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ABSTRACT 

 

Introduction: The application of contemporary statistical approaches coming from Machine 

Learning and Data Mining environments to build more robust predictive models to identify 

athletes at high risk of injury might support injury prevention strategies of the future. 

Purpose: The purpose was to analyse and compare the behaviour of numerous machine 

learning methods in order to select the best performing injury risk factor model to identify 

athlete at risk of lower extremity muscle injuries (MUSINJ). 

Methods: A total of 132 male professional soccer and handball players underwent a pre-season 
 

screening evaluation which included personal, psychological and neuromuscular measures. 

Furthermore, injury surveillance was employed to capture all the MUSINJ occurring in the 

2013/2014 seasons. The predictive ability of several models built by applying a range of 

learning techniques were analysed and compared. 

Results: There were 32 MUSINJ over the follow up period, 21 (65.6%) of which corresponded 

to the hamstrings, three to the quadriceps (9.3%), four to the adductors (12.5%) and four to the 

triceps surae (12.5%). A total of 13 injures occurred during training and 19 during competition. 

Three players were injured twice during the observation period so the first injury was used 

leaving 29 MUSINJ that were used to develop the predictive models. The model generated by 

the SmooteBoost technique with a cost-sensitive ADTree as the base classifier reported  the 

best evaluation criteria (area under the receiver operating characteristic curve score = 0.747, 

true positive rate = 65.9%, true negative rate = 79.1) and hence was considered the best for 

predicting MUSINJ. 

Conclusions: The prediction model showed moderate accuracy for identifying professional 

soccer and handball players at risk of MUSINJ. Therefore, the model developed might help in 

the decision-making process for injury prevention. 

 

 
Keywords: injury prevention, machine learning techniques, modelling, screening, soccer 
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INTRODUCTION 

 

Lower extremity muscle injuries (MUSINJ) are very common in professional sports, such as 

soccer (1), rugby (2) and handball (3). These sports require sudden acceleration and 

deceleration tasks with rapid changes of directions (4), as well as many situations in which 

players are required to repetitively kick a ball (5) and/or to be involved in tackling to keep 

possession of or to win the ball (6). Data have demonstrated that a typical professional soccer 

team with a 25-player squad could expect 15 MUSINJ each season and MUSINJ can account 

for more than a quarter of all lost time from injuries (1). In particular, injuries to four major 

muscle groups of the lower extremity (i.e. adductors, hamstrings, quadriceps, and triceps 

surae) comprise more than 90% of all MUSINJ in soccer (1). Therefore, there is a clear 

necessity to develop and implement strategies aimed at preventing and reducing the number 

and severity of MUSINJ in professional athletes. 

Prior to establishing MUSINJ prevention programmes, it is essential to identify athletes at high 

risk of MUSINJ through a validated screening programme (7). Bahr (7), in a recently published 

thought-provoking critical review, suggested that prior to considering a screening programme 

as valid to predict and prevent sports injuries it should have successfully overcome  three 

steps. The first step is to identify those potential risk factors that have demonstrated a strong 

relationship with injury in prospective studies and then define appropriate cut-off values. The 

second step is to determine the validity of the screening tests used to measure the risk factors 

to predict new injuries in a new athlete population. Finally, in the third step studies should 

document that an intervention programme targeting athletes identified as being at high risk, 

using the developed screen, must be more beneficial than the same intervention programme 

given to all athletes. 
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In recent years, a substantive effort has been made by the scientific community and medical 

practitioners to identify strong risk factors associated with the occurrence of muscle injuries. 

Thus, some prospective studies, but not all, have identified previous injury (8-10), older age 

(8, 10, 11), poor flexibility (8, 11, 12), fatigue (13) and decreased muscle strength or strength 

imbalances (4, 9, 12) as potential risk factors associated with MUSINJ. Despite the fact that 

significant associations (causal relationship) were found between these risk factors and 

MUSINJ, the ability of the cut-off scores proposed to predict injuries are not acceptable for 

screening purposes. In particular, most of the cut-off scores reported in previous studies show 

good true negative rates (e.g. how many individuals with a negative score were not injured), 

however the true positive rates were very low (e.g. how many individuals with a positive 

score were injured). The consequence of this has led Bahr (7) to conclude that: a) finding 

statistically significant associations between a test result and MUSINJ is  not  sufficient 

evidence to use the test to predict who is at risk of injury; and b) there is no screening test 

available to predict sports injuries (including MUSINJ) with adequate test properties and 

consequently the exercises included in intervention programmes are not evidence-based or 

supported as the link between risk factors and injury incidence remains to be established. 

Perhaps one the main reasons behind the lack of available valid screening programmes to 

predict athletes at high risk of suffering a sport injury, including MUSINJ, could be based on 

the use of statistical approaches, that in contrast to certain supervised learning algorithms (i.e. 

ensemble, class balance and cost-sensitive learning techniques), have not been specifically 

designed to deal with class imbalance problems, such as the MUSINJ phenomenon, in which 

the number of injured players (minority class) prospectively reported is always much lower 

than the non-injured players (majority class) (14). Thus, in many scenarios including MUSINJ, 

traditional multivariate analyses are often biased (for many reason) towards the majority class 

(known as the “negative” class) and therefore, there is a higher misclassification rate for the 
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minority class instances (called the “positive” examples), which represent the most important 

concept (15). Another reason for the limited validation of screening programs might be due to 

the fact that most of the available studies have analysed the predictive ability of each risk 

factor in isolation or in conjunction with just two or three risk factors. However, the MUSINJ 

phenomenon has been considered as being multifactorial, in which several factors have an 

influence on it, and in some cases interact among themselves (17). Therefore, it might be 

possible that the individual ability of each potential risk factor to impact on the likelihood to 

suffer a MUSINJ could be very small and in most cases not statistically significant unless 

analysed in conjunction with other known factors simultaneously, as a complex component or 

factor. 

The application of contemporary statistical approaches (e.g. supervised learning algorithms) 

coming from Machine Learning and Data Mining environments have been specifically 

designed to deal with class imbalance problems (14) and can manage a large number of 

variables in order to develop a robust predictive model, it might shed new light on this 

problematic area in sport medicine setting. In fact, these statistical approaches have been 

applied, among others, in several medical diagnosis studies reporting excellent results (18). 

Therefore, the main purpose of the current prospective study was to analyse and compare the 

behaviour of some learning methods in order to select the best performing injury risk factor 

model to predict MUSINJ in a cohort of professional athletes. 

 
 

METHOD 

 

Participants 

 

A total of 132 male professional soccer (n = 98) and handball (n = 34) players took part in the 

current study. Soccer players were recruited from four different soccer teams that were 

engaged in the 1st (one team, n = 25) and 2nd B (three teams, n = 73) Spanish National 
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Soccer League divisions. Handball players were recruited from three different handball teams 

that were engaged in the 1st (one team, n = 11) and 3rd (two teams, n = 23) National Handball 

League divisions. The sample was homogeneous in potential confounding variables, such as 

body mass, stature, age, training regime (one game and 4–6 days of training per week), 

climatic conditions, level of play, resting periods and sport experience (at least 8 years). 

Although football and handball are two team sports with different rules and  physical 

demands, both have in common a high incidence rate of MUSINJ associated with acute non- 

contact incidents (injuries with sudden onset and known cause) (1, 3). Bahr and Holme (19) 

stated that for prospective studies aimed at investigating potential risk factors for sports 

injury, a minimum of 20-50 injury cases should be recorded to detect moderate to strong 

associations. Therefore, 132 professional football and handball players were recruited to 

ensure that the appropriate number of MUSINJ might be recorded, even with some attrition. 

Furthermore, another rationale behind the recruitment of players coming from two different 

sports was to carry out a preliminary exploration regarding the relevance of the feature sport 

as a personal or individual risk factor on the final predictive model selected. For example, the 

feature sport might be considered as relevant if it appears as a father node in the final model 

of a single decision tree structure or as a father or child node in numerous trees where the 

final model is based on a multiple decision trees structure (i.e. multiple classifiers). 

The exclusion criteria were: a) presence of orthopaedic problems that prevented the proper 

execution of one or more of the neuromuscular tests selected for this study; and b) players 

who were transferred to other clubs and did not finish the 9-month follow up period. Only 

primary injuries we used for any player sustaining multiple MUSINJ. 

Prior to study participation, experimental procedures and potential risks were fully   explained 
 

to the participants in verbal and written form, and written informed consent was obtained 
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from them. An Institutional Research Ethics committee approved the study protocol prior to 

data collection, conforming to the recommendations of the Declaration of Helsinki. 

Study design 

 

A prospective cohort design was used to address the purposes of this study. In particular, all 

the MUSINJ accounted for within the 9 months (2013/2014 season) following the initial testing 

session were prospectively collected for all players. 

Players underwent a pre-season evaluation of a number of personal, psychological and 

neuromuscular measures, most of them considered potential sport-related injury risk factors. 

For each soccer and handball team, the testing session was conducted at the pre-season phase 

of the year. 

Testing procedure 

 

The testing session had a total duration of approximately 120 min and was divided into three 

different parts (see Figure, Supplemental Digital Content 1, Graphical representation of 

testing procedure, http://links.lww.com/MSS/B167). The first part of the test session was used 

to obtain information related to the participants’ personal or individual characteristics (5 min). 

The second part was designed to assess psychological measures related to sleep quality and 

athlete burnout (10 min). Finally, the third part of the session was used to assess a number of 

neuromuscular measures (105 min). 

Each of the 8 testers who took part in this study conducted the same tests throughout all the 

testing sessions and they were blinded to the purposes of this study. All testers had more than 

4 years of experience in neuromuscular assessment. 

Personal or individual risk factors 

 

The ad hoc questionnaire designed by Olmedilla, Laguna and Redondo (20) was used to 

record personal or individual features that have been defined as potential non-modifiable risk 

factors for sport injuries. Through this questionnaire sport-related background (sport, player  

http://links.lww.com/MSS/B167)
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position, current level of play, dominant leg [defined as the participant´s kicking leg]) and 

demographic (age, body mass, stature and body mass index) features were recorded. In 

addition, the presence within the last season (yes or no) of MUSINJ with a total time taken to 

resume full training and competition > 8 days was also recorded (self-reported; see Table, 

Supplemental Digital Content 2, Personal injury risk factors recorded, 

http://links.lww.com/MSS/B168). 

Psychological risk factors 

 

Sleep quality and athlete burnout variables were measured through two validated and 

worldwide used likert scales. The Spanish version of the Pittsburgh Sleep Diary (21) was used 

to measure the sleep quality of the soccer and handball players. The final score of this scale 

was determined as the average of the scores obtained in each of its 7 items. 

