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ABSTRACT 

Due to the rapid developments in the field of computer graphics and computer 

hardware, web-based applications are becoming more and more powerful, and 

the performance distance between web-based applications and desktop 

applications is increasingly closer. The Internet and the WWW have been widely 

used for delivering, processing, and publishing 3D data. There is increasingly 

demand for more and easier access to 3D content on the web. The better the 

browser experience, the more potential revenue that web-based content can 

generate for providers and others. 

The main focus of this thesis is on the design, develop and implementation of a new 

3D generic modelling method based on Scalable Vector Graphics (SVG) for 

web-based applications. While the model is initialized using classical 3D graphics, 

the scene model is extended using SVG. A new algorithm to present 3D graphics 

with SVG is proposed. This includes the definition of a 3D scene in the 

framework, integration of 3D objects, cameras, transformations, light models and 

textures in a 3D scene, and the rendering of 3D objects on the web page, 

allowing the end-user to interactively manipulate objects on the web page. 

A new 3D graphics library for 3D geometric transformation and projection in the 

SVG GL is design and develop. 

A set of primitives in the SVG GL, including triangle, sphere, cylinder, cone, etc. 

are designed and developed. 

A set of complex 3D models in the SVG GL, including extrusion, revolution, 

Bezier surface, and point clouds are designed and developed. 

The new Gouraud shading algorithm and new Phong Shading algorithm in the 

SVG GL are proposed, designed and developed. The algorithms can be used to 

generate smooth shading and create highlight for 3D models. 

The new texture mapping algorithms for the SVG GL oriented toward web-based 

3D modelling applications are proposed, designed and developed. Texture 

mapping algorithms for different 3D objects such as triangle, plane, sphere, 

cylinder, cone, etc. will also be proposed, designed and developed. 

This constitutes a unique and significant contribution to the disciplines of 

web-based 3D modelling, as well as to the process of 3D model popularization. 
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Chapter 1 Introduction 

1.1 Background 

Computer graphics includes the process and outcomes associated with using 

computer technology to convert created or collected data into visual 

representations. Computer graphics has grown phenomenally in recent decades, 

progressing from simple two-dimensional (2D) graphics to complex, high-quality, 

three-dimensional (3D) environments. In entertainment, computer graphics is 

used extensively in movies and computer games (Parent, 2012). Animated 

movies are increasingly being made entirely with computers. There are also 

significant uses of computer graphics in non entertainment applications. For 

example, virtual reality systems are often used in training (Wong, 2005). 

Computer graphics is also an indispensable tool for scientific visualization and 

for computer-aided design (CAD) (Delmarcelle, 1993). The computer graphics 

field is motivated by the general need for interactive graphical user interfaces 

that support mouse, windows and widget functions. Other sources of inspiration 

include digital media technologies, scientific visualization, virtual reality, arts 

and entertainment. 

Over the past years, advances in display and computing technology have 

revolutionized the visualization of computer graphics. Now people can interact 

with rich, realistic, 3D graphics using relatively low cost equipment. 

Interactive 3D graphics provides the capability to produce moving pictures or 

animation. This is especially useful when exploring time varying phenomena 

such as weather changes in the atmosphere, the deflection of an airplane wing in 

flight, or telecommunications usage patterns. Interaction provides individual 

users the ability to control parameters like the speed of animations and the 

geometric relationship between the objects in a scene to one another. 

Today, interactive 3D graphics are used in a wide variety of fields. They can be 

used to model organs in a medical simulation system (Marescaux, 1998). 

Entertainment fields such as movies or video games use 3D models to produce 

photo-realistic 3D scenes and characters (Foskey, 2002). They can also be used 

to demonstrate complex data or molecular structure (Kumar, 2008) in the science 

sector. The architecture industry uses 3D models to demonstrate proposed 

buildings and landscapes through Software Architectural Models (Gross, 2005). 

In engineering, 3D models have been widely used for product design and 

development (Gobithasan, 2005). 
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The emergence of the Internet and World-Wide Web (WWW) provides a flexible 

means for linking applications, data, information, and users. To seamlessly 

interlink associated data and couple visual representations with this data creates 

opportunity for new approaches to visualization. The term web-based application 

is used to describe applications that use the Internet and WWW as an information 

source, a delivery mechanism for applications, or both. A web-based application 

is any application software that runs in a web browser or is created in a 

browser-supported programming language and relies on a common web browser 

to render the application (Gaedke, 2000). 

The web is a powerful tool since it provides communication around the world. 

The web has become popular for efficient communications in all sectors, i.e. 

education, business and government. Web-based applications should be seriously 

considered as the ideal mode of communication because it provides the method 

for sharing information in a fast, cost effective manner. Incorporation of 3D 

graphics into a web application is needed to provide a model and simulation that 

incorporates the desired 3D model. This is now realizable with the advancements 

in computer technology. 

Web-based applications are rapidly entering domains where window-based 

applications have previously been the only viable alternative. Web-based 

applications present some advantages over window-based applications. Firstly, it 

is not necessary to install the dedicated software; the user only has to access a 

web page through his preferred web browser. Therefore, with a web application, 

it can be ensured that the user is using the latest version of the software, since the 

update process is done in the server instead of in each client machine, as happens 

with window-based applications. Secondly, the cross-platform character of the 

web-based applications can attract extra users, since they are operating-system 

independent. 

Interactive 3D graphics is one of the largest areas where web-based applications 

have not seen much success until recently (Jiménez, 2013). Part of this has been 

because this type of interactivity demands much of the underlying device and 

software, such as the virtual machines for scripting languages so often involved 

in these types of applications. Another reason is the lack of a 3D graphical 

application programming interface (API) for most web application technologies. 

In this case, there are some new approaches for delivering 3D graphics in a 

web-based application. (El-Khalili, 2005) used Virtual Reality Modelling 

Language (VRML) and Java-3D to present a prototype for 3D computer-aided 
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learning tools of the human anatomy. (MacEachren, 1998) used VRML 2.0 to 

model geospatial data, and Java to develop an interface to interact with the 

VRML world. (Hibbard, 1998) designed and developed the VisAD system, 

which enables many users to implement the visualization of a shared set of 

numerical data and computation sources. VRML has been applied for 

simulations of engineering system design such as submarine design and 

workshop layout design. But these applications are window-based. If VRML is 

used in a web-based application, a plug-in is required. And the 3D model file size 

generated by VRML is normally bigger than 1 MB (Mega byte), and will affect 

the performance of the web-based application. 

X3D (Brutzman, 2007) is the successor of VRML 2.0, and it has been the 

International Standard Organization (ISO) open standard for 3D web content 

delivery in 2005. X3D combines geometry and runtime behavioural description 

into a single file. X3D can be integrated into web services, and its API-Scene 

Access Interface (SAI) allows any JavaScript, Java or C/C++ based applications 

to communicate with X3D through this API. (Rahman, 2007) discussed the 

dynamic visualization of 3D spatial data such as buildings and other large objects 

using geo-data base management system (DBMS) coupled with web-based 

system that works with VRML and X3D. As with VRML, X3D also need plug-in 

for web-based applications. Similarly to VRML, the 3D model file size generated 

by X3D is normally bigger than 1 MB (Mega byte), and will affect the 

performance of the application created by X3D. 

O3D (Ortiz, 2010) is Google‘s open source project, featuring a plug-in and a 

JavaScript API for creating 3D graphics applications that run in a web browser. 

O3D uses Open Graphics Library (OpenGL) and DirectX for graphic rendering. 

The system consists of two layers. The first layer – the plug-in, provides a shader 

and geometry abstraction mapped to OpenGL and DirectX. The higher second 

layer provides a JavaScript API similar to Open Scene Graph (OpenSG) or 

Java3D. 3D Markup Language for Web (3DMLW) (Turonova, 2009) is a file 

format based on eXtensible Markup Language (XML) developed by 3D 

Technologies R&D. It is designed for creating and representing both 3D and 2D 

interactive content on the internet. A 3DMLW document is written in a 

markup-based language similar to eXtensible HyperText Markup Language 

(XHTML). 3DMLW supports key-frame animation, Bezier-splines, particle 

systems, physics and collisions, all defined in a declarative manner as XML 

elements. It uses OpenGL for graphics rendering and Open Audio Library 

(OpenAL) for audio processing. This technology is similar to X3D, because it 
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also encodes its contents in a XML-based file format, supports scripting to 

enhance interactivity, and needs a web browser plug-in to render the contents 

within the file. 

However, 3D graphics on the web remains primitive today because the complex 

technology has been difficult to use with typical PCs and browsers. In fact, 

browsers generally cannot natively run complex 3D content or offer either high 

frame rates or full-screen graphics (Ortiz, 2010). 

1.2 Motivation  

Today, 3D graphics is primarily used in applications such as games and virtual 

reality, which are rendered using powerful computers and specialized software. 

However, businesses, engineering firms, and other users also want the realism 

and additional details that 3D adds. Users want their browser-based experiences 

to be more like those they have on a desktop. Consumers are becoming more 

accustomed to 3D contents because of the use of the technology in movies, 

videogames, and other types of entertainments. 

There is thus a demand for more and easier access to 3D contents on the web. 

The better the browser experiences, the more potential revenues that web-based 

contents can generate for providers and others. 

Now several organizations are working on technologies that may finally widen 

3D‘s presence on the web by transforming browsers into more powerful 

computing platforms that can deliver a PC-like experience, including the playing 

of 3D content (Skarler, 2009). This would enable applications such as product 

modelling, presentation, and configuration; 3D web-based meetings and worker 

collaboration; the simulation of processes such as surgery or mechanical 

procedures; virtual tours; and augmented reality. Nonetheless, 3D on the web 

will have to clear some obstacles before the technology can become reliable and 

mainstream. 

A key motivation for the use of 3D models is that humans think graphically with 

an innate ability to process graphical information resulting in fast and effective 

communication. Furthermore, human information processing of graphical 

information is involuntary and automatic, leaving more conscious problem 

solving abilities available. 

Another motivation behind using 3D modelling is for sensory appeal and 

immersion into the model. This results in enjoyment and ultimately increased 
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understanding of the model and what it represents. 

The criteria for the evaluation the effectiveness of a web-based 3D model differ 

between each application. One of the key properties of a web-based 3D model is 

that to make it accessible to the ―normal‖ user with only standard computer 

equipment (2D monitor, mouse, keyboard, sound support). The key criteria to 

evaluate the effectiveness of a web-based 3D model are availability and 

accessibility (Yoon, 2008). So the follows criteria should be adopted in this 

thesis: 

1. Functionality, it can be used to build, modify and view 3D geometrical 

models of all primitive geometries and free form surfaces for a variety of 

web-based applications. This means the technique is available for develop 

web-based 3D model. 

2. Applicability, it has native support from the majority of web browsers and 

can be viewed on a web browser without any plug-ins. The 3D model developed 

by this technique is accessible from web browser without any plug-ins. 

3. Efficiency, it can be used to create a 3D model with the smaller file size than 

the model created for a window-based application. 

