation reaction during combustion. While 

the main purpose of the combustion process in a thermal engine consists in the oxidation of 

carbon and hydrogen, the oxygen can be provided only together with nitrogen, which is 

present in high quantities of the fresh intake air, so that secondary reactions inevitably happen 

in which nitrogen is oxidised in different ways.  

 

 

Figure 2.4: Effect of air fuel equivalence ratio on NOx concentration in diesel engines  

(Jaeskelaeinen, 2018) 

 

Song (2015) explains that the production of NOx is mainly in the form of NO. NO has a 

larger enthalpy than oxygen and nitrogen; therefore, it can be produced only if external energy 

is supplied. In fact, the production of NOx is strictly related to the temperature of the 
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combustion flame. During combustion under high-temperature and oxygen-rich conditions, an 

increase in temperature of 1% increases the formation rate of NOx by 20%. Analogously, 

under low temperatures and oxygen-lean conditions, it produces very little NOx (California 

Environmental Protection Agency, 2015). These reactions are also known under the name of 

the Zeldovich model. Schwerdt (2006) emphasises that the Zeldovich equations are confirmed 

by the dependency of NO on the fuel-to-air equivalence ratio and on the combustion 

temperature. Figure 2.4 shows differences in NOx dependency on the air-to-fuel ratio. The 

higher equivalence ratio is more the NOx emissions.  

 

Therefore, in practice, combustion peak temperature and the availability of oxygen (intake air 

flow) have to be controlled to reduce the NOx formation rate. Schwerdt (2006) states that the 

main method of NOx reduction in combustion engines involves the use of EGR in the engine-

air-path system. Figure 2.5 shows the dependency on the EGR rate. EGR does increase the 

initial mixture temperature, but it increases the thermal capacity as well and reduces the 

oxygen concentration such that NOx is reduced. More details about the EGR used for the 

emission control can be found in Section 2.1.2.  

 

 

Figure 2.5: Effect of EGR rate on NOx emission in diesel engine at different load (Zhu, Ren, 

& Luo, 2015)  

2.2.2 Particulate Matters 

The other main pollutant of diesel engines is particulate matter (PM). Saggese (2012) 

investigates that, PM, usually called soot, consists mainly of fuel drops which have not burnt 
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as expected but have been subjected to a process similar to the production of coal (external 

heat and flame, but not enough oxygen to burn). The California Environmental Protection 

Agency (2015) claims that PM is mainly a problem in diesel engines. However, GDI engines 

also have the problem, and it is possible to produce soot with standard SI engines just by 

requiring a high load at low temperatures and rotating speeds. In practice, PM consists of 

different elements, among which are the following: lubricant oil, soot from fuel, sulphates, 

bound water and unburnt fuel.  

 

 

 

Figure 2.6: Development of the spray of an injector (Rasol, 2012)  

 

In (Rasol, 2012), the principle of PM formation is further researched. Figure 2.6 shows the 

development of the spray of an injector. Ideally, the whole fuel should reach the evaporation 

phase without hitting the wall. In practice, requirements for injectors (which must provide for 

both very small and rather large amounts of fuel) lead to compromises, which can lead to a 

partial evaporation - small droplets can remain or re-build. A droplet essentially burns 
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anaerobically, and this is the main cause of soot. Standard particulate catalysts help reduce the 

size by partly removing this layer, but they do not remove the soot itself. Criens (2014) 

suggests that, in conventional diesel engines, the best way to reduce the PM emissions, rather 

than to prevent soot formation, is to improve the combustion conditions to accelerate the soot-

oxidisation rate, which includes increasing the injection pressure, advancing the start of the 

injection angle and optimising air-path control to improve the air-to-fuel ratio.  

 

2.2.3 Emission Control Legislation and Technology 

Song (2015) explains that a key benefit of diesel engines is that they efficiently compress fuel 

to make it burn relatively completely. However, diesel engines emit high levels of PM and 

NOx, which are major contributors to air pollution and have negative health impacts. A major 

concern for vehicle and engine manufacturers is the lack of an effective emission-control 

technology for diesel engines such that they remain significant sources of pollutants.  

 

 

 

 

Figure 2.7: Harmony between global NOx and PM limits (Dorling, 2016)  

 

As is explained in (European Union, 2011) and Figure 2.7, in 2011, the EU sends a draft 

version of Stage V emission legislation for non-road vehicles and machinery for public 
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consultation. Though there is no timeline for the legal implementation, the industry is 

optimistic that stricter regulation will soon be implemented. Stage V will require new and 

advanced technologies for engine combustion, emissions control, after treatment and auto 

electrical control. Currently, international manufacturers are planning their next stage of 

emission control technology upgrades, while domestic OEMs are being more conservative. 

Research indicates that EGR and DOC systems will provide the main route for domestic 

OEMs to achieve Stage V.  

 

Nova and Tronconi (2014) state that SCR systems can provide the most effective solution for 

Stage V emission-control legislation and the best way to meet Stage V. They also suggest that 

the increased use of natural-gas engines, which have the advantage of lower prices and better 

results on the WHTC testing cycle, can reduce PM emissions. Reis (2005) claims that engine 

manufacturers may have already understood the technical requirements of emission 

legislation but that the practical application after upgrading is a matter of major concern. It is 

said that many manufactures have pursued SCR technology as their main emissions-control 

solution but that the increasing cost of using SCR after treatment will likely affect truck sales 

once the new legislation is implemented. It is expected that the implementation and 

enforcement of new emission-control legislation would lead to an improvement in emissions 

control. The panellists agree that it is the social responsibility of all industry players to 

comply with the stricter emission legislation; however, vehicle and engine manufacturers may 

still be hesitant to move forward given the higher cost of production and investment.  

 

Nieuwstadt and Kolmanovsky (2000) explain that EGR is one of the most urgently needed 

improvements in the engine-air-path to control the NOx emissions. Part of the exhaust gas is 

re-circulated by the EGR valve and cooled and mixed with the fresh compressed air in the 

intake manifold. After combustion, the exhaust gas leaves the cylinders through the exhaust 

manifold. Here, a part of the hot gas is reused via the EGR path into the cylinder, and the rest 

flows through the turbine into the exhaust pipe. In (Bennett, 2014), to achieve a reasonable 

EGR rate and reduce NOx emissions, the EGR system is used to design and optimise the 

wastegate EGR system. Circulating exhaust gas from EGR can dilute the oxygen 

concentration in the cylinder and reduce the rate of chain reactions during combustion, 

thereby decreasing adiabatic flame temperature. These factors significantly reduce the NOx 

emissions of the WG-EGR diesel engine. On the other hand, they also exacerbate the regional 

hypoxia and prompt the generation of PM. Meanwhile, the decrease in the combustion 
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temperature in the cylinder also affects oxidative decomposition after the formation of PM, 

which significantly increases the PM emissions of the WG-EGR diesel engine. It is therefore 

necessary to consider the NOx-PM trade-off in the air-path control.  

 

Ni, Liu and Shi (2016) explain that the VGT turbocharger can reduce the turbine nozzle 

opening when the engine is running at low speed, thereby increasing the exhaust back 

pressure and flow rate and improving exhaust energy efficiency. The VGT nozzle opening 

can be adjusted during the high-speed operation so that it works in the high-efficiency area of 

the supercharger in the whole process. When combined with an EGR system, adjusting the 

opening of the VGT nozzle can improve the pressure difference between turbine forward 

pressure and the post pressure of the EGR system and thereby reduce NOx emissions.  

 

The combination of VGT and EGR is a key technology for emission control in diesel engines. 

As demonstrated, Euro V can be achieved for a heavy-duty EGR engine by using a SCR-only 

strategy which meets both the European Stationary Cycle (ESC) and WHTC. Euro VI can be 

achieved for a heavy-duty EGR engine with the addition of VGT technologies and after-

treatment systems.  

 

 

 

Figure 2.8: NOx and soot depend on combustion chamber temperature and air/fuel ratio 

(Bruckner, Grünbacher, Alberer, del Re, & Atschreiter, 2006) 
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However, Bruckner, Grünbacher, Alberer, del Re and Atschreiter (2006) state that 

arrangements in diesel engines aimed to reduce particle and NOx contain a conflict, as shown 

in Figure 2.8. If the aim is to lower the number of particles, the NOx emissions get worse. For 

the future, it is important to reduce both values to meet the laws regarding exhaust gas 

emissions. Figure 2.8 shows the dependence of the NOx and soot production on combustion 

temperature and the fuel/air ratio. It is suggested that emissions can be decreased by using 

optimising methods without compromising fuel economy.  

2.3 Diesel Engine-air-path Control Methods 

A large body of literature has been published on applications of engine-air-path control. 

Nguyen-Schaefer (2013), Criens (2014) and Zeng, Upadhyay and Zhu (2017) show that air-

path control is one of the most important aspects of engine control. The throttle, vane position 

of VGT and EGR valve are used as inputs to obtain an optimised air-fuel mixture under a 

given reference temperature and pressure. There are three main types of mechanism for 

regulation of the turbocharger in a diesel engine: intake-air-controlled wastegate turbocharger 

(Figure 2.9), solenoid-controlled wastegate turbocharger (Figure 2.10), and electric-actuator-

controlled VGT (Figure 2.11).  

 

 

 

Figure 2.9: Intake air controlled wastegate turbocharger (Baines, 2005) 
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Figure 2.10: Solenoid controlled wastegate turbocharger (BorgWarner, 2018) 

 

 

Figure 2.11: Electric actuator controlled VGT (BorgWarner, 2018) 
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Table 2-1: Classification of control methods for engine-air-path systems 

 

Control Authors Contributions 

Classical 

Control 

(Wahlstrom, Eriksson, Nielsen, & 

Pettersson, 2005) 

PID based emission control for 

diesel engines equipped  

with VGT and EGR 

 (Ahmed, 2013) PID controller design and tuning for 

EGR and VGT control  

in diesel engines 

Non-linear 

Control 

(Liu & Wei, 2007) Hinf control for VGT and EGR 

 (Kuzmych, Aitouche, Hajjaji, & 

Bosche, 2014) 

Constructive Lyapunov control 

design for turbocharged  

diesel engines 

 (Atam, 2018) LPV based control  

for air-path system control  

in diesel engines 

Hybrid Control (Zhao & Pan, 2012) Fuzzy PID control for VGT 

 (Kim, Choi, & Jin, 2016) Hybrid control approach  

of a diesel engine  

air-path system 

Model 

Predictive 

Control 

(Maruyama, Shimura, Ejiri, & 

Ikai, 2011) 

Model predictive control  

with dead zone in  

engine control 

 (Wang, Waschl, Alberer, & Del 

Re, 2012) 

Independent LPV MISO MPC 

control for VGT and EGR 

 (Zhao, 2013) Explicit MPC application in a 

turbocharged diesel engine 

 (Huang, Zaseck, Butts, & 

Kolmanovsky, 2016) 

Rate-based model predictive control 

(RB-MPC) for  

a diesel engine-air-path 

 (Dahl, et al., 2018) Model predictive control of a 

turbocharged engine 
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The system to be studied here is a diesel engine equipped with an electric-actuator-controlled 

VGT and EGR. As mentioned in sections 2.1 and 2.2, in production ECU, the diesel engine-

air-path is controlled by two SISO control loops. The desired MAF is controlled by the EGR 

valve and the MAP is controlled by the angle of the VGT guide vanes. The problem is that the 

influences from EGR on MAP and VGT on MAF, which are called cross-coupling effects, are 

not directly considered by the controller. Engine-air-path is a typical MIMO system. To 

control a MIMO system with the help of two SISO controllers requires a strong restriction on 

the performance of engine. An overview of model-based control of the VGT and EGR 

approaches that cover the system structure, modelling of the diesel engine and controller 

design are presented in (Ammann, Fekete, Guzzella, & Glattfelder, 2003). Dekker and Sturm 

(1996) and Truscott and Porter (1997) have reviewed the classical control techniques for air-

path systems that use a decentralised SISO approach. Multivariable design for VGT and EGR 

control for diesel engines is comprehensively studied in (Nieuwstadt, Moraal, Kolmanovsky, 

& Stefanopoulou, 1998). A review of different treatments of fuzzy modelling and fuzzy 

control for engine-air-path is provided in (Abidi, Bosche, & El Hajjaji, 2013).  

 

The optimal control approach of an air-path system for a diesel engine is reviewed in (Yan, 

Benjamin, & Wang, 2009). A hybrid control approach for the air-path controller design is 

provided in (Kim, Choi, & Jin, 2016). In addition, a survey of model-predictive control for the 

turbocharged diesel-engine air-path is given in (Dahl, et al., 2018). Additionally, a survey of 

model-predictive control for the diesel engine-air-path is given in (Ortner, 2006). Brief details 

are introduced to each method in the following sections. These control methods can be 

divided into classical control, non-linear control, hybrid control and model-predictive control. 

A classification for these control methods for engine-air-path systems is illustrated in Table 2-

1. 

 

2.3.1 Classical Control 

The controller used in production ECU usually consists of feedback modules, look-up tables 

and parameters (Wahlstrom, Eriksson, Nielsen, & Pettersson, 2005; Ahmed, 2013). As 

mentioned in Section 1.1, to reduce system complexity, MIMO interactions among 

subsystems have typically been neglected in classical engine-control design. Figure 2.12 

illustrates the hierarchical function environment into which the classical air-path controller 
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has been integrated. Langthaler (2007) and Ahmed (2013) show that, in the SISO PID 

controller structure, the set point values of MAF and MAF are stored in two lookup tables 

which are usually optimised with respect to emissions, torque and fuel consumption in the 

steady-state by field test; however, the important optimisations during transients are neglected. 

A feedback loop in which the actual MAP is subtracted from the desired MAP is used, and the 

result is passed into the inner loop. Then the inner loop uses a PID controller to regulate the 

MAP based on the VGT position. The second control loop from EGR to MAF acts in the 

same way by controlling MAF with the EGR valve. 

 

 

 

 

Figure 2.12: Classical air-path controller within the ECU (Langthaler, 2007) 

 

As mentioned above, the engine-air-path is a typical MIMO system, and there is a strong 

cross-coupling effect between MAF and MAP control loops (Jung, 2003; Ahmed, 2013). 

Obviously, to control a MIMO system with gain scheduling, a SISO PID controller provides a 

strong restriction on the control performance. Furthermore, the feedback PID control type can 

only move along the NOx-PM trade-off curve. It is impossible to minimise both emission 

NOx and PM quantities at same time (Nieuwstadt & Kolmanovsky, 2000). In addition, one 

must often consider the fact that the calibration work of gain scheduling PID control of VGT 

and EGR is very time consuming and, in certain application (such as transient operation), the 

scheduling PID controller may be unacceptable due to high engine non-linearity (Wahlstrom, 

Eriksson, Nielsen, & Pettersson, 2005). 
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2.3.2 Non-linear Control 

Research shows that, due to strong non-linearity, the high-performance requirement and the 

rapidly growing complexity of the system, non-linear control techniques are widely 

researched for engine-control systems. Robust non-linear control for air-path systems is a 

logical extension of classical PID control methods. Liu and Wei (2007) introduce an 

alternative LPV-modelling approach based on a system-identification technique. In this work, 

a gain scheduled LPV Hinf controller is applied to a diesel engine, the guarantees robustness 

considering varying exogenous variables, engine speed and VGT position. Its advantage is 

that the non-linear controller utilises the varying characteristics and thus can provide better 

performance than that of a linear controller. The control development is done and tested on a 

mean-value model. But this kind of control approach is still very difficult to integrate into an 

air-path system due to its additional specification of a Hinf controller. However, the author 

points out that LPV modelling is one of the promising control techniques for non-linear 

systems such as the engine-air-path.  

 

In (Kuzmych, Aitouche, Hajjaji, & Bosche, 2014), a Lyapunov control function based on a 

nonlinear controller is applied to a turbocharged diesel engine. The model-based tests in 

simulation and experiment perform well in certain operational regions. However, the 

constructive Lyapunov control parameters must be improved if they are to provide acceptable 

performance for a wide variety of engine-operation regions. Atam (2018) develops an 

extended LPV model to design an LPV controller for air-path system control in diesel 

engines. This work uses a mathematical model of an engine air-path with the extension of an 

engine exhaust-manifold pressure and compressor air-mass flow for model-based control 

design. The plant model includes the external inputs of fuel mass and engine speed and the 

controlled outputs of exhaust-manifold pressure and compressor air-mass flow. A non-linear 

controller for this system is derived from the LPV interpretation of the plant. However, due to 

the high computing time of the gain-scheduling controller, the calibration work is very time-

consuming. 

2.3.3 Hybrid Control 

Hybrid control is one of the newest control techniques. It usually consists of two or more 

kinds of control techniques. Several hybrid controllers have been proposed for engine-air-path 

control. 
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In (Bengea, DeCarlo, Corless, & Rizzoni, 2002), a hybrid control for diesel engine EGR and 

VGT is implemented. The non-linear physical model is linearised in different regions. For 

each operation region, a third-order non-linear error model is generated in polytypic form, 

which is later used for control design as a set of linear matrix inequalities (LMI). To solve this 

equilibrium problem, considerable computing time is required (up to five seconds for each 

step). This leads to unacceptable control performance.  

 

In (Zhao & Pan, 2012), a fuzzy PID-based hybrid control is established to track EGR 

reference values. At first, a non-linear mean-value model which consists of combustion 

chamber, an EGR system, and an intake and exhaust manifold is developed to evaluate the 

performance of control strategy. Afterwards, according to the fuzzy rules, a hybrid gain-

scheduled controller for varying the state of the EGR system is presented and overshot 

without any oscillations. The non-linear-control problem is solved by the hybrid controller 

instead of by each technique separately. 

 

In (Kim, Choi, & Jin, 2016), a hybrid control of VGT and dual-loop EGR is implemented. 

The non-linear physical model of pressure and mass flow is linearised in different regions. 

For each operation region—i.e., for all high-pressure-EGR and low-pressure-EGR areas—a 

coordinated controller based on the control-oriented model is designed. To solve this chronic 

problem using conventional pressure-based controllers, considerable computing time is 

required. This leads to unacceptable control performance.  

 

Although hybrid control exhibits a combination of advantages from different kinds of control 

techniques, it also inherits many problems that must be faced in air-path system control, such 

as computing time, the disturbance rejection, constraint handling, difficulty tuning over a 

wide range of operation regions and a stability problem.  

2.3.4 Model Predictive Control 

Despite the similarity of engine-air-path system control to other types of non-linear-process 

control, certain features exist that are unique and challenging with respect to engine-air-path 

system control, including the following:  

 

• a coupled MIMO control problem, 
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• a non-linear time-varying system, 

• boundary of inputs, and 

• multiple time-varying delays and disturbances. 

 

These requirements lead to more advanced MIMO controllers. MPC has already been applied 

to air-path control. The objectives of cost function in MPC for air-path systems can include 

minimisation of emissions, fuel consumptions and control errors. Examples of MPC in air-

path control can be found in (Ferreau, Ortner, Langthaler, Del Re, & Diehl, 2007; Maruyama, 

Shimura, Ejiri, & Ikai, 2011; Wang, Waschl, Alberer, & Del Re, 2012; Zhao, 2013; Huang, 

Zaseck, Butts, & Kolmanovsky, 2016; Dahl, et al., 2018), etc. The MPC is based on linear or 

non-linear models with constraints, because the relatively new fast-quadratic-problem-solver 

(QP-solver) algorithm can formulate the online optimal problem to yield a suitable 

formulation of the control law. 

 

MPC is an optimal control method based on open-loop optimisation, which uses a model of 

the process and minimises an objective function. In contrast to classical feedback controllers, 

MPC is a more advanced control technique. It is able, due to its predictive character, to take 

future reference signals and known future disturbances into account. Furthermore, input and 

output constraints can be handled easily. This section provides a comprehensive survey of 

MPC in which the main focus is on MPC-based linear models with constraints because the 

relatively new algorithms can formulate the online optimal control law to a non-linear 

formulation of the control law.  

2.3.4.1 Linear MPC 

MPC describes a class of control algorithms that imply a prediction model for the plant to be 

controlled. This model is used to predict future system outputs.  

 

The MPC algorithm determines a sequence of manipulated variable settings in each time step 

by optimising a specified cost function (Gruene & Pannek, 2017). The first value of the 

optimal solution vector is then used as a plant input for control. This sequence is repeated in 

each control interval. Originally, it is developed for petroleum refinery and power-plant 

control applications. Because it involves sampling times in the range of minutes and near 

steady-state conditions, the online-optimisation-control problem of MPC can be performed 
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without strong constraints on computing power. Over the last 35 years, MPC has evolved to 

dominate the process industry—as in petroleum-refinery and power-plant control 

applications. One of the first predictive controllers is described in the literature of the 1970s 

by (Richalet, Rault, Testud, & Papon, 1978). It is called model-predictive heuristic control. In 

the 1980s (Cutler & Ramaker, 1980 ), the first dynamic matrix control is proposed to compute 

the effect of control inputs.  

 

Next, a generalised predictive control (GPC) is introduced by (Qin & Badgwell, 1997) in the 

1990s, which is a technique based on transfer function models with input, output and white 

noise. This special control form is widely accepted in the industry because of model 

descriptions that became popular toward the end of the decade. A further development of 

stability theory by Lyapunov makes state-space model description more attractive than the 

GPC method (Camacho & Bordons, 2007). 

 

Several air-path controls using linear MPC have recently been proposed. To control MAF and 

MAP in an air-path system, a MIMO-model-based MPC is developed to control the air-path 

actuators (Cheng & Maloney, 2018). A standard design framework for linear MPC using 

Matlab/Simulink’s model predictive control toolbox is shown for air-path control. In the 

simulation, the SISO PID controller proves to be insufficient due to the coupling problem in 

the air-path system. In contrast to PID control, it is observed that the MPC control can be used 

to meet the multiple-optimisation objective-control problem (e.g., transient power demands) 

and change the engine operation point while minimising emissions. 

 

Gelso and Dahl (2016) compare a linear MPC control of VGT and EGR with an air-path 

baseline controller from engine electronic control unit (ECU). The results confirm the good 

performance of the MPC controller. The responses of the MPC controller are nearly 

independent of step amplitude. In contrast, overshoots of the baseline controller increase 

significantly for a higher deviation from the linearisation point. The manipulated variables, 

VGT and EGR, vary much more in the case of the baseline controller. This can lead to 

problems—especially with respect to the EGR valve control.  

 

The conclusion to be drawn from the linear MPC review can be summarised in a few words. 

The chosen MPC-control technique can control the coupled EGR and VGT systems in an 

optimal MIMO form—at least in nearly steady-state conditions. 
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2.3.4.2 Non-linear MPC 

The benefits of MPC also imply a demand for a more precise plant model and increased 

computational effort. NMPC is a logical extension of MPC in which the linear model is 

substituted by a non-linear one (Wang, Waschl, Alberer, & Del Re, 2012). In recent decades, 

the number of MPC applications has increased permanently. The improvement of technology 

and control theory facilitates the application of MPC in new problems which often require 

NMPC because of the large transients involved (Thoma, Allgöwer, & Morari, 2009)—as has 

already been seen in industry sectors like food processing, automotive, aerospace, etc. 

Therefore, there is now great interest in introducing MPC in the control of complex non-linear 

systems such as the engine-air-path system. Unfortunately, the implementation of NMPC still 

requires an increased computational effort in contrast to the classical control structures. In the 

past, this type of controller is not suitable for all fields of application (Maciejowski, 2000)—

especially in fast dynamic-process control with a high sampling rate. Inserting this non-linear 

model into the MPC optimisation task, which is called QP, leads in general to a non-convex 

problem which is difficult to solve in a short time (e.g. by a sequential approximation with QP 

at each time step, which is computationally expensive) (Wang, Waschl, Alberer, & Del Re, 

2012). With advances in data storage, computing, and communication hardware, it is now 

feasible to adopt and implement an NMPC approach to overcome the inherent issues, because 

faster optimisation algorithms (Chen, et al., 2018) are available and more computing power 

(of ECU) is also available.   

 

In (Zhao, 2013), work on turbo-charged diesel engines with EGR has realised the MPC for 

engine control under small disturbances and achieved some valuable results. It is proven by 

the author that the MPC control scheme is feasible under small disturbance; but it will 

produce greater deviation under large disturbances if the internal prediction not accurate 

enough. Furthermore, it has been pointed out that the turbo-charged diesel engine is mainly to 

provide power to heavy-duty vehicles. When the engine-operation points change, the MAP 

and MAF in the engine-air-path contain the most favourable information about engine 

dynamics, and this indirectly represents the power demand of the vehicle. Therefore, MAP 

and MAF provide reasonable assurance for engine-air-path control.  

 

Ortner (2006) implements an explicit MPC strategy originally proposed by (Bemporad, 2001) 

for air-path control. The explicit MPC approach has a large advantage over the linear MPC, as 
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it is able to select a stored linear-control law instead of solving a quadratic optimisation 

problem at each sampling instant. As the test-bench results show, MAF and MAP can be 

tracked with this new MIMO controller better than they can be tracked with the standard 

SISO and general MPC controllers, thereby leading to lower emissions. But what must not be 

neglected in this work is that the explicit MPC has to search for the optimal solution in the 

polyhedral partition, which takes time when many regions are present. In the QP-solver used 

here, the search is implemented only by a simple loop that makes searching very inefficient. 

Use of faster search algorithms can enormously accelerate the problem solution. 

 

A fast QP-solver that is based on an online active-set strategy is shown in (Ferreau, 2006). 

This solver is basically intended for linear MPC problems, but it can be enhanced for varying 

QP matrices. The idea is to move on a straight line in the parameter space from one QP to the 

next. Along this path, a sequence of optimal solutions is produced. Interrupting this sequence 

because of limited time results in a sub-optimal solution. In the next sampling, a new 

homotopic path to the next solution is calculated. This approach provides enough computing 

power for general non-linear problems with input and state constrains. Ferreau, Ortner, 

Langthaler, Del Re and Diehl (2007) report that this fast QP-solver-based MPC has been 

carried out on the engine-test-bench. The results show that an upper computation bound on 

the order of milliseconds per QP solution can be guaranteed in real-time. In this work, 

prediction of MAF and MAP is also included in the controller with linear form only in a very 

short time interval. But the question of including more precise future information for the 

control has to be investigated more in detail. 

 

Dahl, et al. (2018) develop an NMPC technique for the VGT-EGR diesel engine. The 

motivation is to control the air-path system and, in particular, the exhaust energy, thereby to 

achieve satisfaction of the exhaust-after-treatment-system (EATS) requirements and assess 

the fuel economy. The proposed MPC controller reaches mass-production maturity level and 

has a margin similar to that of the EURO VI emission regulation and the PID control in the 

ECU. Wei (2003) develops a control-oriented modelling technique for a non-linear system 

which uses an LPV-model structure. This technique is based mainly on the Kronecker product 

technique. In the context of LPV, the discrete LPV system is described well by the scheduling 

variable, which is usually measurable. In (Lu & Arkun, 2000), the time variation of the 

scheduling variable is available in real-time, and it is bound by the rate of change in the 

scheduling parameter which results in better feasibility and performance. Furthermore, in 
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(Casavola, Famularo, & Franze, 2003), the constant of the control horizon is cancelled such 

that the length of control horizon can be applied with close-loop instead of open-loop 

prediction. This reduces conservativeness and improves feasibility, but it significantly 

increases the computational burden more than non-scheduling approaches do. The stability 

issue of LPV MPC is discussed in (Hanema, Lazar, & Toth, 2017), where the robust 

asymptotic stability is given by interpolation-based LPV MPC. This method improves the 

performance with respect to moderate computational expense.  

 

Wang, Waschl, Alberer and Del Re (2012) investigate a non-linear approach for air-path 

control. A fast QP-solver using an online active-set strategy is applied to the LPV MPC. In 

the simulation platform, the combustion engine is modelled with two actuators, two measured 

disturbances and two target quantities. The output-prediction model, required by the NMPC, 

is designed as two independent MISO systems by using LPV techniques. Due to the 

possibility of treating constraints and non-linear MIMO systems directly, an NMPC is chosen 

for this feedback-control problem. The simulation and comparison of various configurations 

shows a satisfying closed-loop performance of the two target quantities, MAF and MAP. 

Compared to general MPC, this approach provides better tracking performance—even during 

plant operation in regions at some distance from the linearisation point. The same conclusion 

is made by comparing the NMPC with two SISO PI controllers, as they are utilised in 

production engines. Therefore, the LPV-NMPC-control approach can achieve adequate 

closed-loop performance in air-path control. However, the prediction model structures used in 

this NMPC are two independent MISO models. The disadvantages are no interaction of the 

coupled effect of EGR and VGT, and twice the time consumption required for two MISO 

system models. The design effort can be improved significantly by a general MIMO LPV 

plant model. 

 

2.3.4.3 Factors Affecting MPC Performance 

The most commonly used performance criterion for evaluating the performance of various 

controllers is the stabilisation and reference tracking of a dynamic system. Therefore, in the 

following sections, the critical factors which affect MPC performance in air-path control are 

reviewed from different literatures concerning the prediction model, cost function, 

optimisation, constraints and QP problem. 
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2.3.4.3.1 Prediction Model 

In MPC, a mathematical model is used to predict future system outputs based on past inputs, 

outputs and predicted inputs. The deviation between the reference trajectory and predicted 

outputs is then minimised by means of an optimisation algorithm that considers possible 

constraints and the defined objective function.  

 

An overview of MPC technique that covers the prediction model is presented in (Camacho & 

Bordons, 2007). Some linear model-based MPCs have been tested for air-path systems in 

(Maruyama, Shimura, Ejiri, & Ikai, 2011; Cheng & Maloney, 2018; Dahl, et al., 2018), e.g., 

the impulse-response model, ARX, ARMAX and the state-space model. But the benefits of an 

MPC controller also imply the demand for a more precise plant model. Non-linear models can 

be used to represent the process more precisely, but the optimisation problem becomes more 

complicated. 

 

In recent years, the study of LPV systems has received much attention. In (Gunes, Wingerden, 

& Verhaegen, 2018; Schulz, Bussa, & Werner, 2016; Wang & Steiner, 2011; Wei, 2006), 

several approaches have been tested, among which the linear parameter-varying method 

seems a good alternative in terms of complexity and performance. The LPV model-

identification technique is not a main topic of this proposed study, but it can be an essential 

part of the NMPC controller. The LPV method is reviewed in Section 2.4. 

 

2.3.4.3.2 Cost Function 

Camacho and Bordons (2004) introduce that, an MPC controller computes future optimised-

control sequences for the output. The optimised-control sequence is called a control horizon, 

and it specifies the degree of freedom of the controller. After reaching the control horizon, the 

control value is set constant. The optimisation task is to minimise a criterion—usually in form 

of a cost function of quadratic errors between the predicted output signal and the reference 

trajectory, but also the limitations of control values and their changing rate are considered in 

the optimisation task.  

 

In linear MPC air-path control (Cheng & Maloney, 2018; Ferreau, Ortner, Langthaler, Del Re, 

& Diehl, 2007; Maruyama, Shimura, Ejiri, & Ikai, 2011), the prediction model is used to 

calculate the system output for MAF and MAP. Then the difference between the output and 
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the reference values is minimised by the cost function. Thus, the cost function has a linear 

formulation whose system matrixes stay constant in each time step. An alternative to solving 

the optimisation task online in air-path control is to use an explicit MPC approach (Oravec, 

Jiang, Houska, & Kvasnica, 2017). This explicit formulation can be implemented to reduce 

the online computational effort. This can be achieved by pre-calculating the solution of the 

state-feedback control law and storing the results in tables for the online controller selection 

(Ortner, 2006). Wang, Waschl, Alberer and Del Re (2012) develop a cost function combined 

with LPV structure for air-path control. The results clearly show that the advantage of the 

LPV structure is that the cost function is evaluated at each time step with the current external 

parameters. This kind of structure gives the cost function an efficient solution to the QP 

problem.  

 

2.3.4.3.3 Constraints 

Studies in (Gruene & Pannek, 2017) show that, in MPC, the optimal problem can be easily 

solved if the cost function is quadratic and the prediction model is linear without any 

constraints. The constraints make the optimisation problem difficult due to the complex and 

non-convex problem. Unfortunately, most automotive systems have constraints. These 

constraints can be input, state or output constrains. In case of the engine-air-path control, the 

constraints are the minimum and maximum positions and the rate for closing and opening the 

EGR and VGT actuators (Jung, 2003). The EGR valve position is limited to between 0% and 

100%. But the maximum position of VGT depends on the engine operation areas, because too 

much closing of the VGT valve at high power points can damage the manifold by high 

pressure (Wang, Waschl, Alberer, & Del Re, 2012). In addition, the MAP is also limited 

under the physical boundary due to safety reasons (Van Basshuysen & Schäfer, 2004). 

  

2.3.4.3.4 QP Problem 

In MPC, the optimisation of cost function can be transformed into a QP problem which can be 

solved by a QP-solver. In the linear case, algorithms for QP-solver configurations are state-of-

the-art. The QP describes the standard convex quadratic-optimisation problem. However, the 

complex structure of a non-linear problem can complicate the formulation of a NMPC. For 

the class of unconstrained, input-affine non-linear systems, an analytical solution can be 

derived which also guarantees closed-loop stability (Ferreau, Ortner, Langthaler, Del Re, & 
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Diehl, 2007). But the introduction of constraints into the cost function makes it necessary to 

follow other approaches to a solution. Multi-parametric non-linear programming (Bacic & 

Cannon, 2003; Findeisen & Allgoewer, 2006), for example, provides sub-optimal solutions 

for general non-linear problems with input and state constraints. Findeisen and Allgoewer 

(2006) give a summary of algorithms for the implicit solution of NMPC problems. Dimitris, 

Gianluca, Andrea and Moritz (2018) introduce an alternative fast-method QP-solver. The 

results lead to the conclusion that an upper computation bound of optimal problem can be 

ensured in real-time by an advanced QP-solver, which is very suitable for the NMPC air-path 

control application. 

 

2.3.5 Summary 

This section shows very different approaches to improving engine-air-path control and to 

lowering emissions and fuel consumption of engines. The results of the review lead us to the 

conclusion that. Considering the air-path system characteristics, if a new air-path control 

concept is developed, it should exhibit less time-consuming tuning procedures and deal with 

constraints, high non-linearity and time-delay. Apparently, the reviewed air-path control 

concepts have difficulty meeting all the requirements. Alternatively, as discussed above, the 

MPC can be a very promising control technique for the air-path system due to its ability to 

handle system constraints, time delay processes, MIMO systems and integration of 

disturbance models for disturbance rejection. 

 

2.4 System Identification of Diesel Engine-air-path 

The air-path control of the diesel engine is the basis of every engine-control structure and has 

a direct impact on vehicle performance and emissions. To design the engine-air-path control, 

it is essential to perform a measurement or at least estimate the engine-air-path physical 

qualities. As the direct measurements for each engine subsystem are too expensive, several 

approaches have been proposed to estimate engine-air-path physical qualities based on 

observed input and output data. 

 

Li, Li, Huang, Lai and Zheng (2010) show that modelling the drive train, control units, 

engines, vehicle dynamics and communication networks in automobiles allows engineers to 
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evaluate design alternatives and predict results (such as fuel consumption and driving 

performance) before the vehicles are built. The model-based development combined with a 

consistent test strategy—from model in the loop (MiL) to hardware in the loop (HiL)—allows 

error correction to occur much earlier in the development phase and thereby reduces prototype 

tests. There are two broad ways to model engine-air-path systems that are suitable for control: 

physical modelling (Unver, Koyuncuoglu, & Gokasan, 2016; Yin, Su, Guan, Chu, & Meng, 

2017), and modelling by means of system identification (Sequenz, 2013; Cornetti, 2014). 

Physical modelling based on the law of conservation of energy or the mass-conservation law 

has attractive intuitive component-based features, but it suffers from complexity issues with 

adverse effects in application (Bengtsson, 2007). System identification is useful when the 

only available information from a system is input and output data, and it has proven to be a 

very effective modelling method for control system when it is too difficult to describe a 

system using known physical laws in many real-world situations (Lauer, 2018; Tangirala, 

2014; Wei, 2003). In such cases, the system-identification method can be used to perform 

black-box modelling. The purpose of this section is to provide a survey of state-of-the-art 

system identification techniques in engine-air-path control, giving particular attention to LPV 

system identification.  

 

An important task in system identification is to find the relationship between input and output 

by using any measurement data that exist in a set of variables when at least one is random or 

unknown. The standard treatment of linear- system identification and detailed descriptions are 

found in (Lauer, 2018; Tangirala, 2014), Many system-identification methods are developed 

for linear systems (for example in (Lennart, 1999; Mareels & Polderman, 1996; Gruenbacher 

& Schrems, 2007; Johansson, 1993)). Some studies of automotive engines that are based on 

linear identification models have been developed in recent years (Kamaruddin & Darus, 2012; 

Serrano, 2014; Nickmehr, 2015) etc. However, these methods have serious disadvantages, as 

the precision of the estimates they provide depends very strongly on the engine parameters. 

These, in turn, are usually known only approximately, because important factors like 

operation areas or production tolerances (Wei, 2006), which cannot be known in advance, 

strongly influence the model output. Therefore, it seems appropriate to look for a suitable 

model structure which can be easily identified from data. 

 

In the last decade, the study of LPV systems has received much interest. Several approaches 

have been tested, of which the linear parameter-varying method seems a good alternative in 
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terms of complexity and performance. Corno, Wingerden and Verhaegen (2012) explain that 

LPV stands for “linear parameter-varying”, which means that the model has a linear model 

structure though the coefficients in this structure can vary over time depending on one or 

more external parameters. This provides an opportunity to describe systems with non-linear 

behaviour. The external parameters can be inputs, outputs, system states or any other 

parameters. The only condition on the parameter is the characteristic description of the change 

of system properties. This type of structure is suitable for non-linear system control.  

 

The LPV system control method originates from the gain-scheduling practice where the 

controlled non-linear plants are modelled by linear models in many local operation regions 

and for which each linear time-invariant (LTI) model linear-control strategy is applied (Wei, 

2003). While the plant operates in different operation areas, the controllers are switched from 

one to another or the control output is weighted from all the controller outputs. 

 

Nemani and Ravikanth (1995) address the first report of LPV identification. This paper 

proposes a method for the identification of a full-state measurable method. Chou and 

Verhaegen (1997) have developed an identification method for LPV systems in which the 

outputs are the noisy measurements of the state, and Hubert (1997) proposes an identification 

method to identify an LPV system without the limitation of full-state measurability. In the 

series works by Verdult (Verdult, 2000; Verdult & Verhaegen, 2001; Verdult, 2001), LPV 

identification issue is considered under the subspace identification framework. In this 

approach, the subspace-identification method for the linear time-invariant (LTI) system is 

extended to the LPV system.  

 

As in (Santos, Romano, Azevedo-Perdicoulis, & Ramos, 2017), the LPV model can be 

formulated as a linear regressive form. Some classical identification algorithms can be 

directly applied to LPV systems, such as the iterative regularisation methods described in 

(Engl, Hanke, & Neubauer, 1996; Hanke & Hansen, 1993). Using digital computers, iterative 

methods become powerful ways to find the solution to a non-linear-system identification 

problem. If these methods are observed a bit more carefully, it can be seen that many iterative 

methods exhibit a “self-regularising property”. This means that, with increasing iteration 

index, the solution goes to the non-regularised solution. One advantage of iterative methods is 

that only matrix-matrix or matrix-vector multiplications are needed. These can be 
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implemented very easily and effectively. It can be said that the iteration index has a meaning 

similar to that of the regularisation parameter.  

