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Abstract:  

The influence of edge proximity on woodland plants is a well-established research area, yet 

the influence of dual edge exposure has rarely been investigated. This novel research aims to 

establish whether proximity to two edges has any additive influence on Ancient Woodland 

Indicator (AWI) species presence relative to proximity to a single edge. Several AWI species 

are threatened and thus specific conservation priorities, while Ancient Semi-Natural Woodland 

(ASNW) itself is often highly fragmented: almost half of remnant patches are less than 5ha, 

which increases the potential for dual edge effects. Here, systematic mapping of herbaceous 

AWI species was conducted in 310 vegetation plots in two formerly-connected ASNW 

fragments in South-West England. Linear regression modelling revealed that distance to 

nearest edge and distance to second nearest edge were both univariately positively correlated 

with AWI species richness. After distance from nearest edge was entered into a multivariate 

model first, distance from second edge was entered in a second optional step after meeting 

stepwise criteria. The resultant multivariate model was more significant, and explained more 

variance, than either variable in isolation, indicating an additive effect of dual edge exposure. 

Likewise, binary logistic regression modelling showed presence of individual AWI species 



(Anemone nemorosa, Hyacinthoides non-scripta, Lamiastrum galaeobdolon and Paris 

quadrifolia) was significantly related not only to distance from the nearest and second nearest 

edges in isolation, but significantly more strongly by the additive effect of distance from both 

edges in a single model. We discuss the implications of these findings from community 

ecology and conservation perspectives. 

Abbreviations: AWI – Ancient Woodland Indicator, ASNW – Ancient Semi-Natural Woodland 

Nomenclature: IPNI (2015) The International Plant Names Index http://www.ipni.org/  

 

Introduction  

The presence of scarce and range-restricted flora in Ancient Semi-Natural Woodland (ASNW) 

(Peterken 1974, Wulf, 1997, Honnay et al. 1999, Palo et al. 2013) contributes to its status as 

an ecosystem of high conservation value (Peterken, 1983, Rackham, 2003, Goldberg et al. 

2007). The ancient woodland concept is well-integrated into forest research and conservation 

practice, although definitions and date thresholds vary amongst countries (Hermy et al. 1999; 

Wirth et al., 2009). In England, ASNW is defined as predominantly a native broadleaf canopy 

established through natural regeneration (Rackham, 2008) on land that has remained 

continuously woodland since at least the year 1600 (Goldberg et al. 2007). 

Ancient woodland indicator (AWI) species are vascular plants that are particularly, but not 

exclusively, associated with ASNW (Rose, 1999, Glaves et al. 2009). Regional AWI lists were 

developed to assist in determining ancient woodland status and are additionally used to 

assess habitat quality (Glaves et al. 2009). AWI species are considered to have low 

colonisation potential due to poor seed production, low dispersal capability and short-term 

persistence in the seed bank (Honnay et al. 1998). As such, AWI species may not be able to 

colonise alternative woodland habitats if ASNWs are lost or conditions become sub-optimal 

(Hermy et al. 1999). The limited distribution of AWI species and their specific ecology has 

http://www.ipni.org/


promoted extensive use in woodland research (Peterken, 1974, Spencer, 1990, Wulf, 1997, 

Honnay et al. 1998, Hermy et al. 1999, Rose, 1999, Kirby and Goldberg, 2002, Rackham, 

2003, Kirby and Morecroft, 2010, Kimberley et al. 2014, Stefańska-Krzaczek et al. 2016).  

