

SVG 3D Graphical Presentation for

Web-based Applications

Lu Jisheng

A thesis submitted to

The University of Gloucestershire

In accordance with the requirements of the degree of

Doctor of Philosophy

In the Faculty of Media, Arts and Technology

February, 2015

2

I

ABSTRACT

Due to the rapid developments in the field of computer graphics and computer

hardware, web-based applications are becoming more and more powerful, and

the performance distance between web-based applications and desktop

applications is increasingly closer. The Internet and the WWW have been widely

used for delivering, processing, and publishing 3D data. There is increasingly

demand for more and easier access to 3D content on the web. The better the

browser experience, the more potential revenue that web-based content can

generate for providers and others.

The main focus of this thesis is on the design, develop and implementation of a new

3D generic modelling method based on Scalable Vector Graphics (SVG) for

web-based applications. While the model is initialized using classical 3D graphics,

the scene model is extended using SVG. A new algorithm to present 3D graphics

with SVG is proposed. This includes the definition of a 3D scene in the

framework, integration of 3D objects, cameras, transformations, light models and

textures in a 3D scene, and the rendering of 3D objects on the web page,

allowing the end-user to interactively manipulate objects on the web page.

A new 3D graphics library for 3D geometric transformation and projection in the

SVG GL is design and develop.

A set of primitives in the SVG GL, including triangle, sphere, cylinder, cone, etc.

are designed and developed.

A set of complex 3D models in the SVG GL, including extrusion, revolution,

Bezier surface, and point clouds are designed and developed.

The new Gouraud shading algorithm and new Phong Shading algorithm in the

SVG GL are proposed, designed and developed. The algorithms can be used to

generate smooth shading and create highlight for 3D models.

The new texture mapping algorithms for the SVG GL oriented toward web-based

3D modelling applications are proposed, designed and developed. Texture

mapping algorithms for different 3D objects such as triangle, plane, sphere,

cylinder, cone, etc. will also be proposed, designed and developed.

This constitutes a unique and significant contribution to the disciplines of

web-based 3D modelling, as well as to the process of 3D model popularization.

Signed Date ...20/02/2015......

III

ACKNOWLEDGEMENTS

I would like to thank all the people who helped me build the foundations for the

SVG 3D framework for web-based application during my Ph.D. studies. Special

thanks go to my supervisor Dr. Shujun Zhang. His advice and guidance have

been invaluable, his enthusiasm and scientific knowledge both motivating and

inspiring. I had a great time at the School of Computing and Technology, and I

hope that our cooperation will continue in the future.

Many thanks also to my co-advisors Dr. Vicky Bush. It has been a great

experience to work with her and share her knowledge in many interesting

discussions.

I would like to thank my Family: my parents, my wife, my son, for their

understanding, support and motivation, which they offered me every day

throughout the last four years. This work would not have been possible without

your help.

IV

Contents

Chapter 1 Introduction…………………………………………………..….…1

1.1 Backgrounds……………………………………………………………….1

1.2 Motivations…………………………………………………………..…….4

1.3 Aim and Objectives ………………………………………………….........6

1.4 Contributions to New Knowledge Generation…………………………….7

1.5 Thesis Structure……………………………………………………..….….8

Chapter 2 Literature Review and Current 3D Technologies…………………10

2.1 Introduction…………………………………………………………..…..10

2.2 3D Computer Graphical Presentations…………………………..…….....12

 2.2.1 3D Scene Modelling……………………………………………..….12

 2.2.2 3D Rendering………………………………………………………..15

2.3 Technologies for 3D Graphical Presentations…………………………....17

2.3.1 OpenGL……………………………………………………………...18

2.3.2 Direct3D……………………………………………………………...18

2.3.3 Other Technologies…………………………………………….….....19

2.4 3D Computer Graphical Presentations for Web-Based Applications……20

2.5 Technologies for Web-Based 3D Graphical Presentations………………21

2.5.1 VRML…………………………………………………………….….21

2.5.2 X3D………………………………………………………….……….22

2.5.3 WebGL……………………………………………………….………22

2.5.4 JOGL………………………………………………….……………23

2.5.5 Other Technologies…………………………………………………24

2.6 SVG and Its Applications……………………………………………….26

2.7 Shading for 3D Graphical Presentations………………………………..28

2.8 Texture Mapping………………………………………………………..28

2.9 Summary…………………………………………………….…………..29

Chapter 3 Research Design and Methods...31

3.1 Introduction……………………………………………………………31

3.2 Methods for Data Collection and Presentation..………………………..31

3.3 Research Design………………………………………………………32

3.4 Methods for Verification and Validation………………………………34

3.5 Ethical Issues……………………………………………………………35

V

3.6 Summary………………………………………………………………..35

Chapter 4 SVG Theory and Its Applications, and OpenGL…………….…….37

4.1 Introduction……………………………………………………….……37

4.2 SVG Theory……………………………………………………………..38

 4.2.1 SVG Coordinate System……………………………………………39

 4.2.2 SVG Basic Geometry Elements…………………………………….40

 4.2.3 Text and Fonts………………………………………………………40

 4.2.4 Filling, Stroking, Opacity……………………………………………41

 4.2.5 Styling……………………………………………………………….41

 4.2.6 Filters………………………………………………………………..42

 4.2.7 Interactivity and Scripting…………………………………………...42

 4.2.8 Animation……………………………………………………………43

 4.2.9 Adding SVG to a Webpage………………………………………….43

4.3 Evaluation of SVG Applications…………………………………………45

4.4 Discussion of Problems of SVG Applications…………………………...46

4.5 OpenGL Theory………………………………………………………….49

 4.5.1 3D Graphics Coordinate Systems…………………………………...50

 4.5.2 Primitives……………………………………………………………51

 4.5.3 Vertices……………………………………………………………..51

 4.5.4 Pixel vs. Fragment………………………………………………….52

4.6 OpenGL Applications……………………………………………….…..52

4.7 OpenGL and SVG………………………………………………………53

4.8 Summary………………………………………………………………..55

Chapter 5 A New Framework-SVG GL for Web-Based Graphical

Presentation……………………………………………………..………………56

5.1 Introduction……………………………………………..…………….…56

5.2 Proposition and Design of a New Framework-SVG GL for Web-Based

Graphical Presentation………………………………….………………….…57

5.3 3D Modelling of Primitive Geometries in the SVG GL………………....70

5.4 3D Modelling Through Sweeping………………………………………76

 5.4.1 Extrusion…………………………………………………………….76

 5.4.2 Revolution…………………………………………………………...77

5.5 Bezier Surface……………………………………………………………78

5.6 3D Modelling Through 3D Point Clouds………………………………..79

5.7 Summary…………………………………………………………………80

VI

Chapter 6 New Algorithms for Shading in the SVG GL...…………………82

6.1 Introduction………………………………………………………………82

6.2 Discussion of the Existing Algorithms in SVG and Its Problems………..83

 6.2.1 Filter Element……………………………………………………..84

 6.2.2 Lighting Filters………………………………………………………85

6.3 Illuminating Model…………………………………………………….88

6.3.1 Light Source………………………………………………………89

6.3.2 Ambient Reflection……………………………………………….91

6.3.3 Diffuse Reflection……………………………………………………91

6.3.4 Specular Reflection………………………………………………….92

6.4 Discussion of Shading Methods…………………………………………94

6.4.1 Flat Shading…………………………………………………………94

6.4.2 Gouraud Shading……………………………………….…………95

6.4.3 Phong Shading……………………………………………………….96

6.5 Flat Shading, New Gouraud Shading and Phong Shading Algorithms in the

SVG GL…………………………………………………………………......97

 6.5.1 Flat Shading in the SVG GL……………………………………..97

 6.5.2 A New Gouraud Shading Algorithm in the SVG GL……..................99

 6.5.3 A New Phong Shading Algorithm in the SVG GL……………….101

6.6 Summary……………………………………………………………….103

Chapter 7 New Algorithms for Texture Mapping in the SVG GL………….105

7.1 Introduction……………………………………………………………..105

7.2 Texture Mapping in SVG ………………………………………….…...105

7.3 Texture Mapping………………………………………………………..108

7.4 Texture Mapping in the SVG GL………..………………………..….…110

7.5 A New Texture Mapping Algorithm for a Triangle in the SVG GL……111

7.6 A New Texture Mapping Algorithm for a Plane in the SVG GL…..…...114

7.7 A New Texture Mapping Algorithm for a Sphere in the SVG GL……..116

7.8 A New Texture Mapping Algorithm for a Cylinder in the SVG GL…...118

 7.9 A New Texture Mapping Algorithm for a Cone in the SVG GL……....121

 7.10 A New Texture Mapping Algorithm for a Bezier Surface in the SVG

GL…………………………………………………………..……………….123

 7.11 A New Texture Mapping Algorithm for an Extrusion in the SVG

GL…………………………………………….…………………………….126

 7.12 A New Texture Mapping Algorithm for a Revolution in the SVG

GL…………………………………………………………………..……....128

VII

 7.13 Summary…………………………………………………………….…130

Chapter 8 Design and Development of the Software Environment for Validating

the Proposed Framework and Algorithms………..…………………………...132

8.1 Introduction…………………………………………………………….132

 8.2 System Validation…………………………..…………………………..132

8.3 System Requirement Analysis………………………………….…….…133

 8.3.1 Problem Definition…………………………………………………133

8.3.2 The Software System- S3GL……………………………………….133

8.4 System Design…………………………………………….…………….135

 8.4.1 Development Environment………………………………………....135

 8.4.2 Classes Design and Definition………………………………….…..137

8.5 System Implementation…………………………………………………145

8.5.1 Web Server…………………………………………………………145

8.5.2 Support Platform………………………………………….………...145

8.6 System Test………………………………………………….…………..147

8.7 The Validation of the Theory and Algorithms Using Software System.150

8.7.1 3D Static Objects…………………………………………………...151

8.7.2 A Gouraud Shading Box……………………………………………153

8.7.3 A Phong Shading Box…………………………………...……….…155

8.7.4 3D Plant……………………….……………………………………157

8.8 Summary…………………………………...…………………………...159

Chapter 9 The Discussions of the Proposed Methods for 3D Web-Based

Presentation………………………………………………………………...….161

9.1 Introduction……………………………………………………………….161

9.2 3D Bottle………………………………………………………………….161

9.3 Building Site Simulation………………………………………………….164

9.4 Shopping Mall……………………………………………………….…….167

9.5 3D Landscape…………………………………………………….…….….169

9.6 Evaluation of the Applications of SVG 3D Presentation……………..…171

Chapter 10 Conclusions and Further Work………………………….………173

10.1 Summary………………………………………………………….……173

10.2 Main Achievements……………………………………………………173

10.3 The Contributions to New Knowledge Generation…………………….174

10.4 Further Work………………………………………………………….175

VIII

References…………………………………………………………………..177

Appendix A………………………………………………………………….188

IX

List of Figures

Figure 2.1 A fuel pump mount model designed by 3D CAD…………………...10

Figure 2.2 Molecular orbital for a Carbon-60 molecule…………………...……11

Figure 2.3 3D cartoon characters…………………………………………...…...11

Figure 2.4 The 3D computer graphics presentation………………………….....12

Figure 2.5 Right-handed coordinate system………………………………..…..13

Figure 2.6 RGB colour cube……………………………………………….……14

Figure 2.7 Geometry of perspective projection ……………………….………16

Figure 3.1 Research procedure………………………………………………...32

Figure 4.1 A star create by SVG………………………………..…………….39

Figure 4.2 Compare enlarged raster image and SVG image……………….…45

Figure 4.3 Order of operations…………………………………………….…50

Figure 4.4 OpenGL primitives………………………………………………...51

Figure 5.1 The new framework-SVG GL…………………………………...58

Figure 5.2 3D view process in the SVG GL…………………………….……59

Figure 5.3 3D modelling in the SVG GL………...……………………………60

Figure 5.4 Transform from world space to camera space………………….…64

Figure 5.5 Perspective projection model………………………………….…..66

Figure 5.6 Orthographic projection model…………………………………...68

Figure 5.7 Project ion from 3D camera space to 2D project ion

plane……………………….…………………………………………………….68

Figure 5.8 Viewport transformation……...……………………….………….....69

Figure 5.9 Transform from projection plane to SVG viewport…………….…70

Figure 5.10 Triangle in the SVG GL...…………………………………………72

Figure 5.11 Plane in the SVG GL...…………………………………………...73

Figure 5.12 Point on the surface of a sphere……………………………………73

Figure 5.13 Sphere with different segmentsA and segmentsP………………….74

Figure 5.14 Point on the curved surface of a cylinder………………………….74

Figure 5.15 A cylinder without top and bottom face in the SVG GL………….75

Figure 5.16 Point on the curved surface of a cone……………………………...75

Figure 5.17 Cone in the SVG GL…………………………………………….....76

Figure 5.18 Cube rendered with different material………………………....…..76

Figure 5.19 Extruding a ellipse along y-axis………………………………....…77

Figure 5.20 A chess pieces generated by revolution…………………………..78

Figure 5.21 Curved surface generated by Bezier surface…………………….…79

Figure 5.22 Structured point clouds ……………………………………………80

X

Figure 6.1 Lighting surfaces with single colour………………………………..82

Figure 6.2 A lit and unlit cuboid………………………………………..……….82

Figure 6.3 Compare ordinary image with result of filter effect…………….…..83

Figure 6.4 An example of a filter effect and the SVG file……………………...85

Figure 6.5 The effect of z attribute on light effect……………………………...86

Figure 6.6 Azimuth and elevation in XYZ coordinate…………………………87

Figure 6.7 The effect of azimuth and elevation attribute on light effect………87

Figure 6.8 The effect of limitingConeAngle and x, y, z attribute on light effect.88

Figure 6.9 Intensity of light at the point P on the surface………………………89

Figure 6.10 Related parameters in spot light……………………………………90

Figure 6.11 Intensity of distant light can be considered to be constant…….…...91

Figure 6.12 Light is reflected uniformly in every direction…………………….91

Figure 6.13 The intensity of diffuse reflection is related to the angle between the

surface normal N and the light source direction vector L………………………92

Figure 6.14 Without specular reflection, surfaces look dull, like chalk……..…93

Figure 6.15 Higher the power of n the smaller and brighter the specular

highlight…………………………………………………………………………93

Figure 6.16 The intensity of specular reflection is related to the angle between

the viewer V and the reflected ray R………………………………………...….94

Figure 6.17 All pixels on the same polygon are given the same colour in Flat

shading ………………………………………………………….………………95

Figure 6.18 Linear interpolation of the colour is performed to generate the colour

in Gouraud shading……………………………………………………………..95

Figure 6.19 Linear interpolation of the normal is performed to calculate the

colour in Phong shading……………………………………………….………..96

Figure 6.20 Triangle surface normal………………………………...………....97

Figure 6.21 Calculation of reflection vector …………………………………..98

Figure 6.22 Flat shading 3D Box………………………………………………98

Figure 6.23 Intensity interpolation based on triangle area……………………..99

Figure 6.24 Gouraud shading 3D Box……………………………………….100

Figure 6.25 Normal vector interpolation based on triangle area………….…102

Figure 6.26 Phong shading 3D Box…………………………………………..103

Figure 7.1 SVG pattern……………………………….……………………….106

Figure 7.2 Compare using SVG pattern directly on an 3D cone with the correct

texture mapping on the 3D cone………………………………….……………107

Figure 7.3 Compare using SVG pattern directly on a rotated plane with the

correct texture mapping on the rotated plane………………………………….107

XI

Figure 7.4 Texture space to screen space transformation……………………...108

Figure 7.5 Forward mapping leaves holes and overlaps………………………109

Figure 7.6 The procedure of the pattern based image transformed texture

mapping algorithms……………………………………………………….…..111

Figure 7.7 Parameterization of a triangle……………………………….…....112

Figure 7.8 New texture mapping algorithm for a triangle in the SVG GL…….113

Figure 7.9 Compare texture mapping create by new algorithm for a triangle and

by using SVG pattern directly…………………………………………..…....114

Figure 7.10 New texture mapping algorithm for a plane in the SVG GL…......115

Figure 7.11 Compare texture mapping create by the new algorithm for a plane

and by using SVG pattern directly……………………………………...……..116

Figure 7.12 New texture mapping algorithm for a sphere in the SVG GL…....117

Figure 7.13 Compare texture mapping create by new algorithm for a sphere and

by using SVG pattern directly……………………………………………...….118

Figure 7.14 New texture mapping method for a cylinder in the SVG GL …....120

Figure 7.15 Compare texture mapping create by new algorithm for a cylinder and

by using SVG pattern directly…………………………………………..……..120

Figure 7.16 New texture mapping method for a cone in the SVG GL …….….122

Figure 7.17 Compare texture mapping create by new algorithm for a cone and by

using SVG pattern directly…………………………………………...…..……123

Figure 7.18 New texture mapping method for a Bezier surface in the SVG

GL……………………………………………………………………..……….125

Figure 7.19 Figure 7.19 Compare texture mapping create by new algorithm for a

Bezier surface and by using SVG pattern directly…………………….………126

Figure 7.20 New texture mapping method for an extrusion surface in the SVG

GL……………………………………………………………………………..127

Figure 7.21 Compare texture mapping create by new algorithm for an extrusion

surface and by using SVG pattern directly…………………………...…..….128

Figure 7.22 New texture mapping method for a revolution surface in the SVG

GL….………………………………………………………….………….……129

Figure 7.23 Compare texture mapping create by new algorithm for a revolution

surface and by using SVG pattern directly…………………………..………...130

Figure 8.1 Visual Studio 2010 integrate development environment………....136

Figure 8.2 SVG 3D running as a server side application……………………...146

Figure 8.3 Activities in software testing process………………………….…...148

Figure 8.4 Screenshot of use case 1…………………………………………...149

Figure 8.5 Screenshot of use case 2…………………………..………………150

XII

Figure 8.6 3D static objects……………………………………………………152

Figure 8.7 3D video case……………………………………………………153

Figure 8.8 Flat shading vs. Gouraud shading………………………………....154

Figure 8.9 Flat shading vs. Phong shading……………………….……………156

Figure 8.10 Texture mapping 3D plant…………………………………….…158

Figure 8.11 3D paint pot model…….………………………………….……...159

Figure 9.1 3D bottle…………………………………………………………....162

Figure 9.2 Rotate the camera to navigate the 3D bottle………………....…….163

Figure 9.3 A 3D coke can……………………………………………………..164

Figure 9.4 Building site simulation……………………………………..…..165

Figure 9.5 Rotate the camera to navigate the building site………………..…..166

Figure 9.6 A 3D case wall model…………………………………………..….167

Figure 9.7 Supermarket………………………………………………...……...168

Figure 9.8 The inner scenario of the supermarket……………………….…….168

Figure 9.9 Rotate the camera to navigate the supermarket……………….……168

Figure 9.10 A 3D building model………………………………………….…..169

Figure 9.11 3D landscape………………………………………………..…….170

Figure 9.12 Rotate the camera to navigate the landscape…………………..….170

Figure 9.13 3D model of Ciudad Del Puerto……………………………….….171

XIII

List of Tables

Table 2.1 Features supported by existing 2D SVG and the proposed 3D SVG...30

Table 4.1 The unit of an SVG coordinate system……………………………….40

Table 4.2 Features supported by SVG and OpenGL……………………………54

Table 6.1 Gouraud shading render rate for linear interpolation and area

interpolation……………………………………………………………………101

Table 6.2 Phong shading render rate for linear interpolation and area

interpolation………………………………………………………………...….103

Table 8.1Triangle‘s argument………………………………………………….137

Table 8.2 Plane‘s argument……………………………………………………138

Table 8.3 Sphere‘s argument…………………………………………………..138

Table 8.4 Cylinder‘s argument………………………………………………...139

Table 8.5 Cone‘s argument……………………………………….……………139

Table 8.6 Cube‘s argument……………………………………….……………140

Table 8.7 Complexobject‘s argument……………………….…………………140

Table 8.8 ExtrudeObject‘s argument……………………………….………….141

Table 8.9 RevolutionObject argument……………………………….………..141

Table 8.10 BezierSurface‘s argument…………………………….………..….142

Table 8.11 FrameMaterial argument………………………………………….142

Table 8.12 ColourMaterial argument………………………………………….143

Table 8.13 TextureMaterial argument…………………………………………143

Table 8.14 Light‘s argument…………………………………………………..143

Table 8.15 Camera argument………………………………………………….144

Table 8.16 Scene argument……………………………………………………144

Table 8.17 Supported operating systems and web browsers…….…………….147

Table 8.18 Use case 1-Adding a 3D object on web page…………….………..149

Table 8.19 Use case 2- Adding multiple 3D objects on web page…………….150

Table 8.20 Static object render time……….…………………….……………152

Table 8.21 Flat shading and Gouraud shading render rate………….…………155

Table 8.22 Flat shading and Phong shading render rate……………………….157

Table 8.23 3D plant render rate……………………………………..…………158

Table 9.1 3D bottle render rate………………………………………………...163

Table 9.2 Building simulation render rate……………………………………..166

Table 9.3 The Supermarket render rate………………………………………..169

Table 9.4 3D Landscape render rate…………………………………………...171

14

1

Chapter 1 Introduction

1.1 Background

Computer graphics includes the process and outcomes associated with using

computer technology to convert created or collected data into visual

representations. Computer graphics has grown phenomenally in recent decades,

progressing from simple two-dimensional (2D) graphics to complex, high-quality,

three-dimensional (3D) environments. In entertainment, computer graphics is

used extensively in movies and computer games (Parent, 2012). Animated

movies are increasingly being made entirely with computers. There are also

significant uses of computer graphics in non entertainment applications. For

example, virtual reality systems are often used in training (Wong, 2005).

Computer graphics is also an indispensable tool for scientific visualization and

for computer-aided design (CAD) (Delmarcelle, 1993). The computer graphics

field is motivated by the general need for interactive graphical user interfaces

that support mouse, windows and widget functions. Other sources of inspiration

include digital media technologies, scientific visualization, virtual reality, arts

and entertainment.

Over the past years, advances in display and computing technology have

revolutionized the visualization of computer graphics. Now people can interact

with rich, realistic, 3D graphics using relatively low cost equipment.

Interactive 3D graphics provides the capability to produce moving pictures or

animation. This is especially useful when exploring time varying phenomena

such as weather changes in the atmosphere, the deflection of an airplane wing in

flight, or telecommunications usage patterns. Interaction provides individual

users the ability to control parameters like the speed of animations and the

geometric relationship between the objects in a scene to one another.

Today, interactive 3D graphics are used in a wide variety of fields. They can be

used to model organs in a medical simulation system (Marescaux, 1998).

Entertainment fields such as movies or video games use 3D models to produce

photo-realistic 3D scenes and characters (Foskey, 2002). They can also be used

to demonstrate complex data or molecular structure (Kumar, 2008) in the science

sector. The architecture industry uses 3D models to demonstrate proposed

buildings and landscapes through Software Architectural Models (Gross, 2005).

In engineering, 3D models have been widely used for product design and

development (Gobithasan, 2005).

2

The emergence of the Internet and World-Wide Web (WWW) provides a flexible

means for linking applications, data, information, and users. To seamlessly

interlink associated data and couple visual representations with this data creates

opportunity for new approaches to visualization. The term web-based application

is used to describe applications that use the Internet and WWW as an information

source, a delivery mechanism for applications, or both. A web-based application

is any application software that runs in a web browser or is created in a

browser-supported programming language and relies on a common web browser

to render the application (Gaedke, 2000).

The web is a powerful tool since it provides communication around the world.

The web has become popular for efficient communications in all sectors, i.e.

education, business and government. Web-based applications should be seriously

considered as the ideal mode of communication because it provides the method

for sharing information in a fast, cost effective manner. Incorporation of 3D

graphics into a web application is needed to provide a model and simulation that

incorporates the desired 3D model. This is now realizable with the advancements

in computer technology.

Web-based applications are rapidly entering domains where window-based

applications have previously been the only viable alternative. Web-based

applications present some advantages over window-based applications. Firstly, it

is not necessary to install the dedicated software; the user only has to access a

web page through his preferred web browser. Therefore, with a web application,

it can be ensured that the user is using the latest version of the software, since the

update process is done in the server instead of in each client machine, as happens

with window-based applications. Secondly, the cross-platform character of the

web-based applications can attract extra users, since they are operating-system

independent.

Interactive 3D graphics is one of the largest areas where web-based applications

have not seen much success until recently (Jiménez, 2013). Part of this has been

because this type of interactivity demands much of the underlying device and

software, such as the virtual machines for scripting languages so often involved

in these types of applications. Another reason is the lack of a 3D graphical

application programming interface (API) for most web application technologies.

In this case, there are some new approaches for delivering 3D graphics in a

web-based application. (El-Khalili, 2005) used Virtual Reality Modelling

Language (VRML) and Java-3D to present a prototype for 3D computer-aided

3

learning tools of the human anatomy. (MacEachren, 1998) used VRML 2.0 to

model geospatial data, and Java to develop an interface to interact with the

VRML world. (Hibbard, 1998) designed and developed the VisAD system,

which enables many users to implement the visualization of a shared set of

numerical data and computation sources. VRML has been applied for

simulations of engineering system design such as submarine design and

workshop layout design. But these applications are window-based. If VRML is

used in a web-based application, a plug-in is required. And the 3D model file size

generated by VRML is normally bigger than 1 MB (Mega byte), and will affect

the performance of the web-based application.

X3D (Brutzman, 2007) is the successor of VRML 2.0, and it has been the

International Standard Organization (ISO) open standard for 3D web content

delivery in 2005. X3D combines geometry and runtime behavioural description

into a single file. X3D can be integrated into web services, and its API-Scene

Access Interface (SAI) allows any JavaScript, Java or C/C++ based applications

to communicate with X3D through this API. (Rahman, 2007) discussed the

dynamic visualization of 3D spatial data such as buildings and other large objects

using geo-data base management system (DBMS) coupled with web-based

system that works with VRML and X3D. As with VRML, X3D also need plug-in

for web-based applications. Similarly to VRML, the 3D model file size generated

by X3D is normally bigger than 1 MB (Mega byte), and will affect the

performance of the application created by X3D.

O3D (Ortiz, 2010) is Google‘s open source project, featuring a plug-in and a

JavaScript API for creating 3D graphics applications that run in a web browser.

O3D uses Open Graphics Library (OpenGL) and DirectX for graphic rendering.

The system consists of two layers. The first layer – the plug-in, provides a shader

and geometry abstraction mapped to OpenGL and DirectX. The higher second

layer provides a JavaScript API similar to Open Scene Graph (OpenSG) or

Java3D. 3D Markup Language for Web (3DMLW) (Turonova, 2009) is a file

format based on eXtensible Markup Language (XML) developed by 3D

Technologies R&D. It is designed for creating and representing both 3D and 2D

interactive content on the internet. A 3DMLW document is written in a

markup-based language similar to eXtensible HyperText Markup Language

(XHTML). 3DMLW supports key-frame animation, Bezier-splines, particle

systems, physics and collisions, all defined in a declarative manner as XML

elements. It uses OpenGL for graphics rendering and Open Audio Library

(OpenAL) for audio processing. This technology is similar to X3D, because it

4

also encodes its contents in a XML-based file format, supports scripting to

enhance interactivity, and needs a web browser plug-in to render the contents

within the file.

However, 3D graphics on the web remains primitive today because the complex

technology has been difficult to use with typical PCs and browsers. In fact,

browsers generally cannot natively run complex 3D content or offer either high

frame rates or full-screen graphics (Ortiz, 2010).

1.2 Motivation

Today, 3D graphics is primarily used in applications such as games and virtual

reality, which are rendered using powerful computers and specialized software.

However, businesses, engineering firms, and other users also want the realism

and additional details that 3D adds. Users want their browser-based experiences

to be more like those they have on a desktop. Consumers are becoming more

accustomed to 3D contents because of the use of the technology in movies,

videogames, and other types of entertainments.

There is thus a demand for more and easier access to 3D contents on the web.

The better the browser experiences, the more potential revenues that web-based

contents can generate for providers and others.

Now several organizations are working on technologies that may finally widen

3D‘s presence on the web by transforming browsers into more powerful

computing platforms that can deliver a PC-like experience, including the playing

of 3D content (Skarler, 2009). This would enable applications such as product

modelling, presentation, and configuration; 3D web-based meetings and worker

collaboration; the simulation of processes such as surgery or mechanical

procedures; virtual tours; and augmented reality. Nonetheless, 3D on the web

will have to clear some obstacles before the technology can become reliable and

mainstream.

A key motivation for the use of 3D models is that humans think graphically with

an innate ability to process graphical information resulting in fast and effective

communication. Furthermore, human information processing of graphical

information is involuntary and automatic, leaving more conscious problem

solving abilities available.

Another motivation behind using 3D modelling is for sensory appeal and

immersion into the model. This results in enjoyment and ultimately increased

5

understanding of the model and what it represents.

The criteria for the evaluation the effectiveness of a web-based 3D model differ

between each application. One of the key properties of a web-based 3D model is

that to make it accessible to the ―normal‖ user with only standard computer

equipment (2D monitor, mouse, keyboard, sound support). The key criteria to

evaluate the effectiveness of a web-based 3D model are availability and

accessibility (Yoon, 2008). So the follows criteria should be adopted in this

thesis:

1. Functionality, it can be used to build, modify and view 3D geometrical

models of all primitive geometries and free form surfaces for a variety of

web-based applications. This means the technique is available for develop

web-based 3D model.

2. Applicability, it has native support from the majority of web browsers and

can be viewed on a web browser without any plug-ins. The 3D model developed

by this technique is accessible from web browser without any plug-ins.

3. Efficiency, it can be used to create a 3D model with the smaller file size than

the model created for a window-based application.

As discussed above, although some successful web-based 3D modelling

techniques, such as VRML, X3D, and O3D have been reported in the literature,

based on the above criteria, they all have drawbacks. Most techniques have no

native browser support and are only available through third party plug-in.

Besides, the file sizes of some 3D models built using the existing methods are

very big, which leads to the upload time and transaction time is much longer than

a user expects. In summary, in one aspect, there are a lot of requirements of

web-based 3D models and in the other aspect, there are no existing 3D modelling

methods that are suitable to the practical web-based 3D applications,

SVG (Scalable Vector Graphics) is an XML-based markup language for

describing 2D graphics applications and images, and a set of related graphics

script interfaces (Spanaki, 2004). SVG graphics can be interactive and animated.

Bindings for scripting languages and network interfaces enable developers to

build rich interactive graphics applications. SVG is developed by W3C for

describing 2D vector graphics for storage, presentation and distribution on the

Web. All major modern web browsers—including Mozilla Firefox, Internet

Explorer 9 and 10, Google Chrome, Opera, and Safari—support basic SVG and

can render the markup directly without the use of a plug-in (Peterson, 2012).

This includes support for fonts, images, graphical elements such as circles or

6

paths, as well as gradients and some of the filters. There are several advantages

to native and full support: a plug-in is not needed, SVG can be freely mixed with

other content in a single document, and rendering and scripting become

considerably more reliable.

SVG provides an open, standard based format for creating graphics. Using SVG

has numerous advantages over other conventional bitmapped graphics, such as

JPEG, GIF, and PNG. The files are generally much smaller than bitmaps,

resulting in quicker download times. The graphics can be scaled to fit different

display devices without the pixelation associated with enlarging bitmaps. The

graphics are constructed within the browser, reducing the server load and

network response time generally associated with web imagery. The file is an

XML-based file format; it allows the creator to conveniently embed arbitrary

information inside of the file. SVG is well suited for graphics rich environments.

SVG can be used for GIS, embedded systems, location-based services, animated

picture messaging, multimedia messaging, animation and interactive graphics,

entertainment, e-Business, and graphic user interfaces.

Based on the above analysis, it can be seen that SVG meet almost of all the

criteria except that the existing SVG is only in 2D. However, if 3D is integrated

into SVG, it can even play an important role in many fields such as product

demonstration, city planning, site exhibition, 3D e-Business (such as 3D

shopping malls), etc. So it is practically important required to further study the

feasible methods for 3D modelling for web-based applications. Therefore, this

project will be focused on proposing, designing and developing a generic method

for building SVG 3D models for web-based applications.

1.3 Aim and Objective

The context of this PhD project is based on two assumptions: firstly, the rapid

developments in the field of computer graphics and computer hardware now

allows for real time visualization of complex 3D data over the internet; secondly,

digital 3D models are playing an increasingly important role in many fields such

as product demonstration, city planning, site exhibition, 3D online gaming,

decision-making and 3D e-Business (such as 3D shopping malls), etc.

The overall aim of this thesis is to propose, design and develop a new generic

framework for efficient SVG 3D modelling for various interactive manipulation

web-based applications.

7

The main focus of this thesis is on the design, develop and implementation of a

new 3D generic modelling method based on Scalable Vector Graphics (SVG) for

web-based applications.

In order to achieve this overall aim, the objectives of this project are:

1. To investigate and evaluate existing methods for 3D modelling for

web-based applications by a systematic literature review.

2. To evaluate the existing 2D SVG applications and to investigate the

possibility of using SVG to realize 3D graphical representations for various

web-based applications.

3. To analyze the geometric structure and features of 3D models and propose a

new generic framework for 3D modelling for web-based applications.

4. To design and develop the dedicated framework- SVG Graphics Library

(SVG GL) for 3D models creation, interactive manipulation and view in web

browser.

5. To research, design and develop new algorithms for shading and texture

mapping.

6. To design and develop a software environment for implementing and

validating the proposed framework and algorithms.

7. To validate the proposed framework and algorithms through 4 web-based

applications.

8. To evaluate the proposed framework and algorithms through 4 typical

web-based applications.

1.4 Contributions to New Knowledge Generation

The primary contribution of this project will be its proposition, design and

development of a new generic framework for modelling and constructing

SVG-based 3D models for efficient web-based applications. This framework can

be applied widely in interactive manipulation web-based environments.

The main contributions of this PhD project are:

1. Propose, design and development of a new framework-SVG GL for SVG 3D

modelling based on classical 3D graphic theory and SVG. While the model is

initialized using classical 3D graphics, the scene model is extended using SVG.

A new algorithm to present 3D graphics with SVG is proposed. This includes the

8

definition of a 3D scene in the framework, integration of 3D objects, cameras,

transformations, light models and textures in a 3D scene, and the rendering of 3D

objects on the web page, allowing the end-user to interactively manipulate

objects on the web page.

2. Design and develop a new 3D graphics library for 3D geometric

transformation, and projection in the SVG GL.

3. Design and develop a set of primitives in the SVG GL, including triangle,

sphere, cylinder, cone, etc..

4. Design and develop a set of complex 3D models in the SVG GL, including

extrusion, revolution, Bezier surface, and point clouds.

5. Propose, design and develop the new Gouraud shading algorithm and new

Phong Shading algorithm in the SVG GL. The algorithms can be used to

generate smooth shading and create highlight for 3D models.

6. Propose, design and develop the new texture mapping algorithm for the SVG

GL oriented toward web-based 3D modelling applications. Texture mapping

algorithms for different 3D objects such as triangle, plane, sphere, cylinder, cone,

etc. will also be proposed, designed and developed.

This constitutes a unique and significant contribution – both theoretical and

practical – to the disciplines of web-based 3D modelling, as well as to the

process of 3D model popularization.

1.5 Thesis Structure

The thesis is arranged as follows.

Chapter 1, ―Introduction‖, presents the background of this PhD project,

motivations, and overall aim and objectives.

Chapter 2, ―Literature Review and Current 3D Technologies‖, first reviews the

research literature on the state of the art of 3D web-based modelling, and how

this relates to other branches of 3D modelling. The technologies for

window-based 3D presentation are introduced. Most importantly, current

technologies for web-based 3D presentations are discussed, weighting up the

advantages and drawbacks of each technology.

Chapter 3, ―Research Design and Methods‖, provides the research design of this

project, and also discusses the methods for data collection and presentation.

9

Chapter 4, ―SVG Theory and Its Applications, and OpenGL‖, is focused on SVG.

The SVG Theory and its applications are reviewed, the problem with the existing

SVG 2D are also discussed. The need for 3D SVG research is documented.

