

This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published document:

Wood, Matthew J ORCID logoORCID: https://orcid.org/0000-0003-0920-8396, Cosgrove, Catherine L, Wilkin, Teddy A, Knowles, Sarah C L, Day, Karen P and Sheldon, Ben C (2007) Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus. Molecular Ecology, 16 (15). pp. 3263-3273. doi:10.1111/j.1365-294X.2007.03362.x

Official URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2007.03362.x/ abstract;jsessionid=90EC4D17130154956A235C0425D8A5EC.f04t04 DOI: http://dx.doi.org/10.1111/j.1365-294X.2007.03362.x EPrint URI: https://eprints.glos.ac.uk/id/eprint/551

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

This is a peer-reviewed, pre-print (final draft post-refereeing) version of the following published document:

Wood, Matthew J. and Cosgrove, Catherine
L. and Wilkin, Teddy A. and Knowles, Sarah
C. and Day, Karen Pand Sheldon, Ben C.
(2007). Within-population variation in prevalence
and lineage distribution of avian malaria in blue tits,
Cyanistes caeruleus. Molecular Ecology, 16 (15)
3263-3273.

Published in Molecular Ecology, and available online at:

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2007.03362.x/abstract;jsessionid=90EC4D17130154956A235C0425D8A5EC.f 04t04

We recommend you cite the published (post-print) version. The URL for the published version is

http://dx.doi.org/ 10. 1111/j.1365-294X.2007.03362.x

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

1 Within-population variation in prevalence and lineage

2 distribution of avian malaria in blue tits *Cyanistes*

3 4 caeruleus

MATTHEW J. WOOD¹*, CATHERINE L. COSGROVE¹, TEDDY A. WILKIN¹, SARAH 5 C.L. KNOWLES¹, KAREN P. DAY² & BEN C. SHELDON¹ 6 7 1 8 Edward Grey Institute, Department of Zoology, University of Oxford, South Parks 9 Road, Oxford OX1 3PS, UK 10 2 11 Department of Medical Parasitology, New York University, 530 First Avenue, New 12 York, NY 10016, USA 13 Correspondence: 14 * matt.wood@zoo.ox.ac.uk Email 15 Telephone +44 1865 281999 16 Fax +44 1865 271168 17 18 Abstract 246 words; manuscript 5676 words (all text excluding tables and figure legends); 2 19 tables, 4 figures; 45 references 20 Keywords: avian malaria, Plasmodium, Haemoproteus, vector-borne disease, landscape 21 22 ecology, host-parasite interaction 23 24 Running head (47 characters): Within-population variation in blue tit malaria 25 26 Article type: Full paper

1 Abstract

2

3 The development of molecular genetic screening techniques for avian blood parasites has

- 4 revealed many novel aspects of their ecology, including greatly elevated diversity, and
- 5 complex host-parasite relationships. Many previous studies of malaria in birds have treated
- 6 single study populations as spatially homogeneous with respect to the likelihood of
- 7 transmission of malaria to hosts, and we have very little idea whether any spatial
- 8 heterogeneity influences different malaria lineages similarly. Here, we report an analysis of
- 9 variation in the prevalence and lineage distribution of avian malaria infection with respect to
- 10 environmental and host factors, and their interactions, in a single blue tit *Cyansistes*
- 11 *caeruleus* population. Of nine *Plasmodium* cyt-*b* lineages found in 997 breeding individuals,
- 12 the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in
- 13 addition to analyses of all malaria lineages pooled. Our analyses revealed marked spatial
- 14 differences in the prevalence and distribution of these lineages, with local prevalence of
- malaria as a whole ranging from >60% to <10%. In addition, we found several more complex
- 16 patterns of prevalence with respect to local landscape features, host state, parasite genotype
- and their interactions. We discuss the implications of such heterogeneity in parasite infection
- 18 at a local scale for the study of the ecology and evolution of infectious diseases in natural
- 19 populations. The increased resolution afforded by the combination of molecular genetic and 20 CIS (Cas graphical Information Statem) to be the set of t
- 20 GIS (Geographical Information System) tools has the potential to provide many insights into
- 21 the epidemiology, evolution and ecology of these parasites in the future.

1 Introduction

2

3 The ecological context of host-parasite interactions can have marked effects on the 4 transmission and persistence of disease. Abiotic factors, such as microclimate and landscape, 5 can influence the transmission stages of parasites and therefore the prevalence of host 6 infection, in addition to biotic effects such as host age, sex and population density (Combes 7 2001; Wilson et al. 2001). An understanding of the influence of landscape ecology on host-8 parasite interactions in wild populations is of particular relevance in a changing world of 9 climate change and habitat fragmentation. However, landscape ecology has only occasionally been considered in ecological studies of disease: there may, therefore, be significant gaps in 10 11 our understanding of host-parasite ecology, as such effects may not be apparent in small scale 12 population studies (May 1999). In contrast, the importance of the landscape in which a host-13 parasite interaction occurs has been increasingly studied in human malaria: the rise in drug 14 resistance has shifted the focus away from chemical interventions to risk management 15 (Dieckmann et al. 2002), revealing associations between malaria infection and factors such as 16 altitude and proximity to water in human populations (Foley et al. 2003; Balls et al. 2004; 17 Omumbo et al. 2005). Furthermore, the risk of mosquito-borne infection may be higher at the 18 edge of a host population, if infective vectors seek out an area of high host density (Ribeiro et 19 al. 1996; Smith et al. 2004). 20

21 Host factors such as age, sex and host population density may also influence host 22 parasite infection. Prevalence may increase with age as new infections accumulate, then 23 decrease as susceptible individuals die or resistant individuals become immune (Wilson et al. 24 2001). Male mammals and birds tend to have a higher prevalence of infection than females (Poulin 1996; Schalk & Forbes 1997; McCurdy et al. 1998). Population density may also 25 26 influence the risk of infection, depending on how parasite transmission relates to host 27 population density (Keymer & Anderson 1979). Spatiotemporal variation in parasite infection 28 has often been supposed to contribute to the maintenance of genetic variation in host 29 resistance to parasites but rarely studied (Lively & Dybdahl 2000; Bensch & Åkesson 2003). 30 Ideally, the influence of these processes needs to be studied against the background of 31 environmental variation due to abiotic factors, since there may also be interactions between 32 biotic and abiotic factors.