Landscape fragmentation is a significant threat to ASNW plant communities (Rackham, 2008, 

Corney et al. 2008), not only due to reduction in dispersal potential of AWI species, but also 

due to increased edge effects. Edge width is defined as the outer part of a woodland 

compartment where environmental conditions differ significantly from the interior (Honnay et 

al. 2002). Corney et al. (2008) report that 48% of ancient woodlands are under 5 ha, which 

means they have a high edge: interior ratio and a large edge width, especially if they deviate 

from an optimum circular shape (Laurance, 2008). Edge environmental conditions are 

generally considered to be less favourable for persistence of specialist flora, including many 

AWI species, due to altered abiotic and biotic variables (Matlack, 1993; Murcia, 1995; Honnay 

et al., 2002; Willi et al., 2005; Hofmeister et al., 2013; Tinya and Odor, 2016), as well as 

anthropogenic influences (Corney et al., 2008).  

Abiotic and biotic variables commonly exhibit an edge width of between 10-60m in temperate 

forests (Palik and Murphy, 1990; Matlack, 1993; Matlack, 1994; Gehlhausen et al., 2000; 

Honnay et al., 2002). Additionally, studies seeking to avoid edge influence, have situated 

sample plots at >20m from the edge (Bossuyt and Hermy, 2000), >30m (Brunet et al. 2012), 

and >50m (Gelhausen, 2000, Coote et al., 2012). Exceptionally, edge effects have been 

evidenced over 100m from the edge (Hofmeister et al. 2013; Pellissier et al. 2013) but such 

findings are not comparable to small ancient woodland fragments in the UK. Land use in the 

matrix (Gove et al. 2007), prevailing wind direction (Smithers, 2000) and aspect (Murcia, 1995; 

Honnay et al., 2002) influence the extent to which edge effects permeate woodland. 

This is the first study to investigate multiple edge effects in relation to AWI species and ancient 

woodland. The impact of multiple edges is an important but overlooked factor (Ries and Sisk, 

2004). Few studies have explicitly gathered primary data to analyse this in relation to any 



species or ecosystem (Fletcher et al., 2005), instead measuring linear distance to the closest 

edge only. A small number of studies have been completed with explicit focus on AWI 

response to nearest edge proximity (Willi et al., 2005; Hofmeister et al, 2013; Pellissier et al., 

2013; Kimberley et al., 2014). Despite the potential importance of edge effects on AWI 

species, both in their own right as specialist species, and in terms of their efficacy of indicators, 

a search of the literature revealed no studies relating to multiple edge effects on these species. 

This is surprising given that the highly-fragmented nature of ANSW means that the potential 

for exposure to multiple edge effects is considerable. 

We test for relationship with the nearest edge, as well as any additional contribution of the 

second edge to take account of double exposure within fragment corners. We hypothesised 

that (1) AWI richness will increase with distance from any edge; (2) the second nearest edge 

would also correlate with AWI richness so that a multivariate model with both distances would 

be superior to a univariate model using either in isolation; (3) the patterns for AWI species 

richness would also hold true for specific AWI species analysed on a presence/ absence basis. 

 

Methods 

The study site was a fragmented species-rich ASNW in the South-West UK. The two discrete 

fragments comprising the site were situated near Cheltenham on the Cotswold Hills 

escarpment of Jurassic oolitic limestone, at 265m above sea level and centred on 

51°53’35.5’’N, 2°00’34.60’’W (Fig. 1). The mean diurnal temperature was 8.6-14.7°C and 

annual precipitation was 843mm (MET office, 1981-2010). The fragments have comparable 

geology, edaphic variables and topography. The coppice-with-standards woodland classifies 

as National Vegetation Classification W8b (Rodwell, 1991), with a canopy dominated by 

Fraxinus excelsior and Quercus robur. 

Both fragments, henceforth referred to as Fragment 1a and 1b were located within an 

agricultural (arable and equine) matrix. Fragment 1a was 4.8ha and of approximately 



rectangular dimension (190x255m). Fragment 1b was a remnant of 0.6ha located 25m from 

the eastern edge of Fragment 1a. Historic map evidence showed that both fragments formed 

a single woodland until c1965. Both fragments are classified by DEFRA (2016) as ASNW.  

