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Abstract: Urban green infrastructure has the potential to offer multiple ecosystem services to society. 
However, there is little information about the role of these tree dominated, public streetscapes on the 
local-scale provision of ecosystem services in European mid-sized cities. In the present study, we 
explored the local-scale effects of different tree dominated streetscape types on mitigating 
temperatures and air pollution in the city of Bolzano, Italy by integrating the ENVI-met and UFORE 
models as well as local field, pollution and climate data. We found that total estimated air pollution 
removal by trees in Bolzano was 2.42 metric tons per year (t/yr); with ozone (1.2 t/yr) being the 
pollutant most removed and carbon monoxide (0.03 t/yr) the least. Total air pollution removal 
(901.4 kg/yr) was greatest in parks. Total biogenic volatile organic compound emissions, an 
ecosystem disservice, were also estimated. The ENVI-met simulations found that urban trees can 
reduce streetscape temperatures by up to 2 °C during the summer and improve human thermal 
comfort. Results can be used to better understand the dynamics of local-scale ecosystem services of 
mid-size European cities and to better assess the role of urban streetscapes and green infrastructure in 
improving human well-being and mitigating the effects of climate change. 

Keywords: Air pollution; ENVI-met model; ecosystem disservices; thermal comfort; green 
infrastructure  
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1. Introduction  

Increased urbanisation is altering natural and semi-natural ecosystems, causing the loss of 
vegetation, biodiversity, open spaces, and changing both hydrologic and biogeochemical cycles [1]. 
For example, average temperatures in large metropolitan areas of 100,000 to 1 million people can be 
5–10 °C warmer than surrounding rural areas and results in urban heat island (UHI) effects [2-4]. 
Incidences of longer and warmer summer temperatures are also increasing and this is likely due to 
climate change [5]. These increased temperatures are resulting in increased mortalities during 
summer heat waves [6-9]. Indeed a number of health and environmental issues are arising from these 
altered ecosystems. Thus effective planning strategies for the urban environment are needed to 
improve the local-scale climates and to provide other multiple benefits, such as energy savings and 
the reduction of health risks [10]. 

In human-modified urban ecosystems, urban green infrastructure plays a key role in improving 
the aesthetics, environment, and the overall quality of life of its residents. Urban green infrastructure 
is a hybrid infrastructure of green spaces and built systems, e.g. urban forests, wetlands, parks, green 
roofs and walls that together can contribute to ecosystem resilience and human benefits through 
ecosystem services [11]. As such, urban green infrastructure has been documented as providing 
several economic, aesthetic [12-14], cultural [15,16] and architectural benefits [17]. In particular, 
urban green infrastructure provides multiple ecosystem services and goods, such as urban air quality 
improvement [18-21]. It can also regulate climate through carbon storage and sequestration [22,23] 
as well as offset carbon dioxide (CO2) emissions from cities [24-27]. Green infrastructure can also 
improve human thermal comfort through altering the albedo of surfaces as well as cooling 
atmospheric temperatures through shading and evapotranspiration [28-33]. As the rate of 
urbanization of the world’s population continues to increase, urban woody vegetation in particular 
will be one of the primary components of green infrastructure [34]. 

These ecosystem services from green infrastructure are important since they can have direct 
tangible, benefits by improving human health [35,36]. For example, air quality improvement by 
urban vegetation can reduce health problems and mortality [37-39]. Other epidemiological studies 
that control for age, sex, marital and socio-economic status, have provided evidence of a positive 
relationship between green space and the life expectancy of senior citizens [40-42]. In Milan, Italy 
Picot (2004) [43] investigated the thermal comfort provided by trees in an Italian piazza and found 
that the shading effect under a mature tree canopy shows a reduction of the absorbed radiation, 
generating an energy budget very close to acceptable human comfort (under 50 W/m2). Lafortezza, 
Carrus, Sanesi, & Davies, (2009) [44] found that longer and frequent visits to green spaces generate 
significant improvements of the perceived benefits and well-being among users. According to 
Armson et al. (2012) [45] tree shade can reduce surface temperatures by up to 19 °C in an urban area. 
More recently, at the local-scale, Maher et al. (2013) [46] documented a 50% reduction in particulate 
matter levels inside houses that were screened by street trees in the United Kingdom.  

