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Big Data Based Security Analytics for Protecting
Virtualized Infrastructures in Cloud Computing

Thu Yein Win,Member, IEEE, Huaglory Tianfield, and Quentin Mair,Member, IEEE

Abstract—Virtualized infrastructure in cloud computing has become an attractive target for cyberattackers to launch advanced attacks.

This paper proposes a novel big data based security analytics approach to detecting advanced attacks in virtualized infrastructures.

Network logs as well as user application logs collected periodically from the guest virtual machines (VMs) are stored in the Hadoop

Distributed File System (HDFS). Then, extraction of attack features is performed through graph-based event correlation and

MapReduce parser based identification of potential attack paths. Next, determination of attack presence is performed through two-step

machine learning, namely logistic regression is applied to calculate attack’s conditional probabilities with respect to the attributes, and

belief propagation is applied to calculate the belief in existence of an attack based on them. Experiments are conducted to evaluate the

proposed approach using well-known malware as well as in comparison with existing security techniques for virtualized infrastructure.

The results show that our proposed approach is effective in detecting attacks with minimal performance overhead.

Index Terms—Virtualized infrastructure, virtualization security, cloud security, malware detection, rootkit detection, security analytics, event

correlation, logistic regression, belief propagation

Ç

1 INTRODUCTION

Avirtualized infrastructure consists of virtual machines
(VMs) that rely upon the software-defined multi-

instance resources of the hosting hardware. The virtual 
machine monitor, also called hypervisor, sustains, regulates 
and manages the software-defined multi-instance architec-
ture. The ability to pool different computing resources as 
well as enable on-demand resource scaling has led to the 
widespread deployment of virtualized infrastructures as an 
important provisioning to cloud computing services.
  This has made virtualized infrastructures become an 
attractive target for cyberattackers to launch attacks for ille-
gal access. Exploiting the software vulnerabilities within the 
hypervisor source code, sophisticated attacks such as Vir-
tualized Environment Neglected Operations Manipulation 
(VENOM) [1] have been performed which allow an attacker 
to break out of a guest VM and access the underlying hyper-
visor. In addition, attacks such as Heartbleed [2] and Shell-
shock [3] which exploit the vulnerabilities within the 
operating system can also be used against the virtualized 
infrastructure to obtain login details of the guest VMs and 
perform attacks ranging from privilege escalation to Distrib-
uted Denial of Service (DDoS).

Existing security approaches to protecting virtualized 
infrastructures generally include two types, namely mal- 
ware detection and security analytics. Malware detection 
usually involves two steps, first, monitoring hooks are 
placed at different points within the virtualized infrastruc- 
ture, then a regularly-updated attack signature database is 
used to determine attack presence. While this allows for a 
real-time detection of attacks, the use of a dedicated signa- 
ture database makes it vulnerable to zero-day attacks 
for which it has no attack signatures. 
   Security analytics applies analytics on the various logs 
which are obtained at different points within the 
network to determine attack presence. By leveraging 
the huge amounts of logs generated by various 
security systems (e.g., intrusion detection systems (IDS), 
security information and event management (SIEM), 
etc.), applying big data analytics will be able to detect 
attacks which are not discovered through signature- or 
rule-based detection methods. While security analytics 
removes the need for signature database by using 
event correlation to detect previously undiscovered 
attacks, this is often not carried out in real-time and 
current implementations are intrinsically nonscalable. 
     To overcome these limitations, in this paper we propose a 
novel big data based security analytics (BDSA) approach to 
protecting virtualized infrastructures against advanced 
attacks. By making use of the network logs as well as the 
user application logs collected from the guest VMs which 
are stored in a Hadoop Distributed File System (HDFS), our 
BDSA approach first extracts attack features through graph- 
based event correlation, a MapReduce parser based identifi- 
cation of potential attack paths and then ascertains attack 
presence through two-step machine learning, namely logis- 
tic regression and belief propagation. 
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The remainder of the paper is arranged as follows. 
Section 2 presents a review upon the existing security 
approaches. Section 3 proposes our big data based security 
analytics (BDSA) approach. Experimental evaluations are 
presented in Section 4, while Section 5 discusses our BDSA 
approach in contrast with the related work. Section 6 draws 
the conclusion.

2 LITERATURE REVIEW

2.1 Malware Detection in Virtualised Infrastructure 
Malware refers to any executable which is designed to com-
promise the integrity of the system on which it is run. There 
are two prominent approaches to malware detection in cloud 
computing, namely in-VM and outside-VM interworking 
approach and hypervisor-assisted malware detection.

2.1.1 In-VM and Outside-VM Interworking Approach to
               Malware Detection

In-VM and outside-VM interworking detection consists of an 
in-VM agent running within the guest VM, and a remote scru-
tiny server monitoring the VM’s behaviour. When a potential 
malware execution is detected the in-VM agent sends the sus-
picious executable to the scrutiny server, which then uses the 
signature database to verify malware presence or otherwise 
and then informs the in-VM agent of the results.
     CloudAV, a cloud-based malware detection system fea-
turing multiple antivirus engines, employs in-VM and out-
side-VM interworking approach to protect the guest VMs 
against attacks [4]. Apparently the effectiveness of this 
scheme depends on the frequency at which the virus signa-
tures are updated by the antivirus vendors.
     The in-VM and outside-VM interworking approach is
also used by CuckooDroid, to detect mobile malware pres-
ence on Android devices [5]. It consists of an in-device agent 
which scans executables on the device and sends any suspi-
cious executable to a remote scrunity server which runs a 
hybrid of anomaly-based and signature-based malware 
detectors. The scheme first extracts malware features by 
using static as well as dynamic analysis on malware apps. 
The obtained features are then used to train a one-class Sup-
port Vector Machine (SVM) classifier for anomaly-based 
detection. Implemented on an emulated Android platform, 
CuckooDroid achieved a detection accuracy of 98.84 percent.
2.1.2 Hypervisor-Assisted Malware Detection

Hypervisor-assisted malware detection, on the other hand,
uses the underlying hypervisor to detect malware within
the guest VMs.

A hypervisor-assisted malware detection scheme is
designed in [6] to detect botnet activity within the guest
VMs. The scheme installs a network sniffer on the hypervi-
sor to monitor external traffic as well as inter-VM traffic.
Implemented on Xen, it is able to detect the presence of the
Zeus botnet on the guest VMs.

A hypervisor-assisted detection scheme is proposed in [7]
using guest application and network flow characteristics.
This scheme first uses LibVMI to extract key process feat-
ures from the processes running within VMs and then uses
tcpdump together with the CoralReef network packet analysis
tool from Center for Applied Internet Data Analysis (CAIDA)

to extract network flow features. The obtained features are 
then used to train one-class SVM classifiers to detect 
malware presence within guest VMs. Implemented on KVM, 
the scheme is able to detect well-known Distributed Denial 
of Service and botnet attacks such as Low Orbit Ion Cannon 
(LOIC) and Zeus. 
    The hypervisor-assisted detection is also used in Access- 
Miner [8]. Implemented as a custom hypervisor, Access- 
Miner monitors normal user behavior within the system 
and creates access activity models which are used for anom- 
aly-based malware detection. To ensure that the underlying 
hardware is protected, it intercepts the guest system call 
requests and uses a policy checker module to determine if it 
should access the system resource.

2.2 Security Analytics 
Security Analytics refers to the application of analytics in 
the context of cybersecurity [9]. Based on a variety of data 
collected from different points within an enterprise net- 
work, security analytics aims to detect previously undiscov- 
ered threats by use of analytic techniques.
     Common techniques of security analytics include cluster- 
ing and graph-based event correlation.