Chapter 5, ―A New Framework-SVG GL for Web-Based Graphical Presentation‖,

proposes the new framework-SVG GL. The framework is described from the

functional perspective, as well as from the technical design angle.

Chapter 6, ―New Algorithms for Shading in the SVG GL‖, is oriented more

specifically on the illumination and shading, and develops new Gouraud shading

algorithm and new Phong shading algorithm in the SVG GL.

Chapter 7, ―New Algorithms for Texture Mapping in the SVG GL‖, is oriented

more specifically on the texture mapping. New texture mapping algorithms

developed for the SVG GL are presented in details.

Chapter 8, ―Design and Development of the Software Environment for

Validating the Proposed Framework and Algorithms‖, presents the analysis of

the system requirements, the system design and development environment of the

software environment of the SVG GL.

Chapter 9, ―The Discussions of the Proposed Methods for 3D Web-Based

Presentations‖, describes 4 demo applications of interactive 3D model based on

the SVG GL, and discusses the potential application fields of the SVG GL.

Chapter 10, ―Conclusions and Further Work‖, concludes the thesis with a

summary of research outcomes, as well as a discussion of its original

contributions and of future works.

10

Chapter 2 Literature Review and Current 3D Technologies

2.1 Introduction

3D computer graphics is the science, study, and method of projecting a 3D

representation of geometric data that is stored in the computer onto a 2D image

using visual tricks such as perspective and shading to simulate the eye's

perception of those objects. 3D computer graphics represent a 3D object using a

collection of points in 3D space, connected by various geometric entities such as

triangles, lines, curved surfaces, etc. 3D computer graphics are often referred to

as 3D models. 3D modelling is the process of developing a mathematical,

wireframe representation of any 3D object via specialized software (Watt, 1999).

A model is not technically a graphic until it is displayed.

The development of 3D computer graphics has been driven both by the needs of

the user community and by advances in hardware and software. Due to the

progress in display and computing technology, now people can interact with rich,

realistic, 3D computer graphics with relatively low cost equipment.

The applications of 3D computer graphics are many and varied. A major use of

3D computer graphics is in design processes, particularly for engineering and

architectural systems, almost all products are now computer designed (Figure

2.1). Generally referred to as CAD, computer-aided design methods are now

routinely used in the design of buildings, automobiles, aircraft, watercraft,

spacecraft, computers, textiles, and many other products (Groover, 1983; Bliss,

2002; Gobithasan, 2005).

Figure 2.1 A fuel pump mount model designed by 3D CAD (free model

download from http://3dprinterbaski.com/cadcam-sistemlerinin-genel-yapisi)

3D Computer graphics is also widely used in scientific visualization

(Delmarcelle, 1993; Grissom, 1995; Bertoline, 1998). Science and engineering,

and even certain aspects of mathematical and statistical analysis, involve the

11

documentation of variation of one quantity against another, either predicted

according to some law, or measured from some experiment, or gathered from

some poll. Scientific visualization is primarily concerned with the visualization

of 3D phenomena (architectural, meteorological, medical, biological, etc.), where

the emphasis is on realistic renderings of volumes, surfaces, illumination sources

(Figure 2.2).

Figure 2.2 Molecular orbital for a Carbon-60 molecule (free model download

from http://www.ks.uiuc.edu/Research/vmd/vmd-1.8.7/cuda.html)

3D Computer graphics is now commonly used in entertainment (Machover, 1998,

Sumner, 2008; Parent, 2012). Computer games, with colourful and animated

screen displays, were among the first application of 3D computer graphics.

Cartoon animation was a logical extension of these ideas. Cartoons are often

rendered directly from 3D models (Figure 2.3). Many traditional 2D cartoons use

backgrounds rendered from 3D models, which allows a continuously moving

viewpoint without huge amounts of artist time.

Figure 2.3 3D cartoon characters (free model download from

http://gallerycartoon.blogspot.co.uk/2014/05/ice-age-3-3d-cartoon-pictures.html)

12

3D Computer graphics can also be used in other areas, they can be used to model

organs in a medical simulation system (Marescaux, 1998; Wong, 2005). The

architecture industry uses 3D models to demonstrate proposed buildings and

landscapes through Software Architectural Models (Gross, 2005).

2.2 3D Computer Graphical Presentations

A 3D computer graphics system can be thought of as having 2 major components,

each of which performs a distinct and clearly defined key role in the process of

image presentation. These two components are responsible for 3D scenes

modelling and 3D rendering. Figure 2.4 gives a schematic view of the process

used in 3D computer graphics, showing the role that each of those components

plays. Each of these major components can be broken down into groups of

important subcomponents.

Figure 2.4 The 3D computer graphics presentation

2.2.1 3D Scene Modelling

The 3D Scene Modelling in 3D computer graphics is responsible for providing

an internal mathematical representation of any 3D object that is eventually to be

imaged. The 3D Scene Modelling system needs to support some concept of a

geometric coordinated system and provide some way of describing the geometry

of the 3D object to be imaged. A 3D modelling system will also provide a way

for the user to specify what materials an object is made of and how the scene is

lit.

1. Coordinate Systems

The key to the geometry of a 3D computer graphics system is a compact means

for storing and utilizing descriptions of local coordinate systems. The local

13

coordinate system is used in the definition of the various components of a model,

describing the geometry and other characteristics of the scene.

Consistent with the usual representation of 3D coordinates in mathematics, most

current implementation of 3D computer graphics systems use right-handed

coordinate system (Foley, 2013). This gives a natural organization with respect

to the display screen, with the x-coordinate measuring horizontal distance across

the screen, the y-coordinate measuring vertical distance up the screen, and

z-coordinate proving the third spatial dimension as distance in front of the screen

(Figure 2.5).

Figure 2.5 Right-handed coordinate system

2. Geometric Modelling

The basic geometric unit in 3D computer graphics system is the 3D point that is

typically represented as a 3D-vector and stored as an array of three elements,

representing the x, y, and z components of the point.

Virtually all 3D computer graphics systems provide the ability to work with

simple geometric primitives that can be specified as lists of 3D points. These

primitives include point, lines, and polygons. Points can be arranged together to

indicate a sampled surface, lines to form a wireframe representation, and

polygons to form polyhedral surfaces. More sophisticated modellers will provide

parametric surfaces, which are defined via an underlying piecewise polynomial

formulation. Polynomial coefficients are adjusted to give the surface a specific

shape, and these coefficients are often given intuitive form by encoding them via

simple geometric devices, such as control polyhedral.

A typical surface formulation is a biparametric surface, which describes a surface

in three spatial dimensions (x, y, z) via a set of three functions of two parameters

u and v:

14

𝑥 = X 𝑢, 𝑣 , 𝑦 = Y 𝑢, 𝑣 , 𝑧 = Z(𝑢, 𝑣) (2.1)

A set of points on a parametric surface can be obtained algorithmically by

looping over a collection of sample points on the (u, v) plane.

Implicit surfaces are a common alternative to parametric surfaces. Here, surfaces

are defined as the set of points satisfying a mathematical expression of the form.

 F 𝑥, 𝑦, 𝑧 = 0 (2.2)

Thus, these surfaces are defined implicitly. Any point (x, y, z) in 3D space can be

tested to determine whether or not it is above (F 𝑥, 𝑦, 𝑧 > 0), below

(F 𝑥, 𝑦, 𝑧 < 0), or on the surface (F 𝑥, 𝑦, 𝑧 = 0).

3. Materials

In the context of a 3D computer graphics system, a material is an attribute of a

geometric object that provides a description of how the surface of the object will

appear when viewed from a particular direction under a particular illumination.

A usual material specification system will provide parameters for the

specification of a material‘s colour, diffuse reflectance factor, and specular

reflectance factor. From the point of view of usual practice, colour in 3D

computer graphics is most often represented by RGB or ―red-green-blue‖ colour

system (Figure 2.6). An RGB colour is stored as a triple of three numbers giving

the relative amount of each of the three colours primaries.

Figure 2.6 RGB colour cube

15

A material specification will also include the capability to provide texture maps.

A texture map provides a pattern of colour that is to be applied to the surface of

an object during the rendering process. These can be anything from a digital

image that will be projected onto the surface to a regular geometric pattern like a

checker-board.

4. Lights

The purpose of lights in a 3D computer graphics system is to provide the

illumination source for the simulated shading calculations done by the renderer

in making an image. Thus, all light sources must define a colour of the

illumination that they provide, usually specified in RGB coordinate. The

illumination colour combines the intensity of the light and its chromatic

attributes. Lights are arranged in a scene along with geometric objects but

usually carry no geometric properties other than their position and direction of

orientation.

2.2.2 3D Rendering

Rendering is simply the process of transforming a 3D object description into a

2D image. It is generally done by simulation of the physical process that occurs

in a camera when a picture is recorded on film.

Briefly, the main steps in the rendering process are (Tucker, 2004):

Step 1. Point of view: orienting the 3D scene as if it was being viewed from a

particular point in space.

Step 2. Projection: associating points in the 3D scene with their images on a 2D

virtual image plane by projecting the 3D scene onto the plane.

Step 3. Visible surface determination: deciding which surfaces projected onto the

image plane would actually be visible from the present viewpoint.

Step 4. Shading calculation: determining what colour would be reflected or

transmitted to the viewpoint from the geometry visible at the sample point,

taking into account the scene‘s geometry, lighting, and material.

1. Virtual Camera

The role of the virtual camera in a 3D computer graphics system is to provide

both a point of view from which to render an image and the basic parameters of

the mathematical projection that will be used to form the virtual image. The

camera‘s position and orientation are specified as part of the scene description. It

16

is typical for the camera to be positioned in the global coordinate system, usually

with some positioning controls that correspond to the operation of a real studio

camera.

Theoretically, cameras can have any projection characteristics, corresponding to

the entire variety of lens type. However, practical 3D graphics implementations

usually implement only the standard parallel or perspective projections that are

common in architectural and design drafting.

A perspective projection is one in which all light rays coming from the scene

converge at a common point, known as the centre of the projection. If a

projection plane is interposed between the scene and the centre of projection, the

point at which a ray from the scene through the centre of the projection intersects

the projection plane is the image of that point (Figure 2.7).

Figure 2.7 Geometry of perspective projection

2. Renderer

The renderer in a 3D computer graphics system is essentially the engine that

drives the picture-making process. The renderer views the 3D scene through the

virtual camera and constructing an image of what it sees, by first sampling points

on the scene geometry and calling on the shader to calculate colour for each

sample, and then combining these sampled colours into the pixels of the image.

3. Shader

The shader is the algorithm that uses the information collected by the renderer

about a point sample on the scene geometry, its material, and the available

lighting to calculate a colour for the sample point. This is done by a physical

17

simulation of how light is reflected toward the camera from the position on the

surface at which the sample is being taken.

This section has examined the procedure of 3D computer graphics presentation.

The next section will focus on the technologies used for 3D graphical

presentations.

2.3 Technologies for 3D Graphical Presentations

3D computer graphics are created with the aid of digital computers and

specialized 3D software (Hees, 2006). In general, the term may also refer to the

process of creating such graphics, or the field of study of 3D computer graphic

techniques and their related technology.

Developing 3D computer graphics requires a programming library which

provides an API for 3D graphics. These libraries can be classified into two

categories. The first group of libraries provides what is commonly called

immediate mode rendering where the developer tells the library what 3D models

should be drawn, and how each of them should be transformed, each time the

scene is to be drawn. The other category provides retained mode rendering, a

type of rendering where the developer constructs a scene using abstract data

types provided by the library and then the library traverses the scene and renders

each 3D model on the screen. The main differences between these two categories

are who is in charge of the rendering process and who owns the properties (such

as transformation) of each 3D model within the scene.

The rendering process can be performed on the CPU and is then called software

rendering. Until recently, the most common types of CPUs can only run one

process at a time. Because rendering 3D graphics is a process that is both

computationally intensive and easy to parallelized, a Graphics processing unit

(GPU) is commonly used to perform the task of rendering instead of the CPU.

When rendering is done on a GPU, it is called hardware-accelerated rendering.

Hardware-accelerated rendering is generally much faster than software rendering

since it offloads the CPU to run the program at hand and the GPU is built to

process many vertices and fragments in parallel.

Two of the most popular libraries for 3D graphics programming are OpenGL and

Direct3D. OpenGL is an open standard managed by the non-profit technology

consortium Khronos Group (Patric, 2012) and is available on many devices, from

desktop computers and workstations to game consoles and mobile phones.

Direct3D (Michael, 1997) is a library created by Microsoft as one of the APIs

18

that make up the DirectX suite of multimedia programming libraries available

exclusively on Microsoft's own platforms, such as the Windows operating system

and the Xbox gaming consoles. Both of these libraries are immediate mode

libraries and utilize hardware-acceleration.

2.3.1 OpenGL

Open Graphics Library (OpenGL) is a cross-language, multi-platform API for

rendering 2D and 3D computer graphics (Shreiner, 2009; Sellers, 2010). The API

is typically used to interact with a Graphics Processing Unit (GPU), to achieve

hardware-accelerated rendering. In addition to being language-independent,

OpenGL is also platform-independent.

OpenGL was developed by Silicon Graphics Inc (SGI) from 1991 and released in

January 1992 and is widely used in CAD, virtual reality, scientific visualization,

information visualization, flight simulation, and video games. OpenGL is

managed by the Khronos Group currently.

The OpenGL specification describes an abstract API for drawing 2D and 3D

graphics. Although it is possible for the API to be implemented entirely in

software, it is designed to be implemented mostly or entirely in hardware.

OpenGL has many language bindings, some of the most noteworthy being the

JavaScript binding WebGL (API, based on OpenGL ES 2.0, for 3D rendering

from within a web browser); the C bindings WGL, GLX and CGL; the C binding

provided by iOS; and the Java and C bindings provided by Android (Sayed,

2010).

2.3.2 Direct3D

Direct3D (Jones, 2004; Zink, 2011) is part of Microsoft's DirectX API. Direct3D

is available for Microsoft Windows operating systems (Windows 95 and above),

and for other platforms through the open source software Wine. It is the base for

the graphics API on the Xbox and Xbox 360 console systems. Direct3D is used

to render 3D graphics in applications where performance is important, such as

computer games. Direct3D also allows applications to run full screen instead of

embedded in a window, though they can still run in a window if programmed for

that feature. Direct3D uses hardware acceleration if it is available on the graphics

card, allowing for hardware acceleration of the entire 3D rendering pipeline or

even only partial acceleration. Direct3D exposes the advanced graphics

capabilities of 3D graphics hardware, including z-buffering, spatial anti-aliasing,

19

alpha blending, atmospheric effects, and perspective-correct texture mapping.

Integration with other DirectX technologies enables Direct3D to deliver such

features as video mapping, hardware 3D rendering in 2D overlay planes, and

even sprites, providing the use of 2D and 3D graphics in interactive media ties.

Direct3D is a 3D API. That is, it contains many commands for 3D rendering;

however, since version 8, Direct3D has superseded the old DirectDraw

framework and also taken responsibility for the rendering of 2D graphics

(Michael, 1997).

OpenGL is an open standard API that provides a number of functions to render

2D and 3D graphics, and is available on most modern operating systems

including but not limited to Windows, Mac OS X and Linux. Direct3D is a

proprietary API by Microsoft that provides functions to render 2D and

three-dimensional 3D graphics, and uses hardware acceleration if available on

the graphics card. It was designed by Microsoft Corporation for use on the

Windows platform. Direct3D can also be used on other operating systems

through special software (emulator).

2.3.3 Other Technologies

There are also other higher-level 3D scene graph technologies which provide

additional functionality on top of the lower-level rendering API.

1. Java 3D

Java 3D (Selman, 2002) officially released in 1998, is a cross platform API that

enables the development of 3D graphics applications using the popular Java

programming language. It is considered the 3D extension for Java. It allows

developers to create complex and interactive 3D desktop applications, or web

based 3D applets, that can work efficiently on multiple platforms.

Java3D is a scene graph based 3D API for the Java platform. It takes advantage

of OpenGL or Direct3D. Java 3D allows the programmer to specify how the 3D

scene is structured rather than providing functions for drawing 3D graphics

directly. Java 3D can use Direct3D or OpenGL on Windows system, and use

OpenGL on the other supported platforms, such as Mac OS X, Linux and Solaris

Creating 3D desktop application in Java3D can be a relatively simple process for

Java programmers. However, creating Java3D applets to embed 3D contents

within a webpage can become a more complex task. This requires some skills in

20

HTML programming, as well as JavaScript programming to enhance the

interactivity with the 3D web applets (Salisbury, 1999)

2. Glide API

Glide (Mitra, 1999) is a 3D graphics API developed by 3Dfx Interactive for their

Voodoo Graphics 3D accelerator cards. Although it originally started as a

proprietary API, it was later open sourced by 3Dfx. It was dedicated to gaming

performance, supporting geometry and texture mapping primarily, in data

formats identical to those used internally in their cards. Wide adoption of 3Dfx

led to Glide being extensively used in the late 1990s, but further refinement of

Microsoft's Direct3D and the appearance of full OpenGL implementations from

other graphics card vendors, in addition to growing diversity in 3D hardware,

eventually caused it to become superfluous.

Glide is based on the basic geometry and ‗world view‘ of OpenGL. The result

was an API that was small enough to be implemented entirely in late-1990s

hardware. However, this focus led to various limitations in Glide, such as a

16-bit colour depth limit in the display buffer.

The technologies and APIs used in developing 3D graphical systems have been

examined in this section. The next section will focus on the challenges posed by

presenting such systems via the web.

2.4 3D Computer Graphical Presentations for Web-Based Applications

Due to the rapid developments in the field of computer graphics and computer

hardware, web-based applications are becoming more and more powerful, and

the performance distance between web-based applications and desktop

applications is increasingly closer. The Internet and the WWW have been widely

used for delivering, processing, and publishing 3D data. In recent years,

web-based 3D models for visualizing data have attracted many researchers.

Including 3D computer graphics on web pages is not a new trend. In 1994, a way

to present 3D scenes in the web browser through a markup language called

VRML was standardized. VRML allows 3D scenes to be specified in a language

similar to HTML. While there are niche applications that use VRML, there are

few popular sites today that include VRML documents. It seems to have become

a standard that never really grew popular enough to see wide-scale usage for a

number of reasons.

21

Chief among these reasons is likely that the processing power available, first and

foremost in reasonably priced computers, back in 1994 was not good enough to

provide convincing 3D graphics. This has changed recently with dedicated

graphics processors finding their way into more and more types of devices.

Thanks to this, there has been a renewed interest in technologies that provide 3D

computer graphics on web pages and in web applications. Different approaches

have been developed for web-based 3D modelling, as described below. Many

tools are available to use the web as a delivery mechanism, and deals with the

transformation of multi-dimensional data, information, and knowledge into an

effective 3D visual form.

2.5 Technologies for Web-Based 3D Graphical Presentations

There are many approaches to delivering 3D graphics in a web-based application.

Technologies available today will be described and discussed in this section. It

will be discussed how the concept of web-based 3D evolved, from the creation of

VRML to the newest WebGL.

2.5.1 VRML

Created in 1994, by the VRML Consortium, this high level 3D content

development language was responsible for introducing the concept of 3D

graphics for web, and was the first ISO standard for the creation and

visualization of 3D contents on the Internet (Walsh, 2000).

The VRML 1.0, officially released in 1995, was proposed as a common language

for the creation of 3D scenes distributed over the Internet. For that, it was created

with the intent of being a cross platform, extensible, and bandwidth conservative

language. It can be said that VRML 1.0 brought the platform-independent 3D

concept for the web. However, this release was very limited because it only

allowed to create non-realistic and static 3D scenes, and was not possible to

interact with the 3D objects within that scene.

In order to provide a more immersive, realistic and interactive 3D world, a

second major version of VRML was released, the VRML 2.0 (defined later as

VRML97). This release brought support for interactivity, sound, animation, and

ultimately the ability to create more complex 3D worlds.

In order to display, interact, and navigate on the VRML 3D world described in

the .wrl file, a VRML web browser plug-in or a standalone player have to be

used to interpret this file. VRML allows the creation of full 3D environments, but

22

it has some limitations. For example, it does not allow for video streaming,

binary compression, and multi-texturing.

The advantage of VRML is that it is widely platform-independent, easy to create

by exporting from standard 3D-Graphics Software, and it works well with the

newer browser generations; VRML can be visualized efficiently on standard PCs

without the need to purchase additional custom hardware; VRML is a very

simple yet powerful language that can be learnt quite easily, hence it enables

developers to create new VRML worlds or enhance existing ones without

technical knowledge of 3D visualization

In addition to the above advantages, VRML also have significant disadvantages.

The flexibility of VRML made it difficult to write rendering engines that were

fast. In addition, interfaces with web browsers, i.e. the HTML page in which the

3D scene is embedded were unreliable and not standardized. This was also a

major flaw, since it is important to be able to combine interactive 2D and 3D

contents.

2.5.2 X3D

The technology X3D developed by the Web3D consortium as the third

generation of VRML, and became an ISO standard in 2004. It was developed

with the main goal of overcoming the deficiencies of VRML, and to make the

creation of 3D graphics an easier and more intuitive task, accessible to a wide

range of developers, including 3D graphics programmers and even

non-programmers.

Like its predecessor VRML, X3D is a standard for real-time interactive

visualizations based on a markup language. X3D uses a tree-structured scene

graph to represent the graphics nodes that make part of the 3D world. This scene

graph includes the geometry, appearance, animation and event routing.

Just like VRML, X3D needs a player to parse and render an encoded X3D scene,

which may also allows for user interaction and object animation. In fact, every

browser needs an X3D player plug-in in order to render X3D scenes.

The advantages of X3D for software visualization are rich graphics, extensibility,

and XML integration. The disadvantages of X3D are lack of software

visualization user controls, a primitive animation model, and weak support for

filtering and layout (Craig, 2008).

2.5.3 WebGL

23

WebGL (Danchilla, 2012) is a relatively new cross-platform JavaScript API

developed by the Khronos Group that extends the capability of the classic

JavaScript programming language, allowing the generation of native 3D graphics

in any compatible web browser, without needing extra plug-in. The WebGL API

is based on the OpenGL ES 2.0 standard, so it enables a direct access to each

GPU (Graphic Processing Unit) located on the client. It uses the HTML5 canvas

element and is accessed using Document Object Model (DOM) interface.

Firefox, Chrome and Opera support WebGL by default on Windows, Mac OS X

and Linux. Safari also supports WebGL on Mac OS X, but it has to be enabled

manually. Internet Explorer does not support WebGL without the use of a

plug-in. Both Firefox and Opera provides support for WebGL. WebGL even

already runs on several mobile devices, including the iPhone. This means that,

for all these browsers, no plug-in has to be installed to run web applications

using WebGL. However, relatively new graphics hardware and drivers are

required on clients‘ computers.

The advantage of WebGL is that WebGL is not based on a plug-in. It runs

directly in the browser, and is a public standard. A WebGL application can be

developed without leaving the familiar web development environment of HTML

and JavaScript; all calls to the graphics API are made in JavaScript. There is no

official development environment; any JavaScript development environment and

debugger can be used.

However WebGL needs a GPU support for shader rendering to be supported and

viewable by the user. The performance of WebGL is also limited by the dynamic

nature of JavaScript. The current browsers do a great job of optimizing this

already, but because of how JavaScript is designed, it won't get much faster

anymore. WebGL is low level; it is complicated for new user. For developers

without OpenGL ES experience, WebGL appears to be very complicated.

2.5.4 JOGL

Java OpenGL (JOGL) (Wolff, 2005) is an OpenGL binding library that allows

OpenGL to be used in the Java programming language. It allows most OpenGL

features through the use of Java Native Interface (JNI). It offers access to both

the standard GL functions along with the GLU functions; however the OpenGL

Utility Toolkit (GLUT) library is not available for window-system related calls,

as Java has its own windowing systems: Abstract Window Toolkit (AWT),

Swing, and some extensions. An application that uses JOGL can run on

24

Windows, Mac OS X and Linux.

The advantage of JOGL is that it provides full access to the OpenGL APIs

(version 1.0, 4.3, ES 1, ES 2 and ES 3) as well as nearly all the vendor extensions.

Hence, all the features in OpenGL are included in JOGL. JOGL integrates with

the AWT, Swing and Standard Widget Toolkit (SWT). It also includes its own

Native Windowing Toolkit (NEWT). Hence, it provides complete support for

windowing.

However, the OpenGL programming style is based around affecting a global

graphics state, which makes it difficult to structure Java code into meaningful

classes and objects. JOGL does provide class structuring for the OpenGL API,

but the vast majority of its methods are in the very large GL and GLU classes.

JOGL was designed for the most recent versions of the Java platform. It also

only supports true colour (15 bits per pixel and higher) rendering; it does not

support colour-indexed modes.

2.5.5 Other Technologies

These technologies mentioned above are not the only 3D technologies for the

web. There are other technologies that are worth mentioning.

1. 3DMLW

3DMLW is an open source platform, or technology, for the creation of

interactive 2D and 3D contents for the web. 3DMLW is a technology based on

XML. It has scripting support for the creation of dynamic and interactive

contents, and event handling, which includes mouse, keyboard and collision

events. It also allows the use of textures, lighting, shading, audio, particle

engines and physics engines with collision detection.

3DMLW has been evolving to become a cross platform and cross browser

compatible technology. By now, it is fully functional for Firefox, Safari, Opera,

Chrome and Internet Explorer browsers, and for Microsoft Windows applications.

The Mac OS X and Linux distributions are in beta versions and still cause

problems.

This technology is similar to X3D and Ajax3D, because it also encodes its

contents in a XML-based file format, supports scripting to enhance interactivity,

and needs a web browser plug-in to render the contents within the file. However,

it is still a limited technology when compared to X3D, because X3D has more

advanced graphics facilities.

25

2. O3D

O3D is an open source JavaScript API created by Google for creating interactive

3D graphics applications that run in a web browser window or in a desktop

application. O3D is viewed as bridging the gap between desktop based 3D

accelerated graphics applications and HTML based web browsers.

An O3D application runs in an O3D browser plug-in. This plug-in provides

hardware acceleration, advanced texturing, advanced shading capabilities and

sophisticated rendering techniques. Despite providing truly impressive 3D

environments within browser, O3D still needs the use of a web browser plug-in

and it is intended for web developers with a solid background in 3D graphics.

Also, the rendering of very complex and detailed 3D worlds may become very

slow if the client computer does not have a good graphics card.

3. Flash 3D

The Adobe Flash Player is one of the most popular platforms to create interactive

and visually outstanding 2D and/or 3D text, animations, web games. Usually, the

Flash applications were developed by using Adobe ActionScript language. This

scripting language, created by Macromedia in 1998, is based on ECMAScript

and can be used for enhancing and complementing the functionalities of the

Flash Player.

Flash is now a powerful, and massive used platform, to create very visual

appealing, complex, data-rich and interactive 2D and (limited) 3D contents for

the web. Because of that, and due to the emerging 3D content demand, powerful

3D flash engines are emerging and evolving rapidly. 3D flash engines like

Papervision3D, Sophie3D, Away3D, among others, eases the development of 3D

contents for the web, using Flash and ActionScript.

Flash applications can also be created and displayed in mobile phones, portable

electronic devices and Internet-connected digital home devices, through a

lightweight version of Adobe Flash Player called Adobe Flash Lite.

However, in order to display and interact with the Flash content, the Adobe Flash

Player plug-in has to be installed in the user web browser. Flash3D requires the

use of proprietary tools to create 3D web applications. Besides, create 3D

contents, developers must have a solid knowledge of Flash and ActionScript.

All those technologies discussed above can be used to build and deliver 3D

models for web-based applications, but they all suffer different drawbacks. Most

26

of the technologies have no native browser support and are only available

through a third party plug-in. Besides, the file sizes of some 3D models built

using the existing methods are very big, so the upload (hence on-line) transaction

time is much longer than a normal user expects. And for those technologies

based on Javascript, the performance will be heavily affected when rendering

complex 3D scene, since Javascript is an interpreted computer programming

language, and it is a programming language of the web; it is not really efficient

for mathematic calculation. Therefore, it is necessary and important to propose

and develop a new method for web-based 3D modelling that addresses these

problems.

This section has examined the technologies and APIs used in delivering 3D

graphics in a web-based application. The next section will focus on the SVG and

its applications.

2.6 SVG and Its Applications

SVG is a language for describing 2D graphics in XML. SVG allows three types

of graphic objects: vector graphics, raster graphics, and text. Graphical objects,

including PNG and JPEG raster images, can be grouped, styled, transformed, and

composited into previously rendered objects.

SVG has been in development since 1999 by a group of companies within the

WWW Consortium (W3C) after the competing standards Precision Graphics

Markup Language (PGML) and Vector Markup Language (VML) were

submitted to W3C in 1998. SVG drew on experience from the designs of both

those formats.

Konqueror was the first browser to support SVG in February 2004. The Opera

browser had fairly extensive SVG support in early 2005, and Firefox developed

support for basic SVG shortly after. By mid-2007, Safari had implemented

support for basic SVG as well. Google released its Chrome browser with SVG

support in 2008, and in 2009 Microsoft announced that Internet Explorer would

finally have native support. As of 2011, all major browsers, and many minor

ones, have some level of SVG support (Dailey, 2012).

There is no official development environment for SVG, but some vector graphics

editors such as Inkscape (Mihaela, 2011), Adobe Illustrator (Sharon, 2013), or

CorelDRAW, can be used to develop a SVG application. Even some simple text

file editors, such as Microsoft NotePad, can also be used to edit a SVG file.

27

SVG is resolution-independent, making it ideal for rendering cross-platform user

interface components, animations and applications where each element needs to

be accessible via the Document Object Model (DOM). SVG can be used as a

platform upon which to build graphically rich applications and user interfaces

web-based applications. Developers use SVG for various sorts of interactive

graphics applications (flow charts, business graphics, and mapping). Since SVG

is XML-based, it can render graphics from database data, so images can be

dynamically updated. This means an image contained in a website can be

dynamically changed according to the data it has retrieved.

SVG is a useful, elegant, and important tool for building informative and

appealing graphics. It can be used to accomplish a broad range of effects, ranging

from practical to artistic, while making graphics both dynamic and interactive.

All these features made SVG a good candidate for web based graphics rich

applications.

SVG is particularly useful for data driven visualization of business data, charts,

maps and technical drawings, as it can be generated using XSLT conversion or

any scripting or programming language the developer is familiar with. SVG has

been widely used for 2D graphics data representation in various fields. Some

researchers have used it as a visualization language for different types of

scientific data. For example, (Baravalle, 2003) use SVG and XSLT to visualize

dynamically changing data. (Chang, 2002) use SVG to visualize census data

online. (Lewis, 2002) use SVG to visualize medical data. (Baru, 2001) use it to

represent statistical data on geographical maps shows how sending a SVG file

plus some Javascript code may allow an user with a SVG enabled browser to

display and interact with the information sent in many ways.

The other applications of SVG include e-learning, 2D games (Alkalay, 2007),

human navigation (Kobayashi, 2003) etc. (Lee, 2002) reports an SVG-based

collaborative system, Garnet, for distance-education running on desktops and

PDAs. The architecture of Garnet is based on an event brokering system. SVG

provides better graphics and document interactive. SVG supports many user

interface (UI) events and pointing events. It provides a quick and effective

mechanism to process these events. Moving or clicking the mouse over any

graphics elements is able to generate immediate feedback, such as highlighting,

text tips, and real-time changes to the surrounding HTML text. Animations and

scripts executions can also be triggered by this mechanism (Kevin, 2003).

28

SVG is an open, HTTP compatible standard that allows fully interactive mapping

applications-without the need for applets or a round trip to the server every time

the map presentation is tweaked.

This section has given a brief introduction of SVG and its applications. The next

section will discuss shading and texture mapping in 3D graphics which cannot be

integrated in current SVG.

2.7 Shading for 3D Graphical Presentations

Shading refers to the practice of letting colours and brightness vary smoothly

across a surface (Funt, 1992). The three most popular kinds of shading are Flat

shading, Gouraud shading and Phong shading. All these shading methods can be

used to give a smooth appearance to surfaces; even surfaces modelled as flat

facets can appear smooth.

Flat shading shades each polygon of an object based on the angle between the

polygon's surface normal and the direction of the light source, their respective

colours and the intensity of the light source. It is usually used for high speed

rendering where more advanced shading techniques are too computationally

expensive. The disadvantage of flat shading is that it gives low-polygon models a

faceted look.

Gouraud shading is an interpolation method which linearly interpolating a colour

across a polygon. It is a very simple and effective method of adding a curved feel

to a polygon that would otherwise appear flat. Gouraud interpolation works

reasonably well; however, for large polygons, it can miss specular highlights or

at least miss the brightest part of the specular highlight if this falls in the middle

of a polygon.

Phong shading is also an interpolation method, but instead of linearly

interpolating a colour across a polygon, it linearly interpolates a normal across a

polygon. Phong shading overcomes some of the disadvantages of Gouraud

shading and specular highlights can be successfully incorporated in the scheme.

The Phong Shading interpolation phase is three times as expensive as Gouraud

Shading, so it significantly increases the computation cost. The other

disadvantage of Phong shading is that all the information about the colours and

directions of lights needs to be kept until the final rendering stage so that lighting

can be calculated at every pixel in the final image.

2.8 Texture Mapping

29

Texture mapping is the process for adding detail, or colour to the surface of a 3D

model. Its use can enhance the visual realism with only a relatively small

increase in computation (Tarini, 2000).

Textures can be one, two, or three dimensional. For example, a 1D texture might

be used to create a pattern for colouring a curve; a 3D texture, also called solid

texture, is basically the equivalent of carving the object out of a block of material.

It places the texture onto the object coherently, not producing discontinuities of

texture where two faces meet. 3D texture can be used to simulate the wood grain

on a cube to avoid discontinuities of grain along the edges of the cube.

2D texture mapping is by far the most common use of texture mapping. 2D

textures start out as 2D images which might be formed by application programs

or scanned in from a photograph, regardless of their origin; they are eventually

brought into processing as an array. The individual elements in these arrays are

called texels, or texture elements.

This section has examined the general concepts of shading and texture mapping,

further discuss will be given in Chapter 6, and Chapter 7.

2.9 Summary

Different 3D graphics presentation technologies are introduced in this chapter,

some inspired primarily by the need for efficiency, and others that aim to render

a realistic physical image. Specifically, different web-based 3D graphics

presentation technologies have been introduced in this chapter. Although the

web-based 3D graphics technologies, like VRML, X3D, WebGL, Flash3D,

C3DL, JOGL, 3DMLW and O3D can provide immersive and realistic web 3D

environments within a browser, they all require the installation of third party web

browsers plug-ins or add-ons (to take advantage of hardware acceleration), which

may be a barrier to users that want to experience an easy and immediate

interaction with 3D contents.

30

Table 2.1 Features supported by existing 2D SVG and the proposed 3D SVG

Features Existing 2D SVG Proposed 3D SVG

Vector Graphic Yes Yes

Highly Interactive Yes Yes

Supported by Major

Browsers Without Plug-in

Yes Yes

XML Format Yes Yes

3D Object No Yes

3D Transform No Yes

3D Shading No Yes

3D Texture Mapping No Yes

SVG-as a potential platform for 3D graphics presentation for web-based

application, is also introduced in this section. Table 2.1 shows features supported

by existing 2D SVG and the proposed 3D SVG. Existing 2D SVG has features

that show that SVG is a good candidate for investigating whether it is possible to

build on this technology to develop web-based 3D graphics applications. If this is

possible, SVG can become a useful technology to render 3D contents over the

web, because it does not need the installation of any web browser plug-ins or

add-ons.

31

Chapter 3 Research Design and Methods

3.1 Introduction

The overall aim of this PhD project will be to research, design, develop and

implement a new framework-SVG GL for generic 3D SVG modelling for

web-based applications. The context of this project is based on two assumptions:

1. The rapid developments in the field of computer graphics and computer

hardware now allows for real time visualization of complex 3D data over the

internet;

2. Digital 3D models are playing an increasingly important role in many fields

such as product demonstration, city planning, site exhibition, 3D online gaming,

decision-making and 3D e-Business (such as 3D shopping malls), etc.