 

Chen, Jiao, Liu, Yu and Xu (2018) introduce a further development of the control-oriented 

identification of the LPV system using a new model structure. It is mainly based on a 

Kronecker-product technique. The classical least-square parameter-estimation algorithms are 

transformed into linear forms which can be directly applied with a change of regression. 

Wang, Waschl, Alberer and Del Re (2012) implement the LPV method to track MAF, and 

MAP is used as a prediction model for MPC control. The LPV model used for control design 

consists of two MISO sub models. Each sub model consists of four inputs (engine speed, fuel 

injection, VGT and EGR) and one output (either MAF or MAP). The LPV models which use 

VGT and EGR as scheduling variables describe the engine dynamics. However, the prediction 

model structures used in this NMPC are two coupled MISO models. A disadvantage is that 

two MISO system models take twice as much time. The development time can be reduced 

significantly by employing a general MIMO LPV plant model. 

 

2.5 Engine Optimisation Methods 

Modern internal combustion engines have to meet constantly increasing demands on fuel 

consumption, performance and emission behaviour. Therefore, Reif (2014) explains that the 

classic manipulated variables of injection volume and injection timing are joined by further 

manipulated variables, such as EGR, VGT, injection pressure in common rail systems, 

variable valve train (VVT) and injection modulation. These control variables affect engine 

torque, consumption and emissions. This creates a complex, non-linear, multivariable system 

with about five to nine input variables and six to seven output quantities. This variety of 

control options and their interactions make it increasingly difficult for engine designers to 

find an optimal engine setting. 

 

Obviously, the previous working procedure used by experienced test-bench engineers 

(Unland, Stuhler, & Stuber, 1998; Renninger, Daudel, & Hohenberg, 2000; Friedrich, 

Compera, Auer, & Stiesch, 2017) for engine application requires a lot of time and is difficult 

to implement when the number of manipulated variables rises. Such methods are no longer 

suitable for such multidimensional optimisation problems in engine calibration. Model-based 
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optimisation methods are therefore required for further development of electronic engine-

management systems which allow for both the steady and dynamic behaviour of combustion 

engines to be determined as accurately as possible by means of mathematical models and 

computer simulation. Xie, Kistner and Bleile (2018), Wang Y. (2015), Bodenstein, Lohse and 

Zimmermann (2010), Li, Li, Huang, Lai and Zheng (2010) summary the benefits of efficient 

development through model-based methods, as follows:  

 

• before experiments, off-line simulation platforms can help us select the highest 

potential solutions and specify the necessary experimental campaign; 

• during experiments, off-line and on-line simulation platforms can help us to complete 

and reduce the number of experiments; and 

• after experiments, off-line simulation platforms can help us to gather the project 

knowledge and perform after-project tests. 

 

In (Hafner, Schueler, & Isermann, 2000), an example of a system-identification method that 

can detect the stationary influence of engine-control variables on emissions is applied to 

engine application. Based on the black-box mathematical model of HC and NOx, the 

influence of the manipulated variables (injection timing and VTG and EGR) on engine 

emissions is given. Despite slight variations in the validation results, the system-identification 

method has qualitatively established the mathematical relationship of the engine input and 

output. Offline stationary-engine optimisation can be performed on this mathematical model 

to determine the optimum manipulated variables. This model-based method shows very great 

potential in engine optimisation.  

 

Zhou, Fiorentini and Canova (2016) use a model-based optimisation method of individual 

engine-operation points to optimise the engine performance and ensure the stability of the 

compressor during transient. This optimisation is performed on a cost function for the fuel 

consumption and emissions. In this case, this cost function can be minimised, depending on 

the manipulated variables, by EGR, fuel injection, engine speed and VGT, and it can be 

presented as a mathematical model. Using an advanced constrained-quadratic algorithm, the 

model-based optimisation solution can be solved in a short time.  

 

AVL GmbH (2017) presents a way to optimise engine performance by using a global DOE: 

namely, a drive-cycle approach to the optimisation of emissions. This optimisation approach 
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is based on the selection of DOE points that represent the standard drive cycle to be 

optimised. In such operating points, the influence of the control variables—including real 

driving emissions (RDE)—is measured on the test-bench and on vehicle variants and 

legislation cycles. Using the data recording, the main emission operating points and their 

corresponding weights are calculated in CAMEO software and used for the optimisation of 

fuel consumption and emission. The disadvantage of this method is in the limitation of a few 

operating points; thus, optimisation for a wide range of operating points is still hardly feasible 

due to the high non-linearities.  

2.6 Conclusions 

The aim of this study is the development of a NMPC with MIMO structure for a diesel 

engine-air-path system. A systematic literature review has been conducted to appraise the 

research that has already done in this context. The literature review suggests that, if a new 

NMPC concept for engine-air-path control is developed, the following important points 

should be considered: 

 

1. Different air-path control methods in the form of classical control, non-linear control, 

hybrid control and model-predictive control have been reviewed. Considering the air-path 

system characteristics, the advantages and disadvantages of each control method are 

highlighted. In contrast to the reviewed methods, there are several advantages that make 

MPC a powerful alternative to classical engine-air-path control approaches. In the 

engine-air-path system, the control objectives, VGT and EGR, are constrained: Values 

must be within 0% and 100%. The MPC is able to include such constraints on the control 

value, but it also constrains changing rates of the control value and the output values in 

the optimisation task.  

 

System constraints lead to problems with control structures that include an integral part, 

like conventional PI or PID controllers. By reaching physical boundaries, a persistent 

difference between the reference signal and the measured plant output can lead to a 

permanent increase of the integral value. The inclusion of constraints in the controller 

synthesis of an MPC, which automatically leads to an “anti-windup” behaviour, 

constitutes the most significant difference from conventional control methods. The 

optimisation task in MPC can be solved by integrating a MIMO prediction model into the 
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controller. Furthermore, the plant behaviour can be considered over a future horizon by 

the controller. This allows the MPC to reduce deviations from the desired trajectory.  

 

The main difference of an NMPC from the linear MPC is in the inclusion of a non-linear 

prediction model in the MPC algorithm. This provides increased prediction accuracy 

compared to the linear case. As already mentioned, the use of non-linear models also 

complicates the solution of the optimisation problem. In both cases, a QP has to be solved 

in each step of the prediction horizon. In the linear case, these two calculation steps have 

to be performed once for each optimisation procedure.  

 

For non-linear problems, output prediction and the condensing must be performed for 

each step of the prediction horizon again. This additional effort significantly increases the 

required computational power. However, as shown in the above literature, the 

development of fast QP-solver and LPV structure have created the right conditions for 

NMPC application in engine-air-path control. 

 

2. A large challenge to implementing a NMPC is the need for an accurate model. The term 

accurate is hard to quantify: The model must be able to reflect the real dynamics in a 

sufficient way. The LPV identification algorithms delivered in the reviewed papers are 

successfully applied to different system modelling and control issues. The conclusion is 

that LPV identification techniques provide a new way to model dynamical systems. 

Compared to linear models, LPV models offer several advantages which make them good 

alternatives in non-linear system-control application.  

 

However, until now, most LPV models used in MPC are only identified as MISO forms 

with limited ranges of inputs and outputs. A global MIMO engine-air-path model has still 

not been obtained. If a new NMPC control approach can achieve adequate closed-loop 

performance in the whole engine operation area combined with one prediction model, the 

controller-development time can be reduced significantly and no switching strategy 

between different linear controllers would be required. LPV prediction is one of the 

targets in this research project. Further theoretical research and experiments should be 

investigated. Furthermore, it is suggested by the investigation that good LPV system-

identification results can be reached by combining non-linear control methods. This 

makes these methods possible for purposed NMPC application. 
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3. In air-path control, the high non-linearity and constrains increase the complexity of the 

optimal problem (QP problem of cost function) in NMPC. As mentioned in the literature 

review, the online active-set strategy has already greatly improved the ability of MPC to 

run on a fast application (Ferreau, Ortner, Langthaler, Del Re, & Diehl, 2007). This 

strategy is inspired by the expectation that the active set does not change much from one 

QP solution to the next, which is very suitable for air-path control design. A more elegant 

formulation of combined MIMO-LPV structure should be defined in this research project, 

whereas the optimal problem of NMPC is overcome by the application of online active-

set strategy. The feasibility and stability of NMPC must be ensured. The literature 

suggests that a parameter-dependent Lyapunov function can be used to construct a poly-

quadratically stable control law to guarantee the feasibility and stability of the non-linear 

control system. The study of feasibility and stability analysis of NMPC should be 

proposed. 
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Chapter 3. RESEARCH PROPOSITION, METHODOLOGY 

AND DESIGN 

3.1 Introduction 

This chapter presents the research proposition, methodology and design for this study. 

Previous chapters reviewed and highlighted the advantages and disadvantages of a wide 

variety of methods for engine air-path control. Despite considerable work on engine air-path 

control, a controller that completely meets all technical demands does not exist so far as the 

author is aware. In this study, a new model-based method is proposed for optimising the 

emissions of diesel engines through non-linear model-predictive control.  

 

In addition, a control-design method with a low design effort is introduced. Compared with 

other control methods, this new NMPC provides superior performance under varying 

conditions with respect to transient response and robustness to disturbances. The main 

contributions of this work can be summarised as follows: This work provides a new, accurate 

LPV system-identification method for the MIMO system; it contributes a new NMPC diesel-

engine air-path control strategy which combines the NMPC algorithm with the LPV model; 

and it offers a new, time-efficient, model-based emission-optimisation method and a model-

based simulation-and-verification approach applied to the diesel-engine air-path controller 

design.  

  

The most important thing in research methodology and design is that the choice of topic, 

research questions, definitions, hypotheses, statements, methods for data collections and 

analysis (etc.). All need to be correlated to each other (Cray & Malins, 2004). As discussed in 

previous chapters, the topic of this thesis is the research, design and development of a model-

based design approach for optimising the emissions of diesel engines through non-linear, 

model-predictive control. It is shown in Figure 1.3 that three RQs are to be answered in this 

study. It is important to repeatedly refer to the RQs and important definitions and hypotheses 

during the research. The study of research methodology and design conducted within this 

chapter shows that the methodological schools that characterise research in engine-air-path 

control and allied disciplines are reviewed and critiqued to establish the applicability of each. 

This chapter covers research in engine-air-path control research, including thermodynamic 
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theory, control theory, testing methods, system modelling, analysis and simulation methods. 

Furthermore, a variety of methodological viewpoints for collecting, analysing and using 

experimental data in developing a systematic understanding of this specific research project is 

discussed. Finally, a mastery of the project proposal design is demonstrated with respect to 

the practical issues of RQs, data collection methods, data analysis and ethical issues.  

 

The organisation of this chapter is as follows. Section 3.2 introduces the research proposition 

of a new model-based method for optimising emissions of diesel engines through NMPC. 

Section 3.3 describes the research methodology based on the existing engine-air-path control. 

Section 3.4 describes the research design, how the proposed modelling and model-predictive 

control techniques can be used to achieve the controller design requirements in engine-air-

path. Section 3.5 presents an approach to verify and validate the NMPC control. Sections 3.6 

and 3.7 introduce the data-collection and data-analysis methods. In Section 3.8, the ethical 

issue is discussed.  

3.2 Proposition of a New Model-based Method for Optimising 

Emissions of Diesel Engines through NMPC 

The propositions of this research are explained below in more detail. 

3.2.1 A New Model-based Method for Optimising Emissions of Diesel Engines 

 through NMPC 

A new model-based method for optimising emissions of diesel engines through NMPC is 

proposed on this section. In the diesel engine-air-path, the VGT and EGR have a direct 

relation with the performance of the diesel engine. This new designed controller is aimed at 

improving the robustness and performance of the VGT and EGR control with particular 

emphasis on emission reduction. In the context of this project, the robustness and 

performance of the air-path control can have two interpretations. The first involves 

maintaining the closed-loop stability and sensitivity in case of large process dynamics during 

changing the engine operation points. The second involves maintaining the ability to track 

reference signals and to compensate for external disturbances while maintaining engine 

performance (engine power, fuel consumption and emissions). This research shows that the 

new NMPC controller MIMO structures can trade-off the robustness and performance in a 



  70 

more efficient way than the existing ones. Due to its advanced controller structure, the non-

linear control problem, such as coupling effect on VGT and EGR control in engine-air-path, 

can be solved more efficient than standard control function in ECU, and this controller is 

efficient to implement and calibrate, which reduce controller development time and the 

complexity. This is a significant improvement over the existing control methods used in the 

automotive industry. Another key originality of this work is to determine a new LPV-

identification method with a particular emphasis on modelling suitable for NMPC control 

design. Compared with previous identification approaches found in the literature (Wei, 2004; 

Wang & Steiner, 2011; Verdult & Verhaegen, 2001), the accuracy of the resulting LPV model 

and the possibility for MIMO structure are improvements. In addition, the LPV methods also 

calculate Kalman filters for the state estimation.  

 

 

 

Figure 3.1: Relationship of the research originalities 



  71 

Moreover, because of the NOx-PM emission and fuel-consumption trade-off problem, a new, 

model-based, multi-criteria optimisation is made for the optimisation of such “opposite” 

outputs. A Matlab/Simulink engine-air-path model equipped with a dynamical emission 

model is used during the optimisation. It is found that, by using the MAP and MAF as turning 

parameters, an automatic optimisation for engine performance is possible. Combined with the 

dynamical emission output from the model, direct optimisation of the emissions and fuel 

consumption can be achieved. The controller design and verification processes presented in 

this study are demonstrated mainly through a model-based approach. The mean-value engine-

air-path model includes thermodynamic and gas-dynamic characteristics, which are important 

for controller design and optimisation tasks. Compared with alternative modelling approaches 

found in the literature (Li, Li, Huang, Lai, & Zheng, 2010; Unver, Koyuncuoglu, & Gokasan, 

2016; Yin, Su, Guan, Chu, & Meng, 2017), the ability of modelling the dynamic emission is 

an advantage. Figure 3.1 illustrates the hierarchical relationship of the research contributions 

with which the proposition to be proved is concerned.  

 

3.2.2 LPV System Identification  

A new non-linear system identification that uses the LPV method is used as an accurate and 

time-efficient method for generating the NMPC prediction model. In recent years, great 

progress has been made in the field of LPV-system identification (Hirsch, 2011; Wang & 

Steiner, 2011; Kamaruddin & Darus, 2012; Santos, Romano, Azevedo-Perdicoulis, & Ramos, 

2017; Chen, Jiao, Liu, Yu, & Xu, 2018). Apparently, many system-identification methods 

display several shortcomings with respect to non-linear systems. For instance, the 

optimisation in the identification method often requires a very long time to handle a high-

order system, which can lead to instability for an open-loop, stable system, and which 

requires massive amounts of data for training and reinforcement. Analysis requires extensive 

time. Alternatively, to improve system-identification accuracy and efficiency and to use it to 

address the engine-air-path modelling and NMPC control issue, a new LPV-identification 

method suitable for NMPC control is first proposed. A system interpretation based on a 

constant-transfer function is extended to a polynomial function by introducing scheduling 

variables. Compared with the classical system-identification methods, this LPV approach 

provides for more accurate output prediction and computing capacity and is more robust in 

the presence of engine-operation disturbances. The significant advantage approaches and 
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details of the LPV model developed for NMPC engine-air-path control are presented in 

Chapter 5.  

 

3.2.3 NMPC for Air-Path Control  

A new NMPC controller is designed that is aimed at maintaining engine performance while 

reducing NOx and PM emissions. When considering engine-air-path system characteristics, 

NMPC control offers many advantages. Many processes in engine-air-path systems are 

complex, non-linear, multi-variable systems with time-varying and strongly non-linear 

coupling effects and disturbances to the system. The system undergoes a wide range of 

operation ranges. The VGT and EGR exhibit rate- and range-limit constrains. Therefore, it is 

very hard to use the standard ECU-PID-control algorithm and linear-control methods to 

achieve target value tracking, adaptability and control precision. According to the literatures 

review, only few studies have been conducted on NMPC in engine control; those which exist 

are mainly aimed at the SISO engine-control system (Ferreau, Ortner, Langthaler, Del Re, & 

Diehl, 2007; Langthaler, 2007). The main problem is in the time-consuming nature of 

modelling non-linear systems and in difficulties with integrating the non-linear model into the 

NMPC algorithm. In the presence of all these challenges, a new LPV-based NMPC algorithm 

is proposed for implementing the diesel engine-air-path system control. This is of great 

significance. The contribution of NMPC for air-path control can be divided into two main 

segments, as discussed below.  

 

1) The NMPC controller can use data-based models to predict the system output. A new 

MIMO LPV model is first proposed in the design of the NMPC controller to simulate the 

control of the diesel engine-air-path. The focus of this part is primarily on LPV modelling for 

MAF, MAP and control signals. The LPV algorithms are presented and applied to measured 

data to estimate the MAF and MAP of the engine-air-path and control input. The coupling 

effect of VGT and EGR, which is neglected by the SISO model structure, is modelled 

properly for the accurate control of MAF and MAP. It is expected that this proposed LPV 

engine-path model is then integrated into the NMPC controller. In terms of model quality, the 

proposed model structure can be used to significantly improve the accuracy of the prediction 

output and is more applicable to NMPC control. Therefore, LPV modelling for engine-air-

path will be given the special attention in this thesis.  
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2) A new NMPC algorithm which is based on the LPV model will be proposed and 

implemented. The design effort of the controller could be reduced significantly by the MIMO 

structure, and no switching strategy between different linear controllers is required. For 

engine-air-path control, the VGT and EGR are constrained to operate within 0% -100% of 

their ranges. After the formulation of the LPV modelling of the engine-air-path and 

constraints, a dynamical cost function for optimisation is used in the minimisation of fuel 

consumption and emissions. Compared with a linear MPC and a standard automotive ECU, 

the NMPC shows superior performance in terms of transient rise time, settling time and 

percentage overshoot. The calculation of NMPC cost-function optimisation is accelerated by 

adopting a new, specially tailored, online, active-set strategy algorithm for the fast calculation 

of quadratic-optimisation program problems arising in the NMPC. On an engine-air-path 

simulation platform, this new NMPC algorithm is developed and evaluated in terms of 

controller-response time, robustness, different operation areas and external disturbances.  

 

3.2.4 Model-based Emission Optimisation  

A new model-based multi-criteria optimisation is used as an accurate and time-efficient 

method for optimising the controller set points at all engine-operation points. In the diesel-

engine operation areas under different working conditions, proper control parameters are 

required to achieve optimum power, emission, and economy (Guzzella & Onder, 2004; 

Ferreau, 2006). The traditional optimisations via the engine-test-bench require a heavy 

workload, and the calibration accuracy and repeatability are relatively poor. The classical 

gradient-based techniques are usually designed to work with linear functions and may not 

even be used to find the global optimisation minimum of the engine. To this end, a model-

based optimisation method for emission reduction is adopted and developed in this research. 

An engine-emission model is obtained through regression analysis of test-bench measurement 

by system identification. The mathematical model establishes the relationship between the 

parameters of engine, the control variables and the diesel response in the whole operation 

range of the diesel engine. The minimisation of emissions and fuel consumption is formulated 

as a non-linear quadratic-optimisation program, which is solved by using a sequential QP 

algorithm. Compared with conventional optimisation, a model-based, sequential, QP-based 

optimisation is able to search for the optimum more efficiently and thereby make the diesel 

engine achieve the highest efficiency and smallest emission under nominal conditions. The 
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whole optimisation process achieves a better solution in fewer iterations compared with the 

standard optimisation, which greatly reduces the design effort. 

 

3.2.5 Model-based Simulation and Verification  

To conduct the studies for engine-air-path control, a simulation platform and verification 

procedure are generated, with particular emphasis on a method suitable for model-based 

control, by taking into account the pressure and air-mass flow dynamics in and between 

different subsystems of the engine-air-path. Compared with other thermodynamic simulation 

models, the mean value engine model and data-based emission model with real-time 

performances are highlighted and can well meet the requirements of the NMPC controller-

design process.  

 

The main research originality of this section is summarised as follows: 

 

1) Model-based control syntheses requiring dynamic models and turbocharged diesel engine 

with emissions are estimated by system identification and physical modelling. The physical 

model is created by using the mean value method. It aims to describe the major 

thermodynamic and chemical interactions that occur during the operation of a combustion 

engine. The described models are implemented and simulated in Matlab/Simulink. The 

proposed NMPC can be interfaced with comprehensive models built in engine-simulation 

platforms to simulate control performance for a real engine under actual operation conditions. 

Chapter 4 provides the details of the simulation platform.  

 

2) To control the development quality, a verification process is used to ensure that the NMPC 

controller performance is achieved as expected. The verification of the new NMPC controller 

performance is demonstrated experimentally on the simulation platform. Using this 

simulation platform, different air-path control methods are implemented and then evaluated 

and compared in terms of controller performance for variables such as response time, 

robustness against uncertainty, response to external disturbances and load variations. 

Experimental evaluation and verification are approached by way of qualitative comparison 

with respect to predictive accuracy and statistical error analysis to serve as a basis for high-
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precision NMPC engine-air-path control. Please refer to Section 3.5 for the details of the 

verification process. 

 

3.3 Methodology  

A research methodology is the general approach a researcher takes in carrying out the 

research project. To some extent, this approach dictates the particular tools the researcher 

selects (Bryman & Bell, 2011). The methodology used for this study is a combination of 

theoretical derivation of the NMPC control algorithm and effective validation using computer 

software. Modern diesel engines contain many complex mechatronic systems, each of which 

may incorporate a large number of subsystems. As complexity increases, development cycles 

are under pressure and have to be short so that controller designers can deliver the latest in 

safety, fuel efficiency and convenience to consumers in a highly competitive industry 

(Hellestrand, 2005). At the same time, quality and reliability remain of paramount concern. 

As reviewed in Section 4.2, the benefits of using model-based techniques for the development 

of complex mechatronic systems controllers have been clearly shown (Li, Li, Huang, Lai, & 

Zheng, 2010; Unver, Koyuncuoglu, & Gokasan, 2016; Yin, Su, Guan, Chu, & Meng, 2017). 

The model-based methodology speeds up development and allows the project to handle more 

complex systems; therefore, model-based methodology is applied in this study, as it provides 

an efficient and cost-effective way to develop engine-air-path control algorithms. The 

complexity and expense of automotive controller design has motived the development of 

simulation tools and techniques which facilitate the conversion of high-level languages such 

as Matlab/Simulink into model-based design processes. In this study, the NMPC controller 

design is developed in the Matlab/Simulink environment. And after the designed NMPC is 

developed, controller performance is evaluated on the air-path simulation platform by using 

Matlab/Simulink simulation. 

 

The waterfall methodology (V-model) is widely accepted as a comprehensive design 

methodology for large-scale projects (Ammann, Fekete, Guzzella, & Glattfelder, 2003; 

Ferrari, Fantechi, Gnesi, & Magnani, 2013; Aarenstrup, 2015). As Figure 3.2 shows, the left 

side of the V-model includes the design activities while the right side includes the verification 

activities. However, as explained in (Aarenstrup, 2015), the main disadvantage of the V-

model is that the entire system design plan is well defined at the beginning. This makes it hard 
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to work with complex systems, such as engine-air-path control systems, in which 

development steps and changing requirements might not be known until later in the process. 

But in a model-based approach, simulating a model instead of an actual physical system 

makes the V-model easier to manage by showing the interactions between components in 

simulation.  

 

 

 

Figure 3.2: V- Model (Aarenstrup, 2015) 

 

Engine-air-path control function development is one of the most important parts in 

automotive software design for control unit. As this engine-air-path study grows in size and 

complexity, its correct behaviour becomes increasingly hard to ensure. For this reason, this 

research project requires a new development workflow that can handle more complex 

software development projects. Considering all the above-mentioned advantages of V-model 

processes and model-based designs, an enhanced V-model process based on a model-based 

design is adopted for this particular project. Based on a diesel-engine air-path simulation 

platform, this research project implements a front-loaded development process with shortened 

development cycles and minimised rework, thereby making it possible to evaluate control 

designs much earlier in the design process and to proceed with great confidence to model-in-

the-loop (MIL) testing. Based on this enhanced V-model process, there are three steps to 



  77 

follow in the design process: modelling the engine-air-path system, synthesising the NMPC 

engine-air-path control concept and developing and testing the controller on the plant model. 

To achieve the goals of this study, a diesel-engine air-path simulation platform is used to 

create the primary data for system identification, to design and develop the control algorithms 

and to evaluate the performance of the controller. The output-prediction model, which is 

required by the NMPC, is designed by adopting an LPV approach.  

 

3.4 Research Design 

 

 

Figure 3.3: An overview of the proposed control scheme 

 

In this thesis, the control structure, which is illustrated in Figure 3.3, consists of five parts: 

first, steady-state engine maps defining emission optimised MAF and MAP reference values 

based on corresponding engine operation points, engine speed and engine fuel injection; 
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second, a LPV model-based NMPC controller to improve the tracking performance of the 

MAF and MAP during the engine transients operation; third, a non-linear Kalman filter to 

estimate the controller states of MAF, MAP and exhaust pressure and to reduce the effects of 

disturbances; fourth, a mean-value engine-air-path model to simulate the engine behaviour 

and to validate the NMPC controller; and fifth, a data-based torque-and-emission model to 

determine the actual performance and emissions of the engine. This control concept does not 

include placing the emissions feedback directly into the control loop. The direct control of 

emissions faces difficulties in the high nonlinearity of the process. Apart from very few 

exceptions, concepts that include reference to the feedback of the emissions have not been 

published. The reasons for this include both the unavailability of fast emission sensors in 

production-type vehicle systems and the demanding mapping of engine measurements to the 

emissions. Therefore, the control objectives are replaced by intermediate variables (MAF and 

MAP) which are able to indirectly describe the emissions of the engine (Langthaler, 2007). 

Steady-state engine maps—which are maps with input settings, engine speed and fuel 

injection, for all engine operations points—are determined by optimal trade-off between NOx, 

PM and fuel efficiency. Their designs are discussed in Chapter 6. It is shown that the model-

based optimisation procedure generated in Chapter 6 offers a time-efficient possibility.  

 

The NMPC controller is the main part of the new controller design. Its purpose is to control 

the VGT and EGR to make the engine output match as closely as possible to the optimised 

MAF and MAP reference values, thereby to ensure tight compliance with emission 

legislation. By applying the NMPC controller, the effects of uncertainties and disturbances are 

compensated for by using the Kalman filter. When the NMPC controller keeps the outputs 

close to their respective reference values, the effects of changing conditions on emissions and 

engine performance are countertraded. During the transient operation, to ensure a fast 

response and reduce the difference between the actual output and the desired value, an LPV-

based NMPC controller implemented. This kind of controller makes additional estimates for 

the future based on the LPV model. This speeds up the response time of VGT and EGR. The 

design and validation of the NMPC controller in engine-air-path is further discussed in 

chapters 5 and 6. By combining the optimal calibrated engine maps with NMPC controller, it 

is possible to achieve desirable engine emissions and performance and improve transient 

engine behaviour. Apart from the performance of the controller, it is obvious that it is 

necessary to develop a conceptual framework that clusters the process of NMPC controller 

design for engine-air-path system in logical steps.  
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Figure 3.4: Air-path controller design framework 

 

Figure 3.4 offers a high-level description of the NMPC engine-air-path controller 

development process, which provides the connections and contexts with the theory and 
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practice. The steps at the top portion of the diagram indicate some theory studies that are 

required for improvement of the engine-air-path control. The “practice blocks” illustrated in 

the middle of the diagram indicate, are considered the most important in the whole 

development process using theory, simulation tools and processes. The purposed NMPC 

control algorithms are developed as controller models in Matlab/Simulink platform. The 

controller could be interfaced with an engine-air-path model to evaluate the control 

performance for real engine-air-path conditions by using computer simulation. The proposed 

engine-air-path controller design method is an advanced control, calibration, and optimisation 

process that provides comprehensive engine control, aids engine control in all essential tasks 

during function design and control unit calibration and evaluates the control results. 

 

3.5 Approach to Verification and Validation  

 

 

 

Figure 3.5: Illustration of the engine-air-path control development process 

 

Verification and validation are approached via qualitative analysis of model accuracy, 

predictive accuracy and control performance and of capacity to serve as a basis for high-

precision NMPC air-path control. Figure 3.5 illustrates the engine-air-path-control 

development process with a design-review iteration path. In the verification and design-

review phase, the developing air-path control may be progressively tested on the engine-air-

path model by simulation. The iteration loop and review-designs step are performed 
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interactively with the verification and design-control steps. This indicates any further work 

required for fixing problems or other required improvements in the development. In the 

simulated engine environment, the engine speed and injection quantity are varied and the two 

reference values for MAF and MAP are changed around the linearisation point. Based on the 

simulation, the NMPC will be compared with a conventional air-path controller to validate the 

significance and advantages of NMPC approaches. Considering the non-linear characteristics 

of the engine-air-path system, the following comparison metrics are used to evaluate the 

performances of the purposed controller: transient response (rise and settling time, percentage 

overshoot), steady-state response and robustness to disturbances in changing operation 

conditions. The simulation results will be quantitatively analysed and evaluated using Matlab 

with descriptive statistics including correlation, covariance, Fourier analysis and histogram to 

determine how well the designed control function interacts to deliver the desired performance.  

3.6 Data Collection Methods 

The method of data collection depends on the research topic. There are qualitative methods, 

quantitative methods and mixed methods. Researchers typically select a quantitative approach 

to respond to research questions which require numerical data, a qualitative approach for 

research questions requiring textural data, and a mixed-methods approach for research 

questions requiring both numerical and textural data. The data used for this study are derived 

from a combination of qualitative and quantitative methods, which are presented in the form 

of secondary and primary data. The collection of secondary data is mainly undertaken by a 

systematic literature review with a focus on engine control to examine its utility and to 

analyse and evaluate the various approaches undertaken by researchers in this field. The 

primary data is mainly generated, presented and analysed in sections on experiment, 

modelling, simulation and validation. The careful attention must be paid to ensure the 

effective data analysis, to make sure that the reference to the research question is clear and to 

guarantee that the desired results are achieved.  

 

3.6.1 Methods for Collecting the Secondary Data 

In this project, the secondary data is gathered mainly through literature review. As has been 

shown in Chapter 2, a wide range literature on air-path control is reviewed to examine its 

utility and to illustrate the various approaches undertaken by researchers in this field. The data 
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collection is focused on automatic-control engineering reported by several leading journals, 

organisations and conferences: Automatic, International Federation of Automatic Control 

(IFAC), Institute of Electrical and Electronics Engineers (IEEE), International Journal of 

Vehicle Mechanics and Mobility, Conference on Decision and Control, International Journal 

of Oil and Gas Science and Technology and Society of Automotive Engineers (SAE). The 

time frame for the articles covered in this report is from 1978 to 2018. Initially, articles are 

selected based on a study of the Ankle Brachial Index (ABI) using keywords such as model-

predictive control, diesel engine-air-path, mean-value engine modelling, VGT, EGR, and 

LPV. On the topic of diesel engine-air-path control research, 120 articles are identified. The 

120 articles have been reviewed and categorised according to research methodology (shown 

in Table 3-1) and scanned to see if they consider relevant engine-air-path control studies.  

 

                          Table 3-1: Research methodologies (Gregg & Kulkarni, 2001 ) 

 

 

A software-engineering research-methodology (SERM) framework provides a well-defined 

perspective with which to understand design research in automotive control systems (Purao, 

2002). It ensures that the intended behaviour of the control system is explicated in accepted 

forms. Therefore, this study follows the SERM framework. The SERM framework defines 

three phases for a software-engineering research methodology: the conceptual phase, the 

formal phase and the developmental phase (Gregg & Kulkarni, 2001 ). In the conceptual 

phase, the requirements of the study are defined. In the formal phase of the SERM 

framework, a mathematical or logic-based explanation is developed based on the 

requirements specified in the conceptual phase to describe and verify the software system. In 

the developmental phase, a prototype is developed to demonstrate the validity of the solution. 

As in SERM—based on the rating system by (Gregg & Kulkarni, 2001 ), as shown in Table 

3-2, which involves assessing to what extent the study is conceptual, formal and 

developmental—every paper is rated high, medium, low or none on each of the three rating 

dimensions.  

Methodologies 

1 Qualitative 

2 Experimental 

3 Survey

4 Simulation/modeling 

5 Concept/discussion

6 Secondary data
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Table 3-2: Rating categories in three research dimensions: 

conceptual, formal and developmental (Gregg & Kulkarni, 2001 ) 

 

 

Table 3-3 shows the rating results for 120 research papers according to Gregg’s rating system 

per Table 3-2. Only 30 of the 120 articles received a high rating on all three dimensions. 

These 30 articles constitute the basis of this literature review. 

 

Table 3-3: Rating results 

 

 

3.6.2 Methods for Collecting the Primary Data 

In this study, the primary data for this NMPC engine-air-path control study can be divided 

into experimental and simulation categories. In the model-based design method, the accuracy 

of the created model depends largely on the quality of the data collected from the system. The 

collected data should capture most characteristics of the system and exhibit high accuracy, 

low disturbance and appropriate resolution to capture the process dynamics correctly. Of 

particular interest, the data is collected from the test-bench under typical engine-operation 

conditions.  

Rating Conceptual Formal Developmental 

High

Major extensions or 

generalisation of an 

existing concept or a 

totally new concept 

Defined in math and logic 

terms; formal definition or 

proofs; mathematical 

decription.

Prototype or model with 

validation and verification

Medium 

In cremental extension 

and/or generalisation of 

an existing concept 

Definitional without the 

math and/or logic proofs; 

establishes correctness 

criteria.

Prototype or modell with 

limited functionality

Low
Existing concept with 

limited extensions 

Descriptive details and 

conjectures

Discussion of program 

requirements

None No new concept No formal definitions 
No implementation 

described

Rating Count

High rating on conceptual, formal and developmental 30

Others with medium, low and none rating 90
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Figure 3.6: A typical engine test-bench experiment setup (FEV, 2017) 

 

Figure 3.7: Data collection system schematic for engine dynamometer testing (ETAS, 

2017) 
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In this regard, multiple test campaigns were conducted on a modern 1500ccm diesel-engine 

test-bench. This test-bench is comprised of the engine, an EGR valve, and a turbocharger. The 

engine was mounted on test-bench dynamometer equipment. This dynamometer controls the 

engine speed and provides measurements of engine torque and output power. The flow 

characteristics of both of these systems are presented in Chapter 2. For all measurements, the 

data which should be recorded and stored are presented in Section 4.3 (Table 4-3), and a 

legend for the measurement equipment and sensor positions on the engine is given in Table 4-

2. The general engine test-bench setup and the system connection for data collection used in 

this study are shown in figures 3.6 and 3.7. The test-bench experiment setup is discussed in 

more detail in Section 4.3. 

 

On the test-bench, the measurement system, produced by ETAS, is used to record engine test 

data and to monitor relevant engine parameters while the engine is running. The operator 

laptop is equipped with a data-processing card that allows for communication with the engine 

ECU. Communication is conducted via the CAN calibration protocol network. INCA 

provides a software interface for the engine operation. This allows the engine operator to 

adjust parameters such as throttle position and fuel-injection timing. Additional experimental 

sensors can be read from the laptop with custom INCA-MCE modules. The experimental data 

is generated on the test-bench under given conditions by using experiments. To this end, 

engine testing is kept to a minimum and complex interactions are visually realised to better 

understand the engine system. The collected data is used to analyse the engine performance, 

to conduct model validation and to generate the simulation platform. On the simulation 

platform, various simulations in Matlab/Simulink have been conducted. In the simulation 

experiments, we are interested in the steady-state and dynamical behaviour of the engine 

system. In the steady-state experiments, the controller performance under different load 

disturbances is an important criterion. In this case, the default input profile is defined for a 

particular time period. The load change request ranges from 900 to 3200 rpm, and fuel 

injection ranges from 13 to 27 mg/cyc under normal operation conditions. The time between 

the set-point changes is set to 15s to ensure that the air-path system studies the steady-state. In 

recent decades, dynamic driving cycles have evolved into a standard tool for various vehicle-

testing purposes. The most prominent involves fuel consumption and emissions measurement, 

in which dynamic driving cycles like the FTP-75, which is developed by California’s Air 

Resources Board, have found wide usage (California Environmental Protection Agency, 

2015). The FTP-75 driving cycle is one of the most commonly used dynamic driving cycles 
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for fuel consumption and emissions tests. For this reason, in dynamical-simulation 

experiments, the FTP-75 driving cycle is used to validate controller performance. More 

details about the FTP-75 driving cycle can be found in Section 4.3.2.2. The transient 

behaviour is recorded during the simulation in Matlab/Simlink and compared with different 

configurations of air-path controllers. To show the significance and advantage of NMPC 

approaches, details of the developed NMPC engine-air-path controllers are presented within 

the simulation platforms in Chapter 5. 

3.7 Methods for Data Analysis 

 

Figure 3.8: Steps of data analysis (MathWorks, 2018) 

 

The data analysis in this study comprises three steps, as displayed in Figure 3.8. The first step 

is to access the data and import it into the analysis platform. This data might be stored in a 

specific format, such as in Excel, text or CSV files. It may have to be retrieved from a 

database or be directly streamed from instruments. Once the data is imported into the analysis 

platform, extensive statistical analysis, algorithm development work and visualisation are 

performed. Finally, the results and analysis are shared in a report and are available for further 

development. In this study, statistical and curve-fitting functions from MATLAB and 

Simulink are used for data analysis. 

With the support of functions of mathematical analysis in Matlab/Simulink, the graphical and 

mathematical representation of data collected from qualitative and quantitative approaches 
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and the characteristic value of the design performance is given. The following three 

mathematical methods are used to analyse the data in this study. 

Scatter Diagrams  

 

Figure 3.9: Scatter diagram  

 

The scatter diagram (Figure 3.9) is used to deduce regularities and relations from the basic 

data to prove unclarities about potential causes of a problem by experiments. The scatter 

diagram is very helpful if both the influence quantities and the describable quantities of the 

problem are measurable. It is usually an X-Y diagram with the influence quantity on the 

abscise and the quantity of the problem on the ordinate.  

Root mean-square error (RMSE) is regularly employed in model-validation studies. It is 

suggested in (Willmott & Matsuura, 2005) that RMSE is a good indicator of average model 

performance. The RMSE describes the variance to be expected (standard deviation) from the 

model, and it measures the difference between the estimates �̂�(𝑖) and the realised actual 

observations 𝑦(𝑖). The RMSE is defined by the following equation (Chai & Draxler, 2014):   

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦(𝑖) − �̂�(𝑖)𝑛
𝑖=1 )2  ,                                                   (3-1) 
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where 𝑦 denotes the measurement, �̂� is the model output and n is the number of data samples.  