The Spanish version of the Athlete Burnout Questionnaire (22) was used to assess the three 

different dimensions that comprise athlete burnout: a) physical/emotional exhaustion; b) 

reduced sense of accomplishment; and c) sport devaluation. Specifically, it is a likert scale 

comprising 15 items, 5 per factor, which employs a response format in ordered categories, 

with five alternatives: almost never (1), not very often (2), sometimes (3), often (4) and 

almost always (5). (See Table, Supplemental Digital Content 3, description of the 

psychological risk factors recorded, http://links.lww.com/MSS/B169.) 

Neuromuscular risk factors 

 

Prior to the neuromuscular risk factor assessment, all participants performed the dynamic 

warm-up designed by Taylor, Sheppard, Lee and Plummer (23). This warm-up routine was 

chosen because it reflects the standard warm-up structure (aerobic exercises + dynamic 

stretching exercises + sport-specific movements executed at, or just below game intensity) 

that might be the most widely used in soccer and handball. In addition, the effects elicited by 

this  dynamic  warm-up  routine  have  been  demonstrated  to be enough to optimise the 

http://links.lww.com/MSS/B168)
http://links.lww.com/MSS/B168)
http://links.lww.com/MSS/B169.)
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subsequent physical performance in elite athletes (23). The overall duration of the entire 

warm-up was approximately 15-20 min. The assessment of the neuromuscular risk factors 

was carried out 3-5 min after the dynamic warm-up. 

In the experimental session, participants were assessed from a number of neuromuscular 

performance measures obtained from 5 different testing manoeuvres: 1) dynamic postural 

control; 2) isometric hip abduction and adduction strength; 3) lower extremity joint ranges of 

motion; 4) core stability; and 5) isokinetic knee flexion and extension strength. 

The order of the tests was consistent for all participants and was established with the intention 

of minimizing any possible negative influence among variables. A 5-min rest interval was 

given between consecutive testing manoeuvres. 

Dynamic postural control 

 

Dynamic postural control was evaluated using the Y-Balance device® and following the 

guidelines described by Shaffer et al. (24). 

The distance reached in each direction (anterior, posteromedial and posterolateral) was 

normalized by dividing by the previously measured leg length to standardize the maximum 

reach distance ([excursion distance/leg length] x100 = % maximum reach distance) (24). The 

bilateral ratio (dominant / non dominant score) of each direction was also calculated. A 

bilateral ratio higher than 10% was considered as asymmetry. Finally, to obtain a global 

measure of the balance test for each leg, data from each direction were averaged to calculate a 

composite score. 

Isometric hip abduction and adduction strength 

 

Isometric hip abduction and adduction peak torques of the dominant and non dominant limb 

were assessed with a portable handheld dynamometer (Nicholas Manual Muscle Tester, 

Lafayette Indiana Instruments) in a supine lying position on a plinth with the participant‘s 

legs extended and following the methodology described by Thorborg, Petersen, Magnusson 
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and Hölmich (25). Briefly, participants performed five trials of 5-second isometric maximal 

voluntary contraction for each hip movement. The mean of the three most closely related 

trials were used for the subsequent statistical analyses. Unilateral hip abductor/adductor peak 

torque ratio defined as the hip adductor peak torque divided by hip abductor peak torque was 

calculated for each leg. Furthermore, the hip abduction and adduction bilateral ratios were 

also determined as the quotient of the dominant hip mean isometric peak value by the non 

dominant hip mean isometric peak value. A side-to-side difference higher than 10% was 

defined as bilateral asymmetry. 

Lower extremity joints range of motion 

 

The passive hip flexion with knee flexed and extended, extension, abduction, external and 

internal rotation; knee flexion; and ankle dorsiflexion with knee flexed and extended ROMs 

of the dominant and non dominant legs were assessed following the methodology previously 

described (26). Furthermore, for each joint ROM measure, side-to-side differences were also 

calculated. In this sense, when side-to-side difference > 6º was found, players were 

categorised as showing bilateral asymmetries whereas scores ≤ 6º were accepted as normal 

(non bilateral asymmetries) (12). 

Core stability 

 

The unstable sitting protocol described by Barbado, Lopez-Valenciano, Juan-Recio, Montero- 

Carretero, van Dieen and Vera-Garcia (27) was used to assess participant‘s ability to control 

trunk posture and motion while sitting. Briefly, after a familiarization / practice period (2 

minutes), participants performed different static and dynamic tasks while sitting on an 

unstable seat: 

 One static stability task without visual feedback (test 1) and another with visual 

feedback (test 2). In test 1 participants were asked to sit still in their preferred seated 

position on the unstable seat, while in test 2 participants were requested to adjust their 
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centre of pressure position to a target point located in the centre of a screen placed in 

front of them. 

 Three dynamic stability tasks with visual feedback, in which participants were asked 

to track the target point, which moved along three possible trajectories (anterior- 

posterior, medial-lateral and circular). 

All tasks were performed twice. The duration of each trial was 70 seconds and the rest period 

between trials was 1 minute. Participants performed each trial with arms crossed over the 

chest. All participants were able to maintain the sitting position without grasping a support 

rail. 

The mean radial error was used as a global measure to quantify the trunk/core performance 

during the trials. This variable was calculated as the mean of vector distance magnitude of the 

centre of pressure from the target point trials (trials with visual feedback) or from the 

participant‘s own mean centre of pressure position (trials without visual feedback) (28). 

Isokinetic knee flexion and extension strength 

 

A Biodex System-4 isokinetic dynamometer (Biodex Corp., Shirley, NY, USA) and its 

respective manufacture software were used to determine isokinetic concentric and eccentric 

torques during knee extension and flexion actions in both limbs following the methodology 

described by Ayala et al. (29). 

Two isokinetic gravity-corrected variables were extracted for each movement (flexion and 

extension), muscle action (concentric, eccentric) and velocity (60, 180 and 240º/s for 

concentric actions and 30, 60 and 180º/s for eccentric actions): peak torque (PT) and joint 

angle of peak torque (APT). In each of the three trials at each velocity, the PT and APT were 

reported as the single highest torque output and corresponding joint angle. For each isokinetic 

variable, the average of the 3 sets at each velocity was used for subsequent statistical analysis. 

When a variation >5% was found in the PT and APT values between the three trials, the mean 
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of the two most closely related torque values were used for the subsequent statistical analyses. 

Reciprocal (conventional and functional) knee flexion to knee extension ratios as well as 

bilateral knee flexion and extension ratios were also calculated using peak torque values 

extracted for each velocity. Thus, the conventional knee flexion to knee extension ratios were 

calculated as the ratio between the PTs produced concentrically by knee flexor and knee 

extensor muscles during the isokinetic tests. Functional knee flexion to knee extension ratios 

were calculated as the ratio between the PTs produced eccentrically by the knee flexor 

muscles and concentrically by the knee extensor muscles. Bilateral knee flexion and extension 

ratios were calculated dividing the PT value of the dominant limb by the PT value of the non 

dominant leg. 

Finally, the functional knee flexion to knee extension ratio proposed by Croisier, Ganteaume, 

Binet, Genty and Ferret (4) was also calculated as the ratio between the PTs produced 

eccentrically by the knee flexor at 30º/s and concentrically by the knee extensor muscles at 

240º/s. 

Injury Surveillance 

 

Following the recommendations made by the International Injury Consensus Group (30), a 

MUSINJ was defined as an acute pain in the muscle location that occurred during training or 

competition and resulted in the immediate termination of play and inability to participate in 

the next training session or match. These injuries were confirmed through a clinical 

examination (identifying pain on palpation, pain with isometric contraction, and pain with 

muscle lengthening) by team doctors. Players were considered injured until the club medical 

staff (medical doctor or physiotherapist) allowed full participation in training and availability 

for match selection. Only hamstrings, quadriceps, triceps surae and adductor muscles injuries 

were considered in this study. 
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The club medical staff of each club recorded MUSINJ on an injury form that was sent to the 

study group each month. For all MUSINJ that satisfied the inclusion criteria, team medical 

staffs provided the following details to investigators: muscle (hamstrings, quadriceps, triceps 

surae and adductors), leg injured (dominant/non dominant), injury severity based on lay off 

time from soccer or handball (slight/minimal [0-3 days], mild [4-7 days], moderate [8-28 

days], and severe [>28 days]), date of injury, moment (training or match), whether it was a 

recurrence (defined as an MUSINJ that occurred in the same extremity and during the same 

season as the initial injury), and total time taken to resume full training and competition. At 

the conclusion of the 9 month follow up period, all data from the individual clubs were 

collated into a central database, and discrepancies were identified and followed up at the 

different clubs to be resolved. Some discrepancies among medical staff teams were found to 

diagnose minimal MUSINJ and to record their total time lost. To resolve these inconsistencies 

in the injury surveillance process (risk of misclassification of the players), only MUSINJ 

showing a time lost > 4 days (minor to severe) were selected for the subsequent statistical 

analysis. 

Statistical analysis 

 

The statistical analysis framework carried out in this study for analysing and comparing the 

behaviours of several machine learning techniques with the aim of finding the best model for 

predicting MUSINJ in professional soccer and handball players was based on a supervised 

learning perspective. From a statistical standpoint, the problem can be stated as follows: given 

a set of features F (in our case risk factors) and a target (discrete) variable (in our case 

MUSINJ [yes or no]), named class, C, we want to estimate/learn a mapping function M:FC. 
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Thus, the statistical analysis comprised two stages: 

 

1. Data pre-processing. At this stage, the data set was prepared to apply the data mining 

techniques. To optimise this aspect, pre-processing methods such as data cleaning and 

data discretization were applied. 

2. Data processing. At this stage, the taxonomy suggested by Galar, Fernandez, 

Barrenechea, Bustince and Herrera (14) to address learning with imbalanced data sets 

was applied. In particular, a study on the performance of some proposals for pre- 

processing, cost-sensitive learning and ensemble-based methods was carried out. In 

addition, the approach proposed by Elkarami, Alkhateeb and Rueda (31) for 

imbalanced data sets and based on the combination of a cost-sensitive classifier with 

class-balanced ensembles was also studied. Four classic decision tree algorithms were 

used as base classifiers in each method. 

Data pre-processing 

 

Data pre-processing is a crucial task, due to the quality and reliability of available 

information, which directly affects the results obtained. Thus, some specific pre-processing 

tasks were applied to prepare the data set so that the classification task could be performed 

appropriately. 

Firstly, we deleted those players who did not complete all the neuromuscular tests for any 

reason (six soccer players) from the data set. This exclusion criterion was based on the fact 

that if a player had not completed a neuromuscular test a large number of features would be 

absent and this might have a negative impact on the performance of the models generated. In 

addition, four soccer players were also deleted because they left their respective teams before 

the follow up procedure was completed. 

