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Abstract. Computer networks have increasingly been the focus of cy-
ber attack, such as botnets, which have a variety of serious cybersecurity
implications. As a consequence, understanding their behaviour is an im-
portant step towards the mitigation of such threat. In this paper, we
propose a novel method based on network topology to assess the spread-
ing and potential security impact of botnets. Our main motivation is to
provide a toolbox to classify and analyse the security threats posed by
botnets based on their dynamical and statistical behaviour. This would
potentially lead to a better understanding and prediction of cybersecu-
rity issues related to computer networks. Our initial validation shows the
potential of our method providing relevant and accurate results.
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1 Introduction

Security threats have been steadily increasing due to the emergence of new tech-
nology and methodologies, which has led to an expanding research effort to
detect and minimise such threats [1,2]. More specifically, botnets due to their
unique structure based on distributed communication command patterns across
networks, are widely regarded as a serious security issue. In fact, they can suc-
cessfully carry out surveillance attacks, perform DDoS extortion, general spam,
as well as phishing. Furthermore, some of them utilise structured overlay net-
works, whose lack of centralisation enhance the ability of a botnet to evade
detection whilst retaining a good level of robustness with respect to a churn
process, where single machines are frequently cleansed [6]. It is estimated that
their use has led to malicious activity resulting in a loss of millions of dollars per
year [5].

In this paper, we introduce a novel method to assess security threats, based
on the dynamical properties associated with networks generated by computer
communication. In fact, their topology can provide an insight into specific fea-
tures exhibited by botnets across computer networks. How connections change,
their types and length of communication can provide a deeper and more efficient
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Table 1. A selection of network connection flows

Time Source Destination |Protocol ‘Length‘
161.077519|PcsCompu_b5:b7:19| Broadcast ARP 60
162.079007|PcsCompu_b5:b7:19| Broadcast ARP 60
162.079013|PcsCompu_b5:b7:19| Broadcast ARP 60

162.765245 147.32.84.165 147.32.84.255 | NBNS 110
162.765253 147.32.84.165 147.32.84.255 | NBNS 110

166.206344 147.32.80.9 147.32.84.165 DNS 503
166.207297 147.32.84.165 74.125.232.195| TCP 62
166.207308 147.32.84.165 74.125.232.195| TCP 62
166.215343| 74.125.232.195 147.32.84.165 TCP 62
166.21559 147.32.84.165 74.125.232.195| TCP 60

approach to security threat detection and prediction.

To achieve this, we consider five main parameters: time, source, destination,
protocol, and length. Table 1 depicts a small example of these parameters of the
connection flows.

The main motivation is to provide a set of tools to assess the behaviour of host-
to-host communication to allow an agile, real-time assessment. In contrast to
the the current state of the art approaches, which tend to focus on the different
parameters based on whether or not they are present in the collected data, we
are aiming to exploit the topology of the network and the probabilistic infor-
mation related to botnets behaviour. In fact, a dynamical investigation of such
networks, can lead to the assessment of the likelihood of the maliciousness of
computer communications.

The paper is structured as follows. In Sections 2 and 3 we provide a descrip-
tion of existing technology and theories, and in Section 4 we detail our approach.
In Section 5 we discuss the validation process and finally, Section 6 concludes
our work and prompts to future research directions.

2 Related Work

In [3], the authors propose a detection method for botnets from large datasets
of Netflow data, based on a variety of cloud computing paradigms especially
MapReduce for detecting densely interconnected hosts which are potential bot-
net members.

BotGrep [5] is a tool to identify peer-to-peer communication structures based on
the information about communicating pairs of nodes. This type of P2P detection
is defined as a (communication) network, which exploits the spatial relationships
in communication traffic. Furthermore, the authors argue that subnetworks with
different topological patterns can be partitioned by using random walks, whilst
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comparing the relative mixing rates of the P2P subnetwork structure and the
rest of the communication network. However, such approach is computationally
expensive due to the typical size of such networks.

In [4], an approach based on a Markov chain model in introduced. In particular,
botnet infection is modelled to identify behaviour that is likely to be associated
with attacks, with a prediction rate over 98%. Another example of the utilisa-
tion of Markov chain for intrusion detection system is described in [8], where
it is trained on a sequence of audit events. However, these types of approaches
allow attack identification but they have limited intrusion prediction. In [9], the
authors assess the set of bot lifecycle stages using Markov chains to identify the
occurrence of infection. Similar to the previous approach, there is a focus on the
identification of infection rather than on any predictive capability.

3 Network Theory

Networks have been extensively used to successfully model many complex sys-
tems, and their applications span across a variety of multidisciplinary research
fields, ranging from mathematics and computer science, to biology, and the so-
cial sciences [12], [13].

