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Abstract: Peatlands provide a widespread terrestrial archive for Holocene study. However, little is 

known about the grain-size characteristics of peaty sediments and their environmental significance. 

In order to study these phenomena in detail, two sections from the Hani and Gushantun peatlands 

in the Changbai Mountain Area were cored and sub-sampled. Based on reliable calibrated AMS 

14C ages, we established grain size variations in the peat cores since 15.6 ka cal. BP. Our results 

showed that the peaty sediments in the Changbai Mountains are mainly composed of silt. 

Moreover, the grain size component, which is related to paleoclimate variables, can be classified 

into three groups based on the “Grain size class vs. standard deviation” method. These sensitive 

grain size components are <37.0 μm (Component 1 or C1), 37.0–497.8 μm (Component 2 or C2) 

and >497.8 μm (Component 3 or C3). C1 comprises the finest silt in the peaty sediment and is 

mainly conveyed by the East Asian winter monsoon (EAWM), whereas C2 is transported into the 

peatland by surface runoff related to the enhancement of the East Asian summer monsoon 

(EASM). C3 is conveyed in saltation and bed-load mode by strong surface runoff linked to 

high-energy flow caused by a strong EASM, and perhaps is an indicator of extreme rainfall events 

in the Changbai Mountains. Our results suggest that the study region was dominated by a cold/dry 

environment during the late-glacial period under a strong EAWM. However, there was a marked 

climatic shift from an EAWM-dominated cold/dry climate to an EASM-dominated more mesic 

environment during the early Holocene. Increased percentage of C2 in peat cores during the 

Holocene Optimum (9.0–4.5 ka) indicates abundant rainfall in the study region (even with extreme 

rainfall events) as a result of a significant enhancement of the EASM. Weak monsoon events 

occurred at 10.5 ka, 9.2 ka, 8.2 ka, 7.2 ka, 6.2ka, 5.5 ka and 4.2 ka shown by sharp decreases in C2, 

agreeing with the stalagmite δ18O records in China. The results obtained from environmentally 



sensitive grain-size component records are largely consistent with other palaeoenvironmental 

records in the East Asian monsoon area, substantiating the regional climate patterns and monsoon 

evolution since late-glacial time. Because intensity of the East Asian monsoon is likely responsible 

for the grain-size change in the peat samples, the grain size components in peat samples may be 

used for reconstructions of past environmental conditions and of variability in the East Asian 

monsoon. 
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1. Introduction 

 

Peatlands provide a widespread archive of Holocene environmental change. Because the 

sampling of peat is relatively simple, the range of paleoclimate evidence and proxies is wide, and 

dating methods have become more accurate, such that peatlands have great potential for Holocene 

research (Chambers and Charman, 2004) and particularly for palaeoclimate reconstruction 

(Chambers et al., 2012), exemplified variously by studies in Europe (Barber et al., 2003), North 

America (Klein et al., 2013), South America (Chambers et al., 2014) and Siberia (Smith et al., 

2004). Increasingly, there has been use of peat archives in China (e.g. Makohonienko et al., 2004; 

Ma et al., 2009; Zhou et al., 2010; Zhao et al., 2011; Gao et al., 2014; Zhao et al., 2014). Indeed, 

Northeastern (NE) China is one of the most important peat distribution regions of the world (Chai, 

1990). Up to now, several Holocene paleoclimate reconstructions have been carried out using peat 

deposits in the Changbai Mountains, and many proxies have been used as indicators to study 

Holocene environment change, including pollen (Liu et al., 1989; Xu et al., 1994; Xia and Wang, 

2000; Makohonienko et al., 2004), phytolith (Zhang et al., 2007; Guo et al., 2012), stable isotopes 

(Hong et al., 2009, 2010), testate amoebae (Li et al., 2009), chemical element (Zhang et al., 2011) 

and biomarkers (Zhou et al., 2010). However, the inorganic mineral composition of peat deposits 

has been overlooked, yet grain size is recognized as an important paleoenvironmental proxy in 

other depositional environments (Liu, 1985; Ding et al., 1998; Lu and An, 1998; Sun et al., 2003; 

Huang et al., 2011; Qiao et al., 2011). There are relatively few published studies using the grain 

size of mineral clasts in peat as a paleoenvironmental indicator to reconstruct Holocene climate 

change (Wang et al., 2003; Yu et al., 2006; Bao et al., 2010; Zhang et al., 2014); indeed, there has 

been a lack of systematic study of the grain-size characteristics of peaty sediments and their 

environmental significance.  

The Changbai Mountains are located at the northern periphery of the East Asian summer 

monsoon (EASM). Since the Last Glaciation, paleoclimate fluctuations and the swings of the 

monsoon boundary (Wang et al., 2001, 2005, 2008; Wang et al., 2005a; Stebich et al., 2015) must 

have changed the sedimentary environments of peatlands, and these changes may be reflected in 

the grain size characteristics of peat deposits. Thus, peatland may have great potential to 

investigate the activities history of the EAM. In this study, two cores of peat that accumulated 

since the late-glacial time were taken from the Changbai Mountains, NE China. Combined with 

high-precision AMS 14C dating, we focused on grain size characteristics of mineral clasts within 

the peat deposit and its environmental significance. To facilitate more reliable reconstructions, 

grain-size class vs. standard deviation was used to obtain environmentally sensitive components of 



the peat sediments. Based on the time sequences of these components, we present an inferred 

variation history of the EAM and paleoclimatic changes in the Changbai Mountains since the 

late-glacial time. 