Recent studies have demonstrated that urban green spaces can also result in decreased 
well-being or ecosystem disservices [19], such as costs to the community including social problems 
(e.g. fear of crime), health problems (e.g. increasing allergy from pollen), environmental problems 
(e.g. volatile organic compounds—VOCs), and economic disadvantages such as, e.g. maintenance 
costs of urban forests [19,47]. Thus, the ecosystem services concept provides useful benchmarks and 
performance indicators to link science with urban planning policies and design alternatives [48]. A 
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key similarity across these studies is the importance of accounting for scale and costs when 
quantifying urban ecosystem service provision [19]. 

Several approaches for mapping and assessing urban ecosystem services exist, however once 
again they are generally made at the regional or city-wide scales [47,49,50]. Within a city, because of 
scale and context issues- and the importance of human well-being- there is a need for ecosystem 
services quantification and assessments at the local scale and including more than one ecosystem 
service (i.e. a bundle or stacked ecosystem services) in order to be useful for policy and planning 
purposes [19]. Recently, ecosystem services of urban green infrastructure have been assessed using 
available methods including computer models such as ENVI-met, i-Tree (i.e. Eco/UFORE, Streets), 
and in the past CITY green [47,51,52]. These models have been developed or adapted for landscape 
design and urban planning [53]. 

For example, most of the above studies have been developed in the United States (US) [47] with 
relatively few in Italy or the rest of Europe [35]. Relevant studies from Italy have examined specific 
ecosystem services provided by urban green spaces and urban trees. Siena & Buffoni (2007) [54] 
examined the air quality improvement of a small park in Milan, while others have focused on 
city-level ozone (O3) removal [55,56]. Papa et al. (2012) [57] analysed trace metal concentrations 
(Pb, Cd, Cr, Ni, V and Cu) in Q. ilex leaves sampled in different sites of Caserta, Southern Italy. 
Other studies by Gratani & Varone (2007) [58] and Baraldi, Rapparini, Tosi, & Ottoni (2010) [59] 
and Russo et al. (2014) [60] have quantified CO2/carbon sequestration at the species level, and social 
aspects have been studied by Sanesi & Chiarello (2006) [61] and Secco & Zulian (2008) [62]. Again, 
most studies on air pollution removal were largely based on modelling work at the city or large park 
scale [35]. 

The above literature also shows that few studies in Italy and Europe have examined the bundle 
of ecosystem services provided by urban treed streetscapes [47,63-65]. More specifically, there is 
little information about the local-scale ecosystem services provided by urban green infrastructure in 
mid-sized cities in the Southern Alps and Northern Italy. According to Konijnendijk et al. (2013) [35], 
studies on trees and air quality improvement have emphasized multiple sites and not specific green 
spaces or local-scale areas such as individual parks.  

Therefore, the overall aim of this study was to develop an integrated local-scale methodology to 
quantify a bundle of key ecosystem services provided by urban trees in different streetscape types 
using: biometric data, site-specific meteorological and pollution concentration data, integrating two 
simulation models (Urban Forest Effects and ENVI-met), and an existing tree inventory with 
ancillary spatial data. Our specific study objectives were to estimate at both the individual tree and 
streetscape scales: (1) the mitigation role of urban trees on streetscape-scale temperature and human 
thermal comfort, (2) the removal of ozone (O3), particulate matter less than 10 microns, (PM10), 
nitrogen dioxide (NO2), and carbon monoxide (CO), and (3) the biogenic emissions of these trees as 
a proxy for quantifying the ecosystem disservices of these streetscapes in a northern Italian city.  

Results from this approach can be applied towards Action 5 of the European Union Biodiversity 
Strategy, that requires Member States, with the assistance of the Commission, to map and assess: the 
state of ecosystems and their services in their national territory by 2014, the economic value of such 
services, and promote the integration of these values into accounting and reporting systems at EU 
and national level by 2020 [49,66]. Furthermore, according to European legislation on air quality, the 
Member States should undertake assessments of air pollution levels using measurements and 
modelling and other empirical techniques. Where pollution levels are elevated, the Member States 
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should prepare an air quality plan or program to meet such standards [67].  

