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Abstract  

 

The upper-body trunk musculature is key in supporting breathing, propulsion and 

stabilization during front crawl swimming.  The aim of this study was to determine if 

the latissimus dorsi, pectoralis major and serratus anterior contributed to the 

development of inspiratory muscle fatigue observed following front crawl swimming. 

Fourteen trained swimmers completed a 200-m front crawl swim at 90% of race pace.  

Maximal inspiratory and expiratory mouth pressures (PImax and PEmax) were 

assessed before (baseline) and after each swim and electromyography was recorded 

from the three muscles. Post swim PImax fell by 11% (P < 0.001, d = 0.57) and the 

median frequency (MDF: a measure of fatigue) of the latissimus dorsi, pectoralis 

major and serratus anterior fell to 90% (P = 0.001, d = 1.57), 87% (P = 0.001, r = -

0.60) and 89% (P = 0.018, d = 1.04) of baseline, respectively. The fall in serratus 

anterior MDF was correlated with breathing frequency (r = 0.675, P = 0.008) and 

stroke rate (r = 0.639, P = 0.014). The results suggest that the occurrence of 

inspiratory muscle fatigue was partly due to fatigue of these muscles and that 

breathing frequency and stroke rate particularly affect the serratus anterior. 

 

 

Key words: median frequency, fatigue, inspiratory mouth pressure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

It has been suggested that a duality of muscle function exists during front crawl 

swimming with some upper body trunk muscles that are responsible for propulsion 

and stabilization also being responsible for supporting the elevated demands of 

breathing (Brown & Kilding, 2011; Lomax & Castle, 2011).  The muscles most likely 

to share this duality of function are the latissimus dorsi, pectoralis major and serratus 

anterior (Kendall et al., 2005; Nuber et al., 1986; Pink et al., 1991).  

 

Electromyography (EMG) has shown that the latissimus dorsi and pectoralis major 

are key in moving the body over the arm during the propulsive underwater phase of 

the front crawl swimming stroke (Nuber et al., 1986; Pink et al., 1991). Of the upper 

body trunk muscles the activity of the latissimus dorsi (as a percentage of maximum) 

is equaled only by the inferior portion of the rectus abdominis.  The average intensity 

of the latissimus dorsi contraction over the course of a stroke cycle may be as high as 

92% of that observed during a maximum isometric contraction (Clarys, 1985).  Along 

with the flexor carpi ulnaris, biceps brachii and triceps brachii, the latissimus dorsi is 

also key in maintaining swimming speed (Ikuta et al., 2012).  The next substantial 

upper body trunk muscle contribution during front crawl comes from the pectoralis 

major.  Typical activation per stroke cycle is around 37-43% of that obtained during a 

maximal contraction (Clarys, 1985).  Conversely, the serratus anterior is associated 

with a lower peak activation per stroke cycle but a continued and greater sustainment 

of the average activation (20-40%) during sub-maximal swimming (Pink et al., 1991).  

This sustained activity reflects the role of the serratus anterior in ensuring shoulder 

joint stability and preparation for the next propulsive phase (Pink et al., 1991; 

Wadsworth & Bullock-Saxton, 1997).  

 

As well as providing information on muscle activation, EMG, and specifically the 

frequency or spectral content and amplitude of the signal, can also be used to monitor 

fatigue (De Luca, 1997). Irrespective of whether spectral parameters or amplitude 

measures are used to evaluate muscle activity, a number of upper body and limb 

muscles have been shown to fatigue in response to maximal front crawl swimming 

(Aujouannet et al., 2006; Figueiredo et al., 2013; Ikuta et al., 2012; Lomax et al., 

2014; Stirn et al., 2011).  Of relevance to this study are the latissimus dorsi and 

pectoralis major findings: no studies have examined the fatigability of the serratus 

anterior during front crawl swimming.  The latissimus dorsi has been shown to fatigue 

in response to maximal 100-m and 200-m front crawl swimming (Ikuta et al., 2012; 

Stirn et al., 2011).  Similar observations have been made in the pectoralis major in 

response to 100-m and 200-m maximal front crawl swimming (Figueiredo et al., 

2013; Ikuta et al., 2012; Stirn et al., 2011) as well as arms only front crawl sprinting 

(Lomax et al., 2014).   