33

34 Avian malaria, *Plasmodium* and *Haemoproteus* spp. (following the definition of 35 Pérez-Tris et al. 2005), is a vector-borne disease transmitted primarily by mosquitoes of the 36 genera Culex, Aedes and Culiseta (Valkiūnas 2005). These parasite taxa are globally distributed (Valkiūnas 2005, Beadell et al. 2006), and our understanding of their diversity, 37 38 ecology, and relationships with their avian hosts has been increased by the application of 39 molecular genetic screening techniques to blood samples collected from wild hosts. For 40 example, estimates of global species diversity of the order of 200 species based on 41 microscopy, have been suggested to need revision to somewhere in the order of 10,000 42 species based on comparisons of nuclear and mitochondrial gene trees (Bensch et al. 2004). 43 Recent phylogeographical studies of host-parasite interactions involving avian malaria 44 suggest that this diversification is the result of frequent host-switching followed by local diversification in new hosts, and rapid parasite dispersal (Fallon et al. 2005), although host 45 switching may be more common in *Plasmodium* than *Haemoproteus* (Beadell et al. 2004). 46 47 Avian malaria has long been a popular study system for research in behavioural and 48 evolutionary ecology, having been used to test ideas ranging from the relationship between 49 parasitism and sexual selection (Hamilton & Zuk 1982) to the role of immune system trade1 offs with reproduction in structuring life histories (e.g. Norris et al. 1994; Richner et al. 1995;

2 Stjernman et al. 2004). However, the majority of ecological studies of malaria have not

3 considered either this diversity (a potentially important source of variation in host-parasite

4 interactions, since parasite virulence can vary among parasite lineages; Read & Taylor 2001),
5 or the possibility that prevalence and lineage distribution may vary with local landscape

- 6 features. The latter is an important consideration, because strong effects of the environment
- 7 (both biotic and abiotic) mean that the risk of exposure and infection may be very variable for
- 8 different individuals.
- 9

In this study, we examined variation in avian malaria infection with respect to landscape and host factors on a local scale, in a single woodland population of blue tits *Cyanistes caeruleus*. Using molecular diagnostic techniques, we considered avian malaria infections at a high taxonomic resolution and a fine geographical scale, examining associations between infection and a range of landscape and host features for separate lineages, as well as for all lineages pooled. We report marked differences in the prevalence of malaria with respect to lineage, landscape features, host characteristics, and the complex interactions among these factors.

17 18

10

20 Materials and Methods

21

22 *Host and parasite*

23

24 Approximately 1160 nestboxes are monitored in Wytham Woods (51°46'N, 1°20'W), a 25 385ha woodland near Oxford, UK, where 250-450 pairs of blue tits breed annually (Perrins 26 1979). In this paper we report analysis of blood samples collected in 2001 and 2003-5, all of 27 which were collected from adult blue tits captured between day 6 and day 14 of the nestling 28 phase either within the nestbox by hand or using traps, or with mist nets in front of the nest 29 entrance. We thus analyse samples here that were all collected from hosts at the same point in 30 their annual cycle; as the study population is single-brooded, and breeds with a great degree 31 of synchrony, there is relatively little variation in the calendar date among samples. Host sex 32 was determined based on the presence (female) or absence (male) of a brood patch, age (first 33 year, or older) determined using plumage characteristics (Svensson 1992). A total of 997 blue 34 tits over four breeding seasons were included in the analyses of the associations between 35 breeding landscape, host factors and avian malaria infection. To avoid pseudoreplication in 36 cases where an individual bird was sampled in more than one year, one sample was randomly 37 chosen; therefore, each individual appears only once in the current analysis.

38

39 Avian malaria diagnosis

40

41 Blood samples were taken, under licence, by ulnar or jugular venipuncture. Samples were

42 stored in Queen's Lysis Buffer (Seutin *et al.* 1991), and DNA extracted using a DNeasy

43 Extraction Kit (Qiagen, Valencia, CA, USA). An assessment of the presence/quality of

44 extracted DNA was made by electrophoresing $2\mu l$ of the extract in 2% agarose containing

ethidium bromide and visualising it under UV light. The samples were screened for the
 presence of *Plasmodium* and *Haemoproteus* using a nested PCR protocol (Waldenström *et*

46 presence of *Plasmodium* and *Haemoproteus* using a nested PCR protocol (Waldenstrom *et* 47 *al.* 2004), which amplifies a 478bp fragment of the mitochondrial cytochrome-b gene. The

47 *al.* 2004), which amplifies a 4780p fragment of the mitochondrial cytochrome-b gene. The 48 PCR reactions were performed in 25μ l volumes, in two separate rounds with positive and

- 49 negative controls. The first-round primers were HaemNF (5'-
- 50 CATATATTAAGAGAATTATGGAG-3') and HaemNR2 (5'-

1 AGAGGTGTAGCATATCTATCTAC-3'). Each reaction contained 2µl of genomic DNA,

2~ 0.125mM each dNTP, 0.2 μ M each primer, 3mM MgCl_2 and 0.25 units of Platinum Taq