2.2.1 Clustering for Security Analytics
Clustering organises data items in an unlabeled dataset into 
groups based on their feature similarities [10]. For security 
analytics, clustering finds a pattern which generalises the 
characteristics of data items, ensuring that it is well general- 
ized to detect unknown attacks. Examples of cluster-based 
classifiers include K-means clustering and k-nearest neigh- 
bors, which are used in both intrusion detection and mal- 
ware detection. 
   Clustering is used for security analytics for industrial 
control systems [11] in an networked critical infrastructure 
(NCI) environment. First, data outputs from various net- 
work sensors are arranged as vectors and K-means cluster- 
ing is applied to group the vectors into clusters. The 
MapReduce model is then applied to the grouped clusters to 
find groupings of possible attack behaviour, thus allowing 
the detection to be carried out efficiently. 
     In [12] an “attack pyramid”- based scheme is proposed to 
detect advanced persistent threats (APTs) in a large enter- 
prise network environment. Based on threat tree modeling, 
different planes (namely hardware, user, network, applica- 
tion) to which an attack may be launched are placed hierar- 
chically with the end goal placed at the top. First, outputs 
from all available sensors in the network (e.g., network logs, 
execution traces, etc) are put into contexts. Then, in terms of 
the contexts various suspicious activities detected at each 
attack plane are correlated in a MapReduce model, which 
takes in all the sensor outputs and generates an event set 
describing potential APTs. Finally, an alert system deter- 
mines attack presence by calculating the confidence levels of 
each correlated event. 
    Security Intelligence techNology for Blocking APT (SIN- 
BAPT) [13] uses big data processing such as HDFS and 
MapReduce together to detect the presence of APTs in an 
enterprise network environment. Used for anomaly-based 
detection, the scheme collects log data from different sources 
(e.g., Netflow, application logs, etc) and applies a 
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MapReduce model for feature extraction. Once organized
into clusters, the data is then used to determine attack pres-
ence according to pre-defined rules.

2.2.2 Graph-Based Event Correlation

While clustering determines attack presence through group-
ing common attack characteristics, it is limited in establish-
ing an accurate correlation which may exist between events. 
This makes it difficult to accurately identify the sequences
of events leading to the presence of an attack within the net-
work, as well as the entry point of the attack.
     Graph-based event correlation overcomes this limitation
by representing the events from the logs obtained as 
sequences in a graph. Given a collection of logs from 
different points within the network (e.g., firewall logs, web 
server logs, etc.), these events are correlated in a graph with 
the event features (e.g., timestamp, source and destination 
IP, etc.) represented as vertices and their correlations as 
edges. This enables the accurate identification of the entry 
point which an attack enters, as well as the sequences of 
events which the attack undertakes.
     Graphs-based event correlation is used in BotCloud, a bot-
net detection system for large enterprise environments [14]. 
Based on the Netflow data which describe the various net-
work traffic flows between clients, the scheme represents the 
network flow between clients in the form of a dependency 
graph. The graph is then input into a MapReduce model to 
identify network IP associations using PageRank algorithm.
   Graphs-based event correlation is presented in the 
security framework designed to detect attacks within 
critical infrastructures [15]. The scheme collects events 
from differ-ent sources within the network, and generates 
a temporal graph model to derive different event 
correlations for threat detection.
  Relationships between files are represented as a graph to
detect malware presence [16]. The scheme first collects from
the clients the file lists which describe their mutual relation-
ships, and determines if there are potentially malicious rela-
tionships. The file associations are then used to generate an 
undirected weighted file relationship graph, and based on
the graph a belief propagation classifier is trained. On the 
dataset from the Comodo Cloud Security Center, the scheme 
achieved a detection accuracy of 95.81 percent.

2.3 Limitations of Existing Approaches

Existing approaches to detecting attack presence are limited
in terms of their ability to detect threats in real-time as well
as to scale across multiple hosts.

One of the limitations of existing security approaches
stems from the use of a dedicated signature database for
threat detection. This applies to approaches that feature a reg-
ularly updated attack signature database for threat detection.
Typically in the in-VM and outside-VM interworking
approach, an in-VM agent detects and passes any suspicious
file to the remote scrunity server, which uses the signature
database to determine if it is a malware. The dependence on a
regularly-updated signature database makes it limited in
detecting zero-day attacks. While BareCloud [17] and CloudAV
[4] attempt to get around this limitation by using multiple
antivirus engines for threat detection, they are still limited in
detecting previously undiscovered attacks due to the post

factum data in updating the signature database. This is further 
exacerbated by an increased number of false positives 
reported by the different antivirus engines. 
   Security analytics removes the need for signature data- 
base by correlating events from the collected logs, but they 
still suffer from the post factum data in training for threat 
detection.  Typically BotCloud [14] and Nazca [18] collect data 
over long periods of time (usually over a 24 hour period) and 
apply analytics for threat detection. While a long period of 
time allows for a rich collection of data, that entails a 
tendency in detecting threats which have already taken place 
over a breadth of time within the network. This makes it 
difficult, if not impossible, to focus on immediate events and 
take immediate actions against a compromised point within 
the network. 
   Another limitation of existing security approaches is the 
centralized execution process. For instance, SINBAPT [13] 
runs on a single host, collecting data from various points 
within the network and analysing them as a single centralized 
process. While centralized execution process is feasible in net- 
work environments in which there is a single centralized 
server responsible for monitoring all network components, it 
is infeasible for large network environments in which multi- 
ple guest VMs are hosted on different hosts and attack pres- 
ence has to be communicated to other hosts in near real-time. 

3 PROPOSED APPROACH

3.1 Overall Framework 
The basic idea of our proposed approach is to detect in real- 
time any malware and rookit attacks via a holistic and 
efficient use of all possible information obtained from the vir- 
tualized infrastructure, e.g., various network and user appli- 
cation logs. Our proposed approach is a big data problem for 
the following characteristics of the network and user applica- 
tion logs collected from a virtualized infrastructure: 

� Volume: Depending on the number of guest VMs and 
the size of the network, the amount of the network 
and user application logs to be collected can range 
from approximately 500 MB to 1 GB an hour; 

� Velocity: The network and user application logs are 
collected in real-time, in order to detect the presence 

of malware and rootkit attacks, accordingly the col- 
lected data containing its behavior needs to be proc- 
essed as soon as possible; 

� Veracity: Due to the “low and slow” approach that 
malware and rootkit take in hiding their presence 
within the guest VMs, data analysis has to rely upon 

             event correlation and advanced analytics. 
    The design principles, which are integral in the develop- 
ment of our BDSA approach to protecting virtualized infra-
structures, can be elaborated as follows. 

� Design Principle # 1 - Unsupervised classification: The 
attack detection system should be able to classify 
potential attack presence based on the data collected 
from the virtualized infrastructure over time. 

� Design Principle # 2 - Holistic prediction: The attack 
detection system should be able to identify potential 
attacks by correlating events on the data collected 
from multiple sources in the virtualized infrastructure. 
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� Design Principle # 3 - Real-time: The attack detection
system should be able to ascertain attack presence as
immediately as possible so as for the appropriate
countermeasures to be taken immediately.

� Design Principle # 4 - Efficiency: The attack detection
system should be able to detect attack presence at a
high computational efficiency, i.e., with as little per-
formance overhead as possible.

� Design Principle # 5 - Deployability: The attack detec-
tion system should be readily deployable in produc-
tion environment with minimal change required to
common production environments.