Secondly, we proceed to study the presence of outliers. In this study, an outlier was defined as 

a score or value that could not be classified as real or true due to the consequence of a  human 
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error or a machine failure. An example of an outlier was a hip adductor peak torque value of 

1500 N because the measurement range of the hand-held dynamometer used was from 0 to 

1335 N. In particular, we carried out an examination of the full data set using boxplots and the 

detected outliers were removed. 

The third step consisted of looking for missing data. To address this issue, frequency tables 

and diagrams were built. Thus, missing data were replaced by the mean value of the 

corresponding variable of the specific sport modality (soccer or handball) of the players. For 

example, if a football player did not report his weight for any reason, then the average value 

of his counterpart soccer players was inputted. It should be noted that none of the variables 

reported a percentage of missing data and/or outliers higher than 3%. The SPSS 21.0 

Statistical software was used to carry out this data cleaning process. 

After having applied the above-mentioned data cleaning methods, we had to deal with an 

imbalance (showing an imbalance ratio of 0.34) and high dimensional data set comprised of 

88 soccer and 34 handball players (instances) and 151 potential risk factors (features). 

The final step comprised the discretization of the continuous features as this has shown to be 

an effective measure to improve the performance of some classifiers (32). Thus, continuous 

features were discretized according to the reference values previously reported to consider an 

athlete as being more prone to suffer an injury. In most features, the discretization reduced 

their dimensionality to three labels. In case no cut-off scores for detecting athletes at high risk 

of injury had been previously reported (e.g. stature, body weight, some isokinetic strength 

features), the unsupervised discretization algorithm available in the well-known Weka 

(Waikato Environment for Knowledge Analysis) Data Mining software was applied using the 

equal frequency binning approach (four cut point intervals). We selected four intervals in 

order to reflect taxonomy of low, low-moderate, moderate-high and high scores that might 

make the final model more comprehensible.  For the discretization of the psychological 
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features (see Table, Supplemental Digital Content 3, description of the psychological risk 

factors recorded, http://links.lww.com/MSS/B169) and the isokinetic APT features we used 

two and three intervals or labels respectively based on the authors´ extensive experience due 

to the fact that the range of possible scores were limited (i.e. from 0 to 5). Thus, lower 

extremity range of motion features (See Table, Supplemental Digital Content 4, description of 

the measures obtained from the lower extremity ROM, http://links.lww.com/MSS/B170) as 

well as both reciprocal knee flexion to knee extension ratios and bilateral knee flexion and 

extension ratios (See Table, Supplemental Digital Content 5, Description of the measures 

obtained from the isokinetic knee flexion and extension strength assessment, 

http://links.lww.com/MSS/B171) were discretised according to the previously suggested cut- 

off scores whereas dynamic postural control (See Table, Supplemental Digital Content 6, 

Description of the measures obtained from the dynamic postural control test, 

http://links.lww.com/MSS/B172), isometric hip abduction and adduction strength (See Table, 

Supplemental Digital Content 7, Description of the measures obtained from the isometric hip 

abduction and adduction strength test, http://links.lww.com/MSS/B173), core stability (See 

Table, Supplemental Digital Content 8, Description of the measures obtained from the core 

stability test, http://links.lww.com/MSS/B174) and isokinetic peak torque (See Table, 

Supplemental Digital Content 5, Description of the measured obtained from the isokinetic 

knee flexion and extension strength assessment, http://links.lww.com/MSS/B171) features 

were discretized using the Weka unsupervised discretization algorithm. 

Data processing 

 

Although in Data Mining and Machine Learning a wide range of paradigms have been used to 

tackle classification problem, only those that have been designed to deal with imbalance and 

high dimensional data sets were used. These paradigms might be categorized  into three 

groups (14, 15): 

http://links.lww.com/MSS/B169)
http://links.lww.com/MSS/B170)
http://links.lww.com/MSS/B171)
http://links.lww.com/MSS/B172)
http://links.lww.com/MSS/B173)
http://links.lww.com/MSS/B174)
http://links.lww.com/MSS/B171)
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a) External approaches that pre-process the data in order to reduce the effect of their 

class imbalance by resampling the data space. 

b) Internal approaches that create new algorithms or modify existing ones to take the 

class imbalance problem into consideration (ensembles). 

c) Cost-sensitive learning solutions incorporating both the data (external)  and 

algorithmic level (internal) approaches assume higher misclassification costs for 

samples in the minority class and seek to minimize the high cost errors. 

The taxonomy for external (oversampling), internal (ensembles) and cost-sensitive methods 

for learning with imbalanced data sets proposed by Galar et al. (14) and López et al. (15) was 

used to address the aim of this study. This taxonomy was implemented with the approach 

recently proposed by Elkarami, Alkhateeb and Rueda (31) due to the promising  results 

showed to handle imbalanced data sets. 

To achieve founded conclusions, four decision tree algorithms were selected to be used in the 

pre-processing, ensemble and cost sensitive learning methodologies: C4.5 (33), which is an 

algorithm for generating a pruned or unpruned decision tree; SimpleCart (34), which 

implements minimal cost-complexity pruning; ADTree (35), which is an alternating decision 

tree; and RandomTree (36), which considers K randomly chosen attributes at each node of the 

tree. 

Hence a decision tree is a set of conditions organized in a hierarchical structure. An instance 

is classified by following the path of satisfied conditions from the root of the tree until a leaf 

is reached, which will correspond with a class label. 

For the sake of brevity and the lack of space, we have not written here the code of the 

algorithms used in this study. Instead, we have only specified the names and refer the reader 

to their original sources. Furthermore, all the classification algorithms used are available in 

Weka Data Mining software. 
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Although there are several data balancing or rebalancing algorithms, we used three  of the 

most popular methodologies which are the synthetic minority oversampling technique 

(SMOTE), random oversampling (ROS) and random undersampling (RUS). In brief, the main 

idea behind SMOTE is to create new minority class examples by interpolating several 

minority class instances that lie together for oversampling the training set. With these 

techniques, the minority class is over-sampled by taking each minority class sample and 

introducing synthetic examples along the line segments joining any/all of the k samples 

belonging to the minority class, nearest to the sample i. Regarding ROS, it duplicates some 

random minority instances until the total amount of minority instances reaches the percentage 

given and RUS, contrarily, removes some random majority samples. In our case, a level of 

balance in the training data near to the 40:60 was attempted. Additionally, the interpolations 

that are computed to generate new synthetic data are made considering the k-5-nearest 

neighbours of minority class instances using the Euclidean distance. 

Regarding ensemble learning algorithms, classic ensembles such as Bagging, AdaBoost and 

AdaBoot.M1 were included in this study. Further, the algorithm families designed to deal 

with skewed class distributions in data sets were also included: Boosting-based and Bagging- 

based. The Boosting-based ensembles that were considered in the current study were 

SMOTEBoost and RUSBoost. Concerning Bagging-based ensembles, it was included from 

the OverBagging group, OverBagging (which uses random oversampling), UnderBagging 

(which uses random undersampling) and SMOTEBagging. 

Concerning the cost-sensitive learning algorithms, two different approaches were used, 

namely MetaCost and the Cost Sensitive Classifier. We have only specified the names and 

refer the reader for further information to Galar et al. (14) and López et al. (15). 

Regarding the number of internal classifiers used within each approach, all ensembles 

employed the same ten base classifiers (C4.5, SimpleCart, ADTree or RandomTree) by 

default. 
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Finally, the behaviour of some specific combination of class-balanced ensembles with cost- 

sensitive base classifiers were also studied. The final cox matrix set up was based on the best 

performance reported after testing all the possibilities. 

Supplemental Digital Content 9 summarizes the list of algorithms (n = 68) grouped by 

families and also shows the abbreviations that have been used along the experimental 

framework and a short description of them. (See Table, Supplemental Digital Content 9, 

Algorithms used in the data processing phase, http://links.lww.com/MSS/B175.) 

In order to evaluate the performance of the decision tree algorithms, the five fold stratified 

cross validation (SCV) technique was used (37). That is, we split the dataset into five 

stratified folds maintaining the class distribution, each one containing 20% of the patterns of 

the dataset. For each fold, the algorithm was trained with the examples contained in the 

remaining folds and then tested with the current fold. This value is set up with the aim of 

having enough positive class instances in the different folds, hence avoiding additional 

problems in the data distribution. A wide range of classification performance measures can be 

obtained from the SCV technique. A well-known approach to unify these measures and to 

produce an evaluation criterion is to use the Receiver Operating Characteristic (ROC) curve. 

In particular, the area under the ROC curve (AUC) corresponds to the probability of correctly 

identifying which one of the two stimuli is noise and which one is signal plus noise (15). 

Thus, the AUC was used as a single measure of a classifier‘s performance for evaluating 

which model is better on average and was interpreted as high (0.90- 1.00), moderate (0.70- 

0.90), low (0.70-0.50) and fail (>0.50) (38). Furthermore, two extra measures from the 

confusion matrix were also used as evaluation criteria: a) true positive rate (TPrate): TPrate = 

TP/(TP + FN) also called sensitivity or recall, is the proportion of actual positives which are 

predicted to be positive; and b) true negative rate (TNrate): TNrate = TN/(TN + FP) or 

specificity, that is the proportion of actual negatives which are predicted to be negative. 

http://links.lww.com/MSS/B175.)
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RESULTS 

 

Muscle injuries epidemiology 

 

There were 32 MUSINJ over the follow up period, 21 (65.6%) of which corresponded to the 

hamstrings, three to the quadriceps (9.3%), four to the adductors (12.5%) and four to the 

triceps surae (12.5%). Injury distribution between the legs was 53.3% dominant leg and 

46.7% non dominant leg. A total of 13 injures occurred during training and 19 during  

competition. In term of severity, most injures were categorized as moderate (n = 23) while 

only 9 cases were considered minor and no severe injuries were recorded. Three players were 

injured twice during the observation period, so their first injury was used as the index injury 

in the analyses. Consequently, 29 MUSINJ were finally used to develop the predictive models. 

Predictive model for lower extremity muscle injuries 

Tables 1-3 show the average AUC, TPrate and TNrate results for all resampling, ensemble 

and cost-sensitive learning methods separately for each decision tree base classifier. The 

method that obtained the best performing result within each method is highlighted in bold. 

Furthermore, the model considered as the best for predicting MUSINJ is highlighted in grey. 

The ADTree base classifier showed the best performance in most of the methods analysed.  In 
 

fact, the final model was built using the SmoteBagging ensemble method with the ADTree as 

base classifier using reweighted training instance (cost-sensitive). 