In comparing it with existing methods, the core work in this project attempts to

achieve high performance in dealing with 3D web-based modelling. In this new

framework-SVG GL, there are fundamental works that are related to graphics

library, 3D solid models of various primitives, 3D SVG models with freeform

surfaces, new algorithms for shading and texture mapping of the SVG GL

models. The new framework and the algorithms will be tested with 4 web-based

3D applications, and evaluated with another 4 web-based 3D applications.

3.2 Methods for Data Collection and Presentation

The collection, organization, and presentation of data are basic background

material for testing and analyzing the methods provided in this project.

After identifying the research problem and selecting the appropriate

methodology, researchers must collect the data that they will then go on to

analyze. There are two sources of data: primary and secondary sources. Primary

data are data collected specifically for the study in question. Primary data may be

collected by methods such as personal investigation or mail questionnaires. In

contrast, secondary data are mainly collected through literature review.

In this project, both primary data and secondary data are used, and the data

needed are either from the existing literature- secondary data, or generated by

own design and development of mathematical models and software

computations-primary data.

Based on the overall aim and objectives presented in Section1.3, the secondary

data that should be collected are the published materials about (1) the existing

32

methods for 3D modelling for web-based applications, (2) the existing 2D SVG

applications and (3) the geometric structure and features of 3D models. The

primary data are mainly (1) various SVG 3D models of primitives, SVG 3D

models of freeform surfaces, and (3) validation test results of the new framework

and various new algorithms.

3.3 Research Design

The research procedure of this PhD project is shown in Figure 3.1.

Figure 3.1 Research procedure

1. Existing technologies review

33

The technologies for window-based 3D presentation are reviewed first. Then

current technologies for web-based 3D presentation are discussed, and

advantages and drawbacks of each technology are reviewed. Finally the SVG

theory and its applications are reviewed, the problems with the existing SVG 2D

are also discussed. The need for the SVG GL is documented. This work will be

done through systematic literature review.

2. Propose the new framework-SVG GL

The next stage is to develop a new framework-SVG GL based on classical 3D

graphic theory and SVG. While the model is initialized using classical 3D

graphics, the scene model is extended using SVG. A new algorithm to present

3D graphics with SVG is proposed. Define a 3D scene in the framework,

integrate 3D objects, camera, transformation, light model and texture in a 3D

scene, and render 3D objects on the web page, allowing the end-user to

interactively manipulate objects on the web page.

3. Develop new Gouraud and Phong shading algorithms.

Develop new Goraud shading algorithm and Phong Shading algorithm to

implement Gouraud shading and Phong shading in the SVG GL. The algorithms

can be used to generate smooth shading and create highlight for 3D objects.

4. Develop new texture mapping algorithms

Develop novel texture mapping algorithms-pattern based image transformed

texture mapping algorithm for the SVG GL oriented toward web-based 3D

modelling application. Texture mapping algorithms for different 3D objects such

as triangle, plane, sphere, cylinder, cone, etc. also proposed.

5. Implement software environment-S3GL.

In order to validate the proposed new framework, the new Gouraud shading and

Phong shading algorithms, and the new texture mapping algorithms, a software

environment-S3GL is developed based on the proposed theory. The S3GL will

be validated firstly, to prove it can be used to create desired 3D scene.

6. Software validation

Four 3D test applications are implemented based on this S3GL to validate the

new framework proposed in Chapter 5, the new Gouraud shading and Phong

shading algorithms proposed in Chapter 6, and the new texture mapping

algorithms developed in Chapter 7.

34

7. Software evaluation

Four 3D demo applications are also implemented based on this S3GL to evaluate

the framework and algorithms proposed in this PhD project. And discuss the

potential application fields of the SVG GL

3.4 Methods for Verification and Validation

This thesis is mainly exploratory with some experimental validation work

through a self designed and developed software environment.

The first objective-investigates and evaluates existing methods for 3D modelling

for web-based applications. To achieve the first objective, there will be a

systematic review of the published literature to evaluate the existing 3D

modelling methods for web-based applications, investigating and evaluating

different 3D construction methods to define 3D models, including boundary

representation (Krysl, 2001), constructive solid geometry (Foley, 2013); and also

evaluating different 3D web data format, such as VRML (Taubin, 1998), X3D

(Vucinic, 2008), CityGML (Kolbe, 2005), O3D. The subsequent analysis of

web-base application aspects that are relevant to 3D graphics, and of the required

extensions of the web-based body of knowledge, was especially important due to

the conviction that without the application of web-based rules, 3D graphics

cannot attain their full potential efficiency of information transfer.

The second objective - evaluate the existing 2D SVG applications and to

investigate the possibility of using SVG to realize 3D graphical representations

for various web-based applications -was to provide a set of differentiating factors,

based on the existing theory, that allow a clear distinction between SVG and

other forms of 3D presentations. To achieve the second objective, it is planned to

evaluate existing SVG applications and investigate the possibility of using SVG

to realize 3D graphical representations, analyze the state-of-the-art of the

relevant research areas and technologies by literature review, conference

presentations, meetings, discussions and brain storming sessions with other

researchers and professionals from the industry.

Once the principle of the SVG GL development has been established, the next

step is to achieve the third objective by systematically analyzing the geometric

structure and features of 3D models and proposes a new generic method for 3D

modelling based on SVG.

35

The fourth objective-implements the proposed method and validates it through

development and evaluation of typical 3D web-based applications-required long

and intensive work. To achieve the fourth objective, a software environment was

designed and developed to implement the proposed method. It is validated

through the design and development of dedicated 3D geometrical models for

different web-based applications by using the proposed method, and explores

potential applications of the SVG GL modelling for web-based applications.

The purpose of developing this generic 3D modelling system is for designing and

developing 3D models for web-based applications. So the criteria for validation

of the 3D modelling system‘s effectiveness are that it can be used to build,

modify and view parameterized 3D geometrical models of all primitive

geometries and free form surfaces for a variety of web-based applications

without the requirements of any plug-ins and special model editing software. To

demonstrate the new proposed method, four demo applications are developed in

this project.

1. A 3D bottle model.

2. A 3D building site.

3. A supermarket.

4. A 3D landscape.

Those applications are used to investigate the potential application fields of the

SVG GL. By successfully running those demo application, it shows the SVG GL

can be used for product demonstration, urban environment simulation, city

planning; for warehouse demonstration and 3D terrain simulation, etc.

3.5 Ethical Issues

In this project, the data needed are either from existing literature or generated by

the researcher‘s own design and development of mathematical models and

software computations. These data were generated for public use, so there is no

ethical issue in terms of privacy and data protection in this project.

3.6 Summary

This chapter has discussed the research design and methods used in this project.

The project is validated through a self designed and developed software

environment. Since the data needed are either from existing literature or

generated by the researcher‘s own design and development of mathematical

36

models and software computations, so there is no ethical issue in terms of

privacy and data protection in this project. The next chapter will go on to focus

on SVG theory and its application s in detail.

37

Chapter 4 SVG Theory and Its Applications, and OpenGL

4.1 Introduction

Chapter 3 has discussed the research design and methods used in this project.

This chapter will go on to focus on SVG theory and its applications in detail.

SVG is an XML-based markup language for describing 2D graphics applications

and images, and a set of related graphics script interfaces. SVG graphics can be

interactive and animated. Bindings for scripting languages and network

interfaces enable developers to build rich interactive graphics applications.

SVG is developed by W3C for describing 2D vector graphics for storage,

presentation and distribution on the Web. The first public draft of SVG was

released by the W3C in February of 1999. By the end of June 2000, 9 subsequent

working drafts appeared. SVG 1.0 was released as a W3C Recommendation in

September of 2001(Dailey, 2010). Since 2001, the SVG specification has been

updated to version 1.1. SVG 1.1 became a W3C Recommendation on 14 January

2003; SVG 2 is currently under development, and will add new features to SVG,

as well as more closely integrating with HTML, CSS, and the DOM. In 2001,

SVG got a facelift to include mobile profiles. The SVG Mobile Recommendation

introduced two simplified profiles of SVG 1.1, SVG Basic and SVG Tiny for

devices with reduced computational and display capabilities. SVG Tiny and SVG

Basic (the Mobile SVG Profiles) became W3C Recommendations on 14 January

2003. An enhanced version of SVG Tiny, called SVG Tiny 1.2, became a W3C

Recommendation on 22 December 2008 (Mong, 2003).

All major modern web browsers—including Mozilla Firefox, Internet Explorer 9

and 10, Google Chrome, Opera, and Safari—support basic SVG and can render

the markup directly without the use of a plug-in. SVG is supported in every

browser except for versions of Internet Explorer earlier than Version 9 and

versions of Android earlier than Version 3. This includes support for fonts,

images, graphical elements such as circles or paths, as well as gradients and

some of the filters. There are several advantages to native and full support: a

plug-in is not needed, SVG can be freely mixed with other content in a single

document, and rendering and scripting become considerably more reliable.

SVG provides an open, standard based format for creating graphics. Using SVG

has numerous advantages over other conventional bitmapped graphics, such as

JPEG, GIF, and PNG. The files are generally much smaller than bitmaps,

resulting in quicker download times. The graphics can be scaled to fit different

38

display devices without the pixelation associated with enlarging bitmaps. The

graphics are constructed within the browser, reducing the server load and

network response time generally associated with web imagery. The file is an

XML-based file format; it allows the creator to conveniently embed arbitrary

information inside of the file. SVG is well suited for graphics rich environments.

SVG can be used for GIS, embedded systems, location-based services, animated

picture messaging, multimedia messaging, animation and interactive graphics,

entertainment, e-Business, and graphic user interfaces. After integrating 3D into

SVG, it can even play an important role in many fields such as product

demonstration, city planning, site exhibition, 3D e-Business (such as 3D

shopping malls), etc..

4.2 SVG Theory

This section will examine the working theory of SVG, and some important

features of SVG.

SVG is a language that allows for the creation of 2D vector elements, which are

simply mathematical representations of graphical objects. These vectors are

infinitely scalable and can be transformed within the bounds of the 2D coordinate

system. SVG is based on vectors rather than pixels (Rosenbaum, 2004). While a

pixel-based approach places pigment or colour at xy-coordinates for each pixel in

a bitmap, a vector-based approach composes a picture out of shapes; each

described by a relatively simple formula and filled with a texture.

SVG documents are built upon a regular XML document tree, consisting

primarily of a header, processing instructions, comments, XML elements and

attributes. SVG uses a ‗painter model‘ for rendering. Paint is applied in

successive operations to the output device such that each operation paints over

some area of the output device. When the area overlaps a previously painted area,

the new paint partially or completely obscures the old. When the paint is not

completely opaque, the result on the output device is defined by the

mathematical rules for composing. Elements in an SVG document fragment have

an implicit drawing order. Elements that appear first in the document tree are

rendered first; subsequent elements are drawn on top of the previous elements,

taking into account opacity, blending, filters, clipping and masking. The

following is a typical SVG file. And the result of this file is shown in Figure 4.1.

39

Figure 4.1 A star create by SVG

4.2.1 SVG Coordinate System

The coordinate system of SVG is a bit different from the coordinate systems of

mathematics.

In mathematics, the point x=0, y=0 in a normal Cartesian coordinate system is at

the lower left corner of the graph. As x increases the points move to the right in

the coordinate system. As x decreases the points move to the left in the

coordinate system. As y increases the points move up in the coordinate system.

As y decreases the points move down in the coordinate system. In SVG

coordinate system the point x=0, y=0 is the upper left corner. The y-axis is thus

reversed compared to a normal graph coordinate system. As y increases in SVG,

the points, shapes etc. move down.

The SVG coordinate system can be specified to any units in Table 4.1.

<svg height="200" width="500">

 <polygon points="100,10 40,198 190,78 10,78 160,198"

style="fill:red;stroke:blue;stroke-width:5;fill-rule:nonzero;"/>

</svg>

40

Table 4.1 The unit of an SVG coordinate system

em The default font size - usually the height of a character

ex The height of the character x

px Pixel

pt Point (1 / 72 of an inch)

pc Pica (1 / 6 of an inch)

cm Centimeter

mm Millimeter

in Inch

Units can be specified after the coordinate value, such as 10 cm, 25mm. If no

unit is specified after a coordinate value, the default unit is assumed to be pixels

(px).

4.2.2 SVG Basic Geometry Elements

According to the W3C's Recommendations, the SVG basic geometric elements

are ―the element types that can cause graphics to be drawn onto the target

canvas‖. Those are: ‗path‘, ‗rect‘, ‗circle‘', ‗ellipse‘', ‗'line‘, ‗polyline‘, and

‗polygon‘ (Dahlström, 2011).

The above basic geometrical elements are more or less self explanatory. The

most powerful and interesting geometric type is the <path /> element. A path is

described using the concept of a current point. In an analogy with drawing on

paper, the current point can be thought of as the location of the pen. The position

of the pen can be changed, and the outline of a shape (open or closed) can be

traced by dragging the pen in either straight lines or curves. Path elements can

contain quadratic and cubic spline curves and arc segments. Geometry can be

described in either absolute or relative coordinates. Mathematically, all the other

geometry elements are shorthand forms for the ‗path‘ element that would

construct the same shape.

4.2.3 Text and Fonts

41

SVG has powerful text capabilities. SVG has the following text features: font

specification, text orientation and direction, text alignment, and rich text

formatting. The <text/> element will cause a single string of text to be rendered.

Like any other basic shape, text can also have fillings, strokes and can be clipped

or masked or can serve as a clipping path. The text strings within <text/>

elements can be shifted or rotated and can also be aligned on path elements. It is

even possible to animate a text along a path. SVG fully supports international

text processing features for both straight line text and text on a path, including

Unicode support, left to right text, bidirectional text or text that runs from top to

bottom.

An SVG font is a font defined using SVG's element. The purpose of

SVG fonts is to allow for the delivery of glyph outlines in display-only

environments. SVG fonts that accompany web pages have to be supported only

in browsing and viewing situations. To ensure that the SVG file displays the

correct font, an SVG font can be either embedded within the same document that

uses the font or saved as part of an external resource.

4.2.4 Filling, Stroking, Opacity

SVG elements can be filled and stroked. Filling and stroking both can be thought

of in more general terms as painting operations. Generally SVG elements can be

painted with: uniform single colour, linear and radial gradients and patterns. A

pattern is used to fill or stroke an object using a pre-defined graphic object. The

graphic object can be raster data, vector elements and animations. A gradient

consists of continuously smooth colour transitions along a vector from one

colour to another, possibly followed by additional transitions along the same

vector to other colours. Gradients parameters can be animated as well. Opacity

can be separately defined for strokes, filling or both. Group opacity treats

elements as a group as opposed to treating each group element individually.

4.2.5 Styling

SVG uses styling properties to describe many of its document parameters.

Styling properties define how the graphics elements in SVG content are to be

rendered. There are alternative ways to style elements in SVG. One can use

Cascading Style Sheets (CSS) styles, XML presentation attributes or Extensible

Style sheet Language Transformations (XSLT).

XSLT offers the ability to take a stream of arbitrary XML content as input, apply

potentially complex transformations, and then generate SVG content as output.

42

XSLT can be used to transform XML data extracted from databases into an SVG

graphical representation of that data.

CSS is a widely implemented declarative language for assigning styling

properties to XML content, including SVG. It represents a combination of

features, simplicity and compactness that makes it very suitable for many

applications of SVG.

XSLT style sheets define how to transform XML content into something else,

usually other XML. When XSLT is used in conjunction with SVG, sometimes

SVG content will serve as both input and output for XSLT style sheets. At other

times, XSLT style sheets will take non-SVG content as input and generate SVG

content as output.

4.2.6 Filters

Filter features are unique to SVG. A filter effect consists of a series of graphics

operations that are applied to a given source graphic to produce a modified

graphical result. The result of the filter effect is rendered to the target device

instead of the original source graphic. Filters can be attached to both raster and

vector elements. Vector elements are rasterized during the rendering pipeline;

hence there is an opportunity to include filters.

Typical applications for filters are colour corrections, brightness and contrast

adaption, blurring and sharpening, illumination filters, generation of drop

shadows and halo effects, convolution filters, displacement and morphology

filters, generating turbulence, etc. Filters may be combined in any order and the

output of one filter may be piped to the input of the next filter. Every filter

parameter can be animated which can lead to very interesting effects. Filters are

very powerful visualization options, but may require a fair amount of computing

power.

4.2.7 Interactivity and Scripting

Interactivity and scripting are key parts when it comes to making SVG appealing

for dynamic web applications. SVG content can be interactive by utilizing the

following features: user-initiated actions such as button presses on the pointing

device; user can initiate hyperlinks to new Web pages by actions such as mouse

clicks; users are able to zoom into and pan around SVG content; user movements

of the pointing device can cause changes to the cursor that shows the current

position of the pointing device.

43

SVG proposes a variety of user events. Three event categories are specified:

mouse events, keyboard events, and state change events. Events can trigger either

a script function or a SMIL interaction. Mutation events listen to changes within

a particular node in the XML document tree.

The other, more flexible, way of modifying SVG documents is to use a client

side scripting language. Scripts can either be embedded in SVG files or

referenced (external files). SVG defines a language independent API to access

and manipulate the SVG DOM. The most widely used and implemented scripting

language in conjunction with SVG is ECMAScript (the standardized version of

Javascript).

4.2.8 Animation

SVG supports the ability to change vector graphics over time. Almost any

element and attribute can be animated in SVG.

SVG content can be animated in the following ways: the first way is to use

SVG's animation elements. The various elements can define motion paths, fade

in or fade out effects, and objects that grow, shrink, spin or change colour. The

second way is use the SVG DOM. Every attribute and style sheet setting is

accessible to scripting. SVG offers a set of additional DOM interfaces to support

efficient animation via scripting. Therefore, any kind of animation can be

achieved. The timer facilities in scripting languages such as ECMAScript can be

used to start up and control the animations. The third way is to use SMIL, a

descriptive way to define animation parameters. SMIL animations can trigger

script execution and vice versa.

SVG offers interpolation of in-betweens. Interpolation options are: step-by-step,

linear, or spline. Various parameters may be animated, such as colour value,

position, position along a path, rotation, scale, etc.

4.2.9 Adding SVG to a Webpage

There are a number of ways to add SVG to a webpage.

1. Use the object element and reference an external SVG file. This approach is

currently the most popular way to add SVG to a page served up as HTML.

44

the type is set to the SVG MIME type ―image/svg+xml.‖ Supply the width and

the height, and set the data attribute to the SVG file.

Currently, using the object element is the only native approach that works with

HTML. As support for HTML5 increases, more browsers will support SVG

embedded directly into HTML.

2. Use iframe, embed, or img elements (depending on the browser) to embed

SVG into a webpage. Not all of these embedding methods are available for every

browser.

The type is set to the SVG MIME type ―image/svg+xml.‖, and src the data

attribute to the SVG file.

3. SVG can also be incorporated into a webpage by being used as a CSS

background for any element:

4. The last approach to adding SVG to a web page is embedding the SVG

directly into the web page by using the SVG element. The method works in all

HTML5 browsers and also permits animation, scripting and CSS.

#myelement

{

 background-image: url(image.svg);

}

<embed type="image/svg+xml" src="image.svg" />

<iframe src="image.svg"> Your browser does not

support iframes</iframe>

<object type="image/svg+xml"

 width="100" height="100" style="float:right"

 data="image.svg">

</object>

45

4.3 Evaluation of SVG Applications

SVG has been widely used in the works over the past decade and has matured a

great deal during that time, with collaboration from interested parties around the

world. The great appeal of SVG is that, like HTML, it‘s easy to read and edit,

while allowing for complex interactivity and animations through scripting and

Synchronized Multimedia Integration Language (SMIL), which is another W3C

standard.

SVG can be used for static images within a Web page (Eisenberg, 2002). SVG,

being a vector graphic, can scale to fit the web page, while bitmap images such

as JPEG and GIF cannot, or at least, can‘t scale cleanly. Compare the following

two screenshots of the same image (Figure 4.2).

Figure 4.2 Compare enlarged raster image and SVG image

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<title>Embedded SVG</title>

</head>

<body>

<h1>Embedded SVG</h1>

<svg width="300px" height="300px"

xmlns="http://www.w3.org/2000/svg">

 <text x="10" y="50" font-size="30">My

SVG</text>

</svg>

</body>

</html>

46

The raster image becomes very pixilated when it is scaled while there is no

quality lost with the SVG image. This is because a raster image describes each

and every pixel in the image, but SVG describes the image as shape elements or

objects. The vector-based viewers are able to recalculate how the graphic should

look based on the shape description that is found inside the SVG graphic.

SVG is well suited to playing a major role in graphics rich environments. The

visualization options available in SVG graphics go beyond competing file

formats. Any attribute can be animated and the available interactivity options and

script bindings allow the building of fully interactive applications that do not

need to hide from stand-alone offline multimedia applications. It is important to

note that SVG should be used as a complementary technology and in conjunction

with other established web-technologies, such as XML, XHTML, static raster

graphics and movies (Chang, 2004). SVG is primarily a presentation and

exchange format that can and should be generated out of other storage formats,

databases and XML sources (Brodlie, 2002). SVG should be used for static

illustrations, animations and interactive applications.

SVG is well suited for presenting engineering technical drawings and explaining,

visualizing or simulating instruments (Su, 2006). Animations can visualize the

operation of machines, technical devices or circuit diagrams. In technical

drawings one can display non-graphical attributes (such as article numbers or

part names) on mouse-over. In simulations, the user can interactively manage

control panels, control flow or change environmental parameters.

The rich visualization and interactivity options of SVG make it particularly

useful for mapping and GIS (Sheng, 2005; Huang, 2011). The available fill and

stroke options, symbols and markers enable higher quality map graphics and

complex symbolizations. Interactivity helps display additional non-graphical data

and enables analysis functions. Basic GIS functionality can be directly

implemented in SVG, while more complex GIS analysis functions can be

delegated to server side GIS or spatial databases. In the latter case, SVG is only

used as a presentation tool. Data acquisition and analysis functions can be

directly practiced in interactive SVG applications.

SVG can also be used for smaller games and animations (Probets, 2001). A

website dedicated to SVG and gaming (Alkalay, 2007) lists a number of SVG

based games.

4.4 Discussion of Problems of SVG Applications

47

SVG integrates and leverages other W3C standard technologies already familiar

to web programmers: DOM, JavaScript, CSS (Sons, 2010). Rather than having to

learn entire realms of technology, programming languages, and terminology to

deal with the complex and technical area of computer graphics, designers,

programmers, and web professionals can leverage skills learned elsewhere.

SVG is suitable for incorporation with HTML5, web-based applications, and rich

Internet applications (RIAs). The last 10 years have seen a great elevation of the

status of the phrase ―web-based application‖. Not so many years ago, people in

the web community used to respond with disbelief when someone talked about

wanting to create a web-based application that lived primarily in the browser. A

cursory inspection of the history of HTML5 reveals that the creation of web

applications was one of the primary intentions behind the development of this

emerging specification. The incorporation of inline SVG into the HTML5

specification is a great advantage for web developers.

SMIL is a W3C declarative language supporting multimedia and animation for

nonprogrammers. SMIL is partially incorporated into the SVG specification.

Those who have had more than a cursory exposure to programming animation in

JavaScript may find themselves enamoured of the ease with which certain

complex animations can be authored using SVG animation (or SMIL), as well as

the ability to update many objects on the screen almost concurrently. While SVG

also supports scripted animation through JavaScript, SMIL brings convenience,

parsimony, and elegance to the table.

SVG is supported natively by the most current versions of the five major web

browsers. Additionally, it can be found in the chip sets aboard several hundred

million mobile phones, with major support being offered from Nokia, Ikivo,

SonyEricsson, Opera Mobile, Samsung, iPhone, and several others (Dailey,

2012).

Compared with other similar technologies such as Flash, Vector Markup

Language (VML), and Silverlight, SVG has the advantages of being

nonproprietary, standardized, cross platform, and interoperable with other XML

languages and W3C standards.

In summary, SVG has several key advantages over other graphics formats used

on the Web. These include:

1. SVG is XML-based, so it is compatible with XML, HTML4, XHTML as

well as CSS, XSLT, and the DOM which means that SVG is extensible, can be

48

styled, scriptable, and interactive and integrates easily with other XML languages.

Because the SVG source code is written in XML, it is readable by screen readers

and search engines, and therefore can be ―searched‖ or ―indexed‖.

2. SVG uses vector technology, not raster technology. Vector graphics exist in

the world of mathematics. So SVG is a combination of geometry shapes rather

than pixels. This is one reason that SVG images can be scaled without distortion

or losing quality. SVG is resolution independent. SVG offers a way to do full

resolution graphical elements, no matter what size screen, what zoom level, or

what resolution user's device has. SVG files are generally much smaller than

bitmaps, resulting in quicker download times. This makes SVG ideal for use on

the Web.

3. SVG is plain text, which means developers and designers can edit SVG files

using a wide variety of tools. There is no official development environment for

SVG, but some vector graphics editors such as Inkscape, Adobe Illustrator, or

CorelDRAW, can be used to develop an SVG application. Even some simple text

file editors, such as MicroSoft NotePad, can also be used to edit a SVG file.

4. SVG is an open standard. SVG is an open, HTTP compatible standard that

allows fully interactive mapping applications - without the need for applets or a

round trip to the server every time the map presentation is tweaked. SVG can

render on most of the modern web browsers directly without the use of a plug-in.

Apart from all the positive aspects of SVG there are unfortunately also weak

aspects. One issue is that the use of SVG on the web is still limited by the lack of

support in older versions of Internet Explorer. IE Version 8 does not support

SVG, although there are not many people still use IE8, but it will cause problems

for those who still use IE8 or earlier version. IE9 which was introduced on

March 0f 2011, supports the basic SVG feature set.

The other drawback of the SVG approach is that good tools for content creation

are still in their infancy. While it is trivial to create static and animated SVG

graphics, tools for scripting development are not yet mature. Hence, the content

creation of highly interactive content is still reserved to the more computer

literate developers who are used to directly working in the source code.

There is the problem of not being able to hide the source code effectively. This

can be a positive feature, but quite a few content creators are hesitant to use open

standards where they cannot use code protection. While methods exist to

obfuscate Javascript or disable the "View Source" function in the Adobe SVG

49

viewer, it is usually trivial for computer literate people to still have access to the

source code. This is also possible for documented binary formats, such as Flash.

Quite a few programs exist to decompose .swf files and extract the individual

media elements, such as graphics, movies and text. To be able to hide the source

code in the future, Adobe is looking into the digital rights management.

Finally, but most importantly, SVG only supports 2D graphics. So it is necessary

and both theoretically and practically important to study the possibility of apply

SVG for 3D modelling in various web-based applications, incorporating the

interactive features demanded by such applications. That is the main purpose of

this PhD project. Here, ‗interactive‘ means that users can actively interact with

web-based systems to build, modify and dynamically view 3D models.

The next section will focus on one of the most popular libraries for 3D graphics

programming-OpenGL. Through the introduction of OpenGL, understand the

necessary features of a 3D graphics presentation framework.

4.5 OpenGL Theory

OpenGL is an open standard API that provides a number of functions to render

2D and 3D graphics, and is available on most modern operating systems

including Windows, Mac OS X and Linux. This API consists of more than 700

distinct commands that can be used to specify the objects and operations needed

to produce interactive 3D applications.

OpenGL is designed as a streamlined, hardware-independent interface to be

implemented on many different hardware platforms. To achieve these qualities,

no commands for performing windowing tasks or obtaining user input are

included in OpenGL; instead, you must work through whatever windowing

system controls the particular hardware you‘re using. Similarly, OpenGL does

not provide high-level commands for describing models of 3D objects. Such

commands might allow you to specify relatively complicated shapes such as

automobiles, parts of the body, airplanes, or molecules. With OpenGL, you

must build your desired model from a small set of geometric primitives—points,

lines, and polygons. A sophisticated library that provides these features can

certainly be built on top of OpenGL. The OpenGL Utility Library (GLU)

provides many of the modelling features, such as quadric surfaces and NURBS

curves and surfaces. GLU is a standard part of every OpenGL implementation.

Most implementations of OpenGL have a similar order of operations, a series of

processing stages called the OpenGL rendering pipeline. A pipeline, in

50

computing terminology, refers to a series of processing stages in which the

output from one stage is fed as the input of the next stage, similar to a factory

assembly line or pipe. This ordering, as shown in Figure 4.3, is not a strict rule

about how OpenGL is implemented, but it provides a reliable guide for

predicting what OpenGL will do.

Figure 4.3 Order of operations

The OpenGL rendering pipeline consists of the following main stages:

1. Vertex processing: Process and transform individual vertices.

2. Rasterization: Convert each primitive (connected vertices) into a set of

fragments. A fragment can be treated as a pixel in 3D spaces, which is aligned

with the pixel grid, with attributes such as position, colour, normal and texture.

3. Fragment processing: Process individual fragments.

4. Output merging: Combine the fragments of all primitives (in 3D space) into

2D colour-pixel for the display.

In modern GPUs, the vertex processing stage and fragment processing stage are

programmable. The shader programs are written in C-like high level languages

such as GLSL (OpenGL Shading Language), HLSL (High-Level Shading

Language for Microsoft Direct3D), or Cg (C for Graphics by NVIDIA).

4.5.1 3D Graphics Coordinate Systems

OpenGL adopts the Right-Hand Coordinate System (RHS). In the RHS, the

x-axis is pointing right, y-axis is pointing up, and z-axis is pointing out of the

screen. With right-hand fingers curving from the x-axis towards the y-axis, the

thumb is pointing at the z-axis. RHS is counter-clockwise (CCW). The 3D

Cartesian Coordinates is a RHS.

51

4.5.2 Primitives

OpenGL supports three classes of geometric primitives: points, line segments,

and closed polygons. They are specified via vertices. Each vertex is associated

with its attributes such as the position, colour, normal and texture. OpenGL

provides 10 primitives as shown in Figure 4.4.

Figure 4.4 OpenGL primitives

4.5.3 Vertices

Recall that a primitive is made up of one or more vertices. A vertex, in

computer graphics, has these attributes:

1. Position in 3D space V=(x, y, z): typically expressed in floating point

numbers.

2. Colour: expressed in RGB (Red-Green-Blue) or RGBA

(Red-Green-Blue-Alpha) components. The component values are typically

normalized to the range of 0.0 and 1.0 (or 8-bit unsigned integer between 0 and

255). Alpha is used to specify the transparency, with alpha of 0 for totally

transparent and alpha of 1 for opaque.

3. Vertex-Normal N=(nx, ny, nz): the normal vector is perpendicular to the

surface. In computer graphics, however, we need to attach a normal vector to

52

each vertex, known as vertex-normal. Normals are used to differentiate the

front- and back-face, and for other processing such as lighting. Right-hand rule

(or counter-clockwise) is used in OpenGL. The normal is pointing outwards,

indicating the outer surface (or front-face).

4. Texture T=(s, t): In computer graphics, we often wrap a 2D image to an

object to make it seen realistic. A vertex can have a 2D texture coordinates (s, t),

which provides a reference point to a 2D texture image.

4.5.4 Pixel vs. Fragment

Pixels refer to the dots on the display, which are aligned in a 2-dimensional grid

of a certain rows and columns corresponding to the display's resolution. A pixel

is 2-dimensional, with a (x, y) position and a RGB colour value (there is no

alpha value for pixels). The purpose of the Graphics Rendering Pipeline is to

produce the colour-value for all the pixels for displaying on the screen, given

the input primitives. In order to produce the grid-aligned pixels for the display,

the rasterizer of the graphics rendering pipeline, as its name implied, takes each

input primitive and perform raster-scan to produce a set of grid-aligned

fragments enclosed within the primitive.

A fragment is 3-dimensional, with an (x, y, z) position. The (x, y) are aligned

with the 2D pixel-grid. The z-value (not grid-aligned) denotes its depth. The

z-values are needed to capture the relative depth of various primitives, so that

the occluded objects can be discarded (or the alpha channel of transparent

objects processed) in the output-merging stage. Fragments are produced via

interpolation of the vertices. Hence, a fragment has all the vertex's attributes

such as colour, fragment-normal and texture coordinates.

4.6 OpenGL Applications

OpenGL aims at drawing 2D or 3D object into a frame buffer. The object is

defined as a series of vertices or pixels, used to describe geometric objects and

images, respectively. Then, OpenGL performs a data conversion to pixels with

some processing, and these pixels can form the eventual display graphics in the

frame buffer. All OpenGL interfaces are open and can be applied to various

hardware platforms and operating systems. Then, users can create static and

dynamic 3D colour images of high-quality which close to the ray tracing with

effectively employ OpenGL. So, the application features of OpenGL are:

53

1. Portability. OpenGL is a software interface which is independent of the

hardware platform. Intuitively, source code without modifications, can be run

on different operating systems of personal computers and workstations.

2. Offline programming. The working mechanism of OpenGL is client/server

mode; it is transparent to the network. So OpenGL is convenient to operate in a

remote network environment.

3. Dynamic link. In Visual C++ 6.0, we can compile the dynamic link library

for other procedure calls through the interface of OpenGL and the Windows

system using the MFC class library.

4. Cost and efficiency. Owing to the enhancement in hardware performance

and the development of the operating system, the overall performance of

computation has increased over early workstations. Because OpenGL has been

integrated into Windows, users either develop OpenGL application procedures in

the Windows environment, or can easily transplant procedures of existing

workstations onto Windows. Therefore, it is convenient to achieve interactive

and high-quality 3D graphics based on Visual C++ and the OpenGL graphics

library on a PC.

The next section will discuss the relationship between OpenGL and SVG, and

the reason why cannot export the rendering result of OpenGL to SVG directly,

and it is necessary to develop a new 3D library for integrating 3D into SVG.

4.7 OpenGL and SVG

Through the introduction of OpenGL, the necessary features of a 3D graphics

presentation framework should be:

1. Defining and developing 3D Primitive Geometries.

2. Transforming 3D objects in 3D space.

3. Illuminating and shading the 3D object.

4. Adding texture to 3D object to enhance the realistic.

5. Adding 3D object to SVG file which can be rendered directly within a

standard web browser.

In order to integrate all those features into SVG, there are two options:

1. Using OpenGL to process the 3D models, and export the render result to

SVG directly.

54

2. Develop a proprietary 3D graphics processing library for SVG, using this

3D library to implement all 3D processing, and generate an SVG file according

to the process result.

Table 4.2 Features supported by SVG and OpenGL

Features SVG OpenGL

Geometry 2D 2D, 3D

Transformation 2D 2D, 3D

File format XML based Vector Graphic Pixel

File size Small Big

Browser support Supported by major browser

without plug-in

Cannot be render on

web browser

Shading method Using filter to achieve 2D

illumination

Flat shading, Gouraud

shading and Phong

shading

Texture mapping Add image on 2D shape Add texture on 3D

object

(Table 4.2) shows features supported by SVG and OpenGL. OpenGL is a 2D

and 3D graphical library, the render results of OpenGL are colour, depth, and

depth/stencil in frame buffer; SVG is an XML-based vector image format for

two-dimensional graphics. SVG images and their behaviours are defined in

XML text files. There is no direct support to export OpenGL rendering result to

SVG. Therefore, work needs to be done to implement the OpenGL render result

in SVG. In order to integrate 3D with SVG, it is necessary to develop a new 3D

library from scratch; this 3D library will fulfil all 3D model definitions, 3D

transformations, and other 3D modelling features. The final result will be used

to create an SVG file, and will be rendered on the web browser directly. All

those works will be introduced Chapter 5 in details. This is one of the new

technology contributions of this PhD project.

55

4.8 Summary

SVG is an XML based markup language used to describe and integrate vector

graphics, raster graphics and text. The language contains ways to draw vector

objects (lines, polygons), raster images and text in various colours and styles on a

specified canvas area. SVG's rich visualization options and the support of

interactivity make it a natural candidate for providing graphics and interactive

examples in different areas.

SVG can be used in a variety of scenarios. SVG can be used for design, GIS and

mapping, embedded systems, location-based services (such as traffic and weather

reports, mapping and positioning, navigating etc.), animated picture messaging,

multimedia messaging, animation and interactive graphics, entertainment,

e-Business, and user interfaces information. Some work in these areas has been

reviewed and the current state of this technology is also described and assessed.