2. Materials and Method 

2.1. Study area 

This study was conducted in the city of Bolzano in the autonomous region of Trentino-Alto 
Adige/South Tyrol in northern Italy (46°29'28" N, 11°21'15" E). Bolzano has a population of 
approximately 100,000 inhabitants and covers an area of over 50 square kilometres [68]. Green areas 
represent about 3.9% of the city’s territory which accounts for approximately 20 square metres of 
green space per person [69] and the city has an estimated urban tree population of 12,000 trees [70]. 
According to the Köppen classification Bolzano’s climate type is moist continental “Dfb” 
characterized by cold winters and warm summers with no marked dry seasons with mean annual 
precipitation of 740 mm and a mean average maximum and minimum temperature of 17.9 °C and 
6.8 °C, respectively [71]. In 2010, the City of Bolzano prepared an air quality plan for nitrogen 
dioxide (NO2) reduction as required by the European Union Air Quality Directive (Directive 
2008/50/EC) [67]. The area in Bolzano where NO2 concentrations exceed the limit values has an 
extension of about 3.4 square kilometres with a population of about 25,000 people. The highest 
concentrations of NO2 (62 μg/m³) have been identified along major streets such as the A22 highway 
Brennero-Verona [72]. 

In this study, we define “streetscape” as any area with paved roads, street infrastructure, 
roadside buildings and vegetation [26]. Tree dominated streetscapes are components of a city’s green 
infrastructure and as such are capable of delivering a wide range of previously mentioned 
environmental, social, and quality of life benefits for local communities [42,53,73]. Russo et al. 
(2015) [26] has identified six streetscapes types in Bolzano: boulevards, cycle paths, parks, piazzas, 
promenades, and streets. See Russo et al. (2015) [26] and citation therein for more details on the use 
of the streetscape approach in other studies.  

2.2. Ecosystem services quantification at local-scale 

We define local – scale as patches or corridors (tree-lined streets) that have a spatial resolution 
from about 100 square meters to 1 square kilometer. A principle reason for focusing our analyses at 
the local-scale resolution relates to hierarchy theory [74-76] since it lends itself to multi-spatial 
applications and scaling up of our results. For example, our spatial resolution can be applied to not 
only individual trees and streetscapes but for easily assessing thermal comfort levels of large areas 
such as an entire city [77].  

Further, we followed the definition of Escobedo et al. (2011) [19] for an ecosystem service as 
the components of urban greening that are directly enjoyed, consumed, or used to produce specific, 
measurable human benefits such as air quality improvement and thermal comfort. Following 
Baró et al.’s approach for another southern European city [78], we focused on two measurable 
ecosystem services (‘‘air purification’’ and ‘‘microclimate regulation’’) and one ecosystem 
disservices (Biogenic Volatile Organic Compound (VOC) Emissions). The framework of our 
methodology is outlined below and consists of four sequential parts: 1) use existing tree inventory 
data in a Geographical Information System (GIS) format, 2) select and parametrize the appropriate 
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mathematical, functional and simulation models, 3) field measure streetscapes in order to obtain 
biometric data required by the models, and 4) apply the output of the simulation model to the tree 
inventory in order to map ecosystem services as required by the European Commission. The specific 
methods for quantifying each service are summerized in Table 1. 

Table 1. Methods for quantifying local-scale ecosystem services in Bolzano. 