As discussed above, although some successful web-based 3D modelling 

techniques, such as VRML, X3D, and O3D have been reported in the literature, 

based on the above criteria, they all have drawbacks. Most techniques have no 

native browser support and are only available through third party plug-in. 

Besides, the file sizes of some 3D models built using the existing methods are 

very big, which leads to the upload time and transaction time is much longer than 

a user expects. In summary, in one aspect, there are a lot of requirements of 

web-based 3D models and in the other aspect, there are no existing 3D modelling 

methods that are suitable to the practical web-based 3D applications, 

SVG (Scalable Vector Graphics) is an XML-based markup language for 

describing 2D graphics applications and images, and a set of related graphics 

script interfaces (Spanaki, 2004). SVG graphics can be interactive and animated. 

Bindings for scripting languages and network interfaces enable developers to 

build rich interactive graphics applications. SVG is developed by W3C for 

describing 2D vector graphics for storage, presentation and distribution on the 

Web. All major modern web browsers—including Mozilla Firefox, Internet 

Explorer 9 and 10, Google Chrome, Opera, and Safari—support basic SVG and 

can render the markup directly without the use of a plug-in (Peterson, 2012). 

This includes support for fonts, images, graphical elements such as circles or 
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paths, as well as gradients and some of the filters. There are several advantages 

to native and full support: a plug-in is not needed, SVG can be freely mixed with 

other content in a single document, and rendering and scripting become 

considerably more reliable. 

SVG provides an open, standard based format for creating graphics. Using SVG 

has numerous advantages over other conventional bitmapped graphics, such as 

JPEG, GIF, and PNG. The files are generally much smaller than bitmaps, 

resulting in quicker download times. The graphics can be scaled to fit different 

display devices without the pixelation associated with enlarging bitmaps. The 

graphics are constructed within the browser, reducing the server load and 

network response time generally associated with web imagery. The file is an 

XML-based file format; it allows the creator to conveniently embed arbitrary 

information inside of the file. SVG is well suited for graphics rich environments. 

SVG can be used for GIS, embedded systems, location-based services, animated 

picture messaging, multimedia messaging, animation and interactive graphics, 

entertainment, e-Business, and graphic user interfaces.  

Based on the above analysis, it can be seen that SVG meet almost of all the 

criteria except that the existing SVG is only in 2D. However, if 3D is integrated 

into SVG, it can even play an important role in many fields such as product 

demonstration, city planning, site exhibition, 3D e-Business (such as 3D 

shopping malls), etc. So it is practically important required to further study the 

feasible methods for 3D modelling for web-based applications. Therefore, this 

project will be focused on proposing, designing and developing a generic method 

for building SVG 3D models for web-based applications. 

1.3 Aim and Objective 

The context of this PhD project is based on two assumptions: firstly, the rapid 

developments in the field of computer graphics and computer hardware now 

allows for real time visualization of complex 3D data over the internet; secondly, 

digital 3D models are playing an increasingly important role in many fields such 

as product demonstration, city planning, site exhibition, 3D online gaming, 

decision-making and 3D e-Business (such as 3D shopping malls), etc. 

The overall aim of this thesis is to propose, design and develop a new generic 

framework for efficient SVG 3D modelling for various interactive manipulation 

web-based applications. 
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The main focus of this thesis is on the design, develop and implementation of a 

new 3D generic modelling method based on Scalable Vector Graphics (SVG) for 

web-based applications. 

In order to achieve this overall aim, the objectives of this project are: 

1. To investigate and evaluate existing methods for 3D modelling for 

web-based applications by a systematic literature review.  

2. To evaluate the existing 2D SVG applications and to investigate the 

possibility of using SVG to realize 3D graphical representations for various 

web-based applications. 

3. To analyze the geometric structure and features of 3D models and propose a 

new generic framework for 3D modelling for web-based applications. 

4. To design and develop the dedicated framework- SVG Graphics Library 

(SVG GL) for 3D models creation, interactive manipulation and view in web 

browser. 

5. To research, design and develop new algorithms for shading and texture 

mapping. 

6. To design and develop a software environment for implementing and 

validating the proposed framework and algorithms. 

7. To validate the proposed framework and algorithms through 4 web-based 

applications. 

8. To evaluate the proposed framework and algorithms through 4 typical 

web-based applications. 

1.4 Contributions to New Knowledge Generation 

The primary contribution of this project will be its proposition, design and 

development of a new generic framework for modelling and constructing 

SVG-based 3D models for efficient web-based applications. This framework can 

be applied widely in interactive manipulation web-based environments.  

The main contributions of this PhD project are: 

1. Propose, design and development of a new framework-SVG GL for SVG 3D 

modelling based on classical 3D graphic theory and SVG. While the model is 

initialized using classical 3D graphics, the scene model is extended using SVG. 

A new algorithm to present 3D graphics with SVG is proposed. This includes the 
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definition of a 3D scene in the framework, integration of 3D objects, cameras, 

transformations, light models and textures in a 3D scene, and the rendering of 3D 

objects on the web page, allowing the end-user to interactively manipulate 

objects on the web page. 

2. Design and develop a new 3D graphics library for 3D geometric 

transformation, and projection in the SVG GL. 

3. Design and develop a set of primitives in the SVG GL, including triangle, 

sphere, cylinder, cone, etc.. 

4. Design and develop a set of complex 3D models in the SVG GL, including 

extrusion, revolution, Bezier surface, and point clouds. 

5. Propose, design and develop the new Gouraud shading algorithm and new 

Phong Shading algorithm in the SVG GL. The algorithms can be used to 

generate smooth shading and create highlight for 3D models. 

6. Propose, design and develop the new texture mapping algorithm for the SVG 

GL oriented toward web-based 3D modelling applications. Texture mapping 

algorithms for different 3D objects such as triangle, plane, sphere, cylinder, cone, 

etc. will also be proposed, designed and developed. 

This constitutes a unique and significant contribution – both theoretical and 

practical – to the disciplines of web-based 3D modelling, as well as to the 

process of 3D model popularization. 

1.5 Thesis Structure 

The thesis is arranged as follows. 

Chapter 1, ―Introduction‖, presents the background of this PhD project, 

motivations, and overall aim and objectives. 

Chapter 2, ―Literature Review and Current 3D Technologies‖, first reviews the 

research literature on the state of the art of 3D web-based modelling, and how 

this relates to other branches of 3D modelling. The technologies for 

window-based 3D presentation are introduced. Most importantly, current 

technologies for web-based 3D presentations are discussed, weighting up the 

advantages and drawbacks of each technology. 

Chapter 3, ―Research Design and Methods‖, provides the research design of this 

project, and also discusses the methods for data collection and presentation. 
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Chapter 4, ―SVG Theory and Its Applications, and OpenGL‖, is focused on SVG. 

The SVG Theory and its applications are reviewed, the problem with the existing 

SVG 2D are also discussed. The need for 3D SVG research is documented. 

Chapter 5, ―A New Framework-SVG GL for Web-Based Graphical Presentation‖, 

proposes the new framework-SVG GL. The framework is described from the 

functional perspective, as well as from the technical design angle.  

Chapter 6, ―New Algorithms for Shading in the SVG GL‖, is oriented more 

specifically on the illumination and shading, and develops new Gouraud shading 

algorithm and new Phong shading algorithm in the SVG GL. 

Chapter 7, ―New Algorithms for Texture Mapping in the SVG GL‖, is oriented 

more specifically on the texture mapping. New texture mapping algorithms 

developed for the SVG GL are presented in details. 

Chapter 8, ―Design and Development of the Software Environment for 

Validating the Proposed Framework and Algorithms‖, presents the analysis of 

the system requirements, the system design and development environment of the 

software environment of the SVG GL. 

Chapter 9, ―The Discussions of the Proposed Methods for 3D Web-Based 

Presentations‖, describes 4 demo applications of interactive 3D model based on 

the SVG GL, and discusses the potential application fields of the SVG GL. 

Chapter 10, ―Conclusions and Further Work‖, concludes the thesis with a 

summary of research outcomes, as well as a discussion of its original 

contributions and of future works. 
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Chapter 2 Literature Review and Current 3D Technologies 

2.1 Introduction 

3D computer graphics is the science, study, and method of projecting a 3D 

representation of geometric data that is stored in the computer onto a 2D image 

using visual tricks such as perspective and shading to simulate the eye's 

perception of those objects. 3D computer graphics represent a 3D object using a 

collection of points in 3D space, connected by various geometric entities such as 

triangles, lines, curved surfaces, etc. 3D computer graphics are often referred to 

as 3D models. 3D modelling is the process of developing a mathematical, 

wireframe representation of any 3D object via specialized software (Watt, 1999). 

A model is not technically a graphic until it is displayed. 

The development of 3D computer graphics has been driven both by the needs of 

the user community and by advances in hardware and software. Due to the 

progress in display and computing technology, now people can interact with rich, 

realistic, 3D computer graphics with relatively low cost equipment.  

The applications of 3D computer graphics are many and varied. A major use of 

3D computer graphics is in design processes, particularly for engineering and 

architectural systems, almost all products are now computer designed (Figure 

2.1). Generally referred to as CAD, computer-aided design methods are now 

routinely used in the design of buildings, automobiles, aircraft, watercraft, 

spacecraft, computers, textiles, and many other products (Groover, 1983; Bliss, 

2002; Gobithasan, 2005). 

 

Figure 2.1 A fuel pump mount model designed by 3D CAD (free model 

download from http://3dprinterbaski.com/cadcam-sistemlerinin-genel-yapisi) 

3D Computer graphics is also widely used in scientific visualization 

(Delmarcelle, 1993; Grissom, 1995; Bertoline, 1998). Science and engineering, 

and even certain aspects of mathematical and statistical analysis, involve the 
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documentation of variation of one quantity against another, either predicted 

according to some law, or measured from some experiment, or gathered from 

some poll. Scientific visualization is primarily concerned with the visualization 

of 3D phenomena (architectural, meteorological, medical, biological, etc.), where 

the emphasis is on realistic renderings of volumes, surfaces, illumination sources 

(Figure 2.2). 

 

Figure 2.2 Molecular orbital for a Carbon-60 molecule (free model download 

from http://www.ks.uiuc.edu/Research/vmd/vmd-1.8.7/cuda.html) 

3D Computer graphics is now commonly used in entertainment (Machover, 1998, 

Sumner, 2008; Parent, 2012). Computer games, with colourful and animated 

screen displays, were among the first application of 3D computer graphics. 

Cartoon animation was a logical extension of these ideas. Cartoons are often 

rendered directly from 3D models (Figure 2.3). Many traditional 2D cartoons use 

backgrounds rendered from 3D models, which allows a continuously moving 

viewpoint without huge amounts of artist time. 

 

Figure 2.3 3D cartoon characters (free model download from 

http://gallerycartoon.blogspot.co.uk/2014/05/ice-age-3-3d-cartoon-pictures.html) 
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3D Computer graphics can also be used in other areas, they can be used to model 

organs in a medical simulation system (Marescaux, 1998; Wong, 2005). The 

architecture industry uses 3D models to demonstrate proposed buildings and 

landscapes through Software Architectural Models (Gross, 2005). 

