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A B S T R A C T

This paper presents detailed elevation and volume analysis of 16 individual glaciers, grouped at four locations,
spread across the Antarctic Peninsula (AP). The study makes use of newly available WorldView-2 satellite stereo
imagery to exploit the previously untapped value of archival stereo aerial photography. High resolution pho-
togrammetric digital elevation models (DEMs) are derived to determine three-dimensional glacier change over
an unprecedented time span of six decades with an unparalleled mean areal coverage of 82% per glacier. The use
of an in-house robust surface matching algorithm ensured rigorous alignment of the DEMs to overcome inherent
problems associated with processing archival photography, most notably the identification and correction of
scale error in some datasets. The analysis provides insight into one of the most challenging and data-scarce areas
on the planet by expanding the spatial extent north of the AP to include previously un-studied glaciers located in
the South Shetland Islands. 81% of glaciers studied showed considerable loss of volume over the period of
record. The mean annual mass loss for all glaciers yielded 0.24 ± 0.08 m.w.e. per year, with a maximum mass
loss of up to 62 m.w.e. and frontal retreat exceeding 2.2 km for Stadium Glacier, located furthest north on
Elephant Island. Observed volumetric loss was broadly, though not always, correlated with frontal retreat. The
combined mass balance of all 16 glaciers yielded −1.862 ± 0.006 Gt, which corresponds to −0.005 mm sea
level equivalent (SLE) over the 57 year observation period.

1. Introduction

The Antarctic Peninsula (AP) is one of the most inaccessible regions
on Earth, with its remoteness and extreme weather conditions limiting
human understanding of this fragile mountain glacier system. The AP is
a complex system comprised of> 1590 glaciers (Cook et al., 2014) that
drain a narrow and high mountain plateau. The average mountain
height is 1500 m, with the highest peaks rising to> 3000 m above sea
level. As such, the region can be considered as a glaciated mountain
range that differs fundamentally from the ice sheets covering East and
West Antarctica. Most of the glaciers on the west and north-east coasts
of the AP are marine-terminating, either as tidewater glaciers or with a
short floating portion. The AP occupies< 1% of the entire grounded
Antarctic ice sheet, but has the potential to significantly contribute to
sea-level change (Meier et al., 2007; Pritchard and Vaughan, 2007;
Radic and Hock, 2011). The AP ice sheet itself accounts for 25% of all

ice mass losses from the Antarctic region, despite comprising only 4% of
the continental area (Shepherd et al., 2012). Simulations of future sea
level change in the AP suggest that omission of tidewater glaciers could
lead to a substantial underestimation of the ice-sheet's contribution to
regional sea level rise (Schannwell et al., 2016).

Similar to other large mountain near-polar glacier systems such as
Alaska and Patagonia (Barrand et al., 2013a), the AP is most likely
influenced by both atmospheric and oceanic changes (Cook et al., 2016;
Vaughan et al., 2001). Its sensitivity to warming has manifested in
many ways, one of the signs being the progressive retreat and sub-
sequent collapse of numerous ice shelves such as Larsen A in January
1995, Wilkins in March 1998, and Larsen B in February/March 2002
(Cook and Vaughan, 2010; Scambos et al., 2004). In total, seven out of
12 ice shelves around the AP have either almost completely dis-
appeared or retreated significantly in the second half of the 20th Cen-
tury (Cook and Vaughan, 2010; Fox and Vaughan, 2005). Increased ice
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velocities (Pritchard and Vaughan, 2007; Scambos et al., 2004; Seehaus
et al., 2015; Wang et al., 2016), as well as the retreat and thinning of
glaciers and ice caps (Cook et al., 2005; Ferrigno et al., 2006; Scambos
et al., 2014) have also been reported.

Atmospheric warming of the AP in the second half of the 20th
Century is well documented. Vaughan (2006), for example, reported a
74% increase in the number of positive degree days at the Faraday/
Vernadsky Station (65° 15′ S, 64° 16′ W) between 1950 and 2000.
According to Sobota et al. (2015) the air temperature on King George
Island increased by 1.2 °C between 1948 and 2012. The mean tem-
perature trend for AP stations between 1949 and 2002 was reported by
Jacka et al. (2004) to be approximately +4.4 °C per century. However,
according to Turner et al. (2016), this warming process has reversed in
the 21st Century. Turner et al. (2016) identified mid-1998 to early-
1999 as the turning point between warming (+0.32 ± 0.20 °C per
decade, 1979–1997) and cooling periods (−0.47 ± 0.25 °C per
decade, 1999–2014) and attributed the decadal temperature changes to
the extreme natural internal variability of the regional atmospheric
circulation, rather than to the drivers of global temperature change.
This does not necessarily mean that the retreat of glaciers will slow
down or stop. Another recent study by Cook et al. (2016) argues that
the primary cause of glacier retreat in the AP is ocean-led rather than
atmospheric-driven.

Due to a lack of detailed observations, many global mountain gla-
cier mass balance inventories either do not include the AP (Dyurgerov,
2002) or use proxy values, such as the global average, instead (Leclercq
et al., 2011). A recent glacier basin inventory by Cook et al. (2014)
provides information on 1590 AP glacier basins in the form of frontal
and areal changes. The study showed a north-south gradient of in-
creasing ice loss across the AP, with 90% of 860 marine-terminating
glaciers shown to have reduced in area. This study was, however,
compiled based on a relatively coarse 100 m ASTER DEM. A recent
surface mass balance study of the AP over the period 1979–2014 by van
Wessem et al. (2016) estimated mass change at 5.5 km resolution based
on the regional atmospheric climate model RACMO2.3 and a firn
densification model (Ligtenberg et al., 2011). The average AP icesheet-
integrated surface mass balance, including ice shelves, was estimated at
351 Gigatonnes/year with an inter-annual variability of 58 Gigatonnes/
year, and the western AP dominating the eastern AP. However, to this
day, there remains a lack of detailed and high resolution measurements
relating to almost all AP glaciers, and in particular there is limited in-
formation on mass balance change. Radic and Hock (2011) estimated
the total sea-level rise from global mountain glaciers by 2100 as
0.124 m ± 0.037 m, with the most significant contribution from gla-
ciers in Arctic Canada, Alaska and Antarctica (excluding ice sheets).
Schannwell et al. (2016) predicted a contribution to sea level rise from
AP tide water glaciers and ice-shelf tributary glaciers (split equally) in
the order of 0.028–0.032 ± 0.016 m by 2300. Pritchard and Vaughan
(2007) assessed that the annual sea level contribution from the AP re-
gion increased by 0.047 ± 0.011 mm between 1993 and 2003.
Shepherd et al. (2012) reported ice sheet mass balance of the AP be-
tween 1992 and 2011 as −20 ± 14 Gigatonnes/year. Hence, while
the AP is believed to be a considerable component of the overall Ant-
arctic ice imbalance (Shepherd et al., 2012), denser spatial sampling is
required to better understand its contribution to sea-level rise.