Ecosystem 
Services 

Method Input data 

Air pollutant 
removal 

UFORE outputs of PM10, O3, 
CO, and NO2 removal values 
by DBH classes have been 
assigned to Bolzano’s tree 
inventory single tree by DBH 
class 

Species, number of DBHs recorded, DBH (cm) , 
height to crown base (m), crown width (m), 
percent canopy missing, dieback, crown light 
exposure, hourly weather data, hourly pollution 
data (the concentration of the pollutant in ppm 
for CO, NO2, O3 and in μg/m3 for PM10) [79] 

Temperature 
reduction 

ENVI-met model using aerial 
photographs, Vector data 
combined with Bolzano’s tree 
inventory 

Wind speed in 10 m above ground (m/s), 
roughness length z0 at reference point, wind 
direction, initial temperature atmosphere (K), 
specific humidity (g Water/kg air), relative 
humidity (%), walking speed (m/s), heat transfer 
resistance cloths, building height (m), 
vegetation and materials information [80,81] 

Ecosystem 
Disservices 

  

Biogenic Volatile 
Organic 
Compound 
(VOC) 
Emissions 

UFORE outputs of isoprene, 
monoterpenes, and other VOC 
emissions that contribute to 
O3 formation 

Hourly weather data, species and field data [79] 

UFORE = Urban forest effects model; DBH = Tree stem diameter at breast height (1.37 m above ground surface). 

2.3. Tree inventory 

Inventories provide data on various ecosystem structural components relevant to these types of 
assessments. Countries routinely conduct these inventories of their natural resources at regional or 
continental scales [82]. Consequently, as ecosystem services of urban green spaces are relevant at the 
local scale, tree-level biometric data such as an urban street tree inventory are particularly useful for 
assessing these services [79]. The data provided in Bolzano’s tree inventory relevant to our modeling 
approach included species, diameter (cm), height (m), health condition (in classes), streetscape type 
and global positioning system location (latitude, longitude) [70]. The tree inventory data were from 
the year 2000 and has been updated every 2–3 years. Year 2000 urban tree stucture data for use in 
our models requiring the tree inventory were updated to current stem and height sizes using 
Bolzano’s stem growth rates [60] following Russo’s (2013) [70] methods. 
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2.4. Numerical functional and simulation models 

We used two available models to quantify our ecosystem services of interest. First, we used the 
Urban Forest Effects (UFORE-ACE-D Version 6.5) air pollution deposition and biogenic emission 
model because of its previous use at the urban forest-scale in Italy [54,63] and other European cities 
such as, e.g. Zurich [83]; Barcelona [78,84], London [85], and Torbay [86]. But, rather than 
analyzing urban forest-scale functions we modeled at the individual tree-scale. Additionally, we 
integrated this approach with another model and modelled temperature effects at the streetscape scale 
using the ENVI-met model because of its development and regular applications in 
Europe [80,81,87]. 

2.5. ENVI-met input data and methods 

The ENVI-met (Version 3.1) is a three-dimensional non-hydrostatic model for the simulation of 
surface-plant-air interactions within urban environments. It is designed for micro-scales with a 
typical horizontal resolution from 0.5 to 10 m and a typical time frame of 24 to 48 hours with a time 
step of 10 seconds at maximum. This resolution allows for the analyses of small-scale interactions 
between individual buildings, surfaces, and plants. Of relevance to this study, the model’s calculation 
includes key processes such as: 

 Short-wave and long-wave radiation fluxes with respect to shading, reflection, and 
re-radiation from buildings and the vegetation; 

 Transpiration, evaporation, and sensible heat flux from the vegetation into the air including 
full simulation of all plant physical parameters (e.g. photosynthetic rate); 

 Surface and wall temperature for each grid point and wall; 
 Water and heat exchange inside the soil system; 
 Calculation of biometeorological parameters like Mean Radiant Temperature or Fanger’s 

Predicted Mean Vote (PMV) Value; 
 Dispersion of inert gases and particles including sedimentation of particles at leaves and 

surfaces [80,81]. 