3 Polymerase (Invitrogen, Carlsbad, California) with the accompanying PCR buffer at 1× final

4 concentration. The thermal profile consisted of a 2 minute 94°C enzyme activation step,

- 5 followed by 20 cycles of 94°C for 30sec, 50°C for 30sec, and 72°C for 45sec, ending with an
- 6 elongation step of 72°C for 10min. In the second round of PCR, primers HaemF (5'-

7 TGGTGCTTTCGATATATGCATG-3') and HaemR2 were used (5'-

- 8 GCATTATCTGGATGTGATAATGGT-3'). The composition of the PCR reactions was as
- 9 above, except 0.4μ M of each primer and 0.5 units of Platinum-Taq Polymerase were used,
- 10 and $2\mu l$ of the PCR product from the first round was used as template instead of genomic
- 11 DNA. The thermal profile for the second round PCR was the same as for the first, except the
- number of cycles was increased from 20 to 35. 2-8µl of PCR products from the second round
 were run on 2% agarose stained with ethidium bromide and visualised under UV. Samples
- 14 containing bands of 450-600bp in size were prepared for sequencing using Qiagen MinElute
- 15 96 UF PCR Purification Kits and QiaVac Multiwell vacuum manifolds. Purified PCR
- 16 fragments were sequenced directly by dye terminator cycle sequencing (Big Dye v3.1), and
- 17 loaded on a ABI PRISM 310 automated sequencer (Applied Biosystems, CA). Sequences
- 18 were edited in Sequencher v. 4.2 (GeneCodes Corp., MI), and aligned in ClustalX
- 19 (Thompson *et al.* 1997). Sequences corresponding to *Plasmodium* or *Haemoproteus* from
- 20 known alignments were scored as positive for avian malaria. Sequences corresponding to

21 *Leucocytozoon* sequences were scored as negative for the purposes of this study, and are not

22 considered further here. Based on the occurrence of double peaks in electropherograms,

- mixed infections were present at a low rate (2.2% in 2004-5, S.C.L. Knowles et al. unpubl.)
 and are not considered further here.
- 25

26 Measurement of landscape using GIS techniques

27

A GIS of the study site was constructed in 2005 (e.g. see Wilkin *et al.* 2006). This system allowed us to plot accurately the location of each breeding blue tit's nest. Blue tits feed their offspring on invertebrate prey, and forage in the immediate vicinity of their nest; hence using the nestbox to represent location for breeding birds is justified. Other topographical features from UK Ordnance Survey data were incorporated into the GIS: the shortest distance (m) between each nestbox and i) the woodland edge and ii) the River Thames (Figure 1) was calculated using GIS software (MapInfo Professional v7.8).

35

36 In order to test for spatial differences in prevalence, and the distribution of the 37 different malaria lineages, we categorised individual nestboxes based on the woodland 38 section to which they belonged. The population studies of tits in Wytham Woods have 39 traditionally been divided into nine separate areas (sections) for the purposes of delimiting 40 different parts of the study area (e.g. see Garant et al. 2005 for more detail). The sections are 41 arbitrary delineations of the study area with respect to malaria, and consequently they provide 42 a means to partition the population into sections in order to test for differences in prevalence 43 within the population.

44

In order to estimate territory size (and hence population density), tessellations (Thiessen or Voronoi polygons) were formed around each breeding pair by placing boundary lines equidistant between occupied nestboxes in each year. The area of these polygons is necessarily inversely related to breeding density (Wilkin et al 2006). As blue tits show a high degree of sharing of avian malaria lineages with great tits *Parus major* (no significant

50 difference in lineage assemblages: C.L. Cosgrove et al. unpubl. data), boxes occupied by both

1 species were included so that tessellated territory size was a measure of interspecific density.

2 Blue tits and great tits are territorial during the breeding season (March to June), but more

3 loosely associated with the territory for the rest of the year (Perrins 1979). While tessellated

4 territory size is a geometric construct, it has been shown to be a useful measure of breeding

5 density in tits at Wytham, with strong relationships to many density-dependent life history 6 characters (Wilkin *et al.* 2006). Because it is calculated on an individual basis, is an

7 improvement on other methods such as distance to the nearest neighbour or the number of

8 pairs per unit area (e.g. Orell & Ojanen 1983; Both & Visser 2000).

9

10 Statistical analysis

11

Generalized linear modelling (GLM) was performed to assess associations between landscape
 and host predictors on the presence or absence of infection in individual birds, either with

14 avian malaria as a whole or the three most numerous avian malaria lineages separately (see

15 below), both analyses using binomial errors and a logit link. Starting models were optimised

by backward stepwise elimination of non-significant terms, beginning with three-way

17 interactions and progressing to single order predictors. Terms were deleted from the model if

their removal caused a non-significant change in deviance (P>0.05). In landscape analyses,

potentially non-linear relationships between infection status and host and landscape/host
 covariates were considered in statistical analyses using generalized additive modelling

covariates were considered in statistical analyses using generalized additive modelling
 (GAM), a generalized linear model (GLM) in which a smoothed function of a covariate can

be modelled alongside linear predictors (Wood & Augustin 2002). Linear covariates retained

- in final models were substituted for GAM smoothed terms, the latter being retained if they
- 24 caused a significant reduction in deviance. Step functions were similarly considered.
- 25

26 Individual infection with pooled avian malaria cyt-b lineages, and infection with the 27 three most prevalent lineages (pSGS1, pTURDUS1 and pBT7: 36%, 34% and 16% of all 28 infections, respectively) were used as binary responses for analyses, as lineages at lower 29 prevalences (less than 4% of sampled hosts) prohibited the modelling of presence/absence 30 data because modelling algorithms failed to converge. pTURDUS1 and pBT7 are closely 31 related avian malaria lineages (<0.25% sequence divergence at cyt-*b*), being less related to 32 pSGS1 (>4% sequence divergence: Cosgrove C.L. et al. unpubl.). All statistical analyses 33 were conducted using R version 2.2.1. Means are presented ± 1 s.e.