The determination of coefficient RQ is defined by the following equation:  

𝑅𝑄 =
∑ (�̂�(𝑖)−�̂�(𝑖)̅̅ ̅̅ ̅̅𝑛
𝑖=1 )2

∑ (𝑦(𝑖)−�̅�(𝑖)𝑛
𝑖=1 )2

   ,                                                         (3-2) 

 

where �̅� is the mean value and n is the number of data samples. RQ is a relative measure for 

evaluating the model error; it indicates which portion of the total variance of the measuring 

data is described by the model. Chai and Draxler (2014) note that the RQ measure results in 

the following evaluations: If 0 < RQ < 0.5, the model is not suitable for reliable predictions; if 

0.6 < RQ < 0.8, the model is suitable for qualitative predictions; if 0.9 < RQ < 1, the model is 

very good and is therefore suitable for quantitative predictions. 

Control Chart (Chai & Draxler, 2014) 

The control chart is used to observe processes and to recognise problems of a process 

punctual. Spot-checks are made at a per-defined interval, and statistical parameters are 

registered in the control chart (Figure 3.10). 

 

Figure 3.10: Control chart 

 

The standard deviation is explained in the following equation: 

𝑠 =  √
1

𝑛
∑ (𝑥(𝑖)−�̅�𝑛
𝑖=1 )2

𝑛−1
 ，                                                    (3-3) 
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where x denotes the measurement and �̅� is the mean value of the measurement. Furthermore, 

the upper control limit and lower control limit are defined as follows: 

  𝑋𝑢𝑝𝑝𝑒𝑟 = �̅� + 3𝑠 ,                                                           (3-4) 

𝑋𝐿𝑜𝑤𝑒𝑟 = �̅� − 3𝑠  .                                                          (3-5) 

 

Variance Accounted For (VAF) Value (Chai & Draxler, 2014) 

The variance-accounted-for (VAF) value has been widely used as a validation method for 

system identification. As mentioned in (Wei, 2006; Wang, Waschl, Alberer, & Del Re, 2012; 

Wang, Zhang, & Bechkoum, 2019), the VAF is useful to apply a benchmark criterion for the 

comparison of the simulation model output and the measurement from test-bench. In a 

typically quantitative data analysis, the qualities of the output signals generated by the model 

are measured by using the VAF, which is calculated using Equation (3-6): 

 

𝑉𝐴𝐹 = 𝑚𝑎𝑥 {1 −
𝑣𝑎𝑟(𝑦𝑘−𝑦�̂�)

𝑣𝑎𝑟(𝑦𝑘)
} × 100% ,                                        (3-6) 

where 𝑦𝑘 denotes the accompanying output of the validation data set, and 𝑦�̂� is the estimated 

output of the estimated model for the validation data. The 𝑣𝑎𝑟(. ) denotes the variance of a 

quasi-stationary signal. The result provides a percentage between 0% and 100%. The closer 

the value is to 100%, the better the model coincides with the measurements. Chai and Draxler 

(2014) claim that if 0 < VAF < 40%, the model is not suitable for reliable predictions; if 40% 

< VAF < 70%, the model is suitable for qualitative predictions; if 70% < VAF < 100%, the 

model is very good and is therefore suitable for quantitative predictions. 

3.8 Ethical Issue 

Research ethics educates and monitors scientists’ research to ensure that high ethical 

standards are maintained. In this section, the specific ethical issues of this study are identified. 

According to (Minnesota, 2003), a researcher should be able to view himself or herself as a 

member of a university community and promote critical thinking and the prerequisites for 

research. I conduct this research in the context of diesel engine-air-path control under the 

guidance provided by the Handbook of Principles and Procedures from the University of 

Gloucestershire (Research Committe, 2008). There are legal requirements for confidentiality 
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(data protection acts, freedom of information, human rights). Under the requirements of the 

Data-Protection Act (Research Committe, 2008), I have signed a confidentiality agreement. I 

shall neither disclose to any third party nor use for other purposes any information that the 

research project has designated to be "confidential." This applies to the confidential 

information of any other person, company or community. Confidential information includes 

personal researcher information, engine- and part-supplier information, company financial 

information and strategies, marketing information, and research and development activities. 

All confidential information shall be disposed of in a secure manner by using shredders at a 

secure document destruction facility or other means to ensure that the study’s confidential 

information cannot be discovered. Furthermore, the specific guidance in (Research Committe, 

2008) concerning how to maintain the anonymity of qualitative and quantitative data will be 

followed. For confidential reasons, all the commercially sensitive and identifiable information 

from engine and part suppliers will be kept at a reasonable level of anonymisation. I will 

always check to see if there is another way of gathering the data that takes particular care in 

research with fabrication, falsification and plagiarism.  
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Chapter 4. SIMULATION MODEL FOR ENGINE-AIR-PATH  

4.1 Introduction 

Technological developments in the automotive industry are increasingly driven by a decrease 

in fuel consumption and a drastic reduction in emissions. This context has led to the 

emergence of complex technologies while making development cycles shorter and shorter. 

For example, the engines are being built from increasingly advanced technologies, and 

mechanical, electronic, and control systems are growing in number and becoming more 

complex. The model-based approach provides an accurate representation of complex systems 

in the virtual world throughout the whole product-development process – starting from 

development, pre-design and testing. It also facilitates the structured data management of 

simulation results and the use of measurement as a basis for the verification and validation of 

controller design of mechatronic systems. As discussed in Section 3.3, model-based design is 

a prominent trend for improving product development efficiency, see (Aarenstrup, 2015; 

Bodenstein, Lohse, & Zimmermann, 2010; Ferrari, Fantechi, Gnesi, & Magnani, 2013). 

Therefore, to analyse the engine-air-path system and evaluate the benefits of the new engine-

air-path control method with respect to emissions and fuel consumption, a digital model of the 

diesel engine-air-path is developed in a Matlab/Simulink simulation platform. The different 

components of the engine-air-path—manifolds, turbocharger, and EGR—are modelled in the 

Matlab/Simulink with the help of one-dimensional gas dynamics to represent the flow and 

heat transfer of the engine. The emissions and torque are modelled thanks to an existing, non-

linear regression approach. The data used in the simulation platform is based on geometrical 

parameters of engine sub-systems, measurement, and manufacture specifications. This 

simulation model would allow us to virtually study the behaviour of the engine-air-path 

system and would support the development of engine-control algorithms and the model-based 

optimisation task. 

 

To present this approach, this chapter is organised as follows: A description of the reason for 

a model-based test for engine-air-path control is given in Section 4.2. The experimental set-up 

and design are described in Section 4.3. Next, in Section 4.4, the physical dynamic of each 

part of the engine-air-path is studied and modelled. Finally, in Section 4.5, the results of the 

simulation are discussed, and a validation phase is performed to compare the models with 

measurements.  
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4.2 Model-based Testing: Why, What, How  

Two different testing methods (physical-experiment and model-based) can be used for 

engine-air-path control. Kiencke and Nielsen (2005) introduce classical development steps of 

engine design, starting with basic engine design, through the measurement and control 

optimisation, and on to the emission tests at the engine test-bench. However, because of the 

high number of interacting control functions from different vehicle domains, the testing of 

engine control systems at the engine test-bench has become a challenge. Functional engine 

testing is seen as a part of the optimisation, validation and verification phases at the end of the 

V-development process, and it is mainly facilitated by use of measuring and testing tools. 

Errors in software functions found during the engine testing phase have caused major time 

delays. This pushes up testing effort and expenses for equipment in terms of test engines.  

 

For these reasons, the air-path control testing work is shifted towards the earlier stages of the 

development in this study. The requirements are tested via models in virtual environments, 

initial control function testing begins during function design, and pre-calibration is done at the 

same time as the integration of the optimisation function of emission and fuel consumption. 

The methods such as design of experiments (DOE), data-based modelling, and automated 

calibration are used to support the controller design during development process.  

 

Compared with the real test-bench, the engine simulator as a virtual test-bench has several 

advantages: 1) It offers efficient support for the EGR and VGT system behaviour 

understanding via computer simulation; 2) it reduces controller development and calibration 

development time and risk, as the testing on the virtual test-bench can be done long before 

real hardware is available; 3) it is possible to perform wide range and large number of tests, 

including some test that cannot be run at the real test-bench without cost-intensive field tests. 

 

However, even with the potential benefits of using model-based testing, we should often 

consider the risks of the accuracy of the models. It should always be remembered that the 

simulation models are here to represent some reality, and these models can be used in the 

model-based testing only if they show compliance with the represented reality. Therefore, in 

this study, the virtual test-bench model needs to be verified and validated for each context. 

For this purpose, the model has to be critically evaluated by simulation. The accuracy of this 

model needs to be assessed in comparison to the experimental data registered, both in the 
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stationary test and in the dynamic test. Please refer to Section 4.5 for the details of the 

validation of the engine-air-path model. 

 

4.3 Experiments  

The information provided by engine manufacturers is usually given in the form of steady-state 

maps and curves. This information typically lacks some of the required details to compute 

behaviour in engine operation conditions which are far from steady-state. Therefore, different 

measurements are needed during the experiments if detailed information is acquired regarding 

the different engine subsystems that confirm a high-quality and comprehensive engine model. 

The experiments reported in this work focus on the thermodynamic characterisation of 

engines; they involve measuring the temperature and pressure of the different parts of the 

engine and engine performance and emissions under different operations.  

 

This section provides a review of the engine test-bench facility, including a review of engine 

configuration, sensor positions and experimental plan.  

 

4.3.1 Engine Test-bench Setup 

The test engine is a modern, four-stroke, three-cylinder, 1.5 litre diesel engine equipped with 

a common-rail injection system, EGR and VGT. Detailed technical specifications for this 

engine are listed in Table 4-1.  

 

Table 4-1: Specification of the engine 

Name Data 

Fuel Type Diesel 

Displacement 1500 ccm 

Number of Cylinder 3 

Maximum Torque 295 Nm  

Maximum Power 80 kW  

 

As shown in Figure 3.6, the engine is mounted on test-bench dynamometer equipment. This 

dynamometer controls the engine speed and provides measurements of engine torque and 

output power.                           
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Figure 4.1: Standard sensor location (AVL List GmbH, 2014) 
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Figure 4.1 shows a general schematic representation of the engine test-bench which focuses 

on the sensor positions. In this test-bench, temperatures and pressure sensors are installed on 

the inlet and the outlet pipes of the engine according to (Kiencke & Nielsen, 2005). An optical 

speed sensor is located on the turbocharger housing to measure the turbo speed. Inlet mass-

flow rate is measured by a mass air-flow sensor upstream of the compressor.  

 

Two five-gas analyser systems determine the exhaust gas composition. Both are Horiba 

systems. The first is a MEXA-9100-analyser system which uses un-heated sample lines; the 

second is a 9130 system with a heated sample line. Both of them are used to measure HC, 

THC, NOx concentrations to within +- 1% Full Scale (FS) accuracy. FC accuracy is 

represented with respect to the full-scale variation of the instrument. Thus, +- 1% FS means 

that the value of any reading of this measurement may be off by 1% in either direction. The 

second system is used in general four-stroke engine development where HC concentrations 

are more than 15000 ppm. The 9100 system is used for engine emissions development, with 

un-heated lines going from each test cell to the analyser and a water trap prior to the analyser 

bench. The emissions method used for both analysers involves the use of flame ionisation 

detectors (FID) for THC, non-dispersive infra-red (NDIR) for CO and CO2, and 

chemiluminescence for NOx. For transient NOx investigation, a fast-response gas analyser 

(CLD500 from CAMBUSTION) is applied (CAMBUSTION, 2018) to measure the transient 

NOx concentrations. This equipment has a specified accuracy of +-1% FS. When rapid 

transients occur, the fast NOx analyser can capture the fast-dynamic nature of the engine’s 

emissions.  

 

In addition, two measurement systems are used to measure the concentration of particle 

matter from the engine. Both are produced from AVL. The first is an AVL smoke meter 

sensor for steady-state operation. It measures the reflection of visible light from a soot loaded 

filter surface. Its measurement accuracy is +-1% FS. The exhaust gas will be directed through 

a measuring chamber and draw is through a clean filter paper. The filtered “soot” caused 

blackening of the filter paper which is detected by an optical measuring head (see Figure 4.2 

a).  

 

A good correlation is achievable between the blackening grade and the concentration of 

particle matter is achievable if particle losses are taken into account (AVL List GmbH, 2014). 

The second system is an AVL opacimeter senor is used to determine the continuous smoke 
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(particle matter) concentration in the raw exhaust gas from the diesel combustion engines. 

This sensor operates based on the optical measurement principle (AVL List GmbH, 2008). 

The accuracy and reproducibility of this equipment are based on its initial system calibration. 

In the exhaust pipe, the loss of light intensity between a light source and a reference light is 

measured (see Figure 4.2 b), and the opacity of the exhaust gas is calculated from the 

difference of the light intensity based on the Beer-Lambert law (Miller, Vandome, & 

McBrewster, 2009).  

 

 

 

 

 

Figure 4.2: PM measurement principle a) AVL smoke meter (AVL List GmbH, 2014); 

 b) AVL opacimeter (AVL List GmbH, 2008) 



  97 

Table 4-2: Legend of sensor positions  

Part Intake Air Treatment Part Engine Intake Air 

1 Heat Exchanger Intake Air 9 Air Filter 

2 Air Filter 10 Throttle upstream Compressor 

3 Volume Flow Measurement Device 11 Additional Compressor 

4 Vessel 12 Additional Intercooler 

5 Mass Flow Measurement Device 13 Main Compressor 

6 Fan 14 Main Intercooler 

7 Air Funnel 15 Thottle downstream Compressor 

8 Intake Air Pressure Regulation Flap 16 Intake Manifold 

    

Part Exhaust  Part Fuel Supply 

28 Main Turbine 52 Bypass 

29 Additional Turbine 53 Fuel Supply Pump 

30 Additional Turbine 54 Fuel Filter 

31 First-Aftertreatment System (e.g. Pre-

Catalyst) 

55 Injection Pump or High Pressure Fuel 

Supply Pump  

32 Second-Aftertreatment System (e.g. Main 

Catalyst)   

33 Third-Aftertreatment System (e.g. DPF) Part Exhaust Gas Recirculation 

34 Muffler 70 EGR-Valve 

35 Exhaust Backpressure Regulation Flap 71 EGR-Cooler 

49 Test-bench Exhaust System   

 

Table 4-3: Channel of measurement   

Name  Unit Name  Unit 

engine speed [rpm] EGR position  [%] 

engine torque [Nm] NOx emission  [ppm] 

pedal  [%] 
Opacity (OPAC, particle matter) 

emission  
[%] 

throttle  [%] P_11 (pressure after air cleaner)  [hPa] 

mass flow air  [kg/h] P_21 (pressure after compressor)  [hPa] 

mass flow fuel  [kg/h] P_2_1 (pressure after inter cooler)  [hPa] 

intake pressure  [hPa] P_IM (pressure before cylinder)  [hPa] 

intake temperature  [°C] P_31 (pressure after cylinder)  [hPa] 

exhaust pressure  [hPa] P_41 (pressure after turbine) [hPa] 

lambda exhaust   [-] P_51 (pressure after catalyst)  [hPa] 

coolant temperature  [°C] T_11 (temperature after air cleaner)  [°C] 

oil temperature  [°C] T_21 (temperature after compressor)  [°C] 

ambient pressure  [hPa] T_2_1 (temperature after inter cooler)  [°C] 

ambient temperature  [°C] T_IM (temperature cylinder)  [°C] 

Particle matter emission  [g/kwh]  T_31 (temperature cylinder)  [°C] 

turbo charger speed  [rpm] T_41 (temperature after turbine)  [°C] 

VGT position  [%] T_51 (temperature after catalyst)  [°C] 
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A legend for the sensor positions on the engine is listed in Table 4-2. As described in Section 

3.6.2, for modern controlled test-benches, a fully automated test run is available which 

generates all necessary data in a fully automated way.  

 

An automatic ETAS data acquisition and processing system is established in the engine test-

bench to measure engine parameters. The engine operation conditions (speeds, loads and EGR 

and VGT openings) are controlled by test-bench operation software, which is connected to the 

engine ECU. For all measurements, the data in Table 4-3 should be recorded and stored. 

 

4.3.2 Measurement Plan 

4.3.2.1 Stationary Cycle  

                

Figure 4.3: European stationary cycle (ESC) 

 

One of the focuses of this study is the optimisation of diesel-engine emissions performance. 

According to the (Martyr & Plint, 2011), the European stationary cycle (ESC) is introduced as 

one of the standard methods for emission measurement from diesel engines. In this test, the 

engine is tested on an engine dynamometer over a sequence of 13 steady-state modes (Table 

4-4, Figure 4.3). The details of the test-bench setup are described in Section 4.3.1. During a 

prescribed cycle of warmed-up engine-operating conditions, the engine must be operated for 

the prescribed time in each mode, completing engine-speed and load changes in the first 20 
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seconds. The main variables of the test procedure are engine speed and engine load. The 

variation of the defined speed must be held to within ±50 rpm, and the defined load must be 

held to within ±2%. As mentioned in Section 4.3.1, NOx, HC, CO and CO2 emissions are all 

measured by a Horiba emission-measurement system, and the particulate-matter emissions are 

sampled by the AVL smoke meter in the raw exhaust gas. The test conditions and test results 

are as shown in Table 4-4. The duration of each test mode is two minutes. The A25 means 

that the engine operates at 25% of the full load torque with engine speed 𝑛𝐴 = 2000 𝑟𝑝𝑚. 

Engines running in idle do not have output power; therefore, the torque and BSFC value in 

this state are empty. The weight values of NOx and PM are specific ESC weighting factors for 

emission calculation.   

 

Table 4-4: ESC measurement on test-bench 

 

 

The NOx and PM are measured for each mode and averaged over the cycle by using a set of 

weighting factors. Martyr and Plint (2011) recommend that the measurement begins with the 

lowest possible speed and that load is increased for the first speed step. By going to the next 

speed step, the maximum load is continued, and the load points for the second speed step are 

measured in descending order. At the third speed step, this procedure starts once again until 

the maximal speed is reached. The test plan is shown in Figure 4.3. Select 12 operating points 

with loads of 25%, 50%, 75% and 100% at speeds of A, B and C to form the test points. The 

Nr. Point Torque Speed Power Weighting BSFC NOx PM 

- -  [Nm] [rpm]  [kW] -  [g/kWh] [g/kg]  [mg/kg]

0 Idle Idle Idle Idle 0.15 177.57 0.25 2.78

1 A25 74 2000 15 0.05 280.37 0.22 6.92

2 A50 148 2000 30 0.05 218.69 0.35 7.28

3 A75 221 2000 46 0.05 195.33 0.43 9.00

4 A100 295 2000 61 0.08 187.85 0.64 6.42

5 B25 71 2500 18 0.10 281.31 0.23 6.30

6 B50 142 2500 36 0.10 221.50 0.35 7.11

7 B75 208 2500 53 0.10 200.93 0.36 9.25

8 B100 278 2500 70 0.09 190.65 0.60 6.64

9 C25 64 3000 19 0.05 301.87 0.23 9.16

10 C50 127 3000 38 0.05 247.66 0.30 6.77

11 C75 193 3000 58 0.05 232.71 0.46 7.07

12 C100 256 3000 77 0.08 217.76 0.63 7.86

- - - - - Weighted Weighted Weighted 

- - - - - g/kWh g/kWh g/kWh

- - - - - 220.45 3.09 0.051

Weighted 

Value of 

ESC
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engine speed and operating points are obtained from the engine specification and are defined 

as follows: 

 

1) nreference = 3750 rpm is engine speed at maximal engine power, 

2) nhigh = 3500 rpm is engine speed at 70% of maximal engine power, 

3) nlow = 1500 rpm is engine speed at 50% of maximal engine power, 

4) 𝑛𝐴 = 𝑛𝑙𝑜𝑤 + 25% ∙ (𝑛ℎ𝑖𝑔ℎ − 𝑛𝑙𝑜𝑤) = 2000 𝑟𝑝𝑚, 

5) 𝑛𝐵 = 𝑛𝑙𝑜𝑤 + 50% ∙ (𝑛ℎ𝑖𝑔ℎ − 𝑛𝑙𝑜𝑤) = 2500 𝑟𝑝𝑚, and 

6) 𝑛𝐶 = 𝑛𝑙𝑜𝑤 + 75% ∙ (𝑛ℎ𝑖𝑔ℎ − 𝑛𝑙𝑜𝑤) = 3000 𝑟𝑝𝑚. 

 

4.3.2.2 FTP-75 Driving Cycle  

 

Figure 4.4: FTP-75 driving cycle speed profile 

 

To model and validate the engine-air-path, measurements must be made of a standard 

dynamical driving cycle. As a baseline for engine fuel economy and emissions tests, an 

exactly defined driving cycle is needed. In general, the FTP-75 cycle can be used for this 

purpose (Martyr & Plint, 2011). It truly reflects the real driving condition of a passenger 

vehicle at high speed and acceleration. The FTP-75 is a driving cycle developed by 

workgroups of the United Nations with the intention to provide a harmonised test procedure 
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for the development and testing of passenger vehicles in the United States with respect to fuel 

consumption and emissions. The driving cycle consists of the following segments: cold-start 

phase 0~505 seconds, stabilised phase 506~1372 seconds, and hot-start phase 1373~1870 

seconds (a repeat of the first phase). Figure 4.4 presents the vehicle speed profile.  

 

4.4 Engine-air-path Model 

This section explains the mean-value modelling approach to engine-air-path modelling. One 

large issue in engine simulation is its complexity. For model-based control design it is 

important that the simulation model is able to capture all essential dynamic properties 

meanwhile keeps simple model structure since low order models are preferable (Bengtsson, 

2007). Therefore, it is important to determine what is necessary to consider and what can be 

neglected because its influence on the main results vanishes. There is always a trade-off 

between model complexity, precision and computing time as we try to reflect reality as 

precisely as possible but need to do the simulation in finite time.  

 

Two methods are often used to obtain models of diesel engine-air-path: CFD modelling and 

mean-value modelling. The CFD modelling, which is based on multidimensional 

computational fluid dynamics, has attractive intuitive component-based features. The CFD 

models are commonly used in thermodynamic analysis, examples of which can be found in 

several sources (Bengtsson, 2007; Gundmalm, 2009; Meeks, 2014 ). But they are too 

computationally expensive to serve the purpose of model-based control and the application in 

real-time control. Whereas the mean-value model is based on the ideal gas law, use of the law 

of conservation of mass and conservation of energy has proved to be a very effective 

modelling approach for design of control. For example, a mean-value model can accurately 

describe the behaviour of the engine-air-path, the cylinder pressure for the gas exchange and 

the engine consumption (Andersson, 2012; Dekker & Sturm, 1996; Dekker & Sturm, 1996; 

Mitterer & Zuber-Goos, 2002). Therefore, a mean-value model is employed in this study.  

 

Matlab/Simulink is scientific computing software from MathWorks Inc. It is widely used in 

controller design, multi-domain simulations and model-based design. Please refer to 

(MathWorks, 2018) for the details of the Matlab/Simulink. In this study, Matlab/Simulink is 

used as a software tool for the modelling and simulation of the engine air-path system. The 
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engine-air-path model uses one-dimensional gas dynamics to represent the flow and heat 

transfer in the components of the engine model. As a language of technical computing, 

Matlab is further used for the processing of data. For example, it is used to provide 

characteristic maps and curves and for the initialisation of constants and variables, and it is 

also used for the analysis and processing of simulation results. The basic structure of 

mathematical models for the stationary and dynamic behaviour of the engine-air-path can be 

gained from physical laws via the ideal-gas, energy-conservation and mass-conservation laws. 

However, modelling the details of torque and the development of the emissions is currently 

not usually possible with theoretical models. In addition, many parameters are not precisely 

known. It is widely accepted that data-based system identification has proven to be a very 

effective modelling method for such systems (Bamieh & Giarre, 2002; Hirsch, 2011; 

Kamaruddin & Darus, 2012). Therefore, data-based modelling of engine torque and emissions 

(by applying system identification methods) is required. To present this modelling approach, 

this engine-air-path simulation model is divided into different parts—intake and exhaust 

manifolds, turbocharger, EGR, emissions, oxygen concentration and torque—as shown in 

Figure 4.5.  

 

Figure 4.5: Engine-air-path model structure 

 

Figure 4.6 illustrates the top level of the whole simulation model as it can be seen in 

Simulink. The inside of the model is displayed in Figure 4.7. The data required by the four 

sub-models in Figure 4.7 are either parameters whose values are kept constant throughout the 

simulation or inputs whose values change in time. The more detailed the model, the higher the 

number of parameters and inputs required. The engine air-path model requires four inputs, 37 

parameters and 28 maps. Some parameters can be found in the engine-and-supplier technical 

document provided by the manufacturer; others must either be determined experimentally, as 

described in Section 4.3, or default values must be assumed.  
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Figure 4.6: Simulink engine-air-path model top level  

 

 

Figure 4.7: Engine-air-path model inside 
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Usually the standard approach to the physical modelling of the engine-air-path is to consider 

all the components as comprising an ideal open thermodynamic system; the air and fuel are 

assumed to be perfectly compressible (Eriksson, 2002). Some of the essential thermodynamic 

characteristics of the combustion engine must be determined for the engine-air-path 

modelling. Hereby, the ideal gas law, the law of conservation of mass and the law of 

conservation of energy can be applied.  

 

Theorem: Ideal gas law (Bennett, 2014). 

The ideal gas law is often written as follows: 

 

𝑝 ∙ 𝑉 = 𝑚 ∙ 𝑅 ∙ 𝑇                                                  (4-1) 

or                          𝑇 =
𝑝∙𝑉

𝑚∙𝑅
 ,                                                     (4-2) 

 

where  (1) p is the pressure of the gas, 

      (2) V is the volume of the gas, 

      (3) m is the amount of substance of the gas, 

      (4) 𝑅 = 287
J

𝑘𝑔∙𝐾
 is ideal specific gas constant for air (De, Agarwal, Chaudhuri, & 

Sen, 2018), and 

       (5) T is the temperature of the gas.  

 

Theorem: Law of conservation of mass (Bennett, 2014). 

The mass of an object or collection of objects never changes, no matter how the constituent 

parts rearrange themselves.  

 

According to the law of conservation of mass, in the engine inlet and exhaust manifold, the 

rate of the change of the air mass inside the volume is given by the difference between the 

mass flow in and out. Differential equations 4-3 and 4-4 represent the change of air flow 

masses in the engine manifolds: 

 

𝑚𝑖̇ = 𝑊𝑐𝑖 +𝑊𝑥𝑖 −𝑊𝑖𝑒 ,                                           (4-3) 

𝑚𝑥̇ = 𝑊𝑒𝑥 −𝑊𝑥𝑖 −𝑊𝑥𝑡 ,                                        (4-4) 

 

where   (1) W (.) is the mass flow, 
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             (2) 𝑖 is index for parameters in intake manifold, 

             (3) 𝑐𝑖 is index for parameters in intake path after compressor,  

             (4) 𝑥𝑖 is index for parameters in intake path after EGR, 

             (5) 𝑖𝑒 is index for parameters in cylinder, 

             (6) 𝑥 is index for parameters in exhaust manifold, 

             (7) 𝑒𝑥 is index for parameters in exhaust path after cylinder, and 

             (8) 𝑥𝑡 is index for parameters in exhaust path after turbine.   

 

Theorem: First law of the thermodynamics (Guzzella & Onder, 2004). 

In a closed thermodynamic system, the first law of the thermodynamics can be written as 

follows: 

 

𝑑𝑈 = 𝛿𝑄 − 𝛿𝑊,                                                       (4-5) 

 

where  (1) 𝑑𝑈 is the change in internal energy, 

            (2) 𝛿𝑄 is the heat supplied to the system from its surroundings, and 

            (3) 𝛿𝑊 is the total work done by the system.  

 

Based on the law of conservation of energy, for ideal gases with constant volume, the general 

expression for the time differential of internal energy 𝑈 = 𝑐𝑣 ∙ 𝑇 ∙ 𝑚 is given by (Song, 2015), 

 

𝑑

𝑑𝑡
𝑈 = 𝑐𝑣 ∙ �̇� ∙ 𝑚 + 𝑐𝑣 ∙ 𝑇 ∙ �̇�,                                         (4-6) 

 

where  (1) U is the internal energy,  

            (2) cv = 725 
J

𝑘𝑔∙𝐾
 is specific heat at constant volume, and 

            (3) T is the temperature.   

 

For ideal gases with constant pressure, the general expression for the time differential of the 

enthalpy 𝐻 = 𝑐𝑝 ∙ 𝑇 ∙ 𝑚  is given by (Song, 2015), 

 

𝑑

𝑑𝑡
𝐻 = 𝑐𝑝 ∙ 𝑇 ∙ �̇�,                                                       (4-7) 

where  (1) H is the enthalpy, and 
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            (2) cp = 1014 
J

𝑘𝑔∙𝐾
  is specific heat at constant pressure.   

 

In Figure 4.7, the Simulink model structure is displayed. The figure shows how the engine is 

divided into subsystems to facilitate physical modelling. They are the intake and exhaust 

manifolds, turbocharger, EGR, emissions, oxygen concentration and torque. Descriptions of 

the modelling of each component are given in the following sub-sections: 4.4.1 to 4.4.6. 

 

4.4.1 Intake and Exhaust Manifolds 

 

 

 

 

Figure 4.8: Diesel engine swirl flap 

 

In the case of a diesel engine with direct injection, the filling of the cylinder through the 

intake manifold is an important quantity used to define the output torque and the power of the 

engine. Some modern diesel engines contain an additional actuator on the intake side of 

engine. This device, called swirl flap, is a part of the intake manifold; it ensures that air flows 

into the combustion chamber (Figure 4.8). The aim is to ensure a good mixture of air and the 

injected fuel drops inside the cylinder. The consequence is a homogenous combustion and, 

potentially, low emissions. A swirl flap is a small, buttery valve fitted to the intake manifold. 

It influences flows into the combustion chamber. Due to combustion deposits on the flaps and 

the connection part of the intake manifold, the flaps can begin to stick in one position over 

time such that the correct flap position cannot be achieved. Because of the missing feedback 
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of the swirl flap position and its limited influence on MAF and MAP, the swirl flap effect can 

be neglected in this study without considerable effect on the accuracy of the simulation.  

 

As mentioned in Chapter 2, the VGT rate influences the quantity of the air charging into the 

intake manifold and cylinder. If the VGT is not completely open, the quantity of air charging 

by the engine is smaller, and this reduces the torque. In addition, the quantity of air in the 

intake manifold depends on the EGR rate, ambient pressure and cylinder pressure (Nguyen-

Schaefer, 2013). Figure 4.9 shows the section of the intake and exhaust manifolds. As 

discussed above, the intake and exhaust manifolds are considered to be thermodynamic 

systems. Thus, the ideal-gas and energy-conservation laws can be applied.  

 

 

Figure 4.9: Schematics of intake and exhaust manifolds 

 

In the intake manifold, the change of the specific internal energy and specific enthalpy can be 

written as follows (Isermann, 2014): 

 

�̇�𝑖(𝑡) = �̇�𝑐𝑖 + �̇�𝑥𝑖 − �̇�𝑖𝑒  .                                            (4-8) 

 

Reorganising equations 4-6 and 4-7 in Equation 4-8 leads to the following: 

 

𝑐𝑣 ∙ 𝑇�̇� ∙ 𝑚𝑖 + 𝑐𝑣 ∙ 𝑇𝑖 ∙ �̇�𝑖 = 𝑐𝑝 ∙ 𝑇𝑐𝑖 ∙ 𝑊𝑐𝑖 + 𝑐𝑝 ∙ 𝑇𝑥𝑖 ∙ 𝑊𝑥𝑖 − 𝑐𝑝 ∙ 𝑇𝑖𝑒 ∙ 𝑊𝑖𝑒 .           (4-9) 

 

Replacing 𝑚𝑖 in Equation 4-9 with the ideal gas Equation 4-2 yields, 

 

𝑇�̇� =
𝑅∙𝑇𝑖

𝑐𝑣∙𝑝𝑖∙𝑉𝑖
∙ (𝑐𝑝 ∙ 𝑇𝑐𝑖 ∙ 𝑊𝑐𝑖 + 𝑐𝑝 ∙ 𝑇𝑥𝑖 ∙ 𝑊𝑥𝑖 − 𝑐𝑝 ∙ 𝑇𝑖𝑒 ∙ 𝑊𝑖𝑒−𝑐𝑣 ∙ 𝑇𝑖 ∙ �̇�𝑖),          (4-10) 
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where  (1) 𝑅 and 𝑐𝑣 have been explained in equations 4-1 and 4-6, and 

           (2) 𝑉𝑖 = 0.0109 𝑚³ is the intake manifold volume from engine specification.   

 

In the ideal gas law, 𝑝𝑖 is given by, 

 

𝑝𝑖 =
𝑇𝑖∙𝑚𝑖∙𝑅

𝑉𝑖
.                                                      (4-11) 

 

Differentiating it leads to 

 

𝑝�̇� =
𝑅

𝑉𝑖
∙ (�̇�𝑖 ∙ 𝑚𝑖 + 𝑇𝑖 ∙ �̇�𝑖) .                                          (4-12) 

 

Adding the adiabatic exponent 𝑘 =
𝑐𝑝

𝑐𝑣
 (Del Re, 2011) and replacing the 𝑇�̇� in Equation 4-12, 

the following equation for the change of pressure at intake manifold is obtained,  

 

𝑝�̇�(𝑡) =
𝑅∙𝑘

𝑉𝑖
∙ (𝑇𝑐𝑖 ∙ 𝑊𝑐𝑖 + 𝑇𝑥𝑖 ∙ 𝑊𝑥𝑖 − 𝑇𝑖𝑒 ∙ 𝑊𝑖𝑒),                           (4-13) 

 

where  (1) 𝑅 and 𝑉𝑖 have been explained in equations 4-1 and 4-10, and            

            (2) 𝑘 = 1.4 is isentropic expansion factor (De, Agarwal, Chaudhuri, & Sen, 2018).          

                      

 

 

Figure 4.10: Intake manifold model 
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Figure 4.11: Exhaust manifold model 

 

Similarly, the pressure change in the exhaust manifold can be determined using Equation 4-

14: 

𝑝�̇�(𝑡) =
𝑅∙𝑘

𝑉𝑥
∙ ((𝑊𝑖𝑒 +𝑊𝑓) ∙ 𝑇𝑒 − ((𝑊𝑥𝑖 +𝑊𝑥𝑡) ∙ 𝑇𝑥) ,                       (4-14) 

 

where  (1) 𝑉𝑥 = 0.0249 𝑚³ is the exhaust manifold volume from engine specification, and            

            (2) 𝑘 = 1.4 is isentropic expansion factor (De, Agarwal, Chaudhuri, & Sen, 2018).          

 

The Simulink models of the intake and exhaust manifolds are shown in figures 4.10 and 4.11.  

 

4.4.2 Turbocharger 

The turbocharger consists of three main parts: the bearings, the compressor and the turbine. 

The turbine and compressor are mounted on the same shaft, which is driven by the exhaust 

gas (Nguyen-Schaefer, 2013). From a physical point of view, it can be said that the energy is 

absorbed from the exhaust gas and transported from the turbine to the compressor by the 

rotation of the common shaft, whereby the energy is used to compress the aspirated air.  

 

Each process (propelling the turbine, rotation of the common shaft and compressing the fresh 

air) is related to mechanical and thermal dynamic losses, which can be described in terms of 

state-dependent efficiency and air-mass flow maps over a wide range of operation conditions, 
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as shown in Figure 4.12. These maps characterise the performance of a turbocharger, thereby 

allowing engine design engineers to choose the correct combination of turbo mechanical 

construction and engine.  

 

 

 

Figure 4.12: Compressor and turbine efficiency and air mass flow maps (VGT = 0%, closed) 

 

In this study, the powertrain block sets from Matlab/Simulink are applied. The compressor 

and turbine maps (Figure 4.12) are delivered by the turbocharger manufactures, which are 

generated by specialised turbo calibration and test equipment: Turbo Test Pro.  Figures 4.13 

and 4.14 show the experimental setup of the test-bench and the interface of the integrated 

data-processing software at turbocharger manufacture.  
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Figure 4.13: Turbo Test Pro test-bench setup (CIMAT, 2018) 

 

 

 

Figure 4.14: Turbo Test Pro test-bench analysis software interface (CIMAT, 2018) 
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However, these maps characterise the behaviour only in rarely reached steady operation 

regions. An alternative method is introduced in (Jung, 2003) to gain the required maps 

through CFD analysis. Jung's model captures the effects of combustion, in-cylinder motion 

and turbulence of gas, and it is much more accurate than the requirement for VGT and EGR 

control for the purposes of this study. It could be argued that the time required for 

computation in simulation is a critical factor for control tasks; thus, the speed of the 

simulation should be as fast as possible. It is acceptable to use a modified mean-value 

turbocharger model for the simulation without considering in-cylinder motion and turbulence 

of gas, because the analysis of the pressure oscillation in the engine-air-path is not the focus 

of this study. 

 

The energy conversation of a turbocharger is given by (Eriksson, 2002),  

 

𝑤 = ℎ𝑣𝑇 − ℎ𝑛𝑇 ,                                                           (4-15) 

 

where 𝑛𝑇 is an index for parameters after the turbine, 𝑣𝑇 is an index for parameters before the 

turbine, and 𝑤  is the mechanical work on the common shaft between the turbine and 

compressor.  

 

Replacing h in Equation 4-15 with the specific enthalpy equation ℎ = 𝑐𝑝 ∙ 𝑇  yields the 

following: 

 

𝑤𝑇 = 𝑐𝑝 ∙ 𝑇𝑣𝑇 ∙ (1 −
𝑇𝑛𝑇

𝑇𝑣𝑇
) .                                             (4-16) 

 

In an adiabatic system, 𝑝 ∙ 𝑣𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (Batteh, Tiller, & Newman, 2003). This leads to, 

 

𝑝𝑣𝑇

𝑝𝑛𝑇
= (

𝑉𝑛𝑇

𝑉𝑣𝑇
)𝑘 .                                                        (4-17) 

 

Using the ideal gas equation, 𝑉 =
𝑅∙𝑇∙𝑚

𝑝
, it follows that, 

 

𝑇𝑛𝑇

𝑇𝑣𝑇
= (

𝑝𝑛𝑇

𝑝𝑣𝑇
)
𝑘−1

𝑘   .                                                    (4-18) 
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The temperature of the compressor is modelled as follows (Eriksson, 2002): 

 

𝑇𝑐 =
1

𝜂𝑐,𝑖𝑠
∙ (𝑇𝑐,𝑖𝑠 − 𝑇𝑎) + 𝑇𝑎，                                        (4-19) 

 

where (1) 𝜂𝑐,𝑖𝑠  is the compressor efficiency, 

           (2) c is the index of compressor outlet,  

           (3) a is the index of compressor inlet, and 

           (4) is the index of isentropic.  