In ENVI-met simulations, a plant is defined by its height, leaf-area index (LAI), and its root 
zone. The LAI is defined as the total one-sided leaf surface area (m2) per unit ground area (m2) [88]. 
Each plant is divided into ten horizontal layers above-ground, each of which is specified by its 
leaf-area density (LAD; m2/m3) [88], where LAD profiles define the crown shape and height of a 
tree [81]. The LAD is therefore a key parameter used to model radiation transmission through a tree 
canopy and between a tree and its environment [89]. We chose a site in Bolzano’s historic centre for 
our simulation while the ENVI-met model domain was developed based on the actual geometry of 
the site using aerial images and vector data from our ancillary spatial data using ArcGIS v10. The 
ENVI-met parameters were set up according to Bolzano´s streetscape using city-specific data such as 
climatic information (i.e. wind speed and direction, roughness length; initial temperature atmosphere; 
specific humidity in 2500 m, relative humidity), vegetation, building and surface materials. Two, 
24 hours simulation scenarios were run with the first scenario simulating the existing situation and 
the second scenario simulated the domain without vegetation. 

To quantify human thermal comfort and discomfort, the ENVI-met results from the PMV for the 
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two scenarios were used. In particular, the PMV created by Fanger in the late 1960s is used 
worldwide as an outdoor comfort index and has previously been used in various urban and landscape 
studies [77,90-92]. It is also a function of the local climate and can reach values between −4 
and +4 [93]. The PMV scale is defined between −4 (very cold that means extreme cold stress) and +4 
(very hot that means extreme heat stress) where 0 is the thermal neutral (comfort) value [91,93].  

2.6. UFORE input data and methods 

The UFORE model was developed in the late 1990s by researchers at the United States 
Department of Agriculture (USDA) Forest Service, to quantify urban forest structure and its effects 
on function and values. The UFORE model components are relevant for this study as they quantify 
urban tree structure (e.g. LAI, leaf area, leaf biomass), hourly pollution removal by the urban forests 
and trees for ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and particulate matter (PM10), 
and hourly urban forest volatile organic compound (VOC) emissions and the relative impact of tree 
species on net ozone and carbon monoxide formation throughout the year. A more recent version of 
UFORE with a user-interface is known as i-Tree Eco. For a more complete description of the 
model, see [20,94].  

Since users cannot directly access and run i-Tree Eco programming code, we used the actual 
UFORE model code (Version ACE 6.5 and U4D020701 with complete tree inventory option) to 
quantify air pollution removal during periods without precipitation, in which hourly dry deposition of 
CO, NO2, O3 and PM10 is estimated with hourly meteorological and pollutant measurements, location 
information, and urban forest parameters [94]. In addition, we estimated annual VOCs emitted by 
trees in the streetscapes in order to assess the ecosystem disservices of these streetscapes by using 
UFORE (Version U4B020700). The hourly meteorological data for Bolzano, necessary to run the 
UFORE models, were obtained from the US National Oceanic Atmospheric Administration’s 
National Climatic Data Center (NCDC) [95]. Hourly pollutant concentrations (CO, NO2, O3, PM10) 
were obtained from the Laboratory of Physical Chemistry of the Autonomous Province of Bolzano 
that has three stations distributed within the city of Bolzano.  

In June 2011, we used ArcGIS (Version 10) and a stratified random sample, according to 
land-cover classes, in order to obtain tree level data required by the UFORE models for the different 
streetscape types. During June and July 2011, trees were sampled and data recorded for each tree 
diameter at breast height (DBH). Other data collected were species, total tree height, height to live 
top, height to crown base, percent canopy missing, crown dieback, crown light exposure 
(CLE) [79,96]. These data were used in the UFORE model to estimate the ecosystem services of the 
treed streetscapes. 

Since the aim of our research was to quantify tree-level air pollution removal using an existing 
tree inventory, the outputs of the UFORE model were specific to the measured 475 trees. The 
UFORE model estimated the average pollutants removed of CO, NO2, O3 and PM10 for the measured 
trees according to tree DBH classes (see Table 2), regardless of species, and leaf-surface area of 
individual trees in Bolzano’s inventory (I) using the formula:  

Ix = Rt * (LAx/LAt) /Nx 

where x is diameter class x (kg/tree) and Rt is the total air pollution removed across all tree diameter 
size classes (kg). Also LAx is total leaf area in diameter size class x (m2), LAt is the total leaf area of 
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all diameter size classes (m2), and Nx is the number of trees in diameter size class x [97]. Using this 
formula, we can for example assign the UFORE output as an average CO removal value of 4.70 g to 
every individual tree with a DBH of 20 cm in the Bolzano’s tree inventory.  