2. Regional setting 

 

Hani (42°13'31.1" N, 126°30' 14.7" E, 890m a.s.l.) and Gushantun (42°18'22.1" N, 126°16' 

57.7" E, 506m a.s.l.) peatlands are situated west of the Changbai Mountains (Fig. 1 A and B) in the 

Longgang Volcanic Field, which is an area of active vulcanicity in China (Liu, 1988). There were 

intense Cenozoic volcanic activities in this region and these provided a geological basis for the 

development of peatland. The lake basin substrate of the Hani peatland is Early Pleistocene basalts 

(Isotopic Age of 2.6 ± 0.29 Ma (Qiao, 1993)). In the Late Pleistocene, the Hani River valley was 

dammed during the Nanping Period by volcanic ejecta. Since then, peat formed in the former lake 

basin (Qiao, 1993). The Gushantun peatland is also surrounded by Cenozoic basalt, with the 

peatland initiated in the Late Pleistocene on a former Maar Lake (Zhao and Hall, 2015). The 

average thickness of the peat is about 7 m. 

The modern climate of NE China is controlled by the EAM, which shows strong seasonal 

variability. Dominating north-westerly winds in winter contribute aeolian material from the 

interior of the Eurasian land mass to the Changbai Mountains (Schettler et al., 2006a, 2006b, 

2006c). In contrast, summers are dominated by humid air, transported by south-easterly winds 

from the Pacific. So the regional precipitation period is concentrated from June to August (Fig.1 

C). The average annual temperature of Changbai Mountains ranges from -7.3 °C to 4.8 °C while 

the average annual rainfall ranges from 700 mm to 1400 mm (Wang, 1989). The landform type in 

the Changbai Mountains is diverse, with catenae of mountain, plateau, tableland and valley (Fig.1 

B). The dominant soil in the study region is dark brown forest soil, but with meadow soils in 

valleys and lessive soil on high tableland. Moreover, the Changbai Mountains are situated in the 

modern temperate conifer–hardwood forest zone, representing one of the best preserved primeval 

forests in China. 

3. Material and methods 

 

3.1 Sampling and chronology 

Peat sediment cores were taken from the Hani and Gushantun peatlands (Fig. 1) in the summer 

of 2009, using an Eijkelkamp peat sampler. The length of the Hani (HN) core was 350 cm while 

that from Gushantun (GST) was 750 cm. Both cores were sub-sampled at 1-cm intervals, resulting 

in 350 sub-samples from Hani and 750 from Gushantun. Reflecting changes in lithology, sixteen 

bulk organic samples were dated by accelerator mass spectrometry (AMS) radiocarbon dating at 

Peking University. All the radiocarbon ages were calibrated into calendar ages before present (BP) 

(Table 1) with the Intcal13 calibration data (Reimer et al., 2013) using the CALIB Rev. 7.0.4 

program (Stuiver and Reimer, 1993) and chronologies were estimated with the Bacon v2.2 model 

(Fig. 2) (Blaauw and Christen, 2011). Meanwhile, in order to investigate the environmental 

significance of different components in peat, three dust samples were collected using a glass dust 

collection tank (15 cm in diameter and 30 cm in depth) from Nov., 2010 to May, 2011. The tank is 

located at Hani Automatic Weather Station and about 3m off the ground. 



 

3.2 Grain size analysis 

Peat samples were selected at 2-cm intervals for the Hani section and 10-cm intervals from the 

Gushantun section for grain size analyses. Before any further treatment, all samples were dried in 

a thermostatic drying chamber at 105 °C. 

In advance of grain size measurements, c. 0.5 g dry peat samples were pretreated in a muffle 

furnace (550 °C) for 4 hours to remove organic matter (Lewis, 1989), while dustfall samples were 

pretreated using 30% hydrogen peroxide (H2O2). Then, all samples were treated with 10% 

hydrochloric acid (HCl) to remove carbonates and with 10 mL 0.05 mol/L sodium 

hexametaphosphate ((NaPO3)6) to facilitate dispersion. The grain size distribution was determined 

with a MICROTRAC S3500 particle analyzer at Northeast Normal University. It automatically 

yields the percentages of the clay-, silt- and sand-size fractions and the median diameter over the 

range of 0.02–2800 μm. Replicate analyses indicated that the mean grain size has an analytical 

error of 2%. 

 

3.3 Mathematical method 

The grain-size characteristics of sediments are sensitive to a change in transport process (Visher, 

1969). The grain-size distribution of clastic deposits with a single provenance should show a 

unimodal, symmetric distribution (Friedman and Sanders, 1978; Ashley, 1978). However, when 

the shape of a grain-size distribution is asymmetric or skewed, the sediment is considered to be 

combined from multiple sources (Friedman and Sanders, 1978; Ashley, 1978; Xiao et al., 2012). 

As the sedimentary processes of modern or geologic deposits are usually influenced by multiple 

transport dynamics, the grain-size distribution shape is usually asymmetric and skewed (Visher, 

1969; Friedman and Sanders, 1978; Ashley, 1978).  

Thus, if using parameters that describe the grain size distribution of a total sample (i.e. Mz), it 

may lead to the loss of some information that appears minor but is important in a sample. 

Increasingly over recent years, mathematical methods have been used to extract the grain size 

components from a total sediment (Sun et al., 2001; Boulay et al., 2003; Sun et al., 2003; Xiao et 

al.,2012; Zhang et al., 2014). Among them, “Grain size class vs. standard deviation” is easy to 

calculate. It was first proposed by Boulay and applied to marine paleoenvironment reconstruction 

(Boulay et al., 2003). Now it has been widely used in many Quaternary paleoclimate fields (e.g. 

Fan, et al., 2011; Xu and Wang, 2011; Guan et al., 2013; Zhou et al., 2014). In this study, we 

selected this method to obtain environmentally sensitive components of the peat sediments. 

4. Results 

 

4.1 Grain size characteristics of peat and modern dustfalls  

According to the Wentworth (1922) and Link (1966) sediment classification system, peaty 

sediments from the two profiles resemble each other in texture and grain size distribution. The 

peat sediment is dominated by silt, whose percentage is more than 50% (Fig. 3), with the grain 

size frequency distribution concentrated in the range 1 to 350 μm (Fig. 4.a, 4.b). Grain size 

frequency distributions of the peat deposits show unimodal (Fig. 4.a) and multimodal (Fig. 4.b) 

distributions, indicating the change of sediment sources and transport dynamics.  