34 35

36 **Results**

The overall prevalence of avian malaria (i.e. *Plasmodium* and *Haemoproteus*) within this
sample was 28.4% (n=997), comprising 12 different cyt-*b* lineages (Table 1). The three most
common were pSGS1 (prevalence 10.2%), pTURDUS1 (9.7%), and pBT7 (4.6%); the
overwhelming majority of infections were with *Plasmodium*, with only six individuals (0.6%)
infected with three separate *Haemoproteus* lineages.

43

We first visualised the distribution of infection within the study site as a means of informing the statistical analysis, by generating interpolated maps of malaria prevalence using GIS software (Figures 1a-d). These maps indicated that the distribution of avian malaria infection, when all infections were pooled, was concentrated mainly in the north-west of the study area (Figure 1a). This mapping procedure also suggested that the three most common lineages showed different distributions: pSGS1 (Figure 1b) was widely, but

50 patchily distributed, whereas pTURDUS1 (Figure 1c) and pBT7 (Figure 1d) were much more

- 1 restricted to the northern edge of the study site. We tested for spatial differences in the overall 2 prevalence of malaria, and in the prevalence of these three commonest lineages, by testing the 3 effect of woodland section (see Materials and Methods) on prevalence. The prevalence of 4 pooled malaria lineages varied markedly between woodland sections (analysis of deviance: 5 χ^2 =71.2, *P*<0.001). Considering the three most numerous lineages, prevalence varied both by lineage (χ^2 =28.6, P<0.001) and woodland section (χ^2 =68.1, P<0.001). In addition, we tested 6 7 the lineage*woodland section interaction with respect to prevalence (χ^2 =54.2, P<0.001), 8 which confirmed that the lineages are differently distributed in space, as suggested by the 9 visual inspection of the interpolated maps.
- 10

11 Generalized linear modelling of infection status of breeding blue tits revealed several 12 complex associations between avian malaria infection and both landscape and host factors 13 (Table 2). Infection with two lineages (pTURDUS1 and pBT7), and for all avian malaria 14 lineages pooled, decreased further away from the nearby River Thames, which runs along the 15 edge of the study site. Smoothed functions (Figure 2) provided a significantly better fit than a 16 linear or step function in all cases (changes in model residual deviance, P < 0.05). In contrast, 17 there was no influence of this landscape feature on prevalence of SGS1 (Figure 1b). 18

19 Pooled avian malaria lineages and pBT7 both showed significant annual variation in 20 prevalence of infection, (Figure 3, Table 3), in both cases being highest in the final two years 21 of the study. Sex was retained as a significant factor only in analyses of pooled avian malaria 22 infection, with marginally higher prevalence for males than for females (Table 2a: male 23 29.8 \pm 1.4%, female 27.0 \pm 1.4%). The prevalence of infection was higher in older birds, both 24 for pooled avian malaria and all three analysed lineages (Table 2: pSGS1 first years 25 8.15±0.87%, older 13.1±1.1%; pTURDUS1 first years 7.97±0.86%, older 12.1±1.0%; pBT7 26 first years $3.1\pm0.72\%$, older $6.7\pm1.2\%$). These analyses thus show that the prevalence of 27 malaria is, to some extent, dependent on the location of the sampled individual, its age and 28 sex, and that there may be annual fluctuations in the prevalence of some lineages. 29

30 A number of interaction terms were retained in the final models of avian malaria 31 infection prevalence. In the case of pooled avian malaria lineages, female infection increased 32 over the study period while male infection was more variable, causing a significant year*sex 33 interaction (Figure 4a, Table 2a); infection probability also increased with age more markedly 34 in males than in females (Figure 4b, Table 2a). At the level of individual lineages, 35 pTURDUS1 infection also showed an age*sex interaction: increasing prevalence with age in 36 males was not apparent in females (Figure 4c, Table 2c). In the case of pBT7, infection 37 increased with territory size in first year birds whereas it decreased in older birds (Figure 4d). 38 Hence, the effect of individual state differences on infection may also be environmentally-39 dependent.

- 40
- 41

42 **Discussion**

43

44 In an analysis of a single blue tit population, we found marked, and sometimes complex,

- 45 associations between infection with avian malaria and both landscape and host predictors at a
- 46 local scale. At a simple spatial level, the prevalence of avian malaria as a whole and
- 47 prevalence of infection with the three most numerous lineages varied between woodland
- 48 sections. Variation in prevalence between woodland sections itself varied between lineages,
- 49 indicating that different lineages had different spatial distributions (Figure 1). At a finer
- 50 spatial scale, infection with avian malaria as a whole, and infection with two very closely

1 related *Plasmodium* lineages (pTURDUS1 and pBT7, based on cytochrome-b similarity), 2 increased strongly with increasing proximity to a large waterbody, the River Thames, but this 3 was not true for the most abundant lineage in the population, pSGS1, which had a more 4 scattered distribution. In lineage-specific models, infection increased with host age but was 5 not a significant factor in the model of pooled malaria lineages. Strong temporal variation in infection was also detected: pooled malaria infection and pBT7 infection varied significantly 6 7 with year of sampling, with a steady increase in malaria infection in females, but not males, 8 during the study period. Distance to the woodland edge, and breeding site altitude were not 9 retained as significant predictors of infection, while tessellated territory size was only 10 retained a predictor of infection with one malaria lineage, pBT7, as an interaction with age.