Networks are defined by a node set V' = {v;};_; , and the edge set e, ,; € E, so
that if v, and v, € V are connected, then e,, ., € E [2]. Note that in this paper,
we do not allow self-loops, or in other words, e,, ,, € E.

Scale-free networks, in particular, appear in a numerous contexts, such as the
World Wide Web links, biological and social networks [2]. The main property
of scale-free networks is based on their node degree distribution, which follows
a power law. More specifically, for large values of k, the fraction p; of nodes in
the network having degree k, is modelled as

P~k (1)

where v has been empirically shown to be typically in the range 2 < v < 3 [2].
From Equation 1, it follows that a relatively small number of hubs occur, which
define the topological properties of the corresponding networks, as well as the
way information spreads across them [15].

An important property of such networks is related to the creation of new nodes
over time, which are likely to be connected to existing nodes that are already
well connected. Since the connectivity of nodes follows a distribution which is
not purely random, the dynamical properties of such networks and their general
topological properties can lead to predictive capabilities [13].

4 Description of the Method

In this section we introduce the model whose objective is to understand, assess
and predict the type and severity of security threats. As discussed above, the
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dynamical properties of networks can provide a useful insight into the system
they model. In this paper, we will focus on the following properties:

— The topology of the network, or in other words, the level of connectedness
between nodes measured by joining paths, and
— Their dynamical properties.

Loosely speaking, we are interested in the properties exhibited by the single
threats and how they change over a specific amount of time.

As defined in Section 3, let G = G(V, E) be a directed network where V' is
the node set and F is the arc set. The former contains the nodes, and the latter
contains the arcs, or directed edges corresponding to requests from the source
node to the target node. Let deg!, (v;) and deg’ , (v;) be the in and out degrees
of the node v; at a given time ¢, that is the number of connection into and out
of it, respectively. We then define the maliciousness of a node v; at the time ¢,
as

_ | degj,” (vi)]

Pl(vi)in =
M) = T gt )

(2)

or Mt
| degoyy (Vi)
| deg;, (v)]

are the number of malicious connections

3)

P]ﬁ/[(vi)out =

where |deg%’t (v;)| and |deg%’tt (vi)

into or out of v;, at a given time t.

For a time t and an arc v v, € B, define its weight as

wt(vivvj) :ft(’rap)v (4)
where f;(r,p) is a function of the length of time of a request r and the number

of request protocols p from v; and v;. In this paper, we define

flr,p) = 5wt + ), (5)

where w! and wzt, are the length of the time and the number of protocols of
different requests, respectively.

We then define the probability of a malicious request at the time ¢ from v;
to v; as

1
Pyy(vis v5) = 3 (Par(0s)in + Pag (v5)out + we(vi, v5)). (6)
In order to consider the dynamics of this model, we assume that new requests
arise according to time snapshots t =1,...,T. Let

(ST(’Ui,’Uj) = Pjt\/[(’l}i,’l)j) — P]tvfl(vi,vj) (7)
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and define
1 T

Ar(vi,v5) = ﬁ25T(vi7uj). (8)

Finally, let the probability of maliciousness as

Pﬂ(vi,vj) = min {max {Ar(v;,v;),0},1}. (9)

Note the above equation can be extended to assess the (average) probability of
malicious attacks from a set of nodes V' on a specific node as

Pi(v;) =

> Pu(vi, ) (10)

1
| eV

v

for ey, 3 € E and v is a node in V.
Algorithms 1 and 2 show the implementation of the above approach.

Algorithm 1 Evaluation of Py (v;,v;)

Lett=0
Determine Pi;°(vi, v;)
fort=1,...T do

Find Ar(vi,v;) and P (vi,v;)
end for
return P (vi,v;)

Algorithm 2 Evaluation of malicious attacks on node v;
1: Let t =0

2: for v € V\ v; do

3:  Determine Pi;°(vi,®)

4 fort=1,...T do

5: Find A¢(vs,0) and PJE (vi, D)
6

7
8

end for
: end for _
: return Py (v;, )

As discussed in Section 3, if the network G follows a scale-free structure,
new arcs are likely to be added to highly connected nodes. As a consequence,
Equations 2 and 3 can be modified to incorporate this property. Recall that the
fraction of nodes p, with degree k is

pr k7.
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For a scale-free network GG, we then assume that

Py(s,5) = 3 (s (1) ™ + wilvi, 7)) ()

Note that in this case, we are considering the overall degree of the destination
node v;, rather than distinguishing between the in and out degree values of the
source and destination nodes. Although we are providing fewer parameters in the
model above, compared to Equation 6, the initial validation appears to support
the claim that (11) indeed provides good modelling capabilities.

