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There are many applications for using wireless sensor networks (WSN) in ocean science; however, identifying the exact location
of a sensor by itself (localization) is still a challenging problem, where global positioning system (GPS) devices are not applicable
underwater. Precise distancemeasurement between two sensors is a tool of localization and received signal strength (RSS), reflecting
transmission loss (TL) phenomena, is widely used in terrestrialWSNs for thatmatter. Underwater acoustic sensor networks have not
been used (UASN), due to the complexity of the TL function. In this paper, we addressed these problems by expressing underwater
TL via the Lambert W function, for accurate distance inversion by the Halley method, and compared this to Newton-Raphson
inversion. Mathematical proof, MATLAB simulation, and real device implementation demonstrate the accuracy and efficiency
of the proposed equation in distance calculation, with fewer iterations, computation stability for short and long distances, and
remarkably short processing time. Then, the sensitivities of Lambert W function and Newton-Raphson inversion to alteration
in TL were examined. The simulation results showed that Lambert W function is more stable to errors than Newton-Raphson
inversion. Finally, with a likelihood method, it was shown that RSS is a practical tool for distance measurement in UASN.

1. Introduction

In underwater acoustic communications, especially at short
range, distance measurement is crucial in tracking [1] and
sensor localization [2]. Techniques for this on land include
Time Difference of Arrival (TDoA), Time of Arrival (ToA),
Received Signal Strength (RSS), and Angle of Arrival (AoA).
TDoA compares arrival times by two transmission media,
for example, radio frequency (RF) and acoustic waves, to
estimate the distance between two nodes using the dissimilar
dissemination velocities. In aquatic environment RF has very
limited propagation [3], so TDoA is not suitable for UASNs.
Since AoA relies on a direct line-of-sight (LOS) path from a
transmitter to a receiver, a multipath component arriving as
a signal from an entirely different direction can lead to very
large errors inAoAmeasurements [4]. In existing short-range
underwater acoustic sensor networks, ToA is widely used to
measure distance for sensor localization [2] or target tracking

[1]. It is based on the traveling time of an acoustic wave, either
one-way or round-trip [4]. A source sends a packet, attaching
the current time, and the destination node derives the
traveling time by comparing this to its local time (assuming a
shared clock).Thedistance can be inferred via the underwater
sound velocity, roughly 1.5 × 103m/sec. Although some
good results are reported, as in [5], they assume precise
synchronization [3] which is hard to achieve due to the
characteristics of sound travel in the water [6]. To date, RSS
has had less attention as a method to measure distance.

In underwater applications, the problem of measuring
RSS has been solved indirectly. In some literature it has
been mainly assumed that the RSS value is converted to the
distance and they pay less attention on the this conversion
circumstance [7]. Reference [8] categorized its proposed net-
work operations into two steps: offline and online. In offline
mode, several devices beacon at different distances to sensors.
Each sensor converts the received TL from time-domain to
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frequency-domain and stores it in its database, where it was
assumed that the sensor knows the exact location of beacons.
In online step, after receiving a TL, the sensor compares it
with its database and measures the distance of sender based
on maximum-likelihood method. Although accurate results
have been reported from this work, this method is based
on availability of beacons and feasibility of having offline
step which may not be practical in some applications. To
review state-of-the-art methods for localization reader may
refer to [9], where the measurement of distance using direct
conversion of TL has not yet been investigated.

Efficient inversion is the first contribution of this paper.
We show that, as a function of underwater transmission loss
(TL), distance calculation involves the Lambert𝑊 function
and evaluate it with few iterations. We also invert the TL
function of distance by the Newton-Raphson method, as a
yardstick for the proposed equation in accuracy, number of
iterations, and processing time. The second contribution of
this paper is to practice the feasibility of this inversion due
to high tolerance of TL. In this part, firstly, the sensitivities
of Lambert 𝑊 function and Newton-Raphson method to
alteration in received TL are examined. Secondly, using a
maximum-likelihood (ML) method it is shown that using
an error recovery method, distance measurement using TL
inversion is practical.