10

12 Such striking patterns of spatial heterogeneity at a local scale demonstrate that 13 environmental heterogeneity should be considered in studies of host-parasite interactions; local estimates of prevalence range from >60% to <10% in this study population over as little 14 15 as 1 km. Hence, for a given individual, the likelihood of infection by malaria may depend to a great extent on factors such as natal site (if infection occurs early in life), the degree of post-16 17 natal dispersal, and the choice of breeding site, some of which may be under the control of 18 individuals, but others which are unlikely to be. Such environmental factors might easily 19 overwhelm individual differences in reproductive effort-parasite defence allocation, or 20 individual differences in parasite resistance, and suggest that host populations should not be assumed to be homogeneous with respect to infection risk. The integration of parasite data at 21 22 high taxonomic resolution acquired using molecular techniques with landscape data at a high 23 geographical resolution has revealed complex and subtle ecological relationships that would 24 remain undetected using microscopy.

25

26 If such patterns of parasite distribution are consistent between years, as was the case 27 for two of the three lineages of avian malaria in this study, then is it reasonable to suggest 28 that spatially-dependent host-parasite co-evolution might also occur within scales similar to 29 our study site? While levels of immigration and host dispersal are guite substantial in this 30 population (and in blue tits in general: see Tufto et al. 2005), the potential exists for host local 31 adaptation to avian malaria infection to occur on a local scale in species that show reduced 32 dispersal. In addition, if dispersal is non-random with respect to resistance phenotype, then 33 local adaptation might occur even in the face of marked dispersal (see Garant et al. 2005 for 34 an example of this process in a different context). Further exploration of this idea would 35 necessitate studying the virulence of avian malaria lineages in this study population and its 36 variation within the study site, as modelling approaches suggest optimal virulence varies in 37 relation to habitat quality (Hochberg & Holt 2002). Longitudinal studies of spatiotemporal 38 patterns of host-parasite interactions could make an important contribution in this context, but 39 are uncommon at present.

40

41 The marked association between infection (as pooled malaria lineages and two 42 further, closely related, *Plasmodium* lineages, pTURDUS1 and pBT7) and proximity to a 43 nearby river suggests that vector larval habitat may be of considerable importance in 44 determining the patterns observed here: vector ecology is likely to be a crucial link. The 45 distribution of infective stages often predicts distribution of infected hosts (Wilson et al. 46 2001) and an increased risk of malaria in humans has been reported in proximity to water 47 bodies, i.e. supposed mosquito breeding sites (van der Hoek et al. 2003; Balls et al. 2004; 48 Munyekenye et al. 2005; Omumbo et al. 2005, though see Clarke et al. 2002 for a contrasting 49 finding). Investigation of the life cycle and behaviour of the mosquito species in our study 50 system and their vector competency with respect to the different avian malaria lineages is

clearly needed. Preliminary investigations of mosquito ecology at our study site have found
seven species of mosquito from the genera *Culex*, *Aedes* and *Culiseta* (M.J.Wood et al.
unpubl.). Revealing the vector-parasite competence relationships would prove particularly
useful in explaining our observed patterns of heterogeneity in avian malaria infection in terms
of vector abundance.

6

18

7 Age was retained as a significant predictor in the models of pSGS1, pTURDUS1 and 8 pBT7 infection, being higher in older birds, but was not retained for the model of pooled 9 malaria lineages. This age effect was more evident in males, with interaction between age and 10 sex for pooled malaria and pTURDUS1. Whether this age structure in infection results from 11 an accumulation of infection with age, or a loss of susceptible birds that become infected 12 requires detailed analysis of repeated samples from individuals. In addition, while we found 13 no evidence that population density was directly related to the probability of infection, we did 14 find an age-specific effect of density for one of the lineages. Whether avian malaria infection 15 is subject to host-density dependent effects needs to be subjected to experimental analysis, as 16 relying on natural variation in density is potentially influenced by non-random settlement of 17 individuals.

19 The use of molecular techniques to examine parasite infections at high taxonomic 20 resolution is uncovering high parasite species diversity in avian malaria (Bensch et al. 2004). 21 In this study, two closely related lineages (pTURDUS1 and pBT7, <0.25% sequence 22 divergence.) showed much closer similarity in their associations with landscape and host 23 factors than a third lineage (pSGS1; >4% sequence divergence from both pTURDUS1 and 24 pBT7); this may reflect similarities in vector ecology or transmission requirements and 25 suggests that there may be considerable scope for comparative studies of the transmission 26 requirements of avian malaria lineages (see Pérez-Tris & Bensch 2005; Wood & Cosgrove 27 2006). Our results of the analysis of pooled malaria lineages should therefore be approached 28 with a degree of caution, as it may not be meaningful to analyse pooled malaria cyt-b lineage 29 data if different lineages have different vector-parasite relationships or transmission requirements, adding redundant complexity to statistical analyses. 30

32 We detected annual variation in the prevalence of one lineage, pBT7, and pooled 33 malaria infection, but no such pattern in infection with the two other lineages. Numerous 34 reports exist of such temporal variation in parasite infection (e.g. Schall & Marghoob 1995; 35 Bensch & Åkesson 2003; Altizer et al. 2004), but few studies are able to suggest a mechanism. Whether the annual variation in infection in this study is a result of fluctuations 36 37 in environmentally driven variation in vector transmission, parasite-mediated population 38 cycles (Hudson et al. 1998) or patterns of selection with respect to parasite resistance (Little & Ebert 2001; Westerdahl et al. 2004) remains to be seen: longer time-series may help to 39 40 resolve these possibilities in the present case.