2.2 3D Computer Graphical Presentations  

A 3D computer graphics system can be thought of as having 2 major components, 

each of which performs a distinct and clearly defined key role in the process of 

image presentation. These two components are responsible for 3D scenes 

modelling and 3D rendering. Figure 2.4 gives a schematic view of the process 

used in 3D computer graphics, showing the role that each of those components 

plays. Each of these major components can be broken down into groups of 

important subcomponents. 

 

Figure 2.4 The 3D computer graphics presentation 

2.2.1 3D Scene Modelling 

The 3D Scene Modelling in 3D computer graphics is responsible for providing 

an internal mathematical representation of any 3D object that is eventually to be 

imaged. The 3D Scene Modelling system needs to support some concept of a 

geometric coordinated system and provide some way of describing the geometry 

of the 3D object to be imaged. A 3D modelling system will also provide a way 

for the user to specify what materials an object is made of and how the scene is 

lit. 

1.  Coordinate Systems 

The key to the geometry of a 3D computer graphics system is a compact means 

for storing and utilizing descriptions of local coordinate systems. The local 
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coordinate system is used in the definition of the various components of a model, 

describing the geometry and other characteristics of the scene. 

Consistent with the usual representation of 3D coordinates in mathematics, most 

current implementation of 3D computer graphics systems use right-handed 

coordinate system (Foley, 2013). This gives a natural organization with respect 

to the display screen, with the x-coordinate measuring horizontal distance across 

the screen, the y-coordinate measuring vertical distance up the screen, and 

z-coordinate proving the third spatial dimension as distance in front of the screen 

(Figure 2.5). 

 

Figure 2.5 Right-handed coordinate system 

2.  Geometric Modelling 

The basic geometric unit in 3D computer graphics system is the 3D point that is 

typically represented as a 3D-vector and stored as an array of three elements, 

representing the x, y, and z components of the point. 

Virtually all 3D computer graphics systems provide the ability to work with 

simple geometric primitives that can be specified as lists of 3D points. These 

primitives include point, lines, and polygons. Points can be arranged together to 

indicate a sampled surface, lines to form a wireframe representation, and 

polygons to form polyhedral surfaces. More sophisticated modellers will provide 

parametric surfaces, which are defined via an underlying piecewise polynomial 

formulation. Polynomial coefficients are adjusted to give the surface a specific 

shape, and these coefficients are often given intuitive form by encoding them via 

simple geometric devices, such as control polyhedral. 

A typical surface formulation is a biparametric surface, which describes a surface 

in three spatial dimensions (x, y, z) via a set of three functions of two parameters 

u and v: 
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𝑥 = X 𝑢, 𝑣 , 𝑦 = Y 𝑢, 𝑣 , 𝑧 = Z(𝑢, 𝑣)                 (2.1) 

A set of points on a parametric surface can be obtained algorithmically by 

looping over a collection of sample points on the (u, v) plane.  

Implicit surfaces are a common alternative to parametric surfaces. Here, surfaces 

are defined as the set of points satisfying a mathematical expression of the form. 

       F 𝑥, 𝑦, 𝑧 = 0                                    (2.2) 

Thus, these surfaces are defined implicitly. Any point (x, y, z) in 3D space can be 

tested to determine whether or not it is above ( F 𝑥, 𝑦, 𝑧 > 0 ), below 

(F 𝑥, 𝑦, 𝑧 < 0), or on the surface (F 𝑥, 𝑦, 𝑧 = 0). 

3.  Materials 

In the context of a 3D computer graphics system, a material is an attribute of a 

geometric object that provides a description of how the surface of the object will 

appear when viewed from a particular direction under a particular illumination.  

A usual material specification system will provide parameters for the 

specification of a material‘s colour, diffuse reflectance factor, and specular 

reflectance factor. From the point of view of usual practice, colour in 3D 

computer graphics is most often represented by RGB or ―red-green-blue‖ colour 

system (Figure 2.6). An RGB colour is stored as a triple of three numbers giving 

the relative amount of each of the three colours primaries. 

 

Figure 2.6 RGB colour cube 
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A material specification will also include the capability to provide texture maps. 

A texture map provides a pattern of colour that is to be applied to the surface of 

an object during the rendering process. These can be anything from a digital 

image that will be projected onto the surface to a regular geometric pattern like a 

checker-board. 

4.  Lights 

The purpose of lights in a 3D computer graphics system is to provide the 

illumination source for the simulated shading calculations done by the renderer 

in making an image. Thus, all light sources must define a colour of the 

illumination that they provide, usually specified in RGB coordinate. The 

illumination colour combines the intensity of the light and its chromatic 

attributes. Lights are arranged in a scene along with geometric objects but 

usually carry no geometric properties other than their position and direction of 

orientation. 

2.2.2 3D Rendering 

Rendering is simply the process of transforming a 3D object description into a 

2D image. It is generally done by simulation of the physical process that occurs 

in a camera when a picture is recorded on film.  

Briefly, the main steps in the rendering process are (Tucker, 2004): 

Step 1. Point of view: orienting the 3D scene as if it was being viewed from a 

particular point in space. 

Step 2. Projection: associating points in the 3D scene with their images on a 2D 

virtual image plane by projecting the 3D scene onto the plane. 

Step 3. Visible surface determination: deciding which surfaces projected onto the 

image plane would actually be visible from the present viewpoint. 

Step 4. Shading calculation: determining what colour would be reflected or 

transmitted to the viewpoint from the geometry visible at the sample point, 

taking into account the scene‘s geometry, lighting, and material. 

1.  Virtual Camera 

The role of the virtual camera in a 3D computer graphics system is to provide 

both a point of view from which to render an image and the basic parameters of 

the mathematical projection that will be used to form the virtual image. The 

camera‘s position and orientation are specified as part of the scene description. It 
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is typical for the camera to be positioned in the global coordinate system, usually 

with some positioning controls that correspond to the operation of a real studio 

camera. 

Theoretically, cameras can have any projection characteristics, corresponding to 

the entire variety of lens type. However, practical 3D graphics implementations 

usually implement only the standard parallel or perspective projections that are 

common in architectural and design drafting. 

A perspective projection is one in which all light rays coming from the scene 

converge at a common point, known as the centre of the projection. If a 

projection plane is interposed between the scene and the centre of projection, the 

point at which a ray from the scene through the centre of the projection intersects 

the projection plane is the image of that point (Figure 2.7). 

 

Figure 2.7 Geometry of perspective projection 

2.  Renderer 

The renderer in a 3D computer graphics system is essentially the engine that 

drives the picture-making process. The renderer views the 3D scene through the 

virtual camera and constructing an image of what it sees, by first sampling points 

on the scene geometry and calling on the shader to calculate colour for each 

sample, and then combining these sampled colours into the pixels of the image. 

3.  Shader 

The shader is the algorithm that uses the information collected by the renderer 

about a point sample on the scene geometry, its material, and the available 

lighting to calculate a colour for the sample point. This is done by a physical 
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simulation of how light is reflected toward the camera from the position on the 

surface at which the sample is being taken. 

This section has examined the procedure of 3D computer graphics presentation. 

The next section will focus on the technologies used for 3D graphical 

presentations.  

2.3 Technologies for 3D Graphical Presentations  

3D computer graphics are created with the aid of digital computers and 

specialized 3D software (Hees, 2006). In general, the term may also refer to the 

process of creating such graphics, or the field of study of 3D computer graphic 

techniques and their related technology. 

Developing 3D computer graphics requires a programming library which 

provides an API for 3D graphics. These libraries can be classified into two 

categories. The first group of libraries provides what is commonly called 

immediate mode rendering where the developer tells the library what 3D models 

should be drawn, and how each of them should be transformed, each time the 

scene is to be drawn. The other category provides retained mode rendering, a 

type of rendering where the developer constructs a scene using abstract data 

types provided by the library and then the library traverses the scene and renders 

each 3D model on the screen. The main differences between these two categories 

are who is in charge of the rendering process and who owns the properties (such 

as transformation) of each 3D model within the scene.  

The rendering process can be performed on the CPU and is then called software 

rendering. Until recently, the most common types of CPUs can only run one 

process at a time. Because rendering 3D graphics is a process that is both 

computationally intensive and easy to parallelized, a Graphics processing unit 

(GPU) is commonly used to perform the task of rendering instead of the CPU. 

When rendering is done on a GPU, it is called hardware-accelerated rendering. 

Hardware-accelerated rendering is generally much faster than software rendering 

since it offloads the CPU to run the program at hand and the GPU is built to 

process many vertices and fragments in parallel. 

Two of the most popular libraries for 3D graphics programming are OpenGL and 

Direct3D. OpenGL is an open standard managed by the non-profit technology 

consortium Khronos Group (Patric, 2012) and is available on many devices, from 

desktop computers and workstations to game consoles and mobile phones. 

Direct3D (Michael, 1997) is a library created by Microsoft as one of the APIs 
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that make up the DirectX suite of multimedia programming libraries available 

exclusively on Microsoft's own platforms, such as the Windows operating system 

and the Xbox gaming consoles. Both of these libraries are immediate mode 

libraries and utilize hardware-acceleration.  

2.3.1 OpenGL 

Open Graphics Library (OpenGL) is a cross-language, multi-platform API for 

rendering 2D and 3D computer graphics (Shreiner, 2009; Sellers, 2010). The API 

is typically used to interact with a Graphics Processing Unit (GPU), to achieve 

hardware-accelerated rendering. In addition to being language-independent, 

OpenGL is also platform-independent. 

OpenGL was developed by Silicon Graphics Inc (SGI) from 1991 and released in 

January 1992 and is widely used in CAD, virtual reality, scientific visualization, 

information visualization, flight simulation, and video games. OpenGL is 

managed by the Khronos Group currently. 

The OpenGL specification describes an abstract API for drawing 2D and 3D 

graphics. Although it is possible for the API to be implemented entirely in 

software, it is designed to be implemented mostly or entirely in hardware. 

OpenGL has many language bindings, some of the most noteworthy being the 

JavaScript binding WebGL (API, based on OpenGL ES 2.0, for 3D rendering 

from within a web browser); the C bindings WGL, GLX and CGL; the C binding 

provided by iOS; and the Java and C bindings provided by Android (Sayed, 

2010). 

2.3.2 Direct3D 

Direct3D (Jones, 2004; Zink, 2011) is part of Microsoft's DirectX API. Direct3D 

is available for Microsoft Windows operating systems (Windows 95 and above), 

and for other platforms through the open source software Wine. It is the base for 

the graphics API on the Xbox and Xbox 360 console systems. Direct3D is used 

to render 3D graphics in applications where performance is important, such as 

computer games. Direct3D also allows applications to run full screen instead of 

embedded in a window, though they can still run in a window if programmed for 

that feature. Direct3D uses hardware acceleration if it is available on the graphics 

card, allowing for hardware acceleration of the entire 3D rendering pipeline or 

even only partial acceleration. Direct3D exposes the advanced graphics 

capabilities of 3D graphics hardware, including z-buffering, spatial anti-aliasing, 
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alpha blending, atmospheric effects, and perspective-correct texture mapping. 