The dynamics described by Equation 9 can be used to provide some level
of prediction of the number of malicious attacks. In this paper, we assume that
the trend of ]5]\7/} (vs,v;) can give an insight into a “near future” behaviour of the
communications from v; to v;. In particular, we shall assume that lf’]\T/I(vi, vj) &
ISAEH (vs,v;), or in other words, they exhibit a similar trend. We acknowledge this
is a simplistic approach as it does not consider potential variations that could
occur. However, our initial validation seems again to support the above. In future
research, we are aiming to fully investigate and extend the predictive properties
of our approach by fully analysing the topology of a large set of communication
networks.

5 Results

In this section, we will discuss the validation process, which was based on the
publicly available datasets offered by the Malware Capture Facility Project
[11]. More specifically, we used the CTU-MALWARE-CAPTURE-BOTNET-42
dataset, which contains relevant data generated by a Neris botnet. It used an
HTTP based C&C channel, and all the actions performed by the botnet were
communicated via C&C channels containing specific “click-fraud” spam based
on advertisement services.

This was subsequently preprocessed via WireShark [10] to capture all the pa-
rameters relevant to our approach.

A directed network G = G(V, E) was defined, where the node-set V' contains the
source and destination IPs mutually linked by a request. I particular, we had

— Number of nodes: 4247
— Number of arcs: 6588
— Average in and out degree: 1.5512

Figures 1 and 2 show the degree distribution of the network G, which in-
dicates the existence of few highly connected hubs. Note that this behaviour is
similar to scale-free networks, as described by Equation 1. In [14], a method
to topologically reduce complex networks is discussed. When such method is
applied to the network G, a value of v = 1.9 is determined. As discussed in
Section 3, for many complex systems « is usually within the range 2 < v < 3,
suggesting that the dataset used for the validation exhibits properties similar to
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Fig. 1. The degree distribution of the network G.
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Fig. 2. The log node degree distribution of the network G depicted in Figure 1, which
is compared with a (theoretical) scale-free network with v = 1.9. As it can be clearly
seen, this is a good approximation of the node degree distribution of G.

many other systems from across various contexts. As discussed above, we are
aiming to widen our investigation to a large set of malware botnet datasets to
fully assess whether such behaviour can be indeed generalised.

In order to evaluate our approach, we trained the parameters of Equation 5
on approximately 2000 malicious requests. First of all, we noticed that over 95%
of the malicious requests had a TCP protocol, and among them we detected
two main clusters for time length values in the interval [0, 70] and [950, 1400], as
depicted in Figure 3.

Therefore, we assumed that for malicious requests, w; = w, = 0.6 if the time
length is within those intervals and the protocol is TCP, and w; = w, = 0.2
otherwise.
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Fig. 3. The distribution of the time length requests.
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Fig. 4. A sub-network generated by the dataset described in Section 5.

We subsequently considered the dynamics of the system, by analysing batches
of approximately 300 requests per time iterations, and we assumed that a mali-
cious request from v; to v; is associated with Py (v;,v;) > 0.7. The analysis of
the data produced that 71% of the malicious requests had indeed a Py (v;) > 0.7.
Figures 4, 5 and 6 depict a small proportion of the network created in the first
three iterations on the process. Furthermore, Figure 6 also shows the malicious
requests, which are depicted in red.

We subsequently evaluated the model defined by Equation 11. In this case,

Py (vs,v;) > 0.7 for approximately 61% of the malicious requests. This decrease
in accuracy was indeed expected due to the more general scope of the model, as
discussed above.
Finally, we evaluated the level of prediction associated with our model, and
we considered approximately 200 pairs of nodes exchanging request. Approxi-
mately 59% of the malicious requests exhibited the same trend P, (v;,v;) ~
IBAEH(W, vj), and we noted this was particularly the case for larger values of T,
as expected.
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Fig. 5. A selection of the sub-networks generated by some time iterations on the dataset
described in Section 5.

6 Conclusion

In this paper, we have discussed a method to assess and predict the malicious
connection requests in terms of bonets. As indicated by the validation shows, this
approach shows potential in providing a robust method to detect and predict
malicious request activity. However, this is still at its infancy and in future
research we are aiming to extend our investigation to consider more parameters
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Fig. 6. The sub-networks generated by the fourth iteration, where the second figure
highlights the malicious connections.

and create a more comprehensive model. In particular, a full investigation of
networks generated by such requests will require a deeper understanding of the
topological properties of such networks to ensure a more comprehensive and
accurate analysis, which will provide a robust, accurate and computationally
effective approach.
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