Despite the advantages of SVG, it is still a technology which only supports 2D

graphics. In order to use SVG to present 3D graphics for web-based application,

there are still many problems to be solved, such as: the addition of depth

information, generation of a realistic shading model, and the application of

texture to 3D models.

OpenGL is a fully functional primitive-level API that allows the programmer to

efficiently address and take advantage of graphics hardware. Many high-level

libraries and applications make use of OpenGL due to its performance, ease of

programming, extensibility, and widespread support. Since there is no direct

support to export an OpenGL rendering result to SVG. Thus, it is necessary to

develop a new 3D graphic library to define 3D primitives, implement 3D

transformation, projection, illumination, texture mapping, and create an SVG

file accordingly. The new 3D graphic library will be installed on the server side.

All 3D graphics processing is carried on the server side, then the result will be

sent to client side, and the 3D scene will be rendered on client‘s web browser

directly.

The next chapter will go on to focus on the new framework-SVG GL for

web-based 3D presentation.

56

Chapter 5 A New Framework-SVG GL for Web-Based Graphical

Presentation

5.1 Introduction

As presented in the Chapters 4, SVG is a well-known technique used for

describing 2D vector graphics in XML. SVG is well suited to playing a major

role in 2D graphics rich environments. It can be used for design, location-based

services, animated picture messaging, multimedia messaging, animation and

interactive graphics, entertainment, and graphic user interfaces. When it comes to

3D graphics applications, there are limited successful works. As far as the author

is aware, the only reported work is applying JavaScript to implement the SVG

GL. Most research reports the use of JavaScript to implement 3D operations for

SVG (Lindsey, 2003; Tautenhahn, 2002). The benefit of using JavaScript is that

it is integrated within the webpage; it provides flexibility to manipulate the object

defined in SVG. The drawback is JavaScript is a scripting language; it is not

efficient when it come to heavy arithmetic calculations that are the nature of 3D

graphics. And it is impossible to implement texture mapping and complex

illumination models. Hence, some researchers still don‘t believe that SVG will

be suitable for 3D graphics (Peter, 2011; Tautenhahn, 2002).

However, it is important to implement 3D for web-based applications. As

discussed above, SVG is developed by W3C. SVG integrates and leverages other

W3C standard technologies already familiar to web programmers: DOM,

JavaScript, and CSS. SVG is supported natively by the most current versions of

the major web browsers, and it is resolution independent. Since SVG has many

advantageous features that would be highly beneficial in the field of 3D graphics

for web-based applications, it is worth further research to integrate 3D with SVG,

which can benefit 3D graphics for web-based applications.

As mentioned at the beginning of Chapter 4, SVG is an XML-based vector image

format for 2D graphics. SVG images and their behaviours are defined in XML

text files. But the render results of the existing 3D library, such as OpenGL, are

colour, depth, and depth/stencil in frame buffer, and cannot be export to SVG. So

a new framework has to be developed to use SVG to present 3D graphics for

web-based application. A new framework-SVG GL for 3D model creations and

manipulations in a web browser is proposed and developed in this chapter. The

new framework should have the following functions:

1. Defining and developing 3D models of primitive geometries.

57

2. Defining and developing 3D models through sweeping.

3. Creating 3D free-form models by using Bezier surface.

4. Generating 3D models through point clouds.

5. Transforming 3D models in 3D space.

6. Projecting 3D models onto 2D screen.

7. Illuminating and shading the 3D models.

8. Adding texture to 3D models to enhance their realistic.

9. Adding 3D models to SVG file that can be rendered directly in a standard

web browser.

In this chapter, the fundamental structure of the new framework-SVG GL will be

firstly proposed; the algorithms for geometrical transformation and projection

will be secondly explained; then the different 3D modelling of primitive

geometries, sweeping, Bezier surface and point clouds in the SVG GL will be

developed. More advanced 3D graphics technologies, such as illumination,

shading and texture mapping will be proposed in Chapter 6, and Chapter 7.

5.2 Proposition and Design of a New Framework-SVG GL for Web-Based

Graphical Presentation

The structure of the new framework-SVG GL is described in Figure 5.1. There

are 7 components in this new framework.

1. 3D primitive models: define a set of 3D primitives as the fundamental

building block in SVG GL.

2. 3D complex models: provide more complex 3D modelling methods in SVG

GL.

3. Geometrical transformations: provide methods of changing the shape and

position of objects.

4. Perspective projections: transform points in 3D space to a point into 2D

space.

5. Shading and illumination: determine the colour of a surface of an object

based on the interaction of light and surface.

6. Texture mapping: maps an image, onto a 3D surface.

58

7. SVG file generator: transfers the 2D image to the viewport of SVG for final

rendering.

Figure 5.1 The new framework-SVG GL

In the new proposed the SVG GL, the following aspects of a 3D model are

specified individually: a 3D model in the world space; a view volume of the

camera or observer; a projection onto a projection plane; and a viewport on the

SVG file. World space is the base reference system for the overall model, to

which all other model coordinates are related. The view volume of the camera is

the 3D volume seen by camera. The Viewport is a subset of the screen space

where the model is to be displayed. Typically the viewport will occupy the entire

screen window, or even the entire screen, but it is also possible to set up multiple

smaller viewports within a single screen window. Conceptually, an object in the

3D world space is defined firstly. Then the object is transformed from the world

space to the camera space. And then the content in the camera‘s view volume is

projected onto the projection plane. Finally, the projection plane is mapped onto

the viewport on the SVG file for display. Figure 5.2 shows this conceptual model

of the 3D viewing process in the SVG GL.

59

Figure 5.2 3D view processing in the SVG GL

There are four stages for 3D view processing in the SVG GL. Stage 1, 3D

modelling: provides an internal mathematical representation of any 3D models

that are eventually to be imaged. Stage 2, geometric transformation: transforms

the 3D models from world space to camera space. Stage 3, projection: converts

3D coordinates onto a 2D projection plane. Stage 4, mapping: transfers the 2D

image from the projection plane to the viewport of SVG for final rendering.

Stage 1: 3D Modelling

The 3D Modelling system needs to support the concept of a geometric

coordinated system and provide some way of describing the geometry of the 3D

object to be imaged in the world space. For example, a sphere in 3D space

consists of the set of all points in 3D space at a fixed distance r from a central

point P and can be described by the following Equation:

V =
3

4
πr3 (5.1)

The procedure of 3D modelling in the SVG GL is shown in Figure 5.3. There are

three steps in stage 1:

Step 1: A 3D model is defined by the primitives, sweeping, Bezier surface and

point clouds provided in the SVG GL.

Step 2: The vertexes of the 3D model are calculated by the definition of the 3D

model.

Step 3: The fragment triangles that consist the 3D model are generated based on

the vertexes of the model.

60

Figure 5.3 3D modelling in the SVG GL

3D primitives are the foundation for 3D modelling in the SVG GL. Primitives

defined in the SVG GL are:

1. Triangle.

2. Plane.

3. Sphere.

4. Cylinder.

5. Cone.

6. Cube.

And some more complex 3D model methods are also defined, including:

1. Sweeping, including extrusion and revolution.

2. Bezier surface.

3. 3D points clouds.

The detail of primitives in the SVG GL will be discussed in Section 5.3.

Stage 2: Geometrical Transformation

After the definition of 3D model, the 3D model will be transformed from world

space to camera space by geometrical transformations. In this section, the math

behind geometrical transformations will be introduced first; and then the

geometrical transformations implementation in the SVG GL will be developed.

The basic purpose of geometrical transformations is to provide methods of

changing the shape and position of objects (Belongie, 2002), but the use of these

transformations is pervasive throughout computer graphics. In fact, geometrical

transformations are arguably the most fundamental mathematical tool for

computer graphics.

A transformation on 𝓡𝟑 is any mapping 𝑭:𝓡𝟑 ⟼𝓡𝟑 . That is, each point

𝑷 ∈ 𝓡𝟑 is mapped to a unique point, F(P), also in 𝓡𝟑, 𝓡𝟑 is the usual 3D

Euclidean space consisting of point (x, y, z).

61

Let F be a transformation. For a linear transformation, the following two

conditions hold:

1. For all 𝑎 ∈ 𝓡 and 𝑷 ∈ 𝓡𝟑, 𝑭 𝑎𝑷 = 𝑎𝑭(𝑷).

2. For all 𝑷, 𝑸 ∈ 𝓡𝟑, 𝑭 𝑷 + 𝑸 = 𝑭 𝑷 + 𝑭(𝑷).

A transformation can act on a single point at a time, and it can also act on

arbitrary geometric objects since the geometric object can be viewed as a

collection of points and, when the transformation is used to map all the points to

a new location, this changes the form and position of the geometric object.

Affine transformations are the most fundamental transformations used in

computer graphics (Buss, 2003). Affine transformations are transformations that

preserve points, lines, and planes and parallelism (maps parallel lines to parallel

lines). Also, affine transformations preserve ratios of distances between points

lying on a string line, but do not preserve the angles between lines or distances

between points. To be more specific, for a point, an affine transformation can be

represented in the form: F (P) =A (P) + v, where A is the linear transformation,

and v is a vector in 𝓡𝟑. It can be seen that any affine transformation is the

composition of a linear transformation and a translation. In computer graphics,

the most often used affine transformations include translation, rotation, and

scaling. Several affine transformations can be combined into a single overall

affine transformation.

Translation and rotation are also known as rigid-body transformations (Eggert,

1997). The combination of translations and rotations cannot change the shape or

volume of an object; they can only alter the object‘s location and orientation.

A translation is a transformation that displaces points in 3D space by a fixed

distance in a given direction. A translation can be represented as: 𝑭 𝑷 = 𝑷 +

𝒅 where P is point in 3D space, d is a specified displacement vector in 𝓡𝟑.

Translation is denoted as 𝑻𝒅, thus 𝑻𝒅 𝑷 = 𝑷 + 𝒅.

The translation transformation can also be represented in the matrix form as:

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑻

𝑥
𝑦
𝑧
1

 (5.2)

where T is called the translation matrix, and can be expressed as:

62

𝑻 =

1 0 0 𝑑𝑥
0 1 0 𝑑𝑦
0
0

0
0

1 𝑑𝑧
0 1

 (5.3)

Translation has 3 degrees of freedom since the 3 components of the displacement

vector can be specified arbitrarily. Equation (5.3) translates a point P(x, y, z) by

an offset vector 𝐝 = (𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧), 𝑷′(𝑥 ′, 𝑦 ′, 𝑧 ′) is the coordinate of the new

point.

A rotation is a transformation that rotates all points on a 3D object around the

axis through a fixed angle θ in a given coordinate axis. This transformation is

denoted as 𝑹𝜃𝑋/𝑌/𝑍, where X, Y, Z represents the x, y, z coordinate axis, θ is the

rotation angle.

The rotation transformation can be represented in matrix form as:

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑹𝑧

𝑥
𝑦
𝑧
1

 (5.4)

where 𝑹𝑧 is the rotation matrix for rotation around the z-axis, and can be

expressed as:

𝑹𝒛 =

𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0 0

0
0

0
0

1 0
 0 1

 (5.5)

Equation (5.5) rotates point P(x, y, z) around z-axis by an angle 𝜃, 𝑷′(𝑥 ′, 𝑦 ′, 𝑧 ′)

is the coordinate of the new point. The rotation matrices for rotation around x-

and y- coordinate axis can be derived through an identical argument. The x

values are unchanged for rotation about x axis; and the y value are unchanged for

rotation about y-axis. So the rotation matrices are

𝑹𝑥 =

1 0 0 0
0 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
0
0

𝑠𝑖𝑛 𝜃
0

𝑐𝑜𝑠 𝜃 0
0 1

 (5.6)

for rotation around the x-axis; and

63

𝑹𝑦 =

𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛 𝜃 0
0 1 0 0

− 𝑠𝑖𝑛 𝜃
0

0
0

𝑐𝑜𝑠 𝜃 0
0 1

 (5.7)

for rotation around the y-axis.

There are 3 degrees of freedom corresponding to the ability to rotate

independently about coordinate axes. Since the matrix multiplication is not

commutable, rotation about the x- axis by an angle θ followed by rotation about

y-axis by an angle ϕ does not give the same result as the one that obtained by

reversing the order of the rotations.

However, apart from rigid-body transformations, there is also some non-rigid

body transformations used in computer graphics. Scaling is an affine non-rigid

body transformation which scales points by 𝑠𝑥 along the x axis, 𝑠𝑦 along the y

axis and 𝒔𝒛 along z axis respectively. If 𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 = 1, it is called a uniform

scaling, otherwise it is called a non-uniform scaling.

A scaling transformation for independent scaling along each coordinate axes can

be specified as: 𝑥 ′ = 𝑠𝑥𝑥 , 𝑦 ′ = 𝑠𝑦 , 𝑧 ′ = 𝑠𝑧𝑧 . These 3 Equations can be

combined to express the generic scaling transformation as:

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑺

𝑥
𝑦
𝑧
1

 (5.8)

where S is called the scaling matrix, it can be written as 𝑺(𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧), and can be

expressed as:

𝑺 =

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0

0
0

0
0

 𝑠𝑧 0

0 1

 (5.9)

All these transformation matrices have an inverse. The inverse of a translation

𝑻𝒅, is a translation in the opposite direction 𝑻−𝒅. The inverse of a rotation is the

same rotation with the opposite sign on the angle. The inverse of scale

𝑺(𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) is 𝑺(1
𝑠𝑥 , 1

𝑠𝑦 , 1
𝑠𝑧). For a series of matrices 𝑴 = 𝑴𝟏𝑴𝟐⋯𝑴𝒏,

the inverse matrix is 𝑴−𝟏 = 𝑴𝒏
−𝟏𝑴𝒏−𝟏

−𝟏 ⋯𝑴𝟏
−𝟏.

64

Any number of rotation, scaling, and translation matrices can be multiplied

together. The result always has the form

𝑴 =
𝑹 𝑻
𝟎𝟑
𝑻 𝟏

 (5.10)

The 3×3 upper-left submatrix R gives the aggregate rotation and scaling, whereas

T is a 3D translation vector that gives the subsequent aggregate translation. 𝟎𝟑

is a 3D zero vector

In the SVG GL, geometrical transformations include translation and rotation

(Figure 5.4).

Figure 5.4 Transform from world space to camera space

Geometrical transformations are implemented in a 3DMath Library; and the

following classes are defined in this Math Library:

1. Matrix3, a matrix class for 3x3 matrix operation.

2. Matrix4, a matrix class for 4x4 matrix operation.

3. Vector2, a vector class for 2D vector operation.

4. Vector3, a vector class for 3D vector operation.;

5. Vector4, a vector class for 4D vector operation.

Stage 3: Projection

After the geometrical transformations, the vertexes in camera space will be

projected onto projection plane by projections transform.

In general, projections transform points in a coordinate system of dimension n

into points in a coordinate system of dimension less than n (Kennedy, 2001). The

projection of a 3D object is defined by straight projection rays (projectors)

emanating from a center of projection, passing through each point of the object,

and intersecting a projection plane to form the projection.

The class of projections used in the SVG GL is known as planar geometric

projection because the projection is onto a plane rather than some curved surface.

Projection onto a curved surface will cause the distortion of the 3D model

65

according to the curved surface. Since the purpose of the SVG GL is to create

realistic 3D model for web-based application, so only planar geometric

projection is used in the SVG GL. Planar geometric projection can be divided

into 2 basic classes: perspective and parallel (Carlbom, 1978). The distinction

between them is in the relation of the center of projection to the projection plane.

If the distance from the center of projection to the projection plane is finite, then

the projection is perspective; if the distance is infinite, the projection is parallel.

1. Perspective projection

Perspective projection was originally discovered for applications in drawing and

painting (Coxeter, 1974). An important principle in the classic theory of

perspective projection is the notion of a ‗vanishing point‘ - the intersection of the

projections of a set of parallel lines in space onto the projections plane. In

computer graphics applications, it is able to avoid all considerations of vanishing

points and similar factors. Instead, an object is placed in 3D space, a projection

center (camera position) is chosen, and the correct perspective transformation is

mathematically calculated to create the scene as viewed from the projection

centre.

Perspective projection is used to create the view when the camera or eye position

is placed at a finite distance from the scene. The use of perspective means that an

object will appear larger as it moves closer to the viewer. Perspective is useful

for giving the viewer the sense of being ‗in‘ a scene because a perspective

projection shows the scene from a particular viewpoint. Perspective is heavily

used in entertainment applications, where it is desired to give an immersive

experience; it is particularly useful in dynamic situations in which the

combination of motion and correct perspective gives a strong sense of the

three-dimensionality of the scene. Perspective is also used in applications as

diverse as architectural modelling to show the view from a particular viewpoint.

For simplicity, the projection center is placed at the origin looking down the

negative z-axis. It is a model of image formation that projects a 3D scene towards

a single point – the projection center. The image is not defined at the projection

center, but rather it is defined on a plane, called the projection plane. The

projection plane is perpendicular to the camera z axis.

This perspective projection model is shown in Figure 5.5. The model consists of

a plane (projection plane/image plane) and a 3D point P. Point O is the

projection center, f is the distance between the projection plane and the

66

projection center, and is called focal length. 𝑷′ is the projection of point P on the

projection plane. The line through O and perpendicular to the image plane is the

optical axis.

Using the triangular mathematic operation, the relation between the coordinate of

point P and point 𝑷′ is:

𝑥 ′

𝑦 ′

𝑧 ′

𝑤

 = 𝑀𝑝

𝑥
𝑦
𝑧
1

 (5.11)

where (x, y, z, 1) is the homogenous coordinate of a point P in 3D coordinate

system, (𝑥 ′, 𝑦 ′, 𝑧 ′, 𝑤) is the homogenous coordinate of perspective projection of

point P in 3D coordinate system, and (𝑥 ′/𝑤, 𝑦 ′/𝑤) is the coordinate of

perspective projection of point P on the projection plane.

𝑀𝑝 is the perspective projection matrix, it can be expressed as:

𝑴𝒑 =

𝑓 0 0 0
0 𝑓 0 0
0
0

0
0

𝑓 0

1 0

 (5.12)

Figure 5.5 Perspective projection

Perspective projection has the following properties:

(1) The size of the projection image is inversely proportional to the distance

from the object to the image plane.

(2) The smaller the f (focal length), the wider the view field.

(3) Line is preserved, but distances and angles are not preserved.

(4) Parallel lines in space project onto lines that on extension intersect at a single

67

point in the image plane called the vanishing point.

(5) The vanishing points of all the lines that lie on the same plane form

vanishing line.

2. Parallel projection

The parallel projection mentioned is an orthographic parallel projection in which

the direction of the projection is perpendicular to the projection plane (Maynard,

2005; Riley, 2006). In this type of projection, the projection plane is

perpendicular to a principal axis, which is therefore the direction of the

projection.

Unlike the perspective projection described earlier, orthographic projection does

not cause closer objects to appear larger and distant objects to appear smaller.

For this reason, orthographic projection is generally preferred for applications

such as architecture or engineering applications, including CAD and CAM since

the parallel projection is better at preserving relative sizes and angles.

An orthographic projection is shown in Figure 5.6. In this model, the projection

ray is orthogonal to the image plane and parallel with the z axis. P is a 3D point,

𝑷′ is the projection of point P on the image plane. The relation between the

coordinate of point P and point 𝑷′ is:

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑀𝑜

𝑥
𝑦
𝑧
1

 (5.13)

where (x, y, z) is the coordinate of a point P in the 3D coordinate system, and

(𝑥 ′, 𝑦 ′) is the orthographic projection of point P on plane 𝑧 ′ = 0, 𝑀𝑜 is the

orthographic projection matrix, it can be expressed as

 𝑀𝑜 =

1 0 0 0
0 1 0 0
0
0

0
0

0 0
0 1

 (5.14)

An orthographic projection‘s properties are:

(1) Parallel lines project to parallel lines.

(2) Size does not change with the distance from the camera.

(3) Angles are not preserved.

68

Figure 5.6 Orthographic projection

The purpose of the SVG GL is to provide a realistic interactive 3D model for

web-based application, so only perspective projection is used (Figure 5.7).

Figure 5.7 Projection from 3D camera space to 2D projection plane

Combining the transformation matrix M in Equation (5. 10) with projection

matrix, the final perspective projection result can be described as:

𝑥 ′

𝑦 ′

𝑧 ′

𝑤

 = 𝑴𝒑𝑴

𝑥
𝑦
𝑧
1

 (5.15)

where 𝑴𝒑 is a projection matrix, M is the concatenated matrix of translation,

rotation and scale transformation.

3. Camera View Volume

The role of the camera in a 3D computer graphics system is to provide both a

point of view from which to render an image and the basic parameters of the

mathematical projection that will be used to form the virtual image. The

camera‘s position and orientation are specified as part of the scene description. It

is typical for the camera to be positioned in the global coordinate system, usually

with some positioning controls that correspond to the operation of a real studio

camera.

Theoretically, cameras can have any projection characteristics, corresponding to

the variety of lens type. However, practical 3D graphics implementations usually

69

implement only the standard parallel or perspective projections that are common

in architectural and design drafting.

In the SVG GL, the camera is implemented by a camera class. This class has the

following properties:

(1) Position, the centre position of the camera.

(2) Direction, the facing direction of the camera.

(3) Focus, the focus length of the camera.

(4) Near, the distance from the camera to the near clipping plane.

(5) Far, the distance from the camera to the far clipping plane.

(6) Fov, view angle, in degrees.

Stage 4: Mapping

A viewport is a 2D rectangle on screen defining where the image will appear.

Mapping is simply the process of transforming 2D scene on project plane in

world space onto viewport on screen or device space (Figure 5.8). In particular,

objects inside the clipping window are mapped to the viewport. The viewport is

displayed in the interface window on the screen. In other words, the clipping

window is used to select the part of the scene that is to be displayed. The

viewport then positions the scene on the output device.

Figure 5.8 Viewport transformation

The relation between the coordinate of point P and point 𝑷′ in Figure 5.8 is:

𝑥 ′

𝑦 ′

1

 =

𝑢1−𝑢0

𝑥1−𝑥0
0 −𝑥0

𝑢1−𝑢0

𝑥1−𝑥0
+ 𝑢𝑜

0
𝑣1−𝑣0

𝑦1−𝑦0
−𝑦0

𝑣1−𝑣0

𝑦1−𝑦0
+ 𝑣𝑜

0 0 1

𝑥
𝑦
1
 (5.16)

70

where (x, y) is the coordinate of a point P on the 2D projection plane, and (𝑥 ′, 𝑦 ′)

is the coordinate of point 𝑷′ on the viewport,

𝑢1−𝑢0

𝑥1−𝑥0
0 −𝑥0

𝑢1−𝑢0

𝑥1−𝑥0
+ 𝑢𝑜

0
𝑣1−𝑣0

𝑦1−𝑦0
−𝑦0

𝑣1−𝑣0

𝑦1−𝑦0
+ 𝑣𝑜

0 0 1

 is the viewport transformation matrix.

The viewBox attribute in SVG is used to define the viewport in the SVG GL.

The value of the viewBox attribute is a list of 4 numbers min-x, min-y, width and

height. Min-x, min-y defines the coordinate of the lower left corner of the

viewport, and the width and height define the width and height of the viewport.

The viewport transformation is used to map vertexes on projection plane on the

SVG viewbox (Figure 5.9)

Figure 5.9 Transform from projection plane to SVG viewport

5.3 3D Modelling of Primitive Geometries in the SVG GL

A model is a representation of some features of a concrete or abstract entity. The

purpose of a model of an entity is to allow people to visualize and understand the

structure or behaviour of the entity, and to provide a convenient vehicle for

‗experimentation‘ and prediction of the effects of inputs or changes to the model

(Foley, 2013). In 3D computer graphics, real worlds can be modelled with

geometric objects; and modelling is the process of developing a 3D model by

using a set of points in 3D space, that are connected by various geometric data

such as lines, and polygons.

There are a great variety of geometric objects in 3D world. All these geometric

objects that fit well with existing graphics hardware and software have the

following 3 features:

(1) The objects are described by their surfaces and can be thought of as being

hollow.

(2) The objects can be specified through a set of vertices in 3D.

(3) The objects either are composed of or can be approximated by flat, convex

polygons.

71

Generally there are four popular methods for 3D modelling: polygonal modelling,

primitive modelling, NURBS (nonuniform rational B-splines) modelling, and

splines & patches modelling. Polygonal modelling is a method of creating a 3D

model by connecting line segments through points in a 3D space. Primitive

modelling creates geometric primitive such as cube, cone, and sphere firstly, then

using those primitives to create complex 3D models. NURBS modelling defines

3D model surface by curves, the curve is created by NURBS. Splines & patches

modelling is similar to the NURBS modelling procedure, they depend on curved

lines to identify the visible surface. A spline is a curve in 3D space defined by at

least two control points. Using splines to create a model is perhaps the oldest,

most traditional form of 3D modelling available.

In the SVG GL, Polygon modelling method is used for creating 3D models, such

as cube, cone, sphere and so on. It is very common for 3D geometric shapes to be

modelled firstly as a set of polygons and then mapped to a polygonal 2D to

display. The basic display hardware is generally pixel based, but most computers

now have special-purpose graphics hardware for processing polygons or, at least,

triangles. Polygonal-based modelling is used in nearly every 3D computer

graphics system (Wong, 2013). It is a central tool for the generation of

interactive 3D graphics and is used for photo-realistic rendering.

Polygon modelling requires the application to either specify simple planar

polygons or triangles to connect a list of vertices. For a simple polygon specified

with more than 3 vertices, if the vertices do not lie in the same plane, there will

be no simple way to define the interior of the object, and then the results of

rasterizing the polygon are not guaranteed to be what the developer might desire.

Since triangles are always flat, either the modelling system is designed to always

produce triangles, or the system provides a method to divide, or triangulate an

arbitrary polygon into a triangle mesh. The same procedure can be used to

represent a curved object, such as a sphere that can be approximated by a small,

flat polygon.

All 3D models in the SVG GL are specified through a set of vertices; and then

lines or triangles are used to connect the vertices. While vertices define the shape

of the object, triangles are the shapes onto which the shade, light, and texture are

put. The results of the modelling process are a set of vertices that specify a group

of geometric objects used by the rest of the graphics system.

Primitives are selected from a universe of possible shapes. The commonly used

geometric primitives include point, line, plane, circle, triangle, and spline curves.

72

But the primitives defined in the SVG GL are slight different with the primitives

mentioned above. Such primitives include triangle, plane, sphere, cylinder, cone,

and cube. These are considered to be primitives in 3D modelling because they

are the building blocks for many other shapes and forms (Watt, 1999). A

primitive is instantiated by assign values to certain parameters. The SVG file

created by the SVG GL for some of the primitives can be found in Appendix A.

1. Triangle: Triangle is the elementary primitive in 3D graphics, which can be

used to model all other 3D objects. A triangle specified by 3 vertices that form a

closed area in 3D space. The vertices of a triangle can be defined with a 3D

coordinate (x, y, z). Casting a ray from each vertex of the triangle to the

projection center, each ray intersects with the projection plane. By using

Equation (5.12), a triangle in 3D world space is projected to a triangle in 2D

window space, and then mapped to the SVG viewport (Figure 5.10).

Figure 5.10 Triangle in the SVG GL

In the SVG GL, a triangle object can be created by the Triangle class constructor

as Triangle (𝒗𝟎, 𝒗𝟏, 𝒗𝟐), where 𝒗𝟎, 𝒗𝟏, 𝒗𝟐 are non-collinear points in 3D space

that specify 3 vertices of the triangle.

2. Plane: The plane defined in the SVG GL is not the same as the one defined

in geometry, it is actually a rectangle. A plane is specified by 4 vertices; and can

be treated as 2 triangles that share 2 common vertices. By mapping the triangle to

the SVG viewport, a 2D polygon correspondence to the plane is finally generated

(Figure 5.11).

A plane object can be initialized by the Plane class constructor Plane (Width,

Height), where Width is the width of the plane, and Height is the plane‘s height.

Then the vertices accordingly are (0, 0, 0), (Width, 0, 0), (Width, Height, 0), and

(0, Height, 0). It shows the default location of a plane object is the original point

and xy-plane of the coordinate system.

73

Figure 5.11 Plane in the SVG GL

3. Sphere: In geometry, a sphere can be viewed as the surface formed by

rotating a circle about any diameter, a sphere can be defined by:

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝑟2 (5.17)

where (x, y, z) is the point on the surface of a sphere, r is the radius of a sphere,

and (𝑥0, 𝑦0, 𝑧0) is the center of the sphere. This equation shows that a point on

the surface of a sphere is at a fixed radial distance r from its center.

Equation (5.15) can also be converted to a formula in spherical polar coordinates

as

𝑥 = 𝑥0 + 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑦 = 𝑦0 + 𝑟𝑐𝑜𝑠𝜑
𝑧 = 𝑧0 + 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

 (5.18)

where θ is an azimuthal angle ranging from 0 to 2π, ϕ is a polar angle ranging

from 0 to π, and r is the radius (Figure 5.12). The surface of a sphere with radius

r can simply be covered by varying θ from 0 to 2π, angle ϕ from 0 to π. By

subdividing these ranges into small enough sections, sufficient points on the

surface of the sphere can be generated to form the vertices of a polyhedral

approximation to the surface, replacing the curved surface with small polygon

faces.

Figure 5.12 Point on the surface of a sphere

74

In the SVG GL, a sphere can be created by using the Sphere class constructor as

Sphere(r, segmentA, segmentP), where r is the radius, segmentA is the number of

sections divided along longitude direction, and segmentP is the number of

sections along latitude direction (Figure 5.13).

Figure 5.13 Sphere with different segmentsA and segmentsP

4. Cylinder: Similar to the sphere formula defined in spherical polar

coordinates, a cylinder can be defined in cylindrical polar coordinates as:

𝑥 = 𝑟𝑐𝑜𝑠𝜃
𝑦 = 𝑟𝑠𝑖𝑛𝜃 0 ≤ 𝜃 ≤ 2𝜋
𝑧 = 𝑢 0 ≤ 𝑢 ≤ 𝑕

 (5.19)

where θ is an azimuthal angle ranging from 0 to 2π, and r is the radius of the

cylinder. By generating angle θ from 0 to 2π, and values of z from 0 to h (h is the

height of the cylinder) while holding r as a constant value (Figure 5.14), the full

curved surface of the cylinder can be found. By taking sufficient subdivisions of

θ, the curved surface of the cylinder can be approximated with small polygon

surfaces.

Figure 5.14 Point on the curved surface of a cylinder

Constructor Cylinder(r, h, segmentA) is used in the SVG GL to create a cylinder

object, where r is the radius, h is the height of the cylinder respectively, and

75

segmentA is the number of sections divided along longitude direction (Figure

5.15).

Figure 5.15 A cylinder without top and bottom face in the SVG GL

5. Cone: The parametric Equation of a cone can be defined as

𝑥 =
𝑕−𝑢

𝑕
𝑟𝑐𝑜𝑠𝜃

𝑦 =
𝑕−𝑢

𝑕
𝑟𝑠𝑖𝑛𝜃 0 ≤ 𝜃 ≤ 2𝜋

𝑧 = 𝑢 0 ≤ 𝑢 ≤ 𝑕

 (5.20)

where h is the height of the cone, r is the base radius of the cone, and θ is an

azimuthal angle ranging from 0 to 2π. By varying angle θ from 0 to 2π, and

values of z from 0 to h, all points on the surface of the cone can be found (Figure

5.16). By taking sufficient subdivisions of θ, the curved surface of the cone can

be approximated with small polygon surfaces.

Figure 5.16 Point on the curved surface of a cone

A cone object can be defined as Cone(r, h, segmentA) in the SVG GL, where r is

the base radius, h is the height of the cone respectively, , and segmentA is the

number of sections divided along longitude direction (Figure 5.17).

76

Figure 5.17 Cone in the SVG GL

6. Cube: A cube is specified by 8 vertices; 6 planes are used to connect the

vertices, each plane consists with 2 triangles (Figure 5.18).

A cube object can be initialized by the Cube class constructor Cube (Width,

Height, Depth), where Width is the width, Height is the height, and Depth is the

depth of a cube respectively. Then the vertices accordingly are (0, 0, 0), (Width,

0, 0), (Width, Height, 0), (0, Height, 0), (0, 0, -Depth), (Width, 0, -Depth), (Width,

Height, -Depth), and (0, Height, -Depth). It shows the default location of a cube

object is the original point and all its 6 sides parallel to different coordinate plane

respectively.

Figure 5.18 Cube rendered with different material

5.4 3D Modelling through sweeping

A sweep object is generated when a space curve C(s) is transformed by a

transformation rule T(t) (Martin, 1989). Curve C(s) is referred to as the profile

curve. The surface of the sweep object is swept by the profile curve when that

curve is transformed by the transformation rule T(t). The expression of the

surface is simply the product.

Two typical sweep objects are discussed here: extrusion, and revolution. The

different between these two types is determined by the transformation rule T(t)

5.4.1 Extrusion

77

Extrusion is a kind of sweeping, it is defined by translating a space curve along a

linear trajectory normal to the plane of the shape to create 3D object (Shum.

2001). The trajectory curve can be specified by a vector t= (𝒕𝒙, 𝒕𝒚, 𝒕𝒛). When a

space curve C(s) is translated along a vector v, then the transformation matrix E(t)

is given by

𝑬 𝒕 =

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0
0

0
0

1 𝑡𝑧
0 1

 (5.21)

If a space curve is expressed by C(s), where 𝟎 ≤ 𝒔 ≤ 𝟏, then the surface of

extrusion has the form C(s, t) = C(s)E(t), The surface of the extrusion can be

covered by varying s from 0 to 1. By subdividing these ranges into small enough

sections, sufficient points on the surface of the extrusion object can be generated,

replacing the surface with small polygon faces.

Figure 5.19 shows that an elliptic tube is created by extruding an ellipse on the

xy-plane along y-axis.

Figure 5.19 Extruding a ellipse along y-axis

5.4.2 Revolution

Revolution is a special case of sweeping. It is obtained when a space curve C(s)

is rotated about an axis in space (Kent, 1992; Blundell, 2008). The rotation angle

can be 2π or less. A general rotation in 3D is fully specified by the axis of

rotation and the rotation angle. If the rotation angle is θ and rotation axis is r,

then the rotation matrix R(θ) is given by

78

rx
2 + cosθ(1 − rx

2) rxry 1 − cosθ − rzsinθ rxrz 1 − cosθ − rysinθ

rxry 1 − cosθ + rzsinθ ry
2 + cosθ(1 − ry

2) ryrz 1 − cosθ − rxsinθ

rxrz 1 − cosθ − rysinθ ryrz 1 − cosθ + rxsinθ rz
2 + cosθ(1 − rz

2)

(5.22)

If a space curve is expressed by C(s), then the surface of revolution has the form

C(s, θ)=C(u)R(θ), where 𝟎 ≤ 𝒔 ≤ 𝟏 and 0 ≤ θ ≤ 2π . The surface of the

revolution can be covered by varying s from 0 to 1, angle θ from 0 to 2π. By

subdividing these ranges into small enough sections, sufficient points on the

surface of the revolution object can be generated, replacing the curved surface

with small polygon faces.

Figure 5.20 shows a chess pieces model is created by revolving the outline on the

left side around y-axis.

Figure 5.20 A chess pieces generated by revolution

5.5 Bezier Surface

At the lowest level, the smooth surfaces of geometric objects are approximated

by triangles. However, many useful surfaces can be described mathematically by

a small number of parameters such as a few control points. Saving a few control

points for a surface requires much less storage than saving hundreds triangles.

Bezier surface is a typical type of freeform surface. A Bezier surface is defined

by a set of control points (Farin, 1996; Gálvez, 2007). The Equation of a Bezier

surface defined by m+1 rows and n+1 columns of control points is:

 𝒑 𝒔, 𝒕 = 𝑩𝒎,𝒊
𝒏
𝒋=𝟎

𝒎
𝒊=𝟎 𝒔 𝑩𝒏,𝒋(𝒕)𝒑𝒊𝒋 (5.23)

where 𝒑𝒊𝒋 are the set of control points, 𝑩𝒎,𝒊(𝒔) and 𝑩𝒏,𝒋(𝒕) are the i-th and

j-th Bezier basis function in the u and v directions, and are defined as follows:

79

𝑩𝒎,𝒊 𝒔 =

𝒎!