The evaluation is divided into four phases. First, wemath-
ematically derive the 𝑊 function, along with the numerical
tests. Second, we use a MATLAB numerical simulation for
both methods, sensitivity to error analysis and error recovery
method. Third, we use the ATMEL RAVENRZ-3290 sensor,
a part of the ATMEL RZRAVEN 2.4GHz Evaluation and
Starter kit [10], to obtain real device results regarding our
desired factors. The last phase is to examine the possibility
of using𝑊 function when there are some unexpected alter-
ations to TL.

The rest of this paper is organized as follows. Section 2
explains transmission loss calculation in the underwater
environment. Section 3 presents the Lambert 𝑊 function,
with a derivation of the distance equation through the TL
function. Newton’s method inversion for the TL function is
in Section 4. Sections 5 and 6 present the simulation and
real test-bed results, respectively. Section 7 demonstrates the
effect of TL alteration and provides amethod for reducing the
measured distance error. The paper concludes in Section 8.

2. Underwater Acoustic Transmission Loss

Sound loss in water is classified as spreading loss, both spher-
ical (1) and cylindrical (2), and attenuation loss [11], from
absorption, duct leakage, scattering, and diffraction [12].
Effective attenuation parameters relate to the medium (salin-
ity, acidity, pressure, and temperature) and environment
(air bubbles, sediment absorption, surface reflection, and
scattering). Here, we only consider the transmission medium
parameters. For a distance Dist from emitter to receiver,

TLsph = 20 log (Dist) , Spherical (1)

TLcyl = 10 log (Dist) , Cylindrical, (2)

so the general transmission loss in sea water is given [12] by

TLtotal = TLsph + TLcyl + 10
−3
𝛼Dist, (3)

where 𝛼 is the absorption coefficient in sea water, given (4) by
the Thorp absorption coefficient model [13]. It depends only
on frequency 𝑓 below 50 kHz [11]:

𝛼 = 1.0936 [
0.1𝑓
2

1 + 𝑓
2
+
40𝑓
2

4100 + 𝑓
2
] , (4)

where 1.0936 changes the units from dBkyd−1 to dBkm−1.
Spherical spread fits measured data adequately under a wide
variety of conditions [11]. So we reduce (3) and (1) to

TLtotal = TLsph + 10
−3
𝛼Dist (5)

= 20 log (Dist) + 10−3𝛼Dist. (6)

Assume that underwater wireless devices can measure
the received signal strength, which gives TLtotal. So (5)
should be solved for the variable Dist. In natural logarithms,
representing TLtotal by TL, (6) gives

TL = 20 ln (Dist)
ln (10)

+
𝛼Dist
1000
. (7)

We would like to convert (7) to Lambert 𝑊 function in
order to find a solution for Dist based on TL.The Lambert𝑊
function is

𝑌 = 𝐴𝑋𝑒
𝐴𝑋
= 𝑊(𝑋) . (8)

To solve for𝑋 is to find the Lambert function,𝑋 = 𝑊(𝑌). Let
us consider that𝑋 = Dist, so we will have

𝑌 = 𝐴𝑋 ⋅ 𝑒
𝐴𝑋
,

𝑌 = 𝐴 ⋅ Dist ⋅ 𝑒𝐴⋅Dist,

𝑌

𝐴
= Dist ⋅ 𝑒𝐴⋅Dist,

ln(𝑌
𝐴
) = ln (Dist ⋅ 𝑒𝐴⋅Dist) ,

ln(𝑌
𝐴
) = ln (Dist) + 𝐴 ⋅ Dist.

(9)

Let us consider 𝜆 = ln(10)/20, then

ln (𝑌/𝐴)
𝜆
=
ln (Dist)
𝜆
+
𝐴 ⋅ Dist
𝜆
. (10)

In order to reach to (7), we must have these two condi-
tions:

𝐴

𝜆
=
𝛼

1000
,

ln (𝑌/𝐴)
𝜆
= TL,

(11)
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which by solving them we will have

𝐴 =
𝜆𝛼

1000
,

𝑌 = 𝐴𝑒
𝜆TL
.

(12)

Thus, (7) can be converted to Lambert𝑊 function where 𝐴
and 𝑌 are presented in (12).