Fig. 1 illustrates the overall conceptual framework of our
proposed big data based security analytics approach, with
the different components highlighted in blue. Our BDSA
approach consists of two main phases, namely

� Extraction of attack features through graph-based
event correlation and MapReduce parser based iden-
tification of potential attack paths, and

� Determination of attack presence via two-step
     machine learning, namely logistic regression 
              and belief propagation.
Prior to the online detection of attacks, there is actually a  
system initialization, in which offline training of the logistic 
regression classifiers is carried out, that is, the stored fea-
tures are loaded from the Cassandra database to train the 
logistic regression classifiers. Specifically, well-known mali-
cious as well as benign port numbers are loaded to train a 
logistic regression classifier to determine if the incoming/
outgoing connections are indicative of an attack presence. 
Likewise, well-known malware and legitimate applications 
together with their associated ports are loaded to train a 
logistic regression classifier to determine if the behavior of
an application running within the guest VM is indicative of
an attack presence. These trained logistic regression classi-
fiers are ready for online use, upon the extraction of new 
attack features, to determine if the potential attack paths are 
indicative of attack presence.
     In the Extraction of Attack Features phase, first, it carries
out Graph-Based Event Correlation. Periodically collected 
from the guest VMs, network and user application logs are

stored in the HDFS. By assembling the information con- 
tained in these two logs, the Correlation Graph Assembler 
(CGA) forms correlation graphs. 
    Then, it carries out the Identification of Potential Attack 
Paths. A MapReduce model is used to parse the correlation 
graphs and identify the potential attack paths i.e., the most 
frequently occurring graph paths in terms of the guest VMs’ 
IP addresses. This is based on the observation that a com- 
promised guest VM tends to generate more traffic flows as it 
tries to establish communication with an attacker. 
    In the Determination of Attack Presence phase, two-step 
machine learning is employed, namely logistic regression 
and belief propagation are used. While the former is used to 
calculate attack’s conditional probabilities with respect to 
individual attributes, the latter is used to calculate the belief 
of an attack presence given these conditional attributes.
    From the potential attack paths, the monitored features are 
sorted out and passed into their logistic regression clas- 
sifiers to calculate attack’s conditional probabilities with 
respect to individual attributes. The conditional probabili- 
ties with respect to individual attributes are passed into 
belief propagation to calculate the belief of attack presence.
    Once attack presence is ascertained, the administrator is 
alarmed of the attack. Furthermore, the Cassandra database is 
updated with the newly-identified attack features versus the 
class ascertained (i.e., attack or benign), which are then used 
to retrain the logistic regression classifiers. 

3.2 Extraction of Attack Features
3.2.1 Graph-Based Event Correlation
The IP addresses of the guest VMs are used to obtain the 
memory process lists on the VMs as well as the ports to 
which the processes are listening. 
    TShark is used to obtain the network logs containing the 
traffic flows of the guest VMs. Specifically it collects the 
source and the destination IP addresses along with their 
respective port numbers. It also undertakes the remote exe- 
cution of the netstat command to obtain the guest VMs’ 
memory process lists. 
   The network logs contain connection entries describing 
the guest VMs’ internal as well as external network connec- 
tions, namely the source and destination IP addresses (i.e., 
IPsource and IPdestination) as well as the port numbers (i.e., 
Portsource and Portdestination) used. Each entry in the network 
logs is of the format as below: 

net log :¼ hIPsource; Portsource; IPdestination;

Portdestinationi:
(1)

    The user application logs, on the other hand, contain pro- 
cess entries detailing the applications running within the 
guest VMs and the port numbers on which the applications 
are listening for connections. Each entry in the application 
logs is of the format as below, 

app log :¼ hIPguest; Appguest; UserIDApp;

PortAppi;
(2)

where IPguest refers to the guest VM’s IP address, Appguest 
refers to the application running on the VM, UserIDApp 
refers to the user ID to which the user application is 

Fig. 1. Conceptual framework of the proposed big data based security
analytics (BDSA) approach.
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running, and PortApp refers to the port opened by the
application.

Once obtained, the log entries are used to form a correla-
tion graph based on the following observations. The first
observation is that a compromised guest VM tends to com-
municate more frequently with other guest VMs, resulting
in an increase in the network traffic containing its IP
address. The second observation is that the communication
means of the malware running on the compromised VM is
through its execution on it and listening for external connec-
tions. In the light of these two observations a correlation
graph is formed which best describes the guest VMs’ behav-
ior by assembling the information obtained of the network
and user application logs.

Before it proceeds to form the correlation graph, first only
those entries with the guest VMs’ IP addresses either as the
source or the destination are filtered out of the network
logs. This eliminates the routine traffic flows which periodi-
cally check the status of the host high performance cluster
(HPC) by applications such as Apache Hadoop.

The filtered network log entries are then assembled with
the user application logs according to the guest VMs’ IPs
and the port numbers which are opened by the user applica-
tions. A path is grown with the monitored features as verti-
ces and their correlations as edges of the form hIPsource,
Portsource; IPdestination; Portdestination, Appguest, PortApp, UserIDAppi.
As a result a correlation graph is formed an example of
which is shown in Fig. 2.

The formed correlation graph, consisting of multiple
paths is then stored in the HDFS on the HPC node as a new
entry, called correlated log, of the format as below:

correlated log :¼ hIPsource; Portsource; IPdestination;

Portdestination; Appguest;

UserIDAppi:
(3)

3.2.2 MapReduce Parser for the Identification of

Potential Attack Paths

Identification of potential attack paths is carried out by pars-
ing the correlation graph with a MapReduce model. MapRe-
duce is a distributed programming model which consists of
two processes namelyMap and Reduce.

In theMap process, key-value pairs of the form (ki, vi) are
sorted from the correlation graph, where ki denotes the
monitored traffic flow while vi is the count of occurrence of
the traffic flow in the graph. Taking the correlation graph in
Fig. 2 as an example, the Map process represents each path
in the graph as a key ki and its occurrence as a value vi as
shown in Snippet 1.

Snippet 1. (path, count) pairs of correlation graph sorted 
in Map process
(< 192.168.100.10, 6666, 192.168.100.11,

164, backdoor, 1000> , 1)

(< 192.168.100.10, 6666, 58.251.76.112,
10036, client, 1000> , 1)

(< 192.168.100.10, 80, 173.194.45.47,
12150, firefox, 1000> , 1)

In the Reduce process, the key-value pairs obtained dur- 
ing the Map process are unified. With the same example the 
Reduce process analyzes the intermediate key-value pairs 
generated from the Map process, and unifies all those key- 
value pairs, aggregating their occurrence counts, if their 
source IPs as well as source ports are the same regardless 
of the other elements on the path. This generates a set of 
new- variant key-value pairs (k0i, v0i), where k0i represents the 
unified path for a distinctive source IP and port, while v0i is 
the total occurrence counts within the graph. For the 
example correlation graph above, the (unified path, 
aggregated counts) pairs are shown in Snippet 2. 

Snippet 2. (unified path, aggregated counts) pairs from 
Reduce process
(< 192.168.100.10, 6666, ..,

.., .., ..> , 2)

(< 192.168.100.10, 80, 173.194.45.47,
12150, firefox, 1000> , 1)

Flagged up by the MapReduce parser’s output, any graph 
paths with an occurrence count greater than one are poten- 
tial attack paths and are thus picked up and passed onto 
the determination of attack presence phase. For the 
example correlation graph above, the potential attack paths 
are identified (marked in red) as shown in Fig. 3. 

3.3 Determination of Attack Presence 
The potential attack paths identified from the correlation 
graph as flagged up by the MapReduce parser can be read- 
ily retrieved into the different attack features. We refer to 
the stripping process as attack feature Sorter out of attack 
paths. For the determination of attack presence two-step 
machine learning is used, namely logistic regression and 
belief propagation. 