𝒊! 𝒎−𝒊 !
𝒔𝒊(𝟏 − 𝒔)𝒎−𝒊

𝑩𝒏,𝒋 𝒕 =
𝒏!

𝒋! 𝒏−𝒋 !
𝒕𝒋(𝟏 − 𝒕)𝒏−𝒋

 (5.24)

A Bezier curve is defined by n+1 control points; it passes through the two

extreme points, and uses the interior points to determine its shape. Similarly, a

Bezier surface is defined by a grid of (m+1)×(n+1) controls, it is anchored at the

four corner points and uses the other grid point to determine its shape. Closed

surface can be formed by setting the last control equal to the first. A curved

surface can be created by varying s from 0 to 1, t from 0 to 1. By subdividing

these ranges into small enough sections, sufficient points on the surface can be

generated; replacing the curved surface with small polygon faces (Figure 5.21).

Figure 5.21 Curved surface generated by Bezier surface

5.6 3D Modelling Through 3D Point Clouds

A 3D point cloud is a set of data points in a 3D coordinate system, these points

are usually defined by x, y, and z coordinates, and are used to represent the

external surface of an object (Golovinskiy, 2009). These data sets are often very

large. They can be used to display objects directly if the graphics system supports

point primitives.

Since the smallest primitive in the SVG GL graphics is the triangle, it cannot

display point clouds. In order to generate 3D object from point clouds, more

structure information have to be added.

80

Figure 5.22 Structured point clouds

A simple 3D surface is shown in Figure 5.22 consisting of 5 vertices. Besides the

vertex-list, there is also a face-list to specify how to connect the vertices by

triangle face. The point cloud with face information is called a structured point

cloud. By using the face-list, a set of triangle meshes will be generated to form a

3D object from the point clouds.

5.7 Summary

Since the render results of the existing 3D library cannot be export to SVG. A

new framework has to be developed to use SVG to present 3D model for

web-based application.

A new framework-SVG GL was proposed is this chapter. There are four stages in

the new framework-SVG GL. Stage 1, 3D modelling: provides an internal

mathematical representation of any 3D models that are eventually to be imaged.

Stage 2, geometric transformation: transforms the 3D models from world space

to camera space. Stage 3, projection: converts 3D coordinates onto a 2D

projection plane. Stage 4, mapping: transfers the 2D image from the projection

plane to the viewport of SVG for final rendering.

By using the new proposed framework, an object in the 3D world space is

defined first. Then the object is transformed from the world space to the camera

space. And then the content in the camera‘s view volume is projected onto the

81

projection plane. Finally, the projection plane is mapped onto the viewport on the

SVG file for display.

In order to implement all the 3D graphics operations in the SVG GL:

1. A 3DMath Library in the SVG GL is developed to implement geometric

transformations, including translation, rotation, and scaling.

2. A perspective projection is developed in the SVG GL to project 3D models

onto 2D projection plane.

3. A viewport transformation is also defined in the SVG GL to transfer the 2D

image from projection plane to viewport in SVG.

4. A set of primitives are developed in the SVG GL as the foundation for 3D

modelling in the SVG GL, Such primitives include triangle, plane, sphere,

cylinder, cone, and cube. And some more complex 3D model methods are also

developed, including: extrusion, revolution, Bezier surface and point clouds.

82

Chapter 6 New Algorithms for Shading in the SVG GL

6.1 Introduction

With the technologies discussed in Chapters 5, a 3D model can be built and

rendered. But the result is not really promising since it looks flat and fails to

show 3D nature of the object. This appearance is a consequence of the

assumption that each surface is lit such that it appears to a viewer in a single

colour (Figure 6.1).

Figure 6.1 Lighting surfaces with single colour

To produce a 3D model that looks more realistically, the model has to be lit and

shaded. Figure 6.2 shows two versions of same object (a cuboid), (a) without

lighting and (b) with lighting. It can be seen that the unlit cuboid looks no

different from a uniformly coloured polygon. The lit cuboid also shows the

gradations of colour give the cuboid the appearance of being 3D.

Figure 6.2 A lit and unlit cuboid

The basis of the calculation for lighting or shading objects is the interaction of

light and surfaces of the objects in an environment. The technique for

determining the colour of a surface of an object at a given point based on the

interaction of light and surface is called an illuminating or lighting model

(Strauss, 1990; Tabellion, 2004; Ritschel, 2012). The factors that govern the

83

illuminating model determine the visual representation of the 3D object.

Modelling only lighting directly from a light source is called local illuminating or

direct illuminating model. In such model, the calculation for shading assigned to

a point on a surface depend only on the material properties of the surface, the

local geometry of the surface, and the locations and properties of the light source,

independent from the shading of all other surfaces. A lighting model that handles

inter reflection-the light that is reflected from other surfaces to the current

surface is called global illuminating model. A global illuminating model is more

comprehensive, more physically correct, and produces more realistic images. But

it is also more computationally expensive. For the purpose of efficient processing

only local illuminating model is used in the SVG GL. Once the illuminating

models are defined, a shading model will be used to apply the illuminating model

on the 3D object. A shading model is a broader framework that determines how

an illuminating model is used and what parameters it receives. For instance, the

illuminating model may be used for every pixel covered by an object or just for

its vertices.

In this chapter, the lighting filter in existing SVG is introduced firstly, and the

problem for using this method in the SVG GL is discussed; then the illumination

model in 3D graphic is discussed; finally new Gouraud shading and new shading

algorithms in the SVG GL are proposed and developed. In both shading

algorithm, the areas are used to interpolate the intensity of colour or normal.

6.2 Discussion of the Existing Algorithms in SVG and Its Problems

Lighting is done in SVG with some specific filter effects. Filters can make the

difference between an appealing image with sizzle and one that is dull and

ordinary (Figure 6.3). SVG has its own set of filter effects that allow the user to

combine several of these effects and apply the filter to the graphic.

Figure 6.3 Compare ordinary image with the result of filter effect

Lighting effect can be added to SVG with the ‗feDiffuseLighting‘ and

‗feSpecularLighting‘ filter effects, and the details of the lighting effect can be

84

controlled through one of three filter effects: fePointLight, feDistantLight, and

feSpotLight.

6.2.1 Filter Element

A filter effect consists of a series of graphics operations that are applied to a

given source graphic to produce a modified graphical result. The result of the

filter effect is rendered to the target device instead of the original source graphic.

Filter effects are defined by <filter> elements. By setting the value of the filter

attributes on the given element, a filter effect can be applied to a graphics

element or a container element. <filter> element uses an id attribute to uniquely

identify it. Filters are defined within <def> elements and then are referenced by

graphics elements by their ids. The syntax declaration of <filter> element is

shown:

In Figure 6.4, the 3D effect is produced by using SVG filter. Although it looks

like 3D, it is actually 2D graphic. This method cannot be used on 3D model for

shading, especially when the 3D model is transformed in 3D space.

<filter

 filterUnits="units to define filter effect region"

 primitiveUnits="units to define primitive filter subregion"

x="x-axis co-ordinate"

 y="y-axis co-ordinate"

 width="length"

 height="length"

 filterRes="numbers for filter region"

 xlink:href="reference to another filter" >

</filter>

85

Figure 6.4 An example of a filter effect and the SVG file

6.2.2 Lighting Filters

SVG lighting is accessed through the use of feDiffuseLighting or

feSpecularLighting filters, that establish its calculations based on the appropriate

component of the Phong lighting model

While diffuse light is light that hits a surface and gets scattered equally in all

directions, specular light refers to a bright spot of light that gets reflected in a

particular direction.

<defs>

<filter id="MyFilter" filterUnits="userSpaceOnUse" x="0" y="0"

width="300"

height="120">

<feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>

<feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>

<feSpecularLighting in="blur" surfaceScale="5"

specularConstant=".75"

specularExponent="20" lighting-colour="#bbbbbb"

result="specOut">

<fePointLight x="-5000" y="-10000" z="20000"/>

</feSpecularLighting>

<feComposite in="specOut" in2="SourceAlpha" operator="in"

result="specOut"/>

<feComposite in="SourceGraphic" in2="specOut"

operator="arithmetic"

k1="0" k2="1" k3="1" k4="0" result="litPaint"/>

<feMerge>

<feMergeNode in="offsetBlur"/>

<feMergeNode in="litPaint"/>

</feMerge>

</filter>

</defs>

86

This feDiffuseLighting filter lights an image using the alpha channel as a bump

map. The resulting image is an RGBA opaque image based on the light colour

with alpha = 1.0 everywhere. The lighting calculation follows the standard

diffuse component of the Phong lighting model. The resulting image depends on

the light colour, light position and surface geometry of the input bump map.

In feSpecularLighting filter, the lighting calculation follows the standard specular

component of the Phong lighting model. The resulting image depends on the

light colour, light position and surface geometry of the input bump map. The

light source can be defined and controlled by the following 3 filter effects.

1. fePointLight

fePointLight establishes a specific point as the main light source when applying

feDiffuseLighting or feSpecularLighting filter.

The x, y, and z attributes here determine the location of the light source in the

coordinate system on the appropriate axis. Z will adjust the perceived size of the

point of light by determining its location from the point to the user; a higher

value here results in a larger point of light that is "closer" to the user(Figure 6.5).

Figure 6.5 The effect of z attribute on light effect

2. feDistantLight

feDistantLight defines a distant light source.

The azimuth attribute within feDistantLight defines the clockwise direction angle

in degrees for the light source on the XY plane.

The elevation attribute within feDistantLight defines the direction angle in

degrees of the light source from the XY plane towards the z axis (Figure 6.6).

87

Figure 6.6 Azimuth and elevation in XYZ coordinate

The effects of Azimuth and elevation value on the final result are shown in

Figure 6.7.

Figure 6.7 The effect of azimuth and elevation attribute on light effect

3. feSpotLight

feSpotLight defines a spot light as a light source.

The x, y, and z values establish the location of the light source along the

appropriate axis within the coordinate system.

88

The pointsAtX, pointsAtY and pointsAtZ attributes define the point at which the

light source is pointing.

The limitingConeAngle restricts the area to which light is projected by

disallowing light to render outside of it. This value sets the angle in degrees

between the spot light axis and cone. A higher value here results in a less

restricted area (Figure 6.8).

Figure 6.8 The effect of limitingConeAngle and x, y, z attribute on light effect

Although filter effect in SVG can be used to generate appealing image and

sometimes they can add some 3D effects on the final image, they can only be

used for 2D image processing. They cannot be used to add lighting effect on 3D

object, especially when a 3D object is transformed in 3D space, it is impossible

to use filter to create physical correct shading result. In order to use advanced

shading effect such as Gouraud shading and Phong shading in the SVG GL, new

algorithm have to be developed.

Before propose the new Gouraud shading algorithm and Phong shading

algorithm in the SVG GL, the illumination model and shading methods in 3D

computer graphic will be discussed firstly.

6.3 Illuminating Model

In computer graphics, illuminating is the process used to simulate the interactions

of light and the surfaces of an object. From a physical perspective, there are two

independent parts involved in this procedure: the light source in the scene, and

reflection models that deals with the interaction between material of the surface

and light. The properties of the light source determine the properties of light

received by the surface of an object; the reflection models define how the light is

reflected from the surface of the objects. These reflection models can be

89

classified into 3 different types: ambient reflection model, diffuse reflection

model, and specular reflection model.

6.3.1 Light Source

There are three basic types of light sources: point light, spot light, and distant

light.

1. Point light

Point light can be defined as a point in space from which light emitted uniformly

in all directions. The intensity of illumination received from a point source is

proportional to the inverse square of the distance between the source and the

surface (Wright, 2004). So the intensity of light at the point P on the surface

coming from the point light is given by

𝑰 𝑷 =
𝟏

|𝑷−𝑷𝟎|𝟐
𝑰(𝑷𝟎) (6.1)

where 𝑷𝟎is the position vector of point light source, 𝑰(𝑷𝟎) is the intensity of

the light at the light point, and |𝑷 − 𝑷𝟎|is the distance between point P and

𝑷𝟎(Figure 6.9).

Figure 6.9 Intensity of light at the point P on the surface

2. Spot light

Spot light can be seen as a subset of a point light. In contrast to a point light, a

spot light has a direction, in which it spreads its light in the form of a cone. A

simple spot light can be constructed from a point light by limiting the angles at

which light emit from the source.

A more realistic spot lights are characterized by the distribution of light within

the cone. Usually the intensity of light is smaller where is closer to the boundary

of the cone than at the center of it. Consider a point P on a surface that is

illuminated by a spot light. Let L be a vector that points from point P to point

𝑷𝟎where the spot light is located, 𝑳𝒔 be the direction of the spot light. The

intensity of light at point P is computed by

90

𝑰 𝑷 =
𝟏

|𝑷−𝑷𝟎|𝟐
𝑰(𝑷𝟎)𝒄𝒐𝒔𝒆𝜽 (6.2)

where 𝑷𝟎is the position vector of point light, 𝑰(𝑷𝟎) is the intensity of the light

at the light point, and θ is the angle between L and 𝑳𝒔(Figure 6.10). The light‘s

intensity is highest in the center of the cone. It‘s attenuated toward the edges of

the cone by the cosine of the angle θ, raised to the power of the spot exponent e.

Thus, higher spot exponents result in a more focused light source. And e

determines how rapidly the light intensity drops off.

Figure 6.10 Related parameters in spot light

3. Distant light

A distant light, also known as an infinite light, is the light source radiates in a

single direction from infinitely far away. Since the light source is far from the

surface, the light from the light source strikes all objects that are in close

proximity to one another at the same angle. Because the illuminated object is

much smaller compared with its distance to the light source, so the intensity of

light can be considered to be constant, which means the variation of intensity

caused by the distance can be neglected. Therefore distant light is only defined

by a direction. The intensity of light at point P is

𝑰 𝑷 = 𝐼 (6.3)

where I is the intensity of the distant light (Figure 6.11).

91

Figure 6.11 Intensity of distant light can be considered to be constant

6.3.2 Ambient Reflection

Ambient light is the low intensity light that arises from the many reflections of

light on all surfaces in an environment (Cook, 1981; Zhang, 2009). Ambient light

comes from every direction with equal intensity, thus illuminates all objects in

the scene equally from all directions. The ambient reflection can be expressed as:

𝑰 = 𝑰𝒂𝑲𝒂 (6.4)

where I is the intensity of reflected light from a surface; 𝑰𝒂is the intensity of

ambient light, assumed to be constant for all objects in the scene; 𝑲𝒂 is object‘s

ambient reflection coefficient, ranges from 0 to 1. The ambient reflection

coefficient is a material property. Equation (6.4) shows that intensity I is not

affected by the position or orientation of the object in the scene, and independent

of the viewer‘s position.

6.3.3 Diffuse Reflection

A diffuse surface is one for which part of the light incident on a point on the

surface is scattered in random direction (Blinn, 1977; Wolff, 1996, 1998). A

perfectly diffuse surface reflects the light equally in all directions. This is called

diffuse reflection, also known as Lambertian reflection (Angel, 2003), and

because light is reflected uniformly in every direction, the appearance of the

diffuse reflection appears the same to all views (Figure 6.12).

Figure 6.12 Light is reflected uniformly in every direction

The diffuse reflection is modelled by Equation (6.5):

92

𝑰 = 𝑰𝒅𝑲𝒅𝒄𝒐𝒔⁡(𝜃) (6.5)

where I is the intensity of light reflected from a surface; 𝑰𝒅is the intensity of the

light source; 𝑲𝒅 is the object‘s diffuse reflection coefficient, ranges from 0 to 1,

𝜃 is the angle between the surface normal N and the light source direction vector

L (Figure 6.13), θ have to be between 0o and 90o if the light source is to have

any direct effect on the point being shaded.

Figure 6.13 The intensity of diffuse reflection is related to the angle

between the surface normal N and the light source direction vector L

Assuming that the vectors N and L have been normalized, Equation (6.5) can be

rewritten as

𝑰 = 𝑰𝒅𝑲𝒅(𝑵 ∙ 𝑳) (6.6)

The intensity of diffuse reflection depends on θ---the angle between surface

normal and the direction of the light source and independent with the position of

the viewer.

6.3.4 Specular Reflection

If only ambient and diffuse reflections are employed, the final image will be

shaded and will looks like in3D, but all the surfaces will look dull, somewhat like

chalk (Figure 6.14). What are missed are the highlights that reflected from shiny

objects. In addition to ambient and diffuse reflections, surfaces tend to reflect

light strongly along the path given by the reflection of the incident direction

across the surface normal. It results in the appearance of a shiny highlight on a

surface called specular reflection (Boivin, 2001; Seulin, 2002; Comninos, 2005).

The visibility of specular reflection on a surface depends on the position of the

viewer.

93

Figure 6.14 Without specular reflection, surfaces look dull, like chalk

The specular component of the illumination model can be given as:

𝑰 = 𝑾(𝜃)𝑰𝒑𝒄𝒐𝒔
𝑛⁡(𝜙) (6.7)

where I is the intensity of light reflected form a surface; 𝑰𝒑is the intensity of the

light source; n is the specular reflection exponent, the higher the power of n the

smaller and brighter the specular highlight (Figure 6.15).

Figure 6.15 Higher the power of n the smaller and brighter the specular highlight

𝑾(𝜃) is the fraction striking the surface that is specularly reflected, it is often

set as a constant referred to the object‘s specular-reflection coefficient; θ is the

angle between surface normal N and light source direction L; ϕ is the angle

between the viewer V and the reflected ray R (Figure 6.16).

94

Figure 6.16 The intensity of specular reflection is related to the angle

between the viewer V and the reflected ray R

The intensity of specular reflection not only depends on θ- the angle between

surface normal N and light source direction L, but also depends on ϕ- the angle

between the viewer V and the reflected ray R, this means the specular reflection

is affected by the position of viewer.

Light is additive. The reflected model can be achieved by add ambient, diffuse,

and specular light together. So the basic illumination model is:

𝑰 = 𝑰𝒂𝑲𝒂 + 𝑰𝒅𝑲𝒅 𝒄𝒐𝒔 𝜃 + 𝑾(𝜃)𝑰𝒑𝒄𝒐𝒔
𝑛⁡(𝜙) (6.8)

6.4 Discussion of Existing Shading Methods

Illuminating model determines the colour of a point on the surface of an object.

Shading model determines where the lighting model is applied (Schlick, 1994;

Pharr, 2004).A surface can be shaded by calculating the surface normal at each

visible point and applying the desired illuminating model at the point.

Unfortunately, the amount of computation required for this kind of shading

model is too big (Phong, 1975).

The computation can be significantly reduced if the surfaces are approximated

with flat polygons, such as triangle. When a triangle is rendered, information

known at each vertex is interpolated across the face of the triangle, and then the

results can be used to render the triangle. The most common forms of shading

model are: Flat shading, Gouraud shading, and Phong shading.

6.4.1 Flat Shading

Flat shading, also known as constant shading applies an illuminating model once

to determine a single intensity value used to shade an entire polygon, and each

pixel on the polygon is assigned the same intensity (Nicolae, 2004). For a

polygon, the colour is determined only for a single pixel based on the normal

95

vector of the polygon. All other pixels on the polygon are given the same colour

(Figure 6.17).

Flat shading is the simplest shading method, and applies only one illumination

calculation for each primitive, so the performance is more efficiency. It is usually

used for high speed rendering where more advanced shading techniques are too

computationally expensive. The disadvantage of flat shading is that it gives

low-polygon models a faceted look.

Figure 6.17 All pixels on the same polygon are given the same colour in Flat

shading

6.4.2 Gouraud Shading

Gouraud shading is a colour intensity interpolation method (Gouraud, 1971). In

Goraud shading, the illuminating equation is used at each vertex of the polygon.

Given a normal at each vertex of the polygon, the colour at each vertex is

determined from the illuminating equation. The linear interpolation of the colour

at each vertex is performed to generate the colour for each pixel on the edges of

the polygon. Similarly, the linear interpolation is performed across each scan line

to generate colour for each pixel in the polygon (Figure 6.18).

Figure 6.18 Linear interpolation of the colour is performed to generate the colour

in Gouraud shading

96

Gouraud shading is a very simple and effective method of adding a curved feel to

a polygon that would otherwise appear flat. However, for large polygons, it can

miss specular highlights or at least miss the brightest part of the specular

highlight if this falls in the middle of a polygon.

6.4.3 Phong Shading

Phong shading is a normal vector interpolation shading method (Phong, 1975;

Bishop, 1986). In Phong shading, the illuminating equation is used at each pixel

in the polygon. Given a normal at each vertex of the polygon, the linear

interpolation of the normal at each vertex is performed to generate normal for the

pixels on the edges of the polygon. Similarly, linear interpolation is performed

across each scan line to generate normal for each pixel in the polygon. Then the

illuminating equation is used (Figure 6.19).

Figure 6.19 Linear interpolation of the normal is performed to calculate the

colour in Phong shading

Phong shading overcomes some of the disadvantages of Gouraud shading and

specular highlights can be successfully incorporated in the scheme. Phong

Shading interpolation phase is three times as expensive as Gouraud Shading, so it

significantly increase the computation cost. The other disadvantage of Phong

shading is that all the information about the colours and directions of lights needs

to be kept until the final rendering stage so that lighting can be calculated at

every pixel in the final image.

Although Gouraud shading and Phong shading have been around for years, but

due to excessive computation cost, no one has used them in SVG for shading on

3D model. In this PhD project, new Gouraud shading and Phong shading are

proposed and developed. Instead of using linear interpolation, an area

interpolation is used to generate colour or normal for each pixel inside a polygon.

97

The render results show that the new algorithms can be used to create ideal

shading for the 3D model in the SVG GL.

6.5 Flat Shading, New Gouraud Shading and Phong Shading Algorithms in

the SVG GL

6.5.1 Flat Shading in the SVG GL

In the SVG GL, Flat shading uses only one colour per triangle. The illuminating

models discussed in Section 6.3 can be used to calculate the desired colour for a

triangle. Most of the calculations involve the determination of required vectors

and dot products.

1. Normal vector

For smooth surfaces, the normal vector to the surface exists at every point and

gives the local orientation of the surface. The calculation of normal vector

depends on how the surface is represented.

Given 3 non-collinear points-𝐏𝟎, 𝐏𝟏, 𝐏𝟐 , they are sufficient to determine a

triangle or a plane uniquely (Figure 6.20). The normal vector can be found by

using the cross product

𝑵 = 𝑷𝟐 − 𝑷𝟎 × (𝑷𝟏 − 𝑷𝟎) (6.9)

A special care have to be taken about the order of the vectors in the cross product:

reversing the order changes the surface from outward to inward, and that reversal

can affect the lighting calculation.

Figure 6.20 Triangle surface normal

The curved surface can be approximated by triangle mesh, and the normal vector

of each triangle can be calculated by Equation (6.9).

2. Reflection vector

Once the normal at a point on the surface is calculated, the reflection vector can

be computed by using this normal and the direction vector of the light source

(Figure 6.21). Calculating reflection normal R required mirroring light source

98

direction vector L about surface normal N. Assuming L and N are normalized,

the projection of L onto N is 𝑵𝒄𝒐𝒔𝜃, 𝑹 = 𝑵𝒄𝒐𝒔𝜃 + 𝑺, where 𝑺 = 𝑵𝒄𝒐𝒔𝜃 − 𝑳.

Therefore, 𝑹 = 𝟐𝑵𝒄𝒐𝒔𝜃 − 𝑳, substitution 𝒄𝒐𝒔𝜃 = 𝑵 ·𝑳 yields

𝑹 = 𝟐𝑵(𝑵 ·𝑳) – 𝑳 (6.10)

If the light source is at infinity, 𝑵 ·𝑳 is constant for a given polygon. For

curved surfaces or for a light source not at infinity, 𝑵 ·𝑳 varies across the

surface.

Figure 6.21 Calculation of reflection vector

Once the related vectors are calculated, the triangle colour can be decided by

using the following Equation.

𝑰 = 𝑰𝒂𝑲𝒂 + 𝑰𝒅𝑲𝒅 𝒄𝒐𝒔 𝜃 (6.11)

As mentioned in Chapter 5, SVG elements can be painted with uniform single

colour, so this colour can be used as the filling colour for the triangle. Figure

6.22 shows a 3D box rendered by using Flat shading. Since each side of the box

has the same normal vector, so it is rendered with the same colour.

Figure 6.22 Flat shading 3D Box

Flat shading is easy to be implemented and often used for high speed render

where advanced shading techniques are too computationally expensive. Since

99

Flat shading only applies one colour per triangle, the render result is not very

realistic, and colour contrast artifacts between polygons are clearly visible,

resulting in ‗facetted objects‘. For more smooth transitions between triangles,

and more realistic rendering, more advanced shading methods---Gouraud

shading and Phong shading need to be applied.

6.5.2 A New Gouraud Shading Algorithm in the SVG GL

Gouraud shading is a colour intensity interpolation method based on the

illumination of vertex. These colour values are first calculated for each vertex of

a triangle, and then interpolation is done between the three vertexes to obtain a

gradient.

In the SVG GL, a new Gouraud shading algorithm is proposed and developed to

calculate the colour intensity of any point inside a triangle. Instead of using linear

interpolation, an area interpolation is used to generate colour for each pixel in the

polygon.

Gouraud shading requires that the normal be known for each vertex of the

triangle. Then the colour intensity of each vertex will be computed by using the

vertex normal with any desired illumination model. Finally each triangle is

shaded by area interpolation on three vertex intensities.

𝑰 = α𝑰𝟎 + β𝑰𝟏 + γ𝑰𝟐 (6.12)

where 𝑰𝟎, 𝑰𝟏, 𝑰𝟐 are colour intensity of each triangle vertex, I is the colour

intensity of any point P inside the triangle.

Figure 6.23 Intensity interpolation based on triangle area

The interpolation parameters α, β, and γ can be calculated in terms of the area

interpolation. Figure 6.23 shows a triangle, a point P inside the triangle divides

the triangles into three subtriangles. The areas of these three small triangles

100

are S0, S1, and S2, and so the area of the entire triangle is equal to S0+S1+ S2.

Parameters α, β, and γ are proportional to the three areas S0, S1, and S2.

 α =
S0

 S0+S1+ S2
, β =

S1

 S0+S1+ S2
, γ =

S2

 S0+S1+ S20
 (6.13)

The colour intesity of the point P inside triangle can be calculated by combining

Equation (6.12) and Equation (6.13) together. Then the intensity can be used to

fill the triangle. Since different point inside the triangle has different intensity, so

the triangle can not be filled with a sigle colour.

The area S0 can be calculated by:

S0 = d d − a d − b (d − c) (6.14)

where

d =
a+b+c

2
 (6.15)

and a = 𝑷 − 𝑨 , b = 𝑷 − 𝑩 , c = 𝑷 − 𝑪 .

The area of S1, S2 can be calculated by the similar equation.

This new Gouraud shading algorithm defines an SVG pattern for each triangle,

and then calculates the colour of each vertex of the triangle by applying the

vertex‘s normal to Equation (6.11), and then the colour of the point inside

triangle will be calculated by Equation (6.12), finally the colour will be used to

fill the pattern, and the pattern is used to fill the triangle to achieve the Gouraud

shading.

Figure 6.24 Gouraud shading 3D Box

Figure 6.24 shows a 3D box rendered by using the new Gouraud shading

algorithm. By comparing Figure 6.22 and Figure 6.24, it shows that new

Gouraud shading algorithm produces more smooth and realistic rendering result

than Flat shading. Each triangle is shaded by gradient colour instead of a single

101

colour. Since the colour of each point inside the triangle need to be interpolated

by Equation (6.12), and a pattern need to be generated for each triangle, so the

new Gouraud shading algorithm needs more computational time, and the final

SVG file is bigger than using Flat shading.

Table 6.1 Gouraud shading render rate for linear interpolation and area

interpolation

Web browser IE Firefox Chrome Safari Opera

Linear Interpolation Render

Rate (seconds/frame)

0.27 0.30 0.25 0.27 0.31

Area Interpolation Render

Rate (seconds/frame)

0.11 0.12 0.11 0.12 0.12

The average number of second per frame which was achieved with linear

interpolation and area interpolation on different web browser is shown in Table

6.1. As can be seen in the table, the render time required for area interpolation is

less than linear interpolation, and can improve the performance of the Gouraud

shading algorithm.

6.5.3 A New Phong Shading Algorithm in the SVG GL

Phong shading is a normal vector interpolation shading method. The normal

vectors are first calculated for each vertex of a triangle, and then interpolation is

done between the vertexes to obtain a normal vector for a point inside the

triangle. Finally each triangle is shaded with colour intensity of the point

computed by using the normal with any desired illumination model.

When specular lights are involved, Phong shading produces more realistic result

than Gouraud shading, since the specular highlights are completely missed or

distorted by Gouraud shading for polygons whose areas are greater than the

highlight areas. In spite of this, most of graphics application softwares do not

perform Phong shading due to its computational expense. The cost comes from

the interpolation of normal and the evaluation of an illuminating model at every

pixel. Although Phong shading is computationally expensive, it is still necessary

to implement it in the SVG GL. Especially for applications that have a high

rendering quality requirement, but relative low rendering speed requirement.

In the SVG GL graphics, new Phong shading is proposed and developed to

calculate the normal of any point inside a triangle. Instead of using linear

102

interpolation, an area interpolation is used to calculate normal for each pixel in

the polygon.

Phong shading requires that the normal be known for each vertex of the triangle.

Then the normal vector of a point P inside the triangle can be interpolation on

three vertex intensities.

𝑵 = α𝑵𝟎 + β𝑵𝟏 + γ𝑵𝟐 (6.16)

where 𝑵𝟎, 𝑵𝟏, 𝑵𝟐 are normal vectors of each triangle vertex, N is the normal

vector of point P.

Figure 6.25 shows a triangle, a point P inside the triangle divides the triangles

into three subtriangles. The areas of these three small triangles are S0, S1, and S2,

and so the area of the entire triangle is equal to S0+S1+ S2. So parameters α, β,

and γ can be calculated by Equation (6.13).

Figure 6.25 Normal vector interpolation based on triangle area

In the SVG GL graphics, the new Phong shading algorithm defines an SVG

pattern for each triangle, and then interpolate the normal of each point P inside

the triangle by Equation (6.16), and then the colour of the point will be calculated

by applying the normal vector to Equation (6.8), finally the colour will be used to

fill the pattern, and the pattern is used to fill the triangle to achieve the Phong

shading.

Figure 6.26 shows a box is rendered by the new Phong shading algorithm

introduced in this section. A specular highlight is added to achieve more realistic

results. Although this method can be used to achieve Phong shading, it is obvious

that it needs more computational time, but the final SVG file size is similar as the

Gouraud shading.

103

Figure 6.26 Phong shading 3D Box

Table 6.2 Phong shading render rate for linear interpolation and area

interpolation

Web browser IE Firefox Chrome Safari Opera

Linear Interpolation Render

rate (seconds/frame)

 0.51 0.50 0.55 0.52 0.50

AreaLinear Interpolation

Render rate (seconds/frame)

 0.15 0.16 0.22 0.17 0.19

The average number of second per frame which was achieved with linear

interpolation and area interpolation on different web browser is shown in Table

6.2. As can be seen in the table, the render time required for area interpolation is

far less than linear interpolation, and can significantly improve the performance

of the Gouraud shading algorithm.

6.6 Summary

In this chapter, SVG filter is discussed first. Although filter effect in SVG can be

used to generate appealing image and sometimes they can add some 3D effects

on the final image, they can only be used for 2D image processing. They cannot

be used to add lighting effect on 3D object, especially when a 3D object is

transformed in 3D space, it is impossible to use filter to create physical correct

shading result.

Then different illuminating models and shading methods are introduced in this

chapter. Although Gouraud shading and Phong shading have been around for

years, but due to excessive computation cost, no one has used them in SVG for

shading on 3D model.

In this chapter, new Gouraud shading and Phong shading are proposed and

developed. Instead of using linear interpolation, an area interpolation is used to

generate colour or normal for each pixel inside a polygon. The render results

104

show that the new algorithms can be used to create ideal shading for the 3D

model in the SVG GL.

105

Chapter 7 New Algorithms for Texture Mapping in the SVG GL

7.1 Introduction

As detail of 3D model becomes finer and more intricate, 3D modelling with

polygons or other geometric primitives becomes less practical. An alternative is

to map an image, either digitized or synthesized, onto a surface. This approach is

known as texture mapping. Texture mapping is one of the most successful

techniques in high quality image synthesis (Carey, 1985; Heckbert, 1986;

Haeberli, 1993). Its use can enhance the visual realism while only a relatively

small increase in computation.

Textures can be one, two, or three dimensional. For example, a 1D texture might

be used to create a pattern for colouring a curve (Lefebvre, 2003). A 2D texture

is mapped to the surface of a shape or polygon. This process is akin to applying

patterned paper to a plain white box. It can be used to render complicated shapes

like trees, clouds, or people, with a single polygon (Elinas, 2000; Harris, 2003).

A 3D texture, also called solid texture, is basically the equivalent of carving the

object out of a block of material (Dischler, 2001; Pietroni, 2007). It places the

texture onto the object coherently, not producing discontinuities of texture where

two faces meet. 3D texture can be used to simulate the wood grain on a cube to

avoid discontinuities of grain along the edges of the cube (Heeger, 1995).

Since the use of surfaces is so important in computer graphics, mapping 2D

texture to surface is by far the most common use of texture mapping. The new

proposed the SVG GL is a polygon based 3D modelling method; the 3D object

created by the SVG GL is approximated by multiple triangles, so only 2D texture

mapping that will be implemented in the SVG GL.

There are lots of different textures mapping algorithms in 3D computer graphics.

But they are all pixel-based, that means when a primitive is rendered, texture

parameters for each image pixel are determined, and used to address the

appropriate texture pixels. In the SVG GL, the elementary primitive is triangle.

So the existing texture mapping algorithm cannot be used in the SVG GL. New

texture mapping algorithms have to be proposed and developed.

7.2 Texture Mapping in SVG

SVG is a language for describing 2D graphics in XML. SVG pattern is used to

fill a shape with a pattern made up from images. This pattern can be made up

from SVG images (shapes) or from bitmap images.

106

A pattern is used to fill or stroke an object using a pre-defined graphic object that

can be replicated at fixed intervals in x and y to cover the areas to be painted.

Patterns are defined using a ‗pattern‘ element and then referenced by properties

‗fill‘ and ‗stroke‘ on a given graphics element to indicate that the given element

shall be filled or stroked with the referenced pattern.

Attributes ‗x‘, ‗y‘, ‗width’, ‗height‘ and ‗patternUnits‘ define a reference

rectangle somewhere on the infinite canvas. The reference rectangle has its

top/left at (x, y) and its bottom/right at (x + width, y + height).

Here is a simple SVG fill pattern example:

The result is shown in Figure 7.1.

Figure 7.1 SVG pattern

Although an SVG pattern can be use to display a 2D image, to use it to wrap 2D

texture on 3D object, it still has problems. First, not all 3D objects surfaces are

flat, so using SVG pattern directly on curved 3D surface will cause unexpected

distort (Figure 7.2); second, when 3D objects are transformed in 3D space, using

the SVG pattern directly cannot create transformed texture accordingly, so the

final texture mapping is incorrect (Figure 7.3). In order to use SVG pattern for

wrapping texture on 3D objects in the SVG GL, there is still more works to be

<defs>

 <pattern id="pattern1" x="10" y="10" width="20" height="20"

 patternUnits="userSpaceOnUse" >

 <circle cx="10" cy="10" r="10" style="stroke: none; fill: #0000ff" />

 </pattern>

</defs>

<rect x="10" y="10" width="100" height="100" style="stroke:

#000000; fill: url(#pattern1);" />

107

done, new algorithms have to be proposed. In this PhD project, the pattern based

image transformed texture mapping algorithms for different 3D objects in the

SVG GL are proposed, and discussed from Section 7.5 to Section 7.12.