In order to assess any influence of dual-edge effect in Fragment 1a, presence of AWI species 

was mapped and recorded via a total of 256 2x2m plots. Plots were located in the corners of 

Fragment 1a within 60m of both the nearest edge (Edge 1) and second nearest edge (Edge 

2). The distance of 60m was deemed a conservative upper limit for detection of edge effects 

based on previous studies (Murcia, 1995; Gelhausen et al., 2000; Honnay et al., 2002; Vallet 

et al., 2010). Plots were located at 0, 5, 10, 20, 30, 40, 50 and 60m on transects perpendicular 

to the Western and Eastern edges, with 0m defined as the commencement of woody species’ 

stems (Murcia, 1995). Changing the sampling distance from 10m to 5m at the edges of the 

fragment allowed small-scale change to be better detected (Honnay et al., 2002). Recorded 

species were restricted to herbaceous and semi-woody plants (Brunet et al., 2011) identified 

as Ancient Woodland Indicators in the South-West UK (Rose, 1999). To complement analysis 

of the larger fragment and demonstrate any difference in species richness and presence 

between the two fragments, Fragment 1b was surveyed on the same system with plots at 0, 

5, 10 and 20m from the Eastern and Western edges (n=54). All statistical analyses apply to 

Fragment 1a. 

To predict the influence of Edge 1 and Edge 2 on AWI richness, separate univariate linear 

regression analyses were performed (n=256). To test any additive influence of both edges, a 

hierarchical multivariate model was created where Edge 1 was entered via forced entry and 

Edge 2 was available as a candidate variable in a second step using a stepwise approach 

(entry criterion α = 0.05, except L. galaeobdolon α = 0.1) (De Keersmaeker et al., 2004). 

Normality assumptions were met, and collinearity was within accepted limits: VIF < 10 (Myers, 

1990) and tolerance >0.2 (Menard, 1995). The same principles were followed using binary 

logistic regression to test the influence of Edge 1 and Edge 2, separately and additively, on 

the presence AWI species (those found in >10% of plots) (n=256). The R2 (linear regression) 



and Nagelkerke pseudo R2 (logistic regression) statistics were calculated to measure the 

relative influence of single and additive edges on, respectively, AWI richness and species 

presence.  

 

Results and analysis 

Mapping of Fragment 1a, showed clear spatial patterns in AWI richness in relation to edge 

proximity (Fig. 2). AWI richness was very low at the edge, and increased gradually up to 60m; 

this effect was most pronounced at the corners where a distinct edge effect was apparent up 

to 20-30m, rather than 5-10m on transects located mid-edge. Within the very small Fragment 

1b, AWI richness is lower throughout than in Fragment 1a, with no clear edge or corner pattern 

(Fig. 2). 

Regression analysis showed significant positive directional relationships between AWI 

richness and distance from the edge in Fragment 1a (Table 1). When tested independently, 

Edge 1 and Edge 2 were both shown to be significantly positively related to AWI richness, but 

Edge 1 was related more strongly than Edge 2. Used in a hierarchical framework, Edge 2 met 

the stepwise criteria for entry as a second variable into a multivariate model after Edge 1 had 

already been entered. This, together with the resultant multivariate model being more 

significant and explaining more variance than either Edge 1 or Edge 2 in isolation, strongly 

suggests dual-edge exposure is important for AWI richness. 

Repeating the above analytical framework using hierarchical multiple logistic regression for 

the seven most prevalent species (those present in >10% of plots) showed that the presence 

of four species increased significantly with increasing distance from edge (Table 1). For each 

of these species (A. nemorosa, H. non-scripta, L. galaeobdolon and P.  quadrifolia) Edge 1 

and Edge 2 were both significant when analysed separately and again the R2 statistic for Edge 

2 was slightly lower than Edge 1. In all four cases, running a stepwise model with Edge 2 

available as a candidate variable resulted in a multivariate model being created that had a 



substantially lower P value and substantially higher R2 value than either edge tested alone. 