Logistic regression provides a quick means of ascertain- 
ing whether a given test data projects to one of the two pre- 
defined classes, as well as supporting the quick training of a 

Fig. 2. Correlation graph assembled from network and user logs. Fig. 3. Potential attack paths in the correlation graph as flagged up by
MapReduce parser.
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classifier given a training set, ðX � Y Þ, which denotes a
series of features versus classes. This makes it suitable for
calculating attack’s conditional probabilities with respect to
(wrt) individual attributes. Furthermore, whenever an
attack presence has been ascertained, the logistic regression
classifiers can be quickly retrained in real-time using the
newly-identified attack features for future attack detection.

Belief propagation takes into account the conditional
probabilities in order to calculate the belief of attack pres-
ence within the virtualized environment. This allows for a
holistic approach to attack detection, ensuring that the cal-
culated belief accurately reflects the probability contribu-
tions from the individual attributes.

The determination of attack presence consists of two
phases, i.e.,

� Training and retraining of logistic regression
classifiers

� Attack classification using belief propagation
Conditional probabilities with respect to the attributes

are calculated based on the features observed from the logs
using the trained logistic regression classifiers. Using any of
the obtained conditional probabilities with respect to indi-
vidual attributes alone is not enough to obtain a complete
perspective of the attack probability. Therefore, observa-
tions of all attributes should be taken advantage of to ascer-
tain attack presence. Belief propagation is used to calculate
the belief of an attack by taking into consideration attack’s
conditional probabilities with respect to all the attributes.

3.3.1 Training and Retraining of Logistic Regression

Classifiers

Used in binary classification problems, logistic regression
provides a quick means of training a classifier which is used
to determine if a particular test data projects to one of the
two pre-defined classes.

Logistic regression operates as follows. Let C be a set of
two pre-defined classes, i.e., fc; �cg or f0; 1g (e.g., fattack;
benigng). Suppose there are n independent features and a
feature data series is of the form x ¼ ½x1;x2; . . . ;xn�T . Let
X ¼ fxð1Þ;xð2Þ; ::xðNÞg be the series ofN obtained data of fea-
ture data series x, where xj denotes the jth sampled data of
x. Let Y ¼ fyð1Þ; yð2Þ; . . . :; yðNÞg be the corresponding class
set specifying which one of the two pre-defined classes c
and �c each feature x projects to.

Four attributes are defined to characterize a potential
attack, namely incoming network connections (in connect),
outgoing network connections(out connect), unknown
binary executions (unknown exect) and opened ports
(port change). While the monitored features refer to the sen-
sor data out of the computer system being monitored, attrib-
utes are defined to characterize the situation where an
attack may present. The first two attributes are used to
determine attack presence based on their source and desti-
nation port numbers, while the latter two attributes are
used to determine attack presence based on the applications
running within the guest VMs as well as the ports opened
by the applications.

In order to determine the presence of the attack with
respect to the attributes, logistic regression classifiers are
trained for analyzing the source and destination ports as

well as the applications and the ports which are opened 
in the guest VMs. 
    Logistic regression calculates the probability P of attack at 
which a feature x projects to one of the two pre-defined 
classes using the logit function as below: 

1P ðy ¼ cjxÞ ¼
1 þ e�� ; (4) 

where v0; v1; v2; . . .  ; vn are the weighting coefficients, and

� ¼ v0 þ v1x1 þ v2x2 þ � � � þ vnxn: (5) 

    In the context of our BDSA approach, we set two logistic  
regression classifiers LRapp and LRport using Eq. (4). Once  
trained, beforehand in a batch, and retrained with newly-  
identified attack features, the conditional probabilities with  
respect to individual attributes are calculated using the  
respective logit functions.  
    To train a logistic classifier for port analysis we have 
gathered a set of 300 port numbers used by different malware 

applications as well as another set of 300 ports used by 
legitimate applications (e.g., SSH) to be the training data set. 
While the malware port numbers are obtained from SANS 
[19], the port numbers used by legitimate applications are 
obtained from Internet Assigned Numbers Authority (IANA) 
[20]. 
    In order to train the logistic regression classifier, the 
obtained ports are first categorized into two groups, namely 
sys port containing the legitimate port numbers, and malware 
port containing the malware port numbers. Each of the port 
categories is then encoded with a numerical value, with sys 
port assigned a value of 1 while malware port a value of 2, so 
that they can be represented as feature vectors xport during the 
training of the logistic regression classifier. 
    The port numbers are treated as numerical values, in order 
to cater for the port numbers which do not deviate 
significantly from those in the training set and thus belong to 
the same port category. For example the nginx web server 
listens for connections on port 80 when deployed in a guest 
VM without any web server running on it prior to its 
deployment. When deployed on a guest VM which already 
has another web server (e.g., Apache) running on it, however, 
it needs to update its default port to another value (e.g., 82) 
since the Apache web server also listens for con- nections on 
port 80 to avoid causing access conflicts. Therefore, by 
treating the port numbers as numerical values in the feature 
set, it allows minor port changes such as this to be classified as 
legitimate port numbers without misclassification. During the 
experiments, we find that the trained port logistic regression 
classifier is able to identify a port number as belonging to the 
same port category if it does not deviate from the training set 
port beyond 2 (i.e., port 82 is classified as a legitimate port due 
to its close proximity to port 80). 
    Table 1 shows the port numbers together with their 
encoded port category values and their classifications, with 0 
representing a legitimate port and 1 representing a malware 
port. 
    Using the representation as shown in Table 1, a training set 
ðXport � YportÞ are created. Xport consists of a series of 
feature vectors xport each of which is of the form xport ¼ T 

½xport number; xport category value�, and Yport contains the
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corresponding class which each xport projects to. Using the
first entry in Table 1 as an example, its feature vector
xsys port is represented as ½22; 1�T while its corresponding
class vector ysys port is represented as 0.

The obtained training set Xport = fxð1Þ;xð2Þ; . . . ;xðiÞg
together with its corresponding class vector Yport = fyð1Þ;
yð2Þ; . . . ; yðiÞg are then used to train a logistic regression
classifier using scikit-learn which uses Eq. (6) to train the
classifier. The training set ðXport � YportÞ are stored in the
Cassandra distributed database

P ðAttackjxportÞ ¼
1

1þ e��port
; (6)

where,

�port ¼ v0 þ v1x1 þ v2x2 þ � � � þ vn:xn (7)

Similarly, to train a logistic regression classifier for appli-
cation analysis we have identified benign internet-interfac-
ing user applications (e.g., firefox for web browsing,
nginx for web server) as well as those applications that are
frequently used by malware and botnet programs (e.g., net-
cat). The identified applications are categorized into three
categories: web_app, sys_util, and unknown depending on
their usages. Each of the application category is then
encoded with a numerical value with web_app assigned a
value of 1, sys_util a value of 2, and unknown a value of 3.
Similarly each of the user ID is encoded with a numerical
value, with user ID 0 (i.e., root user) assigned a value of 0
and user ID 1000 (i.e., non-root user) assigned a value of 1.
Table 2 shows the application categories and the user IDs
together with their respective category values and classifica-
tions, with 0 representing a legitimate application and 1 rep-
resenting a possible malware application.

Once the features are encoded with numerical values, a
training data set ðXapp � YappÞ then is formed ,Xapp the series
of feature data series xapp ¼ ½xapp category value;xuser id value;xport�T
together with Yapp containing the corresponding class which
each xapp projects to. Using the first entry in Table 2 as an
example, its feature vector xweb app is represented as ½1; 1; 80�T
and its corresponding class vector yweb app is represented as 0.