Figure 7.2 Compare using SVG pattern directly on an 3D cone with the correct

texture mapping on the 3D cone

Figure 7.3 Compare using SVG pattern directly on a rotated plane with the

correct texture mapping on the rotated plane.

108

7.3 Texture Mapping

Before discussing texture mapping, there are 3 coordinate spaces need to be

defined. Screen space, is a 2D space where the final image is displayed; object

space, is a 3D space where the objects upon which the textures will be mapped is

defined; texture space, is a 2D space which the position of the texture is located.

In computer graphics, texture mapping can be referred as a transformation from

texture space to screen space (Oliveira, 2000). This transformation can be split

into two phase (Figure 7.4). The first is the surface parameterization that

establishes the one-to-one correspondence of points from texture space to object

space, and then followed by the standard geometrical and projection

transformations that affect the mapping from object space to screen space.

Figure 7.4 Texture space to screen space transformation

The mapping between texture space and screen space has to be evaluated for

each pixel to be shaded. Generally there are two major types of implementations:

forward texture mapping and backward texture mapping.

Forward texture mapping, also called texture order, scans the data in texture

space and maps from texture space to screen space (Chen, 1999; Deng, 2002). In

forward texture mapping, each coordinate pair (u, v) on texture space is mapped

to point (x, y) on screen space. Firstly, the coordinate (u, v) will be mapped to a

point on a 3D surface in object space by parameterization; then the point on 3D

surface will be projected to 2D screen. So coordinate (u, v) on texture space is

mapped to point (x, y) on screen space via a pair of function:

𝑥 = 𝑿 𝑢, 𝑣
𝑦 = 𝒀(𝑢, 𝑣)

 (7.1)

Forward texture mapping is performed with only one operation per pixel in the

texture space. The application of this forward mapping algorithm to a texture will

result in the kinds of situation shown in Figure 7.5. The output image on the

screen space will be left with ‗holes‘ (pixels with unknown values) where the

109

output is scaled up compared with the input texture, and multiple pixel overlaps

where the output is scaled down with respect to the input.

Figure 7.5 Forward mapping leaves holes and overlaps

One solution is to add mapped samples into a screen space accumulator buffer

with a filter function. Forward texture mapping is preferable only when the

texture-to –screen mapping is difficult to invert, or when the texture image have

to be read sequentially.

Backward texture mapping, also called screen order or inverse mapping, it scans

the pixels in screen space and uses the mapping from screen space to texture

space (Wei, 2008; Chen, 2010). The problems with the forward texture mapping

can be solved by backward texture mapping. Instead of sending each input pixel

to an output pixel, backward mapping looks at each output pixel and determine

what input pixels map to it. In backward mapping, the coordinate (x, y) on 2D

screen will be map to a point on a 3D surface in object space firstly; then the

point on 3D surface will be mapped to 2D texture by parameterization. By

inverting the forward mapping function X(u, v), Y(u, v) , the backward mapping

function can be defined as:

𝑢 = 𝑼(𝑿(𝑢, 𝑣), 𝒀(𝑢, 𝑣))
𝑣 = 𝑽(𝑿(𝑢, 𝑣), 𝒀(𝑢, 𝑣))

 (7.2)

Each pixel in screen space is inverse-transformed to texture space and the textel

value there is read. Backward texture mapping is preferred when the screen has

to be written sequentially, the mapping is invertible, and the texture is random

access.

As mentioned in previous section, texture mapping consists of a transformation

of 2D texture space to a 3D object surface via parameterization, and then a

projection of that surface onto 2D screen space. 2D mappings are central to each

of these transformations.

110

Conceptually, a small area of the texture maps to the area of the surface of a 3D

object, corresponding to pixels in the final image. Colour values can be used,

either to modify the colour of the surface that might have been determined by a

lighting model, or to assign a colour to the surface based on only the texture

value.

On closer examination of the texture mapping procedure, there are still a number

of difficulties.

1. Parameterization, the map from texture space to object space has to be

determined. A texture is usually defined over a rectangle region in 2D texture

space, but most surfaces in 3D object space are not flat. The mapping from this

rectangle to an arbitrary region in 3D space may be a complex function or may

have undesirable properties; there is often no single best method of assigning

texture space to object space.

2. Although SVG supports 2D raster images, texture mapping in the SVG GL

can be very tricky. 2D image can be displayed by using <Pattern> elements in

SVG. But originally, they can only be used with 2D shape, in order to use them

as texture for 3D objects; the 2 problems mentioned in section 7.2 have to be

solved

7.4 Texture Mapping in the SVG GL

Due to the problem with existing SVG pattern for texture mapping in the SVG

GL, and the traditional texture mapping also cannot be applied to the SVG GL,

the new texture mapping algorithms are proposed and developed in this project.

The new algorithms are based on SVG pattern and transformation of the 2D

texture according to the geometric transformation of 3D model. The procedure of

this algorithm is shown in Figure 7.6. There are four steps:

Step1: Parameterization, mapping the 2D texture to 3D model by the

parameterization equation.

Step 2: Transformation, transforming the 2D texture according to the geometric

transformation of the 3D model.

Step 3: SVG pattern creation, generating SVG pattern based on the transformed

texture.

Step 4: SVG pattern application, applying the SVG pattern onto the 3D model.

111

Figure 7.6 The procedure of the pattern based image transformed texture

mapping algorithms

The new texture mapping algorithm is a mapping that transform a 2D texture in

texture space into a 2D screen space. It maps a source point (u, v) in texture

space to a destination point (x, y) in screen space according to the geometrical

and projection transformation of the 3D object.

The elementary primitive in the SVG GL graphics is triangle, so the new texture

mapping algorithm with a triangle will be proposed and developed firstly; then

texture mapping algorithm for different 3D models in the SVG GL will be

proposed and developed from Section 7.6 to Section 7.12, namely: plane,

cylinder, sphere, cone, and complex 3D models in the SVG GL.

7.5 A New Texture Mapping Algorithm for a Triangle in the SVG GL

A new texture mapping algorithm for a triangle is proposed and developed in this

section. This new algorithm is based on the algorithm proposed in Section 7.4.

The parameterization equation from a 2D texture to a triangle is used at the first

step.

A triangle can be defined by three non-collinear point A (𝑥0, 𝑦0, 𝑧0), B

(𝑥1, 𝑦1, 𝑧1), and C (𝑥2 , 𝑦2, 𝑧2). The corresponding points in 2D texture space are

D (𝑢0 , 𝑣0), E (𝑢1 , 𝑣1), and F (𝑢2 , 𝑣2) (Figure 7.7). The complete transformation

from texture space to object space is:

112

𝑥 = 𝑎 ∙ 𝑢 + 𝑏 ∙ 𝑣 + 𝑐
𝑦 = 𝑑 ∙ 𝑢 + 𝑒 ∙ 𝑣 + 𝑓
𝑧 = 𝑔 ∙ 𝑢 + 𝑕 ∙ 𝑣 + 𝑖

 (7.3)

The unknown coefficients can be derived from the solution of a linear equations

developed by putting the coordinates of points A, B, C, D, E, and F into this

Equation. And the results are:

𝑎
𝑏
𝑐
 =

𝑢0 𝑣0 1
𝑢1 𝑣1 1
𝑢2 𝑣2 1

−1

𝑥𝐴
𝑥𝐵
𝑥𝐶
 (7.4)

𝑑
𝑒
𝑓
 =

𝑢0 𝑣0 1
𝑢1 𝑣1 1
𝑢2 𝑣2 1

−1

𝑦𝐴
𝑦𝐵
𝑦𝐶
 (7.5)

𝑔
𝑕
𝑖
 =

𝑢0 𝑣0 1
𝑢1 𝑣1 1
𝑢2 𝑣2 1

−1

𝑧𝐴
𝑧𝐵
𝑧𝐶
 (7.6)

Then the intermediate data will be transformed according to the geometrical and

projection transformation of the plane by the following Equation.

𝑷′ = 𝑴𝒑𝑴𝑮𝑷 (7.7)

where P is the intermediate data generated from the parameterization, 𝑷′ is the

transformed intermediate data. 𝑴𝑮 and 𝑴𝒑 are the geometrical transformation

and projection matrices according to the transformation and projection of the

triangle. After the original texture is transformed according to Equation (7.7), the

SVG pattern is generated from the transformed texture. Finally the texture is

wrapped to the triangle by applying the pattern to the triangle.

Figure 7.7 Parameterization of a triangle

113

The texture mapping algorithm for a triangle can be described in Figure 7.8.

1. A triangle is defined in object space with coordinates (x, y, z), and the

corresponding texture is defined in texture space with coordinates (u, v). The

texture is parameterized by Equation (7.3) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

projection transformation of the triangle by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the triangle by adding the pattern to the

triangle.

Figure 7.8 New texture mapping algorithm for a triangle in the SVG GL

Figure 7.9 (a) shows the texture is wrapped on a triangle by using the new texture

mapping algorithm. The triangle is rotated around x-axis, y-axis, and z-axis

respectively. Figure 7.9 (b) shows the texture by applying SVG pattern directly

(without transform according to the triangle) on the triangle, and this triangle is

also rotated around x-axis, y-axis, and z-axis respectively.

114

Figure 7.9 Compare texture mapping create by new algorithm for a triangle and

by using SVG pattern directly

By comparing Figure 7.9 (a) and Figure 7.9 (b), it shows applying SVG pattern

directly on the triangle will create distort when the triangle is transformed in 3D

space. But the new texture mapping algorithm for a triangle can generate realistic

texture for the triangle even the triangle is transformed in 3D space.

7.6 A New Texture Mapping Algorithm for a Plane in the SVG GL

A new texture mapping algorithm for a plane is proposed and developed in this

section. This new algorithm is based on the algorithm proposed in Section 7.4.

The parameterization equation from a 2D texture to a plane will be used at the

first step.

The parameterization of a plane can be derived from the parameterization of

triangle, by subdividing the plane into 2 triangles and generating a

parameterization for the separate triangles by Equation (7.3).

The new texture mapping algorithm for a plane can be described in Figure 7.10.

1. A plane is defined in object space with coordinates (x, y, z), and the

corresponding texture is defined in texture space with coordinates (u, v). The

plane is divided to 2 triangles, and then the texture is parameterized by Equation

(7.3) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

115

projection transformation of the plane by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the plane by adding the pattern to the

plane.

Figure 7.10 New texture mapping algorithm for a plane in the SVG GL

Figure 7.11(a) shows the texture is wrapped on a plane by using the new texture

mapping algorithm. The plane is rotated around x-axis, y-axis, and z-axis

respectively. Figure 7.11(b) shows the texture applying SVG pattern directly

(without transform according to the plane) on the plane, and this plane is also

rotated around x-axis, y-axis, and z-axis respectively.

116

Figure 7.11 Compare texture mapping create by the new algorithm for a plane

and by using SVG pattern directly

By comparing Figure 7.11(a) and Figure 7.11(b), it shows applying SVG pattern

directly on the plane will create distort when the plane is transformed in 3D

space. But the new texture mapping algorithm for a plane can generate realistic

texture for the plane even the plane is transformed in 3D space.

7.7 A New Texture Mapping Algorithm for a Sphere in the SVG GL

A new texture mapping algorithm for a sphere is proposed and developed in this

section. This new algorithm is based on the algorithm proposed in Section 7.4.

The parameterization equation from a 2D texture to a sphere will be used at the

first step.

The implicit definition of a sphere around point (𝑥0 , 𝑦0, 𝑧0) with radius r is:

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝑟2 (7.8)

An appropriate parameterization can be derived using a spherical coordinates:

𝑥 = 𝑥0 + 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑦 = 𝑦0 + 𝑟𝑐𝑜𝑠𝜑
𝑧 = 𝑧0 + 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

 (7.9)

117

The spherical coordinate 𝜃 represents the heading angle that covers the range

 0, 360𝑜 , and 𝜑 represents the azimuth angle that covers the range −90𝑜 , 90𝑜 ,

thus, the appropriate choice for assigning texture map coordinates would be

𝑢 =

𝜃

360

𝑣 =
2𝜑+180

360

 (7.10)

The complete transformation from texture space to object space is:

𝑥 𝑢, 𝑣 = 𝑥0 + 𝑟 ∙ 𝑐𝑜𝑠⁡(360 ∙ 𝑢) ∙ 𝑠𝑖𝑛⁡[180 ∙ 𝑣 − 0.5]

𝑦 𝑢, 𝑣 = 𝑦0 + 𝑟 ∙ 𝑐𝑜 𝑠 180 ∙ 𝑣 − 0.5

𝑧 𝑢, 𝑣 = 𝑧0 + 𝑟 ∙ 𝑠𝑖𝑛 360 ∙ 𝑢 ∙ 𝑠𝑖𝑛⁡[180 ∙ 𝑣 − 0.5]

 (7.11)

The new texture mapping algorithm for a sphere can be described in Figure 7.12.

1. A sphere is defined in object space with coordinates (x, y, z), and the

corresponding texture is defined in texture space with coordinates (u, v). The

texture is parameterized by Equation (7.11) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

projection transformation of the sphere by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the sphere by adding the pattern to the

sphere.

Figure 7.12 New texture mapping algorithm for a sphere in the SVG GL

The proposed algorithm is used to generate texture for a sphere, and the result is

compared with the texture mapping created by using SVG pattern directly

118

(without transform according to the sphere). Figure 7.13(a) shows the texture is

wrapped onto a sphere by using the new texture mapping algorithm for a sphere.

The sphere is rotated around x-axis, y-axis, and z-axis respectively. Figure 7.13(b)

shows the texture applying SVG pattern directly on the sphere, and this sphere is

also rotated around x-axis, y-axis, and z-axis respectively.

Figure 7.13 Compare texture mapping create by new algorithm for a sphere and

by using SVG pattern directly

By comparing Figure 7.13(a) and Figure 7.13(b), it shows applying SVG pattern

directly on the sphere will create distort when the sphere is transformed in 3D

space. But the new texture mapping algorithm for a sphere can generate realistic

texture for the sphere even the sphere is transformed in 3D space.

7.8 A New Texture Mapping Algorithm for a Cylinder in the SVG GL

A new texture mapping algorithm for a cylinder is proposed and developed in

this section. This new algorithm is based on the algorithm proposed in Section

7.4. The parameterization equation from a 2D texture to a cylinder will be used at

the first step.

A cylinder of height H centered at the origin and located around the y axis has

the following implicit Equation:

𝑥2 + 𝑧2 = 𝑟2, 0 ≤ 𝑦 ≤ 𝐻 (7.12)

119

The same cylinder can be conveniently expressed by cylindrical coordinates

(𝜃 ∈ 0, 360o , 𝑕 ∈ 0, H):

𝑥 𝜃, 𝑕 = 𝑟 ∙ 𝑐𝑜𝑠𝜃
𝑦 𝜃, 𝑕 = 𝑕

𝑧 𝜃, 𝑕 = 𝑟 ∙ 𝑠𝑖𝑛𝜃

 (7.13)

One of the most natural choices for assigning texture space to the cylinder would

be to use

𝑢 =

𝜃

360

𝑣 =
𝑕

𝐻

 (7.14)

This lets u vary linearly from 0 to 1 as θ varies from 0 to 360o and lets v vary

from 0 to 1 as h varies from 0 to H. The complete transformation from texture

space to object space is:

𝑥 𝑢, 𝑣 = 𝑟 ∙ 𝑐𝑜𝑠⁡(360 ∙ 𝑢)

𝑦 𝑢, 𝑣 = 𝐻𝑣

𝑧 𝑢, 𝑣 = 𝑟 ∙ 𝑠𝑖𝑛 360 ∙ 𝑢

 (7.15)

This has the effects of pasting the texture onto the cylinder without any distortion

beyond being scaled to cover the cylinder; the right and left boundaries meet at

the front of the cylinder along the line where x=0 and z=r.

The new texture mapping algorithm for a cylinder can be described in Figure

7.14.

1. A cylinder is defined in object space with coordinates (x, y, z), and the

corresponding texture is defined in texture space with coordinates (u, v). The

texture is parameterized by Equation (7.15) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

projection transformation of the cylinder by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the cylinder by adding the pattern to the

cylinder.

120

Figure 7.14 New texture mapping method for a cylinder in the SVG GL

The proposed algorithm is used to generate texture for a cylinder, and the result

is compared with the texture mapping created by using SVG pattern directly

(without transform according to the cylinder). Figure 7.15(a) shows the texture is

wrapped on a cylinder by using the new texture mapping algorithm. The cylinder

is rotated around x-axis, y-axis, and z-axis respectively. Figure 7.15(b) shows the

texture applying SVG pattern directly on the cylinder, and this cylinder is also

rotated around x-axis, y-axis, and z-axis respectively.

Figure 7.15 Compare texture mapping create by new algorithm for a cylinder and

by using SVG pattern directly

121

By comparing the Figure 7.15(a) and Figure 7.15(b), it shows applying SVG

pattern directly on the cylinder will create distort when the cylinder is

transformed in 3D space. But the new texture mapping algorithm for a cylinder

can generate realistic texture for the cylinder even the cylinder is transformed in

3D space.

7.9 A New Texture Mapping Algorithm for a Cone in the SVG GL

A new texture mapping algorithm for a cone is proposed and developed in this

section. This new algorithm is based on the algorithm proposed in Section 7.4.

The parameterization equation from a 2D texture to a cone will be used at the

first step.

A cone of height H centered at the origin and located around the y axis has the

following parametric equation of a cone can be defined as

𝑥 =
𝐻−𝑕

𝐻
𝑟𝑐𝑜𝑠𝜃

𝑦 = 𝑕 0 ≤ 𝑕 ≤ 𝐻

𝑧 =
𝐻−𝑕

𝐻
𝑟𝑠𝑖𝑛𝜃 0 ≤ 𝜃 ≤ 2𝜋

 (7.16)

One of the most natural choices for assigning texture space to the cylinder would

be to use

𝑢 =

𝜃

360

𝑣 =
𝑕

𝐻

 (7.17)

This lets u vary linearly from 0 to 1 as θ varies from 0 to 360o and lets v vary

from 0 to 1 as h varies from 0 to H. The complete transformation from texture

space to object space is:

𝑥 =
𝐻−𝑕

𝐻
𝑟𝑐𝑜𝑠(360 ∙ 𝑢)

𝑦 = 𝐻𝑣

𝑧 =
𝐻−𝐻𝑣

𝐻
𝑟𝑠𝑖𝑛(360 ∙ 𝑢)

 (7.18)

This has the effects of pasting the texture onto the cone without any distortion

beyond being scaled to cover the cone; the right and left boundaries meet at the

front of the cylinder along the line where x=0 and z=r.

The new texture mapping algorithm for a cone can be described in Figure 7.16.

1. A cone is defined in object space with coordinates (x, y, z), and the

corresponding texture is defined in texture space with coordinates (u, v). The

122

texture is parameterized by Equation (7.18) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

projection transformation of the cone by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the cone by adding the pattern to the

cone.

Figure 7.16 New texture mapping method for a cone in the SVG GL

The proposed algorithm is used to generate texture for a cone, and the result is

compared with the texture mapping created by using SVG pattern directly

(without transform according to the cone). Figure 7.17(a) shows the texture is

wrapped on a cone by using the new texture mapping algorithm for a cone. The

cone is rotated around x-axis, y-axis, and z-axis respectively. Figure 7.17(b)

shows the texture by applying SVG pattern directly on the cone, and this cone is

also rotated around x-axis, y-axis, and z-axis respectively.

123

Figure 7.17 Compare texture mapping create by new algorithm for a cone and by

using SVG pattern directly

By comparing Figure 7.17(a) and Figure 7.17(b), it shows applying SVG pattern

directly on the cone will create distort when the cone is transformed in 3D space.

But the new texture mapping algorithm for a cone can generate realistic texture

for the cone even the cone is transformed in 3D space.

7.10 A New Texture Mapping Algorithm for a Bezier Surface in the SVG

GL

A new texture mapping algorithm for a Bezier surface is proposed and developed

in this section. This new algorithm is based on the algorithm proposed in Section

7.4. The parameterization equation from a 2D texture to a Bezier surface will be

used at the first step.

A Bezier surface is defined by a set of control points (Farin, 1996). The Equation

of a Bezier surface defined by m+1 rows and n+1 columns of control points is:

 𝑝 𝑠, 𝑡 = 𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0 𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗 (7.19)

The parametric Equation of a Bezier surface can be defined as

124

𝑥 = 𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0 𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗

𝑦 = 𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0 𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗

𝑧 = 𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0 𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗

 (7.20)

One of the most natural choices for assigning texture space to the Bezier surface

would be to use

𝑢 = 𝑠
𝑣 = 𝑡

 (7.21)

The complete transformation from texture space to object space is:

𝑥 = 𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0 𝑢 𝐵𝑛,𝑗 (𝑣)𝑝𝑖𝑗

𝑦 = 𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0 𝑢 𝐵𝑛,𝑗 (𝑣)𝑝𝑖𝑗

𝑧 = 𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0 𝑢 𝐵𝑛,𝑗 (𝑣)𝑝𝑖𝑗

 (7.22)

This has the effects of pasting the texture onto the Bezier surface without any

distortion beyond being scaled to cover the Bezier surface.

The new texture mapping algorithm for a Bezier surface can be described in

Figure 7.18.

1. A Bezier surface is defined in object space with coordinates (x, y, z), and the

corresponding texture is defined in texture space with coordinates (u, v). The

texture is parameterized by Equation (7.22) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

projection transformation of the Bezier surface by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the Bezier surface by adding the pattern

to the Bezier surface.

125

Figure 7.18 New texture mapping method for a Bezier surface in the SVG GL

The proposed algorithm is used to generate texture for a Bezier surface, and the

result is compared with the texture mapping created by using SVG pattern

directly (without transform according to the Bezier surface). Figure 7.19(a)

shows the texture is wrapped on a Bezier surface by using the new texture

mapping algorithm. The Bezier surface is rotated around x-axis, y-axis, and

z-axis respectively. Figure 7.19(b) shows the texture by applying SVG pattern

directly on the Bezier surface, and this Bezier surface is also rotated around

x-axis, y-axis, and z-axis respectively.

126

Figure 7.19 Compare texture mapping create by new algorithm for a Bezier

surface and by using SVG pattern directly

By comparing Figure 7.19(a) and Figure 7.19(b), it shows applying SVG pattern

directly on the Bezier surface will create distort when the cone is transformed in

3D space. But the new texture mapping algorithm for a Bezier surface can

generate realistic texture for the Bezier surface even the Bezier surface is

transformed in 3D space.

7.11 A New Texture Mapping Algorithm for an Extrusion in the SVG GL

A new texture mapping algorithm for an extrusion surface is proposed and

developed in this section. This new algorithm is based on the algorithm proposed

in Section 7.4. The parameterization equation from a 2D texture to an extrusion

surface will be used at the first step.

If a space curve is expressed by C(s), where 𝟎 ≤ 𝒔 ≤ 𝟏, the transformation

matrix is E(t), then the surface of extrusion has the form:

C(s, t) = C(s)E(t) (7.23)

The parametric Equation of an extrusion surface can be defined as

𝑥 = 𝐂𝐱(𝑠)𝐄𝐱(𝑡)
𝑦 = 𝐂𝐲(𝑠)𝐄𝐲(𝑡)

𝑧 = 𝐂𝐳(𝑠)𝐄𝐳(𝑡)

 (7.24)

One of the most natural choices for assigning a point (u, v) in texture space to a

point (s, t) on the extrusion surface would be to use

𝑢 = 𝑠
𝑣 = 𝑡

 (7.25)

The complete transformation from texture space to object space is:

𝑥 = 𝐂𝐱(𝑢)𝐄𝐱(𝑣)
𝑦 = 𝐂𝐲(𝑢)𝐄𝐲(𝑣)

𝑧 = 𝐂𝐳(𝑢)𝐄𝐳(𝑣)

 (7.26)

This has the effects of pasting the texture onto the extrusion surface without any

distortion to cover the extrusion surface.

The new texture mapping algorithm for an extrusion surface can be described in

Figure 7.20.

1. An extrusion surface is defined in object space with coordinates (x, y, z), and

the corresponding texture is defined in texture space with coordinates (u, v). The

127

texture is parameterized by Equation (7.26) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

projection transformation of the extrusion surface by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the extrusion surface by adding the

pattern to the extrusion surface.

Figure 7.20 New texture mapping method for an extrusion surface in the SVG GL

The proposed algorithm is used to generate texture for an extrusion surface, and

the result is compared with the texture mapping created by using SVG pattern

directly (without transform according to the extrusion surface). Figure 7.21(a)

shows the texture is wrapped on an extrusion surface by using the new algorithm.

The extrusion surface is rotated around x-axis, y-axis, and z-axis respectively.

Figure 7.21(b) shows the texture by applying SVG pattern directly on the

extrusion surface, and this extrusion surface is also rotated around x-axis, y-axis,

and z-axis respectively.

128

Figure 7.21 Compare texture mapping create by new algorithm for an extrusion

surface and by using SVG pattern directly

By comparing Figure 7.21(a) and Figure 7.21(b), it shows applying SVG pattern

directly on the extrusion surface will create distort when the cone is transformed

in 3D space. But the new texture mapping algorithm for an extrusion surface can

generate realistic texture for the extrusion surface even the extrusion surface is

transformed in 3D space.

7.12 A New Texture Mapping Algorithm for a Revolution in the SVG GL

A new texture mapping algorithm for a revolution surface is proposed and

developed in this section. This new algorithm is based on the algorithm proposed

in Section 7.4. The parameterization equation from a 2D texture to a revolution

surface will be used at the first step

If a space curve is expressed by C(s), where 𝟎 ≤ 𝑠 ≤ 𝟏, C(s) is rotated about an

axis in space, the rotation matrix R(t), then the surface of revolution surface has

the form:

C(s, t)=C(s)R(t) (7.27)

The parametric Equation of a revolution surface can be defined as

129

𝑥 = 𝐂𝐱(𝑠)𝐑𝐱(𝑡)
𝑦 = 𝐂𝐲(𝑠)𝐑𝐲(𝑡)

𝑧 = 𝐂𝐳(𝑠)𝐑𝐳(𝑡)

 (7.28)

One of the most natural choices for assigning a point (u, v) in texture space to a

point (s, t) on the extrusion surface would be to use

𝑢 = 𝑠
𝑣 = 𝑡

 (7.29)

The complete transformation from texture space to object space is:

𝑥 = 𝐂𝐱(𝑢)𝐑𝐱(𝑣)
𝑦 = 𝐂𝐲(𝑢)𝐑𝐲(𝑣)

𝑧 = 𝐂𝐳(𝑢)𝐑𝐳(𝑣)

 (7.30)

This has the effects of pasting the texture onto the revolution surface without any

distortion to cover the revolution surface.

The new texture mapping algorithm for a revolution surface can be described in

Figure 7.22.

1. A revolution surface is defined in object space with coordinates (x, y, z), and

the corresponding texture is defined in texture with space coordinates (u, v). The

texture is parameterized by Equation (7.30) to generate the intermediate data.

2. The intermediate data will be transformed according to the geometrical and

projection transformation of the revolution surface by Equation (7.7).

3. The SVG pattern is generated from the transformed texture.

4. Finally the texture is wrapped onto the revolution surface by adding the

pattern to the revolution surface.

130

Figure 7.22 New texture mapping method for a revolution surface in the SVG GL

The proposed algorithm is used to generate texture for a revolution surface, and

the result is compared with the texture mapping created by using SVG pattern

directly (without transform according to the revolution surface). Figure 7.23(a)

shows the texture is wrapped on a revolution surface by using the pattern based

image transformed algorithm. The revolution surface is rotated around x-axis,

y-axis, and z-axis respectively. Figure 7.23(b) shows the texture by applying

SVG pattern directly on the revolution surface, and this revolution surface is also

rotated around x-axis, y-axis, and z-axis respectively.

Figure 7.23 Compare texture mapping create by new algorithm for a revolution

surface and by using SVG pattern directly

By comparing Figure 7.23(a) and Figure 7.23(b), it shows applying SVG pattern

directly on the revolution surface will create distort when the cone is transformed

in 3D space. But the new texture mapping algorithm for revolution surface can

generate realistic texture for a revolution surface even the revolution surface is

transformed in 3D space.

7.13 Summary

SVG patter is discussed first in this chapter. Although SVG pattern can be use to

display 2D image, to use it to wrap 2D texture on 3D object, it still has problems.

131

1. Not all 3D objects surfaces are flat, so using SVG pattern directly on curved

3D surface will cause unexpected distort;

2. When 3D objects are transformed in 3D space, using the SVG pattern

directly cannot create transformed texture accordingly, so the final texture

mapping is incorrect.

Then existing texture mapping algorithms are also discussed. Since the existing

texture mapping algorithms are pixel based, but the elementary primitive in the

SVG GL is triangle. The existing texture mapping algorithms cannot be used in

the SVG GL.

Due to the reason mentioned above, new texture mapping algorithms in the SVG

GL are proposed and developed in this chapter. The new algorithms are based on

SVG pattern and transform the 2D texture according the transformation of the 3D

model. The basic idea behind this method is to transform the original texture

according to the transformation of the 3D object, and then generate the pattern

that will be added to the screen image. A set of new texture mapping algorithms

for different 3D models in the SVG GL are proposed in this chapter, include

plane, sphere, cylinder, cone, Bezier surface, extrusion surface and revolution

surface. And it also proves that the proposed algorithm can generate realistic

texture for the 3D object even the object is transformed in 3D space.

132

Chapter 8 Design and Development of the Software Environment for

Validation the Proposed Framework and Algorithms

8.1 Introduction

In this PhD project a new framework-SVG GL based on SVG technology is

proposed for publishing 3D for web-based applications over Internet, that can be

viewed on standard web browsers (except for IE which will need a plug-in)

without having to install any plug-ins. New Gouraud shading algorithm and new

Phong shading algorithm in the SVG GL are proposed and developed. And a set

of new texture mapping algorithms are developed for different 3D primitives and

3D complex models, including triangle, plane, sphere, cylinder, cone, extrusion,

revolution, etc.

To validate the proposed framework and algorithms, a dedicated test software

system- SVG 3D graphics library (S3GL) has to be developed. After a close

analysis of samples collected during the problem definition stage the analyst

found that all the hardware and software requirements needed for development

and implementation of the S3GL are readily available in the market.

8.2 System Validation

This PhD project is mainly exploratory with some experimental validation work

through a self designed and developed software system- S3GL. S3GL is

developed based on the proposed framework.

S3GL will be validated firstly, to prove it can be used to create desired 3D scene.

Then four 3D test applications are implemented to validate the new framework

proposed in Chapter 5, the Gouraud shading and Phong shading algorithms

proposed in Chapter 6, and the texture mapping algorithms developed in Chapter

7. The primary purpose of the test applications is to validate the framework,

algorithms and test the performance of S3GL.

S3GL is developed following system development stages for smooth developing

and running 3D models for standard web browsers. After an information

gathering process from existing methods for 3D modelling for web-based

applications by systematically reviewing the published literature, the system

analyst saw that the new S3GL is indeed needed for generating 3D models for

web-based applications.

133

S3GL is developed using visual C# programming language, it will help to

develop 3D models for different web-based applications to realize their

maximum potential in addition to their competence in the different fields.

8.3 System Requirement Analysis

8.3.1 Problem Definition

The Goals of this project are to propose a new framework-SVG GL based on

SVG technology for publishing 3D for web-based applications over Internet, that

can be viewed on standard web browsers; develop new Gouraud shading and

Phong shading algorithms; and develop a set of new texture mapping algorithms

to enhance the realism of the final rendering result. For those goals, S3GL needs

to be able to perform the following operations:

1. Defining and developing 3D primitive geometries.

2. Defining and developing 3D objects through sweeping.

3. Creating free form surface by using Bezier surface.

4. Generating 3D objects through point clouds.

5. Transforming 3D objects in 3D space.

6. Projecting the 3D objects to 2D screen.

7. Illuminating and shading the 3D objects.

8. Adding texture to 3D objects to enhance the realism.

9. Adding 3D objects to an SVG file which can be rendered directly onto a

standard web browser.

3D primitive geometries includes: triangle, plane, sphere, cylinder, cone, and

cube. Sweeping includes extrusion and revolution. 3D objects can be rotated

around the x, y and z axes, and translated along the x, y and z axes. The new

texture mapping algorithms are used to add texture onto the 3D objects.

In addition to all the functions described above, the system should also be:

1. Be user-friendly to develop and use.

2. Improve the performance of 3D modelling for web-based application.

3. Reduce the file size of the 3D objects.

8.3.2 The Software System- S3GL

134

The Objectives of the software system- S3GL are:

(1) To create 3D objects from 3D primitive geometries, extrusion, revolution,

Bezier surface, and point clouds.

(2) To integrate different shading methods such as Flat shading, Gouraud shading

and Phong shading.

(3) To add texture mapping to enhance the realism of the 3D scene.

(4) To implement S3GL and validate it through development and evaluation of

typical 3D web-based applications.

S3GL will cover defining, creating, transforming, rendering 3D scene to SVG

file, and finally render the 3D scene on standard web browser. Moreover, special

effects such as Gouraud shading, Phong shading, and texture mapping will be

automated by S3GL also, and will be efficiently handled by S3GL.

To help S3GL smoothly carry out its intended purpose to meet the needs of

web-based applications, the following components will be used in S3GL, each of

these components relate directly to classes that are used by S3GL.

1. Scene

The scene is the entire composition of 3D objects in a 3D space. It is like a stage

with three axes—x, y, and z. Each 3D object that the user wants to be visible

should be added to the scene. If user doesn‘t add objects to the scene, they will

not appear on the web browser.

2. Camera

As a real camera, that is somewhere in 3D space recording activity inside the

scene. The camera defines the point of view from which viewer is viewing the

scene. Camera in 3D space can usually do more than real camera. The camera is

able to ignore objects that are not in a certain defined range. This is done for

performance reasons.

3. 3D objects

A shape in 3D space is called a 3D object. A 3D object can be placed anywhere

in 3D space and rotated over each of the three axes. S3GL has a set of primitive

shapes. Such primitives include triangle, plane, sphere, cylinder, cone, and cube.

However, working with more complex 3D objects is possible, as S3GL allows

user to create 3D objects by extrusion, sweeping, Bezier surface and point clouds.

User can also import 3D objects into application by using text file.

135

4. Material

A material is the colour, or texture that is printed on a 3D object. When a 3D

object doesn't have a material applied, it will be invisible. There are a variety of

materials available to be used. For example, a very simple material is a colour; a

more advanced example of a material can be a raster image

5. Light

The only available light in S3GL is a point light. This is a point somewhere in

3D space that defines the origin of a light source. Each shader in S3GL requires a

point light. S3GL does not provide other types of lights such as spot light and

directional light.

The advantages of S3GL include:

(1) Enables easy and fast creating 3D objects.

(2) Provides multiple 3D objects definition methods, including primitives,

sweeping, Bezier surface, and point clouds.

(3) Implements efficient 3D transformation methods.

(4) Implements perspective projection methods.

(5) Adds different shading methods.

(6) Implements texture mapping methods.

(7) Reduce the final file size of 3D scene.

(8) Render 3D scene on standard web browser without the need of any plug-ins

(except for IE).

8.4 System Design

S3GL was designed in Microsoft Visual Studio 2010. The system design phase

describes the functional capabilities of the system.

8.4.1 Development Environment

C# is a .NET, general-purpose, object-oriented programming language. The

advantages of C# over other languages such as C++, Java, and JavaScript are:

1. It can be used to develop both window-based and web applications.

2. C# being a .NET language, supports language interoperability, i.e. C# can

access code written in any .NET compliant language and can also inherit the

136

classes written in these languages.

3. It can access to all the .NET Framework class libraries, which are quite

extensive. While these libraries might support specific features better than

other programming language.

4. It is a compiled computer programming language, the source code will be

compiled once when the program first run. This means it is much more efficient

than an interpreted programming language.

5. It has native garbage-collection.

Due to all the advantages of C#, the system is developed by using C#, and

Microsoft Visual Studio 2010 is used as the development environment for both

S3GL development and web application test.