The grain size distribution of dustfall samples is mainly within the range 1 to 100 μm and the 



mean size varies from 12 to 17 μm (Fig. 4.c). Moreover, the grain size frequency of dustfall 

samples shows regular unimodal distributions, which indicates the typical well-sorted character of 

aeolian deposits (Pye, 1987). By comparing the grain size distribution of peat and dustfall samples, 

it can be shown that aeolian deposits only contribute to the fine-grain components in a peat sample. 

Coarser particles must be transported by other processes into the peatland, such as by surface 

runoff. It is therefore likely to be misleading merely to use the general grain size parameters in 

paleoenvironment reconstruction, and it is preferable to extract different sedimentary components 

from a total sample using mathematical methods. 

 

4.2 Extraction of environmentally sensitive components 

Grain-size class vs. standard deviation values of the peat samples are shown in Table 2 and 

displayed in Fig. 5 (which also shows the grain size distribution of the dustfall, for comparison). 

Although the standard deviation values of Hani peat are smaller than those of Gushantun (except 

for the >500.0 μm part), the shape of the curves and the number of the sensitive grain size 

components for the two cores show good agreement (Fig. 5). Taking section Gushantun as an 

example, there are three distinct peaks on the grain size class standard deviation curves, 

corresponding to 13.0 μm, 209.3 μm and 837.2 μm, whereas the grain size values of troughs are 

37.0 μm and 592.0 μm (Fig. 5). Taking the two curves together, two troughs (37.0 μm and 497.8 

μm) divide each curve into three components in each peat core: <37.0 μm (Component 1 or C1), 

37.0–497.8 μm (Component 2 or C2) and >497.8 μm (Component 3 or C3). 

5. Discussion 

 

5.1 Implication of each sensitive grain size component in peat cores  

Results of grain size class vs. standard deviation show that there are three components in peat 

sediments (Fig.5). As different grain size components resulted from different transport processes, 

each component has different environmental implications in the East Asian monsoon area 

(EAMA). 

Of the three components, the <37.0 μm particles (Component 1) comprise the finest silt 

(Wentworth, 1922) in peat. The grain size of this component shows a good correlation with the 

particle size of modern dustfalls collected in Hani peatland whose <37.0 μm particles account for 

more than 90% of the clastic deposition (Fig. 5). This suggests that C1 was transported in 

suspension mode by the wind (Patterson and Gillette, 1977; Pye, 1987).  

During the winter and spring, NE China was frequently influenced by duststorms under the 

control of strong Mongolia–Siberian high atmospheric pressure (Zhang et al., 2005; Jie et al., 

2010). Sandy lands are widely distributed in the semi-humid and semi-arid region of NE China 

(e.g. Songnen Sandy Land, Horqin Sandy Land and Hulunbeier Sandy Land), and their eastern 

boundary is c. 200 km from the study region. These sandy lands are important clastic sources for 

duststorms in NE China. In addition, because relief in NE China is high in the east but lower in the 

west, it can be envisaged that strong northwesterly winds in winter would convey C1 (<37.0 μm 

population) towards the eastern part of NE China and deposit in peatland when encountering the 

high Changbai Mountains (process (1) in Fig. 6). Especially during episodes of cold and dry 

climate, fixed dunes were activated and the sandy lands expanded in the west part of NE China 

(Qiu, 1989; Li, 1991). Hence, the winter monsoon blows fine silt from the west sandy lands and 



eventually deposits it in peatlands in the Changbai Mountains (process (1) in Fig. 6).  

Over recent years, several studies have confirmed the contribution of aeolian dust to the 

sediments in the Changbai Mountains. For example, by investigating clay mineralogical 

characteristics and pedogenic processes of volcanic ash soils in the Changbai Mountains, Zhao et 

al. (1997) inferred that pedogenic processes were strongly associated with the influence of 

tropospheric aeolian dust from arid and semi-arid regions in China and Mongolia under cold or 

dry environments. Bao et al. (2009, 2010) also proposed that part of peat mineral material was 

transported to peatland by long-range aeolian dust and short-distance dust. Geochemical evidence 

from Lake Sihailongwan (c. 12 km from Hani peatlands) showed that the siliciclastic fraction of 

Holocene sediments is largely represented by aeolian influx of clay- to silt-sized debris of remote 

provenance (Schettler et al., 2006b, 2006c). These previous studies imply that aeolian dusts from 

North China areas contribute to the fine-grain clasts of the peat sediments. Thus, in this study, we 

hypothesize that C1 is mainly transported by winds and has a high sensitivity to the East Asian 

winter monsoon (EAWM); it can be considered as a proxy of the EAWM. The greater the content 

of C1 in the peat section, the stronger was the EAWM episode.  

Component 2 (37.0–497.8 µm grain-size population) mainly consists of coarse silt and sand. As 

the dustfalls in peatland only contribute fine silt particles to peat clastics, the coarse clastic grains 

(C2) in peat samples must be transported into the peatland by other processes. Surface runoff in 

the valley is most likely responsible for this. Because high rainfall intensity would enhance soil 

erosion over the mountain area and increase the transport capacity of streams and runoff, coarse 

clasts would be available for runoff transportation and subsequent deposition in a peatland 

(process (2) in Fig. 6) (Hakanson and Jansson, 1983; Li et al., 2014). In the EAMA, regional 

rainfall is concentrated in summer. Thus, the more rainfall in the study region, the stronger is the 

runoff into the valley, which would lead to a higher C2 content in peat deposits. As the intensity 

and frequency of rainfall in NE China are controlled by the East Asian summer monsoon (EASM), 

so C2 can be regarded as its proxy. 