Therefore, the final model selected to predict lower extremity MUSINJ in professional soccer 

and handball players is comprised by 10 different cost sensitive classifiers (ADTrees) and 52 

features. See, Supplemental Digital Content 10, First classifier, Graphical representation  of 

the first classifier of the predictive model for muscle  injuries, 

http://links.lww.com/MSS/B176; Supplemental Digital Content 11, Second classifier, 

Graphical representation of the second classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B177; Supplemental Digital Content 12, Third classifier, Graphical 

http://links.lww.com/MSS/B176%3B
http://links.lww.com/MSS/B176%3B
http://links.lww.com/MSS/B177%3B
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representation of the third classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B178; Supplemental Digital Content 13, Fourth classifier, 

Graphical representation of the fourth classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B179; Supplemental Digital Content 14, Fifth classifier, Graphical 

representation of the fifth classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B180; Supplemental Digital Content 15, Sixth classifier, Graphical 

representation of the sixth classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B181; Supplemental Digital Content 16, Seventh classifier, 

Graphical representation of the seventh classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B182; Supplemental Digital Content 17, Eighth classifier, 

Graphical representation of the eighth classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B183; Supplemental Digital Content 18, Ninth  classifier, 

Graphical representation of the ninth classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B184; Supplemental Digital Content 19, Tenth  classifier, 

Graphical representation of the tenth classifier of the predictive model for muscle injuries, 

http://links.lww.com/MSS/B185; Supplemental Digital Content 20, Risk factor measures 

included in the model for predicting muscle injuries, http://links.lww.com/MSS/B186. 

 

 

The cost matrix for cost-sensitive classifier was set to 

 

where a false negative had a cost of 14 and a false positive had a cost of 2. In our case, the 

false prediction of a non-injured athlete was penalized 7 times more with respect to the 

contrary error. This cost matrix was selected because it reported the best predictive 

performance in this particular scenario after having tested all the possible combinations. 

The confusion matrix and the main cross validation results of the final model are shown in 

http://links.lww.com/MSS/B178%3B
http://links.lww.com/MSS/B178%3B
http://links.lww.com/MSS/B179%3B
http://links.lww.com/MSS/B180%3B
http://links.lww.com/MSS/B181%3B
http://links.lww.com/MSS/B182%3B
http://links.lww.com/MSS/B183%3B
http://links.lww.com/MSS/B184%3B
http://links.lww.com/MSS/B185%3B
http://links.lww.com/MSS/B186
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table 4. In terms of practical applications, each classifier has a vote (yes or no), and the final 

decision regarding whether or not a player might suffer an injury will be based on the 

combination of the votes of each individual classifier to each class (yes or no). 

DISCUSSION 

 

The main purpose of this study was to develop an injury risk factor-based model that would 

identify professional soccer and handball players at high risk of MUSINJ by using learning 

methods from Machine Learning and Data Mining environments. With this aim in mind, a 

large number of personal, psychological and neuromuscular risk factors were assessed during 

the pre-season training periods and the MUSINJ accounted within the following 9 months were 

also recorded. Thus, and after having run and compared the performance of several pre- 

processing, cost-sensitive learning and ensemble techniques to correctly classify players at 

high or low risk of MUSINJ, the model generated by the SmooteBoost technique with a cost- 

sensitive ADTree as base classifier reported the best evaluation criteria (AUC score = 0.747; 

TPrate = 65.9; TNrate = 79.1). 

Functioning of the predictive model to identify athletes at high risk of muscle injuries 

The ADTree algorithm has the advantage of producing models that are easily represented as a 

tree with a limited number of nodes (less than 10 in our case). This property is achieved by 

constructing a tree that is a conjunction of rules which all contribute real-valued evidence 

toward a given instance being classified as either true (injured) or false (no injured). Unlike 

traditional tree models the classification of instances by ADTree is thus not determined by a 

single path traversed in the tree, but rather by the additive score of a collection of paths. The 

ADTree is graphically represented with two types of nodes: Elliptical prediction nodes and 

rectangular splitter nodes (Figure 1). Each splitter node is associated with a value indicating 

the rule condition: If the feature represented by the node satisfied the condition for a given 

instance, the prediction path will go through the left child node, otherwise the path will go 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.  

through the right child node. The final classification score produced by the tree is found by 

summing the values from all the prediction nodes reached by the instance, with the root node 

being the precondition of the classifier. If the summed score is greater than zero, the instance 

is classified as false (no Injured). 

To better explain how coaches and sport practitioners should use the model to  predict 

MUSINJ, we are going to explain the first classifier or ADTree using the fictional data 

displayed in figure 1. In addition, figure 1 represents in blue the paths followed by the 

selected instance or example. 

In this classifier, we start with a baseline score of -1.252. The tree presents three father nodes 

placed up to the tree: APTISOK-KECON240º/s-Non Dominant Leg, YBalance-Anterior-Non 

Dominant Leg and History of MUSINJ last season. Each father node represents a pathway that 

must be addressed. 

Then, and if we start by the father node numbered as 1, placed on the left and represented by 

the feature named APTISOK-KECON240º/s-Non Dominant Leg, we realise that our  player 

satisfies the rule condition, this is, he presents a score > 60º (Yes). Consequently, we must 

sum -0.497 to the initial score. Then, we have two different pathways that must be addressed. 

Thus, we first address the pathway that goes toward the node that contains the feature named 

PTISOK-KFECC30º/s-Non Dominant Leg. Our player satisfies again the rule condition (Yes) 

because he shows a score ranged from 158.3 to 198.1. Therefore, we sum -0.755 to the 

baseline score. Until here, we have reached an accumulative score of -2.504 (-1.252 + [- 

0.497] + [- 0.755]). 

If we go back to the node number 1, and we follow the remaining pathway that goes toward 

the node number 3, we check that our player satisfies its rule condition, and then we add other 

-1.027 points to our scoreboard (-2.504 + [-1.027] = -3.531). As the path is not finished, we 

must continue through the Yes path and reach the last node, represented by the feature   Core- 
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USNF. Here, our player satisfies again the rule condition and we must sum 0.939 point to our 

accumulate scoreboard. It should be noticed that this time the score summed is positive and 

hence, our accumulative score would be reduced. Therefore, by completing this first pathway 

started in the node 1 we have reached a total score of -2.592. Once we have completed this 

first path we must proceed with the other two primary paths, but taking into account that we 

have an accumulative scoreboard of -2.592. 

Thus, and after completing the second main pathway, we must sum -0.246 (YBalance- 

Anterior-Non Dominant Leg = No) and + 0.689 (Sleep Quality = No) points to our 

scoreboard. Finally, we also have to sum 0.46 and 0.682 points coming from the third main 

pathway. All in all, our players have reached a global score of -1.007. The higher the global 

score is (in positive or negative way), the more confidence we are with the vote obtained. 

Consequently, this classifier votes ―Yes‖ and considers our athlete at high risk of injury. The 

final classification will be based on the combination of the votes of each individual classifier 

to each class (yes or no). In the very unlikely (but possible) case where a player ends with an 

equal  amount  of  votes  (i.e.  five  votes  for  no  and  five  votes  for  yes),  coaches  and  sport 

practitioners  should  adopt  a  conservative  attitude  and  consider  the  athlete  at  high  risk  of 

MUSINJ.  The  rationale  behind  this  recommendation  for  the  unlikely  case  of  equal  votes  is 

based on the reported high incidence rate of muscle injuries in professional sports (1-3) and 

on the cost that a false negative diagnosis (low sensitivity) might have for team performance 

and player´s welfare as well as the economical cost for the club (39, 40). 

Discussion of the predictive model results 

 

The predictive ability of the current model to identify athletes at high risk of MUSINJ (AUC 

score = 0.747; TPrate = 65.9; TNrate = 79.1) is similar to the one reported by the only injury 

predictive model published to date (from the authors‘ knowledge) that was developed thanks 

to the application of a supervised learning algorithm (decision tress) and whose predictive 
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properties were analysed using a resampling technique (i.e. 3-fold cross-validation)  in a 

cohort of athletes different from those used for building it (16). Rossi, Pappalardo, Cintia, 

Iaia, Fernandez and Medina (16), after having collected (16 weeks) and pre-processed data 

about training workload (kinematic, metabolic and mechanical features) through GPS in 

professional soccer players, built a non-contact injury model with a tree-shape structure that 

reports a true positive and negative rates of 76% and 100%, respectively. In contrast to the 

model developed by Rossi et al. (16) that entails constant and individualised monitoring of 

each training session workload during the season in order to identify players at high risk of 

non-contact injury in the following game or training session, our model was conceived to be 

used as a single session pre-participation screening tool for the prevention of muscle injuries 

and hence, it is less time consuming and more injury-specific. On the other hand, the 

predictive properties (i.e. AUC, true positive and negative rates and false positive and 

negative rates) of the machine learning based predictive model built in the current study are 

higher than those reported in other models from previous studies to predict sport-related 

injuries in which traditional approaches and less exigent validation processes were applied 

(41-44). Thus, and for example, van Dyk et al. (44) after having carried out a pre-season 

assessment of the isokinetic hamstring and quadriceps strength in a large cohort of 

professional soccer players found that in spite of the fact that the regression analysis reported 

the presence of two independent predictors that were associated with the risk of hamstring 

strains (hamstring eccentric strength and quadriceps concentric strength), the ROC analysis 

demonstrated an AUC lower than 0.6. Likewise, Smith, Chimera and Warren (45) stated that 

those athletes showing unilateral dynamic balance asymmetries (determined through the Y- 

Balance test) higher than 4 cm had 2.3 times greater risk of a subsequent non-contact injury in 

comparison with more symmetrical players. However, the reported percentage of the true 

positive rate for this cut-off score was only 59%. Therefore, the application of   contemporary 
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statistical approaches from Machine Learning and Data Mining environments open an 

interesting perspective for the construction of injury prevention models that are both accurate 

and interpretable, helping coaches, physical trainers and medical practitioners in the decision- 

making process for injury prevention. 

As it has been stated before, the model generated is comprised by 10 classifiers that contain 

the most relevant features (n = 52) for predicting MUSINJ. In addition, each feature presented 

in the model shows a binary rule condition (yes or no) based on a specific cut-off score. 

Therefore, we consider that the model meets the two requirements (i.e. identifying relevant 

risk factors and defining cut-off scores) established in the first step suggested by Bahr (7) to 

be considered as a valid screening methodology. 