3. The Lambert𝑊 Function

The Lambert 𝑊 function, omega function or product log, is
the multivalued inverse of 𝑤 󳨃→ 𝑤𝑒𝑤 defined by

𝑧 = 𝑊 (𝑧) 𝑒
𝑊(𝑧)
, (13)

where 𝑧 and𝑊(𝑧) may be complex. We use the subdomain
where both are real and positive (Figure 1). First developed
by Johann Heinrich Lambert around 1764 [14], its pure and
applied applications include the enumeration of trees [15],
water-wave height calculation [16], the relations among volt-
age, current, and resistance in a diode [17], ballistic projectiles
[18], statisticalmechanics, quantumchemistry, enzymekinet-
ics, the analysis of algorithms [19], and the jet fuel problem
[14].

The 𝑧 here is the transmission loss (6) of a received signal,
which is real and positive, found from the ratio between
received (RSS) and emitted signal strengths. As in Figure 1,
there is exactly one real 𝑤 ≥ 0 for each 𝑧 ≥ 0, so𝑊 returns
a single value as distance. To find it, start with the special
equation [14]:

𝑤
1
= 𝑝 − 1, where 𝑝 = √2 (𝑒𝑌 + 1), (14)

and iterate toward𝑊(𝑌) by the Halley method from [14]

𝑤
𝑗+1
= 𝑤
𝑗

−

𝑤
𝑗
𝑒
𝑤𝑗 − 𝑧

𝑒
𝑤𝑗 (𝑤
𝑗
+ 1) − ((𝑤

𝑗
+ 2) (𝑤

𝑗
𝑒
𝑤𝑗 − 𝑧) / (2𝑤

𝑗
+ 2))

.

(15)

This solves (13) for 𝑤 when 𝑧 > 0, converging much faster
than either Newton’s method or fixed-point iteration [20].

Accordingly, (8) can be solved as follows:

𝑌 = 𝐴𝑋𝑒
𝐴𝑋
∴ 𝑋 =

𝑊(𝑌)

𝐴
. (16)

From (16) and (12), we can write

Dist =
20000 ×𝑊((ln (10) /20000) 𝛼𝑒𝜆TL)

𝛼 ln (10)

= 𝐴
1
×𝑊(𝐴

2
× 𝑒
𝐴3
)

with 𝐴
1
=
1000

(𝜆𝛼)
, 𝐴
2
=
1

𝐴
1

, 𝐴
3
= 𝜆TL,

(17)

and 𝛼 from (4). Thus (17) is the final equation of Dist based
on RSS via the Lambert 𝑊 function. We next illustrate the
efficiency of the proposed distance estimation. Numerical
proof of the proposed equation can be found in [21].

1

1

2
z

w

z = we
w

Figure 1: The Lambert𝑊 function is the inverse of 𝑤 󳨃→ 𝑤𝑒𝑤. For
𝑧 < 0, it is multivalued and/or complex, but it is 1-to-1 between 𝑧 ≥ 0
and 𝑤 ≥ 0.

4. The Newton-Raphson Method

The well-known Newton or Newton-Raphson method con-
verges fast to a root of a real-valued function 𝑓(𝑥). It uses
𝑓(𝑥) and the derivative 𝑓󸀠(𝑥) to find the root through

𝑥
𝑛+1
= 𝑥
𝑛
−
𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)
. (18)

In solving (6) for Dist, apply this with

𝑓 (Dist) = 20 log (Dist) + 10−3𝛼Dist − TL, (19)

𝑓
󸀠
(Dist) = 20

Dist
+ 10
−3
𝛼. (20)

The starting point is a significant factor in convergence
speed in this method. There are also different methods to
choose a good start. Our case does not allow a starting point
greater than 137, where (18) gives a value Dist < 0, invalid for
a logarithm function in (19). Nor can it be 0, due to division
by zero in the first part of (20). Furthermore, our numerical
evaluation shows an impractical number of iterations for any
starting point value between 1 and 136. So for the 𝑛 = 0
starting point, for 𝑛 ≥ 1, we take the initial distance 𝑥

0
=

Dist
0
= 1m.Then, from (18), (19), and (20),

Dist
𝑛+1
= Dist

𝑛
−
20 log (Dist) + 10−3𝛼 Dist
(20/Dist) + 10−3𝛼

. (21)

We present simulation and real device experiment results
with both methods, for a full evaluation.