Component 3 (>497.8 μm population) is the coarsest component in peat samples. It is conveyed 

in saltation and bed-load mode by strong flow currents (Visher, 1969; Ashley, 1978; Friedman and 

Sanders, 1978; Lewis, 1989). Only under severe rainfall can it be transported into the peatland. In 

the EAMA, if the strength of the EASM enhanced significantly, surface runoff originating from 

heavy rainfall can bring C3 into the peatland (like process (2) in Fig. 6). Thus, C3 is closely linked 

to strong runoff caused by the strong EASM and it can be used to reconstruct extreme rainfall 

events in the Changbai Mountains. 

 

5.2 Paleoenvironmental reconstruction 

Studies of speleothems in China have shown that shifts in the stable oxygen isotope ratio (δ18O) 

of cave stalagmite largely reflect changes in δ18O values of meteoric precipitation in the EAMA, 

which in turn relate to changes in the amount of precipitation and thus characterize the Asian 

monsoon strength (e.g. Wang et al., 2001; Wang et al., 2005; Dykoski et al., 2005). According to 

several stalagmite δ18O records (i.e. Hulu Cave (Wang et al., 2001); Dongge Cave (Wang et al., 

2005; Dykoski et al., 2005); Shanbao Cave (Shao et al., 2006)), the history of EASM activities 

since the late-glacial time in China has been well established. Moreover, multi-proxy studies of the 

Hani peatland (i.e. pollen (Cui et al., 2006; Yu et al., 2008); δ18O (Hong et al., 2009) and δ13C 

(Hong et al., 2010) of cellulose, etc.) have been used for paleoenvironmental and paleoclimate 



reconstruction. Those reconstructions provide comparators for assessing how well the grain sizes 

of peaty sediments can reflect the activities of the East Asian monsoon. 

According to Fig. 7 and Fig. 8, variations of different components (C1, C2) in the two peat 

cores are in-phase. This suggests that mineral particle deposition in peatlands was forced by the 

same factor (or factors), which most likely were related to regional climate rather than to 

site-specific changes. As different components share different environmental implications, the 

variation of each component can be used to reconstruct paleoenvironmental evolution in NE 

China. 

  

5.2.1 Cold and dry climate in late-glacial period 

During the late-glacial period (15.6 ka cal. BP to 11.6 ka cal. BP in this study), C1 was high in 

both peat sections (Fig. 7). Its content was generally stable at more than 60%, while the 

percentages of C2 were not higher than 30%, indicating that NE China was dominated by the 

EAWM as clastic sediments were mainly transported into the peatland by wind. This is mainly 

consistent with other proxy reconstruction results in NE China. For example, pollen data from the 

Hani peatland show that the late-glacial period is characterized by herb pollen proportions of 

roughly 40–60%. Artemisia values represent around 40%, indicating a dry and cold climate (Yu et 

al., 2008). Similarly, pollen data from marr lakes (Liu et al., 2008; Stebich et al., 2009) and other 

peatland cores (Liu et al., 1989) have shown the same dry/cold late-glacial paleoclimate pattern in 

NE China. It is mostly because the semi-arid climate and strong EAWM during the late-glacial 

period were conducive to aeolian transport that more C1 was taken into the peatland. Optical 

stimulated luminescence (OSL) dating shows that the basal ages of sections from Horqin Sandy 

Land were concentrated in the late-glacial period (Zhao et al., 2005; Yang and Yue, 2013), 

suggesting the sandy lands were activated and expanded under cold/dry environments and higher 

wind strengths. Under the control of a strong EAWM, northwesterly winds blew strongly over the 

surface of the sandy land, resulting in removal of fine-grained material and retention of coarse 

grains. Yi et al. (2013) found that percentages of >63 μm components from many profiles in the 

Horqin Sandy Land increased dramatically during the late-glacial period, corresponding to the 

removal of fine grains under strong winds. The result is a significant increase of dust accumulation 

in the Changbai Mountains peat cores.  

Overall, the regional late-glacial paleoclimate in the study area can be characterized as cold and 

dry, but there was still a series of climate fluctuations. During 14.5 to 13.2 ka, a slight increase of 

C2 indicates a temporary enhancement of the EASM (Fig. 8.a). This corresponds with the lighter 

shift of δ18O in Dongge Cave, which seemingly correlates with the Bølling–Allerød warm period 

in Greenland (Johnsen et al., 2001). This interlude of favorable climate is also recorded by 

increases in thermophilous taxa pollen (Stebich et al., 2009), total organic carbon (TOC) and total 

nitrogen (TN) in sediments from Lake Sihailongwan (Schettler et al., 2006a; Parplies et al., 2008). 

At c. 13 ka cal. BP, the C2 content began to decrease in both peat cores, which corresponded to the 

beginning of the Younger Dryas (YD) as recorded in Greenland (Johnsen et al., 2001). However, 

the content of C2 showed a slight increase in the peat cores during 12.3 to 11.8 ka, indicating a 

temporary enhancement of the EASM. At the end of the YD, the content of C2 decreased again, 

showing a weakened summer monsoon. The abrupt enhancement of the EASM in the middle stage 

of the YD may correspond to the negative shift of peat cellulose δ13C in Hani peatland, which has 

been attributed to a temporary strengthening of the EASM and a concurrent increase in 



precipitation (Hong et al., 2010). It can be inferred that the regional climate experienced a 

complex “dry–wet–dry” cycle, as revealed by the grain size components in peaty samples during 

the YD (Fig. 8). 

 

5.2.2 Instability of Holocene climate 

At c. 11.3 ka, percentages of C2 from the Hani and Gushantun peat cores began to increase (Fig. 