Thus, the predictive model built considers the devaluation of the self-perceived benefits 

gained from sport involvement as being one of the main factors associated with an increased 

in the relative risk of MUSINJ because it is presented in 5 of the 10 classifiers. This finding is 

in concordance with the results found by Cresswell and Eklund (46), who reported 

statistically significant correlations between sport-injuries and feelings of sport devaluation in 

a cohort of professional rugby players. Although the mechanisms behind the relationship 

between sport devaluation and injury have not been well defined yet, it might be possible that 

old professional athletes with a short term history of moderate to severe injuries would start 

questioning if the efforts made to achieve their current level of play is worth the benefits 

gained. These feelings of frustration might lead athletes to lose concentration and reduce the 

intensity of their actions during both training and match play, and thus increasing the risk of 

MUSINJ. Therefore, psychological therapies aimed at reducing athlete burn out could help to 

reduce the risk of MUSINJ in professional soccer and handball players. 

Another strong risk factor reported by the model (presented in four classifiers) for MUSINJ is 

having  a  history of  MUSINJ  last  season.  Previous  injury has  been  also  identified  in some 
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prospective studies as one of the primary risk factors for MUSINJ (8-10). A possible 

explanation for previous injury being such a consistent risk factor for re-injuries may be that 

the joints or muscles in question are not fully restored structurally and/or functionally (19). 

Consequently, more studies are needed in order to: a) design effective rehabilitation 

programmes after injury; and b) develop adequate return-to-play guidelines. Furthermore, 

evidence-based MUSINJ prevention programs should be applied at the beginning of a player´s 

sport career in order to avoid or delay the first MUSINJ as a high priority, in order to keep 

players from entering the vicious cycle of repeated injuries to the same muscle group. 

Furthermore, the model built provides a main role to the isokinetic strength features measured 

through knee flexion and extension actions to predict future MUSINJ (30 features up to 52). 

These results are not in agreement with the findings showed by van Dyk et al. (44) who 

reported that the use of isokinetic testing to determine the association between strength 

differences and hamstring muscle injuries was not supported. A possible reason behind the 

discrepancy between the finding reported by van Dyk et al. (44) and our results might be 

associated with the different statistical approach used. Thus, while van Dyk et al. (44) carried 

out a clustered multiple logistic regression analysis to identify isokinetic variables associated 

with the risk of hamstrings injuries, we used an analysis that included not only isokinetic 

variables but also a large number of personal, psychological and neuromuscular variables and 

took into account the different distribution presents in the class feature. It should be 

highlighted that our model endows a special protagonist for predicting future MUSINJ to the 

APT measured through concentric (quadriceps) and eccentric (hamstrings) knee extension 

movements, as they are presented in 4 and 5 different classifiers respectively. This 

circumstance might support the hypothesis derived from the findings reported by Brockett, 

Morgan and Proske (47) so that where the players are able to achieve the PT this might be 

more relevant than the net PT value in order to prevent MUSINJ. 
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On the other hand, another relevant isokinetic feature for our predictive model is the 

conventional knee flexion and extension ratio measured at 60º/s. Surprisingly, no functional 

knee flexion and extension ratio feature were included in the final models despite being more 

conceptually relevant for muscle injuries than the conventional ratios (mainly hamstrings 

injuries). In this sense, we categorised the functional knee flexion and extension ratios using 

the cut-off scores reported in the literature. It is possible that these cut-off scores that were 

calculated using different isokinetic methodologies may not have been appropriate (very 

restrictive) for our model and hence, reduced its performance. Therefore, future  studies 

should be conducted in order to explore if a potential reason for this circumstance and attempt 

to establish appropriate cut-off scores. 

Although with less presence than the isokinetic features, the classifiers that compose the 

predictive model include features from all the testing methodologies used, which might 

support the multifactorial character of the MUSINJ phenomenon. This characteristic of the 

model might support its congruence. 

Finally, the feature sport (football or handball) was not included in any of the 10 classifiers 

that comprised the model for predicting MUSINJ. Furthermore, the same statistical analysis 

framework that was conducted in the present study was carried out in a preliminary study for 

soccer players solely, showing a less favourable predictive performance score (AUC score = 

0.646; TPrate = 56.0; TNrate = 70.5 [unpublished data from our laboratory]). Therefore, it 

may be that data from athletes from different sport modalities, but who have similar 

movement demands, MUSINJ incidence rates and injury mechanism, can be analysed all 

together in order to develop a more generalizable model. Future studies should explore this 

hypothesis by analysing and comparing the behaviour for predicting MUSINJ of models built 

using athletes from different sports, collectively and separately. 
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Using the cross-validation process, we consider that the model might have met the second 

step proposed by Bahr (7). However, due to the reduced sample size, we think more studies 

that re-evaluate the predictive performance of the model using data from new players are 

necessary. 

LIMITATIONS 

 

Although the model presented in this study shows moderate predictive scores, it should be 

acknowledged that more sophisticated algorithms (i.e. neural networks, genetic algorithms) 

might have developed models showing slightly better results than those found in the current 

study. However, the use of more complex algorithms would require sport medicine 

practitioners to carry out complex mathematical functions and operations, which might impact 

on the practical application of the model built. Thus, and in order to allow sport medicine 

practitioners to implement the model in their screening programmes, we decided to use decision 

trees algorithms as base classifiers because: a) they produce models that are easy to understand 

and carry out functioning for classifying instances (i.e.: simple rules) and can be used directly 

for decision making; and b) they have been widely used as base classifiers in some 

balancing, ensemble and cost sensitive learning techniques to deal with imbalance data sets. 

The model developed in the present study was built with the goal of allowing sport medicine 

practitioners to accurately identify professional soccer and handball players at high risk of 

MUSINJ during pre-season screenings. To address this issue, we used several predictors (risk 

factors) as well as external (oversampling) and internal (ensembles) methods and a decision 

tree (ADTree) as base classifier in order to build a model with moderate predictive accuracy. 

This set up allowed us to build a robust model (AUC score = 0.747; TPrate = 65.9; TNrate = 

79.1) which was also very complex in nature (black box approach). Therefore, although the 

model fulfils the goal for which it was built (making predictions); its complexity (10 different 
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classifiers and 52 predictors) does not afford the opportunity to answer the question 

concerning why MUSINJ happen. 

Another potential limitation of the current study is the population used. The sport background 
 

of participants was professional soccer and handball and the generalizability to other sport 

modalities and level of play cannot be ascertained. Furthermore the results reported in this 

study suggest that the feature ‗sport‘ does not influence the performance scores of the model 

selected, which might be due to the different sample size of both cohorts and the fact that only 

two different sports were analysed. Therefore from the current data set we cannot draw strong 

conclusions around how mixing players from differing sports will affect the classification 

performance of the models and more importantly, why and when we should mix players from 

differing sports. 

Finally, it should also be noted that the model is dependent of the predictors used in the 

training process and hence, practitioners must follow the same assessment methodologies 

used in the current study in order to replicate the current results and gain the applicability in 

their populations. 

CONCLUSION 

 

The current study has used an injury risk factor model to identify professional soccer and 

handball players at high risk of MUSINJ by applying a novel multifactorial approach and 

whose predictive ability has been determined through the exigent resampling technique called 

cross-validation. In this study the MUSINJ risk model is comprised of 10 classifiers with a 

tree-shape structure and was developed thanks to the application of learning algorithms (on 

the training subsets) widely used in the Data Mining setting. Thus, the model reports an AUC 

score of 0.747 with true positive and negative rates of 65.9% and 79.1% respectively. We 

believe that the approach used here could replace the conventional statistical methods and can 

be used for coaches, physical trainers and medical practitioners to gain valuable information 
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in the decision-making process aimed at reducing the number and severity of MUSINJ in 

professional soccer and handball players. 

 

 
Acknowledgments 

 

Alejandro López-Valenciano were supported by predoctoral grant given by Ministerio de 

Educación, Cultura y Deporte (FPU) from Spain. 

 

 

Conflict of interest 

 

We certify that no party having a direct interest in the results of the research supporting this 

article has or will confer a benefit on us or on any organization which we are associated, do 

not constitute endorsement by ACSM and they are presented clearly, honestly, and without 

fabrication, falsification, or inappropriate data manipulation. 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.  

REFERENCES 

 

1. Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional 

football (soccer). Am J Sports Med. 2011;39(6):1226-32. 

2. Brooks JH, Fuller CW, Kemp SP, Reddin DB. Incidence, risk, and prevention of 

hamstring muscle injuries in professional rugby union. Am J Sports Med. 

2006;34(8):1297-306. 

3. Langevoort G, Myklebust G, Dvorak J, Junge A. Handball injuries during major 

international tournaments. Scand J Med Sci Sports. 2007;17(4):400-7. 

4. Croisier J-L, Ganteaume S, Binet J, Genty M, Ferret J-M. Strength imbalances and 

prevention of hamstring injury in professional soccer players a prospective study. Am J 

Sports Med. 2008;36(8):1469-75. 

5. Mendiguchia J, Alentorn-Geli E, Idoate F, Myer GD. Rectus femoris muscle injuries in 

football: a clinically relevant review of mechanisms of injury, risk factors and preventive 

strategies. Br J Sports Med. 2013;47(6):359-66. 

6. Faude O, Rößler R, Junge A. Football injuries in children and adolescent players: are 

there clues for prevention? Sports Med. 2013;43(9):819-37. 

7. Bahr R. Why screening tests to predict injury do not work—and probably never will…: a 

critical review. Br J Sports Med. 2016;50:776-80. 

8. Arnason A, Sigurdsson S, Gudmundsson A, Holme I, Engebretsen L, Bahr R. Risk factors 

for injuries in football. Am J Sports Med. 2004;32(1 Suppl):5S-16S. 

9. Engebretsen A, Myklebust G, Holme I, Engebretsen L, Bahr R. Intrinsic risk factors for 

hamstring injuries among male soccer players a prospective cohort study. Am J Sports 

Med. 2010;38(6):1147-53. 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.  

10. Hägglund M, Waldén M, Ekstrand J. Previous injury as a risk factor for injury in elite 

football: a prospective study over two consecutive seasons. Br J Sports Med. 

2006;40(9):767-72. 

11. Henderson G, Barnes CA, Portas MD. Factors associated with increased propensity for 

hamstring injury in English Premier League soccer players. J Sci Med Sport. 

2010;13(4):397-402. 

12. Fousekis K, Tsepis E, Poulmedis P, Athanasopoulos S, Vagenas G. Intrinsic risk factors 

of non-contact quadriceps and hamstring strains in soccer: a prospective study of 100 

professional players. Br J Sports Med. 2011;45(9):709-14. 

13. Hawkins RD, Fuller CW. A prospective epidemiological study of injuries in four English 

professional football clubs. Br J Sports Med. 1999;33(3):196-203. 

14. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for 

the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE 

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 

2012;42(4):463-84. 

15. López V, Fernández A, García S, Palade V, Herrera F. An insight into classification with 

imbalanced data: Empirical results and current trends on using data intrinsic 

characteristics. Information Sci. 2013;250:113-41. 

16. Rossi A, Pappalardo L, Cintia P, Iaia M, Fernandez J, Medina D. Effective injury 

prediction in professional soccer with GPS data and machine learning. arXiv preprint 

arXiv:1705.08079. 2017. 

17. Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading 

in the right direction? Br J Sports Med. 2012;46(2):81-5. 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.  

18. Mazurowski MA, Habas PA, Zurada JM, Lo JY, Baker JA, Tourassi GD. Training neural 

network classifiers for medical decision making: The effects of imbalanced datasets on 

classification performance. Neural Netw. 2008;21(2):427-36. 

19. Bahr R, Holme I. Risk factors for sports injuries—a methodological approach. Br J Sports 

Med. 2003;37(5):384-92. 

20. Olmedilla A, Laguna M, Redondo AB. Lesiones y características psicológicas en 

jugadores de balonmano. Rev Andal Med Deporte. 2011;4(1):6-12. 

21. Macías J, Royuela A. La versión española del Índice de Calidad de Sueño de Pittsburgh. 

 

Informaciones Psiquiátricas. 1996;146(4):465-72. 

 

22. Arce C, De Francisco C, Andrade E, Seoane G, Raedeke T. Adaptation of the Athlete 

Burnout Questionnaire in a Spanish sample of athletes. Span J Psychol. 2012;15(3):1529- 

36. 

23. Taylor K-L, Sheppard JM, Lee H, Plummer N. Negative effect of static stretching restored 

when combined with a sport specific warm-up component. J Sci Med Sport. 

2009;12(6):657-61. 

24. Shaffer SW, Teyhen DS, Lorenson CL et al. Y-balance test: a reliability study involving 

multiple raters. Mil Med. 2013;178(11):1264-70. 

25. Thorborg K, Petersen J, Magnusson S, Hölmich P. Clinical assessment of hip strength 

using a hand‐held dynamometer is reliable. Scand J Med Sci Sports. 2010;20(3):493-501. 

26. Cejudo A, Sainz de Baranda P, Ayala F, Santonja F. Perfil de flexibilidad de  la 

extremidad inferior en jugadores de fútbol sala. Rev Int Med Cienc Act Fís Deporte. 

2014;14(55):509-25. 

27. Barbado D, Lopez-Valenciano A, Juan-Recio C, Montero-Carretero C, van Dieen JH, 

Vera-Garcia FJ. Trunk stability, trunk strength and sport performance level in judo. PloS 

one. 2016;11(5):e0156267. 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.  

28. Hancock GR, Butler MS, Fischman MG. On the problem of two-dimensional error scores: 

Measures and analyses of accuracy, bias, and consistency. J Mot Behav. 1995;27(3):241- 

50. 

29. Ayala F, Puerta JM, Flores MJ et al. Análisis bayesiano de los principales factores de 

riesgo de lesión de la musculatura isquiosural. Kronos. 2016;15(1). 

30. Fuller CW, Ekstrand J, Junge A et al. Consensus statement on injury definitions and data 

collection procedures in studies of football (soccer) injuries. Scand J Med Sci Sports. 

2006;16(2):83-92. 

31. Elkarami B, Alkhateeb A, Rueda L. Cost-sensitive classification on class-balanced 

ensembles for imbalanced non-coding RNA data. In: Proceedings of the Student 

Conference (ISC), 2016 IEEE EMBS International. 2016. p. 1-4. 

32. Hacibeyoglu M, Arslan A, Kahramanli S. Improving Classification Accuracy with 

Discretization on Data Sets Including Continuous Valued Features. Ionosphere. 

2011;34(351):2. 

33. Quinlan JR. Learning decision tree classifiers. ACM Computing Surveys (CSUR). 

1996;28(1):71-2. 

34. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. 

Wadsworth & Brooks. Monterey, CA. 1984. 

35. Freund Y, Mason L. The alternating decision tree learning algorithm. In: Proceedings of 

the icml. 1999. p. 124-33. 

36. Aldous D. The continuum random tree. I. Annals of Probability. 1991:1-28. 

 

37. Refaeilzadeh P, Tang L, Liu H. Cross-validation. In. Encyclopedia of Database Systems: 

Springer; 2009, pp. 532-8. 

38. Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ: 

BMJ. 1994;309(6948):188. 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.  

39. Carling C, Le Gall F, McCall A, Nédélec M, Dupont G. Squad management, injury and 

match performance in a professional soccer team over a championship-winning season. 

Eur J Sport Sci. 2015;15(7):573-82. 

40. Ekstrand J, Dvorak J, D'hooghe M. Sport medicine research needs funding: the 

International football federations are leading the way. Br J Sports Med. 2013;47(12):726- 

8. 

41. Hewett TE, Myer GD, Ford KR et al. Biomechanical measures of neuromuscular control 

and valgus loading of the knee predict anterior cruciate ligament injury risk in female 

athletes. Am J Sports Med. 2005;33(4):492-501. 

42. Krosshaug T, Steffen K, Kristianslund E et al. The vertical drop jump is a poor screening 

test for ACL injuries in female elite soccer and handball players: a prospective cohort 

study of 710 athletes. Am J Sports Med. 2016;44(4):874-83. 

43. Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps 

femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury 

in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016:50(24):1524- 

35. 

44. van Dyk N, Bahr R, Whiteley R et al. Hamstring and quadriceps isokinetic strength 

deficits are weak risk factors for hamstring strain injuries: A 4-year cohort study. Am J 

Sports Med. 2016;44(7):1789-95. 

45. Smith CA, Chimera NJ, Warren M. Association of y balance test reach asymmetry and 

injury in division I athletes. Med Sci Sports Exerc. 2015;47(1):136-41. 

46. Cresswell SL, Eklund RC. The nature of player burnout in rugby: Key characteristics and 

attributions. J Appl Sport Psychol. 2006;18(3):219-39. 

47. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. 

 

Med Sci Sports Exerc. 2004;36(3):379-87. 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.  

FIGURES LEGEND 

 

 

 

Figure 1: Graphical representation of the first classifier. Prediction nodes are represented by 

ellipses and splitter nodes by rectangles. Each splitter node is associated with a real valued 

number indicating the rule condition, meaning: If the feature represented by the node satisfies 

the condition value the prediction path will go through the left child node, otherwise the path 

will go through the right child node. The numbers before the feature names in the prediction 

nodes indicate the order in which the different base rules were discovered. This ordering can 

to some extent indicate the relative importance of the base rules. 

 

 
SUPPLEMENTAL DIGITAL CONTENT 

 

 SDC 1: Graphical representation of testing procedure. 

 

The order of the different tests used to record the personal or individual, psychological 

and neuromuscular risk factors in the testing session is shown. 

 SDC 2: Personal injury risk factors recorded. 

 

Description of the personal injury risk factors recorded (names and labels). 

 

 SDC 3: Psychological risk factors recorded. 

 

Description of the psychological risk factors recorded (names and labels). 

 

 SDC 4: Lower extremity joints ranges of motion measures recorded. 

 

Description of the measures obtained from the lower extremity joints (hip, knee and 

ankle) ranges of motion (names and labels). 

 SDC 5: Isokinetic knee flexion and extension strength measures recorded. 

 

Description of the measures obtained from the isokinetic knee flexion and extension 

strength (concentric and eccentric) assessment (names and labels). 

 SDC 6: Dynamic postural control measures recorded. 
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Description of the measures obtained from the Y-Balance test (names and labels). 

 

 SDC7: Isometric hip abduction and adduction strength measures recorded 

 

Description of the measures obtained from the isometric hip abduction and adduction 

strength test (names and labels). 

 SDC 8: Core stability measures recorded. 

 

Description of the measures obtained from the core stability test (names and labels). 

 

 SDC 9: Algorithms used in the data processing phase. 

 

A list of algorithms (n = 68) grouped by families, the abbreviations that have been 

used along the experimental framework and a short description of them are displayed. 

 SDC 10: First classifier. 

 

Graphical representation of the first classifier of the predictive model for muscle 

injuries. 

 SDC 11: Second classifier. 

 

Graphical representation of the second classifier of the predictive model for muscle 

injuries. 

 SDC 12: Third classifier. 

 

Graphical representation of the third classifier of the predictive model for muscle 

injuries. 

 SDC 13: Fourth classifier. 

 

Graphical representation of the fourth classifier of the predictive model for muscle 

injuries. 

 SDC 14: Fifth classifier. 

 

Graphical representation of the fifth classifier of the predictive model for muscle 

injuries. 

 SDC 15: Sixth classifier. 
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Graphical representation of the sixth classifier of the predictive model for muscle 

injuries. 

 SDC 16: Seventh classifier. 

 

Graphical representation of the seventh classifier of the predictive model for muscle 

injuries. 

 SDC 17: Eighth classifier. 

 

Graphical representation of the eighth classifier of the predictive model for muscle 

injuries. 

 SDC 18: Ninth classifier. 

 

Graphical representation of the ninth classifier of the predictive model for muscle 

injuries. 

 SDC 19: Tenth classifier. 

 

Graphical representation of the tenth classifier of the predictive model for muscle 

injuries. 

 SDC 20: Risk factor measures included in the model for predicting muscle injuries. 