 

As the latissimus dorsi, pectoralis major and serratus anterior all contribute to the 

front crawl stroke and the production of inspiratory muscle force, it is relevant to ask 

whether the occurrence of inspiratory muscle fatigue, which is now well documented 

following race-paced (Brown & Kilding, 2011; Lomax et al., 2012; Thomaids et al., 

2009) and sub-race paced (Lomax & Castle, 2011; Lomax et al., 2013; Lomax & 

McConnell, 2003) front crawl swimming, is at least partly due to fatigue of these 

muscles.  With the exception of one study showing that pre-induced inspiratory 

muscle fatigue resulted in latissimus dorsi fatigue which persisted during a short flat-

out arms only front crawl sprint (Lomax et al., 2014), no studies have attempted to 



identify which of these three dual function muscles become fatigued during front 

crawl swimming. 

 

The present study was designed to address this question.  Given that swimming at 

90% of 200-m front crawl race pace is sufficient to induce inspiratory muscle fatigue 

(Lomax & Castle, 2011; Lomax & McConnell, 2003; Lomax et al., 2013), we 

hypothesized that inspiratory muscle fatigue would be evident after such a swim and 

that it would be caused (at least partly) by fatigue of the latissimus dorsi, pectoralis 

major and serratus anterior.  Consequently, we expected a reduction in the median 

frequency (MDF, a frequency content measure) and integrated EMG (iEMG an 

amplitude measure) of the EMG signals recorded from the latissimus dorsi, pectoralis 

major and serratus anterior during the post swim PImax maneuver compared with the 

baseline PImax maneuver Conversely, we did not expect to observe evidence of 

expiratory muscle fatigue. 

 

 

Materials and methods 

 

Subjects 

Fourteen collegiate swimmers (7 males) volunteered for this study.  Mean ± SD for 

age, body mass and stature were 20.3 ± 3.5 years, 79.0 ± 8.2 kg, 179.6 ± 4.7 cm, 

respectively for males, and 21.6 ± 5.2 years, 65.9 ± 12.2 kg, 164.3 ± 5.1 cm, 

respectively for females..  Barometric pressure, air temperature, water temperature 

and humidity were 765.0 ± 8.0 mmHg, 25.3 ± 1.2
o
C, 27.9 ± 0.4

o
C, and 63.6 ± 9.4%, 

respectively. All swimmers were well-trained collegiate swimmers with a seasonal 

personal best of 140.2 ± 21.9 seconds (males: 126.6 ± 4.6 seconds; females: 150.5 ± 

13.5 seconds) for 200-m front crawl.  All we were well hydrated prior to, and avoided 

training or competition for at least 24 hours before, testing. None-had any history of 

cardio-pulmonary disease. Subjects provided written informed consent and local 

ethical approval was obtained before the start of the study.  

 
Testing procedure 

Before any swimming testing took place subjects undertook a pulmonary 

familiarization session during which standing maximal inspiratory mouth pressure 

(PImax) and standing maximal expiratory mouth pressure (PEmax) maneuvers were 

practiced (RPM, Micro Medical, Rochester, UK). The nose was occluded throughout 

and a 60 second rest separated each effort.  PImax was measured from residual 

volume (RV) and PEmax from total lung capacity (TLC). Reliability was deemed 

present when three technically proficient maneuvers within 5 cmH2O were obtained 

(Lomax & Castle, 2011). In addition, forced vital capacity, forced expired volume in 

one second and peak expiratory and inspiratory flow rates were recorded from TLC or 

RV, where applicable, with the nose occluded, and for demographic purposes only. 