3. Results and discussions 

3.1. Envi-met simulations 

The first simulation shows that during the summer (July) the potential temperature is slightly 
lower (<1 °C) in a treed piazza than in a tree lined street (Figure 1). This small difference is likely 
due to greater tree density and canopy cover in a piazza than in the street. The comparison between 
scenarios 1 and 2 shows a clear difference in potential temperatures (Figure 2). Thus, results have 
implications on the role of trees in reducing urban temperatures. For example, inner areas of the 
Piazza with vegetation (scenario 1) had lower temperatures (about 302 K = 28.85 °C) compared to 
scenario 2, areas of the piazza without vegetation and with hard landscape materials (temperature 
about 304 K = 30.85 °C). Overall, the higher temperature in scenario 2 is due to the fact, that hard 
landscape materials have lower albedos and higher heat capacities that absorb solar energy during the 
day [98].  

The PMV values in this study (Figure 3) were not in the acceptable human thermal comfort 
range but scenario 1 has the highest amount of shade provided by trees consequently less solar 
irradiation. Therefore, scenario 1 is the most comfortable at 4:00 pm. In particular PMV is between 
1.5 and 1.9 inside the piazza (scenario 1) that means a thermal perception of “warm” while scenario 2 
has a PMV value inside the piazza >4.5 that means a thermal comfort perception of “very hot”. 

 

Figure 1. ENVI-met simulation in Bolzano Italy: Potential temperature is lower in a 
piazza than in a street, dark blue colour represents low and red high temperatures. 
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Figure 2. ENVI-met: Potential temperature simulations at 2 m height at 04:00 pm in 
Bolzano, Italy. Scenario 1 accounts for vegetated streetscapes and scenario 2 
assumes that vegetation is removed from the streetscapes. 

 

Figure 3. Spatial distribution of predicted mean vote (PMV) biometeorological 
index at 4:00 pm. Scenario 1 accounts for vegetated streetscapes and scenario 2 
assumes that vegetation is removed from the streetscapes. 

These results show that the ENVI-met model can be used to assess the outdoor thermal comfort 
of urban green infrastructure at the local-scale. Our PMV results are particularly useful for human 
bioclimatic maps, which have been used for planning purposes such as climate change impact 
analysis and urban heat island modification [77]. These findings are in accordance with other studies 
in which urban trees have effectively modified the microclimate and improved thermal 
comfort [92,99-103]. Taleghani et al. (2014) [51] for example, modelled a 5.8 degrees C temperature 
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difference between a heavily treed location and a nearby parking lot in Portland US using ENVI-met. 
Also, Ng et al. 2012 [101], conducted a study on the cooling effects of greening in Hong Kong using 
ENVI-met. They found that the amount of tree planting needed to lower pedestrians level air 
temperature by around 1 °C is approximately 33% of the urban area. Our PMV results in scenario 2 
(Figure 3), corroborate Perini and Magliocco’s findings in Italy, where an ENVI-met simulation 
without vegetation at street level revealed conditions conducive to human discomfort [103]. Thus, 
our approach can be used to compare urban design alternatives and have the potential to contribute to 
the planning of multifunctional green infrastructure [53]. 

3.2. UFORE analyses 

Total estimated air pollution removal by trees in Bolzano was 2.42 metric tons per year, with O3 
(1.2 t/yr) being the air pollutant that is removed the most and CO (0.03 t/yr) removed the least. 
Differences in removal rates per tree by diameter size classes (Table 2) are due to differences in the 
average amount of healthy leaf area per tree among the diameter size classes [97]. Total annual air 
pollution removal (kg/yr) was greatest for all pollutants in parks due to the greater number of trees 
(Figure 4). However, average annual air pollution removal (kg/yr) was greatest in the piazza due to 
the greater size of trees (Figure 5). Annual air pollutant removal per unit tree cover area ranged from 
0.1 g/m2 for CO to 4.2 g/m2 for O3. Total annual pollutant removal per unit tree cover area was 8.4 
g/m2 for all 4 pollutants. These values were lower than those estimated in Barcelona (9.35 g/m2) at 
the urban forest scale [84] but this figure includes SO2 which was not included in our estimates.  