The validation of predictive ice-loss models, and the consequent
potential contribution to sea-level, requires accurate understanding of
historical change and its drivers. It is therefore crucial to accurately
estimate mass loss, to identify temporal and spatial patterns, and es-
tablish whether changes may be counter-balanced by increased snow-
fall and snow accumulation (Kunz et al., 2012a; Nield et al., 2012). Due
to the rough terrain and inaccessibility to ground-based survey, the only
practical source of information that can provide data over extended
regions of the AP with relatively high temporal resolution is remote
sensing. However, despite the increasing ubiquity of satellite observa-
tions, spatio-temporal records are generally too sparse and recent to

enable the identification of long-term trends and variations (Fox and
Cziferszky, 2008).

This study improves existing records by presenting new information
for sixteen glaciers distributed across the western coast of the AP. This
is carried out by utilising modern-day stereo satellite images and aerial
photographs dating back to the 1950s from largely unexplored archives
of> 30,000 frames held by British Antarctic Survey (BAS) and the
United States Geological Survey (USGS) (Fox and Cziferszky, 2008).
The study builds on existing literature that has attempted to quantify
changes in individual AP glaciers (Cook et al., 2005; Fox and Cziferszky,
2008; Kunz et al., 2012a; Kunz et al., 2012b; Seehaus et al., 2015).
These previous studies have focussed largely on observations made at
the glacier fronts (Cook et al., 2005; Kunz et al., 2012a), primarily as a
result of limited coverage of archival photography as well as poor
image texture and contrast, or were time-limited to the last two decades
(Seehaus et al., 2015). This research quantifies elevation changes across
more complete glacier extents, at higher resolution than before (sub-
metre image pixels of WorldView-2 and aerial photography) and over a
time span of almost six decades. Furthermore, the spatial extent of the
studied changes has been expanded to the north of the AP to include
glaciers located in the South Shetland Islands.

In contrast to Kunz et al. (2012a) and Miller et al. (2009), both of
which used Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) 30 m gridded DEMs, this study utilised sub-metre
resolution WorldView-2 imagery (DigitalGlobe, 2016). In the long-
term, sub-metre spatial resolution satellite imagery such as that pro-
vided by WorldView-2 has the potential to independently shift under-
standing of the processes taking place in the AP. Although at this mo-
ment temporal records are too recent to allow such imagery to be the
only source for reliable long-term change studies, the data can facilitate
the accurate registration of datasets from alternative sources. A recent
study by Wang et al. (2016) presented the use of WorldView-2 for re-
gistration and ortho-rectification of declassified ARGON images.
WorldView-2 images have been successfully used in several studies of
glacier change around the world (Chand and Sharma, 2015; Karimi
et al., 2012; Osipov and Osipova, 2015; Racoviteanu et al., 2015; Wang
et al., 2016; Yavaşlı et al., 2015), however, in most cases only plani-
metric observations were used in analysis rather than rigorous 3D
photogrammetric observations from stereo-imagery, as presented here.
A full photogrammetric workflow allows for a high degree of quality
control in the process of image orientation, as well as provides the
opportunity for 3D validation of results e. g. manual verification and
editing of DEMs in a stereovision environment. Such opportunity is
eliminated in the case of 2D ortho-imagery as the third dimension is
suppressed.

This study follows the proof-of-concept research presented in a pilot
study by Fieber et al. (2016), where surface matching techniques were
used to demonstrate elevation changes in three glaciers around Lind-
blad Cove, AP. DEMs were generated from 2014 stereo WorldView-2
data and a corresponding block of 1957 aerial archival imagery. Here,
further results following a refined methodology are presented for 16
glaciers and additional problems encountered in the processing of ar-
chival imagery, and their solutions, are discussed.

2. Study sites and data

2.1. Study areas

Sixteen glaciers selected for this study are grouped in four sites:
Elephant Island (EI), King George Island (KGI), Lindblad Cove (LC) and
Anvers Island (AI). The glaciers are spread across latitudes of 61° to 64°
South and longitude of 54° to 63° West. The fact that the glaciers are
clustered at four locales limits their spatial extent compared with 16
glaciers at different locations, but at the same time allows observation
of whether glaciers of similar size in very similar topographic settings
exhibit the same behaviour. Fig. 1 shows the location of the study sites
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Fig. 1. Location of study sites overlaid on LIMA mosaic (Bindschadler et al., 2008; LIMA, 2015).

Table 1
Summary of the studied glaciers with their geographical location, GLIMS and WGI ID.

Glacier name Location Latitude Longitude GLIMS ID WGI ID

Stadium Glacier Elephant Island 61° 07′S 54° 44′W G305272E61121S AQ6C20101009
Doyle Glacier Elephant Island 61° 08′S 54° 46′W G305256E61142S AQ6C20101010
Helava Glacier Elephant Island 61° 08′S 54° 48′W G305217E61147S AQ6C20101011
Znosko Glacier King George Island 62° 06′S 58° 29′W G301518E62100S AQ7SSI000125
Admiralen Glacier King George Island 62° 06′S 58° 31′W G301525E62107S AQ7SSI000124
Lange Glacier King George Island 62° 07′S 58° 31′W G301442E62112S AQ7SSI000123
Polar Committee Icefall King George Island 62° 08′S 58° 30′W G301493E62131S AQ7SSI000122
Urbanek Icefall King George Island 62° 08′S 58° 31′W G301474E62139S AQ7SSI000121
Ladies Icefall King George Island 62° 09′S 58° 32′W G301459E62144S AQ7SSI000120
Emerald Icefalls A King George Island 62° 09′S 58° 34′W G301437E62145S AQ7SSI000119
Emerald Icefalls B King George Island 62° 09′S 58° 35′W G301412E62145S AQ7SSI000118
Emerald Icefalls C King George Island 62° 09′S 58° 37′W G301372E62148S AQ7SSI000117
Landau Glacier Lindblad Cove 63° 53′S 59° 20′W G300682E63983S AQ7TPE000045
Schoeling Glacier Lindblad Cove 63° 54′S 59° 21′W G300682E63983S AQ7TPE000046
McNeile Glacier Lindblad Cove 63° 57′S 59° 23′W G300682E63983S AQ7TPE000044
Kraus Glacier Anvers Island 64° 36′S 63° 17′W G296717E64611S AQ7PAR000002
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across the AP, while the exact geographical locations of each studied
glacier, the Global Land Ice Measurements from the Space database
(GLIMS, 2012) ID, and World Glacier Inventory (WGI, 2012) ID are
listed in Table 1. Although the pilot study results for three Lindblad
Cove glaciers were presented in Fieber et al. (2016), these datasets were
subsequently reprocessed using refined methodology and are included
here for completeness.