Integration with other DirectX technologies enables Direct3D to deliver such 

features as video mapping, hardware 3D rendering in 2D overlay planes, and 

even sprites, providing the use of 2D and 3D graphics in interactive media ties. 

Direct3D is a 3D API. That is, it contains many commands for 3D rendering; 

however, since version 8, Direct3D has superseded the old DirectDraw 

framework and also taken responsibility for the rendering of 2D graphics 

(Michael, 1997). 

OpenGL is an open standard API that provides a number of functions to render 

2D and 3D graphics, and is available on most modern operating systems 

including but not limited to Windows, Mac OS X and Linux. Direct3D is a 

proprietary API by Microsoft that provides functions to render 2D and 

three-dimensional 3D graphics, and uses hardware acceleration if available on 

the graphics card. It was designed by Microsoft Corporation for use on the 

Windows platform. Direct3D can also be used on other operating systems 

through special software (emulator). 

2.3.3 Other Technologies 

There are also other higher-level 3D scene graph technologies which provide 

additional functionality on top of the lower-level rendering API. 

1. Java 3D 

Java 3D (Selman, 2002) officially released in 1998, is a cross platform API that 

enables the development of 3D graphics applications using the popular Java 

programming language. It is considered the 3D extension for Java. It allows 

developers to create complex and interactive 3D desktop applications, or web 

based 3D applets, that can work efficiently on multiple platforms.  

Java3D is a scene graph based 3D API for the Java platform. It takes advantage 

of OpenGL or Direct3D. Java 3D allows the programmer to specify how the 3D 

scene is structured rather than providing functions for drawing 3D graphics 

directly. Java 3D can use Direct3D or OpenGL on Windows system, and use 

OpenGL on the other supported platforms, such as Mac OS X, Linux and Solaris 

Creating 3D desktop application in Java3D can be a relatively simple process for 

Java programmers. However, creating Java3D applets to embed 3D contents 

within a webpage can become a more complex task. This requires some skills in 
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HTML programming, as well as JavaScript programming to enhance the 

interactivity with the 3D web applets (Salisbury, 1999) 

2. Glide API 

Glide (Mitra, 1999) is a 3D graphics API developed by 3Dfx Interactive for their 

Voodoo Graphics 3D accelerator cards. Although it originally started as a 

proprietary API, it was later open sourced by 3Dfx. It was dedicated to gaming 

performance, supporting geometry and texture mapping primarily, in data 

formats identical to those used internally in their cards. Wide adoption of 3Dfx 

led to Glide being extensively used in the late 1990s, but further refinement of 

Microsoft's Direct3D and the appearance of full OpenGL implementations from 

other graphics card vendors, in addition to growing diversity in 3D hardware, 

eventually caused it to become superfluous. 

Glide is based on the basic geometry and ‗world view‘ of OpenGL. The result 

was an API that was small enough to be implemented entirely in late-1990s 

hardware. However, this focus led to various limitations in Glide, such as a 

16-bit colour depth limit in the display buffer. 

The technologies and APIs used in developing 3D graphical systems have been 

examined in this section. The next section will focus on the challenges posed by 

presenting such systems via the web. 

2.4 3D Computer Graphical Presentations for Web-Based Applications 

Due to the rapid developments in the field of computer graphics and computer 

hardware, web-based applications are becoming more and more powerful, and 

the performance distance between web-based applications and desktop 

applications is increasingly closer. The Internet and the WWW have been widely 

used for delivering, processing, and publishing 3D data. In recent years, 

web-based 3D models for visualizing data have attracted many researchers.  

Including 3D computer graphics on web pages is not a new trend. In 1994, a way 

to present 3D scenes in the web browser through a markup language called 

VRML was standardized. VRML allows 3D scenes to be specified in a language 

similar to HTML. While there are niche applications that use VRML, there are 

few popular sites today that include VRML documents. It seems to have become 

a standard that never really grew popular enough to see wide-scale usage for a 

number of reasons. 
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Chief among these reasons is likely that the processing power available, first and 

foremost in reasonably priced computers, back in 1994 was not good enough to 

provide convincing 3D graphics. This has changed recently with dedicated 

graphics processors finding their way into more and more types of devices. 

Thanks to this, there has been a renewed interest in technologies that provide 3D 

computer graphics on web pages and in web applications. Different approaches 

have been developed for web-based 3D modelling, as described below. Many 

tools are available to use the web as a delivery mechanism, and deals with the 

transformation of multi-dimensional data, information, and knowledge into an 

effective 3D visual form. 

2.5 Technologies for Web-Based 3D Graphical Presentations 

There are many approaches to delivering 3D graphics in a web-based application. 

Technologies available today will be described and discussed in this section. It 

will be discussed how the concept of web-based 3D evolved, from the creation of 

VRML to the newest WebGL. 

2.5.1 VRML 

Created in 1994, by the VRML Consortium, this high level 3D content 

development language was responsible for introducing the concept of 3D 

graphics for web, and was the first ISO standard for the creation and 

visualization of 3D contents on the Internet (Walsh, 2000). 

The VRML 1.0, officially released in 1995, was proposed as a common language 

for the creation of 3D scenes distributed over the Internet. For that, it was created 

with the intent of being a cross platform, extensible, and bandwidth conservative 

language. It can be said that VRML 1.0 brought the platform-independent 3D 

concept for the web. However, this release was very limited because it only 

allowed to create non-realistic and static 3D scenes, and was not possible to 

interact with the 3D objects within that scene. 

In order to provide a more immersive, realistic and interactive 3D world, a 

second major version of VRML was released, the VRML 2.0 (defined later as 

VRML97). This release brought support for interactivity, sound, animation, and 

ultimately the ability to create more complex 3D worlds. 

In order to display, interact, and navigate on the VRML 3D world described in 

the .wrl file, a VRML web browser plug-in or a standalone player have to be 

used to interpret this file. VRML allows the creation of full 3D environments, but 
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it has some limitations. For example, it does not allow for video streaming, 

binary compression, and multi-texturing. 

The advantage of VRML is that it is widely platform-independent, easy to create 

by exporting from standard 3D-Graphics Software, and it works well with the 

newer browser generations; VRML can be visualized efficiently on standard PCs 

without the need to purchase additional custom hardware; VRML is a very 

simple yet powerful language that can be learnt quite easily, hence it enables 

developers to create new VRML worlds or enhance existing ones without 

technical knowledge of 3D visualization 

In addition to the above advantages, VRML also have significant disadvantages. 

The flexibility of VRML made it difficult to write rendering engines that were 

fast. In addition, interfaces with web browsers, i.e. the HTML page in which the 

3D scene is embedded were unreliable and not standardized. This was also a 

major flaw, since it is important to be able to combine interactive 2D and 3D 

contents. 

2.5.2 X3D 

The technology X3D developed by the Web3D consortium as the third 

generation of VRML, and became an ISO standard in 2004. It was developed 

with the main goal of overcoming the deficiencies of VRML, and to make the 

creation of 3D graphics an easier and more intuitive task, accessible to a wide 

range of developers, including 3D graphics programmers and even 

non-programmers. 

Like its predecessor VRML, X3D is a standard for real-time interactive 

visualizations based on a markup language. X3D uses a tree-structured scene 

graph to represent the graphics nodes that make part of the 3D world. This scene 

graph includes the geometry, appearance, animation and event routing. 

Just like VRML, X3D needs a player to parse and render an encoded X3D scene, 

which may also allows for user interaction and object animation. In fact, every 

browser needs an X3D player plug-in in order to render X3D scenes. 

The advantages of X3D for software visualization are rich graphics, extensibility, 

and XML integration. The disadvantages of X3D are lack of software 

visualization user controls, a primitive animation model, and weak support for 

filtering and layout (Craig, 2008). 

2.5.3 WebGL 
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WebGL (Danchilla, 2012) is a relatively new cross-platform JavaScript API 

developed by the Khronos Group that extends the capability of the classic 

JavaScript programming language, allowing the generation of native 3D graphics 

in any compatible web browser, without needing extra plug-in. The WebGL API 

is based on the OpenGL ES 2.0 standard, so it enables a direct access to each 

GPU (Graphic Processing Unit) located on the client. It uses the HTML5 canvas 

element and is accessed using Document Object Model (DOM) interface. 

Firefox, Chrome and Opera support WebGL by default on Windows, Mac OS X 

and Linux. Safari also supports WebGL on Mac OS X, but it has to be enabled 

manually. Internet Explorer does not support WebGL without the use of a 

plug-in. Both Firefox and Opera provides support for WebGL. WebGL even 

already runs on several mobile devices, including the iPhone. This means that, 

for all these browsers, no plug-in has to be installed to run web applications 

using WebGL. However, relatively new graphics hardware and drivers are 

required on clients‘ computers. 

The advantage of WebGL is that WebGL is not based on a plug-in. It runs 

directly in the browser, and is a public standard. A WebGL application can be 

developed without leaving the familiar web development environment of HTML 

and JavaScript; all calls to the graphics API are made in JavaScript. There is no 

official development environment; any JavaScript development environment and 

debugger can be used. 

However WebGL needs a GPU support for shader rendering to be supported and 

viewable by the user. The performance of WebGL is also limited by the dynamic 

nature of JavaScript. The current browsers do a great job of optimizing this 

already, but because of how JavaScript is designed, it won't get much faster 

anymore. WebGL is low level; it is complicated for new user. For developers 

without OpenGL ES experience, WebGL appears to be very complicated. 

2.5.4 JOGL 

Java OpenGL (JOGL) (Wolff, 2005) is an OpenGL binding library that allows 

OpenGL to be used in the Java programming language. It allows most OpenGL 

features through the use of Java Native Interface (JNI). It offers access to both 

the standard GL functions along with the GLU functions; however the OpenGL 

Utility Toolkit (GLUT) library is not available for window-system related calls, 

as Java has its own windowing systems: Abstract Window Toolkit (AWT), 

Swing, and some extensions. An application that uses JOGL can run on 
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Windows, Mac OS X and Linux. 

The advantage of JOGL is that it provides full access to the OpenGL APIs 

(version 1.0, 4.3, ES 1, ES 2 and ES 3) as well as nearly all the vendor extensions. 

Hence, all the features in OpenGL are included in JOGL. JOGL integrates with 

the AWT, Swing and Standard Widget Toolkit (SWT). It also includes its own 

Native Windowing Toolkit (NEWT). Hence, it provides complete support for 

windowing. 

However, the OpenGL programming style is based around affecting a global 

graphics state, which makes it difficult to structure Java code into meaningful 

classes and objects. JOGL does provide class structuring for the OpenGL API, 

but the vast majority of its methods are in the very large GL and GLU classes. 

JOGL was designed for the most recent versions of the Java platform. It also 

only supports true colour (15 bits per pixel and higher) rendering; it does not 

support colour-indexed modes. 