5. MATLAB Simulation and Results

MATLAB is a well-known tool for simulation and evaluation.
We used it to evaluate our proposed scheme against the
Newton method, concerning the accuracy of calculation and
the necessary number of iterations. As an accuracy goal,
we aim to calculate distance with a resolution of 10−2m.
Both methods do achieve this, but iterations matter for small
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devices, in processing time and energy-efficiency. Figure 2
illustrates the iterations that each method needs to get the
desired accuracy. The Newton method needs 6 iterations for
distances above 100m, rising to 8 above 300m. Our scheme
reaches the goal with just 4 iterations, up to 5000m. This
uniformity saves the cost of a convergence test.

Figure 3 graphs error against distance, with various iter-
ation counts, for each method. The 4-step Newton error
is very high, even at a distance barely more than 100m.
The error shrinks with more iterations, but even up to 7
iterations it is over 0.5m for distances longer than 2000m.
Our scheme shows a steady cost and 10−2m accuracy with
only 4 iterations. This is competitive to results obtained by
8 Newton iterations, clearly needing fewer computing cycles
and less power. Experiments using a real sensor prove its
accuracy and efficiency.

6. Real Test-Bed Evaluation and Results

Real test-beds usually give results slightly or quite different
from simulations (especially with sensor networks, for which
there is no specific free simulator available in academia),
which thus do not guarantee practicality. For a real test-
bed experiment, we used the RAVENRZ-3290 (specifications
represented in Table 1) sold by ATMEL [10] as a part of the
ATMEL RZRAVEN 2.4GHz Evaluation and Starter kit. The
board connects to a computer for programming through the
AVR JTAGICE-MKII programmer (Figure 4). So we wrote
the codes for each model in C, the major programming
language for the ATMELAVR products [10], and uploaded to
the experimental board. ATMEL’s powerful and user friendly
GUI, called AVR Studio, enables users to obtain accurate
results without complex microprocessor programming.

The experiment evaluated both𝑊/Halley and the New-
ton-Raphson method, regarding the iteration count needed
to achieve the desired accuracy, and the processing time
required.

6.1. Computation Accuracy. For positioning purposes, the
accuracy of computation is very significant since RSS-based
distance measurement is subject to errors like channel fading
and interference. As expected, a real test-bed gave unexpected
results. Figure 5 shows the real test-bed distance error calcu-
lated by each method, while there are two different numbers
of iterations for theNewton-Raphsonmethod. As can be seen
from the figure, theNewtonmethodwith 4 iterations achieves
more accuracy compared to the results obtained from the
simulation for similar method. However, it also shows less
accuracy for the 8 iterations one compared to the simulation
results (Figure 3).The error by 8 iterations rises to over 5m in
1000mdistance and grows to 88.36m for the range of 5000m,
surprisingly different from the simulation results.Meanwhile,
the𝑊 scheme still shows a steady calculation behavior, giving
nearly exact values. Our initial guess is that this error might
be due to different round-off errors from different methods.

6.2. Computation Processing Time. Figure 6 shows the time
required by each method for one distance calculation in a
range from 1 to 5000m. In order to havemore realistic results,

Table 1: The specification of the ATMEL RZRAVEN 2.4GHz
Evaluation and Starter kit.

Item Specification
Device ATmega 3290
Flash 32 Kbytes
EEPROM 1 Kbytes
RAM 2 Kbytes
AVR core 8 bit
Speed grade 4–8MHz
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Figure 2: The average number of iterations through different
methods.

the methods are embedded in ATMEL experimental kits and
ran 10 times for the whole mentioned range of distances. On
one hand, the figure shows the average values of such imple-
mentation. The Lambert/Halley scheme takes more than
51 sec with very high accuracy, roughly 8 sec faster than the
4-iteration Newton method with its high error. On the other
hand, the 8-iteration Newton method which is supposed to
reach the desired accuracy according the simulation results
requires 68.75% more processing time (roughly 86.5 sec) for
a computationwhich is not also accurate enough for distances
greater than 1500m.