2.2. Datasets

2.2.1. Archival photography
The source of archival imagery was the Falkland Islands and

Dependencies Aerial Survey Expedition (FIDASE) conducted in austral
summers 1955–56 and 1956–57. The photographs from these cam-
paigns were obtained at nadir specifically for topographic mapping
purposes and in the context of archival imagery of this era they are of
relatively high quality with systematic regional coverage and good
stereo overlap (Table 2 for details). A Williamson Eagle IX camera, in
combination with three Ross six-inch lenses, was used to capture the
photography at approximately 1: 27,000 scale. Calibration parameters
are available for all FIDASE images. Digital scans of the original FIDASE
negatives were obtained from USGS Earth Resources Observation and
Science (EROS) Center archives (USGS EROS).

EROS is the remote sensing data management, systems development
and research field centre of the USGS that provides digital scans of
archival imagery. Most aerial imagery is digitised using a Phoenix V
System at 25 μm resolution. The Phoenix V System uses a scanning back
camera rather than a flatbed scanner and requires a 1.5 to 2-minute
long exposure per frame to create a product similar to that obtained
from a flatbed scanner (Smith and Longhenry, 2008). On enquiry,
however, it transpired that the FIDASE images were scanned on a
flatbed photogrammetric scanner (Zeiss or Leica depending on the da-
taset) due to the film suffering from vinegar syndrome (age related
degradation). The images were scanned at 21 μm resolution and sub-
sequently resampled to 25 μm to ensure consistency with other EROS
datasets (private correspondence with R. Longhenry and T. Smith,
September 2016). The ground sample distance (GSD) of FIDASE ima-
gery scanned at 25 μm is approximately 0.6 m.

2.2.2. Satellite imagery
WorldView-2 Ortho Ready 2A Stereo Imagery products

(DigitalGlobe, 2016) were purchased from DigitalGlobe covering the 16
glaciers in four separate scenes (four image stereo-pairs). WorldView-2
images are geo-referenced with demonstrated geolocation accuracy
without ground control of< 3.5 m circular error, 90% confidence
(LE90) (DigitalGlobe, 2016). The geocoding information is provided in
the form of Rational Polynomial Coefficients (RPCs). Toutin et al.
(2012) showed that the absolute elevation extraction accuracy from
stereo WorldView-2 data without ground control points was 3.6 m
(LE90) for bare terrain. Each stereo scene was acquired on a single pass
of the WorldView-2 satellite over the AP. The image quality varied
across the four scenes: two of the scenes (EI, AI) were overexposed,

lacked texture and exhibited striping, while the remaining two were
excellent with clear detail and good texture. The specific acquisition
dates, are listed in Table 2. The nominal resolution of WorldView-2
images is 0.46 m at nadir for panchromatic images and 0.52 m at 20o

off-nadir. The specific maximum GSD for each of the four acquired
stereo pairs is listed in Table 2.

2.2.3. Seasonality of image sources
Table 2 shows that there is a substantial in-year time gap between

the archival aerial photography and the recent satellite imagery for
King George Island (77 days) and Lindblad Cove (80 days). The archive
of stereo-satellite imagery was carefully searched for cloud-free images
close to the corresponding Julian day of the archival photographs, but
at the time of image selection stereo-coverage of Antarctica was far
from complete. The acquisition of new satellite imagery was con-
sidered, but there was low confidence in the likelihood of attaining
cloud-free imagery within the time-scale of the work. The northern AP
is a consistently cloudy region with, for example, mean cloud cover of 7
oktas and 271 precipitation days per year (1998–2013) at Teniente
Rodolfo Marsh Martin Station, King George Island, and mean of 6.5
oktas and 250 precipitation days (1960–2003) at Vernadsky Station,
Argentine Islands (Kirchgaessner, 2010).

The substantive in-year time difference has the potential impact of
skewing the change measurements due to different surface snow con-
ditions. There are few data on annual snowfall in the northern AP, but
Goodwin et al. (2016) describe an ice core from Bruce Plateau (66°S
64°W) that shows accumulation of 1.84 m/yr water equivalent (years
1900–2009). This is equivalent to about 6 m of snowfall in a year. Si-
milarly, interpolated/modelled accumulation maps published by
Turner et al. (2002) show 1.5–2.0 m and van Lipzig et al. (2004)
2.0–2.5 m.w.e. for the Lindblad Cove area.

The melt-season for the northern AP around Lindblad Cove starts in
early to mid-October and continues through the austral summer until
about mid-February (Barrand et al., 2013b), and is even longer on King
George Island. Lindblad Cove satellite images were acquired on 4 April
2014, which is into the austral autumn, but examination of the images
showed surface detail indicating that new winter snowfall had not yet
started to accumulate. It is, however, possible that the mid-summer
archival images from late December to mid-January hold approxi-
mately 2–3 m.w.e. of surface snow remaining from the winter after a
period of melting from October onwards, coupled with compaction over
time.

3. Methodology

Processing of archival imagery is often anything but a trivial task.
Even when calibration information exists, which is often not the case,
archived film may be damaged or degraded due to inappropriate sto-
rage and/or the passage of time and the radiometric quality of the
sensors used for acquisition may not be very high (Fox and Cziferszky,
2008). Particularly in the case of areas covered by snow and ice, pho-
tography is often over-exposed due to extreme contrasts, resulting in a
loss of surface texture. Poor viewing geometry and cloud cover can
further limit the usability of archival photography. A rigorous frame
selection process therefore needs to be applied and care needs to be
exercised in the digitisation process if historic photography is to be used
in metric studies. Glaciers for this study were selected on the basis of
the quality of available archival data (e.g. minimal cloud cover, good
texture) to ensure near-complete glacial coverage. These criteria are
together a strong filter on the number of photographs suitable for
processing (Table 3). For the selected glaciers with historical photo-
graph coverage, a WV2 image of the best available quality was subse-
quently sought. Unfortunately, WV2 images suffer from similar con-
straints in terms of overexposure and cloud coverage and as such the
quality of the imagery was not always ideal.