Measurements were made in accordance with ATS/ERS guidelines. 

 

On a separate day participants undertook a front crawl swim in a swimming flume 

(SwimEx 600-T Therapy Pool, length 4.2 m, width 2.3 m and depth 1.5 m) preceded 

by a brief warm-up.  Before this swimmers provided their season’s best 200-m front 

crawl swim time so that target velocity could be calculated.  Target velocity was set to 

90% of each swimmer’s time.  The velocity of the flume (m
.
s

-1
) was calculated by 



dividing the target distance of 200-m by target time in seconds. The time taken to 

complete 200-m was then calculated and swimmers swam for this length of time. 

 

Before and immediately after the 200-m swim subjects performed standing PImax and 

PEmax maneuvers on poolside: up to three pre swim PImax maneuvers were recorded 

to ensure that baseline, as identified during the familiarization session, was obtained.  

Surface EMG was recorded from the pectoralis major, latissimus dorsi and serratus 

anterior during each PImax and PEmax maneuver.  In addition, each 200-m swim was 

recorded (digital camera interfaced to ShowBiz software, ArcSoft, Fremont, USA) for 

subsequent analysis of stroke rate and breathing frequency.  The total number of 

stroke cycles (one left and one right arm stroke) was divided by time (s) to convert to 

cycles per second (Hz) and then multiplied by 60 to convert to cycles per minute.  

Breathing frequency was calculated as total number of breaths taken per swim divided 

by time in seconds multiplied by 60 (Lomax et al., 2011).  

 

Electromyography data collection 

Surface EMG was recorded on the right side of the body.  The pectoralis major, 

latissimus dorsi and serratus anterior were chosen because of their significant 

contribution to both the front crawl arm stroke (Nuber et al., 1986; Pink et al., 1991) 

and deep inspirations (Kendall et al., 2005).  In addition, activation of these muscles 

during maximal inspiratory and expiratory efforts was checked and confirmed at the 

start of the study.  The electrode sites were identified and marked in accordance with 

the methods of Criswell (2011).  Specifically, the clavicular placement was used for 

the pectoralis major with the electrode placed at a slight oblique angle two cm below 

the clavicle and medial to the axillary fold.  The latissimus dorsi was placed four cm 

below the inferior tip of the scapula halfway between the lateral edge of the torso and 

the spine and at a slight oblique angle.  The serratus anterior was placed horizontally 

below the axillary area level with the inferior tip of the scapula and just medial of the 

latissimus dorsi (Criswell, 2011).   

 

The electrode sites were first shaved and then rubbed with an alcohol wipe to 

minimize the impedance of the skin (Criswell, 2011).  Waterproof bipolar electrodes 

with an interelectrode distance of two cm (REF SX230, Biometrics Ltd, Newport, 

Wales) were adhered to the prepared site using medical grade adhesive tape (T350, 

Biometrics Ltd, Newport, Wales).  The EMG signals were recorded with a sampling 

rate of 1000 Hz, preamplified (x 1000) and filtered with a bandwidth of 20-450 Hz.  

Input impedance was > 10
15

 Ohms and the common mode rejection ratio at 60 Hz dB 

was greater than 96 dB.  Each electrode was connected to a portable data acquisition 

unit (DataLOG, Biomtrics Ltd, Newport, Wales) by a five metre waterproof cable 

(SX230W, Biometrics Ltd, Newport, Wales).  The ground electrode (R206 Ground 

Strap Assembly, Biometrics Ltd, Wales) was fixed over the styloid process of the 

radius and interfaced with the data acquisition unit via a five metre waterproof cable.  

To minimize cable movement and hence interference with the signal, all cables were 

fixed to the skin via medical grade adhesive tape and supported by a cable running 

across the width of the flume above the swimmer. 