Table 2. Average individual tree air pollution removal estimates (grams per year) for 
Bolzano according to tree diameter (DBH) size classes. 

DBH Class (cm) Carbon  
monoxide 

Nitrogen  

dioxide 
Ozone Particulate matter 

<10 microns 
0.00–7.62  0.49 6.49 18.08 10.95 
7.63–15.24 1.44 19 52.89 32.03 
15.25–22.86 2.43 32.05 89.23 54.04 
22.87–30.48 4.70 61.99 172.57 104.5 
30.49–38.10 7.41 97.68 271.94 164.7 
38.11–45.72  9.11 120.1 334.38 202.5 
45.73–53.34 11.52 151.8 422.59 255.9 
53.35–60.96 16.82 221.6 617.01 373.7 
60.97–68.58  16.38 215.9 601.01 364 
68.59–76.20  19.41 255.8 712.03 431.2 
76.21–83.82 20.81 274.3 763.70 462.5 
83.83–91.44 19.28 254.1 707.34 428.4 
91.45–99.06 20.72 273.1 760.27 460.4 
99.07–106.68 7.94 104.7 291.39 176.5 
106.69–114.30 32.75 431.7 1201.84 727.8 
114.31–121.92 16.68 219.9 612.13 370.7 
121.93–129.54 32.97 434.6 1209.91 732.7 
Mean 14.17 186.75 519.90 314. 85 



68 
 

AIMS Environmental Science  Volume 3, Issue 1, 58-76. 

 

Figure 4. Total annual air pollution removal of nitrogen dioxide, carbon monoxide, 
ozone, particulate matter less than 10 microns (NO2, CO, O3, PM10, respectively) by 
different streetscape types in Bolzano, Italy. 

 

Figure 5. Average annual air pollution removal of Nitrogen dioxide (NO2), carbon 
monoxide (CO), ozone (O3), particulate matter (PM10) by different streetscape types 
in Bolzano, Italy. Error bars represent ± one standard error of the mean. 
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But, our results were higher than other UFORE’s case studies in Italian cities [54,55,104]. In 
particular, our estimates of PM10 was 314.85 g/tree versus 196 g/tree in Milan and 198 g/tree in 
Florence, and 150 g/tree (tree >20 m) in Forlì. Our estimates of O3 (519.90 g/tree) was also much 
higher than estimates in Milan with 68 g/tree [54], in Florence with 170 g/tree [55], and in Forlì with 
100 g/tree (tree >20 m) [104]. A more detailed interpretation of these studies can explain these 
disparate results. We found that higher air pollution removal in Bolzano not only depends on climate 
and pollution, but structural characteristics such as the amount of healthy leaf-surface area and DBH 
distribution of the modelled tree population. Specifically, if we compare the average tree DBH in 
Milan (39.6 cm) and its pollution removal with that of Bolzano’s 38.11–45.72 cm DBH class 
pollution removal rate, we found a PM10 value of 202.5 g/tree in Bolzano; a removal rate much more 
similar to the 196 g/tree found in Milan. 

As such, air pollution removal differences among cities depend on several other factors as well 
such as ambient air pollution concentration, in-leaf season period, percent of evergreen leaf area, 
amount of precipitation and other meteorological variables [20]. Therefore, the size, growth form and 
health condition of individual plants could affect the amount of pollutant removal per tree [105]. The 
UFORE model has a number of assumptions [106], for example, it does not take into account occult 
or wet deposition and therefore is likely to underestimate the total air pollutant deposition [106].  