Figure 8.1 Visual Studio 2010 integrate development environment

Microsoft Visual Studio is an integrated development environment (IDE) from

Microsoft. It is used to develop computer programs for Microsoft Windows, as

well as web sites, web applications and web services. Visual Studio uses

Microsoft software development platforms such as Windows API, Windows

Forms, Windows Presentation Foundation, Windows Store and Microsoft

Silverlight.

The Visual Studio IDE is shown in Figure 8.1. It includes a code editor, a

toolbox, and a solution explore. The code editor is where developers write code

that makes everything in the application work; the toolbox is a palette of

developer objects, or controls, that are placed on the forms or web pages; the

solution explorer is a section that is used to view and modify the content of the

project. The integrated debugger works both as a source-level debugger and a

machine-level debugger. Other built-in tools include a forms designer for

137

building GUI applications, web designer, class designer, and database schema

designer.

Visual Studio supports different programming languages and allows the code

editor and debugger to support nearly any programming language, provided a

language-specific service exists. Built-in languages include C, C++ and C++/CLI

(via Visual C++), VB.NET, C#, and F#.

8.4.2 Classes Design and Definition

The followings are the designs of the main classes that shall be used to store the

data in S3GL:

1. Triangle

A triangle is the simplest shape among the primitives. There are totally 4

arguments (Table 8.1) to be passed to the Triangle constructor.

Table 8.1 Triangle‘s argument

Argument Data type Default value Description

id string Defines a unique id to distinguish

from other objects

va point (0,0,0) Sets the coordinate of triangle vertex

vb point (0,1,0) Sets the coordinate of triangle vertex

vc point (1,0,0) Sets the coordinate of triangle vertex

2. Plane

A plane looks like a rectangle if it does not rotate over the x-axis or y-axis. There

are totally 3 arguments (Table 8.2) to be passed to the Plane constructor.

138

Table 8.2 Plane‘s argument

Argument Data type Default value Description

id string Defines a unique id to distinguish

from other objects

width int 0 Sets the desired width of the plane

height int 0 Sets the desired height of the plane

3. Sphere

There are 4 arguments need to be set for a Sphere constructor. They are listed

and described in Table 8.3.

Table 8.3 Sphere‘s argument

Argument Data type Default value Description

id string Defines a unique id to distinguish

from other objects

radius int 10 Sets the radius of the sphere

segmentsA int 10 Sets the number of segments

horizontally

segmentsP int 10 Sets the number of segments

vertically

4. Cylinder

There are more arguments for creating a cylinder. Table 8.4 show all the

arguments need to be passed to a Cylinder constructor.

139

Table 8.4 Cylinder‘s argument

Argument Data type Default

value

Description

id string Defines a unique id to distinguish from

other objects

top radius int 10 Sets the desired top radius of the cylinder

bottom radius int 10 Sets the desired bottom radius of the

cylinder

height int 10 Sets the desired height of the cylinder

segmentsA int 0 Sets the number of segments horizontally

5. Cone

The following arguments are available in the Cone constructor (Table 8.5).

Table 8.5 Cone‘s argument

Argument Data type Default value Description

id string Defines a unique Id to distinguish

from other objects

radius int 10 Sets the desired radius of the cone

height int 10 Sets the desired height of the cone

segmentsA int 0 Sets the number of segments

horizontally

The arguments for Cone constructor are similar with those for Cylinder

constructor. Since cone always has a converged top, the radius in the cone

constructor is set for the bottom of the cone.

6. Cube

140

Instantiate a cube is similar to instantiate the previously discussed primitives.

Table 8.6 shows all arguments for instantiating a cube.

Table 8.6 Cube‘s argument

Argument Data type Default value Description

id string Defines a unique id to distinguish

from other objects

width int 10 Sets the desired width of the cube

depth int 10 Sets the desired depth of the cube

height int 10 Sets the desired height of the cube

7. Complexobject

ComplexObject is created from primitives introduced above. Table 8.7 shows all

arguments for a constructor of ComplexObject. An AddObject() function is

provided for ComplexObject to add primitives. Different primitives put together

to build a complex object.

Table 8.7 Complexobject‘s argument

Argument Data type Default value Description

id string Defines a unique id to

distinguish from other objects

primitiveobjects List<primitive> null Primitives used to create a

Complexobject

8. Other 3D objects in S3GL

Besides the 3D objects discussed above, there are other 3D objects in the S3GL.

ExtrusionObject creates 3D objects by extruding a 2D shape along a given route;

RevolutionObject creates 3D objects by revolving a 2D shape around coordinate

axis; and BezierSurface is used to create free form surface in 3D space.

ExtrusionObject takes 4 argument, they are shown in Table 8.8

141

Table 8.8 ExtrusionObject‘s argument

Argument Data type Default value Description

id string Defines a unique id to distinguish

from other objects

contour Point list null Sets the contour of the 2D shape

route Point list null Sets the extruding route

The arguments for a RevolutionObject constructor are shown in Table 8.9.

Table 8.9 RevolutionObject‘s argument

Argument Data type Default value Description

id string Defines a unique id to distinguish

from other objects

contour point list null Sets the contour of the 2D shape

axis chart ‗y‘ Sets the coordinate axis revolving

around

segmentsA int 0 Sets the number of segments around

the revolving direction

Table 8.10 shows all the arguments for instantiating a Bezier Surface.

142

Table 8.10 BezierSurface‘s argument

Argument Data type Default value Description

id string Defines a unique id to distinguish from

other objects

control

points

 Point list null Sets the set of the control points

segmentsA int 0 Sets the number of segments

horizontally

segmentsP int 0 Sets the number of segments vertiaclly

In the S3GL bicubics patches are used for the Bezier surface, which means the

order of the Bezier surface is 3, and 16 control points in total are used to define a

Bezier surface

9. Materials

There are 3 types of materials in the S3GL: FrameMaterial, ColourMaterial, and

TextureMaterial.

The different between FrameMaterial and ColourMaterial is: FrameMaterial

connects the points by lines, but ColourMaterial connects the points by triangles.

TextureMaterial creates a material that is made of a bitmap, and then the material

is wrapping onto the surface of a 3D model to achieve more realistic effect than

FrameMaterial and ColourMaterial.

The constructor of FrameMaterial has 2 arguments shown in Table 8.11.

Table 8.11 FrameMaterial‘s argument

Argument Data type Default value Description

colour Colour (0,0,0) Defines the colour of the frame

thickness int 1 Defines the thickness of the frame

The constructor of ColourMaterial has only one argument (Table 8.12).

143

Table 8.12 ColourMaterial‘s argument

Argument Data type Default value Description

colour Colour (0,0,0) Defines the colour of the surface

The constructor of TextureMaterial also has only one argument (Table 8.13).

Table 8.13 TextureMaterial‘s argument

Argument Data type Default value Description

filename string null Defines the filename of the specified

texture

10. Light

A point light source is defined in S3GL; Table 8.14 shows the arguments for a

Light‘s constructor.

Table 8.14 Light‘s argument

Argument Data type Default value Description

direction vector (1,0,0) The direction vector of the light

position vector (0,0,100) The position vector of the light

colour Colour (1,1,1) The colour of the light

ambient vector (1,1,1) Ambient component of the light

diffuse vector (0,0,0) Diffuse component of the light

specular int 1 Specular coefficient of the light

11. Camera

The following arguments are needed to initiate a camera in S3GL (Table 8.15).

144

Table 8.15 Camera‘s argument

Argument Data type Default value Description

direction vector (1,0,0) The direction vector of the camera

position vector (0,0,0) The position vector of the camera

focus int 100 The focus length of the camera

near int 100 The near surface of the camera

far int 1000 The far surface of the camera

12. Scene

The scene in the S3GL is a canvas on which all 3D objects are rendered. The

following arguments are needed to initiate a scene (Table 8.16).

Table 8.16 Scene argument

Argument Data type Default value Description

width int 500 The width of the scene

height int 500 The height of the scene

bcolour Colour (1,1,1) The background colour of the scene

filename string null The final SVG file name

camera Camera null The camera in the scene

light Light null The light source in the scene

objects List<object> null All objects in the scene

Except for all the classes mentioned above, a math library was also developed in

the S3GL. 2D vector, 3D vector, 3x3 matrixes, and 4x4 matrixes are developed

in the 3DMath library, all related vector, and matrix operations are implemented.

145

8.5 System Implementation

8.5.1 Web Server

S3GL is developed by using C# based on ASP.NET technology. ASP.NET is an

open source server-side web application framework designed for web

development to produce dynamic web pages. It was developed by Microsoft to

allow programmers to build dynamic web sites, web applications and web

services.

ASP.NET is a server-side web application framework designed for web

development to produce dynamic web pages. Since ASP.NET is run on

server-side, the web hosting provider must configure its servers appropriately to

execute the necessary source code. In addition to providing connectivity,

ASP.NET web hosting providers also provide the technological basis for the

ASP.NET creative process.

ASP.NET is a cross-platform technology; the application based on ASP.NET can

run on almost all different platform, includes web server that has the .NET

Framework and Internet Information Services (IIS) installed, and non-Microsoft

sever that installed MONO (Delahunty, 2005) platform. The web server that

supports ASP.NET includes:

1. IIS, Internet Information Services, is a free component bundled with

Windows System.

2. Apache, a classic web application server, ASP.NET can run on Apache that

has MONO installed.

3. XSP, a server with an independent standard. It is written in C#, and can be

used to run ASP.NET application.

4. Nginx, a high-performance HTTP server that supports ASP.NET and

applications.

5. Jexus, is based on .NET/MONO, supports ASP.NET and applications.

Since S3GL is based on ASP.NET, so all applications developed by using S3GL

can run on almost all different platforms.

8.5.2 Support Platform

The application developed based on S3GL is running on the web server (Figure

8.2). The client side sends request for a S3GL web page to the web server, the

S3GL application will run on the web server, and the render result will be sent

back to the client side as a normal SVG file. The client side manipulation on the

3D scene will be sent to the server side, after processing by S3GL on the server,

the result will be sent back to client side again. This means S3GL has no special

146

requirement for the client side, all client side platform that support normal SVG

can view the 3D model rendered by S3GL.

Figure 8.2 S3GL running as a server side application

Platforms on the client side that S3GL can be used are summarized in Table 8.17.

The data in the table is based on the latest versions of the respective web

browsers as of the writing of this thesis.

All modern browsers support rendering SVG. Internet Explorer, up to and

including IE8, was the only major browser not to provide native SVG support.

IE8 and older require a plug-in to render SVG content. For mobile web

developers wondering about compatibility, iOS 3.2+, Opera Mini 5+, Opera

Mobile 10+ and Android 3+ also support rendering SVG graphics.

Statistics show that 84.71% of Internet users have a web browser that supports or

partial support SVG (Caniuse, 2013).

The statistics therefore form an upper bound on what percentage of users can run

3D graphics applications built upon S3GL.

In a web browser that supports SVG, no extra software has to be installed for

S3GL applications to be able to run. For Internet Explorer, that does not support

SVG natively, there are number of plug-ins available to assist, including: Adobe

SVG Viewer, SVG Web, or Google Chrome Frame.

147

Table 8.17: Supported operating systems and web browsers

Operating System Browser SVG Client side manipulation

Windows

Internet Explorer Support via plug-in Yes

Chrome Yes Yes

Firefox Yes Yes

Opera Yes Yes

Safari Yes Yes

Mac OS X

Chrome Yes Yes

Firefox Yes Yes

Opera Yes Yes

Safari Yes Yes

Linux

Chrome Yes Yes

Firefox Yes Yes

Opera Yes Yes

Android
Build-in web browser Yes Yes

Opera Yes Yes

iOS Safari Yes Yes

8.6 System Testing

The main technical activities in software testing process include planning,

generating and selecting test cases, preparing test environment, testing the

program under test and observing its dynamic behaviour, analyzing the observed

behaviour on each test case, report test results (Figure 8.3).

148

Figure 8.3 Activities in software testing process

The system testing is carried out using Use case based testing. Use cases have

been derived from the requirements, and then system testing can be performed by

testing that the system satisfies each of the Use cases.

In order to test the developed S3GL, a test Use case is design, and the system

testing is carried out as following:

1. Design the test plan. Descript the 3D scenario that will be rendered on the

web page.

2. Prepare the test environment. All the test is carry on Microsoft Visual Studio

2010.

3. Prepare the test Use case. Define 3D models by using the functions provided

by S3GL.

4. Execute the test and observe the results;

5. Analyze the test results.

Use case 1: Adding a 3D object on web page

The first Use case is described in Table 8.18. A 3D object is defined by using the

primitives in S3GL. After geometrical transformation and perspective projection,

the 3D object will be mapped to SVG viewport, and rendered on the web

browser directly.

149

Table 8.18 Use case 1-Adding a 3D object on web page.

ID Use case 001

Title Adding a 3D object on web page

Actor User

Description A cylinder is created by S3GL, and rendered on web browser

directly.

The result of the Use case 1 is shown in Figure 8.4. Since SVG supports many UI

events and pointing events, mouse events are used to change the parameters

(position, view angle) of the 3D camera in S3GL. By using the mouse, user can

navigate the 3D scene, and view the 3D model from different angle. The test

result shows that the S3GL can be used to develop 3D object, and render the

result directly on web page. And the 3D scene can by navigated by using mouse.

Figure 8.4 Screenshot of use case 1

Use case 2: Adding multiple 3D objects on web page

The second Use case is described in Table 8.19.

150

Table 8.19 Use case 2- Adding multiple 3D objects on web page.

ID Use case 002

Title Adding multiple 3D objects on web page

Actor User

Description A cone and a sphere are created by S3GL, and rendered on web

browser directly.

The result of the Use case 2 is shown in Figure 8.5. By using the mouse, user can

navigate the 3D scene, and view the 3D model from different angle. The test

result shows that the S3GL can be used to develop 3D objects, and render the

result directly on web page. The position relationships between objects are

displayed correctly.

Figure 8.5 Screenshot of use case 2

The test result shows that the S3GL can be used to develop 3D scene, and render

the result directly on web page. And the 3D scene can by navigated by using

mouse.

After the validation of the testing environment, four 3D test applications will be

implemented to test the algorithm proposed in Chapter 5, 6, 7.

8.7 The Validation of the Theory and Algorithms Using Software System

151

Four 3D test applications are implemented based on S3GL to validate the new

framework proposed in Chapter 5, the new Gouraud shading and Phong shading

algorithm proposed in Chapter 6, and the new texture mapping algorithms

developed in Chapter 7.

1. 3D static objects.

2. A Gouraud shading box

3. A Phong shading box.

4. A 3D plant.

Those applications are tested on a Dell Laptop with Intel Core i5 CPU and with

Windows 7 operating system. The version of the plug-in to view SVG was

Adobe SVG Viewer 3.01 for Internet Explorer 9.0. Those case studies are also

tested also on other major web browsers, includes: Firefox, Chrome, Opera, and

Safari, that no plug-in needed.

8.7.1 3D Static Objects

The first test application is 3D static objects consist of a table, a lamp, a sphere,

and a pen case (Figure 8.6). The purpose of this test application is to validate the

algorithm provided in Chapter 5 and Chapter 7, and it will have the functionality

outlined below.

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using texture on specified 3D object.

4. Interactive manipulation.

The reasons of choose this 3D scene are:

1. It can be used to validate whether different 3D objects can be created and

rendered correctly.

2. It can be used to validate whether the position relationship between objects

can be rendered correctly.

3. It can be used to validate whether the texture mapping algorithm can

generate correct texture for different object.

The 3D static objects can be viewed from different angle. During the test, the

average number of second per frame will be recorded, and the file size of the

SVG file generated by S3GL will also be recorded for further analysis.

152

Figure 8.6 3D static objects

The test result shows that the right depth test, and the objecst are rendered

correctly. This application also apply texture mapping on sphere, cube, and

cylinder. It generates right texture for each object, and improves the realism of

the scene. The user can navigate the 3D scene and rotate the camera by using the

mouse.

The average number of second per frame that is achieved with this test

application on different web browser is shown in Table 8.20. As can be seen in

the table, the test application works well on different web browser, and the

render times are also similar on different web browser.

Table 8.20 Static object render time

Web browser IE Firefox Chrome Safari Opera

Render rate

(seconds/frame)

 0.36 0.42 0.43 0.45 0.40

Another performace measure is the amount memory the application uses. This is

especially important if the developer wishes to target hardware with limited

memory. The maximum amount of memory of this application is 101KB.

153

Figure 8.7 shows a 3D video case, the file size for such a 3D model created by

X3D is 36,213 KB; and the file size created by VRML is 33,030 KB. Compare

with the 3D static objects created by S3GL, the file size is only about 1/300 of

the file size created by X3D or VRML.

Figure 8.7 3D video case (free model download from

http://www.3dcadbrowser.com)

Both those performance tests show the algorithm proposed in Chapter 5 can be

used to generate 3D scene. And the texture mapping described in Chapter 7 can

also work well to create realistic 3D object. By compare the final file size with

X3D and VRML, it shows the S3GLcan significantly reduce the file size, which

is important for web-based applcations.

8.7.2 A Gouraud Shading Box

The second test application is a box rendered by Flat shading and a box rendered

by the new Gouraud shading algorithm separately. The purpose of this test

application is to validate the Gouraud shading algorithm proposed in Chapter 6,

and it will have the functionality outlined below.

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using Flat shading and Gouraud shading on 3D object.

4. Interactive manipulation.

The reason of choose this scene is that it can be used to check whether the

Gouraud shading algorithm proposed in Chapter 6 can generate smooth colour

transitions on hard boundary.

During the test, the average number of second per frame will be recorded, and

the file size of the SVG file generated by S3GL will also be recorded for further

analysis.

Figure 8.8(a) shows a green box viewed from different angle, and the box is

rendered by Flat shading; Figure 8.8(b) shows a box rendered by the Gouraud

154

shading algorithm proposed in Chapter 6. The point light is defined on the top

front side of the scene.

Figure 8.8 Flat shading vs. Gouraud shading

The test result shows that by using the new Gouraud shading algorithm, it can

generate smooth colour transitions on hard boundary.

The average number of second per frame which was achieved with this test

application on different web browser is shown in Table 8.21. As can be seen in

155

the table, the test application works well on different web browser, and the

render time required for Flat shading is far less than Gouraud shading algorithm

since there are more arithmetic calculation involved in Gouraud shading

algorithm.

Table 8.21 Flat shading and Gouraud shading render rate

Web browser IE Firefox Chrome Safari Opera

Flat shading Render rate

(seconds/frame)

0.007 0.0072 0.0067 0.007 0.0069

Gouraud shading Render

rate (seconds/frame)

0.11 0.12 0.11 0.12 0.12

The maximum amount of memory of Flating shading is 2 KB, and maximum

amount of memory of area interpolation Gouraud shading algorithm is 4KB. This

shows the Gouraud shading algorithm will use more memory than Flat shading.

Both those performance tests show the Gouraud shading algorithm developed in

Chapter 6 can work well to create realistic 3D object.

8.7.3 A Phong Shading Box

The third test application is a box rendered by Flat shading and a box rendered

by the new Phong shading algorithm. The purpose of this test application is to

validate the Phong shading algorithm provided in Chapter 6, and it will have the

functionality outlined below.

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using Flat shading and Phong on 3D object.

4. Interactive manipulation.

The reasons of choose this scene are:

1. It can be used to check whether the Phong shading algorithm proposed in

Chapter 6 can generate smooth colour transitions in hard boundary.

2. It can be used to check whether the highlight can be rendered correctly on a

big flat surface.

During the test, the average number of second per frame will be recorded, and

the file size of the SVG file generated by S3GL will also be recorded for further

analysis.

Figure 8.9(a) shows a green box viewed from different angle, and the box is

rendered by Flat shading; Figure 8.9(b) shows a box rendered by the Phong

156

shading algorithm proposed in Chapter 6. The point light is defined on the left

side of the scene.

Figure 8.9 Flat shading vs. Phong shading

The test result shows that there is no highlight by using Flat shading. By using

the new Phong shading algorithm, it can generate smooth colour transitions on

hard boundary, and the highlight of the object can be generated correctly.

The average number of second per frame which was achieved with this test

application on different web browser is shown in Table 8.22. As can be seen in

157

the table, the test application works well on different web browser, and the

render time required for Flat shading is far less than area interpolation Phong

shading algorithm since there are more arithmetic calculation involved in area

interpolation Phong shading algorithm.

Table 8.22 Flat shading and Phong shading render rate

Web browser IE Firefox Chrome Safari Opera

Flat shading Render rate

(seconds/frame)

 0.007 0.0072 0.0067 0.007 0.0069

Phong shading Render rate

(seconds/frame)

 0.15 0.16 0.22 0.17 0.19

The maximum amount of memory of Flating shading is 2 KB, and maximum

amount of memory of area interpolation Phong shading algorithm is 4KB. This

shows the area interpolation Phong shading algorithm will use more memory

than Flat shading.

Both those performance tests show the Phong shading algorithm developed in

Chapter 6 can work well to create realistic 3D object.

8.7.4 3D Plant

The forth test application is a plant in a flowerpot (Figure 8.10). The purpose of

this test application is to validate the algorithm provided in Chapter 5 and

Chapter 7, and it will have the functionality outlined below.

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using texture on specified 3D object.

4. Interactive manipulation.

The reasons of choose this 3D scene are:

1. It can be used to validate whether different 3D objects can be created and

rendered correctly.

2. It can be used to validate whether the position relationship between objects

can be rendered correctly.

3. It can be used to validate whether the texture mapping algorithm can

generate correct texture for different object.

158

The 3D plant can be viewed from different angle. During the test, the average

number of second per frame will be recorded, and the file size of the SVG file

generated by S3GL will also be recorded for further analysis.

The flowerpot is created by using revolution object in S3GL; and the leaves of

the plant are generated by using Bezier surface. Texture mapping proposed in

Chapter 7 are used in this application, include texture mapping algorithms for

Bezier surface, texture mapping algorithms for revolution surface, and p texture

mapping algorithms for cylinder.

Figure 8.10 Texture mapping 3D plant

The average number of second per frame which was achieved with this test

application on different web browser is shown in Table 8.23. As can be seen in

the table, the test application works well on different web browser, and the

render rate are also similar on different web browser.

Table 8.23 3D plant render rate

Web browser IE Firefox Chrome Safari Opera

Render rate (seconds/frame) 0.62 0.58 0.63 0.61 0.62

The maximum amount of memory of this application is 66 KB.

159

Figure 8.11 shows a 3D paint pot model. Campare with the 3D plant, this is a

relative simple 3D model. But the file size for such a 3D model created by X3D

is 157 KB; and the file size created by VRML is 142 KB. Compare with the 3D

plant model created by the SVG GL, the file size is just about 1/2 of the file size

created by X3D or VRML.

Figure 8.11 3D paint pot model (free model download from

http://www.3dcadbrowser.com)

Both those performance tests show the algorithm proposed in Chapter 5 can be

used to generate 3D scene. And the texture mapping described in Chapter 7 can

also work well to create realistic 3D object. By compare the final file size with

X3D and VRML, it shows S3GLcan significantly reduce the file size, which is

important for web-based applcations.

8.8 Summary

A test software system-S3GL is developed by using Visual Studio 2010. The

system is developed based on the theory proposed in this project. The purpose of

S3GL is to validate the framework-the SVG GL proposed in Chapter 5; the new

Gouraud shading and Phong shading algorithms developed in Chapter 6; and the

new texture mapping algorithm developed in Chapter 7.

Two Use case are developed firstly to validate the test environment. Then 4 test

applications are implementing to validate the algorithm proposed in this project:

1. 3D static objects, to validate the algorithms provided in Chapter 5 and

Chapter 7.

2. 3D Gouraud shading box, to validate the Gouraud shading algorithm

proposed Chapter 6.

3. 3D Phong shading box, to validate the Phong shading algorithm proposed

Chapter 6.

4. 3D plant, validate the algorithms provided in Chapter 5 and Chapter 7.

160

The testing shows satisfactory results in representing different graphics content.

It proves the algorithms proposed in Chapter 5 can be used to generate 3D scene.

And the new Gouraud shading algorithm and Phong shading algorithm

developed in Chapter 6, the texture mapping algorithms proposed in Chapter 7

can work well to create realistic 3D object. By compare the final file size with

X3D and VRML, it shows S3GL can significantly reduce the file size, which is

important for web-based applcations.

161

Chapter 9 The Discussions of the Proposed Methods for 3D Web-Based

Presentations

9.1 Introduction

In this chapter, 4 demo applications based on S3GL will be presented:

1. A 3D bottle, to test the potential application of the new framework for

product presentation.

2. Building site simulation, to test the potential application of the new

framework for city planning and community management.

3. Shopping mall, to test the potential application of the new framework for

e-business.

4. 3D landscape, to test the potential application of the new framework for 3D

terrain simulation.

Those applications are used to evaluate the suggested methods as proof of

concept, and also investigate the potential application fields of S3GL. Those

applications were tested on the same environment as the 4 test applications in

Chapter 8. During the demo the average number of second per frame will be

recorded, and the file size of the SVG file generated by S3GL will also be

recorded for further analysis.

9.2 3D Bottle

The first demo application is 3D bottle (Figure 9.1). The purpose of this

application is to test the potential application of the new framework for product

presentation, and it has the functionalities:

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using texture on specified 3D object.

4. Interactive manipulation.

162

Figure 9.1 3D bottle

The geometry of the bottle is created by using the 3D objects provided in the

S3GL. The cap of the bottle is created by the revolution object in S3GL, the

outline of the cap is shown on the right side, and the rotate axis is y-axis; the

neck of the bottle is created by revolution object as well, and the outline is shown

on the right side, the rotate axis is y-axis; the body of the bottle is created by

using cylinder in S3GL; finally, the bottom of the bottle is created revolution

object. Two kids of texture mapping algorithms proposed in Chapter 7 are used;

they are texture mapping algorithms for revolution object, and texture mapping

algorithms for cylinder. The user can navigate the 3D scene and rotate the

camera by using the mouse (Figure 9.2). By zooming in the camera, more details

of the texture can be viewed.

163

Figure 9.2 Rotate the camera to navigate the 3D bottle

The average number of second per frame which was achieved with this

application on different web browser is shown in Table 9.1. As can be seen in the

table, the test application works well on different web browser, and the render

times are also similar on different web browser. The maximum amount of

memory of this application is 36KB.

Table 9.1 3D bottle render rate

Web browser IE Firefox Chrome Safari Opera

Render rate

(seconds/ frame)

 0.50 0.52 0.53 0.51 0.49

Figure 9.3 shows a 3D coke can, the file size for such a 3D model created by

X3D is 162 KB; and the file size created by VRML is 148 KB. Compare with

164

the 3D bottle model created by S3GL, the file size is only about 1/5 of the file

size created by X3D or VRML.

Figure 9.3 A 3D coke can (free model download from

http://www.3dcadbrowser.com)

The results show S3GL can be used for simulating 3D houseware, such as bottle,

can, flask, and similar product with realistic texture. It can be used for product

presetation for web-based application, and can significantly reduce the file size

of the 3D model.

9.3 Building Site Simulation

The second demo application is building simulation (Figure 9.4). The purpose of

this application is to test the potential application of the new framework for city

planning and community management, and it will have the functionality outlined

below.

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using texture on specified 3D object.

4. Interactive manipulation.

165

Figure 9.4 Building site simulation

The geometry of the building site is created by using the 3D objects provided in

the S3GL. Building 1 consist of one extrusion object and four planes, the

extrusion is used as the roof, and the planes are used as wall; building 2 consist

of a sphere and a cylinder, the sphere is used as roof, and the cylinder is used as

wall; building 3 consist of 2 triangle and 5 planes; and building consist of 2

triangle and 4 planes. Four kids of texture mapping algorithms proposed in

Chapter 7 are used; they are texture mapping algorithms for triangle, texture

mapping algorithms for plane, texture mapping algorithms for sphere, and texture

mapping algorithms for cylinder. The user can navigate the 3D scene and rotate

the camera by using the mouse (Figure 9.5).

166

Figure 9.5 Rotate the camera to navigate the building site

The average number of second per frame which was achieved with this

application on different web browser is shown in Table 9.2. As can be seen in the

table, the test application works well on different web browser, and the render

times are also similar on different web browser. The maximum amount of

memory of this application is 48KB.

Table 9.2 Building simulation render rate

Web browser IE Firefox Chrome safari Opera

Render rate

(seconds/frame)

0.87 0.89 0.87 0.92 0.85

Figure 9.6 shows a 3D case wall model, the file size for such a 3D model created

by X3D is 431 KB; and the file size created by VRML is 390 KB. Compare

with the 3D building site model created by the SVG GL, the file size is only

about 1/8 of the file size created by X3D or VRML.

167

Figure 9.6 A 3D case wall model (free model download from

http://www.3dcadbrowser.com)

The results show that S3GL can be used for simulating 3D architecture, such as

house, barn, tower, and similar building with realistic texture. It can be used for

city planning and community management, and can significantly reduce the file

size of the 3D model.

9.4 Shopping Mall

The third demo application consists of 2 scenarios, the first is the buildings of a

supermarket, and the second is the inside of the supermarket (Figure 9.7, Figure

9.8). The purpose of this application is to test the potential application of the new

framework for e-business, and it will have the functionality outlined below.

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using texture on specified 3D object.

4. Interactive manipulation..

168

Figure 9.7 Supermarket

Figure 9.8 The inner scenario of the supermarket

The geometry of the supermarket is created by using the 3D objects provided in

the S3GL, including plane, cylinder and Bezier surface. Three kids of texture

mapping algorithms proposed in Chapter 7 are used; they are texture mapping

algorithms for plane, texture mapping algorithms for cylinder, and texture

mapping algorithms for Bezier surface. The user can navigate the 3D scene and

rotate the camera by using the mouse (Figure 9.9).

Figure 9.9 Rotate the camera to navigate the supermarket

169

The average number of second per frame which was achieved with this

application on different web browser is shown in Table 9.3. As can be seen in the

table, the test application works well on different web browser, and the render

times are also similar on different web browser. The maximum amount of

memory of this application for the supermarket is 44.5KB, and for the inner

scenario is 477KB.

Table 9.3 The supermarket render rate

Web browser IE Firefox Chrome safari Opera

Outside render rate

(seconds /frame)

 0.83 0.79 0.83 0.77 0.80

Inside render rate

(seconds /frame)

 0.72 0.73 0.73 0.85 0.72

Figure 9.10 shows a 3D building model, the file size for such a 3D model created

by X3D is 1,864 KB; and the file size created by VRML is 1,682 KB. Compare

with the 3D supermarket model created by the SVG GL, the file size is only

about thirtieth of the file size created by X3D or VRML.

Figure 9.10 A 3D building model (free model download from

http://www.3dcadbrowser.com)

The results show that S3GL can be used for simulating 3D supermarket, and the

inner scenario of the market with realistic texture. It can be used for web-based

e-business, and can significantly reduce the file size of the 3D model.

9.5 3D Landscape

170

The final demo application is a 3D landscape (Figure 9.11). The purpose of this

application is to test the potential application of the new framework for 3D

terrain simulation, and it will have the functionality outlined below.

1. Build 3D SVG model.

2. Rendering 3D object on web browser.

3. Using texture on specified 3D object.

4. Interactive manipulation.

Figure 9.11 3D landscape

The geometry of the landscape is created by using the 3D objects provided in the

S3GL, mainly extrusion object. The texture mapping algorithms for extrusion

object proposed in Chapter 7 is used. The user can navigate the 3D scene and

rotate the camera by using the mouse (Figure 9.12).

Figure 9.12 Rotate the camera to navigate the landscape

The average number of second per frame which was achieved with this

application on different web browser is shown in Table 9.4. As can be seen in the

table, the test application works well on different web browser, and the render

171

times are also similar on different web browser. The maximum amount of

memory of this application is 120KB.

Table 9.4 3D landscape render rate

Web browser IE Firefox Chrome safari Opera

Render rate

(frame/seconds)

0.95 0.96 0.99 0.95 0.94

Figure 9.13 shows a 3D landscape, the file size for such a 3D model created by

X3D is 32,328KB; and the file size created by VRML is 29,247 KB. Compare

with the 3D supermarket model created by the SVG GL, the file size is only

about 1/200 of the file size created by X3D or VRML.

Figure 9.13 3D model of Ciudad Del Puerto (free model download from

http://www.3dcadbrowser.com)

The results show that S3GL can be used for simulating 3D landsceape with

realistic texture. It can be used for terrain simulation for web-based application,

and can significantly reduce the file size of the 3D model.

9.6 Evaluation of the Applications of S3GL Presentations

Four demo applications are developed in this section.

1. A 3D bottle model.

2. A 3D building site.

3. A supermarket.

4. A 3D landscape.

172

Those applications are used to investigate the potential application fields of

S3GL. By successfully running those demo application, it shows the S3GL can

be used for product demonstration, urban environment simulation, city planning;

for warehouse demonstration and 3D terrain simulation.

Once again, those demo application also validate the new framework proposed in

Chapter 5, the texture mapping algorithm developed in Chapter 7.

Four similar 3D models are also developed by using X3D and VRML. By

compare the file size created by X3D and VRML with the respective file size

created by S3GL, it shows S3GL can significantly reduce the file size which will

be benefit for web-based application.

All these make the S3GL an ideal tool for creating 3D model for web-based

applications, and achieving real time(less than 1 second) interactive with the 3D

model. Currently, all calculations involving model transformation, texture

processing are carried out by software, this significantly reduce the performance

of the S3GL. If some calculation expensive operation can be implemented by

hardware, the performance of S3GL can be significantly increased (the average

rendering time can be reduced to 0.1 second), and even can be used for

web-based 3D animation.

173

Chapter 10 Conclusions and Further Work

This chapter concludes this thesis with a summary of what has been done, in the

context of the research goals stated in the introduction, as well as with an outline

of the original contribution to the body of knowledge, and a discussion of future

work.

10.1 Summary

This thesis is a summary of an original research work, which is unique in several

regards.

1. It is a unique and original synthesis of the subjects related to web based 3D

model, which is based on an analysis of a broad range of theoretical and practical

resources from traditional and modern 3D models, as well as from the related

disciplines such as SVG.

2. The discipline of the SVG GL is defined through both a technological

description, and by the proposed unique set of defining factors –differentiators,

which are: the use of 3D modelling; the use of SVG rules for the presentation

efficiency maximization; high interactivity – which are also thoroughly

discussed.

3. Numerous theoretical and functional, as well as practical and technological

aspects of web based 3D model are described in depth.

4. The theoretical assumptions and rules are tested in practice, and validated

through the practical process of development of a S3GL.

5. The developed S3GL is used in real-life applications, to demonstrate that

efficient and effective 3D models may be developed today, without the need to

wait for any further advances in computer technologies, or in data availability.

6. Four demo applications of 3D models are presented, with a discussion of

how and where they can be of benefit.

10.2 Main Achievements

This work provides a broad summary of knowledge relating to the subject of web

based 3D model, including their different theoretical, functional, technological

and practical aspects. In the process of its completion all of the research

objectives stated in the introductory chapter were successfully fulfilled:

1. Evaluation and analysis of web based 3D models: the state-of-the-art of the

web based 3D models have been evaluated and analyzed. The importance of

web-based 3D model has been discussed. Further research requirements have

been identified and clearly stated.

174

2. Proposition, design and development of the new framework-SVG GL for

web-based applications: the SVG GL has been defined through a technological

description, and through a unique proposed set of defining factors, which include:

the use of 3D visualization, the employment of SVG rules, high interactivity.

3. Core development and practical validation: a test software system-S3GL has

been developed, enabling the validation of the discussed the SVG GL principles,

and of the proposed defining factors. This work includes the design and

development of various new SVG 3D models of primitives, free form surfaces,

new algorithms for SVG 3D model manipulations including transformation and

projection, new algorithms for SVG 3D model enhancement including shading

and texture mapping.

4. S3GL functional description: practical knowledge has been gathered, and

combined with the practical know-how of S3GL development, in order to discuss

functional aspects and recommendations that maximize usability of the SVG GL

products

5. Application development: 4 specialized 3D web-based applications, based on

the developed S3GL, have been developed and validated.