 

EMG signal processing 

DataLog software (DataLog software version 5.06, Biometrics Ltd, Newport, Wales) 

was used for signal processing. PImax and PEmax maneuvers were separated into an 

active and inactive phase.  The active phase was defined as the EMG signal which 



was at least 30% of the local maximum energy. This represents regions of high 

activation and excludes regions of low activation and is consistent with the methods 

of Stirn et al. (2011).  The local maximum energy was determined using the average 

rectified value calculated using a window length of 250 ms. The mean MDF was 

obtained by fast fourier transformation per active phase using a window length of 64 

ms. The same window length was used to determine iEMG.  Post swim PImax and 

PEmax data were expressed as a percentage of baseline per muscle (relative) as well 

as expressed in absolute values for MDF and iEMG (Hz and mv respectively).  

 

Data analysis 

Data were assessed for normality using a Shapiro-Wilk test and homogeneity of 

variance using Levene’s test.  Reliability was assessed using the coefficient of 

variation (CV).  Specifically, reliability was assessed for absolute (cmH2O) PImax 

and PEmax values (familiarization and baseline experimental values). 

 

Paired samples t-tests and Wilcoxon Singed Rank tests assessed differences in 

absolute baseline and post swim PImax and PEmax values, as well as EMG data.  

Friedman’s ANOVAs assessed differences in relative post swim MDF values between 

muscles during PImax and PEmax maneuvers.  Pearson’s (r) and Spearman’s (rho) 

correlation coefficients assessed for correlations between the fall in MDF and the 

magnitude of inspiratory muscle fatigue per muscle, stroke rate and breathing 

frequency. 

 

Where relevant, and for parametric data, effect sizes were calculated using Cohen’s d 

with an effect size of 0.2 deemed small, 0.5 medium and 0.8 and above large (Cohen, 

1988).  For non-parametric data effect sizes were calculated using r, whereby r was 

the z score divided by the square root of the total number of observations, with an 

effect size of .1 small, .3 medium, .5 large (Field, 2013). Significance was set as P < 

0.05 as a priori, and statistical analyses were conducted using IBM SPSS Statistics 

version 21 (Chicago, Il, USA).  Unless otherwise stated, data are expressed as mean ± 

SD.  95% confidence intervals (CI) were also calculated. 

 

Results 

Achieved swimming velocity, baseline pulmonary data and swimming kinematics 

data can be found in table 1.   

 

**Table 1 here** 

 

The reliability of PImax and PEmax was good (4.6% and 7.0%, respectively). Post 

swim PImax declined by 11 ± 7% from 148 ± 31 cmH2O to 131 ± 29 cm H2O (t = 

5.744, P < 0.001, d = 0.57) whereas PEmax changed little from 138 ± 42 cmH2O to 

136 ± 35 cmH2O post swim (t = 0.517, P = 0.614).    

 

Post swim PImax MDF was lower than baseline PImax in the pectoralis major (87 ± 

11%, z = -3.180, P = 0.001, r = -0.60), latissimus dorsi (90 ± 9%, t = -4.353, P = 

0.001, d = 1.57) and serratus anterior (89 ± 15%, t = -2.718, P = 0.018, d = 1.04) 

(figure1). These changes were not significant between muscles (X
2

(2) = 0.143, P = 

0.981).  Post swim PImax iEMG data were highly variable being 88 ± 71% in the 

latissimus dorsi (z = -1.452, P = 0.147, r = -0.27), 90 ± 46% in the pectoralis major (t 

= 0.854, P = 0.408, d = 0.31) and 126 ± 64% in the serratus anterior (t = -1.510, P = 



0.155, d = -0.57).  However, absolute iEMG (mv) in the latissimus dorsi was lower 

during post swim PImax (z = -1.961, P = 0.050, r = -0.37).  Table 2 displays absolute 

PImax MDF values and table 3 absolute PImax iEMG values. 