As opposed to recent developments of image-based fully-automated

Table 2
Acquisition date of FIDASE and WorldView-2 imagery for all study sites.

Location Archival data
(FIDASE)

Modern-day data (WorldView-2)

Acquisition date Acquisition date Max
GSD (m)

Max angle
off nadir (°)

Elephant Island 19 Jan 1957 25 Dec 2014 0.53 20.40
King George

Island
20 Dec 1956 7 Mar 2013 0.60 27.95

Lindblad Cove 12/24 Jan1957 2 Apr 2014 0.59 27.47
Anvers Island 26 Dec 1956 29 Nov 2013 0.59 28.03

K.D. Fieber et al. Remote Sensing of Environment 205 (2018) 18–31

21



structure-from-motion measurement techniques, this study follows a
rigorous photogrammetric approach. Structure-from-motion has its
roots in the computer vision community and has recently gained a lot of
interest in many geo-applications, including the cryosphere field (Nolan
et al., 2015; Piermattei et al., 2015), for its ease of use and no need for
specialist's knowledge. Nevertheless, despite the considerable benefits,
such as no requirement for prior camera parameters knowledge, it is
still prone to geometric errors and it often offers a ‘black-box’ approach
which allows user's little or no control over the process. In the absence
of ground control, coupled with the availability of camera calibration
and classical stereo network geometry, the ‘classical’ photogrammetric
approach was favoured in this study for its rigour and accuracy aspects.

Both archival photography and modern satellite imagery was pro-
cessed in Socet GXP software (BAE Systems, 2015) following a rigorous
photogrammetric workflow that is based on the collinearity condition
(see, for example, Kraus, 2007). The collinearity condition states that at
the time of image acquisition, the position of the ground points in ob-
ject space, their depiction in the image and the location of the sensor
station all lie in a straight line. Each image is then considered as a
bundle of rays that can be manipulated in a bundle adjustment. Here all
bundles are translated, rotated and scaled in a single mathematical
adjustment until corresponding rays from different bundles intersect at
common ground points.

The workflow is illustrated in Fig. 2. At first an approach akin to
that of Fox and Cziferszky (2008) and Barrand et al. (2009), in which
pseudo-GCPs are extracted from the modern geocoded dataset and in-
troduced into the bundle adjustment of the archival data, was adopted
to ensure that the datasets were aligned within the pull-in range of the
subsequent least squares processing procedure. Secondly, to minimise
misalignment errors, a robust least-squares surface matching technique
was applied. The in-house surface matching algorithm utilised here was
originally developed by Mills et al. (2005) for coastal change mon-
itoring and further enhanced by Miller et al. (2007) and (2008) for
wider geohazard application. In glacier monitoring applications,

various incarnations of the approach have been demonstrated by Miller
et al. (2009), Kunz et al. (2012a) and Fieber et al. (2016).

Four WorldView-2 stereo-pairs, provided with orientation and
geocoding information, were visually examined via stereo-viewing and
if Y-parallax was observed, automatic point matching and relative or-
ientation using full-covariance strategy was performed (resulting in
RMSE < 0.2 pixel). GCP candidates were subsequently chosen via
stereo-viewing of mountainous areas that were presumed to be stable
over the period of observation.

Interior orientation of FIDASE images (see Table 3 for the number of
selected frames for each site) was carried out by manual measurement
of fiducial marks using available camera calibration information. It
should be noted that interior orientation will largely deal with any
systematic shrinkage or linear deformation of the film that has occurred
over time (and which would therefore be present in the scanned digital
imagery). The additional subsequent use of the 9-parameter least
squares surface matching process would also help mitigate any residual
error from such issues. Subsequent relative orientation was initially
performed using the automatic tie point measurement strategy em-
bedded in the software and refined manually with the help of stereo-
viewing. Finally, absolute orientation using full-covariance bundle ad-
justment strategy was carried out by the introduction of pseudo-GCP
candidates transferred from WorldView-2 satellite data and their
manual measurement in stereo (see Fig. 3 and Table 3 for the number of
pseudo-GCPs at each site). Different acquisition angles, as well as dif-
ferent snow cover conditions coupled with glacier elevation change
across six decades, rendered the process of selection and transfer of the
pseudo-GCPs between two datasets time-consuming and non-trivial.
Extreme care was taken throughout the process to ensure correct
identification of points, even distribution across the site and to facilitate
good initial alignment of the datasets.

Once the orientation of FIDASE images was deemed satisfactory,
photogrammetric DEMs were extracted for both satellite and archival
datasets using Socet GXP Next Generation Automatic Terrain Extraction
(NGATE) low contrast strategy as TIN DEMs with approximately 1 m
post spacing. Manual editing of the DEMs was subsequently performed
in stereo-viewing to ensure removal of gross image-matching errors and
to improve the coverage in the areas of little texture, where the auto-
matic algorithm failed to produce satisfactory results. Rocky areas,
considered to be stable over time, were manually delineated using
WorldView-2 scenes and refined by comparison to archival data to
avoid inclusion of areas of significant glacier change, where rock out-
crops have been exposed over the period of time and were not visible in
the early imagery. The surface matching algorithm of Kunz et al.
(2012b) was then applied to ‘stable area’ DEMs to refine the alignment
of the archival dataset to its modern day reference.

The least-squares algorithm iteratively minimises vertical (as used
here) or Euclidean differences between points in the clipped stable
areas on the floating surface (archival dataset) and corresponding areas
on the fixed reference surface (modern data). A weighting function,
based on a maximum likelihood estimator, is included in the algorithm
to down-weight potential outlier points, such as those related to small
areas of temporal change or simply gross errors, to avoid biasing the
solution into an erroneous alignment (Miller et al., 2008). The software
provides the choice of the number of transformation parameters to be
retrieved. In this study, instead of a usual Helmert seven-parameter
transformation (three translation, three rotation, and one scale para-
meters), a nine parameter transformation was enabled that in-
corporated different scales in each Cartesian axis.

Once the transformation parameters were successfully retrieved
over stable terrain, the transformation was applied to the full archival
DEM. The differences in elevation and volumetric changes between
different epochs were then computed using LSS software (McCarthy,
2015). Further, mean elevation change as metre water equivalent
(m.w.e.) over the period of record, as well as annually, was calculated
based on the volume to area relationship (Fieber et al., 2016; Hock,

Table 3
Number of FIDASE frames and pseudo-GCPs used at each site.