2.5.5 Other Technologies 

These technologies mentioned above are not the only 3D technologies for the 

web. There are other technologies that are worth mentioning. 

1.  3DMLW 

3DMLW is an open source platform, or technology, for the creation of 

interactive 2D and 3D contents for the web. 3DMLW is a technology based on 

XML. It has scripting support for the creation of dynamic and interactive 

contents, and event handling, which includes mouse, keyboard and collision 

events. It also allows the use of textures, lighting, shading, audio, particle 

engines and physics engines with collision detection. 

3DMLW has been evolving to become a cross platform and cross browser 

compatible technology. By now, it is fully functional for Firefox, Safari, Opera, 

Chrome and Internet Explorer browsers, and for Microsoft Windows applications. 

The Mac OS X and Linux distributions are in beta versions and still cause 

problems. 

This technology is similar to X3D and Ajax3D, because it also encodes its 

contents in a XML-based file format, supports scripting to enhance interactivity, 

and needs a web browser plug-in to render the contents within the file. However, 

it is still a limited technology when compared to X3D, because X3D has more 

advanced graphics facilities. 
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2. O3D 

O3D is an open source JavaScript API created by Google for creating interactive 

3D graphics applications that run in a web browser window or in a desktop 

application. O3D is viewed as bridging the gap between desktop based 3D 

accelerated graphics applications and HTML based web browsers. 

An O3D application runs in an O3D browser plug-in. This plug-in provides 

hardware acceleration, advanced texturing, advanced shading capabilities and 

sophisticated rendering techniques. Despite providing truly impressive 3D 

environments within browser, O3D still needs the use of a web browser plug-in 

and it is intended for web developers with a solid background in 3D graphics. 

Also, the rendering of very complex and detailed 3D worlds may become very 

slow if the client computer does not have a good graphics card. 

3. Flash 3D 

The Adobe Flash Player is one of the most popular platforms to create interactive 

and visually outstanding 2D and/or 3D text, animations, web games. Usually, the 

Flash applications were developed by using Adobe ActionScript language. This 

scripting language, created by Macromedia in 1998, is based on ECMAScript 

and can be used for enhancing and complementing the functionalities of the 

Flash Player. 

Flash is now a powerful, and massive used platform, to create very visual 

appealing, complex, data-rich and interactive 2D and (limited) 3D contents for 

the web. Because of that, and due to the emerging 3D content demand, powerful 

3D flash engines are emerging and evolving rapidly. 3D flash engines like 

Papervision3D, Sophie3D, Away3D, among others, eases the development of 3D 

contents for the web, using Flash and ActionScript. 

Flash applications can also be created and displayed in mobile phones, portable 

electronic devices and Internet-connected digital home devices, through a 

lightweight version of Adobe Flash Player called Adobe Flash Lite. 

However, in order to display and interact with the Flash content, the Adobe Flash 

Player plug-in has to be installed in the user web browser. Flash3D requires the 

use of proprietary tools to create 3D web applications. Besides, create 3D 

contents, developers must have a solid knowledge of Flash and ActionScript. 

All those technologies discussed above can be used to build and deliver 3D 

models for web-based applications, but they all suffer different drawbacks. Most 
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of the technologies have no native browser support and are only available 

through a third party plug-in. Besides, the file sizes of some 3D models built 

using the existing methods are very big, so the upload (hence on-line) transaction 

time is much longer than a normal user expects. And for those technologies 

based on Javascript, the performance will be heavily affected when rendering 

complex 3D scene, since Javascript is an interpreted computer programming 

language, and it is a programming language of the web; it is not really efficient 

for mathematic calculation. Therefore, it is necessary and important to propose 

and develop a new method for web-based 3D modelling that addresses these 

problems.  

This section has examined the technologies and APIs used in delivering 3D 

graphics in a web-based application. The next section will focus on the SVG and 

its applications. 

2.6 SVG and Its Applications 

SVG is a language for describing 2D graphics in XML. SVG allows three types 

of graphic objects: vector graphics, raster graphics, and text. Graphical objects, 

including PNG and JPEG raster images, can be grouped, styled, transformed, and 

composited into previously rendered objects.  

SVG has been in development since 1999 by a group of companies within the 

WWW Consortium (W3C) after the competing standards Precision Graphics 

Markup Language (PGML) and Vector Markup Language (VML) were 

submitted to W3C in 1998. SVG drew on experience from the designs of both 

those formats. 

Konqueror was the first browser to support SVG in February 2004. The Opera 

browser had fairly extensive SVG support in early 2005, and Firefox developed 

support for basic SVG shortly after. By mid-2007, Safari had implemented 

support for basic SVG as well. Google released its Chrome browser with SVG 

support in 2008, and in 2009 Microsoft announced that Internet Explorer would 

finally have native support. As of 2011, all major browsers, and many minor 

ones, have some level of SVG support (Dailey, 2012). 

There is no official development environment for SVG, but some vector graphics 

editors such as Inkscape (Mihaela, 2011), Adobe Illustrator (Sharon, 2013), or 

CorelDRAW, can be used to develop a SVG application. Even some simple text 

file editors, such as Microsoft NotePad, can also be used to edit a SVG file. 
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SVG is resolution-independent, making it ideal for rendering cross-platform user 

interface components, animations and applications where each element needs to 

be accessible via the Document Object Model (DOM). SVG can be used as a 

platform upon which to build graphically rich applications and user interfaces 

web-based applications. Developers use SVG for various sorts of interactive 

graphics applications (flow charts, business graphics, and mapping). Since SVG 

is XML-based, it can render graphics from database data, so images can be 

dynamically updated. This means an image contained in a website can be 

dynamically changed according to the data it has retrieved. 

SVG is a useful, elegant, and important tool for building informative and 

appealing graphics. It can be used to accomplish a broad range of effects, ranging 

from practical to artistic, while making graphics both dynamic and interactive. 

All these features made SVG a good candidate for web based graphics rich 

applications. 

SVG is particularly useful for data driven visualization of business data, charts, 

maps and technical drawings, as it can be generated using XSLT conversion or 

any scripting or programming language the developer is familiar with. SVG has 

been widely used for 2D graphics data representation in various fields. Some 

researchers have used it as a visualization language for different types of 

scientific data. For example, (Baravalle, 2003) use SVG and XSLT to visualize 

dynamically changing data. (Chang, 2002) use SVG to visualize census data 

online. (Lewis, 2002) use SVG to visualize medical data. (Baru, 2001) use it to 

represent statistical data on geographical maps shows how sending a SVG file 

plus some Javascript code may allow an user with a SVG enabled browser to 

display and interact with the information sent in many ways.  

The other applications of SVG include e-learning, 2D games (Alkalay, 2007), 

human navigation (Kobayashi, 2003) etc. (Lee, 2002) reports an SVG-based 

collaborative system, Garnet, for distance-education running on desktops and 

PDAs. The architecture of Garnet is based on an event brokering system. SVG 

provides better graphics and document interactive. SVG supports many user 

interface (UI) events and pointing events. It provides a quick and effective 

mechanism to process these events. Moving or clicking the mouse over any 

graphics elements is able to generate immediate feedback, such as highlighting, 

text tips, and real-time changes to the surrounding HTML text. Animations and 

scripts executions can also be triggered by this mechanism (Kevin, 2003).  
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SVG is an open, HTTP compatible standard that allows fully interactive mapping 

applications-without the need for applets or a round trip to the server every time 

the map presentation is tweaked. 

This section has given a brief introduction of SVG and its applications. The next 

section will discuss shading and texture mapping in 3D graphics which cannot be 

integrated in current SVG. 

2.7 Shading for 3D Graphical Presentations 

Shading refers to the practice of letting colours and brightness vary smoothly 

across a surface (Funt, 1992). The three most popular kinds of shading are Flat 

shading, Gouraud shading and Phong shading. All these shading methods can be 

used to give a smooth appearance to surfaces; even surfaces modelled as flat 

facets can appear smooth. 

Flat shading shades each polygon of an object based on the angle between the 

polygon's surface normal and the direction of the light source, their respective 

colours and the intensity of the light source. It is usually used for high speed 

rendering where more advanced shading techniques are too computationally 

expensive. The disadvantage of flat shading is that it gives low-polygon models a 

faceted look. 

Gouraud shading is an interpolation method which linearly interpolating a colour 

across a polygon. It is a very simple and effective method of adding a curved feel 

to a polygon that would otherwise appear flat. Gouraud interpolation works 

reasonably well; however, for large polygons, it can miss specular highlights or 

at least miss the brightest part of the specular highlight if this falls in the middle 

of a polygon. 

Phong shading is also an interpolation method, but instead of linearly 

interpolating a colour across a polygon, it linearly interpolates a normal across a 

polygon. Phong shading overcomes some of the disadvantages of Gouraud 

shading and specular highlights can be successfully incorporated in the scheme. 

The Phong Shading interpolation phase is three times as expensive as Gouraud 

Shading, so it significantly increases the computation cost. The other 

disadvantage of Phong shading is that all the information about the colours and 

directions of lights needs to be kept until the final rendering stage so that lighting 

can be calculated at every pixel in the final image. 

2.8 Texture Mapping 
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Texture mapping is the process for adding detail, or colour to the surface of a 3D 

model. Its use can enhance the visual realism with only a relatively small 

increase in computation (Tarini, 2000). 

Textures can be one, two, or three dimensional. For example, a 1D texture might 

be used to create a pattern for colouring a curve; a 3D texture, also called solid 

texture, is basically the equivalent of carving the object out of a block of material. 

It places the texture onto the object coherently, not producing discontinuities of 

texture where two faces meet. 3D texture can be used to simulate the wood grain 

on a cube to avoid discontinuities of grain along the edges of the cube.  

2D texture mapping is by far the most common use of texture mapping. 2D 

textures start out as 2D images which might be formed by application programs 

or scanned in from a photograph, regardless of their origin; they are eventually 

brought into processing as an array. The individual elements in these arrays are 

called texels, or texture elements. 

This section has examined the general concepts of shading and texture mapping, 

further discuss will be given in Chapter 6, and Chapter 7. 