The training set Xapp = fxð1Þ;xð2Þ; . . . ;xðiÞg together with

its corresponding class vector Yapp = fyð1Þ; yð2Þ; . . . ; yðiÞg
are then used to train a logistic regression classifier using
scikit-learn which uses Eq. (8) to train the classifier. The
training set ðXapp � YappÞ are stored in the Cassandra distrib-
uted database as separate column tables

P ðAttackjxappÞ ¼ 1
1þe��app ; (8)

where,

�app ¼ v0 þ v1x1 þ v2x2 þ � � � þ vnxn: (9) 

It should be noted that for each logistic regression classi-  
fier, it should have its own weighting coefficients, corre-  
sponding the respective feature vector. During the training 

of the logisitc regression classifers for our proposed BDSA 

approach, the scikit-learn machine learning 
package uses the Coordinate Descent [21] algorithm to 
automatically calculate the weights v0; v1; v2; ::; vj for a 
given training set ðX � Y Þ. 

Unknown ports and application are ascertained using 
the trained logistic classifiers. The column tables of the 
respective features in the Cassandra database are then 
updated and used to retrain the logistic classifiers for future 
classifi-cation. The trained port and application logistic 
regression classifiers are used to calculate the conditional 
probabilities which are input into belief propagation, 
as inputs their respective feature vectors. 

3.3.2 Attack Classification Using Belief Propagation 
Presence of attack is determined by analyzing four attrib-
utes, namely incoming network connections (in_connect), 
outgoing network connections (out_connect), unknown 
binary executions (unknown_exect) and opened ports 
(port_change). This is based on the observation that the pres- 
ence of an attack tends to result in changes in these attrib- 
utes, as the infected guest VM attempts to establish external 
connections with the remote attacker. With each attribute 
represented by a node, they form a Bayesian network 
as illustrated in Fig. 4a. 

Used in graphical models such as Bayesian networks 
and Markov Random Fields (MRF), belief propagation is 
used calculate the probability distribution (i.e., belief) 
of a target node’s state using message passing [22]. Given 
a node v in a Bayesian network, the belief BELðvÞ of its 
state is calculated using the marginal probabilities from its 
neighbouring nodes. Belief propagation takes into account 
the neighbouring nodes’ 

TABLE 1
Examples of Training Set: Ports versus Classes

Port number ðx1Þ Port category Port category
value ðx2Þ

Class ðyÞ

22 sys_port 1 0
80 sys_port 1 0
8,080 sys_port 1 0
6,666 malware_port 2 1
1,090 malware_port 2 1
7,777 malware_port 2 1

Fig. 4. (a) Bayesian network of attributes, (b) Bayesian network with fac-
tor graphs.

TABLE 2
Training Set: Applications versus Classes

Application
category

Application
category
value ðx1Þ

User
ID

User
ID
value ðx2Þ

Port
number
ðx3Þ

Class
ðyÞ

web_app 1 1,000 1 80 0
web_app 1 0 0 81 0
sys_util 2 0 0 5,353 0
unknown 3 0 0 164 1
unknown 3 1,000 1 7,777 1
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individual influence in calculating the belief of v’s state, and is
therefore used in our BDSA approach for determining attack
presence.

Given feature vectors (i.e., xin connect, xout connect;xport change,
xunknown exect) which are of the following form,

xin connect ¼ ½xport number;xport category value�T

xout connect ¼ ½xport number;xport category value�T

xport change ¼ ½xapp category value;xuser id value;xport�T

xunknown exect ¼ ½xapp category value;xuser id value;xport�T ;

(10)

the port and application logistic regression classifiers
(i.e., LRport and LRapp, respectively) which are trained using
scikit-learn produce as outputs their respective condi-
tional probabilities which calculate the probabilities of each
feature belonging to each of the two pre-defined classes
(i.e., Attack and Benign) which are of the form as below:

Pport changeðAttackjxport changeÞ ¼
�
Pport change
Attack ;

P port change
Benign

�

Punknown exectðAttackjxunknown exectÞ ¼
�
Punknown exect
Attack ;

Punknown exect
Benign

�

Pin connectðAttackjxin connect
port Þ ¼

�
Pin connect
Attack ;

P in connect
Benign

�

Pout connectðAttackjxout connect
port Þ ¼

�
Pout connect
Attack ;

P out connect
Benign

�
:

(11)

PAttack represents the conditional probability with respect
to an attribute being indicative of an attack, and PBenign 
being the conditional probability with respect to an attribute
being indicative of a benign. Intuitively if a given attribute
projects to an attack, then its attack probability (i.e., PAttack)
would be much higher than its benign probability (i.e.,
PBenign) and the reverse would be true if it were benign.   

The training set for xin connect and xout connect corresponds 
to the entries as shown in Table 1, and the training set for
xport change and xunknown exect corresponds to the entries as 
shown in Table 2.

While the trained port and application logistic regression
classifiers provide the conditional probabilities with respect
to individual attributes, each of them on its own is not able
to provide a complete picture of attacks within the virtual-
ized environment. Therefore, belief propagation is applied
to calculate the belief in the presence of attack given these
conditional probabilities.
To apply belief propagation, the monitored features are

first represented as nodes in a Bayesian network as shown
in Fig. 4a. The Bayesian network provides a representation
of the relationship between different features in determin-
ing attack presence. Each node consists of a Conditional

 Probability Table(CPT) containing the marginal probabili-  
ties of each possible state (i.e., attack or benign) with respect  
to the attribute. The initialized CPTs of each of the nodes in  
the Bayesian network are shown in Tables 3a, 3b, 3c, 3d,  
and 3e. The initialised values in the CPTs of each node act  
as placeholders to ensure consistency prior to the execution  
of our BDSA approach.  
     During the execution of the approach, however, the CPTs  
of the monitored features are updated with the respective  
attack and benign probabilities (i.e., PAttack and PBenign)  
which are calculated by the trained port and application  
logistic regression classifiers.  
     After the marginal probabilities are represented as CPTs,  
the belief (BELAttack) of the Attack node’s state is then calcu-  
lated using message-passing. This involves passing the mar-  
ginal probabilities with respect to individual attributes (i.e.,  
port change, unknown exect, in connect, and out connect)  
into the Attack node in the identified Bayesian network. 
Their attack probabilities (i.e., ½PAttack�) are then aggregated  
in the Attack node before calculating BELAttack as below: 

BELAttack ¼ Pport changeðAttackjxport changeÞ
� Punknown exectðAttackjxunknown exectÞ
� Pin connectðAttackjxin connect

port Þ
� Pout connectðAttackjxout connect

port Þ:

(12)

   However one of the limitations of this approach is the  
size of the CPT table for the Attack node. Given the number  
of nodes involved, the Attack node has to maintain 32  entries 
(25 ¼ 32) containing the conditional probability dis-  
tributions of each of the four nodes within the Bayesian net-  
work as well as its own attack probabilities obtained  
through applying Eq. (12). In addition it also makes it diffi-  
cult to update the CPT entries within the Attack node effi-  
ciently to reflect the updated CPT values of the individual  
nodes, as they are updated during the execution of our  
BDSA approach. The individual CPTs of the attributes as 

well as the joint conditional probabilities between them are 

therefore represented as a factor graph [23].  
   Used in factor graphs to represent the structure of a fac-  
torization, factor graphs in a Bayesian network encode the  

individual as well as joint Conditional Probability Tables  

(CPTs) among the nodes in the Bayesian network [23].  
Given belief propagation’s message-passing formula to cal 
culating marginal probabilities, representing the CPTs as  
factor graphs allows the changes in the local CPTs to be 

TABLE 3
CPTs

8 IEEE TRANSACTIONS ON BIG DATA, VOL. 3, NO. X, XXXXX 2017



tracked more efficiently during the execution of the
algorithm.

In the updated Bayesian network identified in Fig. 4b, the
factor graphs are illustrated by red square boxes together.
Factor graphs Fexe, Fin, Fout, and Fport represent the CPTs of
the individual attributes, Fattack represent the joint CPT
between unknown_exect, in_connect, and Attack which is of
the following form as shown in Table 4.