It is shown that our transmission-loss/distance inversion
method using the Lambert function and the Halley iteration
is significantly faster and stable compared to the well-known
Newton-Raphson method.This work clarifies the differences
between simulations and real test-bed implementations of
different mathematical methods on low computation abil-
ity devices like sensors which might be related to the
microcontroller architecture designs. Such differences due to
mathematical tools require minutely consideration when it is
necessary like in our case for distance measurement.

7. TL Alteration

Localization for underwater sensors is a challenging problem
which is still under attention of many researchers. Current
solution for this problem usually is based on installing some
powerful devices on ocean floor communicating with some
other devices on ocean surface in order to help sensors
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Figure 3: The distance calculation error using different methods and different number of iterations.

Figure 4: RAVENRZ-3290 sensor and AVR JTAGICE-MKII pro-
grammer.
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identify their location [22].Most of these techniques were not
using RSS as their distance measurement method due to the
multipath and shadowing effect on TL, which alters its value
in receiver [9]. Based on limitation of RSS, most localization
methods in UASN are using Time of Arrival (ToA) method,
which needs very precise clock synchronization between
sensors—another challenging problem even for terrestrial
WSN.

In order to identify the accuracy of proposed method
when the measured TL is not accurate. Some experiments
have been done. According to [23], TL has the standard
deviation of 5 for up to 2000m underwater with a normal
distribution. However, [24] reported the value from 10 to 15
as the standard deviation of TL based on the distance to the
foreshore. Tomeasure theworst case scenario, in this research
the alteration of TL is modeled based on [24].

In simulation setup, two sensor nodes were considered
in communication range of each other underwater and not
necessarily in the same depth. To make the model as simple
as possible, the nodes do not share their information of
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Figure 7: The distance calculation error with error correction using geometric mean (1).

the distance together. Now, when a sensor receives a packet
based on the received TL, it calculates the sender distance and
saves it in a list. By the next packet it receives, it measures
the distance again and saves it to the list again. To identify
the estimation distance, the sensor uses a simple likelihood
algorithm (geometric mean) to find the best estimation from
its distance to the receiver. The simulation has been run
for 100 times when receiver just receives 5 packets. The
simulation also has been run for receiving 10, 50, 100, 500,
and 1000 packets. The experiments have been repeated for
various distances between sensors. The distance error where
the sensor calculates the distance based on just one received
packet is based on [24]. Figures 7 and 8 show the error
in distance measurement using TL and geometric mean as
a simple likelihood algorithm when a various number of
packets has been received in the sensor.

The results show that by increasing the number of
received packets in the sensor, the error will be dramatically
decreased. For instance, the average estimation error for 100

experiments between two sensors in 500m distance of each
other and receiving 1000 packets is about 6m. However, as it
has been shown in the figures, there are still some rare results
with high error rate up to 35m for the same experiment.
This indicates that although the proposed geometric mean
reduced the amount of error in distance estimation, still some
othermethods can be added to the algorithm tomake it more
accurate. For instance, sensors can share their distance tables
together in order to reduce the error. Another method can be
using the triangulationmethodwhen there aremore than one
neighbors for refining the distance measurement algorithm.

8. Conclusions

A new mathematical scheme finds distances among nodes
in underwater sensor networks via received signal strength
that is presented by a hybrid computation scheme: invert
the transmission loss TL using the Lambert 𝑊 function,
evaluated by the Halley Method. We compare its efficiency
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Figure 8: The distance calculation error with error correction using geometric mean (2).

and accuracy with TL inversion through the well-known
Newton-Raphson method and show that the computation
method influences the accuracy of distance measurement.
In simulations the Newton method needs 8 iterations to
reach the same accuracy as 4 Halley steps, and in the real
test-bed even 8 iterations have substantial error. Moreover,
in real test-bed results our scheme is 16.5% faster than the
4-iteration Newton method with high error. Mathematical
calculation is thus significant for accurate, cost-effective
distancemeasurement in sensor networks. By considering the
alteration in value of TL because of multipath and shadowing
effect of underwater, the error in distance measurement is
calculated. Furthermore, it has been shown that although
the error in distance measurement is very high, using a very
simple likelihood method in receiving several samples of TL
can dramatically reduce the distance estimation error. As
long as the proposed error recovery method is based on two
sensors sending data, our future work will be on developing

an algorithm for high error recovery and near exact distance
measurement using RSS for UASN.
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