 

Using thermodynamic equations for the isentropic process (Jung, 2003), the effective 

compressor power Pc results in the following: 

 

𝑃𝑐 = 𝑊𝑐𝑖 ∙ 𝑐𝑝 ∙ (𝑇𝑐 − 𝑇𝑎) .                                         (4-20) 

 

Replacing 𝑇𝑐 in the Equation 4-20 with Equation 4-19 yields, 

 

𝑃𝑐 = 𝑊𝑐𝑖 ∙ 𝑐𝑝 ∙
1

𝜂𝑐,𝑖𝑠
∙ 𝑇𝑎 ∙ (

𝑇𝑐,𝑖𝑠

𝑇𝑎
− 1) .                             (4-21) 

 

By replacing the 
𝑇𝑐,𝑖𝑠

𝑇𝑎
 in Equation 4-21, the effective compressor power Pc becomes, 

 

𝑃𝑐 = 𝑊𝑐𝑖 ∙ 𝑐𝑝 ∙
1

𝜂𝑐,𝑖𝑠
∙ 𝑇𝑎 ∙ ((

𝑝𝑐

𝑝𝑎
)
𝑘−1

𝑘 − 1) .                          (4-22) 

 

The modelling approach for turbochargers given in (Jung, 2003) is based on the turbo-

efficiency map (Figure 4.12), 𝜂𝑐,𝑖𝑠 = 𝑓
𝑚𝑎𝑝 (𝑤𝑐𝑖,

𝑝𝑐

𝑝𝑎
). 

 

The map of the pressure ratio which are provided by the turbocharger manufacture, as shown 

in Figure 4.15, is given by 

 

 
𝑝𝑐

𝑝𝑎
= 𝑓𝑚𝑎𝑝(𝑤𝑐𝑖, 𝑛𝑇𝐿) ,                                                   (4-23) 

 

where  (1) 𝑛𝑇𝐿 is the turbo speed, 
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           (2) 𝑇𝐿 is the index for turbocharger, and 

           (3) 𝑤𝑐𝑖 is the mass of air flow at compressor inlet. 

 

Figure 4.15: Map of pc/pa 

 

 

Figure 4.16: Compressor model  



  115 

Figure 4.16 illustrates a model of the compressor block in Powertrain block sets from 

Matlab/Simulink. The compressor block simulates engine boost by using the drive shaft 

energy to increase the intake manifold pressure. The block uses two-way ports to connect to 

the inlet and outlet control volumes and the drive shaft. The control volumes provide the 

pressure, temperature, and specific enthalpy the compressor uses to calculate the mass and 

energy-flow rates. To calculate the torque and flow rates, the drive shaft provides the speed to 

the compressor. Both compressor and turbine are mounted on the same shaft, which is 

supported by the bearing system of the radial and thrust bearings (Jung, 2003). Analogously, 

due to the energy transfer involved in using the bearing system, the required turbine power is 

calculated from the isentropic turbine efficiency according to (Nguyen-Schaefer, 2013): 

 

𝑃𝑡 = 𝑊𝑥𝑖 ∙ 𝑐𝑝 ∙ 𝜂𝑡,𝑖𝑠 ∙ 𝑇𝑥 ∙ (1 − (
𝑝𝑛𝑇

𝑝𝑥
)
𝑘−1

𝑘 )  ,                              (4-24) 

 

where nT is the index of turbine outlet, and x is the index of turbine inlet.  

 

 

 

Figure 4.17: Turbine model  
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Figure 4.17 illustrates the model of turbine block in Powertrain block sets from 

Matlab/Simulink. The turbine block uses the conservation of mass and energy to calculate 

mass and heat flow rates for turbines with variable geometry. The block uses two-way ports to 

connect to the inlet and outlet control volumes and the drive shaft. The mass flow rate and 

turbine efficiency are calculated by lookup tables. The turbine manufacturers provide the 

mass flow rate and efficiency tables as a function of corrected speed and pressure ratio.  

 

The connection of compressor and turbine can be described with the angular acceleration of 

the connection boost drive shaft (Jung, 2003), which is calculated from the shaft dynamics 

equation: 

 

�̇�𝑇𝐿 = (
30

𝜋
)2 ∙ (

𝑃𝑡−𝑃𝑐

𝐽𝑇𝐿∙𝑛𝑇𝐿
) ,                                          (4-25) 

 

where  𝐽𝑇𝐿 denotes the turbo moment of inertia. 

 

Figure 4.18 illustrates the model of a turbocharger dynamic block in Simulink. The boost 

drive shaft block uses the compressor, turbine, and external torques to calculate the drive shaft 

speed. 

          

Figure 4.18: Turbocharger drive shaft model 
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Due to friction loss in the bearing system of the turbocharger, the turbine power results from 

the effective turbine power and mechanical efficiency 𝜂𝑚. The changing of the turbine power 

to the compressor is described by the differential equation according to (Cornetti, 2014): 

 

�̇�𝑐 =
1

𝜏𝑉𝐺𝑇
∙ (𝜂𝑚 ∙ 𝑃𝑡 − 𝑃𝑐) ,                                      (4-26) 

 

where 𝜂𝑚  denotes the mechnical efficiency and the time constant 𝜏𝑉𝐺𝑇 describes the time 

delay between a variation in the VGT vane position and the resulting change on the 

compressor power. 

 

Figure 4.19: Intercooler outlet temperature  

 

In the turbocharger system, an intercooler is usually used to cool the air that comes from the 

compressor because, when using a compressor, the air density increased such that the intake 

temperature also increases (Hamarashid, 2008). The intercooler can increase the efficiency 

and intake air density of the combustion by cooling the compressed air temperature after the 

compressor. Basically, the intercooler is an air-air cross-flow heat exchanger which consists 

of many small pipes through which the air flows. A derivation and discussion of how to apply 

the heat-transfer unit model to an automotive intercooler is given in (Eriksson, 2002). It 

suggests that the temperature out of the intercooler can be modelled with sufficient accuracy 

as a map 𝑇𝑐𝑖 = 𝑓
𝑚𝑎𝑝(𝑤𝑐𝑖, 𝑇𝑐)  (Figure 4.19), which can be provided by the intercooler 
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and cooler output temperature Tci. This map includes the cooler properties and can be 

adjusted to match the temperature drop between cooler input and cooler output.  

 

4.4.3 Exhaust Gas Recirculation 

The literature review in Section 2.1.2 shows that the EGR model is a very important 

mechanism used in the engine-air-path to lower the temperature in the cylinders and through 

that to reduce NOx formation (Bennett, 2014). The exhaust gas acts are an inert gas, and it 

decreases the peak temperature during combustion to reduce the production of NOx (Sher, 

1998). The EGR flow is regulated by an electro-pneumatic valve which regulates the amount 

of re-circulated exhaust gas. The mathematical formulation of the mass flow through EGR has 

two states according to (Eriksson, 2002): 

 

1. If  𝑝𝑥 ≥ 𝑝𝑖, then  

 

𝑤𝑥𝑖 = 
𝐴𝐸𝐺𝑅(𝑥𝐸𝐺𝑅)∙𝑝𝑥

√𝑅∙𝑇𝑥
∙ √2 ∙ 𝑝𝑟 ∙ (1 − 𝑝𝑟) , and                                (4-27) 

 

2. If  𝑝𝑖 > 𝑝𝑥, then  

 

 

𝑤𝑥𝑖 = − 
𝐴𝐸𝐺𝑅(𝑥𝐸𝐺𝑅)∙𝑝𝑖

√𝑅∙𝑇𝑖
∙ √

2

𝑝𝑟
∙ (1 −

1

𝑝𝑟
)  ,                                         (4-28) 

 

where (1) 𝑝𝑟 donates the ratio of pressure between intake and exhaust manifold 
𝑝𝑖

𝑝𝑥
, and 

           (2) 𝐴𝐸𝐺𝑅(𝑥𝐸𝐺𝑅) stands for the effective area of an open section of the EGR.  

 

The valve effective area is thus modelled by using a polynomial function of the control input 

𝑥𝐸𝐺𝑅. This approach is introduced in (Dekker & Sturm, 1996). This is an approximation, and 

it captures the most important features of the valve:  

 

𝐴𝐸𝐺𝑅(𝑥𝐸𝐺𝑅) =  𝑐𝐸𝐺𝑅1(𝑥𝐸𝐺𝑅)
2 + 𝑐𝐸𝐺𝑅2(𝑥𝐸𝐺𝑅) ,                        (4-29) 
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where 𝑐𝐸𝐺𝑅1 and 𝑐𝐸𝐺𝑅2 are the EGR valve-specific values which are provided by the EGR 

manufacture.  

 

Equations 4-27, 4-28 and 4-29 are used in the EGR model for engine-air-path model in 

Simulink, as shown in Figure 4.20. 

 

 

Figure 4.20: EGR model 

 

 

Figure 4.21: EGR cooler outlet temperature  
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In this system, the exhaust gas from EGR is cooled by a water-air heat exchanger. It is then, 

together with the intake air, led back into the engine. Analogous to the turbocharger 

intercooler modelling, the temperature of the EGR cooler outlet results from a map 𝑇𝑥𝑖 =

 𝑓𝑚𝑎𝑝(𝑤𝑥𝑖, 𝑇𝑥) (Figure 4.21), which is provided by the cooler manufacturer. The EGR valve 

affects the temperature of the intake manifold by releasing thermal energy depending on 

engine load. The change of temperature between the intake manifold and EGR can be 

modelled by a differential equation with time constant 𝜏𝐸𝐺𝑅  (Equation 4-30) (Ammann, 

Fekete, Guzzella, & Glattfelder, 2003): 

 

�̇�𝑥𝑖𝑓 =
1

𝜏𝐸𝐺𝑅
∙ (𝑇𝑥𝑖 − 𝑇𝑥𝑖𝑓)  .                                       (4-30) 

 

4.4.4 Oxygen Concentration and Lambda 

Oxygen is important to combustion – especially in the combustion of fuel for energy. The 

mechanism of the oxygen-concentration effects on the combustion and emissions of diesel 

engines are investigated by (Zheng & Yao, 2009; Yao & Zhang, 2009). With decrease of 

oxygen concentration, the peak of the average in-cylinder pressure decreases. The 

investigation shows that decreasing oxygen concentration is the most effective way to control 

NOx emissions. With the decrease of oxygen concentration, soot emissions first increase and 

then decrease. To model the oxygen concentration and air-fuel ratio, Computational Fluid 

Dynamics (CFD) provides a qualitative prediction; however, this leads to excessive 

computation times and is accordingly not suitable for model-based control design, therefore in 

this study the modelling will be generated by the mean-value modelling approach.  

 

4.4.4.1 Oxygen Concentration  

The oxygen concentration is defined with respect to the intake manifold as in reference 

(Guzzella & Onder, 2004) according to  

 

∫(𝑊𝑐𝑖 ∙ 𝐶𝑜2𝑎 + 𝑊𝑥𝑖 ∙ 𝐶𝑜2𝑥 −𝑊𝑖𝑒 ∙ 𝐶𝑜2𝑖)𝑑𝑡 = 𝑚𝑖 ∙ 𝐶𝑜2𝑖 ,                     (4-31) 

 

where (1) 𝑊𝑐𝑖, 𝑊𝑥𝑖 and 𝑊𝑖𝑒 are mass flows from the compressor to the intake manifold, from 

EGR to the intake manifold and from the manifold to the cylinder, respectively, 
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           (2) 𝐶𝑜2𝑎  stands for the oxygen mass concentration in the ambient, it has a constant 

value of 23%, and  

           (3) 𝐶𝑜2𝑥 and 𝐶𝑜2𝑖 stand for the oxygen mass concentration in the intake and exhaust 

manifolds, respectively.  

 

Differentiation of both sides of Equation 4-31 yields, 

 

 𝑊𝑐𝑖 ∙ 𝐶𝑜2𝑎 + 𝑊𝑥𝑖 ∙ 𝐶𝑜2𝑥 −𝑊𝑖𝑒 ∙ 𝐶𝑜2𝑖 = �̇�𝑖 ∙ 𝐶𝑜2𝑖 +𝑚𝑖 ∙ �̇�𝑜2𝑖.                   (4-32) 

 

The changing of the turbine power to the engine air-mass flow is described by the differential 

equation according to (Guzzella & Onder, 2004): 

 

�̇�𝑖 = 𝑊𝑐𝑖 −𝑊𝑖𝑒 −𝑊𝑥𝑡.                                             (4-33) 

 

Reorganising Equation 4-32 and 4-33, the oxygen concentration in the intake manifold leads 

to the following: 

 

�̇�𝑜2𝑖 =
1

𝑚𝑖
∙ (𝑊𝑐𝑖 ∙ 𝐶𝑜2𝑎 + 𝑊𝑥𝑖 ∙ 𝐶𝑜2𝑥 + (𝑊𝑥𝑡 −𝑊𝑐𝑖) ∙ 𝐶𝑜2𝑖).                  (4-34) 

 

Like the modelling of oxygen in the intake manifold, the oxygen concentration in the exhaust 

manifold can be determined by Equation 4-35. By stoichiometric mixture we understand a 

mixture which contains exactly as much oxygen as we need for the complete combustion of 

the C, H and S atoms (Isermann, 2014). This leads to  

  

�̇�𝑜2𝑥 = 𝑊𝑐𝑖 ∙ 𝐶𝑜2𝑖 − 23% ∙  𝑊𝑓 ∙ (
𝑥𝑎𝑖𝑟

𝑥𝑓𝑢𝑒𝑙
)𝑠𝑡𝑜𝑖𝑐ℎ.                         (4-35) 

The mass conservation of oxygen (Guzzella & Onder, 2004) in the exhaust manifold is 

expressed as follows: 

 

∫ (𝑊𝑐𝑖 ∙ 𝐶𝑜2𝑖 − 23% ∙ 𝑊𝑓 ∙ (
𝑥𝑎𝑖𝑟

𝑥𝑓𝑢𝑒𝑙
)𝑠𝑡𝑜𝑖𝑐ℎ − 𝑊𝑥𝑖 ∙ 𝐶𝑜2𝑥 −𝑊𝑥𝑡 ∙ 𝐶𝑜2𝑥) 𝑑𝑡 = 𝑚𝑥 ∙ 𝐶𝑜2𝑥.      (4-36) 

The changing of the engine air mass flow in exhaust manifold is described by the differential 

equation in (Guzzella & Onder, 2004): 

 �̇�𝑥 = 𝑊𝑖𝑒 + 𝑊𝑓 −𝑊𝑥𝑖 −𝑊𝑥𝑡.                                             (4-37) 
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Reorganising equations 4-36 and 4-37, the oxygen concentration in the exhaust manifold 

leads to  

 

�̇�𝑜2𝑥 =
1

𝑚𝑥
∙ (𝑊𝑐𝑖 ∙ 𝐶𝑜2𝑖 − 23% ∙ 𝑊𝑓 ∙   (

𝑥𝑎𝑖𝑟

𝑥𝑓𝑢𝑒𝑙
)𝑠𝑡𝑜𝑖𝑐ℎ − 𝑊𝑖𝑒 ∙ 𝐶𝑜2𝑥 −𝑊𝑓 ∙ 𝐶𝑜2𝑥).      (4-38) 

 

4.4.4.2 Lambda  

 

 

Figure 4.22: Emissions are influenced by the Air-Fuel Ratio (Shi & Seiser, 2015 ) 

 

The λ is an important indicator of the combustion quality and has considerable effects on 

emissions. It is defined as the ratio of the actual air quantity relative to the ideal 

stoichiometric required quantity (Equation 4-39) according to (Eriksson, 2002). If precisely 

enough air is provided to completely burn all the fuel, the ratio is known as the stoichiometric 

ratio. A stoichiometric ratio should lead to an ideal combustion, and Figure 4.22 shows the 

resulting emissions with different λ. The λ of the engine is modelled using the standard 

model-based on the stoichiometric ratio: 
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𝜆 =

𝑥𝑎𝑖𝑟
𝑥𝑓𝑢𝑒𝑙

(
𝑥𝑎𝑖𝑟
𝑥𝑓𝑢𝑒𝑙

)𝑠𝑡𝑜𝑖𝑐ℎ
 ,                                                    (4-39) 

 

where (1) x is the mass flow, 

           (2) 
𝑥𝑎𝑖𝑟

𝑥𝑓𝑢𝑒𝑙
  is the actual air-to-fuel ratio, and 

           (3) (
𝑥𝑎𝑖𝑟

𝑥𝑓𝑢𝑒𝑙
)𝑠𝑡𝑜𝑖𝑐ℎ = 14.5 is the stoichiometric air-to-fuel ratio for diesel engine, which 

means enough air to burn all the fuel.  

 

 

Figure 4.23: Calculation of lambda, oxygen concentration at intake and exhaust 

 

The models of the oxygen concentration and λ implemented in Simulink are shown in Figure 

4.23. Reorganising Equation 4-39 under stoichiometric condition, it follows that  

 

𝜆 =
𝑊𝑖𝑒∙𝐶𝑜2𝑖

𝑊𝑓∙23%∙14.5
  .                                                     (4-40) 
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4.4.5 Emissions 

One of the main purposes of engine control is rooted in the requirement of reducing the 

emission output. To support this optimisation task, a dynamical emission model is generated. 

Several approaches can be taken to building the emission model of a diesel engine. One 

approach is based on the first principle according to which chemical reactions and physical 

phenomena are used for the description of the model. For examples, see (Cook, Pitsch, Chen, 

& Haweks, 2007) and (Sjoeberg & Dec, 2003).  

 

The other approach is based on experiments and measurements; it is similar to the approach 

of (Hirsch, 2011) and (Ljung, 2001), where data-based models are used to optimise the 

system. However, because of a lack of fast emission sensors and computational technology, 

the modelling of the details of the development of the different emissions cannot be done with 

exclusively theoretical models to the present day (Langthaler, 2007). Therefore, black-box 

modelling by a data-based system identification method is required. The task of this 

modelling method is to identify models for the NOx and PM (also called OPAC for opacity) 

emissions based on observed input-output data. The accuracy of the identified system largely 

depends on the quality of the data collected from the engine system. The collected engine data 

for model identification should capture most of the behavioural characteristics of the 

emissions. With the help of the statistical experiment design (DOE), it becomes possible to 

describe systems by models in an efficient manner. These models are parametrised by means 

of measurement data; the NLARX algorithm of the system identification toolbox in 

Matlab/Simulink, as applied in (Ljung, Zhang, Lindskog, & Juditski, 2007), can be used for 

this. This section describes data-based modelling by DOE approach; the overall results of the 

application of emission modelling are discussed in Section 4.5.  

 

In this section, the basics of modeling for the subsequent optimisation of emissions will be 

explained in detail. After a general introduction to black box modeling methods, two 

modeling types that appear to be particularly suitable to emission modeling are considered in 

more detail. Subsequently, the design of DOE measurement plan is introduced in order 

toreduce the data collection time for dynamic modeling, despite the increasing number of 

manipulated variables. Thereafter, the corresponding emission models are presented, 

compared and discussed.  
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4.4.5.1 Design of Experiment  

The goal of the DOE is the model-like description of an unknown systems based on measured 

data. The methodology of the DOE includes the creation of the experiment plan according to 

statistical aspects, the creation of models and the optimisation of modelled systems. As 

mentioned in (Ljung, 2001), in general, the two most important issues of data-based 

modelling are, of course, the data itself and the DOE needed to generate the data.  

 

Two important works about design of experiments are (Hirsch, 2011) and (Ljung, 2001). 

These papers must be referred to at this point. First, it is a question of which signals should be 

defined as outputs and which signals should be manipulated as inputs to excite the system 

during the experiment. It should also be stressed that there may be signals associated with the 

process that have to be considered as inputs – e.g., operation points, engine speed n, and fuel 

injection mf in the engine-air-path system – which affect the system states. By the way, it is 

then still highly desirable to include these signals among the measured input signals and to 

consider them as measurable disturbance in the control problem afterwards. Most often, the 

signals are sampled using a constant sampling interval T; thus, this quantity must be chosen. 

The choice of input signals has a very substantial influence on the measured data. The inputs 

determine the operating point of the system and which parts and modes of the system are 

excited during the experiment. The user’s “freedom” in choosing the input characteristics may 

vary considerably with the application. Two different aspects are associated with the input 

design of DOE. One concerns the spectrum of input and the cross spectrum between input and 

driving noise. The other concerns the shapes of the signal. It can work with the inputs as the 

sums of sinusoids, filtered white noise, pseudorandom signals, binary signals, etc. As a final 

choice for the identification experiment, the number of input-output measurements has to be 

mentioned. 

 

The following definitions of input design using DOE mainly coincide with those of (Hirsch, 

2011) and (Ljung, 2001). The D-optimal design is sequentially approximated if the next input 

u(k+1) is defined, such that 𝑑(𝑦(𝑢(𝑘 + 1), �̅�(𝑘)) becomes maximal (For more details, see 

Appendix A): 

 

𝑢(𝑘 + 1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋(𝑘 + 1)𝑇�̅�(𝑘)−1𝑋(𝑘 + 1)𝑢(𝑘 + 1) ∈ Ω.                     (4-41) 
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This optimisation presents a non-convex problem with several local maxima within 𝛺. In this 

task, a multi-shot optimisation is used to cope with this issue. There, several optimisations 

start at random points within 𝛺, and the best is considered the optimum. While it cannot be 

guaranteed that this result is the global one, tests show that, already with a two-shot strategy, 

convergence towards D-optimal design is given.  

4.4.5.2 Emission Modelling  

The decision to build an emission model using empirical data is motivated by Section 4.4.5.1. 

For a good identification of data-based models, it is necessary to perform persistent excitation. 

So far, for non-linear systems, the DOE method is one of the best excitation methods that can 

be used to generate the identification data. For this identification task, the inputs of candidates 

of the system (mf: total injected fuel mass per cycle, mg/cyc; neng: engine speed, rpm; MAP: 

manifold absolute pressure, mbar; MAF: manifold air flow, mg/cyc) should be varied such 

that an accurate and unique model can be identified. The outputs are NOx in ppm and OPAC 

in %.  

 

According to Equation 4-41, the sequential D-optimal inputs is generated; next, the inputs and 

outputs are measured on the test-bench. Figure 4.24 presents the model structure, which 

includes all the input variations and outputs of measurements for identification. With these 

measurements, the system identification should be performed. 

 

 

Figure 4.24: Emission Simulink model 

 

The emissions model is identified with non-linear models. It can be assumed that a second-

degree, polynomial, dynamic model (sensor dynamics is known) is sufficient for 

approximation (Hirsch, 2011). This system is identified with a MIMO structure to catch the 

interactions of all inputs and outputs, as illustrated in figures 4.25 and 4.26. The choice of the 

inputs is physically motivated. All the measurements are saved in this way by using a Matlab 
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m-file. The data set is stored in a Matlab mat format. In the second step, the outliers of the 

original data have to be removed and the amount of data has to be reduced. This is done via 

signal filter in Matlab. The outlier detection and filtering are done by the Matlab function. 

After filtering, down-sampling to a sampling frequency of 50 Hz is performed. The filtered 

and resampled data is stored in a mat-file. The third step is to build a data-based identification 

model. The pre-processed data out of the Mat file is loaded into the system identification 

toolbox. The data must be detrended. Hence, the following identification is made with delta 

values at a defined operating point, not the absolute values.  

 

 

Figure 4.25: DOE input and output data  
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For identification, the prediction error method is applied (MathWorks, 2018), which estimates 

the parameters of general linear models and is able to handle MIMO and MISO model 

structures. The model is initialised by the well-known identification n4sid algorithm and is 

then further adjusted by optimising the prediction error fit. That means that the matrices are 

optimised until the prediction error is minimal. To estimate the order of the model, different 

values have been applied. From this, it can be determined that the fast MIMO system acts 

mainly as a system of the second order. 

 

 

 

Figure 4.26: DOE data in 3D-View  

 

A different modelling method could be performed for comparison purposes based on the 

ARX model. The following Figure 4.27 presents a comparison of the measured data and the 

simulation results based on the DOE-identified model NLARX (Equation 4-42) and the ARX 

(Equation 4-43) model. The VAF value is calculated by Equation 3-6. The VAF values of 

NOx are over 80% by NLARX DOE identification. The simulated results for OPAC reach 

VAF values at approximately 77% by DOE identification. In comparison to the non-linear 

ARX model – with a VAF value of 60% and 55% for NOx and OPAC, respectively – this is a 

very good result. The VAF values do not reach closer to 100% due to strong non-linearities 

that cannot be modelled very well by linear approximation. Another reason for the emission 

differences could be differences in coolant temperature and air temperature, which might 

cause a slightly different indicated mean pressure. The influence on emission concentrations 

is not quantifiable with the available data. To obtain meaningful measurements that allow 
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prediction of driving cycle results, it must be ensured that the environmental conditions and 

operating point are tightly matched during data acquisition.  

 

 

Figure 4.27: Comparison of measurement data of NLARX and ARX models (372s~382s, 

568s~578s, 860s~885s) 

 

The predicted output of NLARX emission model has the following structure: 

 

𝑦(𝑡) = 𝑓[ 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑎), 𝑢(𝑡 − 𝑛𝑘), … , 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1)] + 𝑒(𝑡),        (4-42) 

 

where (1) 𝑦(𝑡) and 𝑢(𝑡) denote the system output and input at time point 𝑡 respectively, 

           (2) 𝑒(𝑡) represents the modelling error, 

           (3) the parameters na and nb are the number of past outputs and inputs,  
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           (4) nk is the pure input delay, and  

           (5) f is the nonlinear function (implemented in the Matlab/Simulink Identification 

Toolbox (MathWorks, 2018)).  

 

The ARX-method uses the least-squares method to estimate the parameters of the ARX 

emission model structure (MathWorks, 2018): 

 

𝑦(𝑡) + 𝑎1 ∙ 𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎 ∙ 𝑦(𝑡 − 𝑛𝑎) = 𝑏1 ∙ 𝑢(𝑡 − 1) + ⋯ 

+𝑏𝑛𝑏 ∙ 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1) + 𝑒(𝑡),                                (4-43) 

 

where (1) 𝑦(𝑡) and 𝑢(𝑡) denote the system output and input at time point 𝑡 respectively, 

           (2) 𝑒(𝑡) represents the modelling error, 

           (3) the parameters na and nb are the number of system poles and zeroes plus 1, and 

           (4) nk is the number of input samples.  

 

4.4.6 Torque 

Torque is one of the main outputs of an engine. An engine torque model is available in 

(Chapman, 2002) which is based on physical equations used to calculate the engine torque 

over the crank angle. However, this method depends very strongly on the precision of the 

provided engine parameters. Another disadvantage of this method is its long computation 

time. Langthaler (2007) shows a general workflow for obtaining a data-based model on test-

benches. It seems appropriate to look for a data-based model structure for the torque model, 

and this model can be identified relatively easily from data. In this section, the system-

identification method is used to derive and identify a Hammerstein-structure (Johansson, 

1993) based engine-torque model.  

 

 

 

Figure 4.28: Engine torque model Hammerstein structure 



  131 

The Hammerstein model is one of the most used data-based model structures for non-linear 

system modelling. In the Hammerstein model (Figure 4.28), the system dynamics are 

represented by a transfer function, and the non-linearities can be captured by using a non-

linear look-up table.  

 

In this engine-torque model, the compensation of the non-linearity can be successfully 

approximated by using a look-up table (Figure 4.29), and this look-up table depends on 

engine speed n and fuel injection mf.  

 

Figure 4.29: Hammerstein lookup table for torque modelling 

 

As the linear part of the system can be described by a mathematic model, an efficient way to 

identify the system is to use the Matlab/Simulink product, System Identification Toolbox 

(MathWorks, 2018). The system can then be described using an autoregressive-moving-

average-with-exogenous terms (ARMAX) model (Johansson, 1993), as shown in Equation 4-

44: 

 

𝐴(𝑞) ∙ 𝑦(𝑡) =  𝐵(𝑞) ∙ 𝑢(𝑡 − 𝑛𝑘) + 𝐶(𝑞) ∙ 𝑒(𝑡),                                 (4-44) 

 

where (1) 𝑦(𝑡) and 𝑢(𝑡) denote the system output and input at time point 𝑡 respectively, 

           (2) 𝑒(𝑡) describes the white-noise system disturbance value, 
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           (3) the parameters na, nb and nc are the orders of the ARMAX model,  

           (4) nk is the delay,  

           (5) q is the delay operator, and 

           (6) A(q), B(q) and C(q) can be described by a second- or high-order polynomial. 

 

4.5 Simulation of Engine-air-path 

The aim of this section is to determine whether the engine-air-path model is suitable for the 

simulation of the engine of interest in both stationary and in dynamic operation conditions. 

For this purpose, the accuracy of the simulation results needs to be assessed in comparison to 

the experimental data registered, both in the stationary test and in the dynamic test. The 

results of the model simulation and validation are discussed in this section.  

4.5.1 Stationary Simulation 

As shown in Section 4.3, during the ESC stationary tests, the engine is operated in steady 

conditions under different loads. Please refer to Section 4.3 for the details of the test-bench 

setup in the ESC test. The implementation of the engine-air-path model in Simulink 

represents the structure presented in Figure 4.6. The setup of the Matlab/Simulink simulation 

model is shown in Figure 4.30. The first step in running the simulation model is to store the 

inputs and outputs of all measured channels in new variables (see Table 4-5).  

 

Table 4-5: Inputs and outputs of the simulation model 

Inputs Outputs 

Engine Speed MAF 

Fuel Injection MAP  

VGT Position Engine Torque  

EGR Position NOx Emission 

  OPAC Emission 

  Lambda 

  Oxygen Concentration 

 

During the simulation, not all of the original simulated data are stored. For example, areas 

with constant values are not useful for analysis, so they are omitted. All of the 13 mode 

simulations (see Table 4-6) are treated in this way by using stationary inputs. The simulation 

dataset is stored in a Matlab mat-file with the time vector. In the second step, the outliers of 
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the original simulation results have to be removed and the amount of data has to be reduced. 

Outlier detection and filtering are done by the Matlab filter function. The filtered and 

resampled data are stored in a mat-file. After filtering, the average value of each mode 

simulation over the run time is calculated. 

  

 

 

  

Figure 4.30: Setup of the Matlab/Simulink simulation model 

 

The measurements are reported in Table 4-6 together with the results obtained from the 

simulation of the same test with the engine air-path model. Table 4-6 presents an overview of 

the steady-state measurement and model prediction. The experimentally measured ESC-

weighted values of BSFC, NOx emissions and PM emissions from the diesel engine are, 

respectively, 220.45, 3.09 and 0.051 g/kWh. For the stationary simulation, the BSFC, NOx 

emissions and PM emissions simulated by the engine air-path model are, respectively, 233.27, 

3.19 and 0.049 g/kWh. The relative errors of BSFC, NOx emissions and PM emissions are, 

respectively, 5.5%, 3.1% and -5.2 %. As can be seen from the validation results, the proposed 

mean-value simulation model constitutes a good representation of the real system. 
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Table 4-6: ESC measurement and simulation 

 

 

  

  

Figure 4.31: Correlation plot for NOx emissions and PM emissions 

 

The correlation plot can be displayed for the outputs separately. The ideal correlation and 

some standard error lines are available for NOx emissions and PM emissions in Figure 4.31. 

The correlation plot provides information about the root mean-square error and the 

determination correlation criterion. As shown from the validation results, the purposed mean-

value model is able to provide sufficient precision for the steady-state.  

Nr. Point BSFC NOx PM BSFC NOx PM BSFC NOx PM 

- -  [g/kWh] [g/kg]  [mg/kg]  [g/kWh] [g/kg]  [mg/kg] % % %

0 Idle 177.57 0.25 2.78 197.46 0.27 2.45 10.1 7.3 -13.3

1 A25 280.37 0.22 6.92 319.63 0.24 5.90 12.3 8.9 -17.2

2 A50 218.69 0.35 7.28 227.88 0.36 6.96 4.0 2.9 -4.6

3 A75 195.33 0.43 9.00 187.12 0.44 9.40 -4.4 2.1 4.2

4 A100 187.85 0.64 6.42 190.48 0.65 6.33 1.4 1.0 -1.5

5 B25 281.31 0.23 6.30 312.81 0.25 5.56 10.1 7.3 -13.3

6 B50 221.50 0.35 7.11 243.20 0.37 6.38 8.9 6.4 -11.5

7 B75 200.93 0.36 9.25 206.56 0.36 8.98 2.7 1.9 -3.0

8 B100 190.65 0.60 6.64 187.99 0.61 6.74 -1.4 0.7 1.4

9 C25 301.87 0.23 9.16 323.00 0.24 8.49 6.5 4.7 -7.9

10 C50 247.66 0.30 6.77 254.60 0.30 6.57 2.7 1.9 -3.0

11 C75 232.71 0.46 7.07 239.23 0.47 6.86 2.7 1.9 -3.0

12 C100 217.76 0.63 7.86 220.81 0.64 7.74 1.4 1.0 -1.5

Weighted Weighted Weighted Weighted Weighted Weighted Weighted Weighted Weighted 

g/kWh g/kWh g/kWh g/kWh g/kWh g/kWh % % %

220.45 3.09 0.051 233.27 3.19 0.049 5.5 3.1 -5.2

Weighted 

Value of 

ESC

DifferenceMeasurement Simulation
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a) EGR 

 

 

 

b) VGT     

 

 

 

Figure 4.32: a) EGR and b) VGT positions in ESC test  
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When compared with the BSFC and PM, it can be seen that, indeed, the prediction of NOx is 

the most accurate. The overall errors in Table 4-6 might be surprisingly small, but it has to be 

said that transient effects are not considered in this steady-state validation. This means that 

these simulation results quantify errors only in the steady-state response of the engine, and the 

model quality has to be further validated under the dynamical operation. The comparison of 

the experiment and simulation results coincides with the research results in (Ni, Liu, & Shi, 

2016). The EGR and VGT positions are available in Figure 4.32. Compared to a WG diesel 

engine with similar configuration, the BSFC of the VGT-EGR diesel engine is slightly higher 

than the WG diesel engine. There are two main reasons. First, the exhaust gas from the EGR 

heats the air inflow of the combustion cylinder to a certain degree, which reduces the fresh-air 

charging coefficient of the diesel engine. Second, the reduction of oxygen concentration in the 

cylinder by the EGR affects the combustion process. The specific heat capacity of the exhaust 

gas becomes large, which reduces the combustion temperature in the cylinder and the thermal 

efficiency of the diesel engine.  

 

VGT-EGR system has been able to reduce the diesel emissions to a certain extent, but its 

EGR system fails to be adjusted on demand: as shown in Figure 4.32, the air-fuel ratio of the 

diesel engine is relatively large at small load which could lead to a larger EGR rate. The air-

fuel ratio is great under heavy load, so the economic efficiency declines under the existing 

EGR rate. Meanwhile, the VGT turbocharger has low control accuracy, so it fails to meet the 

higher emission performance and power requirements. Therefore, the ECU control is replaced 

by a more advanced controller in this study. Analysis of the results shows that the raw 

emissions of NOx of this diesel engine can only meet the requirements of Euro IV and 

emissions of PM can only meet the requirements of Euro III. Therefore, further optimisation 

is required to reduce the emissions. In this study, the NMPC method is used on the EGR and 

VGT control to achieve better regulation of VGT and EGR to improve the emission 

performance of the engine without changing the structure of the cylinder. The engine 

efficiency is then improved under the premise of fuel consumption. 

 

4.5.2 Dynamic Simulation 

To validate the model in dynamical operation, the dynamic FTP-75 cycle test was performed 

on the engine test-bench. Please refer to Section 4.3 for details of the test-bench setup of the 
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FTP-75 cycle test. The same FTP-75 test has been simulated by means of the engine-air-path 

model to assess the agreement between the prediction of the model and the results of the 

measurements. The configuration of the Matlab/Simulink simulation model is the same as 

shown in Section 4.5.1. In the FTP-75 test, instead of the stationary mode simulation, the 

measured FTP-75 variables value of EGR (%), VGT (%), n (rpm) and mf (mg/cycle) are used 

as inputs for the model with a simulation time of 1372 seconds.  

 

 

Figure 4.33: FTP-75 simulation model inputs (0~1372s) 
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Figure 4.33 illustrates the given variable inputs as functions of time. This engine-air-path 

model could also be connected with a vehicle drive-train model for calculating the speed, 

acceleration and gear shifting of the vehicle. However, as the main focus of this study is the 

control of the EGR and VGT, the calculation of vehicle dynamic is not included in this model.  

 

4.5.2.1 MAF and MAP 

 

Figure 4.34: Dynamic validation of the simulation results MAF and MAP (0-600s) 

(VAFmaf=91%, VAFmap=90%) 

 

As previously stated, the main purpose of VGT and EGR is the improvement of engine MAF 

and MAP; therefore, the MAF and MAP are modelled. For the purpose of verification, a 

comparison of the measurement and of the simulation results of MAF and MAP is reported in 

Figure 4.34. The figure clearly shows that the dynamic responses of the MAF and MAP are 

very well reproduced by the model: The VAFmaf = 91% and the VAFmap = 90%. The VAF 

200

300

400

500

600

700

800

M
A

F
 [

m
g
/c

y
c
]

 

 

Simulation

Measurement

0 100 200 300 400 500 600
900

1000

1100

1200

1300

1400

1500

1600

1700

Time [s]

M
A

P
 [

h
p
a
]



  139 

values are calculated by Equation 3-6. It can be observed that the MAF and MAP are kept 

below 800 mg/cycle and 1700 hPa, respectively, and that the MAP increased when the MAF 

increased. In the experiments in which the engine is measured, the ambient pressure is 980 

hPa; therefore, the simulation result of MAP never falls below 980 hPa. It can be concluded 

that the overall quality of the MAF and MAP models are sufficient for the qualitative tests of 

control deign.  

4.5.2.2 Emissions 

 

Figure 4.35: Identification of the NOx and OPAC models (VAFNOx=88%, VAFPM=85%) 

 

A comparison of the identifications can be seen in Figure 4.35. The validation of NOx and 

OPAC is shown in Figure 4.36 with respect to how they predict efficiency. This shows that 

the NOx model with VAFNOx = 83% agrees better with measured data than the OPAC model 

with VAFPM = 81%. The VAF values are calculated via Equation 3-6. The cause for this 

behaviour is that the contribution in the production of NOx comes from the reaction of 

nitrogen and oxygen under the effect of the combustion. The level of NOX is strongly 

correlated with combustion temperature. Unfortunately, the mechanism of the particulate 
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limited information is given as input to the system identification process; therefore, it is not 

surprising when NOx model exhibits better quality. However, in both cases, the relative error 

in VAF is in the acceptable tolerance level. 

 

Figure 4.36: Validation of the NOx and OPAC models (VAFNOx=83%, VAFPM=81%) 

 

The relationship between emissions and lambda is shown in Figure 4.37. It can be observed 

that the lambda value for diesel engines is either small at part load or stoichiometric at middle 

and full loads. However, some areas of course exhibit extreme lambda values. It seems to be 

the case that the engine operates sometimes in lean conditions, and the charged air is much 

greater than the required fuel injection at these operation points. As mentioned in Section 2.2, 

the combustion temperature has a significant impact on the NOx formation. However, during 

the combustion, high temperature is not the only reason for high NOx; temperature is also 

high because of a high oxygen concentration in the combustion chamber. The combination of 

both temperature and available oxygen is crucial.  

 

As shown in Figure 4.37, when lambda values are close to 1 due to the high temperature 

caused by a favourite combustion condition, the engine produces the most emissions of NOx. 