2.9 Summary 

Different 3D graphics presentation technologies are introduced in this chapter, 

some inspired primarily by the need for efficiency, and others that aim to render 

a realistic physical image. Specifically, different web-based 3D graphics 

presentation technologies have been introduced in this chapter. Although the 

web-based 3D graphics technologies, like VRML, X3D, WebGL, Flash3D, 

C3DL, JOGL, 3DMLW and O3D can provide immersive and realistic web 3D 

environments within a browser, they all require the installation of third party web 

browsers plug-ins or add-ons (to take advantage of hardware acceleration), which 

may be a barrier to users that want to experience an easy and immediate 

interaction with 3D contents. 
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Table 2.1 Features supported by existing 2D SVG and the proposed 3D SVG 

Features Existing 2D SVG Proposed 3D SVG 

Vector Graphic Yes  Yes 

Highly Interactive Yes  Yes  

Supported by Major 

Browsers Without Plug-in 

Yes  Yes  

XML Format Yes  Yes  

3D Object No  Yes 

3D Transform No Yes 

3D Shading No  Yes 

3D Texture Mapping No  Yes 

SVG-as a potential platform for 3D graphics presentation for web-based 

application, is also introduced in this section. Table 2.1 shows features supported 

by existing 2D SVG and the proposed 3D SVG. Existing 2D SVG has features 

that show that SVG is a good candidate for investigating whether it is possible to 

build on this technology to develop web-based 3D graphics applications. If this is 

possible, SVG can become a useful technology to render 3D contents over the 

web, because it does not need the installation of any web browser plug-ins or 

add-ons. 
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Chapter 3 Research Design and Methods 

3.1 Introduction 

The overall aim of this PhD project will be to research, design, develop and 

implement a new framework-SVG GL for generic 3D SVG modelling for 

web-based applications. The context of this project is based on two assumptions: 

1. The rapid developments in the field of computer graphics and computer 

hardware now allows for real time visualization of complex 3D data over the 

internet; 

2. Digital 3D models are playing an increasingly important role in many fields 

such as product demonstration, city planning, site exhibition, 3D online gaming, 

decision-making and 3D e-Business (such as 3D shopping malls), etc.  

In comparing it with existing methods, the core work in this project attempts to 

achieve high performance in dealing with 3D web-based modelling. In this new 

framework-SVG GL, there are fundamental works that are related to graphics 

library, 3D solid models of various primitives, 3D SVG models with freeform 

surfaces, new algorithms for shading and texture mapping of the SVG GL 

models. The new framework and the algorithms will be tested with 4 web-based 

3D applications, and evaluated with another 4 web-based 3D applications. 

3.2 Methods for Data Collection and Presentation 

The collection, organization, and presentation of data are basic background 

material for testing and analyzing the methods provided in this project. 

After identifying the research problem and selecting the appropriate 

methodology, researchers must collect the data that they will then go on to 

analyze. There are two sources of data: primary and secondary sources. Primary 

data are data collected specifically for the study in question. Primary data may be 

collected by methods such as personal investigation or mail questionnaires. In 

contrast, secondary data are mainly collected through literature review. 

In this project, both primary data and secondary data are used, and the data 

needed are either from the existing literature- secondary data, or generated by 

own design and development of mathematical models and software 

computations-primary data. 

Based on the overall aim and objectives presented in Section1.3, the secondary 

data that should be collected are the published materials about (1) the existing 
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methods for 3D modelling for web-based applications, (2) the existing 2D SVG 

applications and (3) the geometric structure and features of 3D models. The 

primary data are mainly (1) various SVG 3D models of primitives, SVG 3D 

models of freeform surfaces, and (3) validation test results of the new framework 

and various new algorithms. 

3.3 Research Design 

The research procedure of this PhD project is shown in Figure 3.1. 

 

Figure 3.1 Research procedure 

1. Existing technologies review 
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The technologies for window-based 3D presentation are reviewed first. Then 

current technologies for web-based 3D presentation are discussed, and 

advantages and drawbacks of each technology are reviewed. Finally the SVG 

theory and its applications are reviewed, the problems with the existing SVG 2D 

are also discussed. The need for the SVG GL is documented. This work will be 

done through systematic literature review. 

2. Propose the new framework-SVG GL 

The next stage is to develop a new framework-SVG GL based on classical 3D 

graphic theory and SVG. While the model is initialized using classical 3D 

graphics, the scene model is extended using SVG. A new algorithm to present 

3D graphics with SVG is proposed. Define a 3D scene in the framework, 

integrate 3D objects, camera, transformation, light model and texture in a 3D 

scene, and render 3D objects on the web page, allowing the end-user to 

interactively manipulate objects on the web page. 

3. Develop new Gouraud and Phong shading algorithms. 

Develop new Goraud shading algorithm and Phong Shading algorithm to 

implement Gouraud shading and Phong shading in the SVG GL. The algorithms 

can be used to generate smooth shading and create highlight for 3D objects. 

4. Develop new texture mapping algorithms 

Develop novel texture mapping algorithms-pattern based image transformed 

texture mapping algorithm for the SVG GL oriented toward web-based 3D 

modelling application. Texture mapping algorithms for different 3D objects such 

as triangle, plane, sphere, cylinder, cone, etc. also proposed. 

5. Implement software environment-S3GL. 

In order to validate the proposed new framework, the new Gouraud shading and 

Phong shading algorithms, and the new texture mapping algorithms, a software 

environment-S3GL is developed based on the proposed theory. The S3GL will 

be validated firstly, to prove it can be used to create desired 3D scene.  

6. Software validation 

Four 3D test applications are implemented based on this S3GL to validate the 

new framework proposed in Chapter 5, the new Gouraud shading and Phong 

shading algorithms proposed in Chapter 6, and the new texture mapping 

algorithms developed in Chapter 7. 
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7. Software evaluation 

Four 3D demo applications are also implemented based on this S3GL to evaluate 

the framework and algorithms proposed in this PhD project. And discuss the 

potential application fields of the SVG GL 

3.4 Methods for Verification and Validation 

This thesis is mainly exploratory with some experimental validation work 

through a self designed and developed software environment. 

The first objective-investigates and evaluates existing methods for 3D modelling 

for web-based applications. To achieve the first objective, there will be a 

systematic review of the published literature to evaluate the existing 3D 

modelling methods for web-based applications, investigating and evaluating 

different 3D construction methods to define 3D models, including boundary 

representation (Krysl, 2001), constructive solid geometry (Foley, 2013); and also 

evaluating different 3D web data format, such as VRML (Taubin, 1998), X3D 

(Vucinic, 2008), CityGML (Kolbe, 2005), O3D. The subsequent analysis of 

web-base application aspects that are relevant to 3D graphics, and of the required 

extensions of the web-based body of knowledge, was especially important due to 

the conviction that without the application of web-based rules, 3D graphics 

cannot attain their full potential efficiency of information transfer. 

The second objective - evaluate the existing 2D SVG applications and to 

investigate the possibility of using SVG to realize 3D graphical representations 

for various web-based applications -was to provide a set of differentiating factors, 

based on the existing theory, that allow a clear distinction between SVG and 

other forms of 3D presentations. To achieve the second objective, it is planned to 

evaluate existing SVG applications and investigate the possibility of using SVG 

to realize 3D graphical representations, analyze the state-of-the-art of the 

relevant research areas and technologies by literature review, conference 

presentations, meetings, discussions and brain storming sessions with other 

researchers and professionals from the industry. 

Once the principle of the SVG GL development has been established, the next 

step is to achieve the third objective by systematically analyzing the geometric 

structure and features of 3D models and proposes a new generic method for 3D 

modelling based on SVG.  
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The fourth objective-implements the proposed method and validates it through 

development and evaluation of typical 3D web-based applications-required long 

and intensive work. To achieve the fourth objective, a software environment was 

designed and developed to implement the proposed method. It is validated 

through the design and development of dedicated 3D geometrical models for 

different web-based applications by using the proposed method, and explores 

potential applications of the SVG GL modelling for web-based applications. 

The purpose of developing this generic 3D modelling system is for designing and 

developing 3D models for web-based applications. So the criteria for validation 

of the 3D modelling system‘s effectiveness are that it can be used to build, 

modify and view parameterized 3D geometrical models of all primitive 

geometries and free form surfaces for a variety of web-based applications 

without the requirements of any plug-ins and special model editing software. To 

demonstrate the new proposed method, four demo applications are developed in 

this project. 

1. A 3D bottle model. 

2. A 3D building site. 

3. A supermarket. 

4. A 3D landscape. 

Those applications are used to investigate the potential application fields of the 

SVG GL. By successfully running those demo application, it shows the SVG GL 

can be used for product demonstration, urban environment simulation, city 

planning; for warehouse demonstration and 3D terrain simulation, etc. 

3.5 Ethical Issues 

In this project, the data needed are either from existing literature or generated by 

the researcher‘s own design and development of mathematical models and 

software computations. These data were generated for public use, so there is no 

ethical issue in terms of privacy and data protection in this project. 

3.6 Summary 

This chapter has discussed the research design and methods used in this project. 

The project is validated through a self designed and developed software 

environment. Since the data needed are either from existing literature or 

generated by the researcher‘s own design and development of mathematical 
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models and software computations,  so there is no ethical issue in terms of 

privacy and data protection in this project. The next chapter will go on to focus 

on SVG theory and its application s in detail. 
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Chapter 4 SVG Theory and Its Applications, and OpenGL 

4.1 Introduction 

Chapter 3 has discussed the research design and methods used in this project. 

This chapter will go on to focus on SVG theory and its applications in detail. 

SVG is an XML-based markup language for describing 2D graphics applications 

and images, and a set of related graphics script interfaces. SVG graphics can be 

interactive and animated. Bindings for scripting languages and network 

interfaces enable developers to build rich interactive graphics applications. 

SVG is developed by W3C for describing 2D vector graphics for storage, 

presentation and distribution on the Web. The first public draft of SVG was 

released by the W3C in February of 1999. By the end of June 2000, 9 subsequent 

working drafts appeared. SVG 1.0 was released as a W3C Recommendation in 

September of 2001(Dailey, 2010). Since 2001, the SVG specification has been 

updated to version 1.1. SVG 1.1 became a W3C Recommendation on 14 January 

2003; SVG 2 is currently under development, and will add new features to SVG, 

as well as more closely integrating with HTML, CSS, and the DOM. In 2001, 

SVG got a facelift to include mobile profiles. The SVG Mobile Recommendation 

introduced two simplified profiles of SVG 1.1, SVG Basic and SVG Tiny for 

devices with reduced computational and display capabilities. SVG Tiny and SVG 

Basic (the Mobile SVG Profiles) became W3C Recommendations on 14 January 

2003. An enhanced version of SVG Tiny, called SVG Tiny 1.2, became a W3C 

Recommendation on 22 December 2008 (Mong, 2003).    

All major modern web browsers—including Mozilla Firefox, Internet Explorer 9 

and 10, Google Chrome, Opera, and Safari—support basic SVG and can render 

the markup directly without the use of a plug-in. SVG is supported in every 

browser except for versions of Internet Explorer earlier than Version 9 and 

versions of Android earlier than Version 3. This includes support for fonts, 

images, graphical elements such as circles or paths, as well as gradients and 

some of the filters. There are several advantages to native and full support: a 

plug-in is not needed, SVG can be freely mixed with other content in a single 

document, and rendering and scripting become considerably more reliable. 

SVG provides an open, standard based format for creating graphics. Using SVG 

has numerous advantages over other conventional bitmapped graphics, such as 

JPEG, GIF, and PNG. The files are generally much smaller than bitmaps, 

resulting in quicker download times. The graphics can be scaled to fit different 
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display devices without the pixelation associated with enlarging bitmaps. The 

graphics are constructed within the browser, reducing the server load and 

network response time generally associated with web imagery. The file is an 

XML-based file format; it allows the creator to conveniently embed arbitrary 

information inside of the file. SVG is well suited for graphics rich environments. 