8) while C1 started to decline (Fig. 7), indicating a change in regional climatic pattern. Compared 

with the cold/dry climate in the late-glacial period, the EASM was significantly enhanced and 

rainfall increased concurrently in the early Holocene. As a result, more C2 was taken into the 

peatland by surface runoff. In the EAMA, stalagmite δ18O values start to get lighter gradually 

during the early Holocene (Fig.8) (Dykoski et al., 2005; Shao et al., 2006; Wu et al., 2011). Pollen 

analyses show a gradual increase of temperate broadleaf pollen taxa and Cyperaceae pollen in the 

Hani peatland (Fig.7.A). A similar change was also recorded at Lake Erlongwan and Sihailongwan, 

where there was a transformation from the late-glacial coniferous-dominated vegetation to the 

Holocene coniferous–broadleaved forest (Liu et al., 2009; Stebich et al., 2015). However, in the 

Hani section there is an abrupt decrease of C2 at 10.7 ka to less than 30% that then lasted for 1500 

years. Huang et al. (2015) discovered a 25 cm thick tephra layer at a depth of 600~625 cm in Hani 

peatland. Using AMS 14C dating and age-depth modeling, they deduced this tephra layer deposited 

from 10.7~9.3 ka cal. BP. In our study, the decrease of C2 approximately corresponds to the time 

span of the tephra layer. So we suggest that the tephra layer, which formed during 10.7~9.3 ka, 

affected the measurement of grain size. However, unlike Hani peatland, there is presently no 

report of this tephra layer discovered in the Gushantun peatland. So this may be the reason for the 

discrepancy between Hani and Gushantun records during the early Holocene. 

In the western part of NE China, the early Holocene was characterized by low sand content and 

higher magnetic susceptibility in the Horqin Sandy Land (Yi et al., 2013). The first paleosol layer 

developed during 10.0 to 7.0 ka cal. BP, indicating a relatively moist climate (Qiu et al., 1992). As 

a result, the wind-blown activity weakened and then mobile sand dunes were fixed as the land 

areas became blanketed with vegetation (Qiu et al., 1992). Hence, the fine grains (C1) transported 

by the EAWM reduced in peat cores in the Changbai Mountains. All the previous results suggest 

the climate pattern in NE China changed significantly during the early Holocene. Our 

reconstruction results based on environmentally sensitive grain-size components are in agreement 

with other proxy records in the EAMA. 

The mid-Holocene is characterized by a warm and moist climate, reflected by higher 

percentages of C2 from 9.0 to 4.5 ka cal. BP (Fig. 8). C2 values increased gradually in the early 

Holocene and reached the largest percentages in the mid-Holocene, while C1 showed a marked 

decline (Fig. 7). This indicates that, under the control of a strong EASM, surface runoff caused by 

regional rainfall transported more coarse clastics into the peatland. This is almost synchronous 

with the negative shift of stalagmite δ18O records (Fig.8) in Dongge Cave (Dykoski et al., 2005), 

Shanbao Cave (Shao et al., 2006) and Nuanhe Cave (Wu et al., 2011). Paleoenvironmental 

reconstruction from Hani peatland showed that there was a considerable expansion of broadleaf 

deciduous trees from 9.3 ka to 4.5 ka (Yu et al., 2008) and the variation in total broadleaf pollen 

percentages is almost synchronous with that of C2 (Fig.7). The percentages of broadleaf pollen 

such as Juglans and Ulmus reached their peaks (above 10%) in the section, while Cyperaceae 

reached their maximum (above 20%) (Fig.7), indicating a more warm and humid climate around 



the Hani peatland (Yu et al., 2008). In the Changbai Mountains, Liu et al. (2009) proposed that 

Lake Erlongwan was surrounded by dense Quercus–Ulmus–Juglans dominated temperate 

broadleaf deciduous forests during the “Holocene Optimum” (HO). Stebich et al. (2015) also 

suggested a development of broadleaf trees (Juglans, Quercus and Ulmus) during the 

mid-Holocene. According to pollen analysis of peat cores in the Changbai Mountains, Yuan and 

Sun (1990) proposed boreal conifers virtually disappear from the study region during 9.0 to 4.0 ka 

as indicated by only scattered occurrences of conifer pollen (Picea, Abies, Larix). Owing to the 

high temperature and humidity, most of the peat decomposed and a sapropel layer formed (Yuan 

and Sun, 1990).   

The end of the “Holocene Optimum” warm phase is suggested by a sharp decrease of C2 

content at ~4.2 ka. This is contemporaneous with the abrupt positive shift of stalagmite δ18O 

records in Shanbao Cave (Shao et al., 2006). C2 content dropped almost to values of the 

late-glacial time (Fig. 8) while C1 sharply increased (Fig. 7) during c. 3.8 to 1.8 ka cal. BP, 

indicating the Holocene Optimum was interrupted by a weak monsoon episode. In the Changbai 

Mountains, pollen analysis showed that the Hani peatland was surrounded by conifer-dominated 

forest during 3.8 to 1.4 ka cal. BP (Cui et al., 2006). Along with the declining values for pollen of 

broadleaf and hydrophilous plants, the study region experienced a cool/dry climate (Cui et al., 

2006). Moreover, there was an interruption of stalagmite formation in Nuanhe Cave from 3.5 to 

2.0 ka cal. BP (Fig. 8), denoting the cold and dry climate in NE China temporarily halted the Karst 

process (Wu et al., 2011). From 3.8 ka to 1.7 ka BP, sediments of the Horqin Sand Land became 

coarser and the dry/cold climate resuscitated the aeolian activities (Zhao et al., 2013). The peat 

section ML, located in the southeastern margin of the Horqin Sand Land, experienced a decrease 

of tree pollen and an increase of Artemisia and Chenopodiaceae pollen during the same period, 

suggesting a shift to a cool and dry climate (Ren and Zhang, 1997).  

In the Late Holocene, there was a temporary enhancement of the EASM from 1.5 to 0.9 ka cal. 