41

31

42 There is a clear need for more studies to disentangle relationship between landscape 43 heterogeneity, vector abundance and host effects on host infection, which will require the 44 continued cross-fertilization of the approaches of spatial and landscape ecology, 45 epidemiology and parasitology and the further development of the statistical tools to analyze 46 wildlife disease systems. The use of molecular diagnostic techniques and GIS techniques to

47 approach these questions should prove extremely valuable in the future, since they greatly

48 expand the resolution with which such questions can be addressed.

References

1 2	References
3	Altizer S. Hochachka WM & Dhondt AA (2004) Seasonal dynamics of mycoplasmal
4	conjunctivitis in eastern North American house finches <i>Journal of Animal Ecology</i>
5	73 309-322
6	Balls MJ Bodker R Thomas CJ Kisinza W Msangeni HA & Lindsay SW (2004) Effect of
7	topography on the risk of malaria infection in the Usambara Mountains Tanzania
8	Transactions of the Royal Society of Tropical Medicine and Hygiene, 98, 400-408
9	Beadell JS. Gering E. Austin J. <i>et al.</i> (2004) Prevalence and differential host-specificity of
10	two avian blood parasite genera in the Australo-Papuan region. <i>Molecular Ecology</i>
11	13 . 3829-3844.
12	Beadell JS, Ishtiag F, Covas R, <i>et al.</i> (2006) Global phylogeographic limits of Hawaii's avian
13	malaria. Proceedings of the Royal Society B: Biological Sciences 273, 2935-2944.
14	Bensch S & Åkesson A (2003) Temporal and spatial variation of hematozoans in
15	Scandinavian willow warblers. Journal of Parasitology, 89, 388-391
16	Bensch S, Pérez-Tris J, Waldenström J & Hellgren O (2004) Linkage between nuclear and
17	mitochondrial DNA sequences in avian malaria parasites: Multiple cases of cryptic
18	speciation? Evolution, 58, 1617-1621
19	Both C & Visser ME (2000) Breeding territory size affects fitness: an experimental study on
20	competition at the individual level. Journal of Animal Ecology, 69, 1021-1030
21	Clarke SE, Bogh C, Brown RC, Walraven GEL, Thomas CJ & Lindsay SW (2002) Risk of
22	malaria attacks in Gambian children is greater away from malaria vector breeding
23	sites. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, 499-
24	506
25	Combes C (2001) Parasitism : the ecology and evolution of intimate interactions. Chicago
26	University Press, London, UK.
27	Dieckmann U, Metz JAJ, Sabelis MW & Sigmund K (2002) Adaptive Dynamics of Infectious
28	Diseases: In Pursuit of Virulence Management. Cambridge University Press,
29	Cambridge, UK.
30	Fallon SM, Bermingham E, Ricklefs RE (2005) Host specialization and geographic
31	localization of avian malaria parasites: A regional analysis in the Lesser Antilles.
32	American Naturalist 165 , 466-480.
33	Foley DH, Torres EP, Mueller I, Bryan JH & Bell D (2003) Host-dependent Anopheles
34	flavirostris larval distribution reinforces the risk of malaria near water. Transactions
35	of the Royal Society of Tropical Medicine and Hygiene, 97, 283-287
30	Garant D, Kruuk LE, Wilkin IA, McCleery KH, & Sheldon BC (2005) Evolution driven by
3/ 20	differential dispersal within a wild bird population. <i>Nature</i> , 433, 60-5.
20 20	Solares 218, 294, 297
39 40	Usehberg ME & Helt DD (2002) Disgoggraphical perspectives on arms reases. In: A dapting
40 41	Dynamics of Infactious Diseases: In Pursuit of Virulence Management (eds
41	Dynamics of Infectious Diseases. In Fursuit of Viruence Management (cas.
42 //3	Cambridge UK
45 11	Hudson PL Dobson AP & Newborn D (1998) Prevention of population cycles by parasite
44 45	removal Science 282 2256-2258
46	Keymer AF & Anderson RM (1979) The dynamics of infection of <i>Tribolium confusum</i> by
47	Hymenolenis diminuta: the influence of infective-stage density and spatial
48	distribution. Parasitology, 79 195-207
49	Little TJ & Ebert D (2001) Temporal patterns of genetic variation for resistance and
50	infectivity in a Daphnia-microparasite system. Evolution, 55, 1146-1152