We also used the UFORE model to account for an ecosystem disservice by estimating total 
VOC emissions and found 5.61 mg C/m2/hour in Bolzano, which might contribute to ozone 
formation [55,107]. The emission of these organic compounds varied throughout the year and the 
day [97] with the highest emission was in August and at 2 pm. The tree genera in Bolzano with the 
highest VOCs emissions were Cedrus (0.36 kg of isoprene, 29.0 kg of monoterpene, 31.7 kg of other 
VOCs) and Platanus (35.5 kg of isoprene, 0.24 kg of monoterpene, 4.17 kg of other VOCs). At the 
species level, emissions of BVOC in Bolzano were lowest for Pyrus species and Olea europaea L. 
Therefore to reduce O3 levels in Bolzano, managers should change species composition using low 
VOC-emitting species. Furthermore, in planning large scale tree planting programs, landscape 
manager should take into account the potential for BVOC emissions when considering how to reduce 
emission of O3 precursors [108]. 

3.3. Limitations  

A number of limitations of the present study should be acknowledged. The ENVI-met model 
version 3.1 Beta 5 used in our modelling does not incorporate the forcing of weather variables after 
initialisation [109] and thus all buildings in our model simulations were assumed to have the same 
albedo value. Also, The UFORE/ i-Tree Eco model has several limitations that should be taken into 
account when analyzing its outcomes [78]. Model uncertainty includes non-homogeneity in spatial 
distribution of air pollutants, site-specific particle re-suspension rates, transpiration rates, or soil 
moisture status [78,110]. The i-Tree Eco model has recently provided a good estimation of O3 flux 
when compared to measured flux by eddy covariance estimates in Italy. However, some 
overestimations were observed in estimated values especially in hot dry periods [111]. 

Treed streetscapes have been determined to mitigate urban temperatures and air pollution 
concentrations, but we admit that there are many other ecosystem services that were not considered 
in this study such as, e.g. cultural services (historical, aesthetic, educational, and recreational). Since 
the sustainability of cities is increasingly being studied in applied landscape and urban ecology [48], 
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urban planners and designers need to determine and communicate the relative value or importance of 
these ecosystem services at the appropriate scale to key stakeholders and the community. Indeed 
future research incorporating the effects of climate change on local-scale green infrastructure 
ecosystem functions is warranted. Such approaches can use cost-benefit analyses for example to 
ensure that disservices and costs do not outweigh the services and benefits provided by urban green 
options [112]. Therefore, further research is needed to quantify other ecosystem disservices and costs 
such as pollen allergy, CO2 emissions due to urban forest management, and maintenance and 
management cost. 

4. Conclusions 

Our literature review documents several studies of how urban treed streetscapes and green 
infrastructure provide many environmental, social, recreation and beautification benefits to society. 
But recent studies such as those of Maher et al. (2013) [46] who found a 50% reduction in particulate 
matter levels inside houses screened by street trees, and Escobedo et al. (2011) [19] emphasize the 
need to account for scale when assessing urban ecosystem service provision. Thus, our findings 
contribute to this need for local-scale information. Further, most existing studies are from North 
American cities, and have been conducted at the city-wide scale; as such, ours is one of the few 
studies on the effects of treed streetscape on air pollution removal, ambient temperature regulation at 
the local-scale in a European city. This study used a framework of field, pollution, and 
meteorological data and integrated simulation models to quantify the role of urban greening in 
improving environmental quality in an Italian city. Models results can be used to provide information 
on air pollution removal at the tree and streetscape scale, temperature mitigation by different 
streetscape types. In addition, it explored the effect of VOC emission or ecosystem disservices 
associated with streetscapes at the tree and species level.  

Our approach and results can also be used in the assessment of the ecosystem services of urban 
ecosystems and green infrastructure as required by the EU Biodiversity strategy. Specific findings 
can be used to better design and plan for urban streetscapes, improved environmental quality and 
mitigation of the urban island effect. In order to protect human health and the environment, 
Bolzano’s city manager should take into account our findings and incorporate this information into 
their air quality plan for NO2 reduction. As our study shows, improving Bolzano’s green 
infrastructure can contribute to reduce the local-scale level of air pollutants. Incorporating finding 
into models, can possibly be used in flow diagrams [113], so that planners can investigate and 
quantify the visible benefits of planting trees to reduce pollutant concentrations and improving 
thermal comfort while providing aesthetic benefits. 
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