 

**Figure 1 here** 

 

Post swim PEmax MDF remained unchanged in the pectoralis major (99 ± 12%, t = -

.301, P = 0.768, d = 0.12) and serratus anterior (94 ± 10%, t = -2.072, P = 0.059, d = 

0.85) but fell in the latissimus dorsi (93 ± 12%, z = -2.291, P = 0.022, r = -0.43) 

(figure 1).  There were no differences in PEmax MDF between muscles (X
2

(2) = 

1.000, P = 0.694).  Post swim PEmax iEMG data were highly variable being 70 ± 

38% in the latissimus dorsi (z = -0.078, P = 0.937, r = -0.02), 65 ± 54% in the 

pectoralis major (z = -0.089, P = 0.929, r = -0.02) and 55 ± 59% in the serratus 

anterior (z = -0.345, P = 0.730, r = -0.07). Table 2 displays absolute PEmax MDF 

values and table 3 absolute PEmax iEMG values. 

 
 

**Table 2 here** 

 

**Table 3 here** 

 

Unsurprisingly stroke rate and breathing frequency were related (r = 0.958, P < 

0.001). A correlation was observed between the change in MDF of the serratus 

anterior in post swim PImax and breathing frequency (breaths
.
min

-1
: r = .675, P = 

0.008) and the change in MDF of the serratus anterior in post swim PImax and stroke 

rate (cycles
.
min

-1
 & Hz: r = .639, P = 0.014) (figure 2). 

 

**Figure 2 here** 

 

Discussion  

The aim of this study was to determine if the occurrence of inspiratory muscle fatigue 

in response to 200-m front crawl swimming was attributed to fatigue of the 

predominant dual function upper body front crawl trunk muscles.  We hypothesized 

that fatigue of the latissimus dorsi, pectoralis major and serratus anterior would occur 

in response to swimming at 90% of 200-m front crawl race-pace and that this would 

be evidenced in PImax.  As PImax fell by 11% following the swim and this was 

associated with a leftward shift in latissimus dorsi, pectoralis major and serratus 

anterior MDF (figure 1), we can accept our hypothesis.  However, the high variability 

in iEMG data (table 3) suggests that iEMG was not a particularly sensitive indicator 

of inspiratory muscle fatigue in the muscles selected  

 

The observed changes in MDF are consistent with fatigue. In accordance with 

Henneman’s size principle, submaximal contractions recruit small diameter, low 

threshold motor units (and hence slow twitch muscle fibres) rather than large 

diameter, high threshold motor units (and hence fast twitch muscle fibres) (MacIntosh 

et al., 2006).  As fatigue ensues other units are recruited to compensate for any loss in 

force (Carpentier et al., 2001; Enoka et al., 1989).  This is supported by an increase in 

motor unit synchronization and action potential size (Bigland-Ritchie, 1981; De Luca, 

1997; Stirn et al., 2011) causing iEMG to increase (Masuda et al., 1999; Potvin & 

Bent, 1997; Stephens & Taylor, 1972; Stirn et al., 2011).  During maximal 



contractions fast twitch muscle fibres are recruited (MacInosh et al., 2006) along with 

further potential motor unit synchronisation (Bigland-Ritchie, 1981; Hermens et al., 

1992).  When all relevant motor units have been recruited there are no additional units 

remaining that can replace those fatigued.  Furthermore, these motor units will remain 

fatigued until an adequate period of recovery has occurred.  This could be in excess of 

10 minutes depending on motor unit phenotype (Enoka et al., 1989).   