The OPAC increased with lower lambda values, primarily because the mixture has too little 

oxygen, which means a larger number of partial combustions have occurred. Reduction of the 

NOx emissions of the diesel engine is mainly caused by the fact that the recirculating exhaust 
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gas of the EGR system contains more polyatomic molecules, such as CO2, H2O, etc., which 

increase the specific heat capacity of the cylinder mixture and reduce the cylinder combustion 

temperature. Therefore, the conditions required by NOx formation can be controlled. 

Meanwhile, the circulating exhaust gas can reduce the oxygen concentration in the cylinder 

and reduce the rate of chain reactions during combustion, thereby resulting in a decrease in 

adiabatic flame temperature. These factors significantly reduce the NOx emissions of the 

VGT-EGR diesel engine. As for the rise of the diesel engine PM, the analysis indicates that 

the main reasons are as follows: The circulating exhaust gas dilutes the oxygen concentration 

in the cylinder, which results in the reduction of local oxygen enrichment and reduces the 

possibility of NOx formation. On the other hand, it also exacerbates the regional hypoxia and 

prompts the generation of PM. Meanwhile, the decrease in the combustion temperature in the 

cylinder also affects the oxidative decomposition after the formation of PM, which 

significantly increases the PM emissions of the VGT-EGR diesel engine. The methods used in 

diesel engines to reduce both particle and NOx conflict with each other. If an attempt is made 

to lower the number of particles, the NOx emissions become worse.  

 

Figure 4.37: Simulation results Lambda over NOx and OPAC 
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For the future emission optimisation, it is important to handle the NOx-PM (OPAC) trade-off 

problem and reduce both values to fulfil the laws regarding exhaust-gas emissions. This is a 

true multiple-target optimisation that leads to a set of pareto-optimal solutions. At this point, 

the selection of the solution can also be performed by means of other criteria (e.g., of NOx or 

PM).  

 

A NOx-PM (OPAC) pareto in Figure 4.38 is generated from the simulation. As they are 

coefficients to values of different units: e.g., NOx in ppm and OPAC in %. Therefore, to 

better illustrate the results, the NOx and PM values are shown as the normalised ratio of NOx 

(norm(NOx)) and OPAC (norm(OPAC)). This pareto plot shows the relation of NOx and 

OPAC model outputs. It allows us to judge a state in which it is not possible to improve NOx 

output without having to simultaneously degrade the OPAC. To solve this pareto-optimal 

problem with respect to the optimisation criteria, the engine-air-path model is employed to 

find the optimal values of MAF and MAP in different operating conditions, thereby to 

improve the NOx and OPAC emission performance and the premise of unchanged fuel 

consumption of the diesel engine.  

 

 

Figure 4.38: Pareto plot of NOx and OPAC 
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Figure 4.39: FTP-75 cycle simulation results oxygen concentration in intake and exhaust 

manifold (0~1372s) 

 

Figure 4.39 shows the simulation results of oxygen concentration in the intake and exhaust 

manifolds. The details of the Matlab/Simulink setup in the FTP-75 cycle have been explained 

in Sections 4.5.1 and at beginning of Section 4.5.2. During the FTP-75 cycle simulation, the 

oxygen concentration in the ambient under room temperature is around 23%; in the intake 

manifold, the oxygen concentration is under 23%. The main reason for these results is the 

EGR mechanism: A part of the exhaust gas is mixed with the fresh air and brought again to 

the intake manifold. From 800 to 900s, the engine probably operates in a high operation area; 

therefore, oxygen concentration is relatively low. In the combustion, the methane and oxygen 

are transformed mainly into carbon dioxide and water; thus, the oxygen concentration in the 

exhaust manifold is clearly smaller than in intake manifold, as shown in Figure 4.39.  

 

So far, the output emissions are modelled with the engine control variables. In addition, 

internal variables from the particular measurement dataset – such as MAF and MAP – can be 

used as the model input variables. This is useful if the aim of the optimisation introduced in 
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the second part is not the calculation of control characteristics for the manipulated variables 

but command-variable mapping characteristics for secondary control, such as VGT and EGR. 

The identified model is able to represent the emission of the real air-path subsystem in the 

whole operating range. This model is also used to calculate the optimal reference values, as is 

mentioned in Chapter 6. 

 

4.5.2.3 Engine Torque 

Figures 4.40 and 4.41 show the torque model output together with identification and 

validation data. Globally, the engine torque dynamic is well predicted by the data-based 

model. The relative error increases in the negative torque area. The braking management 

system should influence the torque output. The validation results VAF value of 80% indicates 

that this level of model performances is satisfactory for the further study. The VAF values are 

calculated by Equation 3-6.  

 

Figure 4.40: Identification of the torque model (VAFtorque=88%)   

 

 

Figure 4.41: Validation of the torque model (VAFtorque=80%)   
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4.6 Summary 

This chapter describes the modelling approach developed starting from experiment and 

thermodynamic theory of combustion engine and simulation tools, which includes a detailed 

simulation platform and a system identification tool. It aims to facilitate the design of 

equivalent fuel consumption with better emissions, both in stationary and dynamic conditions, 

by considering the next emission standard for sustainable and energy-effective individual 

mobility. The final engine-air-path model is in a good agreement with measurements such 

MAF, MAP, NOx, PM and the dynamics behaviour of each system. Thanks to advances in 

system modelling by Matlab/Simulink, this engine-air-path model guarantees fast simulation, 

the possibility to simulate different sub-concepts (variations-computation), an analysis of 

engine-air-path control concepts, and efficient identification of the best control concept under 

real-world driving cycles and conditions. In this study, these methods and tools have proven 

to provide time-effective ways to study the impact of engine-air-path control on engine 

emissions; thus, the established engine simulation model can be well adapted for the design 

and evaluation of advanced control of the engine-air-path. The next step of this study is to 

design and validate the NMPC air-path controller based on this engine model. It is expected 

that simulation results will yield a significant contribution to assess the controller 

performance under investigation.  
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Chapter 5. NON-LINEAR MODEL PREDICTIVE CONTROL 

OF AN DIESEL ENGINE-AIR-PATH SYSTEM  

Despite currently ongoing public discussions, the modern diesel engine still represents a 

favourable platform for a highly-valuable future propulsion-system unit even under changing 

regulatory boundary conditions and an altered market environment. As emission standards for 

diesel engines become increasingly stringent, advanced engine-control technologies which 

provide improvements with respect to emissions and fuel consumption are becoming 

increasingly important. In automotive ECU today, the PID controller is by far the most 

dominating form, and more than 90% of all control loops are PID. However, in the diesel 

engine system, linear control rules are known to give very poor results in many non-linear 

control cases such as non-linearity, time varying and complex environment (Abidi, Bosche, & 

El Hajjaji, 2013). As mentioned in Section 2.1, the engine-air path is a typical, non-linear 

MIMO system, and there is a strong cross-coupling effect between MAF and MAP control 

loops (Jung, 2003; Nieuwstadt & Kolmanovsky, 2000). In a typical control method, two 

independent PID control loops are used to control the EGR valve and the VGT actuator, 

respectively. Obviously, to control a non-linear MIMO system with a PID controller puts a 

strong restriction on the control performance. As discussed in Section 2.3, the NMPC could 

be used with favourable properties to overcome the problems raised by non-linear system 

control. Previous studies (Wang & Steiner, 2011; Wang, Waschl, Alberer, & Del Re, 2012; 

Wang, Zhang, & Bechkoum, 2016; Wang, Zhang, & Bechkoum, 2019) have shown that the 

LPV modelling approach can be used to represent non-linear processes more precisely and is 

a good alternative in terms of model complexity and computational performance for model-

based control synthesis. These benefits make NMPC possible in practice.  

 

This chapter discusses an NMPC controller for a diesel engine-air-path based on a special, 

non-linear model class: LPV. The idea behind the purposed NMPC strategy (Figure 5.1) is to 

represent the plant model as an LPV model, and the control-objective function in searching 

optimal solution of QP problem is extended to the parameter-varying cost function by 

utilising the given LPV model. As mentioned in Section 2.3.4.3, a new online, active-set 

strategy for the fast solution of QP problems in MPC is developed in (Ferreau, 2014). This 

strategy builds on ideas from parametric optimisation and is fully suitable for fast, real-time 

applications. Therefore, in the new NMPC algorithms, this online active set strategy, 
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qpOASES, is used to solve the trade-off between control performance and control effort used. 

Please refer to Appendix B for the details of the qpOASES. 

 

 

 

Figure 5.1: Structure of NMPC using LPV model 

 

In Figure 5.2, an extract of the signal-flow scheme for the purposed NMPC application is 

shown which is characterised by a torque-required structure. It starts with the driver demand, 

which is typically entered via the fuel injection mf and engine speed n by adjusting the drive 

pedal and is equivalent to a demanded engine torque and corresponding vehicle acceleration. 

To derive this torque, the required MAP and MAF, in dependence on operation point n and mf 

are calculated by the engine-management system in ECU maps. These control functions 

provide the reference values of MAPref and MAFref for the NMPC. The chosen reference 

values, which are derived via the model-based optimisation of emissions and fuel, are 

provided more in detail in Chapter 6. In the close-loop control scheme, the precise control is 

realised by the proposed LPV-based NMPC controller, which regulates the position of the 

EGR and VGT to reach the required MAP and MAF. The block Kalman estimator consists of 

an estimator for calculating the states of the inputs and outputs of the air-path system for the 

NMPC controller. Other blocks in Figure 5.2 show the air path and the combustion process 

with the demanded torque and emissions. However, in a real automobile ECU, the engine-air-
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path control is more complex and is divided into several possible activities. The structure 

shown in Figure 5.2 can be considered the main part of the air-path control. The low-level 

control functions (e.g., the control variants of the special operation states in idle speed, cold 

start and warm up) are ignored here because they are not the focus of this study.  

 

 

 

Figure 5.2: NMPC close-loop control scheme in engine-air-path system 

 

The structure of this chapter is as follows. The new LPV-based NMPC approach for the 

engine-air-path is first given in Section 5.1 with particular emphasis on modelling suitable for 

NMPC control. This is followed by consideration of an NMPC application of a diesel engine-

air-path in Section 5.2. The simulation results of the NMPC controller performance in the 
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engine-air-path are presented, discussed and compared with a linear MPC and a standard ECU 

at different operation areas in Section 5.3.  

 

5.1 Non-linear Model Predictive Control (NMPC) 

As is discussed in the literature review, which follows in Chapter 2, the linear MPC became 

one of the leading control techniques in the process control industry in the last thirty years, 

(Langthaler, 2007; Alberer, 2009; Afram & Janabi, 2014). Although most processes 

encountered in the industry are in practice non-linear, MPC algorithms are generally based 

upon linear systems. In many applications, the use of a linear MPC can be equate. Many 

successful applications of linear MPC can be found in the chemical process and refinery 

industry (Camacho & Bordons, 2007; Richalet, Rault, Testud, & Papon, 1978). Unfortunately, 

in practice, system non-linearities are very crucial to the closed-loop stability. Studies (Abidi, 

Bosche, & El Hajjaji, 2013; Casavola, Famularo, & Franze, 2003) have shown that a linear 

MPC is not effective enough in a complex non-linear system control such as an engine-air-

path. This is because a linear model may be restricted in the amount of information it can 

contain about a process, thereby compromising achievable control quality. An overview of 

engine-air-path simulation and control approaches is presented in Chapter 2. Compared with 

most other control techniques, non-linear MPC generally provides superior performance in 

terms of better transient response, robustness to disturbances and consistent performance 

under varying conditions. Therefore, NMPC could be a very interesting research area for 

those who are interested in overcoming the problems raised in the context of engine-air-path 

control. However, so far as the author is aware, the reported applications of NMPC are still 

limited. Theoretically, the extension of MPC fundamentals to the non-linear case is 

straightforward, but in practice, the following challenges have to be faced: 1) the generation 

of accurate model of non-linear system, 2) the integration of non-linear modelling methods 

for use in NMPC, and 3) the integration of fast and powerful optimisation techniques for 

NMPC QP-Solver.  

 

Hence this study seeks a fast, non-linear control application with a special focus on 

compensation of the non-linearities and the computational burden. In this section, first, the 

overview of the MPC concept is by presented with the focus on cost functions, QP problems, 

MPC formulations and stability. In the second part, based on the derived LPV model, an 
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NMPC is created for the non-linear system-control problems to improve the control 

performances with respect to tracking, robustness and stability during disturbances caused by 

operation state changes. The definitions of NMPC are described, and the determination of the 

LPV model, non-linear control optimisation algorithms and NMPC close-loop representation 

are given. Finally, the controller layout is presented, and the results are analysed and 

evaluated. 

 

5.1.1 Model Predictive Control  

MPC is an optimal control method based mainly on certain optimisation methods. It uses a 

model of the process and minimises an objective function to obtain an optimal control action. 

In contrast to classical feedback controllers, MPC is able, due to its predictive character, to 

take future reference signals and known future disturbances into account. In addition, input 

and output constraints can be handled relatively easily. As discussed in Chapter 2, a lot of 

literature can be found on the theories and practices of MPC (Camacho & Bordons, 2007; 

Ortner, 2006; Richalet, Rault, Testud, & Papon, 1978). In this study, MPC theory is to be 

extended to NMPC. To better understand the calculation basis of NMPC, a brief introduction 

to the general MPC definition and notation shall be given within this section. 

 

The main concept of MPC can be summarised as follows: 

 

• It involves the use of a mathematical model to predict the future output of a 

determined horizon called Predication Horizon (PH). The model can be a state-space 

system, a transfer function or any other mathematic representation.  

• It also involves the calculation of an optimal control sequence for a shorter horizon 

called a Control Horizon (CH) by minimising an objective function. The optimisation 

problem is solved by predicting the future system output by using a model of the plant. 

This can be done either online during run time or offline. 

• It also involves the use of a receding-horizon strategy: i.e., at each time instance, the 

optimisation is achieved for a finite horizon, which involves the application of the first 

control signal of the optimised sequence at each step. At next time instance, the 

horizons move ahead, and iteration processes repeat until the optimal solution is 

reached. 
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To present this concept, the basic structure of general MPC is shown in Figure 5.3. An 

internal mathematical model is used to predict future plant outputs. The future control actions 

are calculated by the optimiser taking the objective function and the constraints into account. 

 

 

 

Figure 5.3: Basic structure of a general MPC (Camacho & Bordons, 2007) 

 

When considering engine-air-path control-system characteristics, the MPC approach has 

several advantages over other control strategies (Nieuwstadt & Kolmanovsky, 2000; Liu & 

Wei, 2007; Zhao & Pan, 2012):  

 

• Handling of constraints: There are (nearly) always constraints involved in real systems 

such as the control actuators. In case the engine-air-path controls are constrained, the 

control values of VGT and EGR must be within the physical limitations of 0% and 

100%. The MPC is able to include such constraints on the control value. Besides, 

MPC can also deal with constraints of changing rates on the control parameters in the 

optimisation task. 

• Handling of MIMO system: Because the optimisation can be done by solving the 

state-space system representation, coupled MIMO systems can also be considered. 



  152 

• Handling of future disturbance: By extending the state-space system, a future 

disturbance approach can be implemented. 

 

Despite many advantages and considerable work on MPC development, areas that may 

require further investigation still exist and are summarised as follows:  

 

• MPC requires an accurate model for prediction, and the model must be able to reflect 

the real dynamics in a sufficient way.  

• The optimisation task in MPC controller has to be solved, where a unique solution can 

only be obtained in some special cases. Besides the computational burden, caused by 

the optimisation task, has to be done at every sampling time instant. The formulation 

of the optimisation problem of an MPC leads to a QP; this has to be solved to obtain 

the optimal control sequence.  

 

5.1.1.1 MPC Internal Model 

First, MPC requires a proper internal model for calculating the prediction. A survey of MPC 

in theory is given in (Camacho & Bordons, 2007). This section presents the definition and 

notation related to the MPC approach, as presented in (Camacho & Bordons, 2007). The 

classical state-space representation (Equation 5-1) of linear time-invariant systems is a widely 

accepted form of the MPC internal model (Camacho & Bordons, 2007), 

 

𝑥(𝑡 + 1) = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡)                                               (5-1) 

𝑦(𝑡) = 𝐶 ∙  𝑥(𝑡).   

 

In discrete cases, the following formulation in the form of a discrete state-space representation 

of the process model can be used (Camacho & Bordons, 2007): 

 

𝑥𝑖+1 = 𝐴 ∙ 𝑥𝑖 + 𝐵 ∙ 𝑢𝑖                                               (5-2) 

𝑦𝑖 = 𝐶 ∙  𝑥𝑖, 

 

where 𝑥𝑖 is the state 𝑥 ∈ 𝑅𝑛𝑥 at time instant i, i is the time-instant number and u and y denote 

the system input and output, respectively. A is the system state matrix and dim[𝐴] = 𝑛𝑥 × 𝑛𝑥; 
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B is the system input matrix dim[𝐵] = 𝑛𝑥 × 𝑛𝑢. C represents the system output matrix and 

dim[𝐶] = 𝑛𝑥 × 𝑛𝑦. Equation 5-2 is subject to the following constraints on inputs and outputs: 

 

𝑢𝑖 ∈ [𝑢𝑚𝑖𝑛 , 𝑢𝑚𝑎𝑥 ], 𝑦𝑖 ∈ [𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 ], ∀ 𝑖 ≥ 0 .                             (5-3) 

 

5.1.1.2 Receding-horizon Strategy 

 

 

Figure 5.4: MPC receding-horizon strategy (Camacho & Bordons, 2007) 

 

It has been known in (Camacho & Bordons, 2007; Maciejowski, 2000) that making the 

horizons constrained in predictive control leads to guaranteed stability. This idea basically 

consists of deriving a future control sequence so that the predicted output over some future 

time range is constrained to be exactly at a reference value. The receding-horizon strategy in 

MPC is illustrated in Figure 5.4. There are two temporally significant horizons in MPC: the 

PH, with length nPH; and the CH, with length nCH. At each time instant, the output of the 

process is predicted for the next nPH steps within the prediction horizon, depending on the 

future input sequence. As a receding-horizon strategy is used, only if the first element of the 

control sequence,𝑢𝑖 or ∆𝑢𝑖, is sent to the plant and all the computation is repeated at the next 

sampling time. If PH is infinity and there are no constraints, the predictive controller becomes 
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the well-known Linear Quadratic Regulator (LQR). The optimal control sequence is 

generated by a steady-state feedback law, as the feedback gain matrix is computed via the 

solution of an algebraic equation. In many applications, the nCH is chosen to be much smaller 

than the nPH so that the number of variable input signals and therefore the number of 

optimisation variables is reduced. This leads to less computing time with respect to the 

optimisation. 

 

 

Figure 5.5: Input blocking (Camacho & Bordons, 2007) 

 

Due to these receding horizons, a kind of feedback approach is introduced such that the MPC 

is able to react to disturbances. In (Camacho & Bordons, 2007), an input-blocking approach is 

applied to optimise the input sequence. In MPC, to reduce the degrees of freedom of 

optimisation variables, the predicted control input trajectory is forced to remain constant over 

some steps (Longo, Kerrigan, & Ling, 2011).  

 

Figure 5.5 depicts the optimised input sequence during the control horizon. This obviously 

shows that blocking leads to fewer optimisation variables and consequently to a reduced 

computational burden.  
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5.1.1.3 MPC Objective Functions  

It is widely accepted that an objective function is used in an MPC as a scalar, non-negative 

measure of controller performance which usually has a quadratic formulation (Ferreau, 2014). 

Based on the objective function, the MPC solves the quadratic optimisation problem at each 

control interval (Camacho & Bordons, 2007). Equation 5-4 provides a formulation of the 

objective function J for solving the MPC tracking problem, and this formulation is called a 

quadratic programming (QP) problem (Alberer, 2009; Zhang, Xue, & Gao, 2018). In 

Equation 5-4, 𝑥𝑖  is the system state at time i, and this objective function requires the 

constrains: system output [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥], system input [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥] and system input change 

rate [𝛥𝑢𝑚𝑖𝑛, 𝛥𝑢𝑚𝑎𝑥], and the tracking results difference 𝑦𝑖 − 𝑦𝑟𝑒𝑓 between system outputs 𝑦 

and given references 𝑦𝑟𝑒𝑓.  

 

𝐽 = 𝑚𝑖𝑛𝑢
1

2
∑ (𝑦𝑖
𝑛𝑃𝐻
𝑖=0 − 𝑦𝑟𝑒𝑓)

𝑇𝑄(𝑦𝑖 − 𝑦𝑟𝑒𝑓) + ∑ ∆𝑢𝑖
𝑇𝑛𝐶𝐻

𝑖=0 𝑅∆𝑢𝑖                   (5-4)      

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑦𝑚𝑎𝑥 , 𝑖 = 0…𝑃𝐻 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥 , 𝑖 = 0…𝑃𝐻 

∆𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1 

𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢𝑖 ≤ 𝛥𝑢𝑚𝑎𝑥 , 𝑖 = 0…𝐶𝐻 − 1 

∆𝑢𝑖 = 0, 𝑖 = 𝐶𝐻…𝑃𝐻. 

 

In MPC, a QP-solver involves the minimisation of Objective Function 5-4 subject to 

constraints, tracking reference and internal mathematical model structure.  

 

Based on Equation 5-2, the predictions for the future system outputs are recursively calculated 

with the actual system states and future system inputs (Alberer, 2009) : 

 

𝑦0 = 𝐶𝑥0                                                                                                                               (5-5) 

𝑦1 = 𝐶𝑥1 = 𝐶(𝐴𝑥0 + 𝐵𝑢0) =  𝐶𝐴𝑥0 + 𝐶𝐵𝑢0 

𝑦2 = 𝐶𝑥2 = 𝐶(𝐴𝑥1 + 𝐵𝑢1) =  𝐶𝐴
2𝑥0 + 𝐶𝐴𝐵𝑢0 + 𝐶𝐵𝑢1 

𝑦3 = 𝐶𝑥3 = 𝐶(𝐴𝑥2 + 𝐵𝑢2) =  𝐶𝐴
3𝑥0 + 𝐶𝐴

2𝐵𝑢0 + 𝐶𝐴𝐵𝑢1 + 𝐶𝐵𝑢2                                                                

⋮ 

𝑦𝐶𝐻 =  𝐶𝐴
𝐶𝐻𝑥0 + 𝐶𝐴

𝐶𝐻−1𝐵𝑢0 +⋯+ 𝐶𝐴𝐵𝑢𝐶𝐻−2 + 𝐶𝐵𝑢𝐶𝐻−1 
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𝑦𝐶𝐻+1 =  𝐶𝐴
𝐶𝐻+1𝑥0 + 𝐶𝐴

𝐶𝐻𝐵𝑢0 +⋯+ 𝐶𝐴
2𝐵𝑢𝐶𝐻−2 + 𝐶𝐴𝐵𝑢𝐶𝐻−1 + 𝐶𝐵𝑢𝐶𝐻−1 

⋮ 

𝑦𝑃𝐻 =  𝐶𝐴
𝑃𝐻𝑥0 + 𝐶𝐴

𝑃𝐻−1𝐵𝑢0 +⋯+ 𝐶𝐴
𝑃𝐻−𝐶𝐻+1𝐵𝑢𝐶𝐻−2 + 𝐶𝐴

𝑃𝐻−𝐶𝐻𝐵𝑢𝐶𝐻−1 +⋯+

𝐶𝐴𝐵𝑢𝐶𝐻−1 + 𝐶𝐵𝑢𝐶𝐻−1. 

 

Equation 5-5 can be written in a matrix notation (Alberer, 2009): 

 

[
 
 
 
 
 
 
 
 
 
 
 
𝑦0

𝑦1

𝑦2

𝑦3

⋮

𝑦𝐶𝐻

⋮

𝑦𝑃𝐻]
 
 
 
 
 
 
 
 
 
 
 

  =

[
 
 
 
 
 
 
 
 
 
 
 
𝐶 0 0 ⋯ 0

𝐶𝐴 𝐶𝐵 0 ⋯ 0

𝐶𝐴2 𝐶𝐴𝐵 𝐶𝐵 ⋯ 0

𝐶𝐴3 𝐶𝐴2𝐵 𝐶𝐴𝐵 ⋯ 0

⋱

𝐶𝐴𝐶𝐻 𝐶𝐴𝐶𝐻−1𝐵 ⋯ 𝐶𝐵

⋮ ⋮

𝐶𝐴𝑃𝐻 𝐶𝐴𝑃𝐻−1𝐵 𝐴𝑃𝐻−𝐶𝐻+1𝐵 𝐶𝐴𝑃𝐻−𝐶𝐻𝐵 +⋯+ 𝐶𝐴𝐵 + 𝐶𝐵]
 
 
 
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
𝑥0

𝑢0

𝑢1

𝑢2

⋮

𝑢𝐶𝐻−1]
 
 
 
 
 
 
 

.                                                        (5-6) 

 

The error equation, e = y - yref, can be written in a matrix equation as follows: 

 

𝒢 = 𝒦 ∙ 𝒯 ,                                                  (5-7) 

where 

𝒢 =  

[
 
 
 
 
 
 
 
 
 
 
 
𝑒0

𝑒1

𝑒2

𝑒3

⋮

𝑒𝐶𝐻

⋮

𝑒𝑃𝐻]
 
 
 
 
 
 
 
 
 
 
 

, 𝒯 =  

[
 
 
 
 
 
 
 
 
 
𝑥0

𝑢0

𝑢1

𝑢2

⋮

𝑢𝐶𝐻−1

𝑦𝑟𝑒𝑓 ]
 
 
 
 
 
 
 
 
 

,                                               (5-8) 
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𝒦 =

[
 
 
 
 
 
 
 
 
 
 
 
𝐶 0 0 ⋯ 0 −1

𝐶𝐴 𝐶𝐵 0 ⋯ 0 −1

𝐶𝐴2 𝐶𝐴𝐵 𝐶𝐵 ⋯ 0 −1

𝐶𝐴3 𝐶𝐴2𝐵 𝐶𝐴𝐵 ⋯ 0 −1

⋮ ⋱ ⋮

𝐶𝐴𝐶𝐻 𝐶𝐴𝐶𝐻−1𝐵 ⋯ 𝐶𝐵 −1

⋮ ⋮

𝐶𝐴𝑃𝐻 𝐶𝐴𝑃𝐻−1𝐵 𝐴𝑃𝐻−𝐶𝐻+1𝐵 𝐶𝐴𝑃𝐻−𝐶𝐻𝐵 +⋯+ 𝐶𝐴𝐵 + 𝐶𝐵 −1]
 
 
 
 
 
 
 
 
 
 
 

.                                                                             

 

For tracking control, the rate of input change ∆𝑢 has to be considered. Thus, in Equation 5-9, 

the variations of the input signals are defined as ∆𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1.  

 

The vector of ∆𝑢 from time instant 0 to CH-1 are recursively calculated:  

[
 
 
 
 
 
 ∆𝑢0

 ∆𝑢1

⋮

 ∆𝑢𝐶𝐻−1]
 
 
 
 
 

=

[
 
 
 
 
−1 1 0 ⋯ 0

0 −1 1 0

⋱ ⋱

0 −1 1 ]
 
 
 
 

.

[
 
 
 
 
 
 
𝑢−1

𝑢0

𝑢1

⋮

𝑢𝐶𝐻−1]
 
 
 
 
 
 

.                          (5-9)   

 

Defining the ∆𝑈, 𝐸 and 𝒮 as follows: 

 

∆𝑈 =

[
 
 
 
 
 
 ∆𝑢0

 ∆𝑢1

⋮

 ∆𝑢𝐶𝐻−1]
 
 
 
 
 

, 𝐸 =

[
 
 
 
 
−1 1 0 ⋯ 0

0 −1 1 0

⋱ ⋱

0 −1 1 ]
 
 
 
 

 𝑎𝑛𝑑 𝒮 =  

[
 
 
 
 
 
 
𝑢−1

𝑢0

𝑢1

⋮

𝑢𝐶𝐻−1]
 
 
 
 
 
 

.             (5-10)   

Integrating Equation 5-10 into the Equation 5-9 yields the following:  

 

∆𝑈 = 𝐸 ∙  𝒮.                                                           (5-11)   

 

Defining the weightings 𝒬 and ℛ as follows: 

 

𝒬 = 𝑑𝑖𝑎𝑔(𝑄,⋯ , 𝑄),                                                 (5-12)   

ℛ = 𝑑𝑖𝑎𝑔(𝑅,⋯ , 𝑅), 
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thereby yielding the following optimisation: 

 

𝑚𝑖𝑛𝑢
1

2
(𝒦𝒯)𝑇𝒬(𝒦𝒯) + (𝐸𝒮)𝑇ℛ(𝐸𝒮).                                (5-13)    

 

Furthermore, Equation 5-13 can be rewritten as follows: 

 

𝑚𝑖𝑛𝑢
1

2
𝒯𝑇𝒦𝑇𝒬𝒦𝒯 + 𝒮𝑇𝐸𝑇ℛ𝐸𝒮.                                     (5-14)    

 

As given in (Alberer, 2009), the 𝒦𝑇𝒬𝒦 in Equation 5-14 has the following dimension:  

 

𝒦𝑇𝒬𝒦 = [

dim𝑥 × dim𝑥 dim𝑥 × CH dim𝑢 dim𝑥 × dim𝑦
CH dim𝑢 × dim𝑥 CH dim𝑢 × CH dim𝑢 CH dim 𝑢 × dim𝑦
dim 𝑦 × dim𝑥 dim𝑦 × CH dim𝑢 dim𝑦 × dim𝑦

].     (5-15)    

 

And the 𝐸𝑇ℛ𝐸 in Equation 5-14 has the dimension: 

 

𝐸𝑇ℛ𝐸 = [
 dim𝑢 ×  dim𝑢  dim 𝑢 × CH dim𝑢
CH dim𝑢 ×  dim𝑢 CH dim𝑢 × CH dim𝑢

].                (5-16)    

 

According to (Alberer, 2009) and (Ferreau, 2014), the Hessian matrix H and matrix f of the 

linear inequality related to the QP-solver are expressed as follows: 

 

𝐻 = 𝒦𝑇𝒬𝒦 (2,2) + 𝐸𝑇ℛ𝐸(2,2)                                   (5-17)    

𝑓 = [𝒦𝑇𝒬𝒦 (1,2)    𝐸𝑇ℛ𝐸(1,2)    𝒦𝑇𝒬𝒦 (3,2)], 

 

where 𝒦𝑇𝒬𝒦 (2,2), 𝒦𝑇𝒬𝒦 (1,2) and 𝒦𝑇𝒬𝒦 (3,2) mean the blocks (2,2), (1,2) and (3,2) of 

𝒦𝑇𝒬𝒦  in Equation 5-15; 𝐸𝑇ℛ𝐸 (2,2) and 𝐸𝑇ℛ𝐸(1,2) mean the blocks (2,2) and (1,2) of 

𝐸𝑇ℛ𝐸 in Equation 5-16. 

 

These matrices are now suitable for the QP-solver. The vector 𝑓 is multiplied with a vector 

𝛩 = [𝑥𝑖 𝑢𝑖−1 𝑦𝑟𝑒𝑓], which includes information on the current state 𝑥𝑖, the output reference 

𝑦𝑟𝑒𝑓 and the previous optimal input signal 𝑢𝑖−1. And this vector 𝑓 is updated at every instant. 

Ortner, Langthaler, Ortiz and del Re (2006) have shown that, in practice, all processes are 

subject to constraints: 1) physical limits (actuators have a limited range of action and a limited 
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slew rate), 2) safety limits (pressure or temperature limits), and 3) operating conditions (due 

to technological limits or economic or environmental reasons). In MPC, the input 

(manipulated) variables can be kept in-bound by clipping, and its constraints are integrated 

straightforwardly in the matrices in minimal input 𝑙𝑏 and maximal output 𝑢𝑏: 

 

𝑙𝑏 ≤  𝑈 ≤ 𝑢𝑏.                                                      (5-18)    

 

It is common with rate-of-change constrains on the input signal, ∆𝑢𝑚𝑖𝑛 and ∆𝑢𝑚𝑎𝑥, that the 

following calculations are achieved (Alberer, 2009): 

 

∆𝑈𝑚𝑖𝑛 ≤ ∆𝑈 ≤ ∆𝑈𝑚𝑎𝑥 ,                                              (5-19)     

where 

 

∆𝑈 =

[
 
 
 
 
 
 ∆𝑢0

 ∆𝑢1

⋮

 ∆𝑢𝐶𝐻−1]
 
 
 
 
 

, ∆𝑈𝑚𝑖𝑛 =

[
 
 
 
 
 
 ∆𝑢𝑚𝑖𝑛

 ∆𝑢𝑚𝑖𝑛

⋮

 ∆𝑢𝑚𝑖𝑛]
 
 
 
 
 

 𝑎𝑛𝑑 ∆𝑈𝑚𝑎𝑥 =

[
 
 
 
 
 
 ∆𝑢𝑚𝑎𝑥

 ∆𝑢𝑚𝑎𝑥

⋮

 ∆𝑢𝑚𝑎𝑥]
 
 
 
 
 

.                   (5-20)   

 

Output constraints must be controlled in advance, as output variables are affected by process 

dynamics. The neglect of output constraints can reduce economic profit and cause damage to 

actuators (Alberer, 2009).  

 

Considering Equation 5-7, the output is calculated with 

 

𝑌 = [𝒦1 𝒦2] ∙ [
𝑥0
𝑈
] =  𝒦1 ∙ 𝑥0 +𝒦2 ∙ 𝑈,                                (5-21)    

 

where 

 

𝑈 =

[
 
 
 
 
 𝑢0

 𝑢1

⋮

 𝑢𝐶𝐻−1]
 
 
 
 

.                                                                   (5-22)    

The constraints are then 
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 𝑌𝑚𝑖𝑛 −𝒦1 ∙ 𝑥0 ≤ 𝒦2 ∙ 𝑈 ≤ 𝑌𝑚𝑎𝑥 −𝒦1 ∙ 𝑥0.                             (5-23)                                                  

 

A combination of input rate Equations 5-19 and output constraints Equation 5-23 results in  

 

[
∆𝑈𝑚𝑖𝑛

𝑌𝑚𝑖𝑛 −𝒦1 ∙ 𝑥0
] ≤ [

∆𝑈

𝒦2 ∙ 𝑈
] ≤ [

∆𝑈𝑚𝑎𝑥
𝑌𝑚𝑎𝑥 −𝒦1 ∙ 𝑥0

].                  (5-24) 

 

5.1.1.4 Disturbance Model 

 

 

 

Figure 5.6: Disturbance model (Alberer, 2009) 

 

Many processes are affected by external disturbances caused by variables that can be 

measured such as those governing the engine-air-path, where the MAF and MAP are 

controlled by manipulating the EGR and VGT. Any variation of the EGR and VGT will 

influence the MAF and MAP. These perturbations, also known as load disturbances, can be 

handled by using feed-forward controllers. Known disturbances can be taken explicitly into 

account in MPC. To get correct prediction results, this model can be augmented by a 

disturbance model, as shown in Figure 5.6. These disturbances can represent either input or 
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output disturbances or mixed disturbances. Furthermore, measured disturbances can be 

considered. These disturbances may be uncontrolled inputs (i.e., inputs not used for control). 

 

In case of the disturbance model, the augmented control model is given in Equation 5-25 

(Alberer, 2009), where the plant denotes the state-space representation of the disturbance 

model. The disturbance can be integrated into the system representation with a manipulated 

variable 𝑢𝑖  and a measured disturbance 𝑣𝑖 . The calculation of the H and f matrices is 

performed as described in Equation 5-17,  

 

[
𝑥𝑖+1

𝑣𝑖+1
] = [

𝐴 𝐵

0 𝐴𝑑𝑖𝑠𝑡
] ∙ [

𝑥𝑖

𝑣𝑖
] + [

𝐵

𝐵𝑑𝑖𝑠𝑡
] ∙ 𝑢𝑖                                  (5-25)    

𝑦𝑖 = [𝐶 𝐶𝑑𝑖𝑠𝑡] ∙ [
𝑥𝑖

𝑣𝑖
],  

 

where 𝐴, 𝐵 and 𝐶 are system matrices, and 𝐴𝑑𝑖𝑠𝑡, 𝐵𝑑𝑖𝑠𝑡 and 𝐶𝑑𝑖𝑠𝑡 are disturbance matrices.  

 

5.1.1.5 Stability 

Stability is one of the more complicated issues in the analysis of a control system. Generally, 

the stability of a control system can combine Lyapunov stability criteria (Vidyasagar, 1993) 

and concepts from convergence theory (Bemporad, 2001): 

 

Theorem (Bemporad, 2003) Assume the V(x) as a Lyapunov function. Optimal control 

sequence at time i, 𝑈𝑖 = [ 𝑢0 𝑢1 𝑢2  ⋯ 𝑢𝑖−1]
𝑇. The feasible sequence at time i+1 is �̅�𝑖+1 =

[ 𝑢0 𝑢1 𝑢2  ⋯ 𝑢𝑖−1 0]
𝑇 . The cost function of �̅�𝑖+1  becomes 𝑉∗(𝑥𝑖) − 𝑥𝑖

𝑇𝑄𝑥𝑖 − 𝑢𝑖
𝑇𝑅𝑢𝑖 ≥

𝑉∗(𝑥𝑖+1) , where 𝑉∗(𝑥𝑖) ≥ 0  and monotonically decreasing, so ∃lim
𝑡→∞

𝑉∗ (𝑥𝑖) ≜ 𝑉∞ . Hence 

0 ≤ 𝑥𝑖
𝑇𝑄𝑥𝑖 + 𝑢𝑖

𝑇𝑅𝑢𝑖 ≥ 𝑉
∗(𝑥𝑖) − 𝑉

∗(𝑥𝑖+1) → 0 with 𝑡 → ∞ .Since 𝑅 > 0, 𝑄 > 0, therefore 

lim
𝑡→∞

𝑥𝑖 = 0, lim
𝑡→∞

𝑢𝑖 = 0. 

 

Theorem (Vidyasagar, 1993) The equilibrium points at the origin of system 𝑥𝑖+1 = 𝑓𝑖(𝑥𝑖). 

Assume 𝑋 is a positively invariant set in this system, which contains a neighbourhood of the 

origin in its interior. A function V is called a Lyapunov function in 𝑋 if for all 𝑥 ∈ 𝑋, 
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𝑉(𝑥) > 0 ∀ 𝑥 ≠ 0, 𝑉(0) = 0                                          (5-26)              

𝑉(𝑥𝑖+1) − 𝑉(𝑥𝑖) ≤ 0. 

 

If a system admits a Lyapunov function in X, then the equilibrium point at the origin is 

Lyapunov stable in X.  

 

The MPC objective function can be considered as a Lyapunov function. The guarantee of 

stability can be provided by a finite horizon. In (Cheng & Allgoewer, 1998), the terminal 

region and stabilising control method with quasi-infinite horizon is given, but only for the 

computation of the terminal cost. A terminal state equality states a stability constraint, 𝑥𝑖+𝑁 =

0, which leads to initial conditions 𝑋𝑓 = 0. But for short-prediction horizons, the control 

action may become very high and performance can be decreased because of this addition 

constraint (Langthaler, 2007). Furthermore, in (Mayne, 2001), the asymptotic stability 

theorem is explained. The study shows that, based on Lyapunov theory, one can prove that 

asymptotically stable systems do not need stability constraints for an infinite prediction 

horizon. Wang and Steiner (2011) show that the stabilising properties of constrained MPC can 

be summarised as follows: the unconstrained optimal performance should be retained in the 

control scheme; the number of decision variables should be kept as small as possible and the 

set of initial conditions 𝑋0 should be as large as possible. 