The use of factor graphs reduces the number of entries in
the joint conditional probability distributions for the Attack
node (denoted by Fattack) since it only needs to track 8
entries representing the conditional probabilities between 3
nodes (i.e., unknown_exect, in_connect, and Attack) as shown
in Table 4. This makes it easier to update its conditional
probability values during the execution of our BDSA
approach.

The process of belief propagation can further be
explained, with an example of the potential attack paths as
shown in Fig. 2.

Given a potential attack path as shown in Snippet 3, the
logistic regression classifiers for unknown exect as well as
in connect determine if the application and the incoming con-
nection, respectively, are indicative of a malware attack pres-
ence. First, the application details (i.e., backdoor, unknown,
1000, 164) and the incoming connection details (i.e.,
192.168.100.10, 6666) are extracted from the attack path. They
are then represented as feature vectors and put as test data to
their respective classifiers. Similarly, for the logistic regression
classifiers for out connect and change port, the outgoing con-
nection (i.e., 192.168.100.11, 164) and application port details
(164, malware port) are extracted and then put as test data to
their respective logistic regression classifiers.

Snippet 3. Example of potential attack path

(< 192.168.100.10, 6666, 192.168.100.11,
164, backdoor, 1000> , 1)

Using the updated Bayesian network with factor graphs,
the message-passing approach of belief propagation works as
follows. Upon receiving the marginal probabilities from their
respective logistic regression classifiers, each of the nodes in
the updated Bayesian network calculates a message m which
represents the probability of their respective attributes being
an attack (Attack) or benign (Benign). The messages m are
passed into theAttack node to calculate beliefBELAttack of its
state and is calculated as below, where each V corresponds
to each of the nodes in the Bayesian network (i.e.,

V1 ¼ unknown exect, V2 ¼ in connect, V3 ¼ out connect,
and V4 ¼ port change) 

mexe!AttackðAttackÞ ¼
X

exe2V1

F ðexe; attackÞ

min!AttackðAttackÞ ¼
X
in2V2

F ðin; attackÞ

mout!AttackðAttackÞ ¼
X

out2V3

F ðout; attackÞ

mport!AttackðAttackÞ ¼
X

port2V4

F ðport; attackÞ:

(13)

mattack ¼
unknown exect

While the messages from the out connect and port change
(i.e., mout and mport, respectively) directly go into the Attack 
node for calculation, the messages from unknown exect and
in connect (i.e., mexe and min, respectively) are passed into  
factor node Fattack to calculate their joint conditional proba- 
bility distribution which reflects their mutual relationship.
This is done by multiplying each entry in Fattack with mexe 
and min, before summing over all possible states (i.e., Attack 

and Benign) of the unknown_exect and in_connect nodes.
This results in the generation of a message mF attack which is 
calculated as below, and passed into the Attack nodeX X

in connect

Fattackðunknown exect;

in connectÞ � mexe � min:

(14)

Using the probability values calculated by the
out connect and change port nodes(i.e., mout and mport 
respectively), the belief BELAttack is calculated as below:

BELAttack ¼ mport � mFattack
� mout: (15

       Algorithm 1 provides the pesucode of the belief propa- 
gation algorithm which is used in our BDSA approach. 

Algorithm 1. Belief Propagation for BDSA

Input: Pport change, Punknown exect, Pin connect, and Pout connect

1: Initialize: Create the Bayesian network of attack features
using factor graphs as shown in Fig. 4b

2: Set the factor graphs Fexe, Fin, Fout, and Fport with the
placeholder CPTs as shown in Tables 3a � 3e.

3: while True do
4: Update the factor graphs Fexe, Fin, Fout, and Fport with

the respective conditional probabilities PAttack and PBenign.
5: Calculate mexe!Attack, min!Attack, mout!Attack, and

mport!Attack

6: For unknown exect and in connect, calculate Fattack

using Eq. (14).
7: Calculate BELAttack using Eq. (15).
8: if BELAttack < lower belief then
9: Alarm “attack presence”.

10: Update the tables in Cassandra DB with newly-
identified attack features.

11: End do
12: End

At the initialization phase, the prior probabilities with 

respect to individual attributes are assigned values based
on the initial observations obtained offline. During the 

lifetime of the execution of the BDSA approach, the

TABLE 4
Joint CPT Between Unknown_Exect,

in_Connect, and Attack

nodeunknown exect nodein connect nodeAttack

Attack Attack Attack
Attack Benign Attack
Benign Attack Attack
Benign Benign Attack
Attack Attack Benign
Attack Benign Benign
Benign Attack Benign
Benign Benign Benign
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probabilities contained in the factor nodes are updated
based on the updated logistic classifiers values.

3.4 Overall Algorithm of BDSA

Our BDSA approach can be formulated in pseudocodes as
shown in Algorithm 2. The overall information flows of our
BDSA approach can be illustrated as in Fig. 5.

Algorithm 2. Security Analytics in BDSA

1: Initialize: Obtain benign and malicious parameters of the
attack features from Cassandra DB.

2: Train classifiers for monitored features using Logistic
Regression.

3: while True do
4: Collect network and user application logs from guest

VMs.
5: Filter network log entries using the guest VMs’ IP

addresses.
6: Form correlated_log.
7: Use correlated_log to form a correlation graph G.
8: Input G into MapReduce parser to identify potential

attack paths fattack pathsg, which is a sub-set of all graph
paths as shown in Fig. 3.

9: for each attack path in fattack pathsg do
10: i 0.
11: for each monitored feature tfeature in attack path do
12: Calculate Pport change, Punknown exect, Pin connect, and

P out connect
13: Pass Pport change, Punknown exect, Pin connect, and

P out connect into Step. 4 of Algorithm 1.
14: End do
15: End do
16: End

The execution of the proposed BDSA approach begins by
loading all well-known malicious as well as benign port
numbers from the distributed Cassandra database. Both of
these port types are then used to train a classifier using
using logistic regression. This allows the proposed
approach to determine on-the-fly the probability of an
unknown port being malicious, before passing it to the
belief propagation framework for final aggregation.

A trained logistic classifier is used to determine if any of
the attributes are malicious or benign, before passing their
respective probabilities to the belief propagation process for

Fig. 5. Information flows in our BDSA approach.

Fig. 6. Testbed system topology.

final probability aggregation. Belief propagation process
takes attack’s conditional probabilities with respect to
individual attributes to calculate the belief of attack
presence, taking into account each conditional probability
values to ensure that the value obtained is not influenced
only by any conditional probability alone.

4 EXPERIMENTAL EVALUATION

4.1 Testbed Setup
The proposed big data based security analytics was imple- 
mented using Python. For experiments, BDSA is run on the
HPC server nodes running Ubuntu 14.04 in the on-campus
Virtualiszation Open Technology Research (VOTER) net- 
work. Fig. 6 illustrates the testbed setup in prototyping the
proposed BDSA approach, while the software stack on each
HPC node is illustrated in Fig. 7. Each of these servers con- 
sists of an Intel Xeon quadcore processor at 2.66 GHz along
with 12 GBs of memory, with Linux kernel version 3.18.18
(64-bit) running on it. A virtualization environment is first
set up using Kernel-based Virtual Machine (KVM) on each
of the HPC nodes to enable multiple guest VMs to be run
on them, as well as support their migration across the
nodes. Apache Hadoop is then installed on the server nodes
to support distributed log storage, and Apache Spark is
installed to provide real-time data collection and
MapReduce parsing. Cassandra columnar database system
is installed on top of it to support distributed storage of
identified

Fig. 7. Software stack on HPC node.
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malicious applications and ports, as well as the real-time re-
training of the logistic regression classifiers. Finally the sci-
kit-learn Python machine learning package is then installed
on the nodes to enable the creation of logistic regression
classifiers for the BDSA approach.