Location Number of frames Number of pseudo GCPs

Elephant Island North 3 3
Elephant Island South 4 8
King George Island 7 11
Lindblad Cove West 12 11
Lindblad Cove East 9 10
Anvers Island 5 10

Fig. 2. Workflow.
(Adapted from Fieber et al., 2016.)
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2010). Assuming that most of the lowering occurs at the density of ice,
an ice density correction factor of 0.917 was applied here to express the
rates in water equivalent units, (Paterson, 1994; Vaughan et al., 1994)
as well as to convert volume to mass. Sea level equivalent was com-
puted assuming an ocean area of 362.5 × 106 km2 (IPCC, 2013). Fur-
ther details of the methodology can be found in Fieber et al. (2016).

4. Results

4.1.1. Archival imagery processing
The results of the initial orientation of the FIDASE imagery at all

four sites, carried out in Socet GXP, are summarised in Table 4. In the
cases of Elephant Island and Lindblad Cove, two separate projects were
set up to orientate the photography. At Lindblad Cove this was due to
two different image acquisition dates (see Table 2), while in the case of
Elephant Island this was due to a problematic orientation process re-
sulting from the high percentage of the FIDASE frames filled with sea
and little texture in the overlap area between strips, necessitating the
separate processing of the two flight lines. Orientation statistics indicate
that the results were best at Lindblad Cove, while Anvers Island and
Elephant Island South produced the highest RMSEs. This was likely the
combined result of several factors: (1) the archival photography suf-
fered from a scaling error, seemingly introduced at the digitisation
stage as a result of resampling from 21 μm to 25 μm pixel size, which

subsequently led to misinterpretations in the processing software and
poor orientation results; (2) both Elephant and Anvers Islands had re-
latively poor quality WorldView-2 imagery (striping, lack of texture)
which impacted on identification of pseudo GCPs; (3) archival imagery
very often was taken in such a way that high percentages of the frames
were filled with sea (particularly Elephant Island South), rendering
frame orientation problematic; (4) in the case of Anvers Island, terrain
elevation changed from 0 to> 2500 m across only five FIDASE frames,
relative to a flying height of about 4000 m, causing considerable scale
change, difficulty in matching tie points between images and impacting
orientation results.

4.1.2. DEM quality assessment
The assessment of absolute DEM accuracy was not possible due to a

lack of existing known control points in the areas being surveyed.
Instead, Fieber et al. (2016) estimated internal quality of the DEMs
generated by SOCET GXP through comparison of manual and automatic
measurements at Lindblad Cove, making the assumption that manual
observations were of higher quality. Points on the glacier surface were
manually measured in a semi-gridded pattern in stereo, both in WV2
and FIDASE imagery for Lindblad Cove projects. The measurements
were performed in ten randomly selected areas of interest, each ap-
proximately 250 by 250 m in size. Those measurements were subse-
quently compared to corresponding areas in WV2 and FIDASE DEMs
generated automatically through image matching by Socet GXP. The
standard deviation of the elevation differences was adopted as a quality

Fig. 3. Example of archival photography block (Lindblad Cove West), with tie points (green) and pseudo-GCPs (yellow) overlaid, and the corresponding WV2 image. Note images are not
to common scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Results of relative and absolute orientations of archival photography.

Location Relative orientation (RMSE of tie-point residuals) Absolute orientation (RMSE at pseudo-control points)

[pixel] X [m] Y [m] Z [m] Total [m]

Elephant Island North 0.61 2.09 0.25 3.14 3.33
Elephant Island South 1.48 9.27 15.49 3.56 13.25
King George Island 0.74 3.29 2.53 2.49 3.96
Lindblad Cove West 0.44 1.81 1.80 0.81 2.67
Lindblad Cove East 0.39 1.41 0.93 0.82 1.93
Anvers Island 1.32 6.73 8.05 1.07 8.94
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measure for WorldView-2 (± 1.82 m) and FIDASE imagery
(± 2.57 m). The uncertainty in elevation differences between two
surfaces was then calculated based on error propagation and
yielded± 3.14 m. This error estimate is applicable to this study.

4.1.3. DEM matching
Surface matching was applied to all archival DEMs (stable areas

only) to improve their alignment with the corresponding WorldView-2
DEMs. Initially, the software was set to search for the seven parameters
of a Helmert transformation. The match achieved at Lindblad Cove was
exceptionally good (Fieber et al., 2016), however manual inspection,
including visual checks of point cloud cross-sections, indicated that in
the case of other sites, particularly Elephant and Anvers Island DEMs,
the fit was unsatisfactory (elevation of sea level varied significantly
when inspected in stereo). Even where surfaces appeared to statistically
correctly co-register, checks on sea-level were outside acceptable error
margins. Surface matching was therefore repeated, allowing in-
dependent scale changes in all three Cartesian axes through a nine
parameter transformation. The Lindblad Cove dataset was also re-
processed using a nine parameter transformation to ensure consistency.

Table 5 lists the determined transformation parameters, while
Table 6 and Fig. 4 show elevation difference statistics and histograms,
respectively, between stable areas of modern and archival DEMs for all
study areas before and after application of nine parameter surface
matching. Allowing differential scale changes in each Cartesian axis
significantly improved the fit of the surfaces. The improvement in the
elevation difference statistics post-match can clearly be seen in Table 5
for all sites. Visual comparison of cross-sections was also satisfactory
with sea-level mostly within the uncertainty error of± 3.14 m and
outliers not exceeding three sigma. Surface matching can therefore be
deemed successful in improving the alignment of the surfaces.

4.1.4. Glacial change
Fig. 5 illustrates elevation differences for all sixteen glaciers while

corresponding histograms of elevation changes are presented in Fig. 6.
It should be noted that the histograms correspond to the points of
measurement and may be therefore slightly biased towards the areas of
glacier with higher point density (lower point density areas correspond
to the manual elevation measurements, where image matching failed
due to poor texture), they are however very illustrative in terms of
overall glacier change. The statistical information is complemented by
Table 7 which summarizes the volumetric and mass change in those

glaciers over a time period of 56 to 58 years. Elevation change maps as
well as the statistics of 13 glaciers show predominance of loss, while
three remaining glaciers Emerald Icefalls A at KGI (Fig. 5J), McNeile at
LC (Fig. 5O) and Schoeling at LC (Fig. 5N) exhibit accumulation. The
glaciers that showed the highest volume loss are Stadium at EI
(Fig. 5A), Lange at KGI (Fig. 5F), Znosko at KGI (Fig. 5D) and Admiralen
at KGI (Fig. 5E). Stadium is one of three glaciers in this study that is
located furthest north, on Elephant Island, while Lange, Znosko and
Admiralen are situated on King George Island, also further north than
Lindblad Cove and Anvers Island. The highest loss in the furthest north
glaciers is in agreement with Kunz et al. (2012a), who observed higher
rates of lowering in the northern AP than in the south, although this
study did not include glaciers as far north as on South Shetland Islands.
Two of the three glaciers that exhibited predominance of accumulation
over loss (McNeile and Schoeling) are located at Lindblad Cove. This in
turn corresponds to the low mean ocean temperatures between 1945
and 2009 (<−1 °C) and mostly positive glacier areal changes in that
region (east side of Bransfield Strait) reported in Cook et al. (2016).
Similarly considerable loss of volume in Kraus at AI (Fig. 5P) coincides
with positive mean ocean temperatures (>+1 °C) and negative areal
glacier changes on Anvers Island (Cook et al., 2016).