BP, reflected by a marked increase of C2 (Fig. 8). The relatively favorable climate was recorded in 

LHT sand–paleosol sequence (1.7 to 1.0 ka) in the Horqin Sand Land (Zhao et al., 2013). Based 

on radiocarbon ages, Qiu et al. (1992) proposed that the last paleosol layer in Songnen Sandy 

Land developed during this period. In addition, results from pollen analysis also provided 

convincing evidence for the climate shift to a warm and wet period. Yang et al. (2001) proposed 

that there was a pollen concentration peak after 1.5 ka BP (1.43 ka cal. BP). At the same time, 

concentration of pollen in section ML sharply increased during 1.0 to 0.6 ka cal. BP; some pollen 

taxa even reached the largest value of the section (Ren and Zhang, 1997). Another peat core from 

NE China also showed a decrease of cryophilic plants pollen from 1.5 to 1.1 ka cal. BP (Zhang et 

al., 2004). All of these records show that NE China experienced a warm and wet regional 

environment in this phase.  

The temporary favorable climate corresponds approximately to the Sui and Tang dynasties of 

China, and to the "medieval warm period (MWP)" in Europe (Lamb, 1965). Under the Sui and 

Tang dynasties, China enjoyed a period of prosperous population and economic expansion and 

perhaps it was inextricably linked to a favorable climate (Zhu, 1973). A cool and dry climate 

(equivalent to the Little Ice Age of Lamb (1980)) closely followed the MWP. Regional climate in 

NE China has fluctuated since the 19th century, but owing to conjectured human influence it may 

be difficult to identify subsequent natural climate changes.  

Overall, indications of the EAM from the two peat cores, as reflected by the variation of 



different grain size components, are similar. However, there are some inconsistencies in the 

paleoclimate patterns indicated by the two cores, especially during the middle to late Holocene 

(Fig.7 and Fig.8). As the distance between the two peatlands is c. 22 km, they are situated in the 

same climate and vegetation zone and even the geological substrates of the peatlands are similar. 

In theory, if the grain size character of clasts in peat is a reliable proxy to investigate the 

paleo-monsoon evolution, the two records should show very good agreement. Thus, any 

discrepancy between the two records must lie in the site-specific conditions of each peatland.  

Hani peatland is located in the upper reaches of the Hani River with the river meandering 

through the center, while the Gushantun peatland does not have such a feature (Fig.1). The Hani 

River ranges 2~4 m in width and 0.5~1 m in depth (Qiao, 1993). Although the Hani peat section 

was not cored near the river, the variations of water flow and fluctuations of water level may have 

affected the sedimentary environment of the peatland. 

As runoff controls the development of a river system, precipitation, which is closely linked to 

the runoff, plays an important role during the development of a river. In a monsoon region, more 

rainfall will contribute more surface runoff to shape the fluvial landforms. However, the fluvial 

action will be weakened under a dry/cold climate (Wang et al., 2009). As pointed out earlier, Hani 

peatland originated from an open valley dammed by volcanic ejecta during the Late Pleistocene. 

The course of the modern Hani River, which is now meandering in the peatland, developed later 

than (or simultaneously with) the initiation of the peatland. During the Last Glaciation, regional 

climate around the peatland was cold and dry, so the water flow of Hani River was low. However, 

the water flow started to increase as a result of the significant increase in precipitation during the 

Holocene Optimum (HO). Stronger water flow made the river larger, with a wide channel, 

resulting in further development of river landforms during the middle Holocene. Since then, the 

Hani River has made a far-reaching influence on the sedimentary environment of the peatland and 

it is possible this may be recorded in the peat section and be reflected in variation of percentages 

of different grain size components. Thus, the variation of C1 and C2 contents in the Hani peatland 

was influenced by both the activity of EAM and the Hani River flow capacity, which was related 

to both precipitation and groundwater supply. 

In contrast with the Hani peatland, Gushantun peatland is free from the influence of a river and 

so the source of mineral clasts in peat is relatively simple. Fine grains conveyed by the wind and 

coarse grains transported by surface runoff resulted from the enhancement of rainfall, making 

contributions to the mineral clasts in the peatland. The percentages of the different components 

vary with fluctuations in the strength of the EAWM and EASM. This may be the reason why C1 

and C2 of Gushantun Peat showed better correlation with other EAM proxies than that of Hani 

Peat (Fig.7 and Fig.8). Hence, when the influence of Hani River was not significant, such as 

during the late-glacial period and up to the mid-Holocene, variations of the C1 and C2 contents 

behaved similarly in both peatlands. The great development of the Hani River during the 

mid-Holocene is the main reason for the difference in the Hani record over the mid- to late 

Holocene. 

Overall, as the paleoclimate evolution recorded by the different grain size components, 

especially the activity history of the East Asian monsoon, is broadly consistent with other proxy 

results for a large area of China, we contend that the grain size characteristics of clasts in peat are 

a reliable EAM proxy, both from theoretical analysis and empirical demonstration, as shown by 

this study. The technique can be used to investigate variation in history of the EAM in areas where 



stalagmites are not easily accessible or are absent, but peatlands are widely distributed, such as in 

NE China. So it appears feasible to reconstruct the East Asian monsoon evolution using the grain 

size of mineral material in peat sediments. However, it also should be noted that while grain size 

of clasts in peat can be used as a proxy to investigate EAM evolution history, an enclosed peatland 

is preferable. 

 

5.2.3 Global responses and paleo-climate events 

During the Holocene, the EASM-dominated climate pattern was interrupted by several 

excursions, reflected by C2 content in each peat section (Fig. 8). The first EASM-weakened event 

occurred at 10.5 ka cal. BP and it correlated with a precipitation shift inferred from stalagmite 

δ18O records in Dongge Cave (Dykoski et al., 2005) and Sanbao Cave (Shao et al., 2006), China. 

In particular, the percentages of C2 in the Gushantun peat core shift to smaller values by 40% at 

10.5 ka (Fig. 8), reflecting an abrupt decrease in monsoonal rainfall. The second event occurred 

close to the 9.2 ka event observed in the ice cores from Greenland (Johnsen et al., 2001) and 

stalagmite δ18O records in China (Dykoski et al., 2005; Shao et al., 2006). Around 9.2 ka in the 

Gushantun peat core (c. 9.6 ka in Hani section), percentages of C2 declined markedly while C1 

increased (Fig. 7), indicating an enhancement of the EAWM and decrease in regional precipitation. 