Based on our experiments, an attack path is considered
malicious if the belief BELAttack calculated from belief prop-
agation is below the threshold lower belief ¼ 0:2.

The BDSA approach is evaluated by creating a guest VM
running CentOS 6.5 as well as another two guest VMs run-
ning Ubuntu 14.04 (64-bit) on one of the aforementioned
HPC server nodes. Aspects for evaluation include the ability
to detect both userspace malware as well as kernel-level
rootkit attacks and the time taken to detect the presence of
attacks within the guest VMs.

4.2 Detection of Userspace Malware and Kernel-
Level Rootkits

The ability of the BDSA approach to detect different mal-
ware attacks is evaluated by executing the two userspace
malware programs as well as the two kernel-level rootkits
on the guest VMs. The malware and rootkits are taken from
PacketStorm [24] as shown in Table 5. They were selected
due to the availability of their source code, which enables
the severity of their attacks to be modified and tested
against our BDSA approach.

4.2.1 Detection of Userspace Malware

Also known as application-levelmalware, userspace malware
runs at the application-level of the guest operating system
alongside other legitimate applications. The ability of our
BDSA approach to detect userspace malware is evaluated
by executing the aforementioned userspace malware on the
guest VMs.

In order to run the userspacemalware, a test scenario is set
up, that is, one guest VM acts as an attacker while another
guest acts as an attack victim. The attacker VM is then made
to listen to different non-standard port numbers using net-

cat, and then runs the reverse shellcode on the victim VM.
The same test scenario is used for creating a Command &
Control (C & C) botnet, by running the server component of

the botnet on the attacker VM and its client component on the  
guest VM. In both of the test scenarios, the userspace malware 

is executed as is with only the hard-coded destination IP  
addresses and the port numbers modified.           
   Both userspace malware programs are executed 5 times  
with up to three guest VMs. In all cases, our BDSA approach is 
able to detect them through monitoring the communication 
flows between them as well as the ports which are opened on 
the guest VMs. 
4.2.2 Detection of Kernel-Level Rootkits
While userspace malware runs at the application-level  
alongside other legitimate applications, kernel-level rootkits 
run within the kernel of the operating system. Rootkit nor- 
mally proceeds in two steps. First, rootkit makes attempts to 
gain privileged level (root) access into the operating system. 
Then, it installs itself into the operating system kernel as a 
Loadable Kernel Module (LKM). Because it is the privileged 
level at which they are executed, rootkits are difficult to be 
detected using traditional application-level malware detection 
approaches.  
    The ability of our BDSA approach to detect kernel-level 
rootkits is evaluated by executing the XingYiQuan and Azazel 
rootkits on the guest VMs. These rootkits take control of the 
guest VM by modifying the underlying system call table  
(sys_call_table) entries and establishing external net- 

work connections using the Netfilter kernel module, which 
thus makes it difficult for application-level firewalls to detect 
the communication flows. However, while XingyiQuan is not 
persistent across reboots Azazel is persistent in the guest VM’s 
kernel across boots. 
   As in the case for user-level malware in order to run root-
kits, a client-server test scenario is set up, that is, one 
guest VM acts as an attacker while another VM acts as an 
attack victim. The rootkits are then run on the client, 
with the attacker VM made to listen for connections using 
netcat. 
   Both rootkits are executed 5 times with up to three guest 
VMs. In all cases, our BDSA approach is able to detect them. 
By remotely executing the netstat command at the root 
evel, our BDSA approach is able to detect the 
applications as well as the ports which are being opened by 
the rootkits. 

4.3 Measurement of the Average Detection Time 
In order to measure the amount of time taken for our BDSA  
approach to detect attack presence in the guest VMs, the  two 
userspace malware programs as well as the two kernel-level 
rootkits taken from PacketStorm [24] as shown in Table 5 are 
executed on the guest VMs. The tests are carried out in 3 cases, 
namely with 1 guest VM, with 2 guest VMs, and with 3 
guest VMs, respectively.  
   In each test first the malware programs and rootkits are  
executed in their respective execution spaces on the guest  
VMs, with the BDSA approach running on the HPC host.  The 
malware programs and rootkits are executed on the guest 
VMs, and the detection time for each attack execution is 
recorded accordingly. The detection time D of one test is the 
summation of the recorded times after the execution of  the 
malware and rootkits, that is, 

D ¼ Tmalware1 þ Tmalware2 þ Trootkit1 þ Trootkit2:

TABLE 5
Malware and Rootkits Tested

Malware/
Rootkit

Category Execution space
on guest VM

Characteristics

Reverse
shellcode

Malware User space Establishing an
external reverse
shell connection

C & C botnet Malware User space Creating a
master-slave
botnet connection

XingYiQuan Rootkit Kernel space Executing in
the guest VM’s
kernel and
establishing an
external connection

Azazel Rootkit Kernel space Executing in the
guest VM’s kernel
and establishing
an external
connection
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After the execution of each of the malware or rootkit in
each test an interval of wait for approximately two minutes
is taken before the test is repeated for the next time. Given
the different execution space in which the tested malware
and rookits operate on the guest VM, this inter-test waiting
helps to prevent the detection time from being affected by
caching, typically employed by the guest OS to store fre-
quently triggered instructions to facilitate faster execution.

The tests are repeated 10 times consecutively, with an
interval of wait between the two tests. The 10 times of the
consecutively repeated tests are set as one round. For each
case of 1, 2, and 3 VMs 5 rounds of tests are carried out.
After each round of tests, a cease of attacks for approxi-
mately two minutes is taken to remove the collected logs
from the HDFS; then, it resumes a new round. The detection
times are averaged across the 5 rounds to eliminate poten-
tial inconsistency of measurements. That is, in the jth test
for the ith case, the detection timeDij is as below:

Dij ¼
X5
k¼1

Dk
ij

!
=5; (16)

where k is the index for the rounds of tests (i.e., k = 1,..., 5); i
is the index for the cases of VMs (i.e., i =1,2,3); and j is the
index for the consecutively repeated tests (i.e., j=1,..,10), Dij

is the bundled time of detecting all the 4 malware programs
and rootkits in Table 5 after being launched as a pack of
attacks on to the guest VMs.

Therefore, in each case of the 1, 2 and 3 VMs there are 50
measurements of the detection time which are averaged
across the 5 rounds of tests for consistency purpose. The
resulting 10 detection times Dij are then illustrated in box-
plots as shown in Fig. 8.

As expected, there is only a slight increase in the detec-
tion time as the number of guest VMs increases. When
tested with a single VM, the median detection time in the
boxplot is approximately 0.06 ms which increases to 0.07 ms
with the introduction of a second VM. The slight increase in
median detection time is because the two guest VMs run
different operating systems, with one running Ubuntu 14.04
and the other running CentOS 6.5. This results in a delay

time in obtaining the guest process lists from the VMs, due  to
the difference in processing remote command executions 

(netstat) by the guest OSes. While both guest OSes are able
to process the same remote command executions, the CentOS
guest OS uses as its access control module the stricter SeLinux
(Secure Linux) instead of the relatively more flexible
AppArmor access control module used in the Ubuntu guest
OS. This meant that the SeLinux conducts more rigorous
checks on the remote command execution before allowing it to
be executed on the guest VM, causing an increase in delay as a
result.  

In addition, the two outlier detection times in the case
of two guest VMs stems from the tendency of the guest SSH
server to reset itself periodically after a certain number of
connections (1,000 in this case) as a built-in mechanism to
prevent against Distributed Denial of Service attacks.
With the introduction of a third guest VM running Ubuntu 
14.04, the median detection time increased slightly up to 0.066
ms which is relatively consistent with previous case with two
guest VMs. This is due to two of the guest OSes running the
more flexible AppArmor access control module, which enables
the remote commmand executions to  be executed on the guest
VMs and the results to be obtained  quicker. However the
number of outlier detection times also  increased from two in
the previous case to four, reflecting the guest SSH server
running in the third guest VM to periodically reset itself to
prevent against DDoS attacks.