Risk factor measures included in the model for predicting muscle injuries and the 

number of times that they appear in the classifiers, In bold are highlighted those that 

appear in four or more classifiers. 
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Table 1: Average AUC, TPrate and TNrate 

results for all the decision tree methodologies in 

isolation and after having been applied in them 

the resampling techniques selected 

 

 

Oversampling techniques 

 
 

SMT 

 

J48 0.452 31 78 

SCart 0.489 34.5 71.4 

ADTree 0.608 31 76.9 

RTree 0.522 34.5 71.4 

 ROS   

J48 0.575 44 72.5 

SCart 0.618 48.3 73.6 

ADTree 0.709 48.3 84.6 

RTree 0.711 55.2 82.4 

Undersampling techniques 

 
 

RUS 

 
 

J48 0.607 55.2 62.4 

Technique AUC TPrate TNrate 

Base classifiers 

J48 0.422 17.2 79.1 

SCart 0.462 3.4 94.5 

ADTree 0.623 20.7 87.9 

RTree 0.609 51.7 65.9 
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SCart 0.574 13.8 93.4 

ADTree 0.662 62.1 70.3 

RTree 0.559 48.3 61.5 
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Table 2: Average AUC, TPrate and TNrate 

results for the ensembles techniques 

 

Technique AUC TPrate TNrate 

 
 

Classic Ensembles 

 

 ADB1  

J48 0.579 13.8 90.1 

SCart 0.605 37.9 83.5 

ADTree 0.692 24.1 93.4 

RTree 0.594 10.3 98.9 

 M1   

J48 0.560 0 91.2 

SCart 0.550 20.7 84.6 

ADTree 0.703 27.6 90.1 

RTree 0.517 20.7 85.7 

 BAG   

J48 0.544 6.9 93.4 

SCart 0.669 3.4 97.8 

ADTree 0.722 10.3 98.9 

RTree 0.663 24.1 91.2 

Boosting-based Ensembles 

 SBO   

J48 0.494 24.1 76.9 

SCart 0.692 41.4 85.7 

ADTree 0.650 27.6 85.7 
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RTree - - - 

 RUSB   

J48 0.610 37.9 75.8 

SCart 0.649 51.7 78 

ADTree 0.698 31 92 

RTree 0.717 48.3 84.6 

Bagging-based Ensembles 

 OB   

J48 0.583 13.8 92.3 

SCart 0.716 13.8 93.4 

ADTree 0.759 10.3 96.7 

RTree 0.633 13.8 89.0 

 UB   

J48 0.670 27.6 84.6 

SCart 0.708 31 87.9 

ADTree 0.624 41.4 73.6 

RTree 0.570 27.6 82.4 

 SBAG   

J48 0.562 13.8 96.7 

SCart 0.642 10.3 96.7 

ADTree 0.728 20.7 96.7 

RTree 0.547 24.1 93.4 
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Table 3: Average AUC, TPrate and TNrate 

results for the and cost-sensitive learning and 

class-balanced ensembles with a cost-sensitive 

classifier techniques 

 

Technique AUC TPrate TNrate 

 
 

Cost-sensitive classification 

 
 

 
 

 MetaCost  

J48 0.473 41.4 61.5 

SCart 0.579 17.2 90.1 

ADTree 0.662 75.9 40.7 

RTree 0.561 48.3 63.7 

 CS-Classifier   

J48 0.526 51.7 57.1 

SCart 0.543 44.0 52.7 

ADTree 0.642 51.7 70.3 

RTree 0.535 44.0 60.4 

Class-balanced ensembles with a cost-sensitive 

 
classifier 

  

 CS-SBAG   

J48 0.529 51.7 51.6 

SCart 0.610 65.5 54.9 

ADTree 0.747 65.5 79.1 

RTree 0.541 6.9 86.8 

 CS-OBAG   
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J48 0.514 41.4 72.5 

SCart 0.606 55.2 63.7 

ADTree 0.742 62.1 71.4 

RTree 0.548 13.8 96.7 

 CS-UBAG   

J48 0.553 41.4 67 

SCart 0.649 51.7 69.2 

ADTree 0.742 58.6 68.1 

RTree 0.627 37.9 82.4 
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Table 4: Confusion Matrix and Cross validation 

results for the final prediction model 

 

A B  

 

19 10 A = Injured 

19 72 B = Non Injured 

 

 
Correctly classified instances 91 (75.8%) 

Incorrectly Classified Instances 29 (24.1%) 

Kappa statistic 0.401 

Mean absolute error 0.405 

AUC 0.747 
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Appendix 2: Description of the personal injury risk 

factors recorded 

 

Name Labels 

 
 

Sport Soccer or handball 

 
 

 

Player position 

 

 

 
Current level of play 

Goalkeeper, defender, 

midfielder or striker 

1
st 

division, 2
nd 

B division, 

or 3
rd 

division 

 
 

Dominant leg Right, left or two-footed 

 
 

 

Age 
Sub21, sub23, senior [23-30 

y] or veteran [> 30y] 

 
Body mass (kg) 

<71.65, 71.65-76.55, 

 

>76.55-82.8 or >82.8 

 
 

 

Stature (cm) 
<1.76, 1.76-1.81, >1.81-1.84 

 

or >1.84 

 
 

BMI (kg/m
2
) 

<22.75, 22.75-23.55, 
 

>23.55-24.75 or >24.75 

 
 

History of MUSINJ last 

season 

 

Yes or no 

 
 

MUSINJ: Lower extremity muscle injury; BMI: body 

mass index 
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Appendix 3: Description of the psychological risk factors recorded 

Name Labels 

 

Sleep quality <3.5, 3.5-4.0 or >4.0 

 
 

Athlete Burnout Questionnaire 

 
 

a) Physical/emotional exhaustion <2.5 or ≥2.5 

 
 

b) Reduced sense of accomplishment ≤ 2.5 or >2.5 

 
 

c) Sport devaluation <1.1, 1.1-1.49, >1.49-1.9 or >1.9 
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Appendix 4: Description of the measures obtained 

from the lower extremity range of motion 

assessment tests 

 

Name Labels 

 
 

ROM-HFKF ≤150 or >150 (1) 
 

 

ROM-HFKE <80, 80-100 or >100 (2) 
 

 

ROM-HE <5, 5.0-15 or >15 (5) 

 
 

ROM-HABD <50, 50-70 or >70 (3) 

 
 

ROM-HIR <45, 45-60 or >60 (1) 

 
 

ROM-HER <40, 40-55 or >55 (1) 

 
 

ROM-KF <110, 110-130 or >130 

 
 

ROM-AKDFKE <30, 30-40 or >40 (5) 

 
 

ROM- AKDFKF <30, 30-40 or >40 (4) 

 
 

ROM: range of motion; HFKF: hip flexion with the 

knee flexed; HFKE: hip flexion with the knee 

extended; HE: Hip extension; HABD: hip  abduction 

at 90º of hip flexion; HIR: hip internal rotation; HER: 

hip external rotation; KF: knee flexion; AKDFKE: 

ankle dorsi-flexion with the knee extended; AKDFKF: 

ankle dorsi-flexion with the knee flexed. 

(1): American Academy of Orthopaedic Association, 

1975; (2): Palmer & Epler, 2002; (3): Gerhardt, 1994; 

(4) Pope, Herbert & Kirwan (1998); (5) Cejudo, 2016. 
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Appendix 5: Description of the measures obtained from the isokinetic knee flexion 

and extension strength assessment 

 

Labels 

Measure    

Dominant Leg Non Dominant Leg 

 
 

Concentric Muscle Actions 

 
 

 

PT-KE60 

<163.1, 163.1-184.605, 

 

>184.605-211.05 or >211.05 

<158.3, 158.3-179.14, 

 

>179.14-197.3 or >197.3 

 
 

 

PT-KF60 

<74.6, 74.6-87.505, >87.505- 
 

104.65 or >104.65 

<68.7, 68.7-84.9, >84.9-98.2 
 

or >98.2 

 
 

 

PT-KE180 

<112.05, 112.05-129.3, 
 

>129.3-146.3 or >146.3 

<113.6, 113.6-128.495, 
 

>128.495-146.55 or >146.55 

 
 

 

PT-KF180 

<59.55, 59.55-70.4, >70.4- 
 

81.4 or >81.4- 

<60.1, 60.1-68.35, >68.35- 
 

79.75 or >79.75 

 
 

 

PT-KE240 

<98.05, 98.05-114.55, 
 

>114.55-129.3 or >129.3 

<95.45, 95.45-113.9, 
 

>113.9-130.65 or >130.65 

 
 

 

PT-KF240 

<57.8, 57.8-65.86, >65.86- 
 

78.75 or >78.75 

<55.7, 55.7-64.095, 
 

>64.095-75.75 or >75.75 

 
 

 

PT-KE300 

<90.75, 90.75-104.15, 

 

>104.15-117.45 or >117.45 

<85.45, 85.45-103.45, 

 

>103.45-115.2 or >115.2 

 
 

 

PT-KF300 

<54.55, 54.55-61.9, >61.9- 
 

74.3 or >74.3 

<48.2, 48.2-58.55, >58.55- 
 

69.1 or >69.1 

 
 

APT-KE <45, 45-60 or >60 

 
 

APT-KF <25, 25-35 or >35 

 
 

Eccentric Muscle Actions 
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PT-KE30 

<72.75, 72.75-90.105, 
 

>90.105-109.15 or >109.15 

<70.65, 70.65-84.12, 
 

>84.12-95.75 or >95.75 

 
 

 

PT-KF30 

<169.2, 169.2-207.42, 
 

>207.42-242.2 or >242.2 

<158.3, 158.3-198.1, 
 

>198.1-236.9 or >236.9 

 
 

 

PT-KE60 

<74.4, 74.4-91.14, >91.14- 
 

109 or >109 

<68.85, 68.85-86.3, 86.3- 
 

101.65 or >101.65 

 
 

 

PT-KF60 

<175.6, 175.6-211.28, 
 

>211.28-244.9 or >244.9 

<156.3, 156.3-200.65, 
 

>200.65-239.95 or >239.95 

 
 

 

PT-KE180 

<73.6, 73.6-89.95, >89.95- 
 

106 or >106 

<68.5, 68.5-85.475, 
 

>85.475-96.45 or >96.45 

 
 

 

PT-KF180 

<155.35, 155.35-192.65, 
 

>192.65-221.3 or >221.3 

<157.2, 157.2-187.99, 
 

>187.99-216.05 or >216.05 

 
 

APT-KE <25, 25-35 or >35 

 
 

APT-KF <50, 50-65 or >65 

 
 

Unilateral Conventional Ratios 

 
 

(1) KF/KECONV60 <0.47, 0.47-0.60 or >0.60 
 

 

(2) KF/KECONV180 ≤0.60 or >0.60 
 

 

(3) KF/KECONV240 ≤0.60 or >0.60 
 

 

KF/KECONV300 <0.6 0.6-0.8 or >0.8 

 
 

Unilateral Functional Ratios 

 
 

(4) KF/KEFUNC60 <0.6, 0.6-0.7 or >0.7 
 

 

KF/KEFUNC180 ≤0.80 or >0.80 

 
 

(5) KF30/KE240 <0.8, 0.8-1.0 or >1.0 

 
 

Bilateral Ratios 
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KF/KFCON60 No Asymmetry or Asymmetry 
 

 

KF/KFCON180 No Asymmetry or Asymmetry 
 

 

KF/KFCON240 No Asymmetry or Asymmetry 

 
 

KE/KECON60 No Asymmetry or Asymmetry 
 

 

KE/KECON180 No Asymmetry or Asymmetry 
 

 

KE/KECON240 No Asymmetry or Asymmetry 
 

 

KF/KFECC60 No Asymmetry or Asymmetry 

 
 

KF/KFECC180 No Asymmetry or Asymmetry 

 
 