 

5.1.1.6 Kalman Estimator 

 

 

Figure 5.7: Kalman Estimator  
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For prediction of the system outputs, the MPC controller should use the actual system states 

as initial values in each iteration. With the help of an observer, as shown in Figure 5.7, 

Kalman estimator (also called a Kalman filter), the actual states of the MPC internal model 

can be estimated. This section presents the definition and notation related to the Kalman filter 

approach, as presented in (Welch & Bishop, 2006). 

 

In general, a Kalman filter is used to estimate states given a plant in discrete time: 

𝑥𝑖+1 = 𝑓(𝑥𝑖, 𝑢𝑖, 𝑖) + 𝑤𝑖                                               (5-27)            

𝑦𝑖 = 𝑔(𝑥𝑖 , 𝑢𝑖 , 𝑖) + 𝑣𝑖 ,  

 

where 𝑥𝑖  denotes the system states, 𝑢𝑖 represents the system inputs, 𝑤𝑖 represents process 

noise and 𝑣𝑖 represents measurement noise.  

 

The expectations of the two noise terms satisfy the following: 𝐸(𝑤) =  𝐸(𝑣) =  0; 𝐸(𝑤 ∙

𝑤𝑇) =  𝑄;  𝐸(𝑣 ∙ 𝑣𝑇) = 𝑅;  𝐸(𝑤 ∙ 𝑣𝑇) = 𝑁. 

 

The task is to minimise the steady-state error covariance using a state estimate �̂�: 

 

𝑃 = lim
𝑛→∞

𝐸({𝑥 − �̂�} ∙ {𝑥 − �̂�}𝑇).                                  (5-28)      

 

Here, the observer error must be as small as possible to guarantee the stability of the closed 

loop.  

 

As given in (Welch & Bishop, 2006), the estimator obeys the following equation: 

 

�̂�𝑖 = 𝐴 ∙ �̂�𝑖−1 +  𝐵 ∙ 𝑢𝑖 + 𝐿 ∙ (𝑦𝑖 − 𝐶 ∙ �̂�𝑖−1).                   (5-29)            

 

By solving Equation 5-29, the matrix L can be derived:  

 

𝐿 = (𝐴 ∙ 𝑃 ∙ 𝐶𝑇 + �̅�) ∙ (𝐶 ∙ 𝑃 ∙ 𝐶𝑇 + �̅�)−1,                     (5-30)       

      

where A, B and C are system matrices  �̅� = 𝑅 + 𝐻 ∙ 𝑁 + 𝑁𝑇 ∙ 𝐻𝑇 +  𝐻 ∙ 𝑄 ∙ 𝐻𝑇 and  �̅� = 𝐺 ∙

(𝑄 ∙ 𝐻𝑇 +  𝑁). 
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5.1.2 Non-linear Model Predictive Control 

Based on the general definition of MPC given in Section 5.1.1, a new formulation of the 

NMPC using the LPV system class is proposed in this section. The main difference between 

the linear and non-linear MPCs is the inclusion of a non-linear prediction model in the NMPC 

algorithm (Herceg, Raff, Findeisen, & Allgoewer, 2006). This improves the prediction 

accuracy over that of the linear MPC. In both cases, a QP problem has to be solved in each 

step of the prediction horizon. As mentioned, the use of non-linear models also complicates 

the solution of the optimisation problem. For non-linear problems, the output prediction and 

the condensing have to be re-performed for each instance of the prediction horizon. In 

contrast, in the linear MPC, there is just one calculation step for the optimisation procedure. 

The additional computing effort for each time instant in NMPC significantly increases the 

required computational power. Ortner and Wang (2009), Wang, Waschl, Alberer and Del Re 

(2012) and Wang, Zhang and Bechkoum (2016) review numerical methods for the solution of 

optimal control problems in real-time, as they arise in NMPC. It is shown that fast QP-solvers 

can be used successfully for NMPC engine-control applications. 

 

In this section, a special class of LPV system is employed for NMPC formulation. Bamieh 

and Giarre (2002), Wei and Del Re (2003), Wang and Steiner (2011) and Wang, Zhang and 

Bechkoum (2019) have studied the LPV formulation problem. Consider an LPV model 

represented in the state-space formulation by the following system equations: 

 

𝑥𝑖+1 = 𝐴𝑖(𝜌) ∙ 𝑥𝑖 + 𝐵𝑖(𝜌) ∙ 𝑢𝑖 +𝑀 ∙ 𝑣                            (5-31) 

𝑦𝑖 = 𝐶𝑖(𝜌) ∙ 𝑥𝑖 , 

 

where 𝑥𝑖 ∈ 𝑅  represents the system state, 𝑢𝑖 ∈ 𝑅  represents the system inputs, 𝑦𝑖 ∈ 𝑅 

represents the system outputs and 𝜌 ∈ 𝑅 is exogenous input parameters that are measureable 

in real-time by sensors. The matrix M multiplied by measured disturbances v denotes the 

input of the measured disturbances.  

 

The LPV system matrices 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 are evaluated at each instant with the current external 

parameters 𝜌. Hence, the system turns into a linear state-space formulation at each time step. 

The formulation and evaluation of the system matrices 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 in LPV system are given 

in (Wang & Steiner, 2011). The LPV system in Equation 5-31 can be described as follows: 
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�̇� = 𝑓(𝑥, 𝑢, 𝑡, 𝜌)                                                    (5-32) 

𝑦 = 𝑔(𝑥, 𝑢, 𝑡, 𝜌). 

 

The system identification algorithms always deal with discrete measurement (Wang & 

Steiner, 2011), so the Equation 5-32 can be rewritten as following: 

 

(1 + 𝐴(𝑞−1, 𝜌𝑖)) ∙ 𝑦𝑖 = 𝐵(𝑞
−1, 𝜌𝑖) ∙ 𝑢𝑖 +𝑚𝑖,                                (5-33) 

 

where 𝑞−1 is the backward shift operator; 𝑚𝑖 denotes the modelling error. The polynomials 

𝐴(𝑞−1, 𝜌𝑖)  and 𝐵(𝑞−1, 𝜌𝑖)  in Equation 5-33 have the following formulations (Wang & 

Steiner, 2011): 

 

𝐴(𝑞−1, 𝜌𝑖) = 𝑎1(𝜌𝑖) ∙ 𝑞
−1 + 𝑎2(𝜌𝑖) ∙ 𝑞

−2 +⋯+ 𝑎𝑛𝑎(𝜌𝑖) ∙ 𝑞
−𝑛𝑎 ,                     (5-34)                       

 

𝐵(𝑞−1, 𝜌𝑖) = 𝑏1(𝜌𝑖) ∙ 𝑞
−1 + 𝑏2(𝜌𝑖) ∙ 𝑞

−2 +⋯+ 𝑏𝑛𝑏(𝜌𝑖) ∙ 𝑞
−𝑛𝑏 .                      (5-35)                      

 

The coefficients 𝑎(𝜌)  and 𝑏(𝜌)  are linear combinations of a set of known functions 

[𝑓1, 𝑓2, … , 𝑓𝑁−1] as following:  

 

𝑎𝛼(𝜌𝑖) = 𝑎𝛼
0 + 𝑓1(𝜌𝑖) ∙ 𝑎𝛼

1 +⋯+ 𝑓𝑁−1(𝜌𝑖) ∙ 𝑎𝛼
𝑁−1,                              (5-36)                      

 

𝑏𝛽(𝜌𝑖) = 𝑏𝛽
0 + 𝑓1(𝜌𝑖) ∙ 𝑏𝛽

1 +⋯+ 𝑓𝑁−1(𝜌𝑖) ∙ 𝑏𝛽
𝑁−1,                              (5-37)                       

 

where 𝛼 = 1,2, … , 𝑛𝑎 and  𝛽 = 1,2, … , 𝑛𝑏. 

 

Integrating equations 5-36 and 5-37 into equations 5-34 and 5-35 yields the following: 

 

𝐴(𝑞−1, 𝜌𝑖) = (𝑎1
0𝑞−1⋯+ 𝑎𝑛𝑎

0 𝑞−𝑛𝑎) + 𝑓1(𝑎1
1𝑞−1⋯+ 𝑎𝑛𝑎

1 𝑞−𝑛𝑎) + 

                 ⋯𝑓𝑁−1(𝑎1
𝑁−1𝑞−1⋯+ 𝑎𝑛𝑎

𝑁−1𝑞−𝑛𝑎),                                                      (5-38)     

                                              

 

𝐵(𝑞−1, 𝜌𝑖) = (𝑏1
0𝑞−1⋯+ 𝑏𝑛𝑏

0 𝑞−𝑛𝑏) + 𝑓1(𝑏1
1𝑞−1⋯+ 𝑏𝑛𝑏

1 𝑞−𝑛𝑏) + 

                 ⋯𝑓𝑁−1(𝑏1
𝑁−1𝑞−1⋯+ 𝑏𝑛𝑏

𝑁−1𝑞−𝑛𝑏).                                                    (5-39)                                                      

 

Using the definitions  

𝜑𝑖 = [−𝑦𝑖−1  − 𝑦𝑖−2⋯− 𝑦𝑖−𝑛𝑎⋯𝑢𝑖−1 𝑢𝑖−2⋯𝑢𝑖−𝑛𝑏],               (5-40) 

        𝜃𝑘 = [𝑎1
𝑘   𝑎2

𝑘⋯  𝑎𝑛𝑎
𝑘   𝑏1

𝑘  𝑏2
𝑘⋯  𝑏𝑛𝑏

𝑘 ]𝑇 ,                                          (5-41) 

𝐹𝑖 = [1 𝑓1(𝑝𝑖)…𝑓𝑁−1(𝑝𝑖)],                                                          (5-42) 
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where 𝑘 = 1,2, … ,𝑁 − 1. 

Equation 5-33 can be rewritten as following: 

 

𝑦(𝑖) = 𝜑𝑖𝜃
0 + 𝑓1𝜑𝑖𝜃

1 +⋯+ 𝑓𝑁−1𝜑𝑖𝜃
𝑁−1 +𝑚𝑖                                                                     

 

         = [𝜑𝑖  𝑓1𝜑𝑖⋯𝑓𝑁−1𝜑𝑖] ∙ [

𝜃0

𝜃1

⋮
𝜃𝑁−1

]+𝑚𝑖 = [𝐹𝑖⊗𝜑𝑖 ] ∙ 𝛩+𝑚𝑖 =  𝛤𝑖 ∙ 𝛩+𝑚𝑖,             (5-43) 

where ⊗ denotes Kronecker product, and 𝛩 = [(𝜃0)𝑇(𝜃1)𝑇⋯ (𝜃𝑁−1)𝑇]𝑇 and  𝛤𝑖 = 𝐹𝑖⊗𝜑𝑖 . 
 

The Equation 5-43 leads to the least squats system identification approach for estimation of 

the parameter vector as following: 

 

�̂� = (𝛤𝑇𝛤)−1𝛤𝑇𝑌.                                               (5-44) 

 

The Equation 5-44 can be shown to converge to the real parameter vector under the 

assumption of white noise for 𝑚𝑖 (MathWorks, 2018).  

 

Please refer to (Wang & Steiner, 2011; Wei, 2006) for more details about LPV system 

identification algorithm.  

 

The validation results of the LPV identification in Section 5.2.1 clearly show that, compared 

to linear models, LPV models offer several advantages which make them sensible alternatives 

for non-linear systems. Once the LPV model is identified, the design of an NMPC can be 

implemented.  

 

An extension of the Equation 5-31 to an incremental state-space formulation is done in 

Equation 5-45: 

 

[
𝑥𝑖+1

𝑢𝑖
] = [

𝐴𝑖 𝐵𝑖

0 𝐼
] ∙ [

𝑥𝑖

𝑢𝑖−1
] + [

0 𝑀

𝐼 0
] ∙ [
∆𝑢𝑖

𝑣
]                             (5-45) 

𝑦𝑖 = 𝐶𝑖 ∙ 𝑥𝑖,    

 

where in NMPC, this formulation allows a limitation of the rate of change for the input 

variables ∆𝑢𝑖 ∈ [∆𝑢𝑚𝑖𝑛, ∆𝑢𝑚𝑎𝑥]. In Equation 5-45, I denotes the identity matrix. Based on the 
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LPV model formulation, a cost function needs to be defined. Assume that the state 𝑥𝑖  is 

available at the current instant i. Then the cost function of optimisation in NMPC has the 

following formulation: 

 

𝐽𝑛𝑚𝑝𝑐 = 𝑚𝑖𝑛𝑢
1

2
∑ (𝑦𝑖
𝑛𝑃𝐻
𝑖=0 − 𝑦𝑟𝑒𝑓)

𝑇𝑄(𝑦𝑖 − 𝑦𝑟𝑒𝑓) + ∑ ∆𝑢𝑖
𝑇𝑛𝐶𝐻

𝑖=0 𝑅∆𝑢𝑖                (5-46)      

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑥𝑖+1 = 𝐴𝑖(𝜌) ∙ 𝑥𝑖 + 𝐵𝑖(𝜌) ∙ 𝑢𝑖 +𝑀 ∙ 𝑣 

𝑦𝑖 = 𝐶𝑖(𝜌) ∙ 𝑥𝑖 , 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑦𝑚𝑎𝑥 , 𝑖 = 0…𝑃𝐻 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥 , 𝑖 = 0…𝑃𝐻 

∆𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1 

𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢𝑖 ≤ 𝛥𝑢𝑚𝑎𝑥 , 𝑖 = 0…𝐶𝐻 − 1 

∆𝑢𝑖 = 0, 𝑖 = 𝐶𝐻…𝑃𝐻. 

 

Equation 5-46 is initialised in each time instant with x0, which is a vector of the estimated 

system states calculated by a Kalman filter using the LPV form. The fundamentals of the 

Kalman filter are described in detail in Section 5.1.1.6. This cost function is normally desired 

to have a quadratic structure, which can be solved by efficient algorithms. However, in this 

case, the LPV model structure includes a non-linear dependency between the plant inputs and 

outputs. During this integration along the predicted trajectory, the LPV system matrices 𝐴𝑖, 𝐵𝑖 

and 𝐶𝑖  are also evaluated for each step of the prediction horizon. This can be done by 

calculating the current coefficients of the matrices with the polynomial dependency. To 

reduce the computation time, in the algorithm of (Ferreau, 2014), this sequential-quadratic-

programming (SQP) procedure is replaced by a “stand-alone” QP-solver in each step of the 

prediction horizon. The system state xi can be iteratively calculated for the whole prediction 

horizon. The predictions along the horizons are given by, 

 

𝑥1 = 𝐴0𝑥0 + 𝐵0𝑢0 +𝑀𝑣                                                                                                    (5-47)              

𝑥2 = 𝐴1𝐴0𝑥0 + 𝐴1𝐵0𝑢0 + 𝐵1𝑢1 + 𝐴1𝑀𝑣 +𝑀𝑣 

𝑥3 = 𝐴2𝐴1𝐴0𝑥0 + 𝐴2𝐴1𝐵0𝑢0 + 𝐴2𝐵1𝑢1 + 𝐵2𝑢2 + 𝐴2𝐴1𝑀𝑣 + 𝐴2𝑀𝑣 +𝑀𝑣 

⋮ 

𝑥𝐶𝐻 = 𝐴𝐶𝐻−1𝐴𝐶𝐻−2⋯𝐴0𝑥0 + 𝐴𝐶𝐻−1𝐴𝐶𝐻−2⋯𝐴1𝐵0𝑢0 +⋯+ 𝐵𝐶𝐻−1𝑢𝐶𝐻−1 + 𝐴𝐶𝐻−1⋯𝐴1𝑀𝑣

+⋯+𝑀𝑣 
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⋮ 

𝑥𝑃𝐻 = 𝐴𝑃𝐻−1𝐴𝑃𝐻−2⋯𝐴0𝑥0 + 𝐴𝑃𝐻−1𝐴𝑃𝐻−2⋯𝐴1𝐵0𝑢0 +⋯+ 𝐵𝑃𝐻−1𝑢𝐶𝐻−1

+ 𝐴𝑃𝐻−1⋯𝐴1𝑀𝑣 +⋯+𝑀𝑣, 

 

where the LPV system matrices Ai and Bi are calculated iteratively. The procedure for output 

prediction starts with an estimation of current system states by an observer. These states are 

used at the beginning of each optimisation step to initialise the cost function with the actual 

system states. Starting with the initial value x0, the discrete time LPV model is integrated over 

the whole prediction horizon PH. This is used to calculate xi+1 at each time instant based on 

the current system states xi. As explained in (Ortner, Bergmann, Ferreau, & Del Re, 2009) and 

(Wang, Waschl, Alberer, & Del Re, 2012), 𝑣 represents the measured disturbances which are 

assumed to be constant over the whole prediction horizon. Equation 5-47 can be formulated in 

a state-space matrix representation for a control horizon of CH: 

 

[
 
 
 
 
 
 
 
 
 
 
 
𝑥0

𝑥1

𝑥2

𝑥3

⋮

𝑥𝐶𝐻

⋮

𝑥𝑃𝐻]
 
 
 
 
 
 
 
 
 
 
 

⏟  
�̃�

=

[
 
 
 
 
 
 
 
 
 
 
 

𝐼 0 ⋯ ⋯ 0

𝐴0 𝐵0 0 ⋯ 0

𝐴1𝐴0 𝐴1𝐵0 0 ⋯ 0

𝐴2𝐴1𝐴0 𝐴2𝐴1𝐵0 ⋯ 0

⋮ ⋮ ⋱

𝐴𝐶𝐻−1𝐴𝐶𝐻−2⋯𝐴0 𝐴𝐶𝐻−1𝐴𝐶𝐻−2⋯𝐴1𝐵0 ⋯ 𝐴𝐶𝐻𝐵𝐶𝐻−1

⋮ ⋮ ⋮

𝐴𝑃𝐻−1𝐴𝑃𝐻−2⋯𝐴0 𝐴𝑃𝐻−1𝐴𝑃𝐻−2⋯𝐴1𝐵0 ⋯ 𝐴𝑃𝐻𝐵𝑃𝐻−1]
 
 
 
 
 
 
 
 
 
 
 

⏟                                            
[�̃�0 �̃�1]

∙

[
 
 
 
 
 
 
 
𝑥0

𝑢0

𝑢1

𝑢2

⋮

𝑢𝐶𝐻−1]
 
 
 
 
 
 
 

⏟    

[
𝑥0
�̃�
]

  

(5-48)              

 

+

[
 
 
 
 
 
 
 
 
 
 
 

0

𝑀

(𝐴1 + 1)𝑀

(𝐴2𝐴1 + 𝐴1 + 1)𝑀

⋮

(𝐴𝐶𝐻−1⋯𝐴1 + 𝐴2𝐴1 + 𝐴1 + 1)𝑀

⋮

(𝐴𝑃𝐻−1⋯𝐴1 + 𝐴2𝐴1 + 𝐴1 + 1)𝑀]
 
 
 
 
 
 
 
 
 
 
 

⏟                      
�̃�

∙ 𝑣 , 
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where   

�̃� =

[
 
 
 
 
 
 
 
 
 
 
 
𝑥0

𝑥1

𝑥2

𝑥3

⋮

𝑥𝐶𝐻

⋮

𝑥𝑃𝐻]
 
 
 
 
 
 
 
 
 
 
 

, �̃�0 =

[
 
 
 
 
 
 
 

𝐼
𝐴0
𝐴1𝐴0
𝐴2𝐴1𝐴0
⋮

𝐴𝐶𝐻−1𝐴𝐶𝐻−2⋯𝐴0
⋮

𝐴𝑃𝐻−1𝐴𝑃𝐻−2⋯𝐴0]
 
 
 
 
 
 
 

, �̃� =

[
 
 
 
 
 
 
 
 
 
 
 

0

𝑀

(𝐴1 + 1)𝑀

(𝐴2𝐴1 + 𝐴1 + 1)𝑀

⋮

(𝐴𝐶𝐻−1⋯𝐴1 + 𝐴2𝐴1 + 𝐴1 + 1)𝑀

⋮

(𝐴𝑃𝐻−1⋯𝐴1 + 𝐴2𝐴1 + 𝐴1 + 1)𝑀]
 
 
 
 
 
 
 
 
 
 
 

,  

 

�̃�1 =  

[
 
 
 
 
 
 
 
 
 

𝐴0 𝐵0 0 ⋯ 0

𝐴1𝐴0 𝐴1𝐵0 0 ⋯ 0

𝐴2𝐴1𝐴0 𝐴2𝐴1𝐵0 ⋯ 0

⋮ ⋮ ⋱

𝐴𝐶𝐻−1𝐴𝐶𝐻−2⋯𝐴0 𝐴𝐶𝐻−1𝐴𝐶𝐻−2⋯𝐴1𝐵0 ⋯ 𝐴𝐶𝐻𝐵𝐶𝐻−1

⋮ ⋮ ⋮

𝐴𝑃𝐻−1𝐴𝑃𝐻−2⋯𝐴0 𝐴𝑃𝐻−1𝐴𝑃𝐻−2⋯𝐴1𝐵0 ⋯ 𝐴𝑃𝐻𝐵𝑃𝐻−1]
 
 
 
 
 
 
 
 
 

.   (5-49)              

 

Furthermore, the Equation 5-48 can be expressed as follows: 

 

�̃� = �̃�0 ∙ 𝑥0 + �̃�1 ∙ �̃� + �̃� ∙ 𝑣.                                       (5-50)              

 

Integrating Equation 5-50 into the QP formulation 5-46 yields the following:  

 

J =𝑚𝑖𝑛𝑢
1

2
(𝐶𝑖 ∙ �̃� − 𝐶𝑖 ∙ 𝐼 ∙̃ 𝑋𝑟𝑒𝑓)

𝑇𝑄(𝐶𝑖 ∙ �̃� − 𝐶𝑖𝐼 ∙ 𝑋𝑟𝑒𝑓) + �̃�
𝑇𝑅�̃�          (5-51) 

→𝑚𝑖𝑛𝑢
1

2
𝐶𝑇𝑖(�̃�0 ∙ 𝑥0 + �̃�1 ∙ �̃� + 𝑀 ∙̃ 𝑣 

− 𝐼 ∙̃ 𝑋𝑟𝑒𝑓)
𝑇�̃�𝐶𝑖(�̃�0 ∙ 𝑥0 + �̃�1 ∙ �̃� + 𝑀 ∙̃ 𝑣 − 𝐼 ∙̃ 𝑋𝑟𝑒𝑓) + �̃�

𝑇𝑅�̃� , 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     

�̃�𝑚𝑖𝑛 ≤ �̃�0 ∙ 𝑥0 + �̃�1 ∙ �̃� + �̃� ∙ 𝑣 ≤ �̃�𝑚𝑎𝑥 

�̃�𝑚𝑖𝑛 ≤ �̃� ≤ �̃�𝑚𝑎𝑥 

 

Re-formulation of the condition for the state constraints �̃�0 ∙ 𝑥0 + �̃�1 ∙ �̃� + �̃� ∙ 𝑣 leads to 
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�̃�𝑚𝑖𝑛 − (�̃�0 ∙ 𝑥0 +𝑀 ∙̃ 𝑣) ≤ �̃�1 ∙ �̃� ≤ �̃�𝑚𝑎𝑥 − (�̃�0 ∙ 𝑥0 +𝑀 ∙̃ 𝑣).               (5-52)  

 

Leaving the constant parts of the objective function away and using the new state constraint 

formulation as conditions yields, 

 

𝐽 = 𝑚𝑖𝑛𝑢
1

2
�̃�𝑖
𝑇(�̃�1𝑇�̃��̃�1 + �̃�)𝑇�̃�𝑖 + �̃�𝑖

𝑇�̃�1𝑇(�̃�0𝑥0 + �̃� − 𝐼𝑋𝑟𝑒𝑓),              (5-53) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

�̃�𝑚𝑖𝑛 − (�̃�0 ∙ 𝑥0 +𝑀 ∙̃ 𝑣) ≤ �̃�1 ∙ �̃� ≤ �̃�𝑚𝑎𝑥 − (�̃�0 ∙ 𝑥0 +𝑀 ∙̃ 𝑣)               

�̃�𝑚𝑖𝑛 ≤ �̃� ≤ �̃�𝑚𝑎𝑥. 

 

The condensed QP problem, defined in Equation 5-46, can now be solved by means of the 

QP-solver, qpOASES, (Ferreau, 2014). By assuming w0 = f(x0, ρ), the QP problem can be 

written as a parametric quadratic problem which can be solved by any QP-solver. This yields 

the following solution in qpOASES: 

 

QP (𝑥0):              𝑚𝑖𝑛�̃�
1

2
�̃�𝑇𝐻�̃� + �̃�𝑇𝑔(𝑤0),                                           (5-54)              

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝑙𝑏(𝑤0) ≤ �̃� ≤ 𝑢𝑏(𝑤0) 

𝑙𝑏𝐺(𝑤0) ≤ 𝐺�̃� ≤ 𝑢𝑏𝐺(𝑤0). 

 

where 𝐺 = �̃�1 (Equation 5-49) is a part of the system matrix (Equation 5-48); The Hessian 

matrix H has been given in Equation 5.17.  

 

The implementation of Equation 5-54 in QP-Solver is based on the open-source package 

qpOASES (Ferreau, 2014). The optimal solution 𝑈𝑜𝑝𝑡 of the QP is given in (Ferreau, 2014) as 

follows: 

 

𝑈𝑜𝑝𝑡 = −𝐻
−1 ∙ 𝑓 ∙ 𝜃,                                                  (5-55)              

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝜃 = [𝑥𝑖, 𝑢𝑖−1, 𝑦𝑟𝑒𝑓]
𝑇 . 
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With the 𝑈𝑜𝑝𝑡, the control actions in the CH are calculated, and the first control is applied to 

the system. Matrices H and f are affine representations of the NMPC, and they can be defined 

by a new gain matrix 𝐹𝑛𝑚𝑝𝑐 = −𝐻
−1 ∙ 𝑓 = [𝐹𝑛𝑚𝑝𝑐−𝑥𝑖, 𝐹𝑛𝑚𝑝𝑐−𝑢𝑖−1 , 𝐹𝑛𝑚𝑝𝑐−𝑦𝑟𝑒𝑓] . Now the 

affine control law for the NMPC can be written in a matrix form as follows: 

 

𝑢𝑖 = 𝐹𝑛𝑚𝑝𝑐 ∙ 𝜃 = [𝐹𝑛𝑚𝑝𝑐−𝑥, 𝐹𝑛𝑚𝑝𝑐−𝑢𝑖−1 , 𝐹𝑛𝑚𝑝𝑐−𝑦𝑟𝑒𝑓] ∙ [𝑥𝑖 , 𝑢𝑖−1, 𝑦𝑟𝑒𝑓]
𝑇.            (5-56)              

 

In practice, the NMPC controller and real plants are coupled with each other. The question is 

whether this configuration leads to growing of numerical errors and a destabilised closed 

loop. As discussed in Section 5.1.1.5, the MPC objective function can be considered as a 

Lyapunov function, and the guarantee of stability can be provided by a finite horizon (Cheng 

& Allgoewer, 1998; Langthaler, 2007; Mayne, 2001; Wang & Steiner, 2011). A detailed 

proof of the stability and the real-time iteration scheme for non-linear optimisation is given in 

(Diehl, Bock, & Schloeder, 2005). In this case, the qpOASES, active set strategy, provides an 

efficient online optimisation algorithm that has already been successfully tested in several 

fast-process control applications (Ferreau, 2006; Ferreau, 2008; Wang, Waschl, Alberer, & 

Del Re, 2012). Studies show that the fast QP-solver guarantees closed-loop robust stability in 

the proposed control law. The application of the closed-loop NMPC control in the engine-air-

path is described in Section 5.2.  

 

5.2 Implementation of the NMPC on the Engine-air-path 

System 

5.2.1 LPV Model of Engine-air-path  

As mentioned above, the LPV model is chosen as an internal model for this NMPC control 

problem. The engine-air-path system has a significant influence on the fuel consumption and 

emissions of an engine. This section presents LPV modelling techniques for the air-path 

system of a diesel engine. Since NMPC controllers are model-based, a non-linear model is 

required from the overall system. The engine system is highly non-linear. However, an 

operation point change means discrete switching in the overall compressor clearance for a 

short time; i.e., it is a non-linear sequential switching process. In reality, an operation point 

change means a change in the physical system: the clearance volume changes in the engine 
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cylinder. Del Re (2011) shows that frequent switching need not be modelled, as an 

approximation of the relevant frequency spectrum by an LPV dynamical system is sufficient. 

Using simulation data from a Matlab/Simulink virtual test-bench, which is developed in 

Chapter 4, an LPV model is introduced for the identification of the MAF, MAP and Pex of an 

engine-air-path system in this section. 

 

 

 

Input/output Description Unit Range 

Xegr EGR actuator % 0~100 

Xvgt VGT actuator % 0~100 

n Engine speed rpm 0~4000 

mf Fuel injection mg/st >0 

MAF Intake manifold air flow Kg/h >0 

MAP Intake manifold air pressure hPa >0 

Pex Exhaust manifold pressure hPa >0 

 

Figure 5.8: Overall LPV engine-air-path model structure and input/output descriptions   

 

As depicted in Figure 5.8, the considered system is the air-path of a diesel engine with EGR 

and VGT. Three partly consecutive, connected sub-models are displayed: Pex, MAP and MAF. 
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The advantage of the purposed model structure is the opportunity for the separate and 

independent identification of the target sub-model, which imposes the reliability of the 

estimates. Finally, these sub-models are merged in a whole block to an overall MIMO model. 

Moreover, the model degree for each subsystem can be chosen according to the individually 

required level of complexity. Furthermore, the verification is simplified, as the overall system 

can be validated and every single sub-model can be verified.  

 

 

Figure 5.9: Input excitation for identification  
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The LPV identification method is introduced in Section 5.1.2. The engine-air-path systems 

are identified as state-space LPV form. The engine-air-path system is a typical MIMO system. 

As mentioned, for the purpose of MAF and MAP controls, the system can be considered to be 

a three-coupled MISO model in which the inputs are Xegr, Xvgt, n, mf and an intermediated 

quantity: exhaust manifold pressure Pex. The identification experiments are performed at 

different operation states. The identified models are used for the NMPC control design. To 

have persistent excitation, the inputs Xegr, Xvgt, n and mf are excited by a pseudorandom binary 

signal, which is illustrated in the Figure 5.9. In the simulation, a sampling frequency of 20 Hz 

is performed. In the following, the sub-model structures and an analysis of the simulation are 

depicted.  

 

This section is organised as follows. First, the LPV model configuration is defined. This 

configuration will be used to define the model structure. Next, the identification experiments 

are carried out on the virtual engine tech bench. Finally, the results of the LPV model and 

linear state-space model are compared and discussed.  

 

5.2.1.1 LPV Modelling of Sub-systems 

Nguyen-Schaefer (2013) has shown that the Pex exhibits strong coherence dependency on the 

MAF and MAP. As it is desirable to consider the influence of Pex, a MISO LPV model is 

needed. As shown in Figure 5.10, the MISO LPV model has VGT, EGR, n and mf as inputs 

and Pex as output. 

 

 

 

Figure 5.10: Structure of the Pex model 

 

The VGT and EGR valve positions correspond to the actuator signals Xegr and Xvgt; therefore, 

in the identification, Xegr and Xvgt are used as inputs. As mentioned in Section 5.1.2, the 
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scheduling parameters have to be defined. Consider the engine operation points: It turned out 

that n and mf can be valuable choices for scheduling parameters. To take this into account for 

the Pex model, the inputs n and mf are used in addition to Xegr and Xvgt.  

 

As shown in Figure 5.10, the Pex model consists of four parallel transfer functions (one for 

each input) of the type: 

𝐺𝑝𝑒𝑥,𝑖(𝜌) =
𝐴𝑖(𝜌)∙𝑞

−1

1+𝐵𝑖(𝜌)∙𝑞
−1

 .                                          (5-57) 

 

The formulation of polynomial functions 𝐴𝑖(𝜌)  and 𝐵𝑖(𝜌)  are given in (Wang, Waschl, 

Alberer, & Del Re, 2012)  as follows:  

 

𝐴𝑖(𝜌) =  𝐴𝑝𝑒𝑥,𝑖(𝑛,𝑚𝑓) = 𝑎𝑖
0 + 𝑎𝑖

1 ∙ 𝑛 + 𝑎𝑖
2 ∙ 𝑚𝑓 + 𝑎𝑖

3 ∙ 𝑛 ∙ 𝑚𝑓 ,                        (5-58) 

𝐵𝑖(𝜌) = 𝐴𝑝𝑒𝑥,𝑖(𝑛,𝑚𝑓) = 𝑏𝑖
0 + 𝑏𝑖

1 ∙ 𝑛 + 𝑏𝑖
2 ∙ 𝑚𝑓 + 𝑏𝑖

3 ∙ 𝑛 ∙ 𝑚𝑓.                         (5-59) 

 

The approach of identification of 𝐴𝑖(𝜌) and 𝐵𝑖(𝜌) have been explained in Section 5.2.1. 

 

The whole model structure is depicted for the Pex: 

 

𝛴𝑃𝑒𝑥 = 𝐺𝑝𝑒𝑥,𝑒𝑔𝑟 + 𝐺𝑝𝑒𝑥,𝑣𝑔𝑡 + 𝐺𝑝𝑒𝑥,𝑛 + 𝐺𝑝𝑒𝑥,𝑚𝑓 .                              (5-60) 

 

where 𝐺𝑝𝑒𝑥,𝑒𝑔𝑟, 𝐺𝑝𝑒𝑥,𝑣𝑔𝑡, 𝐺𝑝𝑒𝑥,𝑛 and 𝐺𝑝𝑒𝑥,𝑚𝑓  are the four parallel system transfer functions 

from inputs to output. 

 

 

Figure 5.11: Identification of the Pex model (VAF=91%) 
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Figure 5.12: Validation of the Pex model (VAF=86%) 

 

The results of the identification and validation of an LPV model are shown in figures 5.11 and 

5.12, where the model with the simulation outputs is compared with the measurement from 

the simulation. As shown in the validation results, the main system dynamics are captured 

with a reasonable precision thanks to the LPV structure. The most non-linearity agrees well 

with measurement; however, slight dynamic deviations can still be noticed at about 140s (the 

circle in Figure 5.11) and 160s (the circle Figure 5.12) for the case in which the combustion 

engine operates primarily in low-load areas, where it is very hard to predict the system 

dynamics. 

 

 

 

Figure 5.13: Structure of the cross coupled MAP and MAF model 
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As illustrated in Figure 5.13, the control model consists of two coupled sub-models—MAP 

and MAF—whose characteristics have been discussed in Section 2.1. The model inputs are 

VGT, EGR and the intermediate quantity Pex, and the model outputs are MAF and MAP. To 

consider the description of the engine’s actual operation state, the engine speed n and fuel 

injection mf are chosen as the external scheduling parameter ρ. In addition, the cross-coupled 

feedbacks from MAP to MAF and from MAF to MAP must be considered. In the 

identification, to have persistent excitation, the inputs Xegr, Xegr, n, mf and Pex are excited by a 

pseudo random binary signal, as shown in Figure 5.9.  

 

The similar mathematical descriptions shown in equations 5-58 and 5-59 are applied to model 

the MAP and MAF. For MAP, the polynomial function describes the effects of the inputs and 

external disturbances to the MAP. The dependencies in the quasi-MIMO transfer-function 

coefficients from the external parameters for the description of the non-linear model 

behaviour are as follows: 

 

𝐴𝑖(𝜌) = 𝐴𝑚𝑎𝑝,𝑖(𝑛,𝑚𝑓 , 𝑀𝐴𝐹) = 𝑎𝑖
0 + 𝑎𝑖

1 ∙ 𝑛 + 𝑎𝑖
2 ∙ 𝑚𝑓 + 𝑎𝑖

3 ∙ 𝑀𝐴𝐹 + 𝑎𝑖
4 ∙ 𝑛 ∙ 𝑚𝑓 ∙ 𝑀𝐴𝐹,            

(5-61) 

𝐵𝑖(𝜌) = 𝐵𝑚𝑎𝑝,𝑖(𝑛,𝑚𝑓 , 𝑀𝐴𝐹) = 𝑏𝑖
0 + 𝑏𝑖

1 ∙ 𝑛 + 𝑏𝑖
2 ∙ 𝑚𝑓 + 𝑏𝑖

3 ∙ 𝑀𝐴𝐹 + 𝑏𝑖
4 ∙ 𝑛 ∙ 𝑚𝑓 ∙ 𝑀𝐴𝐹.              

(5-62) 

For MAF, the decided output has the following structure: 

 

𝐴𝑖(𝜌) = 𝐴𝑚𝑎𝑓,𝑖(𝑛,𝑚𝑓 , 𝑀𝐴𝑃) = 𝑎𝑖
0 + 𝑎𝑖

1 ∙ 𝑛 + 𝑎𝑖
2 ∙ 𝑚𝑓 + 𝑎𝑖

3 ∙ 𝑀𝐴𝑃 + 𝑎𝑖
4 ∙ 𝑛 ∙ 𝑚𝑓 ∙ 𝑀𝐴𝑃,              

(5-63) 

𝐵𝑖(𝜌) = 𝐵𝑚𝑎𝑓,𝑖(𝑛,𝑚𝑓 ,𝑀𝐴𝑃) = 𝑏𝑖
0 + 𝑏𝑖

1 ∙ 𝑛 + 𝑏𝑖
2 ∙ 𝑚𝑓 + 𝑏𝑖

3 ∙ 𝑀𝐴𝑃 + 𝑏𝑖
4 ∙ 𝑛 ∙ 𝑚𝑓 ∙ 𝑀𝐴𝑃.              

(5-64) 

 

The formulation of polynomial functions 𝐴𝑖(𝜌)  and 𝐵𝑖(𝜌)  are given in (Wang, Waschl, 

Alberer, & Del Re, 2012). The approach of identification of 𝐴𝑖(𝜌)  and 𝐵𝑖(𝜌)  have been 

explained in Section 5.2.1. 

 

The identification and validation results for MAP and MAF are shown in figures 5.14 and 

5.15. As the VAF-results show, the LPV model is the appropriate model structure, as it is 

sufficient to capture the main dynamics of the engine-air-path system. 
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Figure 5.14: Identification of the MAP and MAF model (VAFmap=88%, VAFmaf=86%) 

 

 

Figure 5.15: Validation of the MAP and MAF model (VAFmap=83%, VAFmaf=81%) 
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5.2.1.2 Simulation Results  

As mentioned above, the engine-air-path system can be described via an LPV MIMO model. 

The model is identified with following input parameters: Xegr, Xvgt, n and mf. The output is 

split into MAF, MAP and pex. The model structure is defined, and the input signals are 

proposed. The sub-models Pex, MAP and MAF are finally cross-connected according to the 

structure depicted in Figure 5.8. In addition, for benchmark purpose, a corresponding state-

space linear model is used to compare with the LPV model. The results obtained from the 

identification experiments are analysed in what follows.  