1 2	Lively CM & Dybdahl, MF (2000) Parasite adaptation to locally common host genotypes Nature 405, 679-681
3	May RM (1999) Population biology: Crash tests for real Nature 398 371-372
Δ	McCurdy DG Shutler D Mullie A & Forbes MR (1998) Sex-biased parasitism of avian
т 5	hosts: relations to blood parasite taxon and mating system <i>Oikos</i> 82 303-312
6	Munyakanya OG, Githako AK, Zhou GE, Mushinzimana E, Minakawa N & Van GV (2005)
0	Plasmodium falcinarum spatial analysis, western Kenya highlands, Emergina
/ Q	Infactious Diseases 11, 1571, 1577
0	Norris K Anwar M Bood AE (1004) Poproductive affort influences the provalence of
10	hometozoon peresites in groat tits. <i>Journal of Animal Feelow</i> 62, 601, 610
10	Omumbe IA Hey SI Snow DW. Totom AI & Degars DI (2005) Modelling melaric risk in
11	East A frien at high spatial resolution. Traniaal Medicine & International Health 10
12	557 566
13	Orall M & Oienon M (1982) Effect of hebitat, data of laving and density on elutebrize of the
14	Great tit Damus major in Northern Finland, Holaretic Feelow, 6, 412, 422
15	Dérez Trie L & Densch S (2005) Dispersed increases local transmission of axian malarial
10	paragitas Ecology Letters 8, 828, 845
1 / 10	Dáraz Tris I. Hassalquist D. Hallgran O. Krizanauskiana A. Waldanström I. & Dansah S.
10	(2005) What are malaria paragitas? Trands in Dangsitalogy 21, 200, 211
20	(2005) What are marana parasites? Trends in Fundshology, 21, 209-211 Derring CM (1070) Pritigh Tite William Colling, Song & Co. I td. Glaggow
20	Poulin D (1006) Holminth growth in vertebrate bester does best say metter? International
21	Fourier R (1990) Heimmun glowun in vertebrate nosts. does nost sex matter? International
22	Douthal for Fundationally, 20, 1511-1515 Pool AF & Taylor I H (2001) The applagy of genetically diverse infections. Science, 202
23 24	1000 1102
24 25	Pibaira IMC Soulu F. Abasa T. Kidana G. & Taklahaimanat A (1006) Tamparal and spatial
25 26	distribution of anopholing mosquitos in an Ethionian village: Implications for malaria
20 27	control strategies. Bulletin of the World Health Organization, 74, 299-305
28	Richner H, Christe P, Oppliger A (1995) Paternal investment affects prevalence of malaria.
29	Proceedings of the National Academy of Sciences, USA 92, 1192-1194.
30	Schalk G & Forbes MR (1997) Male biases in parasitism of mammals: Effects of study type,
31	host age, and parasite taxon. Oikos, 78, 67-74
32	Schall JJ & Marghoob AB (1995) Prevalence of a malarial parasite over time and space -
33	Plasmodium mexicanum in its vertebrate host, the western fence lizard Sceloporus-
34	Occidentalis. Journal of Animal Ecology, 64, 177-185
35	Seutin G, White BN & Boag PT (1991) Preservation of avian blood and tissue samples for
36	DNA analyses. Canadian Journal of Zoology, 69, 82-90
37	Smith DL, Dushoff J & McKenzie FE (2004) The risk of a mosquito-borne infection in a
38	heterogeneous environment. PLoS Biology, 2, e368
39	Stjernman M, Raberg L, Nilsson JA (2004) Survival costs of reproduction in the blue tit
40	(Parus caeruleus): a role for blood parasites? Proceedings of the Royal Society of
41	London Series B-Biological Sciences 271, 2387-2394.
42	Svensson L (1992) Identification guide to European passerines. 4th Edn. edn. Natural
43	History Museum, Stockholm, Sweden.
44	Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) ClustalX
45	windows interface: flexible strategies for multiple sequence alignment aided by
46	quality analysis tools. Nucleic Acids Research, 24, 4876-4882
47	Tutto J, Ringsby T-H, Dhondt AA, Adriaensen F, & Matthysen E (2005) A parametric
48	model for estimation of dispersal patterns applied to five passerine spatially structured
49	populations. American Naturalist, 165, E13-E26

1	Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. CRC Press, Boca Baton USA
2	van der Hoek W. Konradsen F. Amerasinghe PH. Perera D. Pivaratne MK & Amerasinghe
5 1	FP (2003) Towards a risk man of malaria for Sri Lanka: the importance of house
4	location relative to vector breeding sites. International Journal of Enidemiology 32
5	280 285
7	Waldenström I Bensch S. Hasselquist D & Ostman O (2004) A new nested polymerase chain
8	reaction method very efficient in detecting <i>Plasmodium</i> and <i>Haemonrotaus</i> infections
0	from avian blood <i>Journal of Parasitology</i> 90, 191-194
9 10	Westerdahl H. Hansson B. Bensch S & Hasselquist D (2004) Between-year variation of
10	MHC allele frequencies in great read warblers: selection or drift? <i>Journal of</i>
11 12	Evolutionary Biology 17 485-492
12	Wilkin TA Garant D Gosler AG & Sheldon BC (2006) Density effects on life-history traits
14	in a wild population of the great tit Parus major: analyses of long-term data with GIS
15	techniques <i>Journal of Animal Ecology</i> 75, 604-615
16	Wilson K Biørnstad ON Dobson AP Merler S Poglaven G Randolph SF Read AF &
17	Skorning A (2001) Heterogeneities in macronarasite infections: natterns and
18	processes In: The Ecology of Wildlife Diseases (eds Hudson PJ Rizzoli A Grenfell
19	BT Heesterbeek H & Dobson AP) Oxford University Press Oxford UK
20	Wood MI & Cosgrove CL (2006) The hitchhiker's guide to avian malaria Trends in Ecology
21	and Evolution 21 5-7
22	Wood SN & Augustin NH (2002) GAMs with integrated model selection using penalized
23	regression splines and applications to environmental modelling. <i>Ecological</i>
24	Modelling, 157, 157-177
25	
26	
27	Acknowledgements
28	0
29	We thank Simon Griffith, Iain Barr, John Quinn, Samantha Patrick and numerous other
30	Wytham fieldworkers for their assistance. The study was supported by a NERC grant to BCS
31	and KPD. TAW and SCLK were funded by studentships from BBSRC and NERC,
32	respectively.
33	
34	
35	Figure legends
36	
37	Figure 1. Maps of variation in avian malaria infection in a woodland population of blue
38	tits
39	Interpolated maps of spatial variation in the prevalence of avian malaria in blue tits at
40	Wytham, near Oxford, are shown for (a) all malaria lineages pooled, and the three most

- common *Plasmodium* lineages; (b) pSGS1, (c) pTURDUS1 and (d) pBT7, as identified by 41
- common cytochrome-b lineages. Data were pooled for the years 2001, 2003-5. Maps were 42
- 43 generated using MapInfo Professional v7.8.
- 44