5. Discussion

5.1.1. DEM matching
The post-matching RMSE of DEM differences over stable (generally

rough mountainous) terrain reduced considerably in comparison to the
pre-match RMSE for all sites with the exception of Lindblad Cove,
where little improvement was noted. On average post-match RMSE
yielded± 18.32 m, which is comparable to values previously reported
in literature (Kunz et al., 2012a; Kunz et al., 2012b). The elevation
differences included in the RMSE can be attributed to rough and steep
terrain used for matching. The DEM quality over significantly flatter
glacier surface is expected to be much closer to the propagated un-
certainty of± 3.14 m (Section 4.1.2). However, due to the fact that
surface matching also impacts on the resultant elevation changes, the
true accuracy of those changes will likely lie somewhere between the
two accuracy estimates (± 3.14 m and individual post-match RMSE).
Therefore, for the purpose of uncertainty in the mean estimation, the
higher of the two accuracy values, i.e. post-match RMSE at 95%

Table 5
Nine transformation parameters determined by surface matching for all study sites.

Site Tx [m] Ty [m] Tz [m] Omega [°] Phi [°] Kappa [°] Sx Sy Sz

Elephant Island North 56.91 10.22 11.11 −0.1754 −0.3119 0.0724 1.0544 0.9965 0.8921
Elephant Island South −31.46 9.26 44.61 1.7490 0.6219 1.0596 1.0010 0.9488 0.8904
King George Island −4.21 −4.74 −0.35 0.0609 0.0595 −0.2407 0.9946 1.0023 0.9360
Lindblad Cove West 1.52 1.04 4.92 −0.0122 −0.0630 0.0064 0.9996 0.9996 0.9940
Lindblad Cove East 4.50 −1.96 10.38 −0.0369 −0.0288 0.0185 0.9997 0.9995 0.9915
Anvers Island −4.33 8.70 69.64 −1.0654 0.1280 0.1271 1.0024 1.0042 0.8957

Table 6
Statistics of elevation differences over stable terrain for all studied sites between FIDASE and WorldView-2 DEMs before and after surface matching using 9-parameter transformation.

Location Pre-match Post-match

Mean [m] St dev [m] RMSE [m] Min [m] Max [m] Mean [m] St dev [m] RMSE [m] Min [m] Max [m]

Elephant Island North −39.4 ± 46.0 ± 60.6 −257.6 185.9 −5.9 ± 28.2 ± 28.8 −170.4 172.4
Elephant Island South −16.8 ± 33.0 ± 37.1 −152.3 251.2 −2.2 ± 17.2 ± 17.4 −95.6 151.7
King George Island −12.2 ± 12.2 ± 17.3 −169.4 23.8 −1.2 ± 7.3 ± 7.4 −156.6 37.3
Lindblad Cove West +3.8 ± 16.3 ± 16.8 −177.2 314.9 +1.9 ± 16.0 ± 16.2 −180.8 314.6
Lindblad Cove East +5.8 ± 18.1 ± 18.9 −130.5 182.3 +2.8 ± 16.9 ± 17.2 −139.5 182.3
Anvers Island −2.7 ± 33.7 ± 33.8 −266.6 190.2 +1.0 ± 22.8 ± 22.9 −201.5 180.4
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confidence interval, together with the number of observations at each
site was used. Uncertainty in the net volume was then computed based
on uncertainty in the mean and the glacier surface area.

At the same time, surface matching helped highlight a problem with
the processing. Table 4 summarizes Z-scale factor (Sz) determined by
the software for all sites. In three out of four sites the Z-scale is con-
siderably smaller than unity. Surface matching showed that Elephant
and Anvers Island DEMs needed 11% Z-scale correction, while King
George Island around 6.5%. Only in the case of Lindblad Cove was the
Z-scale close to unity. That also explains the best orientation and the
least improvement in the post-match statistics of the Lindblad site
(Table 5). Such Z-scale error is usually indicative of a focal length ca-
libration error. However, on checking, all of projects were found to
have implemented camera parameters as per the appropriate calibra-
tion certificates. Nevertheless, the investigations revealed that the
flying heights after absolute orientation in the Z-scale affected projects
were much higher than the nominal flying altitude of 13,500 ft. Since
the focal length was kept fixed, it appeared that the adjustment was
compensating for an ‘incorrect’ focal length by increasing the flying
height, indicative of a problem in image interior orientation.

In order to eliminate the possibility of error in the imagery/film
itself, Elephant Island South negatives were re-scanned on the BAS
Zeiss/Intergraph Photoscan TD scanner at 21 μm resolution. This ima-
gery was subsequently orientated using the same pseudo GCPs as uti-
lised for USGS-scanned images. The DEM was generated and equivalent
stable areas used in nine-parameter surface matching with the same
WorldView-2 DEM. BAS-scanned images orientated significantly better,
although not ideally, indicating that other factors such as quality of
WorldView-2 imagery and a significant part of FIDASE frames occupied
by sea, played their role. Relative orientation RMSE of BAS-scanned
images yielded 0.92 pixel (rather than 1.48 pixel) while absolute or-
ientation RMSEs were 4.38 m in X, 10.34 m in Y, and 2.24 m in Z (in
comparison to Elephant Island South using USGS imagery in Table 4 –
9.27 m in X, 15.49 m in Y and 3.56 m in Z). Furthermore, there was no
increase in determined flying heights and surface matching indicated
no Z-scale variation (Sz = 0.9969 rather than 0.8904).