 

Figure 5.16: Simulation results for LPV and state-space linear model (0-500s)  
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The simulation results are shown in Figure 5.16. Obviously, the overall model quality can at 

the most be as good as the quality of the sub-models, as a cascading error might occur (the 

circle in Figure 5.16): in particular, the modelling error due to the cross-coupling effects on 

MAF and MAP might occur. This already indicates the need for a coupled MIMO treatment 

of the VGT and EGR during control. Further control considerations and discussions can be 

found in Section 5.3. To show the feasibility of the LPV approach, it is compared to a state-

space linear model, which is estimated by the Matlab/Simulink system identification toolbox 

(MathWorks, 2018). This state-space model is given in the following form: 

 

𝑥𝑖+1 = 𝐴 ∙ 𝑥𝑖 + 𝐵 ∙ 𝑢𝑖                                               (5-65) 

𝑦𝑖 = 𝐶 ∙  𝑥𝑖,  

 

where (1) 𝑦𝑖 , 𝑥𝑖  and 𝑢𝑖  denote the system output, state and input at time step 𝑖 respectively, 

and 

           (2) A, B and C are system matrices, which are identified by the Matlab/Simulink 

system identification toolbox. 

 

A part of the NEDC driving cycle at different engine operation points is used for model 

validation. In Figure 5.16, the main dynamics of MAP and MAF are well captured by the 

LPV model, which in turn allows us to use LPV model as prediction models in the NMPC. 

This LPV model is further use for an optimised NMPC to reduce the emissions and thus the 

operating range of the engine.  

 

Figure 5.17 shows the quality bar graphs and a comparison of LPV and state-space linear 

methods for different operation points. The VAF values in Figure 5.17 are calculated by 

Equation 3-6. Obviously, the LPV method can achieve a nearly precise model of MAF and 

MAP, and it has been shown that the linear model deviates from the measurements—

especially in the operation points strong changing areas, e.g. at 190s in Figure 5.16. These 

model mismatches could decrease the control performance or even cause instability of the 

close-loop control. Experimental results show that the LPV model delivers a very high 

accuracy for the MAF and MAP estimation that cannot be reached by classical identification 

methods. Some discussions of the model structure and its application are presented and a non-

linear LPV model structure is proposed. However, the LPV model is identified only with 
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limited range of inputs and outputs. A further potential improvement is to identify a model 

suitable for a broader operating range.  

 

 

Figure 5.17: Comparison of the quality VAF of LPV and state-space model 

 

For use in NMPC, the LPV model can be rewritten into state-space formulation. Studies 

discussed in Section 5.1.2 show that the constraints of change of the manipulated Xegr, Xegr 

and Pex and the external disturbances n and mf  have to be taken into account. Therefore, 

similar to the previously work in (Wang, Waschl, Alberer, & Del Re, 2012), the whole output 

prediction model for use in the non-linear controller is expressed as follows:  

 

[
𝑥𝑖+1

𝑢𝑖
] = [

𝐴𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖 𝐵𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖

0 𝐼
] ∙ [

𝑥𝑖

𝑢𝑖−1
] + [

0 𝑀

𝐼 0
] ∙ [
∆𝑢𝑖

𝑣
]                (5-66) 

𝑦𝑖 = 𝐶𝑀𝐴𝐹,𝑀𝐴𝐹,𝑃𝑒𝑥,𝑖 ∙ 𝑥𝑖,    

where 

 

𝐴𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖 = [

𝐴𝑀𝐴𝐹,𝑖 0 0

0 𝐴𝑀𝐴𝑃,𝑖 0

0 0 𝐴𝑃𝑒𝑥,𝑖

] , 𝐵𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖 = [

𝐵𝑀𝐴𝐹,𝑖

𝐵𝑀𝐴𝑃,𝑖

𝐵𝑃𝑒𝑥,𝑖

],        (5-67) 

𝐶𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖 = [

𝐶𝑀𝐴𝐹,𝑖

𝐶𝑀𝐴𝑃,𝑖

𝐶𝑃𝑒𝑥,𝑖

] . 

86%
83% 81%

67% 68%

52%

Pex[hPa] MAP [hPa] MAF [kg/h]

Model Quality Validation in VAF Value [%]

LPV Model State Space Linear Model



  182 

The system matrices 𝐴𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖, 𝐵𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖 and 𝐶𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖  in Equation 5-66 

consist of matrices 𝐴𝑀𝐴𝐹,𝑖, 𝐴𝑀𝐴𝑃,𝑖, 𝐴𝑃𝑒𝑥,𝑖, 𝐵𝑀𝐴𝐹,𝑖, 𝐵𝑀𝐴𝑃,𝑖,𝐵𝑃𝑒𝑥,𝑖, 𝐶𝑀𝐴𝐹,𝑖  and 𝐶𝑃𝑒𝑥,𝑖  which are 

respectively derived from the equations 5-58, 5-59, 5-61, 5-62, 5-63 and 5-64.  

 

5.2.2 NMPC Constraints and Control Horizons 

In case of air-path control, the target of the NMPC is to control both MAF and MAP via the 

inputs Xegr and Xvgt. The physical constraints of the manipulated actuators, EGR and VGT, are 

the minimum and maximum valve positions and the rate for opening and closing. Usually, the 

EGR valve can vary between 0 and 100% without damaging the engine; however, contrary to 

the EGR, the characteristic of VGT are more complex. Too much closing of the VGT at full 

load areas can damage the manifolds by high pressure or the turbocharger itself, due to the 

high rotor-operation speed. To ensure the durability of materials, the maximum speed of the 

rotor is predetermined, which depends on the materials, production techniques and driving 

statues used. For these reasons, the operation point is defined in accord with the VGT 

position. As mentioned in (Ortner, Langthaler, Ortiz, & del Re, 2006), there is a non-minimal 

phase behaviour from VGT to MAF. To guarantee the correct control action in steady 

conditions, the PH must be chosen to be much greater than the CH. Otherwise, the prediction 

model has too little information about the plant and causes wrong valve directions when 

controlling the MAF with the VGT. 

 

The CH defines the number of sampling instants in which the manipulated variables are being 

changed by the QP-solver. The manipulated variables are either kept constant in time between 

PH minus CH or they are controlled by a state feedback controller in the qpOASES. In case of 

air-path control, due to the computation burden, the CH is fixed to a small number in 

qpOASES which ensure very good controller performance. If a longer CH is chosen, the 

controller has too many search regions for the optimal solution and a huge amount of memory 

is required.  

 

5.2.3 NMPC State Observer 

In the implemented NMPC, all the states must be estimated at each sampling instant if we are 

to evaluate the control law by the QP-solver, and the states must be updated at every time 
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instant in real-time. To reduce the computational demands, an extended Kalman estimator is 

chosen as a state observer, as explained in Section 5.1.1.6. The model for the Kalman 

estimator has a same structure seen in Equation 5-27, including the measured disturbance v. 

The Kalman filter update equations remain identical, as above. As explained in (Wang, 

Waschl, Alberer, & Del Re, 2012), at each time instant, only the system matrices 

𝐴𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖 and 𝐶𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥,𝑖 are derived by a linearisation of the operating point:  

 

𝐴𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥(𝑥𝑖, 𝑢𝑖 , 𝑖) =
𝜕𝑓(𝑥𝑖,𝑢𝑖,𝑖)

𝜕𝑥𝑖
 ,                                        (5-68) 

𝐶𝑀𝐴𝐹,𝑀𝐴𝑃,𝑃𝑒𝑥(𝑥𝑖, 𝑢𝑖 , 𝑖) =
𝜕𝑔(𝑥𝑖,𝑢𝑖,𝑖)

𝜕𝑥𝑖
 ,                                        (5-69) 

 

where 𝑓(𝑥𝑖, 𝑢𝑖, 𝑖) and 𝑔(𝑥𝑖, 𝑢𝑖 , 𝑖) are the system dynamics, as in Equation 5-27. This structure 

can be turned in real-time, and the complexity of the Kalman filter and thus the memory and 

computational demands can be reduced significantly. 

 

5.2.4 Implementation of the NMPC Controller 

It can be deduced that, in Section 5.1.2, use of the qpOASES with the previously introduced 

turning parameters leads to the following control law: 

 

QP (𝑥0):              𝑚𝑖𝑛�̃�
1

2
�̃�𝑇𝐻�̃� + �̃�𝑇𝑔(𝑤0)                                          (5-70)                          

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑙𝑏(𝑤0) ≤ �̃� ≤ 𝑢𝑏(𝑤0)                     

                   𝑙𝑏𝐺(𝑤0) ≤ 𝐺�̃� ≤ 𝑢𝑏𝐺(𝑤0).               

 

Now the matrices H and f are suitable for the QP-solver, qpOASES. In case of NMPC air-path 

control, the optimal solution 𝑈𝑜𝑝𝑡 of the QP can be described in a quasi-linear feedback form:  

 

 𝑈𝑜𝑝𝑡 = −𝐻
−1 ∙ 𝑓 ∙ 𝜃,                                                 (5-71)                          

 

where 𝜃 = [𝑥𝑀𝐴𝐹𝑖 , 𝑥𝑀𝐴𝑃𝑖 , 𝑥𝑃𝑒𝑥𝑖 , 𝑣𝑚𝑓𝑖, 𝑣𝑛𝑖, 𝑣𝑀𝐴𝐹𝑖 , 𝑣𝑀𝐴𝑃𝑖 , 𝑢𝑒𝑔𝑟𝑖−1, 𝑢𝑣𝑔𝑡𝑖−1, 𝑀𝐴𝐹𝑟𝑒𝑓 ,𝑀𝐴𝑃𝑟𝑒𝑓]  is 

the state vector of the controller. Research in (Ferreau, 2014) shows that the θ space is divided 

into polyhedral partitions; the boundary of this space is defined in the structure range. It 
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includes the maximum and minimum values of the states, the control values and the reference 

trajectory. In air-path control, the 𝑥𝑀𝐴𝐹𝑖 , 𝑥𝑀𝐴𝑃𝑖 , 𝑥𝑃𝑒𝑥𝑖 stand for the states of the LPV model. 

𝑣𝑚𝑓𝑖 , 𝑣𝑛𝑖 , 𝑣𝑀𝐴𝐹𝑖 , 𝑣𝑀𝐴𝑃𝑖  are measured disturbances. 𝑢𝑒𝑔𝑟𝑖−1, 𝑢𝑣𝑔𝑡𝑖−1  are the last inputs. And 

𝑀𝐴𝐹𝑟𝑒𝑓 ,𝑀𝐴𝑃𝑟𝑒𝑓 stands for the reference trajectories for MAF and MAP. According to the 

actual state vector 𝜃 , the actual region is searched and the optimal solution according to 

online active set strategy (Appendix B) is found.  

 

 

 

Figure 5.18: Software components on the virtual engine test-bench 

 

The implementation of the NMPC controller in a virtual engine test-bench is realised by 

means of a C++ S-function in a Matlab/Simulink environment, which provides the interface 

between the Matlab function (M-Function), S-function (QP-solver) and the standard Simulink 

blocks. Figure 5.18 describes relations between the different software components for the 

implementation of the NMPC controller on the virtual engine test-bench. Control performance 

is evaluated during a run of the simulation in subsequent sections. 

 

5.3 NMPC Simulation Results and Analysis 

In this section, the NMPC controller is evaluated under different controller configurations and 

is compared to the linear MPC and standard PID controller function of vehicle ECU on the 

virtual engine test-bench, which is created by Matlab/Simulink from the previous Chapter 4.  
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Figure 5.19: NMPC closed-loop scheme in Matlab/Simulink 
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In this section, first, the control performance of different NMPC controller configurations are 

validated, thereby comparing the NMPC at different configurations and test scenarios. 

Furthermore, the controller configurations which yield the best improvements are shown by 

the investigation of different control parameters and their impacts on the closed-loop 

behaviour. Finally, the NMPC is to be compared to the standard ECU and linear MPC, which 

work with the same engine model. The performance of the NMPC controllers against other 

control methods is then discussed in detail. Figure 5.19 illustrates the closed-loop structure of 

the whole simulation model in Matlab/Simulink environment. The virtual engine test-bench is 

represented by the mean-value model. The Kalman estimator and the NMPC controller are 

programmed using Matlab M-Function and S-Function and are saved in Simulink Function 

blocks. 

 

5.3.1 Controller Configurations 

Table 5-1: Setups of the NMPC controller 

 

Turing Parameters Value 

QNMPC [1 0; 0 1] 

RNMPC [40 0; 0 40] 

ΔuNMPC [-8 -8;8 8] 

PH 100; 120; 140; 160; 180 

CH 2; 4; 6; 8; 10 

QKalmanFilter Diagonal [0.01, ….0.01] 

RKalmanFilter [1 0; 0 1] 

 

The NMPC approach has a set of tuning parameters. These parameters are as follows: CH, 

PH, weighting matrixes (QNMPC and RNMPC) on MAF and MAP, weighting matrixes (ΔuNMPC) 

on Xegr and Xvgt rates and weighting matrixes (QKalmanFilter and RKalmanFilter) on the Kalman 

filter. All of the necessary setups of the controller are listed in Table 5-1. In this section, 

different CHs and PHs are compared based on tracking performance. In order to assess the 

impact of NMPC on engine transient performance, it is necessary to define benchmark 

scenarios to provide the corresponding inputs and reference values for the simulation. The 

experiments are separated into the following types: 1) step response tracking: The controller 

tracking performance under different load disturbances (operation point changing) is an 
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important criterion. For step response simulation, the scenario should contain at least one load 

change. The chosen of a reachable set-point set has to be considered. In this case, the default 

input profile is defined as 150 seconds overall runtime, and the load-changes consist in step 

changes in engine speed from 1250 to 2300 rpm and fuel injection from 13 to 27 mg/cyc. The 

time between the set-point changes is set to 15s to ensure that the air-path system researches 

steady-state. Furthermore, from the step response, the transient behaviour can be compared 

with different configurations of NMPC. The trajectories for step response tracking are 

presented in Figure 5.20. The simulation results are given in figures 5.21 and 5.22. The left 

column shows the desired values of MAF and MAP for tracking with the initial dataset, and 

the right column shows the corresponding actuator signals: VGT and EGT. 2) FTP-75 driving 

cycle tracking: the FTP-75 cycle provides a standard emission test with different operation 

points. The sample time is defined as 0.05 s in whole simulations. The results of the different 

test types are presented in the following sections. 

 

 

Figure 5.20: Test scenario for step response and tracking  

(Left: reference MAF and MAP, right: operation points n and mf) 
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5.3.2 Validation of NMPC Performance 

Comparisons of the performance of different PH and CH configurations are performed in the 

same benchmark scenarios and under the same operating conditions. In the first experiment, 

the influence of PH variation is investigated, as mentioned in Section 5.2.2, to keep the 

computational burden as low as possible. Usually, the CH is chosen as a small number during 

the whole experiments; therefore, the control horizon is fixed by CH = 2 during the variation 

of the PH. The difference of the controller performance is derived from the prediction results 

encountered at different prediction horizons whereas the PH= [100 120 140 160 180]. As 

expected in Figure 5.21, all the PH variations are capable of reference value tracking to 

compensate for the load disturbances. Note that, despite different PH parameters, the obtained 

tracking performances and the actions of the actuators of VGT and EGR are similar.  

 

 

Figure 5.21: Evaluation of MAF and MAP over PH variation 

24 25 26 27 28

95

100

105

110

M
A

F
 [

kg
/h

]

 

 

Reference

PH120

PH100

PH140

PH160

PH180

24 25 26 27 28
1240

1260

1280

1300

1320

M
A

P
 [

h
P

a
]

Time [s]

24 25 26 27 28
64

66

68

70

72

74

76

V
G

T
 [

%
]

24 25 26 27 28

35

40

45

50

55

60

E
G

R
 [

%
]

Time [s]



  189 

The results in Figure 5.21 clearly show that the choice of PH has a very limited influence on 

the output of the NMPC controller and, for the considered case, increasing the PH clearly 

cannot improve the control performance. This behaviour is also confirmed by the MPC 

theory: The PH parameter determines the number of predicted outputs by means of the 

integrated mathematical model, and it must have a certain length to cover all model dynamics 

(Camacho & Bordons, 2007). Although the changes in performance with different prediction 

horizons from 100 to 180 are very limited in Figure 5.21, PH = 120 gives the best results; 

therefore, the PH is chosen as 120. Furthermore, according to (Camacho & Bordons, 2007), 

significantly shorter prediction horizons (for example PH= 20) cannot lead to improved 

performance, as the NMPC requires enough estimated information over the prediction 

horizons to optimise the inputs.  

 

 

 

Figure 5.22: Evaluation of MAF and MAP over CH variation 
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According to the MPC theory, choice of a CH parameter has a significant influence on both 

the close-loop control performance and on the required computation time. To test the 

influence of the CH variation, different setups of CH have been investigated in the simulation 

whereas the PH is kept constant as 120. As can be seen in Figure 5.22 and Table 5-2, this 

obviously shows that all the CH variations are able to follow the desired value and 

compensate for the load disturbance. In contrast to PH, the CH has much more influence on 

the system behaviour.  

 

The CH variation shows rather different step responses for MAF and MAP control. For 

different operation points, the actions of both actuator VGT and EGR differ. The results 

clearly show that the CH=2 succeeds in tracking the reference value in a shortest setting time, 

2.5 seconds. The significance of the overshoot and the setting time to steady-state can be 

explained easily by appealing to the different CH setups [2, 4, 6, 8 10].  

 

As shown in Figure 5.22 and Table 5-2, the shorter CH can lead a faster response to the 

required steady-state, as the longer CH permits more variations of the manipulated variables, 

which create additional degrees of freedom for the optimisation. Nevertheless, it should be 

noted that, as indicated by the fast QP method, all the optimisations in CH must be achieved 

in a short time, as longer control increases the computational effort. This behaviour is also 

confirmed by the MPC theory (Camacho & Bordons, 2007). Therefore, for this considered 

case, CH = 2 is chosen. 

 

Table 5-2: CH value and time constant 

CH Values 
Setting Time 

(second) 

2 2.5 

4 2.7 

6 2.8 

8 2.9 

10 3 

 

                                          

Figure 5.23 shows the best NMPC closed-loop step response performance of the tracking with 

the configuration CH=2 and PH = 120.             
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Figure 5.23: Overview of NMPC’s closed-loop step response with best configuration 
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due to possible unfeasible set points—especially for MAP around 200s and 450s in Figure 

5.24. The results clearly show that the tracking performance strongly depends on the 

definition of set points. Such tracking errors can be reduced by optimising the set points to 

achieve requested performances regarding different operating points according to emission 

requirements. This optimisation issue of the reference values is discussed in Chapter 6. 

 

 

Figure 5.24: Overview evaluation of MAF and MAP over FTP-75 (0~1372s) (VAFmaf=87%, 

VAFmap=86%) 
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can see that the move direction of VGT and EGR are in contrast and that both actuators are 

nearly in saturation areas. This effect can be explained with the cross-coupling problem. For 

this case, at about 195s, the full load operation causes higher MAP and MAF. Therefore, the 

NMPC controller tries to increase the VGT vane position to compensate for the excessively 

high pressure in the intake manifold, and the closing of the EGR valve causes less exhaust gas 

to flow into the EGR valve. The tracking performance approves the results achieved 

previously; the NMPC is able to track their reference during the transient operation. However, 

at 190s, a shift operation causes a huge change in the VGT and EGR positions, so the NMPC 

fails to compensate for the disturbance and causes a small vibration on MAF and MAP.  

 

 

Figure 5.25: Evaluation of MAF and MAP over the FTP-75 (180s -230s) 
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Figure 5.26: Evaluation of MAF and MAP over the FTP-75 (850s -900s) 

 

As is shown in Figure 5.26, 850s ~ 900s, the NMPC increases the amount of EGR to 80%, 

which decreases the combustion temperature and can lead to less NOx. An interesting aspect 

of this process is that, despite the lower NOx, the OPAC obtained is not excessive. It seems 

that the engine operates in idle areas and has a very limited fuel injection on a lean condition. 

This effect can be confirmed by the advantage of the diesel engine in contrast to a gasoline 

engine (Reif, 2014). The simulation results show the NMPC, closed-loop, step-response 

performance of the tracking for desired MAF and MAP and the according engine actuator 

signals of VGT and EGR. Thanks to the internal non-linear LPV model and the well-posed 
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optimisation QP-solver as presented in (Ferreau, 2014), the NMPC controller is able to track 

the reference signals quite fast without offset and compensate for the load disturbance.  

 

5.3.3 Comparison with Existing Control Approaches 

To show the advantage of the proposed NMPC method, in the comparison of the control 

performance of NMPC, linear MPC and standard ECU function (simulated functions in 

Matlab/Simulink), the experiments are performed under the same operating conditions on a 

step response and FTP-75 driving cycle. For benchmark purposes, the standard ECU air-path 

control function is implemented into the virtual engine test-bench, which essentially contains 

feed-forward loop up tables and a PID controller, as depicted in Figure 2.12. The 

configurations of the NMPC and MPC are set to PH = 120 and CH = 2. The performances of 

the different controllers are presented in the following. 

 

 

 

Figure 5.27: Set point change NMPC, Linear MPC and ECU 
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As shown in Figure 5.27, the results clearly show that all the controllers are able to follow the 

step trajectory without offset. On the transient areas, the NMPC controller has much better 

performance. The linear MPC and ECU have poor results in operation changing and get 

transient invisible, whereas the NMPC can solve the problem very well and arrive quickly at 

the steady-state, rejecting all disturbances.  

 

We may conclude that the linear MPC based on the linear model shows an overshoot and a 

slower reaction to the actuator positioning, which causes a large error in tracking the MAF 

and MAP. The main reason for this behaviour is that the internal mathematical model is 

linearised only in the near-of-one operation point in linear MPC.  

 

The overshoot comes from the large internal model mismatch. This problem leads to the 

model description in Section 5.2.1.2, where the linear state-space air-path model is not the 

best model with respect to MPC application compared to LPV model. Furthermore, in 

transient areas, the ECU controlled EGR and VGT valves have great overshoots at every 

larger change of operating point (for example at 25s in Figure 5.27), although the PID 

controller (in the ECU) is a very strong linear controller, but it is difficult to tune its 

parameters in order to well regulate the high non-linear systems in transient areas, such as 

operation changing of engine-air-path system. Therefor in the transient areas, the ECU causes 

strong overshoots in the MAF and MAP.  

 

In Figure 5.28, the FTP-75 tracking performance is shown in detail from 390 to 420s. At 

about 403s, a change of engine operation causes a huge increase in the MAF and MAP so that 

the linear MPC and ECU fail in fast-tracking the reference value. For linear MPC, this is 

caused by the large mismatch of the internal model. It is certain that, without change of the 

engine operation and disturbances, both NMPC and linear MPC would deliver similar 

tracking behaviour. For this case, a comparison with the ECU controller is not fair, as the 

ECU control loops include a feed-forward part which is exactly optimised to the MAF and 

MAP set-point maps. But when changing the set points, the relationship between the feed-

forward part and the set point is no longer correct and leads to bad results.  

 

The large deviation of ECU shows that the PID controller parameter used in the FTP-75 cycle 

is not optimised and results in large oscillations of MAF and MAP. In contrast, the NMPC 

produces relatively small offsets and overshoots in MAF and MAP tracking.  
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Figure 5.28: FTP-75 tracking- NMPC, Linear MPC and ECU (390s-420s)  

 

Figure 5.29 shows the simulation results of the FTP-75 cycle, in which the performance of the 

difference controllers is obvious.  

 

In Table 5-3, the tracking performance in VAF is shown; the results lead us to the conclusion 

that the NMPC is able to keep the MAF and MAP to the references better than the liner MPC 

and ECU. All three controllers can track the references satisfactorily during the FTP-75; 

however, their handles on the operation point’s change are very different. The results above 

clearly show that tracking performance strongly depends on the combination of the MPC 

internal model and the choice of the reference trajectories. 

390 395 400 405 410 415 420

50

100

150

200

250

M
A

F
 [

k
g
/h

]

390 395 400 405 410 415 420
800

1000

1200

1400

1600

1800

M
A

P
 [

h
P

a
]

 

 

Reference

NMPC

Linear MPC

ECU

390 395 400 405 410 415 420

50

60

70

80

90

100

V
G

T
 [

%
]

390 395 400 405 410 415 420
0

10

20

30

40

50

60

70

80

E
G

R
 [

%
]

Time [s]



  198 

 

 

Figure 5.29: Overview of FTP-75 tracking- NMPC, Linear MPC and ECU (0~1372s) 
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Table 5-3: Comparison of the tracking performance in VAF (norm) in FTP-75 

                   

 

As illustrated in figures 5.30 and 5.31, in FTP-75, the cumulative value of NOx and OPAC 

obviously shows that NMPC performs slightly better than the ECU with respect to both 

cumulative NOx and OPAC value. The main reason could be the improvement on the 

transient behaviour of EGR and VGT control, which results in reduced transient emissions. 

The results are actually not surprising, the improvement on emissions using NMPC are very 

limited, because using the same reference values in the case of NMPC cannot essentially 

change the overall emission output due to the un-optimised reference values, although the 

NMPC delivers a better tracking performance. It should be interesting to note that, by using 

the NMPC approach, it could be possible to reduce the overall driving-cycle emission-output 

result by optimising the reference values.  

 

 

 

Figure 5.30: Cumulative values of NOx and OPAC (norm) in FTP-75 
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Figure 5.31: Relative cumulative values of Fuels, NOx and OPAC (norm) in FTP-75 

 

Furthermore, the simulation results and control performance discussed in Chapter 5 show that 

nominal stability is given under realistic assumptions and the closed-loop NMPC scheme is 

not critical to stability in fast process controls such as engine-air-path control. In Chapter 6, 

the method of choosing MAF and MAP references in an optimal way will be presented.  
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Chapter 6. APPLICATION OF MODEL-BASED EMISSIONS 

AND FUEL OPTIMISATION ON ENGINE-AIR-PATH 

CONTROL  

Modern internal-combustion engines have to meet constantly increasing demands in terms of 

the reduction of fuel consumption and abatement of emissions. The progress of hardware 

design leads to engines with more degrees of freedom and with the capability of achieving 

better performance in favourable directions. Control is one component which makes the 

possibility of design-optimisation come true (Del Re, 2011). In modern diesel engines, 

besides the classic manipulated variables of fuel-injection quantity and fuel-injection timing, 

the ECU interfaces are expended by further manipulated variables such as valve position of 

EGR, guide-vane position of VGT, injection pressure in common-rail systems and variable 

valve train (VVT). Unfortunately, the rising number of engine-control variables makes it 

increasingly difficult to find the optimal engine calibration and control solution at an 

acceptable time (Malikopoulos, Assanis, & Papalambros, 2008). As an enormous number of 

control options is available from table- (or map-) based heuristic control to optimal model-

based control, the choice is not always easy. Consequently, engine-control design has often 

been boiled down to a large number of parameters, which are calibrated in the course of tiring 

work, thereby yielding what may be the most complex and least systematic feed-forward 

design structure available today.  

 

In modern diesel-engine development, this problem is even more evident. As shown in Figure 

6.1, to analyse the influence of individual manipulated variables on steady-states in all 

operating ranges quantitatively, the time-consuming grid measurement and operation costs 

required at engine test-benches increases considerably. The traditional approach, which is 

limited to a purely steady-states assignment of inputs and outputs, has been obsolete for a 

long time and can no longer meet all the current legal requirements. On the other hand, 

consideration of system dynamic behaviour is indispensable—especially for engines with 

turbochargers. The dynamic behaviours of exhaust emissions from the driving cycle must be 

studied to optimise the transient engine operation. As illustrated in Figure 6.1 regarding the 

signal-flow scheme for the optimisation of control functions for combustion engines, model-

based methods are therefore necessary for the further development of engine-management 

systems that allow the steady and dynamic behaviour of combustion engines to be determined 
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as accurately as possible by means of computer simulation and optimisation based on a 

mathematical model (Isermann, Hafner, Schaffnit, Schueler, & Sinsel, 1998; Mitterer & 

Zuber-Goos, 2002).  

 

 

 

Figure 6.1: Trends in model-based optimisation and calibration  

 

As mentioned in Chapter 5, simulation results in Table 5-3 and Figure 5.31 lead to the 

conclusion that, nevertheless, there is a strong coupling of VGT and EGR, and a significant 

improvement regarding VGT and EGR controls is achieved by using NMPC control in the 

engine-air-path. However, by using an advanced control method in the engine-air-path, no 

clear improvement of emissions is found in a systematic way even though a significant 

improvement of dynamical behaviour is achieved (Alberer, 2009). Ortner, Langthaler, Ortiz 

and Del Re (2006) show that the minimisation of emissions can be achieved by considering 

the optimised control reference values. This chapter presents an approach which is based on 
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the virtual engine test-bench to optimise the emission behaviours and fuel consumption of 

internal combustion engines. A new, model-based, multi-criteria optimisation is presented, 

compared and discussed. The reference values of MAF and MAP are optimised for a driving 

cycle case based on the emission models from the first part and further evaluated for an 

NMPC engine-air-path control on the virtual engine test-bench with the target of reducing the 

emissions and fuel consumption. The optimisation results are then compared to the default 

ECU and un-optimised NMPC. 

 

6.1 Model-based Multi-criteria Optimisation on Emissions and 

Fuel Consumption 

 

 

 

Figure 6.2: Model structure for optimisation in Matlab/Simulink 
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To benefit from the advantages over conventional diesel engines, the operating strategy 

implemented in modern diesel engines has to be optimised. This includes the reference 

strategy, which for air-path control means the reference values of MAF and MAP at each 

operation point. Unfortunately, there is no universal algorithm for the optimisation of control 

references due to the huge diversity of control functions and their complexity. Hence, it is 

obligatory to carefully study the characteristics of each configuration to imagine the best 

setup. In this section, different methods are introduced which aid the optimisation of the 

emissions based on the engine model. These methods concern air-path, torque and emission 

models from Chapter 4 (Figure 6.2).  

 

The first approach here aims to determine the optimised reference maps for the engine-control 

variables, MAP and MAF, independent of a specific driving cycle. A driving cycle-based 

optimisation of emission behaviour and fuel consumption is then discussed. It is difficult to 

perform engine optimisation for emissions and fuel consumption on a real test-bench due to 

the complex controls. To obtain the optimal solution, the influences of the control variables 

have to be balanced at all operating points against each other with the consideration of the 

engine dynamics. In ECU, these are values, curves and maps based on engine operation 

points. For optimisation tasks on air-path control, the target would be the reference maps of 

MAF and MAP. In practice, on the real test-bench, the MAF and MAP reference values have 

to be calibrated so that, on the one hand, the exhaust emissions are minimised during the 

driving cycle and, on the other hand, the exhaust temperature is not be heated too much and 

the fuel consumption is minimal. The calibration optimisation task is to find, for every 

operation point, a combination of MAF and MAP that leads to minimal emissions.  

 

To optimise the controls maps in ECU, several approaches are presented in (Malikopoulos, 

Assanis, & Papalambros, 2008), which are based on the selection of several main operating 

areas that represent the most of the emission driving cycle, and the engine has to be optimised 

as much as possible in these areas. The influence of the control variables is measured in these 

operating points on the test-bench. The main weakness of this approach is in the limitation of 

the number of operating points for optimisation; the reason is that online optimisation of a 

wide range of operating points on the test-bench is often expensive and time consuming.  

 

In the following, a model-based method for engine optimisation is presented which can 

consider a large number of emission driving cycle operating points. The first issue of this 
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optimisation task is to find the ideal reference value of MAF and MAP for the emission 

reduction. The outputs of this optimisation are references of MAF and MAP. Therefore, a 

mathematical cost function J has to be defined, which needs to be minimised by the 

optimisation algorithm. This function consists of several summands, each of which reflects a 

certain feature. Each of these summands can be weighted by weight factors k1 and k2 to 

consider its influence on the optimisation result. The cost function defining the minimisation 

problem is as follows: 

 

𝐽 = 𝑘1(𝑛𝑜𝑟𝑚(𝑁𝑂𝑥))2 + 𝑘2(𝑛𝑜𝑟𝑚(𝑂𝑃𝐴𝐶))2.                         (6-1) 

 

NOx and OPAC specify the emissions at each operation point. All the terms are considered to 

be quadratic in form, and their minimisation is important for whole emission cycles. The 

quadratic cost functions are mapped by emissions in compliance with the legal emission 

limits found by using a non-linear optimisation process. To solve the optimisation problem, 

the Matlab command fmincon is used. Using fmincon allows for a minimum of a constrained, 

non-linear multivariable functions. However, it is not trivial to find a setup of weight factors 

and it therefore has to be done with care. Moreover, it is important to understand that the 

dimensions of different weight factors cannot be directly compared, as they are coefficients to 

values of different units: e.g., NOx in ppm and OPAC in %. Therefore, the weight factors k1 

and k2 have to be specified, depending on the normalised ratio of NOx (norm(NOx)) and 

OPAC (norm(OPAC)), as shown in Equation 6-1, before starting the optimisation algorithm. 

The used variables in Equation 6-1 are defined in the following table: 

 

Table 6-1: Elements of cost function 

Summand Weight factor Target 

NOx K1 Low NOx Emission 

OPAC K2 Low OPAC Emission 

 

The optimisation algorithm then starts the simulation and varies the target parameters MAF 

and MAP, which are then determined by the minimisation of the cost function. As mentioned 

above, the MAF is the amount of air required to support oxygen as much as necessary to react 

hydrogen into water in a stoichiometric way. In general, a diesel engine runs with λ > 1, and 

its normal operation areas are overall λ > 1.1. For optimisation, some variations in an area 

around this value are possible and necessary. To get the two constraints, minimum MAF and 
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maximum MAF, a multiplication with is performed with λ, factor 14.5 and fuel injection. The 

value of λ is defined as λ = 1.1 to calculate the minimum MAF. It is defined as λ = 2 to 

calculate the maximum MAF. Factor 14.5 is the value of the stoichiometric equivalence factor 

for diesel engines. Therefore, the applied lower and upper boundaries of MAF are [14.5 ×

𝑚𝑓 × 1.1] mg/cyc and [14.5 × 𝑚𝑓 × 2] mg/cyc, which are estimated by the required lambda 

and fuel consumption. The MAP is the manifold pressure, which describes the pressure of 

intake manifold. Its boundaries have been set to ambient pressure up to 2.2 bars because of 

safety reasons.  

 

 

 

Figure 6.3: Optimisation loop and function blocks 

 

As mentioned above, the optimisation of the references required several steps of refinement 

whereas, due to the lack of convexity of the problem, it is important to have an appropriate 

point to start. The Matlab function fmincon is initialised via the specification of optimisation 

parameters MAF and MAP and their upper and lower boundaries, as mentioned above. The 

optimisation method varies both parameters simultaneously according to the underlying 
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algorithm. Figure 6.3 shows what the objective and optimisation functions are called by the 

Matlab's fmincon solver. The Matlab function fmincon attempts to find a constrained 

minimum of Cost Function J (Equation 6-1). In every iteration step, the emissions are 

calculated by the engine-air-path model in Figure 6.3 with the given constant inputs, which 

are engine speed, fuel injection, MAF and MAP, and Cost Function J. Equation 6-1 is 

evaluated by the Matlab function fmincon until the results of Cost Function J reach the stop 

criterion. To start the optimisation process, an initial estimate of the set of parameters must be 

made. In practice, this is done by trial and error, which means that the initial estimate is 

adjusted manually to achieve the best result. In this case, the initial estimate which provides 

the optimum solution for using the Matlab command fmincon is found to be MAF = 650 

mg/cyc and MAP = 1.013 bar.  

 

The value of weight factors is also important to the final results. This is the main degree of 

freedom in the optimisation program, as one can determine the importance of each summand 

of the cost function and the corresponding optimisation target by adjusting the appropriate 

weight factor. In the series ECU, higher EGR positions are applied at low operation points. 

Accordingly, the NOx emissions increase strongly at high operation points. If only the NOx 

emissions are weighted in the cost function J, the engine tends to exhibit higher EGR rates in 

the main entire operation areas. This can significantly reduce the NOx, but not for opacity. 

As shown in the Table 4-4, the engine has more NOx emissions than expected; therefore, in 

order to achieve better comprehensive performance and further reduce the NOx emission of 

this diesel engine, more weight is given to the NOx weight factor k1. With a consideration of 

more weight on NOx in the cost function, a variation of the weight factors is achieved for 

benchmark purposes as shown in the Table 6-2, and the weightings of NOx are varied from 1 

to 100. Applying the presented setup to the optimisation of the references results in the 

following figures (Figures 6.4 and 6.5). The optimised MAF and MAP references using 

different weight factors are very different, which clearly shows that the weight factors have a 

great influence on the optimisation results. 

 

Table 6-2: Setting of weight factors 

Weight factor Value 

K1/ k2 1/1 

K1/ k2 10/1 

K1/ k2 75/1 

K1/ k2 100/1 
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Figure 6.4: Optimisation of MAF in different weight factors 

 

 

Figure 6.5: Optimisation of MAP in different weight factors 
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Figure 6.6: FTP-75 Cycle based weight factors for OPAC (left) and NOx (right)  

 

In this study, an optimisation of the FTP-75 driving cycle is carried out. Since the raw exhaust 

emissions directly reflect the influence of the control variables independently of an exhaust 

after treatment system, the raw emissions are used for the optimising models (Figure 6.3). In 

combination with the manipulated variable models and the emission models, the optimisation 

scheme in Matlab/Simulink can be seen in Figure 6.3. The model-based approach makes it 

possible to calculate the optimal solution in a matter of minutes rather than via tests on the 

test-bench. Related to the cycle optimisation methods, first, the emissions in the driving cycle 

can be considered as an operation point’s map of stationary points that are weighted according 

to their emission intensities in the FTP-75 driving cycle, as shown in Figure 6.6. The weight 

factors k1 and k2 are normalised values. These values stand for the relative intensities of the 

NOx and PM emissions at different operation points. 

 

Each of the summands in Equation 6-2 can be weighted based on the operation points (n,mf) 

differently by cycle-based weight factors k1 (n,mf)  and k2 (n,mf) to consider their influence 

on the optimisation result. The corresponding emissions are calculated from the engine 

emission models (Figure 6.3) with these manipulated variables as model inputs. Under the 

medium and heavy load, the air-fuel ratio in the cylinder is relatively high, due to the low 

temperature and un-optimal combustion conditions, the PM emissions are relatively high, as 

shown in Figure 6.6 left. And under the medium and high engine speed, the air-fuel ratio is 



  210 

close to one and the EGR open rate is lower, due to the high temperature, the NOx emissions 

are high, as shown in Figure 6.6 right. The optimisation must focus on these high emission 

areas. The non-linear optimisation method now has the task of adapting the parameters of the 

manipulated variables in Equation 6-2 in such a way that emission is minimal in compliance 

with the global emission limits and other local constraints: 

 

𝐽 = 𝑘1(𝑛,𝑚𝑓)(𝑛𝑜𝑟𝑚(𝑁𝑂𝑥))2 + 𝑘2(𝑛,𝑚𝑓)(𝑛𝑜𝑟𝑚(𝑂𝑃𝐴𝐶))2,               (6-2)    

 

where n is the engine speed and mf is the fuel injection.  