4.4 Comparisons with Existing Security Approach
In order to evaluate comparatively the performance of our
BDSA approach, we have also implemented the VMI-based
Livewire virtualization security approach based on the work
by Garfinkel et al. [25].

The reason of choice behind this is that Livewire is
similar approach to threat detection in using external
monitoring of  guest VM behaviour. Specifically, Livewire
periodically polls the guest VM behavior through executing
remote commands such as ps as well as obtaining the
hardware-level  information to infer the guest VM’s behavior.
Due to the similarity in this regard to our BDSA approach in
monitoring threat in guest VMs, Livewire is used for the
comparative evaluation. 

The comparative evaluation scenario is carried out as
fol- lows. First a guest VM running Ubuntu 14.04 (64-bit)
on both the Livewire host and the host on which our
BDSA approach was deployed. With the polling period
being set to 1 second for both approaches, the botnet code
as well as the malware code from PacketStorm [24] is then
executed on  the guest VM. The tests are run for 5 times for
consistency  of measurements and the average detection
times for both approaches are obtained, and plotted in Fig. 9.

At a first glance, Livewire is able to detect attack
presence  faster than our BDSA approach by approximately
0.04 ms.  The reason behind this is due to the ability of Livewire
to take advantage of the principle of locality for threat detection.
Given that Livewire runs on the same host on which the guest
VM is located, it is able to traverse the host physical  memory
faster. This is evidenced by the 28 outlier detection  times in
the Livewire boxplot, and can be attributed to the  delays
caused by the software interrupts issued by the  KVM
hypervisor.

Fig. 8. Detection times of our BDSA.
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Given the remote process taken by our BDSA approach
in detecting attack presence in guest VM, it requires estab-
lishing remote SSH connections to the guest VM to obtain
its application logs. This is evidenced by the single outlier
detection time of approximately 0.12 ms, which is attributed
to the periodic resetting of the SSH connection from the
guest VM.

In addition, the detection time in our BDSA approach
also comprises the time taken by the master HPC head node
as shown in Fig. 6 in distributing the MapReduce processing
of the logs to the different HPC nodes over the network,
and obtaining the correlation graphs from them for threat
detection. As a result of these two factors our BDSA
approach incurs a slightly higher detection time than the
Livewire approach.

However, it is also observed that in this best case scenario
as can be seen in the boxplot, our BDSA approach provides
a faster detection time of approximately 0.02 ms against
0.04 ms of Livewire. In respect of scalability over the number
of VMs, we have also shown that the overall detection times
are fairly consistent with the increase in the number of guest
VMs whereas Livewire has to be deployed duplicately in
each VM. With all considerations put together, apparently
our proposed BDSA approach provides an overall competi-
tive performance even compared to Livewire.

5 DISCUSSIONS IN CONTRAST TO RELATED WORK

The use of data mining to mine attack patterns in network
logs is used in Beehive security approach [26]. Basically, Bee-
hive detects attacks through correlating logs obtained from
different points within the enterprise network. First it col-
lects logs from different points (e.g., web server logs, user
logs, IDS logs, etc) within the enterprise network over a
two-week period. The logs are then parsed using known
network configuration details to extract 15 features for each
host based on the IP addresses of websites accessed, details
of the application used, violation of network policy, and
changes in network flow characteristics caused by the
accesses. Next, the extracted features are represented as a

vector, with dimension reduction carried out by principal
component analysis (PCA), and finally clustering is under- 
taken on the feature vectors to determine attack presence.
Beehive is able to detect attacks from large amounts (approx- 
imately 1TB) of log data. However, it is limited in providing
prompt threat quarantine and elimination due to its post- 
factum nature. Our BDSA approach has overcome this limi- 
tation by detecting attacks in real-time, including formation
of correlation graph by assembling network and user appli- 
cation logs stored in HDFS, identification of potential attack
paths using the MapReduce model in Apache Spark, and
determination of attack presence by using belief propaga- 
tion to calculate the belief of attack presence and to retrain
classifiers.

Graph-based analysis is used in BotCloud [14] to detect
botnet attacks. It involves two steps. First Netflow traffic logs
obtained over a 48 hour period are represented as a
network graph. Then, MapReduce model together with
PageRank algorithm is used to identify subgraphs
consisting of common source/destination traffic flows.
BotCloud does not support real-time threat mitigation/
quarantine due to its post-factum length of data. Our BDSA
approach has over-come this limitation by obtaining traffic
and application logs in real-time, allowing for detection
of attacks in real-time and an immediate response to
attack presence.

Big data analytics together with machine learning using
Netflow traffic logs is used to detect Peer-to-Peer (P2P)
botnet [27]. The approach involves three steps. First well- 
known botnet code is executed on the testbed and the
network traffic over a 48 hour period is collected, and
important packet features (e.g., time delay between packet
transmissions, packet header length, etc) are extracted and
stored in an Apache Hive database. With the extracted
values, a MapReduce model is used to cluster common
features. Finally a Random Forest classifier is trained on the
clustered features using Apache Mahout. This detection
scheme is limited in detecting sophisticated attacks which
can adapt their communication behaviour to trick the sys- 
tem by mimicking normal communication flow. The logistic
regression together with belief propagation in our BDSA
approach is able to detect such attacks since attack presence
can be dynamically determined based on changes in any of
the attributes. Our BDSA approach is more insightful as it
takes into account the changes both in the characteristics of
the applications running within the guest VMs and in the
network traffic flow.

Table 6 provides a summary of their features as well
as their strengths and limitations.

6 CONCLUSION

In this paper, we have put forward a novel big data based
security analytics approach to protecting virtualized infra- 
structures in cloud computing against advanced attacks.
Our BDSA approach constitutes a three phase framework
for detecting advanced attacks in real-time. First, the guest
VMs’s network logs as well as user application logs are
periodically collected from the guest VMs and stored in
the HDFS. Then, attack features are extracted through corre- 
lation graph and MapReduce parser. Finally, two-step
machine learning is utilized to ascertain attack presence.

Fig. 9. Performance comparison between Livewire and our BDSA
approach.
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Logistic regression is applied to calculate attack’s condi-
tional probabilities with respect to individual attributes.
Furthermore, belief propagation is applied to calculate the
overall belief of an attack presence. From the second phase
to the third, the extraction of attack features is further
strengthened towards the determination of attack presence
by the two-step machine learning.

The use of logistic regression enables the fast calculation
of attack’s conditional probabilities. More importantly,
logistic regression also enables the retraining of the individ-
ual logistic regression classifiers using the new attack fea-
tures as they are obtained from attack detection. The use of
belief propagation calculates the aggregate belief of an
attack presence by taking into account the conditional prob-
abilities with respect to individual attributes, which thereby
achieves a holistic view of the guest VM’s behavior.

The effectiveness of our BDSA approach is evaluated by
testing it against well-known malware and rookit attacks. In
all cases, it has been shown that our BDSA approach is able
to detect them while maintaining a consistent performance

overhead with increasing number of guest VMs at an aver- 
age detection time of approximately 0.06 ms. Tested against 
Livewire, our BDSA approach incurs less performance over- 
head in attack detection through monitoring the guest VM’s 
behavior. 
     Our BDSA approach has taken advantage of the distrib- 
uted processing of HDFS and real-time ability of MapRe- 
duce model in Spark to address the velocity and volume 
challenges in security analytics. To tackle the veracity issue 
posed in zero-day attacks, our BDSA approach addresses 
this challenge by enforcing the on-the-fly mechanism for the 
retraining of logistic regression classifiers. 
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