For where species Edge 2 was not entered using standard stepwise criteria (α = 0.05 or 0.10), 

forcing this variable into the model did not improve it relative to using Edge 1 alone and all 

models were non-significant.  

Thirteen AWI species were recorded within Fragment 1a sample plots and eight within 

Fragment 1b (Appendix 1). The four species significantly associated with distance showed 

clear reductions in prevalence in Fragment 1b, in comparison to 1a (Appendix 1). Presence of 

A. nemorosa and H. non-scripta in Fragment 1b was half of that in 1a, while L. galaeobdolon 

and P. quadrifolia were absent from Fragment 1b. Of prevalent species not significantly 

associated with distance, only A. ursinum occurred considerably more frequently in Fragment 

1b than in Fragment 1a. 

 

Discussion 

The above results show that not only are edge conditions less suitable for the majority of AWI 

species present, but the AWI community is vulnerable to a dual-edge effect whereby the 

combined influence of two edges is amplified and permeates further into a woodland near 

corners. The distance to the nearest two edges combined explained 11% of the variation in 

AWI richness and up to 17% of the variation in the presence/ absence of specific AWI species 

(Table 1). Dual-edge exposure explained a significant, and consistent, additional 1-3% of the 

variation in AWI richness and presence of some species than the single nearest edge alone 

(Table 1). The findings reinforce the need to protect ancient woodlands from fragmentation. 

Two species with conservation designations, H. non-scripta and L. galaeobdolon, were 

especially adversely affected by edge proximity (Table 1). At 4.8ha, Fragment 1a is among 

the larger of the 48% of ancient woodlands that are smaller than 5ha (Corney et al. 2008), 

with a considerable area exposed to single and dual-edge effects. Fragment 1b is smaller still, 

and mapping suggests is influenced in its entirety by edge conditions.  



Both woodlands reinforce the edge: interior ratio theory proposed by Laurance (2008). For this 

reason, some AWI species might not be appropriate indicators in small fragments where there 

is a high proportion of edge habitat, as they may be absent even from small ancient 

woodlands. Our findings show a lower richness count and predominantly lower prevalence of 

AWI species in Fragment 1b despite its adjacent position and history of connectivity with 1a. 

However, both fragments have what is considered to be an acceptable AWI score (Fragment 

1a = 13; Fragment 1b = 8). Thresholds of 10-12 AWI species (including woody species, forbs 

and ferns) are used by organisations for allocating conservation priority, while ASNWs under 

2ha with >5 AWI species were recommended for inclusion in a county ancient woodland 

inventory (Glaves et al. 2009). If AWI species counts are used in small fragments, 

consideration should be given to only using the subset of species that are not seemingly 

affected by edge effects. 

AWI species have been considered as a guild (Hermy et al. 1999), but in this study the 

response of the community and individual species in relation to edge proximity indicates 

variation in niche requirements. Of the species significantly influenced by edge proximity, all 

increased in prevalence with distance from the edge (Table 1). The preference of P. quadrifolia 

for woodland interior may be accounted for by its adaptation for vegetative growth during low 

light periods (Bjerketvedt et al. 2003). Similarly to this study, Honnay et al. (2002) found A. 

nemorosa to have a positive edge-distance distribution in ancient woodland study sites in 

Belgium. Of those not exhibiting significant relationships with edge, only V. reichenbachiana 

decreased in prevalence with distance from either and both edges, possibly accounted for by 

its greater light requirement for a summer second leafing period (Rackham, 2003). 

This study has demonstrated dual-edge proximity has a substantial effect on AWI community 

composition, and has highlighted the species-specific nature of the response to different plants 

to the edge. It has also emphasised the effects of edge orientation and woodland size on floral 

response to edge conditions. Future research on the influence on multiple-edge biotic and 



abiotic variables in small ASNWs would be beneficial in further explaining spatial distribution 

of AWI species and for development of conservation management practices. 
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Figure 1. Study site location of the Cotswold Hills, UK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

Figure 2. Richness of Ancient Woodland Indicator species in a total of 310 2x2m plots within two 

fragments of ancient semi-natural woodland.  