The largest EASM-weakened event of the Holocene occurred at 8.2 ka, when the C2 content 

showed a dramatic shift by almost 50% (Fig. 8), apparently corresponding to the 8.2 ka BP event 

observed in Greenland (Johnsen et al., 2001). Following the likely 8.2 ka event, several abrupt 

shifts of C2 percentages in the two peat cores occurred at 7.2 ka, 6.2 ka, 5.5 ka and 4.2 ka (as 

shown in Fig.8). Most of these climate events have been reported from stalagmite δ18O records in 

previous studies of the EAM (Wang et al., 2005). The consistent results between the 

environmentally sensitive grain size of peat sediments and high-resolution stalagmite δ18O records 

as well as other records in the monsoon area demonstrate that it is feasible to use the grain size 

components to investigate the evolution of the EAM. 

 There is a series of extreme rainfall events recorded by peaty sediments in the Changbai 

Mountains. In NE China, a strong Asian summer monsoon event might induce an increase in both 

precipitation and potential high surface-water flow. As Component 3 (>497.8 μm population), the 

coarsest component in peat samples, was conveyed in saltation and bed-load mode by strong 

surface runoff under severe rainfall, the occurrence of C3 can be used for extreme rainfall events  

reconstruction (Fig.9). In order to test our reconstruction results, here we made a comparison 

between previous paleo-flood records (which were related to high-intensity rainfalls) at 

archaeological sites in the Yangtze River basin and the Yellow River basin (Yuan et al., 2002; Zhu 

et al., 1997; Wu et al., 2015; Zhang et al., 2002) and our reconstructed extreme rainfall events. It 

can be seen in Fig. 9 that our reconstruction was consistent with the other records. It appears that 

extreme rainfall events in the Changbai Mountains were concentrated in the Holocene Optimum. 

Perhaps, it indicates that cyclical extreme rainfall events in the Changbai Mountains during the 

mid-Holocene were related to the strength of the EASM. 

6. Conclusion 

In this paper we presented a detailed grain size analysis of two peat cores, dated by AMS 14C, 

covering the Holocene from the Changbai Mountains, NE China. Conventional grain size 

parameters were complemented by the contents of extracted components with different origins 



using the “Grain size class vs. standard deviation” method. Accordingly, a new late-glacial 

paleoclimate variation of the studied region has been established. In addition, long-term variations 

of the content of each component revealed the evolution of the East Asian monsoon, and 

reconstruction results were consistent with other regional and extra-regional records. The most 

important conclusions are summarized below. 

(1) Peat sediments in the west foothills of the Changbai Mountains are mainly composed of silt. 

The grain size frequency distributions of the peat deposits showed unimodal and multimodal 

distributions, reflecting the differences in sediment sources and transport processes.  

(2) Three sensitive grain size components were obtained: <37.0 μm (Component 1 or C1), 

37.0–497.8 μm (Component 2 or C2) and >497.80 μm (Component 3 or C3). As C1 was mainly 

transported by winds and showed a high sensitivity to the EAWM, it can be considered as a proxy 

of the EAWM in the study region. A higher content of C1 usually resulted from a cold/dry climate. 

C2 in peat samples was transported into the peatland by surface runoff as a result of an increase in 

regional rainfall and can be regarded as a proxy of the EASM. Only under a significant 

enhancement of the EASM can C3 (the coarsest components in a peat sample) be transported into 

the peatland. Thus different components shared different environmental implications in the 

EAMA. 

(3) During the late-glacial period, the study region was dominated by a strong EAWM, 

indicating NE China experienced cold and dry environmental conditions. Since the start of the 

Holocene, the data from peat cores in the Changbai Mountains showed a marked enhancement of 

the EASM, suggesting a climatic shift from EAWM-dominated cold/dry climate to an 

EASM-dominated favorable environment. The Holocene Optimum (9.0–4.5 ka) in NE China was 

characterized by abundant precipitation. Multiple weak Asian summer monsoon Events (10.5 ka, 

9.2 ka, 8.2 ka, 7.2 ka, 6.2 ka, 5.5 ka and 4.2 ka) were recorded in the peat cores from Changbai 

Mountains. Moreover, extreme rainfall events occurred frequently during the Holocene Optimum 

in NE China and are synchronous between the two peat cores.  

(4) Given the high degree of temporal coherence with previous reconstructed paleoclimate 

records from East Asia, it indicates that grain size of clasts in peaty sediments is also a convincing 

paleoclimatic proxy. It can be used to investigate the variation history of the East Asian monsoon 

for areas where stalagmites are not easily accessible or are absent, but peatlands are widely 

distributed, such as in NE China. Moreover, in contrast with other proxies used in the field of 

peatland study (e.g. pollen, δ13C), the pretreatment of grain size analysis is both straightforward 

and time-saving. However, it also should be noted that while grain size of clasts in peat was used 

as a proxy to investigate EAM evolution history, an enclosed peatland is preferable. 
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Fig. 1. (A) Location of the study region, key records discussed in the text and shown in Figs. 8 and 

9, respectively: (a) Nuanhe Cave; (b) paleo-flood records in Beijing Plain; (c) Shanbao Cave; (d) 

Zhongqiao archaeological site; (e) Maqiao archaeological site; (f) Dongge Cave, the limit of the 

modern summer monsoon was modified after Gao, 1962. (B) Location and geographical setting of 

Hani and Gushantun peatlands, Lake Sihailongwan. (C) Climatic pattern in the study area. 

Diagrams show average monthly temperature and precipitation of Jingyu station from 1981 to 

2010. 

 

 

Fig. 2. ‘Bacon’ age-depth models and accumulation rate plots for Hani(A, C) and Gushantun (B, 

D) cores. The best estimates for calibrated age are shown in red. The upper and lower estimates 

are shown in gray. 