SVG can be used for GIS, embedded systems, location-based services, animated 

picture messaging, multimedia messaging, animation and interactive graphics, 

entertainment, e-Business, and graphic user interfaces. After integrating 3D into 

SVG, it can even play an important role in many fields such as product 

demonstration, city planning, site exhibition, 3D e-Business (such as 3D 

shopping malls), etc.. 

4.2 SVG Theory 

This section will examine the working theory of SVG, and some important 

features of SVG. 

SVG is a language that allows for the creation of 2D vector elements, which are 

simply mathematical representations of graphical objects. These vectors are 

infinitely scalable and can be transformed within the bounds of the 2D coordinate 

system. SVG is based on vectors rather than pixels (Rosenbaum, 2004). While a 

pixel-based approach places pigment or colour at xy-coordinates for each pixel in 

a bitmap, a vector-based approach composes a picture out of shapes; each 

described by a relatively simple formula and filled with a texture.  

SVG documents are built upon a regular XML document tree, consisting 

primarily of a header, processing instructions, comments, XML elements and 

attributes. SVG uses a ‗painter model‘ for rendering. Paint is applied in 

successive operations to the output device such that each operation paints over 

some area of the output device. When the area overlaps a previously painted area, 

the new paint partially or completely obscures the old. When the paint is not 

completely opaque, the result on the output device is defined by the 

mathematical rules for composing. Elements in an SVG document fragment have 

an implicit drawing order. Elements that appear first in the document tree are 

rendered first; subsequent elements are drawn on top of the previous elements, 

taking into account opacity, blending, filters, clipping and masking. The 

following is a typical SVG file. And the result of this file is shown in Figure 4.1. 
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Figure 4.1 A star create by SVG 

4.2.1 SVG Coordinate System 

The coordinate system of SVG is a bit different from the coordinate systems of 

mathematics. 

In mathematics, the point x=0, y=0 in a normal Cartesian coordinate system is at 

the lower left corner of the graph. As x increases the points move to the right in 

the coordinate system. As x decreases the points move to the left in the 

coordinate system. As y increases the points move up in the coordinate system. 

As y decreases the points move down in the coordinate system. In SVG 

coordinate system the point x=0, y=0 is the upper left corner. The y-axis is thus 

reversed compared to a normal graph coordinate system. As y increases in SVG, 

the points, shapes etc. move down. 

The SVG coordinate system can be specified to any units in Table 4.1. 

 

 

 

 

 

<svg height="200" width="500"> 

  <polygon points="100,10 40,198 190,78 10,78 160,198" 

style="fill:red;stroke:blue;stroke-width:5;fill-rule:nonzero;"/> 

</svg> 
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Table 4.1 The unit of an SVG coordinate system 

em The default font size - usually the height of a character 

ex The height of the character x 

px Pixel 

pt Point (1 / 72 of an inch) 

pc Pica (1 / 6 of an inch) 

cm Centimeter 

mm Millimeter 

in Inch 

Units can be specified after the coordinate value, such as 10 cm, 25mm. If no 

unit is specified after a coordinate value, the default unit is assumed to be pixels 

(px). 

4.2.2 SVG Basic Geometry Elements 

According to the W3C's Recommendations, the SVG basic geometric elements 

are ―the element types that can cause graphics to be drawn onto the target 

canvas‖. Those are: ‗path‘, ‗rect‘, ‗circle‘', ‗ellipse‘', ‗'line‘, ‗polyline‘, and 

‗polygon‘ (Dahlström, 2011). 

The above basic geometrical elements are more or less self explanatory. The 

most powerful and interesting geometric type is the <path /> element. A path is 

described using the concept of a current point. In an analogy with drawing on 

paper, the current point can be thought of as the location of the pen. The position 

of the pen can be changed, and the outline of a shape (open or closed) can be 

traced by dragging the pen in either straight lines or curves. Path elements can 

contain quadratic and cubic spline curves and arc segments. Geometry can be 

described in either absolute or relative coordinates. Mathematically, all the other 

geometry elements are shorthand forms for the ‗path‘ element that would 

construct the same shape. 

4.2.3 Text and Fonts 
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SVG has powerful text capabilities. SVG has the following text features: font 

specification, text orientation and direction, text alignment, and rich text 

formatting. The <text/> element will cause a single string of text to be rendered. 

Like any other basic shape, text can also have fillings, strokes and can be clipped 

or masked or can serve as a clipping path. The text strings within <text/> 

elements can be shifted or rotated and can also be aligned on path elements. It is 

even possible to animate a text along a path. SVG fully supports international 

text processing features for both straight line text and text on a path, including 

Unicode support, left to right text, bidirectional text or text that runs from top to 

bottom. 

An SVG font is a font defined using SVG's <font/> element. The purpose of 

SVG fonts is to allow for the delivery of glyph outlines in display-only 

environments. SVG fonts that accompany web pages have to be supported only 

in browsing and viewing situations. To ensure that the SVG file displays the 

correct font, an SVG font can be either embedded within the same document that 

uses the font or saved as part of an external resource.  

4.2.4 Filling, Stroking, Opacity 

SVG elements can be filled and stroked. Filling and stroking both can be thought 

of in more general terms as painting operations. Generally SVG elements can be 

painted with: uniform single colour, linear and radial gradients and patterns. A 

pattern is used to fill or stroke an object using a pre-defined graphic object. The 

graphic object can be raster data, vector elements and animations. A gradient 

consists of continuously smooth colour transitions along a vector from one 

colour to another, possibly followed by additional transitions along the same 

vector to other colours. Gradients parameters can be animated as well. Opacity 

can be separately defined for strokes, filling or both. Group opacity treats 

elements as a group as opposed to treating each group element individually. 

4.2.5 Styling 

SVG uses styling properties to describe many of its document parameters. 

Styling properties define how the graphics elements in SVG content are to be 

rendered. There are alternative ways to style elements in SVG. One can use 

Cascading Style Sheets (CSS) styles, XML presentation attributes or Extensible 

Style sheet Language Transformations (XSLT).  

XSLT offers the ability to take a stream of arbitrary XML content as input, apply 

potentially complex transformations, and then generate SVG content as output. 
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XSLT can be used to transform XML data extracted from databases into an SVG 

graphical representation of that data. 

CSS is a widely implemented declarative language for assigning styling 

properties to XML content, including SVG. It represents a combination of 

features, simplicity and compactness that makes it very suitable for many 

applications of SVG. 

XSLT style sheets define how to transform XML content into something else, 

usually other XML. When XSLT is used in conjunction with SVG, sometimes 

SVG content will serve as both input and output for XSLT style sheets. At other 

times, XSLT style sheets will take non-SVG content as input and generate SVG 

content as output. 

4.2.6 Filters 

Filter features are unique to SVG. A filter effect consists of a series of graphics 

operations that are applied to a given source graphic to produce a modified 

graphical result. The result of the filter effect is rendered to the target device 

instead of the original source graphic. Filters can be attached to both raster and 

vector elements. Vector elements are rasterized during the rendering pipeline; 

hence there is an opportunity to include filters.  

Typical applications for filters are colour corrections, brightness and contrast 

adaption, blurring and sharpening, illumination filters, generation of drop 

shadows and halo effects, convolution filters, displacement and morphology 

filters, generating turbulence, etc. Filters may be combined in any order and the 

output of one filter may be piped to the input of the next filter. Every filter 

parameter can be animated which can lead to very interesting effects. Filters are 

very powerful visualization options, but may require a fair amount of computing 

power. 

4.2.7 Interactivity and Scripting 

Interactivity and scripting are key parts when it comes to making SVG appealing 

for dynamic web applications. SVG content can be interactive by utilizing the 

following features: user-initiated actions such as button presses on the pointing 

device; user can initiate hyperlinks to new Web pages by actions such as mouse 

clicks; users are able to zoom into and pan around SVG content; user movements 

of the pointing device can cause changes to the cursor that shows the current 

position of the pointing device.  
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SVG proposes a variety of user events. Three event categories are specified: 

mouse events, keyboard events, and state change events. Events can trigger either 

a script function or a SMIL interaction. Mutation events listen to changes within 

a particular node in the XML document tree. 

The other, more flexible, way of modifying SVG documents is to use a client 

side scripting language. Scripts can either be embedded in SVG files or 

referenced (external files). SVG defines a language independent API to access 

and manipulate the SVG DOM. The most widely used and implemented scripting 

language in conjunction with SVG is ECMAScript (the standardized version of 

Javascript). 

4.2.8 Animation 

SVG supports the ability to change vector graphics over time. Almost any 

element and attribute can be animated in SVG.  

SVG content can be animated in the following ways: the first way is to use 

SVG's animation elements. The various elements can define motion paths, fade 

in or fade out effects, and objects that grow, shrink, spin or change colour. The 

second way is use the SVG DOM. Every attribute and style sheet setting is 

accessible to scripting. SVG offers a set of additional DOM interfaces to support 

efficient animation via scripting. Therefore, any kind of animation can be 

achieved. The timer facilities in scripting languages such as ECMAScript can be 

used to start up and control the animations. The third way is to use SMIL, a 

descriptive way to define animation parameters. SMIL animations can trigger 

script execution and vice versa.  

SVG offers interpolation of in-betweens. Interpolation options are: step-by-step, 

linear, or spline. Various parameters may be animated, such as colour value, 

position, position along a path, rotation, scale, etc. 

4.2.9 Adding SVG to a Webpage 

There are a number of ways to add SVG to a webpage. 

1. Use the object element and reference an external SVG file. This approach is 

currently the most popular way to add SVG to a page served up as HTML. 
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the type is set to the SVG MIME type ―image/svg+xml.‖ Supply the width and 

the height, and set the data attribute to the SVG file. 

Currently, using the object element is the only native approach that works with 

HTML. As support for HTML5 increases, more browsers will support SVG 

embedded directly into HTML. 

2.  Use iframe, embed, or img elements (depending on the browser) to embed 

SVG into a webpage. Not all of these embedding methods are available for every 

browser. 

 

The type is set to the SVG MIME type ―image/svg+xml.‖, and src the data 

attribute to the SVG file. 

3. SVG can also be incorporated into a webpage by being used as a CSS 

background for any element: 

4.  The last approach to adding SVG to a web page is embedding the SVG 

directly into the web page by using the SVG element. The method works in all 

HTML5 browsers and also permits animation, scripting and CSS. 

#myelement 

{ 

 background-image: url(image.svg); 

} 

 

<embed type="image/svg+xml" src="image.svg" /> 

<iframe src="image.svg"> Your browser does not 

support iframes</iframe> 

<img src="image.svg" /> 

<object type="image/svg+xml" 

    width="100" height="100" style="float:right" 

    data="image.svg"> 

</object> 
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4.3 Evaluation of SVG Applications 

SVG has been widely used in the works over the past decade and has matured a 

great deal during that time, with collaboration from interested parties around the 

world. The great appeal of SVG is that, like HTML, it‘s easy to read and edit, 

while allowing for complex interactivity and animations through scripting and 

Synchronized Multimedia Integration Language (SMIL), which is another W3C 

standard. 