Discussion with USGS/EROS confirmed that USGS scanned the
images using Zeiss (KGI, EI, AI) and Leica (LC) photogrammetric

scanners and that post-scan, the original scan resolution of 21 μm was
resampled to 25 μm to ensure consistency with other EROS digital ar-
chive products. Seemingly, in the case of the Zeiss scans, this resam-
pling process somehow corrupted the file headers and subsequent in-
terior orientation through erroneous pixel size, which led to the scaling
issue in the image derived products. This example shows that the pro-
cessing of archival imagery needs to be treated with extreme care and
that working with such imagery is far from a trivial task. The problem
identified above also proves the validity of using rigorous orientation
procedures in the processing of such imagery.

5.1.2. Glacial change
In all but two cases (Znosko at KGI (Fig. 5D) and Emerald Icefalls A

at KGI (Fig. 5J)) the volume loss/gain was correlated with glacier
frontal retreat/advance, respectively. Stadium atEI (Fig. 5A) retreated
most significantly, by a maximum of −2.25 km and lost a net volume
of −0.819 ± 0.0014 km3 with m.w.e. of −62.1 (−1.07 m.w.e. p.a.).
Similarly, Lange at KGI (Fig. 5F) retreated by 1.45 km at maximum,
losing a volume of −0.785 ± 0.0003 km3 with m.w.e. of −50.2
(−0.89 m.w.e. p.a.). The retreat (at maximum) of the remaining eleven
glaciers varied between −70 m and −450 m. Only three out of the
sixteen glaciers studied advanced: Znosko at KGI (Fig. 5D) (c. +100 m
at maximum), McNeile at LC (Fig. 5O) (c. +130 m at maximum), and
Schoeling at LC (Fig. 5N) (c. +200 m at maximum). In the two cases
where the observed volume loss/gain was not correlated with a re-
spective retreat/advance, Znosko (KGI) advanced locally by almost
100 m over the 56-year period, but at the same time showed con-
siderable elevation lowering, with m.w.e. of −31.6 (−0.56 m.w.e.
p.a.). Conversely, despite exhibiting predominance of accumulation
with m.w.e. of +1.8 (+0.03 m.w.e. p.a.), Emerald Icefalls A at KGI
(Fig. 5J), retreated locally by a maximum of 70 m. Both glaciers were
studied over either their full (Znosko) or almost full (Emerald Icefalls A
at 84%) areal coverage, therefore it is unlikely that the outcome would
change with more extended treatment and these examples thus show
that sometimes small frontal change, be it advance or retreat, is not
always indicative of associated glacier volume/mass change.

Fig. 7 summarizes the overall change in all studied glaciers over the
period of record expressed in the form of m.w.e. p.a., while Fig. 8

Fig. 4. Histograms of elevation differences over stable terrain pre- and post-match for all sites.
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presents elevation change rates per year over elevations above sea level
(second order polynomial fit) for all glaciers grouped according to their
location. The measurements for the latter plot were obtained along each

glacier centreline and subsequently combined for each study site. The
general pattern of surface lowering and frontal retreat appears con-
sistent. Elephant Island and King George Island show the highest

Fig. 5. Overview of glacier surface elevation changes between 1956/57 and 2013/14. Archival glacier front extents marked in green and modern glacier front extents marked in purple.
Glacier outlines from Randolph Glacier Inventory (Arendt and The Randolph Consortium, 2015) for EI and KGI; for LC and AI outlines digitised in stereo on WV-2 imagery. A – Stadium, B
– Doyle, C – Helava, D – Znosko, E – Admiralen, F – Lange, G – Polar Committee Icefall, H – Urbanek Icefall, I – Ladies Icefall, J – Emerald Icefalls A, K – Emerald Icefalls B, L – Emerald
Icefalls C, M – Landau, N – Schoeling, O – McNeile, P – Kraus. LIMA mosaic in background (LIMA, 2015). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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lowering rates towards lowest elevations which is related to the plots
being biased towards two glaciers with the highest volume loss: Sta-
dium and Lange, respectively. Lindblad Cove is the only site which
exhibits overall accumulation stability across all elevations – no low-
ering at low altitudes is observed. As noted in Section 2.2.3, the fact
that the WorldView images were acquired 80 days later in the year than
the FIDASE photographs may influence the observations. In three study
areas, namely Elephant Island, King George Island and Anvers Island,
the lowering decays to zero within elevations of 400 m to 500 m above
sea-level (Fig. 8). At higher altitudes accumulation or overall stability
can be noted. This is consistent with the findings of Kunz et al. (2012a),
who reported the lowering to be limited to the regions below 400 m. In
a study of mass balance changes for the King George Island ice cap,
Rückamp et al. (2011) observed consistent surface lowering at eleva-
tions below 270 m (maximum elevation studied) between 1997 and
2009. DGPS records revealed a linear dependence of surface lowering,
with altitude with a maximum annual surface lowering rate of 1.4 m
p.a. at 40 m and 0.2 m p.a. at 270 m above ellipsoid. While the period
of the Rückamp et al. (2011) study is much shorter, the 0.20 m p.a. at
270 m above sea level is consistent with this study's findings for King
George Island (Fig. 8). At the same time, the observed 1.4 m p.a. ele-
vation change at 40 m is a much higher estimate of lowering towards
the front of the glacier than presented here, indicative of an accel-
erating surface lowering rate in recent decades.

The mean total lowering for all 16 glaciers over an average period of
57 years was approximately 14.0 m ± 4.8 m.w.e. (standard error of
the mean - SEM) with a maximum lowering of up to 62 m.w.e. for
Stadium Glacier. The mean annual lowering for all glaciers yielded
0.25 ± 0.08 m.w.e. p.a. This is in agreement with observations re-
ported in Kunz et al. (2012a) of a mean frontal lowering rate of
0.28 ± 0.03 m.w.e. p.a. over an average period of 37 years. Kunz
et al., however, determined mean lowering using a 1 km2 sample area
of each studied glacier within 1 km of the front, whereas here the
complete or near-complete surface area of each glacier was used in the

calculation. The average spatial coverage of all glaciers obtained in this
study was 82% ± 5%. This represents a relatively good achievement
in comparison to Kunz et al. (2012a), where the focus was on the glacier
fronts and where glacier coverage was on average 20%, up to a max-
imum of 33%. The spatial distribution of changes across the AP in-
dicates overall greater lowering rates in the north than in the south,
agreeing with similar findings by Kunz et al. (2012a). Nevertheless,
there is clear local variability in the change rate between neighbouring
glaciers which may be related to the terrain topography, type of glacier,
atmospheric and oceanic warming and other non-trivial factors. The
fact that surface change across studied glaciers does not present a clear
spatial pattern suggests that the processes driving these changes in the
AP are not simple and cannot be easily generalised.