 

In addition to the recruitment of smaller motor units, a PImax maneuver would be 

expected to recruit large diameter, high threshold motor units as it is a maximal 

maneuver. As these motor units have faster conduction velocities than smaller 

diameter, low threshold motor units they experience a greater (Kupa et al., 1995) and 

more rapid (Komi & Tesch, 1979) fall in the frequency of the power density 

spectrum.  This is because conduction velocity is slowed as a result of metabolic 

byproduct accumulation (e.g. increased hydrogen and potassium ion accumulation), 

which alters the properties of the muscle membrane (Dimitrova & Dimitrov, 2003; 

Kupa et al., 1995; Masuda et al., 1999). Consequently, one would expect a fall in both 

MDF (Kupa et al., 1995; Komi & Tesch, 1979) and iEMG (Bilodeau et al., 2003; 

Stephens & Taylor, 1972) when contractions require a large input from fatiguing fast 

twitch muscle fibres. 

 

Fast twitch muscle fibres have been shown to account for around 52-68% and 65% of 

latissimus dorsi and pectoralis major composition, respectively (Paoli et al., 2013; 

Srinivasan et al., 2007): unfortunately little is reported about the composition of the 

serratus anterior.  The fall in post swim PImax MDF in the current study therefore 

probably reflects fatigue predominantly of high threshold motor units induced by the 

preceding swim. Such fatigue could reflect the demands of moving the body through 

the water and the physiological consequences of the stroke-induced restricted 

breathing pattern. Furthermore, although we observed a fall in absolute (mv) 

latissimus dorsi iEMG during the post swim PImax maneuver (table 3), the difference 

was masked when normalized (%) to baseline because of the large variability. This 

suggests that MDF is a more sensitive indicator of inspiratory muscle fatigue than 

iEMG in the muscles studied.  However, it should be acknowledged that the window 

length chosen when processing iEMG was short (64 ms) but was chosen to reflect the 

quasi-isometric nature of MIP and MEP maneuvers.  The variation in iEMG could be 

reduced by increasing the window length (e.g. >100 ms) thereby making iEMG more 

reflective of the isometric, rather than the dynamic, proportion of the MIP and MEP 

contractions (Burden, 2008). 

 

An interesting observation in the current study was the correlation between the 

change in serratus anterior PImax MDF and breathing frequency and stroke rate. Our 

data indicate that the greater the breathing frequency and stroke rate, which 

themselves are intimately linked (coefficient of determination of 92% in the current 

study), the greater the leftward shift in MDF.  In support of this we observed 

coefficients of determination between the magnitude of serratus anterior fatigue, and 

breathing frequency and stroke rate of 46% and 41% respectively.   

 

Pink et al. (1991) have suggested that the serratus anterior muscle is likely to be 

particularly susceptible to fatigue during swimming because of its continuous activity.  

If recruitment of the serratus anterior is suboptimal there is an elevated risk of 

subacromial impingement and swimmers suffering from this syndrome demonstrate 



delayed recruitment of the serratus anterior compared with uninjured swimmers 

(Wadsworth & Bullock-Saxton, 1997). Furthermore, swimmers who breathe 

unilaterally rather than bilaterally are at a greater risk of developing shoulder 

impingement on their breathing side (Yani & Hay, 2000). It is possible that increasing 

breathing frequency will predispose the serratus anterior to fatigue because of its role 

in maintaining rib-cage and scapula stability (Pink et al., 1991; Wadsworth & 

Bullock-Saxton, 1997).  If this increase changes breathing from a bilateral to 

unilateral pattern the risk of shoulder injury will be increased (Yani & Hay, 2000).  

This raises an interesting question regarding a possible link between serratus anterior 

fatigue, inspiratory muscle fatigue and the potential for subacromial impingement. 

We cannot confirm whether or not such a link does exist but think it worthy of 

investigation. 

 

Although fatigue was observed in the latissimus dorsi, pectoralis major and serratus 

anterior this does not preclude fatigue of other muscles from contributing to the fall in 

PImax.  The PImax maneuver is a holistic maneuver and the pressure recorded at the 

mouth will reflect the collective activity of all the muscles recruited (Gibson, 1995). 