 
 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. AWI richness (all species) and species presence (most frequently occurring species in >10% 

of plots) relationship with distance from Edge 1, Edge 2, and both edges together. In all cases, the 

additive model was a hierarchical one whereby Edge 1 was entered first and then Edge 2 was available 

as a candidate variable for inclusion following a stepwise approach; the model was not calculated if the 

addition of Edge 2 into the model did not significantly improve it. 

     p                R2          Dir. 

AWI richness 

 

Edge 1 

Edge 2 

Additive 

 <0.001         0.099     + 

 <0.001         0.069     + 

 <0.001         0.115     + 

 

Species   Chi (df)        p              R2          Dir. 

A. ursinum 

 

 
 

A. nemorosa 

 

 
 

G. odoratum 

 

 
 

H. non-scripta 

 

 
 

L. galaeobdolon 

 

 
 

P. quadrifolia 

 

 
 

V. reichenbachiana 

 

Edge 1 

Edge 2           

Additive    
 

Edge 1 

Edge 2 

Additive 
 

Edge 1 

Edge 2 

Additive 
 

Edge 1 

Edge 2 

Additive 
 

Edge 1 

Edge 2 

Additive 
 

Edge 1 

Edge 2 

Additive 
 

Edge 1 

Edge 2 

Both 

 0.357 (1)      0.425      0.030     

 0.187 (1)      0.666      0.080 

Model not calculated 
 

23.117 (1)    <0.001     0.126     + 

19.572 (1)    <0.001     0.107     + 

29.292 (2)    <0.001     0.158     + 
 

 0.077 (1)      0.781      0.000        

 0.002 (1)      0.968      0.000 

Model not calculated 
 

27.550 (1)     <0.001    0.141     + 

20.323 (1)     <0.001    0.105     + 

33.100 (2)     <0.001    0.168     + 
 

11.866 (1)      0.001     0.064     + 

  9.321 (1)      0.002     0.036     + 

14.417 (2)      0.001     0.077     + 
 

16.698 (1)     <0.001    0.095     + 

16.117 (1)     <0.001    0.092     + 

22.287 (2)     <0.001    0.126     + 
 

 0.699 (1)        0.403    0.005 

 2.044 (1)        0.153    0.014 

Model not calculated 

Dir. - direction of relationship for significant models. R2 - Nagelkerke 

 

Species present with conservation designations: Hyacinthoides non-
scripta - Wildlife and Countryside Act, schedule 8; Lamiastrum 
galaebdolon - Vascular Plant Red List for Great Britain nationally scarce, 
vulnerable. Vascular Plant Red List for England, vulnerable; Viola 
reichenbachiana - Scottish Biodiversity List. Primula vulgaris (Wildlife 
Order Northern Ireland schedule 8); Sanicula europaea (Vascular Plant 
Red List for Great Britain, near threatened) 

 



Appendix 1. Comparative frequency occurrence of AWI species in Fragments 1a and 1b. Total 

herbaceous AWI count of both fragments. 

 Fragment 1a Fragment 1b 

Frequency occurrence 

Anemone nemorosa 

Hyacinthoides non-scripta 

Allium ursinum 

Lamiastrum galaeobdolon 

Galium odoratum 

Paris quadrifolia 

Viola reichenbachiana 

Conopodium majus 

Primula vulgaris 

Euphorbia amygdaloides 

Orchis mascula 

Veronica montana 

Sanicula europaea 

 

73% 

66% 

51% 

31% 

25% 

22% 

15% 

4% 

2% 

1% 

1% 

1% 

<1% 

 

35% 

33% 

96% 

Absent 

Absent 

Absent 

2% 

2% 

7% 

Absent 

2% 

2% 

Absent 

Total AWI count 13 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