KF/KFECC240 No Asymmetry or Asymmetry 

 
 

KE/KEECC60 No Asymmetry or Asymmetry 

 
 

PT: peak torque; KE: knee extension; KF: knee flexion; CON: concentric; ECC: 

eccentric; APT: angle of peak torque; (1) Croisier et al. (2003); (2): Yeung et al. (2009); 

(3): Devan et al. (2004); (4): Dauty et al. (2003); (5) Croisier et al. (2002) 
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Appendix 6: Description of the measures obtained from the dynamic postural control test 

 
 

 
Name 

Labels 

 
 

Dominant Leg No Dominant Leg 

 
 

 

YBalance-Anterior 
<56.48, 56.48-60.055, >60.055- 

 

63.86 or >63.86 

<57.3, 57.3-60.895, 
 

>60.895-65.27 or >65.27 

 
 

 

YBalance-PosteroMedial 
<97.535, 97.535-104.055, 

 

>104.055-108.885 or >108.885 

<100.42, 100.42-104.905, 
 

>104.905-108.8 or >108.8 

 
 

 

YBalance-PosteroLateral 
<94.35, 94.35-99.485, >99.485- 

 

106.79 or >106.79 

<93.625, 93.625-99.175, 
 

>99.175-104.48 or >104.48 

 
 

BilaRatio-YBalance-Anterior No Asymmetry or Asymmetry 

 
 

BilaRatio-YBalance-PosteroMedial No Asymmetry or Asymmetry 

 
 

BilaRatio-YBalance-PosteroLateral No Asymmetry or Asymmetry 

 
 

 

YBalance-Composite 
<83.245, 83.245-87.86, >87.86- 

 

92.035 or >92.035 

<84.185, 84.185-87.985, 
 

>87.985-91.84 or >91.84 
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Appendix 7: Description of the measures obtained from the isometric hip abduction 

and adduction strength test 

 

Name 

Labels 

 
 

Dominant Leg Non Dominant Leg 

 
 

 

PTISOM-HipAbd 

<182.225, 182.225-204.09, 
 

>204.09-221.17 or >221.17 

<188.575, 188.575-208.9, 
 

>208.9-227 or >227 

 
 

 

PTISOM-HipAbd-Normalice 
<2.39, 2.39-2.65, >2.65- 

 

2.945 or >2.945 

<2.485, 2.485-2.705, 
 

>2.705-2.935 or >2.935 

 
 

<187.75, 187.75-205.335, <181.975, 181.975-199.9, 
 

PTISOM-HipAdd >205.335-224.54 or 

 

>224.54 

>199.9-224.2 or >224.2 

 
 

 

PTISOM-HipAdd-Normalise 

<2.385, 2.385-2.735, 
 

>2.735-2.99 or >2.99 

<2.355, 2.355-2.655, 
 

>2.655-2.945 or >2.945 

 
 

UnRatio-ISOM- 

HipAbd/HipAdd 

<0.936, 0.936-1.045, 
 

>1.045-1.17 or >1.17 

<0.905, 0.905-0.973, 
 

>0.973.065 or >1.065 

BilaRatio-PTISOM- 

HipAbd/HipAdd 

 
No Asymmetry or Asymmetry 

 
 

Bila: bilateral; Uni: unilateral; ISOM: isometric; PT: peak torque; Abd: abduction; Add: 

adduction. 
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Appendix 8: Description of the measures obtained from the core 

stability test 

 

Name Labels 

 
 

USNF <4.895, 4.895-6.14, >6.14-7.83 or >7.83 

 
 

USWF <4.335, 4.335-5.475, >5.475-6.84 or >6.84 

 
 

USML <6.915, 6.915-8.47, >8.47-9.62 or >9.62 

 
 

USAP <7.19, 7.19-8.33, >8.33-9.865 or >9.865 

 
 

USCD <9.01, 9.01-10.555, >10.555-12.375 or >12.375 

 
 

USNF: unstable sitting without feedback; USWF: unstable sitting with 

feedback; USML: unstable sitting while performing medial-lateral 

displacements with feedback; USAP: unstable sitting while performing 

anterior-posterior displacements with feedback; USCD: unstable sitting 

while performing circular displacements with feedback. 
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Appendix 9: Algorithms used in the data processing phase 

 
 

Base classifiers 

 
 

Abbr. Method Short Description 

 
 

J48 J48 Algorithm for generating a pruned or 

unpruned C4.5 decision tree 

SCart SimpleCart Algorithm  for  implementing  minimal  cost- 

 

complexity pruning 

 

ADTree ADTree Alternating decision tree 
 

 
RTree RandomTree 

Algorithm that considers K randomly chosen 

attributes at each node of the tree 

 

Resampling techniques 

 
 

Abbr. Method Short Description 

 
 

 

SMT SMOTE 
Each decision tree applied on data set 

previously pre-processed with Smote 

Each   decision   tree   applied   on   data   set 
 

ROS Random over sampling previously pre-processed with random over 

sampling 

Each   decision   tree   applied   on   data   set 
 

RUS Random under sampling previously pre-processed with random under 

sampling 

 

Classis Ensembles 

 
 

Abbr. Method Short Description 

 
 

ADAB AdaBoost Classic AdaBoost, without using confidences 
 

M1 AdaBoost.M1 Multi-class AdaBoost, slightly different 



Copyright © 2017 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited. 

 

 

weight update 
 

Classic Bagging, resampling with 
 

BAG Bagging replacement, bag size equal to original data 

set size. 

 

Boosting-based Ensembles 

 
 

Abbr. Method Short Description 

 
 

SBO SmoteBoost AdaBoost.M2 with Smote in each iteration 
 

 
RUS RusBoost 

AdaBoost.M2 with random undersampling in 

each iteration 

 

Cost-sensitive learning 

 
 

Abbr. Method Short Description 

 
 

 

MetaCost MetaCost 
Makes base classifier cost-sensitive by 

passing it to Bagging 

CS-Classifier Cost Sensitive Classifier Makes base classifier cost-sensitive. 

 
 

Bagging-based Ensembles 

 
 

Abbr. Method Short Description 

 
 

 

OBAG OverBagging 
Bagging with oversampling of the minority 

class. 

 

UBAG Underbagging 

Bagging with undersampling of the majority 

class. 

SBAG SmoteBagging Bagging  where  each  bag´s  Smote  quantity 

varies 

 

Ensembles with a cost-sensitive based classifier 

 
 

Abbr. Method Short Description 
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CS-SBAG 

Cost sensitive 

SmoteBagging 

SmoteBagging with an asymmetric classification cost 

matrix in the base classifier 

CS.OBAG Cost sensitive 

OverBagging 

OverBagging with an asymmetric classification cost 

matrix in the base classifier 

CS- UBAG  Cost sensitive 

UnderBagging 

UnderBagging with an asymmetric classification cost 

matrix in the base classifier 
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Appendix 10: Risk factor measures included in the model for 

predicting MUSINJ and the number of times that they appear in 

the classifiers, In bold are highlighted those that appear in four 

or more classifiers 

 

Risk Factor Nº of Classifiers 

 
 

Personal measures 

 

Age group 1 

History of MUSINJ  last season 4 

Maximal level of play achieved 2 

BMI 1 

Psychological measures 

 
 

Sleep Quality 1 

Sport Devaluation 5 

Dynamic postural control measures 

 

YBalance-Anterior- Dominant Leg 1 

YBalance-Anterior-Non Dominant Leg 2 

YBalance-Composite-Dominant Leg 1 

YBalance-PosteroLateral-Non Dominant Leg 1 

YBalance-PosteroMedial-Non Dominant Leg 1 

BilaRatio-YBalance-PosteroLateral 1 

Isometric hip abduction and adduction strength measures 

BilaRatio-PTISOM-HipAdd 1 

PTISOM-HipAdd-Dominant Leg 2 

PTISOM-HipAdd-No Dominant 1 

UniRatio-PTISOM-HipAbd/HipAdd 1 
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Lower extremity joints range of motion measures 

 
 

ROM-ADFKF-Non Dominant Leg 1 

ROM-HFKE-Dominant Leg 1 

ROM-KF-Dominant Leg 1 

ROM-KF-Non Dominant Leg 3 

Core stability measures 

Core-USNF 1 

Core-USWF 1 

Core-USCD 1 

Isokinetic knee flexion and extension strength measures 

 

APT-KECON240º/s-Dominant leg 2 

APT-KECON240º/s-Non Dominant Leg 1 

APT-KECON60º/s-Dominant leg 2 

APT-KECON60º/s-Non Dominant leg 1 

APT-KEECC180º/s-Dominant Leg 3 

APT-KEECC60º/s-Dominant leg 1 

APT-KFCON180º/s-Dominant Leg 2 

APT-KFCON60º/s-Dominant Leg 3 

APT-KFCON60º/s-Non Dominant Leg 1 

APT-KFECC30º/s-Dominant Leg 2 

APT-KFECC60º/s-Non Dominant Leg 2 

BilaRatio-KFCON180º/s 1 

BilaRatio-KFCON240º/s 1 

BilaRatio-KFECC240º/s 2 

PT-KECON180º/s-Non Dominant Leg 1 
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MUSIN: Muscle injury; BMI: body mass index; Bila: bilateral;  Uni: 
 

unilateral; ISOM. Isometric; Add: adduction;  Abd: abduction; 

ROM: range of motion; ADF: ankle dorsi-flexion; KE: knee 

extension; KF: knee flexion; HF: hip flexion; APT: angle of peak 

torque; ECC: eccentric; CON: concentric; PT: peak torque; s: 

seconds; º: degree; USNF: unstable sitting without feedback; 

USWF: unstable sitting with feedback; USCD: unstable  sitting 

while performing circular displacements with feedback 

PT-KECON240º/s-Non Dominant Leg 3 

PT-KECON300º/s-Dominant Leg 2 

PT-KECON300º/s-Non Dominant Leg 1 

PT-KECON60º/s-Non Dominant Leg 1 

PT-KEECC180º/s-Non Dominant Leg 1 

PT-KFCON180º/s-Dominant Leg 1 

PT-KFCON240º/s- Dominant 1 

PT-KFCON240º/s-Non Dominant Leg 1 

PT-KFCON300º/s-Dominant Leg 4 

PT-KFCON60º/s-Non Dominant Leg 2 

PT-KFECC180º/s-Non Dominant Leg 1 

PT-KFECC30º/s-Non Dominant Leg 3 

PT-KFECC60º/s-Non Dominant Leg 3 

UnilRatio KF/KECON60º/s-Dominant Leg 3 

UniRatio-KF/KECON240-Dominant Leg 1 