We are unable to identify if other muscles were fatigued and contributed to the fall in 

PImax and do not rule out this possibility.  It should also be noted that we observed a 

fall in latissumus dorsi MDF during the post swim PEmax maneuver (table 2 and 

figure 1) but no change in absolute PEmax following the swim. This indicates that the 

latissimus dorsi contributes to pressure generation during the PEmax maneuver but 

that fatigue of the motor units/muscle fibres sampled within this muscle could be 

compensated and so PEmax was unaffected.  The same is likely of the serratus 

anterior.  Although the fall in PEmax MDF was non-significant it only just missed 

statistical significance (P = 0.059) and demonstrated a large effect size (d = 0.85) 

which suggests that a type II error occurred.  In contrast, the MDF of the pectoralis 

major was unchanged post swim during the PEmax maneuver suggesting that there is 

scope for fatigued motor units to be derecruited with little impact on PEmax and 

MDF. 

 

In conclusion, our results extend previous work demonstrating inspiratory muscle 

fatigue following sub-maximal front crawl swimming (Lomax & McConnell, 2003; 

Lomax & Castle, 2011; Lomax et al., 2014).  Our data indicate that the MDF of the 

latissimus dorsi, pectoralis major and serratus anterior were all lower during the post 

swim versus baseline PImax maneuver which is indicative of fatigue. However, it was 

only the serratus anterior which demonstrated any correlation between the magnitude 

of fall in PImax MDF and stroke rate and breathing frequency.  .  Our data also 

indicate that unlike MDF, iEMG is too variable to be used as an indicator of fatigue 

(at least when using short processing window lengths) during holistic respiratory 

muscle strength assessments.  Furthermore, as the magnitude of serratus anterior 

fatigue experienced was correlated with breathing frequency and stroke rate, the 

serratus anterior is particularly susceptible to changes in breathing pattern and stroke 

rate. 
 

Perspective 

Although inspiratory muscle fatigue has been well documented in response to 

swimming, and in particular front crawl, the muscles contributing to its development 

had not previously been examined.  This study demonstrates that the lattisimus dorsi, 

pectoralis major and serratus anterior are all implicated in its development.  



Moreover, the serratus anterior is particularly susceptible to the impact of stroke 

kinematic changes.  Given that this muscle is vital in maintaining shoulder joint 

stability and that subacrominal impingement can occur if activation is suboptimal, or 

breathing pattern changes from a bilateral pattern to a unilateral pattern, any possible 

link between inspiratory muscle fatigue and the propensity for shoulder injury should 

be examined. 
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Table 1. Baseline pulmonary data and 200-m front crawl kinematic data: group 

(n=14), male (n=7) and female (n=7) mean ± SD 

 

 Variable                        Group            Males        Females                  

 

Maximal inspiratory mouth pressure (cmH2O)  148 ± 31 156 ± 18  139 ± 39 

Maximal expiratory mouth pressure (cmH2O)     138 ± 42 169 ± 25 111 ± 37 

Forced vital capacity (l)               4.15 ± 0.80  4.82 ± 0.71 3.70 ± 0.49 

Forced expired volume in one second (l)           3.84 ± 0.61 4.34 ± 0.50 3.51 ± 0.43  

Peak expiratory flow rate (l
.
min

-1
)               427 ± 86 506 ± 38 375 ± 65 

Peak inspiratory flow rate (l
.
min

-1
)      371 ± 122 584 ± 28 259 ± 22  

Percentage of seasonal personal best achieved    89.1 ± 1.4 88.3 ± 1.6 90.0 ± 0.0 

Achieved swimming velocity (m
.
s

-1
)       1.32 ± 0.37 1.40 ± 0.06 1.20 ± 0.12 

Breathing frequency (breaths
.
min

-1
) 21 ± 3 21 ± 3 21 ± 4 

Stroke rate (cycles
.
min

-1
) 32 ± 5 32 ± 4 29 ± 4  

Stroke rate (Hz)  0.53 ± 0.08 0.53 ± 0.06 0.52 ± 0.09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Absolute MDF (Hz) data for PImax and PEmax per muscle (group mean ± 