Data in Fig. 8 and Table 7 reveal that Elephant Island and King
George Island exhibit the greatest combined mass loss of
0.809 ± 0.0028 Gt and 0.904 ± 0.0016 Gt, respectively, over the
period of 57 years; Anvers Island (where only one glacier was observed)
mass balance is also negative: −0.212 ± 0.0009 Gt, while Lindblad
Cove was the only site to show mass gain (0.063 ± 0.0009 Gt) in the
study period. The combined mass balance of all 16 glaciers yielded
−1.862 ± 0.006 Gt (−0.033 ± 0.0001 Gt p.a.), which corresponds
to −0.005 mm sea level equivalent (SLE) over the 57 year observation
period. This value is close to the lower boundaries of the annual sea
level rise contribution from the entire AP, which was computed based
on runoff rates in 2000 by Vaughan (2006). Based on ICESat observa-
tions, Gardner et al. (2013) reported an annual change estimate of
−6 ± 10 Gt in the Antarctic and Sub-Antarctic (not including the
northern AP) for the period of 2003–2009. The combined results of the
16 glaciers presented here constitutes 0.5% of that estimate.

Finally, Fig. 9 illustrates mass budget for all four study sites, in units
of kg/m2 per annum, overlaid on the regional glacier mass budget for
the Antarctic and Sub-Antarctic, as presented by IPCC (2013). Al-
though, the IPCC's's (2013) mass budget does not include the northern
part of the AP (Gardner et al., 2013), where most of the sites studied

Fig. 6. Histograms of elevation changes in each glacier. A – Stadium, B – Doyle, C – Helava, D – Znosko, E – Admiralen, F – Lange, G – Polar Committee Icefall, H – Urbanek Icefall, I –
Ladies Icefall, J – Emerald Icefalls A, K – Emerald Icefalls B, L – Emerald Icefalls C, M – Landau, N – Schoeling, O – McNeile, P – Kraus.
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here were located, the site-level estimates cover the span of mass
budget modelled with climate data (Hock et al., 2009), fitting well with
the IPCC's findings. The combined mass budget yielded −251.9 kg/
m2 per annum.

6. Conclusions

This study has determined high resolution elevation change for

sixteen individual glaciers distributed across the AP over a period of
almost six decades. In comparison to previous studies (Kunz et al.,
2012a), the emphasis here was on achieving high glacier areal coverage
(up to 100%), high resolution of spatial sampling (nominal 1 m DEMs)
and long temporal data span for surface elevation comparison
(~57 years). Although, 100% coverage of glacier surface was not al-
ways possible to achieve, due to lack of coverage by one or other of the
datasets or because of clouds obscuring the surface or poor image

Fig. 7. Mean annual metre water equivalent for all studied glaciers. Observation period for all glaciers is approximately 57 years. Background image – LIMA mosaic (Bindschadler et al.,
2008; LIMA, 2015).

Fig. 8. Elevation change rate dh/dt over elevation above sea level
for four studied locations calculated over a period of 56–58 years
(site dependent).
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texture, the glacier surfaces were sampled on average at 82% ± 5%.
The lowest coverage of 44% and 48% was for Emerald Icefalls C (KGI)
and Lange (KGI), respectively.

This study has highlighted the potential and pitfalls of using ar-
chival aerial stereo-photography combined with modern imagery such
as WorldView-2 stereo products for determining glacier elevation
change in remote regions such as the AP. The use of archival and
modern imagery with analogous spatial resolution, advances in pho-
togrammetric processing capabilities and the use of a rigorous or-
ientation workflow has facilitated accurate comparison of archival and
modern DEMs of glacier surfaces. The surface matching technique
proved particularly valuable in improving the fit between archival and
modern surfaces and therefore making the elevation and volumetric
change analysis both feasible and reliable. Surface matching helped to
identify problems with archival imagery, most likely induced by re-
sampling of the original scans, and corrected them using a nine para-
meter transformation. This highlighted the need for care and caution
when working with archival photography, as well as the value of ex-
tending the employed surface matching solution to include independent
scale parameters. Most importantly however, this emphasised the va-
lidity of using rigorous approaches, such as least squares surface
matching, for co-registration when undertaking precise change detec-
tion.

Thirteen out of the sixteen glaciers studied showed elevation low-
ering and predominance of volumetric loss over gain. Volumetric loss
was largely correlated with frontal retreat, however in two cases the
observed volume loss/gain was not correlated with a respective retreat/
advance, highlighting that sometimes observed frontal change is not
always indicative of associated glacier volume/mass change. The
greatest change was observed at Stadium Glacier (EI), located furthest
north, where frontal retreat exceeded 2.2 km (at maximum) and the
volume reduced by −0.819 ± 0.0014 km3 (66% of the glacier surface
studied) with m.w.e. of −62 m over 58 years. The second most sig-
nificant change was observed at Lange Glacier (KGI) which retreated by
over 1.4 km and lost volume of −0.785 ± 0.0003 km3 (48% of the
glacier surface studied) with m.w.e. of −50 m over 56 years. Three out
of sixteen glaciers, namely Schoeling (LC), Emerald Icefalls A (KGI) and
McNeile (LC), showed predominance of accumulation over loss. Two
out of those glaciers are located on the mainland, on the west coast of
the AP rather than on an island and their location corresponds to the
areas with low mean ocean temperatures reported in Cook et al. (2016).
Accumulation, however, was not as significant as the loss observed in

other glaciers, with m.w.e. not exceeding +2.8 m.w.e. over 57 years. A
further two glaciers, Helava (EI) and Landau (LC), showed small losses
with m.w.e. not exceeding −1.5 m.

The combined mass balance of all sixteen glaciers yielded
−1.862 ± 0.006 Gt, which corresponds to −0.005 mm sea level
equivalent (SLE) over the observation period of 57 years. Mass budgets
of glaciers grouped into four sites expressed in kg/m2 p.a. fitted well
into the findings reported in IPCC (2013), covering the span of climate-
modelled data. The observed surface lowering for glaciers grouped at
four sites was confined to elevations below 400–500 m ASL for three
out of four locations (King George Island, Elephant Island and Anvers
Island), while Lindblad Cove exhibited overall accumulation stability
across all elevations. The observed rates of surface lowering were
greater in the northern AP than in the south, however high local
variability was also observed, suggesting that the processes driving
these changes in the AP are not simple and cannot be easily generalised.
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