45 Figure 2. Variation in avian malaria infection with proximity to the River Thames

- Smoothed distance from the nearby River Thames was retained as a significant predictor of 46
- the infection of blue tits with (a) pooled avian malaria lineages (smoothing function $\chi^2 = 54.0$, P < 0.0001), (b) pTURDUS1 ($\chi^2 = 74.2$, P < 0.0001) and (c) pBT7 ($\chi^2 = 33.1$, P < 0.0001; 47
- 48
- Table 2). The y-axis represents the residual prevalence from the smoothed model, shaded 49

- areas about smoothed lines represent standard errors and x-axis tick marks indicate sample
 points.
- 2 3

4 Figure 3. Annual variation in avian malaria infection

5 Year was retained as a significant predictor of (a) infection with pooled malaria lineages (Z = 3.20, P < 0.0001) and (b) pBT7 infection (Z = -6.61, P < 0.0001) showed significant variation 7 between years (see also Tables 2&3).

8

9 Figure 4. Interactions between factors predicting avian malaria infection

- 10 (a) Annual variation in pooled malaria infection varied with sex; with an apparent increase in
- 11 infection with year in females, but not in males (year*sex interaction: Z = -3.06, P = 0.0025).
- 12 (b) Pooled malaria infection increased with age in both sexes, but more sharply in males
- 13 (age*sex interaction: Z = 2.31, P = 0.021). (c) pTURDUS1 infection increased with age in
- 14 males, but not in females (age*sex interaction: Z = 2.97, P = 0.0028). (d) pBT7 infection
- 15 increased with territory size in first years, but decreased with territory size in older birds
- 16 (age*territory size interaction: Z = -2.16, P = 0.031).

Table 1. Diversity of avian malaria lineages in the Wytham blue tit population

Based on sequence data from a 478bp fragment of the mitochondrial cytochrome-*b* gene, 12 lineages of avian malaria were detected in a total of 997 blue tit malaria diagnoses. Infections of all 12 avian malaria lineages were pooled for analysis, in addition to infections with higher than 4% prevalence (asterisked*), infection with each of which was analysed separately.

Parasite taxon	Lineage	GenBank accession number	N positive	Prevalence (%)
Plasmodium sp.	SGS1*	AF495571	102	10.2
Plasmodium sp.	TURDUS1*	AF495576	97	9.7
Plasmodium sp.	BT7*	AY393793	46	4.6
Plasmodium sp.	GRW11	AY831748	13	1.3
Plasmodium sp.	BLUTI1	DQ991068	6	0.6
Plasmodium sp.	BLUTI2	DQ991072	1	0.1
Plasmodium sp.	BLUTI4	DQ991070	1	0.1
Plasmodium sp.	BLUTI5	DQ991071	1	0.1
Plasmodium sp.	SW2	AF495572	1	0.1
Haemoproteus sp.	WW1	AF254971	3	0.3
Haemoproteus sp.	TURDUS2	DQ060772	2	0.2
Haemoproteus sp.	BLUTI1	DQ991068	1	0.1

Table 2. Statistical modelling of variation in avian malaria infection in blue tits

The results of generalized linear modelling of infection with pooled avian malaria cyt-*b* lineages and the three most common lineages (pSGS1, pTURDUS1 and pBT7) are shown; predicted by year, landscape and host factors (using binomial errors and a logit link). Those predictors remaining after model optimisation are shown, with statistics describing their contribution to the final model.

FACTOR	parameter estimate	Z	Ρ		
(a) Pooled malaria model					
year	0.37±0.094	3.90	<0.0001		
age (older)	0.36±0.21	1.30	0.086		
sex (male)	729±240	3.04	0.0024		
year*sex	0.37±0.12	-3.06	0.0025		
age*sex	0.69±0.30	2.32	0.021		
smoothed distance to river: estimated df = 2.72, χ^2 = 54.0, P < 0.0001					
model residual deviance = 1080.4					
(b) pSGS1 model					
age (older)	2.42±0.15	15.9	<0.0001		
model residual deviance = 65	1.9				
(c) pTURDUS1 model					
age (older)	2.47±0.21	-11.9	<0.0001		
sex (male)	-0.51±0.33	-1.54	0.12		
age*sex	1.42±0.47	2.97	0.0028		
smoothed distance to river: es	timated df = 3.43, $\chi^2 = 74$	1.2, <i>P</i> < 0.00	01		
model residual deviance = 548.6					
(d) pBT7 model					
year	-5.41±0.82	-6.61	<0.0001		
age (older)	1.55±0.53	2.97	0.003		
tesselated territory size	0.00085±0.00005	1.57	0.11		
age*tessellated territory size	-0.00016±0.00007	-2.16	0.031		
smoothed distance to river: es	stimated df = 3.82, $\chi^2 = 3$	33.1, <i>P</i> < 0.0	001		
model residual deviance = 32	3.7				

Table 3. Year by year contrasts in avian malaria prevalence in blue tits

Year was retained as a significant factor in the models of pooled malaria infection (Table 2a, Figure 3b) and pBT7 infection (Table 2d, Figure 3b). The significance values associated with GLM treatment contrasts between years are shown.

(a) Pooled malaria		2001	2003	2004
	2001	-	-	-
	2003	0.041*	-	-
	2004	<0.0001***	<0.0001***	-
	2005	<0.0001***	<0.0001***	0.73
(b) pBT7		2001	2003	2004
	2001	-	-	-
	2003	0.99	-	-
	2004	0.051	0.053	-
	2005	0.028*	0.029*	0.80

1 Figure 1. Maps of variation in avian malaria infection in a woodland population of blue tits

Figure 2. Variation in avian malaria infection with proximity to the River Thames