SD) 

 

                                         Baseline                    Post swim                      

                                              

                                         Mean ± SD   SEM   95% CI     Mean ± SD   SEM   95% CI 

 

Pectoralis major (Hz)      

 PImax                        63 ± 9        2.405   58-68      54 ± 7
**     

1.871  50-57     

PEmax     67 ± 13         3.474    60-74       65 ± 10         2.673   60-70

  

Latissimus dorsi (Hz) 

 PImax                         70 ± 14      3.741   63-77       62 ± 12
**      

3.207 56-68       

PEmax 78 ± 18         4.811   69-87       72 ± 16
*      

    4.276   64-80 

  

Serratus anterior (Hz) 

 PImax                         60 ± 7

      1.871    56-64      53 ± 8

*   
2.138   49-57        

PEmax 57 ± 8           2.138   53-61 54 ± 8           2.138  50-58 

      

different to baseline *P<0.05, **P <0.01. MDF = median frequency. PImax = 

maximal inspiratory mouth pressure. PEmax = maximal expiratory mouth pressure. 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Absolute iEMG (mv) data for PImax and PEmax per muscle (group mean ± 

SD) 

 
                                   Baseline                                            Post swim                      

                                              

                                   Mean ± SD  SEM   95% CI         Mean ± SD SEM   95% CI 

 
Pectoralis major (mv)      

 PImax                    3.94 ± 3.21   0.858 2.26-5.62      3.72 ± 2.36  0.631    2.48-4.96 

 PEmax    2.90 ± 2.53  0.676 1.58-4.22      3.71 ± 2.11 0.564    2.60-4.82

  

Latissimus dorsi (mv) 

 PImax                      1.99 ± 2.83  0.756 0.51-3.47      1.01 ± 0.64
*
 0.171  0.67-1.35 

 PEmax 1.24 ± 1.36
 

0.364 0.53-1.95      1.09 ± 0.52 0.139  0.82-1.36 

  

Serratus anterior (mv) 

 PImax                      1.77 ± 1.42 0.380 1.03-2.51      1.93 ± 1.70 0.454  1.04-2.82 

 PEmax 1.68 ± 1.19 0.318 1.06-2.30     1.77 ± 1.15 0.307  1.17-2.37 

      

different to baseline *P<0.05. iEMG = integrated electromyography. PImax = 

maximal inspiratory mouth pressure. PEmax = maximal expiratory mouth pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure legends 

 

Figure 1. The mean and SD MDF value for the pectoralis major, latissimus dorsi and 

serratus anterior during PImax and PEmax maneuvers post swim.  

MDF = median frequency. PImax = maximal inspiratory mouth pressure. PEmax = 

maximal expiratory mouth pressure. 

Significant differences are marked with asterisk, **P < 0.01, *P < 0.05. 

 

Figure 2. Correlation between stroke rate and breathing frequency (a), the change in 

MDF of the serratus anterior in post swim PImax and breathing frequency (b), and the 

change in MDF of the serratus anterior in post swim PImax and stroke rate (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 

Figure 1. The mean and SD MDF value for the pectoralis major, latissimus dorsi and 

serratus anterior during PImax and PEmax maneuvers post swim.  

The mean and SD MDF value for the pectoralis major, latissimus dorsi and serratus 

anterior during PImax and PEmax maneuvers post swim.  

MDF = median frequency. PImax = maximal inspiratory mouth pressure. PEmax = 

maximal expiratory mouth pressure. 

Significant differences are marked with asterisk, **P < 0.01, *P < 0.05. 
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Figure 2. Correlation between stroke rate and breathing frequency (a), the change in 

MDF of the serratus anterior in post swim PImax and breathing frequency (b), and the 

change in  MDF of the serratus anterior in post swim PImax and stroke rate (c). 
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