 

For emission limit values, the raw emission level of the engine is used with the serial setting 

to show the relative improvement in emission under the same fuel-consumption 

characteristics, figures 6.7 and 6.8 compare the series setting of the manipulated variables and 

the results of the optimisation parameters of the manipulated variable models as a 3D grid 

over the entire operating range.  

 

 

 

Figure 6.7: MAF FTP-75 Cycle based optimisation-Emissions  
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Figure 6.8: MAP FTP-75 Cycle based optimisation-Emissions 

 

A further optimisation is to find the ideal reference value of fuel injection, MAF and MAP for 

the emissions and fuel consumption reduction together. Like Equation 6-2, each of these 

summands can be weighted differently by cycle-based weight factors k1, k2 and k3 to 

consider their influence on the optimisation result. The cost function defining the 

minimisation problem is as follows: 

 

𝐽 = 𝑘1(𝑛, 𝑇)(𝑛𝑜𝑟𝑚(𝑁𝑂𝑥))2 + 𝑘2(𝑛, 𝑇)(𝑛𝑜𝑟𝑚(𝑂𝑃𝐴𝐶))2 + 𝑘3(𝑛, 𝑇)(𝑛𝑜𝑟𝑚(𝑓𝑢𝑒𝑙))2,   (6-3)    

 

where n is the engine speed and T is the engine torque. The used weight factors in Equation 6-

3 are defined in the following Table 6-3: 

 

Table 6-3: Elements of cost function 

Summand Weight factor Target 

NOx K1(n,T) Low NOx Emission 

OPAC K2(n,T) Low OPAC Emission 

Fuel K3(n,T) Low Fuel Consumption Equivalent Power 
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In a combination of the manipulated variable models with the emission models, the scheme 

can be seen in Figure 6.3 to be related to the cycle optimisation methods. The non-linear 

optimisation method now has the task of adapting the parameters of the manipulated variables 

in Equation 6-3 in such a way that emission and fuel are minimal in compliance with the 

global emission limits and other local constraints. This algorithm then starts the simulation 

and varies the manipulated parameters Fuel, MAF and MAP, which are then determined by 

the optimisation of the cost function.  

 

Figure 6.9: MAF FTP-75 Cycle based optimisation-Emissions and Fuel 

 

Figure 6.10: MAP FTP-75 Cycle based optimisation-Emissions and Fuel 
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Figure 6.11: Fuel consumption FTP-75 Cycle based optimisation- Emissions and Fuel 

 

In this case, the minimal and maximal values of fuel consumption use the default, as in the 

ECU. As mentioned above, and the boundaries of MAF and MAP are [14.5 × 𝑚𝑓 × 1.1 

mg/cyc, 14.5 × 𝑚𝑓 × 2 mg/cyc] and [1.013 bar, 2.2 bar] respectively. Figures 6.9, 6.10 and 

6.11 compare the series setting of the manipulated variables and the results of the 

optimisation. 

 

6.2 Optimised NMPC Engine-air-path Control Simulation 

Results and Analysis 

The optimised references of fuel injection, MAF and MAP are evaluated during the FTP-75 

cycle by using the diesel-engine model with the NMPC air-path controller (Figure 6.12). The 

emissions and fuel-consumption results are demonstrated both in the stationary test and in the 

dynamic test. The results in Table 6-5 clearly show that the applied optimised fuel-

consumption map and MAF and MAP references result in a significant improvement of 

emissions during the driving cycle while the fuel consumption is reduced. 
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Figure 6.12: Engine-air-path control using optimised references 

 

In the ESC stationary simulation, the implementation of the engine air-path model in 

Simulink represents the model structure presented in Figure 4.6. The setup of the 

Matlab/Simulink simulation model is given in Section 4.5. During the simulation, not all of 

the simulated data are stored. The areas with constant values are not useful for analysis, so 

they are omitted. The selected simulation inputs and outputs are given in Table 6-4. All of the 

mode simulations (see Table 4-6) are treated in this way by using stationary inputs. The 

simulation data set is stored in a Matlab mat-file with the time vector. Please refer to Section 

4.5.1 for more details about the ESC stationary simulation in Matlab/Simulink. For 
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benchmark purposes, simulations using different reference values and different air-path 

controllers are achieved. In Table 6-5, an overview of the simulation results is given. 

 

Table 6-4: Inputs and outputs of the simulation model 

Inputs Outputs 

Engine Speed MAF 

Engine Torque MAP  

VGT Position BSFC 

EGR Position NOx Emission 

  OPAC Emission 

 VGT Position 

 EGR Position 

 

Table 6-5: Comparison of weighted value of BSFC, NOx and OPAC in ESC simulation 

 

 

As shown in Table 6-5 and Figure 6.13, at the ESC stationary simulation, the optimised 

NMPCs in this study could significantly improve the EGR rate and emissions. Due to the 

same reference value on MAP and MAF, the un-optimised NMPC has the same EGR and 

VGT positions and emissions as the ECU at the stationary test. Under the small and medium 

load, the air-fuel ratio in the cylinder is relatively large and the EGR tolerance is high, so the 

larger EGR rate can significantly reduce the NOx emissions without causing the significant 

decline in the economic efficiency. There is about 2% improvement on the BSFC in 

NMPC(NOx,PM and Fuel), the reason is that a combination of VGT and EGR position causes better 

combustion efficiency of the engine and consequently the torque output is increased (Alberer, 

2009). The optimised VGT-EGR diesel engine has a smaller VGT opening than the initial 

VGT-EGR diesel engine. The reduced VGT opening causes the increase in the exhaust back 

pressure, and the pressure difference between the exhaust pipe and the intake pipe also rises, 

thereby increasing the flow rate of the circulating exhaust gas as well as the EGR rate. VGT 

opening has greater decline in the small load areas (points 1, 2, 3 and 4 in Figure 6.13.b) than 

in the heavy load areas (points 9, 10, 11 and 12 in Figure 6.13.b), and due to the increased air 

mass flow in the exhaust, the turbocharger can better make use of the exhaust energy and the 

engine efficiency is relatively higher. 

BSFC [g/kWh] NOx  [g/kWh] PM [g/kWh]

Simulation ECU 233.27 3.19 0.049

Simulation Unoptimised NMPC 233.27 3.19 0.049

Simulation Optimised NMPC 233.27 2.55 0.039

Simulation Optimised NMPC-fuel 228.61 2.48 0.040
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a) EGR 

 

 

b) VGT 

 

 

Figure 6.13: a) EGR and b) VGT positions in ESC test  
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The emission performance is the main optimisation target of this diesel engine, followed by 

the fuel efficiency. Compared to the default ECU engine, in the optimisation cost function, 

the weight factors assigned to the NOx emission are larger than those for the PM emissions, 

so the NOx emission optimisation is more obvious. The analysis of its results at stationary 

ESC test in Table 6-5 indicates that the EGR rate of the optimised engine is significantly 

greater than the un-optimised NMPC engine and the default ECU engine. The increase in 

EGR rate reduces the in-cylinder combustion temperature and reduces local oxygen 

enrichment conditions in the cylinder, which thus reduces NOx emissions but also 

deteriorates the in-cylinder combustion conditions, thereby resulting in a slight decrease in 

fuel consumption in NMPC(NOx,PM and Fuel). At the same time, in the optimised NMPC(NOx,PM) 

and NMPC(NOx,PM and Fuel), the optimisation of the VGT opening improves the gas flow in the 

intake system, which offsets the decline in the combustion conditions and has a positive effect 

on PM emissions, compared with the default ECU engine. 

 

 

 

Figure 6.14: Comparison of cumulative values Fuel, NOx and OPAC in FTP-75 

 

In the following study, the optimisation is demonstrated in the FTP-75. To calculate the mass 

flow of the emissions, the simulated emissions are derived from the actual cumulated MAF. 

The conventional ECU air-path control is taken as a reference for the comparison purpose. It 

is therefore considered to be 100% and is highlighted in light blue in Figure 6.14. The un-



  218 

optimised NMPC shows a similar NOx and OPAC emissions as the default ECU engine, 

although it has an advanced air-path controller. This is caused by its same reference value, 

which results in good tracking performance but no improvement in emissions due to the 

unfavourable partial load operation and greater MAF values. The optimised NMPC(NOx, PM) 

and NMPC(NOx, PM and Fuel) have better results referred to the NOx and OPAC emissions due to 

the favourable reference on MAP and MAF. In total FTP-75, the optimised NMPC(NOx, PM) 

and NMPC(NOx, PM and Fuel) produce 30% and 31% less NOx than the default ECU engine. In 

OPAC, the optimised NMPC(NOx, PM) and NMPC(NOx, PM and Fuel) produce 29% and 28% less 

than the default ECU engine. At the same time, in NMPC(NOx,PM and Fuel) simulation, the 

cumulative fuel consumption under the same engine power condition is reduced by 4%, which 

can be explained by a better transient behaviour, better combustion efficiency and the 

optimised fuel consumption map. 

 

 

 

Figure 6.15: Comparison of NOx, OPAC, VGT and EGR positions- FTP-75 (760s ~790s) 
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To fully understand the simulation results in Figure 6.14, it is necessary to illustrate the EGR 

and VGT results in more detail. As can be seen in Figure 6.15, for example, the time between 

760 and 790 seconds represents urban traffic driving conditions and the EGR in optimised 

NMPC are driven higher than un-optimised NMPC and the default ECU engine. These can 

lead to a lower emission, as most of the required optimised MAP and MAF are reached. 

Between 760 and 790 seconds, the emissions benefits are more significant with higher VGT 

and more EGR than the initial, un-optimised diesel engine. At the same time, the optimisation 

algorithm in the lower speed range provides an expansion of the EGR rate for NOx reduction, 

while an earlier start of injection is selected in the upper speed range to reduce fuel 

consumption. Operating areas that are not covered by the driving cycle remain unchanged. 

Besides being able to consider a larger number of operating points in the cycle optimisation, 

this approach has the further advantage that a smooth map is automatically created from the 

manipulated variable models.  

 

Under the FTP-75 driving cycle, the rate of change of NOx emissions and PM emissions of 

this diesel engine using optimised NMPC are around 30% compared with those of the default 

ECU engine. The effective fuel consumption rate is about 4% reduced. This means that the 

NMPC approach could improve the trade-off between NOx emissions and PM emissions with 

better fuel efficiency or without significantly affecting fuel efficiency.  

 

This study mainly changes the EGR and VGT opening rate, with no changes to the engine 

hardware. The optimised NMPCs in this study can significantly improve the EGR rate. As 

shown in Figure 6.16, under a medium to heavy load, the air-fuel ratio in the cylinder is 

relatively small and the EGR tolerance is lower; thus, a higher EGR rate can significantly 

reduce NOx emissions. The dynamic performance of the VGT turbocharger has been 

improved by NMPC in the following ways compared with the MAF and MAF reference 

values: The VGT turbocharger is more efficient, and it could make better use of the exhaust 

energy than the wastegate turbocharger. The exhaust flow is smoother, and the flow loss is 

reduced. The intake pressure increases, and the pumping loss decreases.  

 

The VGT has a more rapid dynamic response and the hysteresis loss is reduced. To benefit 

from the advantages over conventional WG diesel engines, the advanced NMPC controller 

has been implemented in this study. Using the NMPC, the VGT opening and the exhaust back 

pressure can be accurately controlled and finely adjusted for different working conditions.  
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Figure 6.16: Comparison of NOx, OPAC, VGT and EGR positions-FTP-75 (0~1372s) 

 

The results of the optimisation are shown as examples of the air-path control. Here, the effects 

of different weights for NOx and OPAC are shown. The results lead us to the conclusion that, 

based on the advanced NMPC controller and model-based approach, the optimisation and 

calibration can be performed in a virtual environment by using different criteria. The 

purposed model-based optimisation approach combined with the advanced NMPC controller 

provides a way to efficient reduce emissions for a given driving cycle and vehicle with 

minimum fuel consumption.  
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Chapter 7. CONCLUSIONS AND FURTHER WORK  

7.1 Main Achievements 

The increasing variability and complexity of advanced internal combustion engines requires a 

systematic model-based development of control functions and their optimisation. Therefore, 

this study analyses the model-based method for optimising emissions of diesel engines 

through nonlinear model predictive control (NMPC). In this study, the goal of the purposed 

NMPC control system is to simultaneously achieve a low fuel consumption and low NOx and 

PM emissions. The modelling of the engine-air-path system using the LPV method is 

emphasised. The identification of nonlinear multivariable models with an LPV structure 

allows for precisely describing the stationary and dynamic behaviour of the engine air path. 

The idea behind the proposed NMPC strategy is to represent the plant model as an LPV 

model. The control-objective function used to search for the optimal solution to the QP 

problem is then extended to the parameter-varying cost function by utilising the given LPV 

model. On the basis of the engine-air-path model and the NMPC controller, an optimisation 

can be performed on computer, by using different criteria for emissions and fuel consumption. 

 

The originality of this work can be summarised as:  

 

1. Using LPV model as a prediction model for the NMPC 

 

In NMPC, a mathematical non-linear model was used for the prediction of future system 

outputs based on past inputs and outputs. The deviation between reference trajectory and 

predicted outputs was then minimised by means of an optimisation algorithm that considers 

possible constraints and the defined objective function. This study reveals that there are many 

perceived benefits to using an LPV model as a ‘predictor’. The LPV identification approach 

delivered in this thesis is successfully applied to the modelling of a diesel engine-air-path. In 

the NMPC application, the air-path dynamic model is investigated based on an input-output 

data set. As shown in previous chapters, it is indeed possible to build a low-order model 

which can describe the dynamic properties of the MAF and MAP only by means of pure data 

measurements such as n, mf, VGT and EGR signals from an FTP-75 cycle. While the average 

performance of the model could be increased by optimising the model and the membership 

functions, it is nevertheless clear that the model will not be able to provide 100% exact MAF 
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and MAP predictions. However, it is still an adequate basis for model-based engine-control 

synthesis. This means the LPV identification algorithms can be applied to non-linear system 

like engines, in which the operation states can be defined as some discrete values for 

scheduling the systems. From the results shown in chapters 4, 5 and 6, we can safely draw the 

conclusion that LPV identification techniques provide a new way of modelling dynamical 

systems. Moreover, it is suggested that good LPV system identification results can be reached 

by combining non-linear optimisation methods. These advantages make the LPV model for 

NMPC control application possible. 

 

2. Integrating LPV model in the cost function of NMPC that helps ensure quality outcomes 

and deliverables 

 

This point is related to the NMPC controller performance. The performance criteria most 

commonly used to evaluate the performance of various controllers are stabilisation and 

reference tracking of a dynamic system. From the results shown in chapters 5 and 6, 

compared to the linear MPC and standard ECU, the control performance of an engine-air-path 

could be significantly improved by the LPV-based NMPC. The critical factors affecting 

NMPC performance were reviewed from different aspects, concerning the prediction model, 

cost function, optimisation, constrains and QP problem. Based on the progress of this study, 

some improvements regarding the critical factors have been made to create an NMPC for 

providing a quality controller in an air-path system. In NMPC, the optimisation of the LPV 

cost function can be transformed into a time-varied quadratic program problem of a form 

which can be solved by a QP-solver. In the linear case, algorithms for QP-solver 

configurations are state-of-the-art. The QP describes the standard convex quadratic 

optimisation problem. However, the complex structure of a non-linear problem can 

complicate the formulation of a NMPC. In (Ferreau H. J., Ortner, Langthaler, Del Re, and 

Diehl, 2007) an alternative fast method of QP-solver is presented. In this study the fast 

method of QP-solver was used. The results of this study lead us to the conclusions that an 

upper computation bound of an optimal problem can be ensured in a real-time simulation, 

which is very suitable for the LPV model in the NMPC cost function. 

 

3.  Using the LPV-based NMPC overcome the cross-coupling and tracking problem in the 

diesel engine-air-path control, thereby reducing emissions and maintaining engine 

performance 
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Due to the possibility of treating constraints and non-linear MIMO systems directly, an 

NMPC was chosen for this feedback control problem, where the cross-coupling problem of 

VGT and EGR was considered by the MIMO model structure. The output prediction model, 

required by the NMPC, was designed by using an LPV approach. This structure can be 

interpreted as a special case of a gain-scheduling system in which the coefficients of the 

transfer function are re-calculated and varied in each time step. A mean-value diesel-engine 

model has been used to validate the effects of the predictive control strategy. The simulation 

and comparison of various configurations in chapters 5 and 6 show a satisfying, closed-loop 

performance of the two target quantities, MAF and MAP. Compared to linear MPC, this new 

NMPC approach provides good tracking performance even during plant operations in regions 

far from the linearisation point. Due to limited time and resources, the NMPC is evaluated 

only in the simulation platform for this study. A further step for the analysis and evaluation of 

the NMPC performance is controller implementation on a real-world test-bench, which 

provides validation under real conditions. Under real conditions, the ability of the NMPC to 

reduce emissions during a driving cycle and the quality of the LPV model prediction can be 

investigated and validated. 

 

7.2 The Contribution to the New Knowledge Generation 

Besides the results presented in this study, a summary of the contribution to the new 

knowledge generation is given here. 

 

1. A new non-linear model predictive control of diesel engine-air-path system 

 

This is the first time an LPV-based NMPC has been developed for control of engine-air-path 

system. In this study, three different kinds of engine-air-path controllers—NMPC, linear MPC 

and standard ECU—have been proposed and validated by experiments on the virtual engine 

test-bench as a solution to the problem of engine-air-path control while satisfying the tracking 

of the control references. The results presented lead us to the conclusion that the LPV model 

can be used to predict the air-path behaviour of a diesel engine. The LPV model used for the 

prediction MAF and MAP gives qualitatively correct, reproducible behaviour at variations in 

engine speed and fuel injection. Furthermore, it was found that the NMPC controller gives 

better results than linear MPC and standard ECU, as it combines robustness and acceptable 
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tracking ability. The problems of the computational burden in QP, and thus the non-

applicability to fast processes, are overcome by the online active QP-solver, qpOASES. The 

tracking performance and stability of NMPC can be guaranteed in LPV representations, 

which can be evaluated by the step-response simulation. From this study, the following 

conclusions can be drawn: First, NMPC has the opportunity to include LPV model, MIMO 

control technique and constraints in the optimisation problem. These advantages make the 

NMPC very useful for the interaction of EGR and VGT control in engine-air-path system, 

compared with other approaches like linear MPC and standard ECU. It has been shown 

experimentally that an LPV model in combination with an MPC can compensate for the 

disturbances more quickly than the linear method. Another advantage of the NMPC is to 

include more precise future prediction in the optimisation problem. This can clearly be found 

in the nature of the engine system. During the operation point’s change, the optimal solution 

of the next instant will be known in advance, which makes the engine-air-path control more 

efficient. Second, the FTP-75 cycle simulation has been presented with the default MAF and 

MAP reference maps of the ECU. As mentioned in Section 5.3, although MAF and MAP can 

be tracked better by using NMPC than by using the standard ECU, the overall emissions 

cannot be improved significantly if the set points are not optimised with respect to emissions. 

This optimisation issue was investigated in Chapter 6. Generally speaking, the results confirm 

the use of NMPC as an engine-air-path controller. Moreover, the control concept is not 

restricted to use of engine-air-path control; it therefore provides the potential for numerous 

control applications of non-linear systems.  

 

2.  A new simulation model for diesel engine-air-path 

 

A mean-value engine-air-path model—including intake and exhaust manifolds, torque, 

emission, etc.—is developed in Matlab/Simulink as a virtual engine test-bench in this study. 

First, the engine-air-path characteristics are described by physical equations; then the 

emissions and torques are modelled via a data-based approach. Nevertheless, some 

simplification concerns the modelling of turbocharger and combustion, the combination of a 

physical description and data-based approach seems a promising method for a reduced 

complexity modelling with a sufficient precision for model-based controller design.  

 

The following conclusions can be drawn from this study. The model development for model-

based development is characterised by a trade-off between model accuracy, computational 
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requirements and parametric effort. First, the model must meet the requirements for a correct 

physical representation of a real engine. Next, the real-time capability of the engine model is 

required due to closed-loop simulation with the control unit. This point significantly limits the 

quantity of the modelling approach. The clear parametric effort then decides on a productive 

use of the simulation model in the further development process. An increase in efficiency 

within model-based development—especially in a large-scale development process—is in 

accord with the availability and reusability of the model’s parameters with fewer test-bench 

efforts.   

 

3.  A new model-based emissions and fuel optimisation method on engine-air-path control  

 

To meet the increasing demands on modern diesel engines control in terms of satisfied 

dynamic performances and low exhaust emissions and fuel, it is necessary to determine a 

suitable control reference. The proposed new optimisation methods have therefore been 

developed in this study. The optimised NMPC-controlled diesel-engine system makes use of 

the EGR and the VGT to improve the combustion situation, thereby improving the power and 

fuel efficiency of the diesel engine. Compared with the initial diesel engine, in the optimised 

NMPC(NOx,PM), the fuel consumption is basically the same, and the NOx exhibits a 

decrease of about 30% coupled with a 29% reduction in PM emissions.  

 

In this approach, one of the emphases is on the mathematical MIMO modelling of emissions 

using a data-based approach. For this particular optimisation task, the non-linear and dynamic 

behaviours of emissions are well interpreted by DOE data-based modelling. Based on these 

models, different methods for model-based optimisation and calibrations are performed on the 

virtual engine test-bench. The following conclusions can be drawn from Chapter 6: The 

presented optimisation methods can be carried out by computer simulation for multi-

manipulated variables and multi-objectives with selected weighting factors. Using the 

optimised control reference, the NMPC shows a significant potential for the improvement of 

emissions and fuel. This obviously shows that the optimisation results strongly depend on the 

quality of the emissions models. If the emission behaviour can be described more precisely, 

this optimisation method could provide a very practical and efficient solution which can help 

the optimisation and heuristic intermediate variables to be calibrated in a relatively short time. 

Once the optimal calibration is determined in a virtual environment, only a validation test run 

on the real test-bench for confirmation is necessary.   
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7.3 Limitation and Further Work 

In this thesis, the research findings for solving non-linear control problems in fast process 

shown for instance in the engine-air-path control give a very promising perspective, that the 

purposed NMPC algorithms will be able to run in combustion engine systems in near future. 

Such kinds of application of LPV-based NMPC approach will greatly increase the 

attractiveness of NMPC for engine control. The further research steps should continue to 

prioritise this work to strengthen the understanding of the combustion engine and emission 

behaviours to obtain more precise models and maintain up-to-date and effective NMPC 

approach to solve the proposed problems and ensure that the Euro VI even further emission 

legal standards can be appropriately and effectively fulfil with continuously increasing 

computation power of the available hardware. In this context, highlighted below are those 

areas where the research limitations exit and where further progresses should be achieved. 

 

Engine Modelling  

 

Even though the purposed engine model gave satisfactory results for the approximation of the 

MAF and MAP, there are still some concerns. A practical modelling method for model-based 

development needs to be configurable to a wide variety of engines for instance naturally 

aspirated engine, mechanical boost engine, even for more complicated engine layouts, such as 

multiple turbocharger engines. So far in this thesis the modelling efforts have only 

accomplished VGT EGR diesel engine for air-path control function development and 

performance optimisations.  

 

The development of more sophisticated engine models (e.g., with detail fuel injection models 

and more precise emission models) to allow NMPC engine constitute challenges in issues of 

overall non-linear engine modelling, model-based optimisation and calibration, remains a core 

challenge for the future of model-based control deign for engine systems. Another point 

which should be investigated is the reproducibility and extension of the measured data used 

here for validation and further optimisation purpose. This means that the data have to be 

analysed such that all the necessary signals have to be figured out. In this work only the MAF, 

MAP, exhaust pressure, NOx and OPAC have been considered, but to ensure the 

reproducibility of the data, to build a model, it can be necessary that other signals, for instance 

exhaust temperature and fuel injection, must be considered.  
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Engine Non-linear Model Predictive Control 

 

Due to the limited time and resources, the NMPC is only evaluated in the simulation platform. 

Some of the issues will be next overviewed involved when considering implementing the 

NMPC air-path controller within production ECU on a real test-bench, particularly paying 

attention to balancing the trade-off between computing burden and controller performance. 

Under the real conditions, the ability of the NMPC on the emissions reduction during a 

driving cycle and the quality of the LPV model prediction could be investigated and 

validated. Another interesting issue is to transfer this idea of air-path to other engine control 

applications—for instance, to investigate the NMPC on the engine thermal management and 

to study the impact of the cylinder temperature on the emissions, in particular on the NOx. 

We found that it is possible to reduce the NOx peaks during the driving cycle when the 

temperature of the cylinder head is stabilised. Furthermore, in the thesis, two intermediary 

parameters, MAF and MAP, are selected to impact the emissions. It will be very interesting to 

develop and implement a direct emission control method. The LPV identification algorithms 

could be applied to the modelling issue of emissions, and this LPV model could be integrated 

into the NMPC controller. The high potentials of this LPV NMPC application can be 

expected in the combination of the LPV emission models for prediction and thus to directly 

penalise the emissions within the bounds of the legal requirements and optimised the emission 

behaviour on the transient operation areas. Finally, the results of this thesis lead us to the 

conclusion that this LPV NMPC approach is feasible, reasonable and effective for non-linear 

system control and is of great value for practical application in the automotive industry is 

shown. Therefore, it makes sense to develop a commercial software toolbox with which to 

provide a systematic, efficient development processes to facilitate the control-development 

process and to offer the possibility of efficiently designing a real-time capable NMPC in 

combination with QP-solver qpOASES. 

 

Model-based Engine Optimisation and Calibration 

 

The presented optimisation methods are carried out for multiple manipulated variables and 

evaluating outputs with selectable weights such as fuel consumption and emissions. This is to 

be done in a relatively short time with the simulation engine models, whereby any driving 

cycles and either stationary or transient engine test cycles can be applied. However, solving 

these optimisation problems is usually not a choice for multi-domain combustion 
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(mechanical, thermal, two-phase fluid) optimisation, though attempts have been made in this 

direction for a very long time. There are a number of reasons for this, among which is the fact 

that several effects are not well known. In addition, the computational effort is too high for 

actual ECUs—especially in view of the highly dimensional and mostly non-convex problems 

caused by the complex and non-linear nature of most applications. The improved 

computational power of ECUs and optimisation approaches are expected to allow for the use 

of more sophisticated control techniques such as those encountered in multi-variable, optimal 

control paired with multi-domain combustion and emissions models for control. 
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APPENDIX A- DESIGN OF EXPERIMENT 

The following definitions of DOE mainly coincide with those of (Hirsch, 2011) and (Ljung, 

System Identification, 2001). First of all, it is assumed that a mathematical model (sensor 

dynamics is known) is sufficient for approximation: 

 

 

�̂�(𝑘) = 𝑓(𝑢(𝑘)) = 𝜃0 + 𝜃1𝑢1(𝑘) + 𝜃2𝑢2(𝑘)…𝜃4𝑢4(𝑘)𝑢4 .                        (a-1) 

 

As presented in (Hirsch, 2011), the independently and identically distributed Gaussian error 

ε~ N (0, σ2) on the transformed measurement y is expressed as follows: 

 

𝑦(𝑘) =  𝑓(𝑢(𝑘), 𝜃) + 𝜀(𝑘).                                              (a-2) 

 

We define the least squares estimators as well as the maximum likelihood estimators 𝜃 as 

follows, 

 

𝜃 = (∑
𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃

𝑁
𝑘=1

𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃𝑇
)−1∑

𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃

𝑁
𝑘=1 𝑦,                            (a-3) 

 

and the variance of 𝜃 can be written as follows, 

 

𝑣𝑎𝑟𝜃 = 𝜕2(∑
𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃

𝑁
𝑘=1

𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃𝑇
)−1 =

𝜕2

𝑁
�̅�(𝑢, 𝜃)−1.                     (a-4) 

 

�̅�(𝑢, 𝜃)−1 is the normalised information: 

 

�̅�(𝑢, 𝜃) =
1

𝑁
(∑

𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃

𝑁
𝑘=1

𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃𝑇
) .                                   (a-5) 

 

Hirsch (2011) states that the idea of input design is to have an input sequence u(k) that 

persistently excites the system. This means that the input signal should be conditioned that 

way column of 𝑋 =
𝜕𝑓(𝑢(𝑘),𝜃)

𝜕𝜃𝑇
 (regressors) are uncorrelated and separable. To minimise the 

influence of the noise 𝜀(𝑘), amplitudes of repressor in X should become maximal which 
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implies that the entire input range Ω should be utilised. Furthermore, critical model 

extrapolations can be avoided by maximising the amplitudes to the boundaries of Ω. 

 

Optimal input design algorithms define input signal such that inputs operate within the pre-

defined continuous but bounded input range Ω and thereby maximise a scalar criterion, 

usually related to the size of �̅�(𝑢, 𝜃) , a common one being the D-criterion, defined as 

follows:  

 

𝐽(𝑀) = det (�̅�(𝑢, 𝜃)) .                                                 (a-6) 

 

For some alternative criteria see e.g. Optimum Experimental Designs (Atkinson & Donev, 

1992). The input sequence can be computed by solving: 

 

𝑢(𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑑𝑒𝑡(�̅�(𝑢, 𝜃))), 𝑢(𝑘) ∈ 𝛺, 𝑘 = 1…𝑁.                         (a-7) 

 

This Equation a-7 for an input sequence of length N will have r = 4 (number of inputs) times 

N parameters for optimisation. Direct optimisation of more than 10-20 parameters would 

overstrain optimisation routines especially as the optimisation should be a global one, since 

the problem is non-convex. Using approximate design algorithms, where next inputs are 

defined sequentially is considering the already obtained measurements, parameters for 

optimisation can be reduced. The used algorithm here is based on the Kiefer-Wolfowitz 

Equivalence Theorem (Kiefer & Wolfowitz, 1960) which relates optimality in the parameter 

space to optimality in the space of observations. For D-optimality this theorem does this in the 

following sense: 

 

Let 𝜃 be the estimated parameter vector for a data series (measured inputs as well as outputs) 

of length k. The error for the estimation of y(k) according to 𝜃 is given by the output variance 

which depends on the location of u(k+1) within Ω: 

 

𝑣𝑎𝑟(𝑦(𝑢(𝑘 + 1), 𝜃) =
𝜕2

𝑁
𝑋(𝑘 + 1)𝑇�̅�(𝑘)−1𝑋(𝑘 + 1),                         (a-8) 

 

where �̅�(𝑘) defines the normalised information matrix at the sampling instance k and 

therefore includes all measurements up to that point. Mostly the standardised prediction 
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variance 𝑑(𝑦(𝑢(𝑘 + 1), �̅�(𝑘)) is used for optimsation as this value does not depend on N 

and 𝜕2: 

 

𝑑(𝑢(𝑘 + 1), �̅�(𝑘)) = 𝑋(𝑘 + 1)𝑇�̅�(𝑘)−1𝑋(𝑘 + 1) .                              (a-9) 

 

The D-optimal design is sequentially approximated, if the next input u(k+1) is defined such 

that 𝑑(𝑦(𝑢(𝑘 + 1), �̅�(𝑘)) becomes maximal (For more details see e.g. (Atkinson & Donev, 

1992)):  

 

𝑢(𝑘 + 1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋(𝑘 + 1)𝑇�̅�(𝑘)−1𝑋(𝑘 + 1)𝑢(𝑘 + 1) ∈ Ω.                  (a-10) 

 

This optimisation presents a non-convex problem with several local maxima within Ω.  In this 

task, a multi-shot optimisation is used to cope with this issue. There, several optimisations 

start at random points within Ω and the best is considered as the optimum.  
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APPENDIX B- ONLINE ACTIVE SET STRATEGY 

An online active set strategy, namely the qpOASES, for the fast solution of QP problem is 

developed in (Ferreau, 2014); it is shown that this active set strategy turned out to be 

significantly faster than a standard QP-solver while overcoming the prohibitive limitations of 

the explicit approach to MPC optimisation. This software provides us with mathematical 

methods for the handling of QP problems. A parametric online active set method is applied 

where in each major iteration step a quadratic approximation of the Hessian of the Lagrange 

function is calculated to determine the direction of search for the next iteration, while the step 

length is determined by an appropriate line search procedure such that a sufficient decrease in 

a merit function is obtained. This is done repeatedly until the stop condition is fulfilled, i.e. 

the cost function is sufficiently minimised. 

 

The qpOASES using following QP formulation in the solver:  

 

QP (𝑥0):              𝑚𝑖𝑛𝑤
1

2
𝑤𝑇𝐻𝑤 + 𝑤𝑇 𝐹𝑇𝑥0⏟

=:𝑔(𝑥0)

.                                            (b-1)              

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          

𝐺𝑤 ≥ �̅�  + 𝐸𝑥0⏟    
=:𝑏(𝑥0)

 

𝑤 ≔ [𝑢0, ⋯ , 𝑢𝑁−1]
𝑇 . 

 

This idea behind this QP-solver is a process of finding the best achievable result according to 

various parameters. The optimum is specified by the extreme of a defined function which can 

be either the maximum or – as it is in this case – the minimum of a cost function, which is 

referred to the objective function f(x) in the following.  

 

Therefore, a general optimisation problem can be defined according to (Nocedal, 2006) and 

(Durea, 2014) as follows: 

 

min𝑓(𝑥),    𝑥 ∈ 𝑅𝑛.                                                         (b-2)    

 

As in general x is a vector, the derivation of f(x) according to each element of x has to be 

determined. In detail the gradient g(x) of a scalar function f(x) can be computed by solving: 
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g ∶ 𝑅𝑛 → 𝑅𝑛  ,     𝑔(𝑥) = ∇𝑓(𝑥) =

[
 
 
 
 
𝜕𝑓

𝜕𝑥1
(𝑥1, ⋯ , 𝑥𝑛)

⋮
𝜕𝑓

𝜕𝑥𝑛
(𝑥1, ⋯ , 𝑥𝑛)]

 
 
 
 

 .                                (b-3)    

 

The second derivative is written as a Hessian matrix as follows: 

 

H ∶ 𝑅𝑛 → 𝑅𝑛×𝑛  ,     𝑔(𝑥) = ∇𝑓(𝑥) =

[
 
 
 
 
𝜕2𝑓

𝜕𝑥1
2 ⋯

𝜕2𝑓

𝜕𝑥1 𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥1 𝑥𝑛
⋯

𝜕2𝑓

𝜕𝑥𝑛
2 ]
 
 
 
 

 .                          (b-4)    

 

Because of the commutability of the differentiation this matrix is always symmetric. The first 

order necessary condition for a local minimum x* is defined by, 

 

  𝑔(𝑥∗) = ∇𝑓(𝑥∗) = 0.                                                       (b-5)    

 

For an unconstrained optimisation problem, this first order condition is necessary but not 

sufficient as a turning point also fulfills 𝑔(𝑥∗) = ∇𝑓(𝑥∗) = 0  although it is not a global 

extreme point. Hence, in order to obtain a sufficient optimality condition, it is required that 

𝐻(𝑥∗)  is positive definite. In the case of a constrained optimisation problem constraint 

functions 𝑐𝑖(𝑥) are given by,  

 

𝑐𝑖(𝑥) = 0,        𝑖 ∈ 𝐸,                                                          (b-6)    

 

where E is the index set of equality constraints and I is the set of inequality constraints. The 

constraint functions 𝑐𝑖(𝑥) have to be considered in the objective function (𝑥) , which can be 

done by introducing the Lagrange function of  𝑓(𝑥) written as, 

 

  𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆𝑇 ∙ 𝑐(𝑥),                                                (b-7)    

 

where 𝜆𝑇is the vector of Lagrange multiplier. Using the Lagrangian function instead of the 

original objective function 𝑓(𝑥)  the condition of the extreme point can be written as: 
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∇ 𝐿(𝑥∗, 𝜆∗) = 0,                                                                   (b-8)    

 

and additionally, the Hessian of the Lagrange ∇ 𝐿(𝑥∗, 𝜆∗) must be positive definite.  

  

The following is applied to the optimisation process in the solver of qpOASES. Theorem 

(Diehl, 2007): Let 𝑄𝑃(𝑥0) be a strictly convex and feasible quadratic program, then there 

exists a unique 𝑤∗ ∈ 𝑅𝑛 and at least one working set A and a vector 𝑦∗ ∈ 𝑅𝑛 which satisfy 

the following conditions: 

 

QP (𝑥0):              𝐻 𝑤
∗ − 𝐺𝐴

𝑇𝑦𝐴
∗ = −𝑔(𝑥0)                                                     (b-9)              

                                                   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜           

𝐺𝐴𝑤
∗  = 𝑏𝐴(𝑥0)                          

𝑦𝛱
∗ = 0, ( 𝛱 ≔ [1,⋯ ,𝑚]𝑇\𝐴)  

𝐺𝛱𝑤
∗  = 𝑏𝛱(𝑥0).                          

 

 

 

Figure b.1: Search for optimal solution in qpOASES (Ferreau, 2014) 

 

In the optimisation process, as shown in Figure b.1 the solver of qpOASES calculate the 

∆𝑥0, ∆𝑔  and ∆𝑏  at first and based on their results to calculate the primal and dual step 

directions  ∆𝑤∗  and ∆𝑦∗ . Then determine the maximum homotopy step length 𝜏𝑚𝑎𝑥: =

min { 1, 𝜏𝑚𝑎𝑥
𝑝𝑟𝑖𝑚, 𝜏𝑚𝑖𝑛

𝑝𝑟𝑖𝑚} in order to obtain optimal solution of  QP (𝑥0) as follows: 

 

𝑥0 + 𝜏𝑚𝑎𝑥∆𝑥0  → �̃�0                                                  (b-10)    

𝑤∗ + 𝜏𝑚𝑎𝑥∆𝑤
∗  → �̃�∗ 

𝑦∗ + 𝜏𝑚𝑎𝑥∆𝑦
∗  → �̃�∗, 

 



  251 

where if 𝜏𝑚𝑎𝑥 = 1, the final optional solution of  QP (x0
𝑛𝑒𝑤) can be found; if 𝜏𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥

𝑝𝑟𝑖𝑚
, a 

dual blocking constraint 𝑗(𝜏𝑚𝑎𝑥
𝑝𝑟𝑖𝑚 = −

y𝑗
∗

∆𝑦𝑗
) should be removed from the working set; in all 

other situations a primal blocking constant 𝑗(𝜏𝑚𝑎𝑥
𝑝𝑟𝑖𝑚 =

𝑏𝑗(𝑥0)−𝐺𝑗
𝑇𝑤∗

𝐺𝑗
𝑇∆𝑤∗−∆𝑏𝑗

) will be added to ensuring 

the linear independence. Finally set  

 

𝑥0  → �̃�0                                                           (b-11)    

𝑤∗  → �̃�∗ 

𝑦∗  → �̃�∗, 

 

and all the computation is repeated at the next sampling time. 

 

In the case of a convex optimisation problem every local minimum is a global minimum too. 

This is not valid in the case of a non-convex problem and therefore convex optimisation 

problems are relatively easy to solve. The purposed optimisation in QP problem is a 

constrained optimisation problem, as there are some limitations e.g. to the VGT and EGR. 

Furthermore, the derivatives of the cost function cannot be determined analytically, as 

described above. Thus, to evaluate the derivatives of the cost function, the simulation is 

performed using different parameters and the different results caused by the cost functions 

have compared each other.  

 

 

 

 