6. Practical demonstration: the developed S3GL has been used to demonstrate the

possibility of successful development of web-based 3D models, without the need

to wait for further technological or scientific progress.

7. Identification of applications: the usability of S3GL in different application

areas has been further demonstrated by the identification and discussion of a

wide range of potential applications.

10.3 The Contributions to New Knowledge Generations

The predicted contributions to the new knowledge body presented in Section 1.4

have been achieved. The research work outlined in this thesis contributes to the

body of scientific knowledge in a number of aspects, on two levels: theoretical

and practical. A complete framework for web based SVG 3D modelling is

presented, particularly focused on developing accurate and flexible algorithms

and 3D modelling. Experimental results presented in this thesis show the

efficiency and accuracy of the 3D models. A summary of the respective

contributions is presented below:

The primary contribution of this project is the proposition, design and

development of a new generic framework for modelling and constructing

SVG-based 3D models for efficient web-based applications. This framework can

be applied widely in interactive manipulation web-based environments.

175

The main contributions of this PhD project are:

1. Proposition, design and development of a new framework for SVG 3D

modelling based on classical 3D graphic theory and SVG. While the model is

initialized using classical 3D graphics, the scene model is extended using SVG. A

new algorithm to present 3D graphics with SVG has been proposed. The

framework including (1) the definition of a 3D scene in the framework, (2) the

integration of 3D objects, camera, transformation, projection, light model and

texture in a 3D scene, (3) the rendering 3D objects on the web page and (4)

enabling the end-user to interactively manipulate objects on the web page.

2. Design and development of a new 3D graphics library for 3D geometric

transformation and projection in SVG 3D.

3. Design and development of a set of primitives in SVG 3D, include triangle,

sphere, cylinder, cone, etc.

4. Proposition, design and development of the new area interpolation Goraud

shading algorithm and area interpolation Phong Shading algorithm to implement

Gouraud shading and Phong shading in SVG 3D. The algorithms can be used to

generate smooth shading and create highlight for 3D objects.

5. Proposition, design and development of the new texture mapping

algorithms-pattern based image transformed texture mapping algorithm for SVG

3D oriented toward web-based 3D modelling applications. Texture mapping

algorithms for different 3D objects such as plane, sphere, cylinder, cone, etc. will

also be proposed, designed and developed.

This constitutes a unique and significant contribution to the disciplines of web

based 3D modelling, as well as to the process of 3D model popularization.

10.4 Further Work

Due to the time and resource limitation, a number of areas in this PhD project

have been identified for further improvement. The proposed future work

encompasses four distinguished themes: 1) improvements of the SVG GL; 2)

new techniques SVG 3D solid modelling; 3) the development of new

applications; and 4) the continued popularization of the SVG GL.

The first theme concerns functional and technical improvements of the SVG GL.

These include: the introduction of new data formats, the broadening of the range

of the representational forms available, the strengthening of the 3D model

handling mechanisms, the further development of the drawing optimization

mechanisms, as well as other improvements that will be identified as desirable in

the future.

176

The second theme is related to the study the new technology for SVG 3D solid

modelling. In this project, the technologies have been developed mainly for SVG

3D surface modelling. However, the SVG 3D models should also be very useful

for product production purposes

The third theme is concerned with development and – where possible practical

deployment, of a broader range of applications of the SVG GL. This includes the

practical development of the already-identified applications, as well as the

identification, analysis and the potential subsequent implementation of the

completely new application ideas.

The last theme are related to the intended continuation of efforts in the

popularization of the SVG GL, which may be done both through practical

demonstrations of the newly developed applications, as well as through

publication of research results in the future.

177

Reference

Alkalay, A. (2007) Some SVG Games. [cited 10th October 2013] Available from

http://avi.alkalay.net/2007/08/svg-games.html.

Angel, E. (2003) Interactive Computer Graphics: A Top-down Approach Using

OpenGL. Boston, USA: Addison-Wesley.

Badros, G., Tirtowidjojo, J. and Marriott, M. (2001) A Constraint Extension to

Scalable Vector Graphics, Proceedings of the 10th International Conference on

World Wide Web, pp. 489-498. Hong Kong, May 2001.

Baravalle, A., Gribaudo, M. and Lanfranc, V. (2003) Using SVG and XSLT for

Graphic Representation, Scalable Vector Graphics (SVG) Open 2003 Conference.

Vancouver, Canada, July 2003.

Baru, C., Behere, A. and Cowart, C. (2001) Representation and Display of

Geospatial Information: a Comparison of ArcXML and SVG, Proceedings of the

Second International Conference on Web Information Systems Engineering 2001,

pp. 48-53. Kyoto, Japan, December 2001.

Belongie, S., Malik, J. and Puzicha, J. (2002) Shape Matching and Object

Recognition Using Shape Contexts, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(4), pp. 509 – 522.

Bertoline, G. (1998) Visual Science: An Emerging Discipline1, Journal for

Geometry and Graphics, 2(2), pp.181-187.

Bishop, G., Weimer, M. (1986) Fast Phong Shading, Newsletter ACM

SIGGRAPH Computer Graphics, 20(4), pp. 103-106.

Blinn, J. F. (1977) Models of Light Reflection for Computer Synthesized

Pictures, Proceedings of the 4th Annual Conference on Computer Graphics and

Interactive Techniques, pp. 192-198. California, USA, July 1977.

Bliss, F., Dill, J. and Machover, C. (2002) Graphics in Advanced

Computer-Aided Design, IEEE Computer Graphics and Applications, 22(3), pp.

22-23.

Blundell, B. (2008) An Introduction to Computer Graphics and Creative 3-D

Environments. Berlin, Germany: Springer.

178

Boivin, S., Gagalowicz, A. (2001) Image-Based Rendering of Diffuse, Specular

and Glossy Surfaces From a Single Image, Proceedings of the 28th Annual

Conference on Computer Graphics and Interactive Techniques, pp. 107-116. Los

Angeles, USA , August 2001.

Brodlie, K. W., Wood, J. and Duce, D. A. (2002) XML for Visualization,

Proceedings of the 2002 International Conference on EuroWeb, pp. 10-10.

Oxford, UK, December 2002.

Brutzman, D., Daly, L. (2007) X3D: Extensible 3D Graphics for Web Authors.

Massachusetts, USA: Morgan Kaufmann.

Buss, R. (2003) 3D Computer Graphics: A Mathematical Introduction with

OpenGL. Cambridge, UK: Cambridge University Press.

Caniuse (2013) Compatibility Table for Support of SVG in Desktop and Mobile

Browsers. [cited 20th January 2014] Available from http://caniuse.com/svg.

Carey, R., Greenberg, D. (1985) Textures for Realistic Image Synthesis,

Computer and Graphics, 9(3), pp. 125-138.

Carlbom, J., Paciorek, J. (1978) Planar Geometric Projections and Viewing

Transformations, Journal for ACM Computing Surveys, 10(4), pp. 465-502.

Chang, H., Raffensperger, J. and Churcher, N. (2004) Displaying Linear

Programs and Their Solutions with XML and SVG, Proceedings of the 2004

Australasian Symposium on Information Visualisation, pp. 141-150.

Christchurch, New Zealand, January 2004.

Chang, Y. H., Chuang, T. (2002) Online Aggregation and Visualization of

Census Data: Population Mapping with SVG, XML, and Free Software,

Proceedings of SVG Open 2002. Zurich, Switzerland, July 2002.

Chen, B., Dachille, F. and Kaufman, A. (1999) Forward Image Mapping,

Proceedings of the Conference on Visualization '99, pp 89-96. San Francisco,

USA, October 1999.

Chen, R., Liu, L. and Dong, G. (2010) Local Resampling for Patch-Based

Texture Synthesis in Vector Fields, International Journal of Computer

Applications in Technology, 38(1/2/3), pp.124-133.

Comninos, P. (2005) Mathematical and Computer Programming Techniques for

Computer Graphics. Berlin, Germany: Springer.

179

Cook, C., Torrance, K. (1982) A Reflectance Model for Computer Graphics,

Journal of ACM Transactions on Graphics, 1(1), pp. 7-24.

Coxeter, H. S. M. (1974) Projective Geometry (second edition). Berlin, Germany:

Springer.

Criag A., James N. and Stuart M. (2008) Web Software Visualization Using

Extensible 3D (X3D) Graphics, Proceedings of the ACM 2008 Symposium on

Software Visualization, pp. 213-214. Ammersee, Germany, September 2008.

Dahlström, E., Dengler, P. and Grasso, A. (2011) Scalable Vector Graphics

(SVG) 1.1 (Second Edition). [cited 20th October 2012] Available from

http://www.w3.org/TR/SVG11/Overview.html.

Dailey, D., Frost, J. and Strazzullo, D. (2012) Building Web Applications with

SVG. USA: Microsoft Press.

Danchilla, B. (2012) Beginning WebGL for HTML5. New York, USA: Apress.

Delahunty, B. (2003) Introduction to Mono - ASP.NET with XSP and Apache.

[cited 21st January 2014] Available from

http://www.codeproject.com/Articles/9738/Introduction-to-Mono-ASP-NET-wit

h-XSP-and-Apache.

Delmarcelle, T., Hesselink, L. (1993) Visualizing Second-Order Tensor Fields

with Hyper Streamlines, Computer Graphics and Applications, IEEE, 13(4), pp.

25-33.

Deng, K. et al. (2002) Texture Mapping with a Jacobian-Based Spatially-Variant

Filter, Proceedings of the 10th Pacific Conference on Computer Graphics and

Applications, pp. 460-461. Washington, USA, October 2002.

Dischler, J. M., Ghazanfarpour, D. (2001) A Survey of 3D Texturing, Computers

& Graphics, 25(1), pp. 135–151.

Eggert, D.W.. Lorusso, A. and Fisher, R.B. (1997) Estimating 3-D Rigid Body

Transformations: a Comparison of Four Major Algorithms, Machine Vision and

Applications, 9(5-6), pp 272-290.

Eisenberg, J. (2002) SVG Essentials. Sebastopol, USA: O‘Reilly Media.

Elinas, P., Stürzlinger, W. (2000) Real-Time Rendering of 3D Clouds, Journal of

Graphics Tools, 5(4), pp. 33-45.

180

El-Khalili, E. (2005) 3D Web-Based Anatomy Computer-Aided Learning Tools,

The International Arab Journal of Information Technology, 2(3), pp. 248-252.

Farin, G. (1996) Curves and Surfaces for Computer-Aided Geometric Design: A

Practical Code. Orlando, USA: Academic Press.

Foley, J. et al. (2013) Computer Graphics Principles and Practice(3rd edition).

Boston , USA: Addison-Wesley.

Foskey, M., Otaduy, A. and Lin, M. C. (2002) ArtNova: Touch-Enabled 3D

Model Design. IEEE Virtual Reality Conference 2002, pp. 119-119. Orlando,

Florida, USA, March 2002.

Funt, B., Drew, M. and Brockington, M. (1992) Recovering Shading From

Colour Images, Proceedings of the 2nd European Conference on Computer

Vision, pp. 124-132. Santa Margherita Ligure, Italy, May 1992.

Gaedke, M., Turowski, K. (2000) Integrating Web-based E-Commerce

Applications with Business Application Systems, Netnomics, 2(2), pp 117-138.

Gálve , A., Iglesias, A. and Cobo, A.(2007) Bézier Curve and Surface Fitting of

3D Point Clouds Through Genetic Algorithms, Functional Networks and

Least-Squares Approximation, Proceedings of the 2007 International Conference

on Computational Science and Its Applications, pp.680-693. Kuala Lumpur,

Malaysia, August 2007.

Gobithasan, R., Jamaludin, M.A. (2005) Using Mathematic & MATLAB for

CAGD/CAD Research and Education. The 2nd International Conference on

Research and Education in Mathematics (ICREM 2)-2005, pp. 518-525.

University Putra, Malaysia, May 2005.

Golovinskiy, A., Kim, V. and Funkhouser, T. (2009) Shape-Based Recognition

of 3D Point Clouds in Urban Environments, International Conference on

Computer Vision 2009. Kyoto, Japan, September 2009.

Gouraud, H. (1971) Continuous Shading of Curved Surfaces, IEEE Transactions

on Computers, 20(6), pp. 623 – 629.

Grissom, S. et al. (1995) Using Visual Demonstrations to Teach Computer

Science, Proceedings of the 26th SIGCSE Technical Symposium on Computer

Science Education, pp. 370-371. Nashville, USA, March 1995.

Groover, M., Zimmers, E. (1983) CAD/CAM: Computer-Aided Design and

Manufacturing. New Jersey, USA: Prentice Hall.

181

Gross, H., Thoennessen, U. and Hansen, W. v. (2005) 3D Modelling Of Urban

Structures, Object Extraction for 3D City Models, Road Databases and Traffic

Monitoring - Concepts, Algorithms, and Evaluation (CMRT) 2005, pp. 137-142.

Vienna, Austria, August 2005.

Haeberli, P., Segal, M. (1993) Texture Mapping as Fundamental Drawing

Primitive, Proceedings of 4th Eurographics Workshop Rendering. Paris, France,

June 1993.

Harris, M. et al. (2003) Simulation of Cloud Dynamics on Graphics Hardware,

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on

Graphics Hardware, pp. 92-101. San Diego, USA, July 2003.

Heckbert, P. (1986) Survey of Texture Mapping, Journal of IEEE Computer

Graphics and Applications, 6(11), pp. 56-67.

Heeger, D., Bergen, J. (1995) Pyramid-Based Texture Analysis/Synthesis,

Proceedings of the 22nd Annual Conference on Computer Graphics and

Interactive Techniques, pp. 229-238. Los Angeles, USA, August 1995.

Hees, H. (2006) 3D Computer Graphics. Florida, USA: InstaBook Corporation.

Hibbard, B. (1998) VisAD: Connecting People to Computations and People to

People, IEEE Computer Graphics, 3(32), pp. 10-12.

Huang, H. et al. (2011) An SVG-Based Method to Support Spatial Analysis in

XML/GML/SVG-Based WebGIS, International Journal of Geographical

Information Science, 25(10), pp.1561-1574.

Jimenez, J., Cruz, J. (2013) High Performance 3D Visualization on the Web: a

Biomedical Case Study, IWBBIO13, 15(3), pp. 465-471.

Jones, W. (2004) Beginning Directx 9 (Game Development Series). Newcastle,

UK: Premier Press.

Kevin, L. (2003) KevLinDev. [cited 2nd May 2015] Available from

http://www.kevlindev.com/games/index.htm.

Kennedy, M., Kopp, S. (2001) Understanding Map Projections. California, USA:

Esri Press.

Kent, J., Carlson, W. and Parent, R. (1992) Shape Transformation for Polyhedral

Objects, Computer Graphics, 26(2), pp.47-54.

182

Kobayashi, A., Takagi, S. and Inoue, N. (2003) Extensions of SVG for Human

Navigation by Cellular Phone, Proceeding SIGGRAPH '03 ACM SIGGRAPH

2003 Web Graphics, pp. 1-1. San Diego, CA, USA, July 2003.

Kolbe, T. H., Groger, G. and Plumer, L. (2005) CityGML – Interoperable Access

to 3D City Models, Proceeding of the 1st International Symposium on

Geo-information for Disaster Management, pp. 883-899. Delft, Netherlands,

March 2005.

Krysl, P., Ortiz, M. (2001) Extraction of Boundary Representation From Surface

Triangulations, International Journal for Numerical Methods in Engineering,

50(7), pp. 1737-1758.

Kumar, P. et al. (2008) Grasping Molecular Structures Through

Publication-Integrated 3D Models, Trends in Biochemical Sciences, 33(9), pp.

408-412.

Lee, S. et al. (2002) Ubiquitous Access for Collaborative Information System

Using SVG, Proceedings of SVG Open 2002, pp. 34-41, Zurich, Switzerland,

July 2002.

Lefebvre, S., Neyret, F. (2003) Pattern Based Procedural Textures, Proceedings

of the 2003 Symposium on Interactive 3D Graphics, pp. 203-212. Monterey,

USA, April 2003.

Lewis, C. et al. (2002) Development of an SVG GUI for the Visualization of

Genome Data, Proceedings of SVG Open 2002. Zurich, Switzerland, July 2002.

Lindsey, K. (2003) 3D Geometry. [cited 10th September 2011] Available from

http://www.kevlindev.com/geometry/index.htm.

MacEachren, A. M. (1998) Cartography, GIS, and the World Wide Web,

Progress in Human Geography 1998, 22(4), pp. 575-589.

Machover, C., Whitted, T. (1998) Computer Graphics In Entertainment,

Computer Graphics and Applications, IEEE, 18(1), pp. 22-23.

Marescaux, L., Clement, J. M. and Tassetti, V. (1998) Virtual Reality Applied to

Hepatic Surgery Simulation: The Next Revolution, Annals of Surgery, 228(5), pp.

627-634.

Martin, R. (1989) Sweeping of Three-Dimensional Objects, Computer-Aided

Design, 22(4), pp. 223–234.

183

Maynard, P. (2005) Drawing Distinctions: The Varieties of Graphic Expression.

New York, USA: Cornell University Press.

Michael, L., Eric B. and Gregory P. (1997) Direct3D Professional Reference.

San Francisco, USA: New Riders Pub.

Mihaela, J (2011) Inkscape 0.48 Illustrator's Cookbook-GUTL. Birmingham, UK:

Packt Publishing.

Mitra, T., Chiueh, T. (1999) Dynamic 3D Graphics Workload Characterization

and the Architectural Implications, Proceedings of the 32nd Annual ACM/IEEE

International Symposium on Microarchitecture, pp. 62-71. Haifa, Israel, Nov

1999.

Mong, J., Brailsford, D. (2003) Using SVG as the Rendering Model for

Structured and Graphically Complex Web Material, Proceedings of the 2003

ACM Symposium on Document Engineering, pp. 88-91. Grenoble, France,

November 2003.

Nicolae, G., Moldoveanu, F. and Telea, A. (2004) Shading in a Distributed

Environment, Proceedings of 8th International Conference on Information

Visualisation, pp. 1003-1006. London, UK, July 2004.

Oliveira, M., Bishop, G. and Mcallister, D. (2000) Relief Texture Mapping,

Proceedings of the 27th Annual Conference on Computer Graphics and

Interactive Techniques, pp. 359-368. New Orleans, USA, July 2000.

Ortiz, S. (2010) Is 3D Finally Ready for the Web?, IEEE Computer Society,

43(1), pp. 14-16.

Pamela, R. (2013) The Konqueror Handbook. [cited 12th December 2013]

Available from

https://docs.kde.org/development/en/applications/konqueror/index.html.

Parent, R. (2012) Computer Animation, Third Edition: Algorithms and

Techniques. San Francisco, USA: Morgan Kaufmann.

Patrick C. (2012) OpenGL Insights. Boca Raton, USA: CRC Press.

Peterson, M. (2012) Online Maps with APIs and WebServices. Berlin, Germany:

Springer.

Peter. (2011) Rotating 3D SVG Cube. [cited 8th October 2013] Available from

http://www.petercollingridge.co.uk/blog/rotating-3d-svg-cube.

184

Pharr, M., Humphreys, G. (2004) Physically Based Rendering: From Theory to

Implementation. Massachusetts, USA: Morgan Kaufmann.

Phong, B. (1975) Illumination for Computer Generated Pictures,

Communications of the ACM, 18(6), pp. 311-317.

Pietroni, N., et al. (2007) A Survey on Solid Texture Synthesis, IEEE Computer

Graphics and Applications, 30(4), pp. 74-89.

Probets, S., et al. (2001) Vector Graphics: From PostScript and Flash to SVG,

ACM Symposium on Document Engineering, pp. 135-143. Atlanta. Georgia,

USA, November 2001.

Rahman, A., Younas, A. (2007) Web-Based Dynamic Visualization of 3D Spatial

Data. [cited 10th November 2012] Available from

http://eprints.utm.my/403/2/Alias_Abdul_Rahman,_Adnan_Younas_fksg.pdf.

Riley, K. F., Hobson, M. P. and Bence, S. J. (2006) Mathematical Methods for

Physics and Engineering (3rd edition): A Comprehensive Guide. Cambridge, UK:

Cambridge University Press.

Ritschel, T. et al. (2012) The State of the Art in Interactive Global Illumination,

Journal of Computer Graphics Forum, 31(1), pp. 160-188.

Rosenbaum, R., Schumann, H. and Tominski, C. (2004) Presenting Large

Graphical Contents on Mobile Devices - Performance Issues, Proceedings of

IRMA2004, pp. 371-374. New Orleans, USA, May 2004.

Salisbury, C. F., Farr, S. and Moore, J. A. (1999) Web-Based Simulation

Visualization Using Java3D, Proceedings of the 31st Conference on Winter

Simulation, pp. 1425-1429. Phoenix, USA, December 1999.

Sayed Y., Satya K. and Dave M. (2010) Pro Android 2. New York, USA:

Apress.

Schlick, C. (1994) A Survey of Shading and Reflectance Models, Journal of

Computer Graphics Forum, 13(2), pp. 121-131.

Seulin, R., Merienne, F. and Gorria, P. (2002) Simulation of Specular Surface

Imaging Based on Computer Graphics: Application on a Vision Inspection

System, Journal on Applied Signal Processing, 2002(1), pp. 649-658.

Sellers, G., Wright, R. S. and Haemel, N. (2010) OpenGL SuperBible:

Comprehensive Tutorial and Reference (5th Edition). New Jersey, USA:

Addison Wesley Professional.

185

Selman, D. (2002) Java 3D Programming. Connecticut, USA: Manning

Publications.

Sharon, S. (2013) The Adobe Illustrator CS6 WOW! Book. Berkeley, USA:

Peachpit Press.

Sheng, Y. et al. (2005) Visualization GML with SVG, Geoscience and Remote

Sensing Symposium, pp. 3648-3651. Seoul, Korea, July 2005.

Shreiner, D. (2009) OpenGL Programming Guide: The Official Guide to

Learning OpenGL, Versions 3.0 and 3.1. Boston, USA: Addison-Wesley

Professional.

Shuma, S. S. P., Laub, W. S. and Yuen M. M. F. (2001) Solid Reconstruction

From Orthographic Views Using 2-Stage Extrusion, Computer-Aided Design,

33(1), pp. 91–102.

Skarler, V. (2009) eManaging Ambient Organizations in 3D, Journal of

Theoretical and Applied Electronic Commerce Research, 4(3) pp. 30-42.

Sons, K. et al. (2010) XML3D: Interactive 3D Graphics for the Web,

Proceedings of the 15th International Conference on Web 3D Technology, pp.

175-184. Los Angeles, USA, July 2010.

Spanaki, M., Antoniou, B. and Tsoulos, L. (2004) Web Mapping and XML

Technologies: A Close Relationship, In 7th AGILE Conference on Geographic

Information Science, pp. 831-836. Heraklion, Greece, April 2004.

Strauss, P. S. (1990) A Realistic Lighting Model for Computer Animators,

Journal of IEEE Computer Graphics and Applications, 10(6), pp. 56-64.

Su, X. Y. et al. (2006) Scalable Vector Graphics (SVG) Based Multi-Level

Graphics Representation for Engineering Rich-Content Exchange in Mobile

Collaboration Computing Environments, Journal of Computing and Information

Science in Engineering, 6(2), pp. 96-102.

Sumner, R., Thuerey, N. and Gross, M. (2008) The ETH Game Programming

Laboratory: a Capstone for Computer Science and Visual Computing,

Proceedings of the 3rd International Conference on Game Development in

Computer Science Education, pp. 46-50. Miami, USA, February 2008.

Tabellion, E., Lamorlette, A. (2004) An Approximate Global Illumination

System for Computer Generated Films, Journal of ACM Transactions on

Graphics, 23(3), pp. 469-476.

186

Tarini, M., Cignoni, P. and Rocchini, C. (2000) Real Time, Accurate,

Multi-Featured Rendering of Bump Mapped Surfaces, Computer Graphics

Forum, 19(3), pp. 119-130.

Taubin, G. et al. (1998) Geometry Coding and VRML, Proceedings of IEEE,

86(6), pp. 1128-1243.

Tautenhahn, L. (2002) SVG-VML-3D 1.3. [cited 12th September 2011] Available

from http://www.lutanho.net/svgvml3d/.

Tucker, A. (2004) Computer Science Handbook, Second Edition. London, UK:

Chapman and Hall/CRC.

Turonova, B. (2009) 3D Web Technologies and Their Usability for The Project

3D Mobile Internet, Technical Report, Faculty of Electrical Engineering. Czech

Technical University in Prague.

Vanhatupa, J. (2013) On the Development of Browser Games – Current

Technologies and the Future, International Journal of Computer Information

Systems and Industrial Management Applications, 5(1), pp. 60-68.

Vucinic, D. et al. (2008) Towards Interoperable X3D Models and Web-based

Environments for Engineering Optimization Problems, International Conference

on Engineering Optimization. Rio de Janeiro, Brazil, June 2008.

Walsh, A., Sevenier, M. (2000) Core Web 3D. New Jersey, USA: Prentice hall

PTR.

Watt, A. H. (1999) 3D Computer Graphics (3rd Edition). New Jersey, USA:

Addison Wesley Professional.

Wei, L. et al. (2008) Inverse Texture Synthesis, Proceedings of ACM

SIGGRAPH 2008. Los Angeles, USA, August 2008.

Wolff, L. (1996) Generalizing Lambert's Law for Smooth Surfaces, Proceedings

of the 4th European Conference on Computer Vision, pp. 40-53. Cambridge, UK,

April 1996.

Wolff, L., Nayar, S. and Oren, M. (1998) Improved Diffuse Reflection Models

for Computer Vision, Journal of International Journal of Computer Vision, 30(1),

pp. 57-71.

Wolff, D. (2005) Using OpenGL in Java with JOGL, Journal of Computing

Sciences in Colleges, 21(1), pp. 223-224.

187

Wong, U., Wong, H. and Tang, Z. (2005) An Interactive System for Visualizing

3D Human Organ Models, Proceedings of the 9th International Conference on

Computer Aided Design and Computer Graphics, pp. 403-408. Hong Kong,

China, December 2005.

Wong, G., Wang, J (2013) Real-Time Rendering: Computer Graphics with

Control Engineering (Automation and Control Engineering). Florida, USA: CRC

Press.

Wright, R., Lipchak, R. (2004) OpenGL Super Bible. Indianapolis,USA: Sams.

Yoon, SY., Laffey, J. (2008) Understanding Usability and User Experience of

Web-Based 3D Graphics Technology, International Journal of

Human-Computer Interaction, 24(3), pp. 288-306

Zhang, X., Gao, Y. (2009) Generalised Ambient Reflection Models for

Lambertian and Phong Surfaces, Proceedings of the 16th IEEE International

Conference on Image Processing, pp. 3993-3996. Piscataway, USA, November

2009.

Zink, J., Pettineo, M. and Hoxley, J. (2011) Practical Rendering and

Computation with Direct3D 11. Florida, USA: CRC Press.

188

Appendix A

1. SVG file for a triangle:

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]>

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d"

shape-rendering="geometricPrecision"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/svg">

 <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" />

 <defs />

 <g id="t01" enable-background="new">

 <path d="M0 90L180 90 180 -90z" style="fill: #54ac00 ;stroke:

#54ac00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 </g>

</svg>

2. SVG file for a plane:

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]>

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d"

shape-rendering="geometricPrecision"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/svg">

 <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" />

 <defs />

 <g id="p1" enable-background="new">

 <path d="M0 0L90 -90 0 -90z" style="fill: #54ac00 ;stroke:

#54ac00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 0L90 0 90 -90z" style="fill: #54ac00 ;stroke:

#54ac00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 </g>

</svg>

3. SVG file for a Cylinder:

189

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]>

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d"

shape-rendering="geometricPrecision"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/svg">

 <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" />

 <defs />

 <g id="body" enable-background="new">

 <path d="M0 -128.6L0 0 -13.3 -128.9z" style="fill: #5f5f00 ;stroke:

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 0L-13.3 0 -13.3 -128.9z" style="fill: #5f5f00 ;stroke:

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M13.3 0L0 0 0 -128.6z" style="fill: #484800 ;stroke:

#484800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M13.3 -128.9L13.3 0 0 -128.6z" style="fill: #484800 ;stroke:

#484800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M25.4 -129.8L25.4 0 13.3 -128.9z" style="fill: #2c2c00 ;stroke:

#2c2c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-13.3 0L-25.4 0 -25.4 -129.8z" style="fill: #6d6d00 ;stroke:

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-13.3 -128.9L-13.3 0 -25.4 -129.8z" style="fill: #6d6d00 ;stroke:

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M25.4 0L13.3 0 13.3 -128.9z" style="fill: #2c2c00 ;stroke:

#2c2c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-25.4 0L-35.4 0 -35.4 -131.1z" style="fill: #727200 ;stroke:

#727200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-25.4 -129.8L-25.4 0 -35.4 -131.1z" style="fill: #727200 ;stroke:

#727200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M35.4 -131.1L35.4 0 25.4 -129.8z" style="fill: #0c0c00 ;stroke:

#0c0c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M35.4 0L25.4 0 25.4 -129.8z" style="fill: #0c0c00 ;stroke:

#0c0c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-35.4 0L-42.1 0 -42.1 -132.9z" style="fill: #6d6d00 ;stroke:

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

190

 <path d="M-35.4 -131.1L-35.4 0 -42.1 -132.9z" style="fill: #6d6d00 ;stroke:

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M42.1 -132.9L42.1 0 35.4 -131.1z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M42.1 0L35.4 0 35.4 -131.1z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-42.1 0L-45 0 -45 -135z" style="fill: #5f5f00 ;stroke:

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-42.1 -132.9L-42.1 0 -45 -135z" style="fill: #5f5f00 ;stroke:

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M45 -135L45 0 42.1 -132.9z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M45 0L42.1 0 42.1 -132.9z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M43.5 -137.1L43.5 0 45 -135z" style="fill: #5fc100 ;stroke:

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M43.5 0L45 0 45 -135z" style="fill: #5fc100 ;stroke:

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-45 -135L-45 0 -43.5 -137.1z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-45 0L-43.5 0 -43.5 -137.1z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M37.5 0L43.5 0 43.5 -137.1z" style="fill: #6ddf00 ;stroke:

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M37.5 -139.1L37.5 0 43.5 -137.1z" style="fill: #6ddf00 ;stroke:

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-43.5 -137.1L-43.5 0 -37.5 -139.1z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-43.5 0L-37.5 0 -37.5 -139.1z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M27.6 0L37.5 0 37.5 -139.1z" style="fill: #72e900 ;stroke:

#72e900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M27.6 -140.7L27.6 0 37.5 -139.1z" style="fill: #72e900 ;stroke:

#72e900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-37.5 -139.1L-37.5 0 -27.6 -140.7z" style="fill: #0c1900 ;stroke:

#0c1900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

191

 <path d="M-37.5 0L-27.6 0 -27.6 -140.7z" style="fill: #0c1900 ;stroke:

#0c1900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M14.6 -141.7L14.6 0 27.6 -140.7z" style="fill: #6ddf00 ;stroke:

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M14.6 0L27.6 0 27.6 -140.7z" style="fill: #6ddf00 ;stroke:

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-27.6 -140.7L-27.6 0 -14.6 -141.7z" style="fill: #2c5900 ;stroke:

#2c5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-27.6 0L-14.6 0 -14.6 -141.7z" style="fill: #2c5900 ;stroke:

#2c5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-14.6 -141.7L-14.6 0 0 -142.1z" style="fill: #489300 ;stroke:

#489300 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-14.6 0L0 0 0 -142.1z" style="fill: #489300 ;stroke:

#489300 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 0L14.6 0 14.6 -141.7z" style="fill: #5fc100 ;stroke:

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -142.1L0 0 14.6 -141.7z" style="fill: #5fc100 ;stroke:

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 </g>

</svg>

4. SVG file for a Cone:

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]>

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d"

shape-rendering="geometricPrecision"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/svg">

 <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" />

 <defs />

 <g id="body" enable-background="new">

 <path d="M0 -135L0 0 -13.3 0z" style="fill: #444400 ;stroke:

#444400 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L13.3 0 0 0z" style="fill: #2e2e00 ;stroke:

#2e2e00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L25.4 0 13.3 0z" style="fill: #131300 ;stroke:

#131300 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

192

 <path d="M0 -135L-13.3 0 -25.4 0z" style="fill: #525200 ;stroke:

#525200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-25.4 0 -35.4 0z" style="fill: #565600 ;stroke:

#565600 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L35.4 0 25.4 0z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L42.1 0 35.4 0z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-35.4 0 -42.1 0z" style="fill: #525200 ;stroke:

#525200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-42.1 0 -45 0z" style="fill: #444400 ;stroke:

#444400 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L45 0 42.1 0z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L43.5 0 45 0z" style="fill: #71e700 ;stroke:

#71e700 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-45 0 -43.5 0z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L37.5 0 43.5 0z" style="fill: #7fff00 ;stroke:

#7fff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-43.5 0 -37.5 0z" style="fill: #050a00 ;stroke:

#050a00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L27.6 0 37.5 0z" style="fill: #84ff00 ;stroke:

#84ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-37.5 0 -27.6 0z" style="fill: #234700 ;stroke:

#234700 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-27.6 0 -14.6 0z" style="fill: #418400 ;stroke:

#418400 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L14.6 0 27.6 0z" style="fill: #7fff00 ;stroke:

#7fff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L-14.6 0 0 0z" style="fill: #5cbb00 ;stroke:

#5cbb00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M0 -135L0 0 14.6 0z" style="fill: #71e700 ;stroke:

#71e700 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 </g>

</svg>

5. SVG file for Extrusion:

193

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]>

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d"

shape-rendering="geometricPrecision"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns="http://www.w3.org/2000/svg">

 <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" />

 <defs />

 <g id="e1" enable-background="new">

 <path d="M-51.4 -14.4L-54 0 -61.1 97.7z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M54 0L51.4 -14.4 58.2 82.8z" style="fill: #65ce00 ;stroke:

#65ce00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M54 0L58.2 82.8 61.1 97.7z" style="fill: #65ce00 ;stroke:

#65ce00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-51.4 -14.4L-61.1 97.7 -58.2 82.8z" style="fill: #000000 ;stroke:

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-42.4 -27.4L-51.4 -14.4 -58.2 82.8z" style="fill:

#000100 ;stroke: #000100 ;stroke-width: 1; stroke-linejoin: round" opacity="1"

/>

 <path d="M51.4 -14.4L48.1 69.4 58.2 82.8z" style="fill: #7dff00 ;stroke:

#7dff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M51.4 -14.4L42.4 -27.4 48.1 69.4z" style="fill: #7dff00 ;stroke:

#7dff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-27.9 -37.2L-42.4 -27.4 -48.1 69.4z" style="fill:

#2b5900 ;stroke: #2b5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1"

/>

 <path d="M-42.4 -27.4L-58.2 82.8 -48.1 69.4z" style="fill: #000100 ;stroke:

#000100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M42.4 -27.4L31.7 59.2 48.1 69.4z" style="fill: #88ff00 ;stroke:

#88ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M42.4 -27.4L27.9 -37.2 31.7 59.2z" style="fill: #88ff00 ;stroke:

#88ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-27.9 -37.2L-48.1 69.4 -31.7 59.2z" style="fill: #2b5900 ;stroke:

#2b5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

194

 <path d="M-9.7 -42.6L-27.9 -37.2 -31.7 59.2z" style="fill: #53a900 ;stroke:

#53a900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M27.9 -37.2L9.7 -42.6 11.1 53.7z" style="fill: #84ff00 ;stroke:

#84ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M27.9 -37.2L11.1 53.7 31.7 59.2z" style="fill: #84ff00 ;stroke:

#84ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M9.7 -42.6L-9.7 -42.6 -11.1 53.7z" style="fill: #72e800 ;stroke:

#72e800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M9.7 -42.6L-11.1 53.7 11.1 53.7z" style="fill: #72e800 ;stroke:

#72e800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 <path d="M-9.7 -42.6L-31.7 59.2 -11.1 53.7z" style="fill: #53a900 ;stroke:

#53a900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" />

 </g>

</svg>