  

 

Fig. 3. Textural composition of peat sediments in the Changbai Mountains. 
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Fig. 4. Representative grain size frequency distribution curves of (a) peat samples showing 

unimodal distribution, (b) peat samples showing multimodal distribution, and (c) dustfall samples. 

Sample numbers represent depth (cm) in the Hani (HN) and Gushantun (GST) peat cores. 

 



 

 Fig. 5. Grain-size classes vs. standard deviation diagram of Hani and Gushantun peat cores. Gray 

area shows the grain size distribution of dustfall sample. 

 

 

 

 

 

Fig. 6.  Schematic diagram indicating the sources and deposition process of the grain size 

components in peatland sections in the Changbai Mountains. (1) and (2) denote processes of 

particle transportation described in the text. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 7. Comparisons of the component 1 content in Hani (C) and Gushantun (B) peat cores with 

simplified pollen diagram (Cui et al., 2006; Yu et al., 2008) of Hani peat (A).  

 

 

 

 

 

 



Fig. 8. Comparisons of the grain size record of peat sediments from Changbai Mountains with 

several absolutely dated East Asian Monsoon records in China. 

(a) percentage of Component 2 in core Hani (This study); (b) percentage of Component 2 in core 

Gushantun (This study); (c) δ18O record of stalagmite SB10 from Shennongjia, Central China 

(Shao et al., 2006); (d) stalagmite δ18O record from Nuanhe cave, NE China (Wu et al., 2011); (e) 

stalagmite δ18O record from Dongge cave, SW China (Dykoski et al., 2005). MWP denotes 

Medieval Warm Period. YD denotes Younger Dryas. B-A denotes Bølling-Allerød interstadial. 

 

 

 

 

 

Fig. 9. The comparison between reconstructed extreme rainfall events based on grain size 

Component 3 in peat cores from Changbai Mountains (This study) and previous published 

paleo-flood records in China. 

(a) paleofloods in Beijing Plain (Yuan et al., 2002); (b) paleoflood records inferred from 

archaeological sites in the Three Gorges area and the Jianghan Plain (Zhu et al., 1997); (c) 

paleoflood records inferred from Zhongqiao archaeological sites of the Jianghan Plain (Wu et al., 

2015); (d) paleoflood records inferred from Maqiao archaeological sites, Eastern China (Zhang et 

al., 2002). 



 

Table 1 AMS radiocarbon dates of samples from Hani and Gushantun peat profiles 

Sample 

Location 

Depth 

(cm) 

Lab. 

Code* 

Material AMS 14C 

BP 

Uncert

ainty 

2σ-range cal. 

BP 

Median 

age, cal. 

BP 

Hani 75-76 BA091607 Bulk organic matter 3040 35 3157-3358 3246 

Hani 124-125 BA091608 Bulk organic matter 4785 35 5335-5596 5518 

Hani 184-185 BA091610 Bulk organic matter 7045 40 7794-7954 7885 

Hani 258-259 BA091613 Bulk organic matter 8435 40 9330-9530 9470 

Hani 310-311 BA091614 Bulk organic matter 11285 45 13062-13242 13136 

Hani 349-350 BA091615 Mud 13280 50 15767-16156 15968 

Gushantun 66-67 BA10856 Bulk organic matter 935 25 793-919 853 

Gushantun 147-148 BA10858 Bulk organic matter 2140 45 1998-2306 2130 

Gushantun 178-179 BA10859 Bulk organic matter 2795 25 2803-2961 2898 

Gushantun 230-231 BA10860 Bulk organic matter 3645 50 3839-4319 3966 

Gushantun 273-274 BA10861 Bulk organic matter 3930 30 4249-4499 4366 

Gushantun 361-362 BA10863 Bulk organic matter 5375 45 6005-6282 6184 

Gushantun 410-411 BA10864 Bulk organic matter 6250 40 7020-7264 7192 

Gushantun 462-463 BA10865 Bulk organic matter 7685 40 8404-8548 8474 

Gushantun 578-579 BA10867 Bulk organic matter 9270 40 10296-10569 10454 

Gushantun 748-749 BA10871 Mud 11165 50 12883-13132 13041 

* Peking University Accelerator Mass Spectrometry Laboratory, China. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 Grain-size classes vs. standard deviation values of Hani and Gushantun peat cores 

Grain size (μm) S.D.HN S.D.GST Grain size (μm) S.D.HN S.D.GST 

2816.0 0.00 0.00 37.0 1.51 1.86 

2368.0 0.00 0.05 31.1 1.54 2.03 

1991.0 0.00 0.12 26.2 1.61 2.21 

1674.0 0.06 0.30 22.0 1.62 2.29 

1408.0 0.27 0.63 18.5 1.60 2.33 

1184.0 0.72 1.12 15.6 1.60 2.36 

995.6 1.23 1.55 13.1 1.63 2.41 

837.2 2.19 2.23 11.0 1.64 2.37 

704.0 2.35 1.65 9.3 1.58 2.23 

592.0 1.75 1.33 7.8 1.46 2.00 

497.8 1.58 1.63 6.5 1.33 1.78 

418.6 1.98 2.01 5.5 1.21 1.59 

352.0 1.98 2.23 4.6 1.10 1.38 

296.0 1.71 2.43 3.9 0.93 1.16 

248.9 1.69 2.86 3.3 0.73 0.89 

209.3 1.82 3.04 2.8 0.80 0.94 

176.0 1.87 2.89 2.3 0.58 0.67 

148.0 1.79 2.60 2.0 0.42 0.47 

124.5 1.66 2.30 1.6 0.32 0.33 

104.7 1.57 2.11 1.4 0.24 0.23 

88.0 1.61 2.09 1.2 0.16 0.13 

74.0 1.72 2.16 1.0 0.05 0.05 

62.2 1.80 2.17 0.8 0.00 0.00 

52.3 1.73 2.07 0.7 0.00 0.00 

44.0 1.59 1.91 0.6 0.00 0.00 

 