SVG can be used for static images within a Web page (Eisenberg, 2002). SVG, 

being a vector graphic, can scale to fit the web page, while bitmap images such 

as JPEG and GIF cannot, or at least, can‘t scale cleanly. Compare the following 

two screenshots of the same image (Figure 4.2).  

 

Figure 4.2 Compare enlarged raster image and SVG image 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

<meta charset="UTF-8" /> 

<title>Embedded SVG</title> 

</head> 

<body> 

<h1>Embedded SVG</h1> 

<svg width="300px" height="300px" 

xmlns="http://www.w3.org/2000/svg"> 

 <text x="10" y="50" font-size="30">My 

SVG</text> 

</svg> 

</body> 

</html> 
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The raster image becomes very pixilated when it is scaled while there is no 

quality lost with the SVG image. This is because a raster image describes each 

and every pixel in the image, but SVG describes the image as shape elements or 

objects. The vector-based viewers are able to recalculate how the graphic should 

look based on the shape description that is found inside the SVG graphic. 

SVG is well suited to playing a major role in graphics rich environments. The 

visualization options available in SVG graphics go beyond competing file 

formats. Any attribute can be animated and the available interactivity options and 

script bindings allow the building of fully interactive applications that do not 

need to hide from stand-alone offline multimedia applications. It is important to 

note that SVG should be used as a complementary technology and in conjunction 

with other established web-technologies, such as XML, XHTML, static raster 

graphics and movies (Chang, 2004). SVG is primarily a presentation and 

exchange format that can and should be generated out of other storage formats, 

databases and XML sources (Brodlie, 2002). SVG should be used for static 

illustrations, animations and interactive applications. 

SVG is well suited for presenting engineering technical drawings and explaining, 

visualizing or simulating instruments (Su, 2006). Animations can visualize the 

operation of machines, technical devices or circuit diagrams. In technical 

drawings one can display non-graphical attributes (such as article numbers or 

part names) on mouse-over. In simulations, the user can interactively manage 

control panels, control flow or change environmental parameters. 

The rich visualization and interactivity options of SVG make it particularly 

useful for mapping and GIS (Sheng, 2005; Huang, 2011). The available fill and 

stroke options, symbols and markers enable higher quality map graphics and 

complex symbolizations. Interactivity helps display additional non-graphical data 

and enables analysis functions. Basic GIS functionality can be directly 

implemented in SVG, while more complex GIS analysis functions can be 

delegated to server side GIS or spatial databases. In the latter case, SVG is only 

used as a presentation tool. Data acquisition and analysis functions can be 

directly practiced in interactive SVG applications. 

SVG can also be used for smaller games and animations (Probets, 2001). A 

website dedicated to SVG and gaming (Alkalay, 2007) lists a number of SVG 

based games. 

4.4 Discussion of Problems of SVG Applications 
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SVG integrates and leverages other W3C standard technologies already familiar 

to web programmers: DOM, JavaScript, CSS (Sons, 2010). Rather than having to 

learn entire realms of technology, programming languages, and terminology to 

deal with the complex and technical area of computer graphics, designers, 

programmers, and web professionals can leverage skills learned elsewhere. 

SVG is suitable for incorporation with HTML5, web-based applications, and rich 

Internet applications (RIAs). The last 10 years have seen a great elevation of the 

status of the phrase ―web-based application‖. Not so many years ago, people in 

the web community used to respond with disbelief when someone talked about 

wanting to create a web-based application that lived primarily in the browser. A 

cursory inspection of the history of HTML5 reveals that the creation of web 

applications was one of the primary intentions behind the development of this 

emerging specification. The incorporation of inline SVG into the HTML5 

specification is a great advantage for web developers. 

SMIL is a W3C declarative language supporting multimedia and animation for 

nonprogrammers. SMIL is partially incorporated into the SVG specification. 

Those who have had more than a cursory exposure to programming animation in 

JavaScript may find themselves enamoured of the ease with which certain 

complex animations can be authored using SVG animation (or SMIL), as well as 

the ability to update many objects on the screen almost concurrently. While SVG 

also supports scripted animation through JavaScript, SMIL brings convenience, 

parsimony, and elegance to the table. 

SVG is supported natively by the most current versions of the five major web 

browsers. Additionally, it can be found in the chip sets aboard several hundred 

million mobile phones, with major support being offered from Nokia, Ikivo, 

SonyEricsson, Opera Mobile, Samsung, iPhone, and several others (Dailey, 

2012).  

Compared with other similar technologies such as Flash, Vector Markup 

Language (VML), and Silverlight, SVG has the advantages of being 

nonproprietary, standardized, cross platform, and interoperable with other XML 

languages and W3C standards. 

In summary, SVG has several key advantages over other graphics formats used 

on the Web. These include: 

1. SVG is XML-based, so it is compatible with XML, HTML4, XHTML as 

well as CSS, XSLT, and the DOM which means that SVG is extensible, can be 
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styled, scriptable, and interactive and integrates easily with other XML languages. 

Because the SVG source code is written in XML, it is readable by screen readers 

and search engines, and therefore can be ―searched‖ or ―indexed‖. 

2. SVG uses vector technology, not raster technology. Vector graphics exist in 

the world of mathematics. So SVG is a combination of geometry shapes rather 

than pixels. This is one reason that SVG images can be scaled without distortion 

or losing quality. SVG is resolution independent. SVG offers a way to do full 

resolution graphical elements, no matter what size screen, what zoom level, or 

what resolution user's device has. SVG files are generally much smaller than 

bitmaps, resulting in quicker download times. This makes SVG ideal for use on 

the Web. 

3. SVG is plain text, which means developers and designers can edit SVG files 

using a wide variety of tools. There is no official development environment for 

SVG, but some vector graphics editors such as Inkscape, Adobe Illustrator, or 

CorelDRAW, can be used to develop an SVG application. Even some simple text 

file editors, such as MicroSoft NotePad, can also be used to edit a SVG file. 

4. SVG is an open standard. SVG is an open, HTTP compatible standard that 

allows fully interactive mapping applications - without the need for applets or a 

round trip to the server every time the map presentation is tweaked. SVG can 

render on most of the modern web browsers directly without the use of a plug-in. 

Apart from all the positive aspects of SVG there are unfortunately also weak 

aspects. One issue is that the use of SVG on the web is still limited by the lack of 

support in older versions of Internet Explorer. IE Version 8 does not support 

SVG, although there are not many people still use IE8, but it will cause problems 

for those who still use IE8 or earlier version. IE9 which was introduced on 

March 0f 2011, supports the basic SVG feature set. 

The other drawback of the SVG approach is that good tools for content creation 

are still in their infancy. While it is trivial to create static and animated SVG 

graphics, tools for scripting development are not yet mature. Hence, the content 

creation of highly interactive content is still reserved to the more computer 

literate developers who are used to directly working in the source code. 

There is the problem of not being able to hide the source code effectively. This 

can be a positive feature, but quite a few content creators are hesitant to use open 

standards where they cannot use code protection. While methods exist to 

obfuscate Javascript or disable the "View Source" function in the Adobe SVG 
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viewer, it is usually trivial for computer literate people to still have access to the 

source code. This is also possible for documented binary formats, such as Flash. 

Quite a few programs exist to decompose .swf files and extract the individual 

media elements, such as graphics, movies and text. To be able to hide the source 

code in the future, Adobe is looking into the digital rights management. 

Finally, but most importantly, SVG only supports 2D graphics. So it is necessary 

and both theoretically and practically important to study the possibility of apply 

SVG for 3D modelling in various web-based applications, incorporating the 

interactive features demanded by such applications. That is the main purpose of 

this PhD project. Here, ‗interactive‘ means that users can actively interact with 

web-based systems to build, modify and dynamically view 3D models. 

The next section will focus on one of the most popular libraries for 3D graphics 

programming-OpenGL. Through the introduction of OpenGL, understand the 

necessary features of a 3D graphics presentation framework. 

4.5 OpenGL Theory 

OpenGL is an open standard API that provides a number of functions to render 

2D and 3D graphics, and is available on most modern operating systems 

including Windows, Mac OS X and Linux. This API consists of more than 700 

distinct commands that can be used to specify the objects and operations needed 

to produce interactive 3D applications. 

OpenGL is designed as a streamlined, hardware-independent interface to be 

implemented on many different hardware platforms. To achieve these qualities, 

no commands for performing windowing tasks or obtaining user input are 

included in OpenGL; instead, you must work through whatever windowing 

system controls the particular hardware you‘re using. Similarly, OpenGL does 

not provide high-level commands for describing models of 3D objects. Such 

commands might allow you to specify relatively complicated shapes such as 

automobiles, parts of the body, airplanes, or molecules. With OpenGL, you 

must build your desired model from a small set of geometric primitives—points, 

lines, and polygons. A sophisticated library that provides these features can 

certainly be built on top of OpenGL. The OpenGL Utility Library (GLU) 

provides many of the modelling features, such as quadric surfaces and NURBS 

curves and surfaces. GLU is a standard part of every OpenGL implementation. 

Most implementations of OpenGL have a similar order of operations, a series of 

processing stages called the OpenGL rendering pipeline. A pipeline, in 
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computing terminology, refers to a series of processing stages in which the 

output from one stage is fed as the input of the next stage, similar to a factory 

assembly line or pipe. This ordering, as shown in Figure 4.3, is not a strict rule 

about how OpenGL is implemented, but it provides a reliable guide for 

predicting what OpenGL will do. 

 

Figure 4.3 Order of operations 

The OpenGL rendering pipeline consists of the following main stages: 

1.  Vertex processing: Process and transform individual vertices. 

2. Rasterization: Convert each primitive (connected vertices) into a set of 

fragments. A fragment can be treated as a pixel in 3D spaces, which is aligned 

with the pixel grid, with attributes such as position, colour, normal and texture. 

3. Fragment processing: Process individual fragments. 

4. Output merging: Combine the fragments of all primitives (in 3D space) into 

2D colour-pixel for the display. 

In modern GPUs, the vertex processing stage and fragment processing stage are 

programmable. The shader programs are written in C-like high level languages 

such as GLSL (OpenGL Shading Language), HLSL (High-Level Shading 

Language for Microsoft Direct3D), or Cg (C for Graphics by NVIDIA). 

4.5.1 3D Graphics Coordinate Systems 

OpenGL adopts the Right-Hand Coordinate System (RHS). In the RHS, the 

x-axis is pointing right, y-axis is pointing up, and z-axis is pointing out of the 

screen. With right-hand fingers curving from the x-axis towards the y-axis, the 

thumb is pointing at the z-axis. RHS is counter-clockwise (CCW). The 3D 

Cartesian Coordinates is a RHS. 
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4.5.2 Primitives 

OpenGL supports three classes of geometric primitives: points, line segments, 

and closed polygons. They are specified via vertices. Each vertex is associated 

with its attributes such as the position, colour, normal and texture. OpenGL 

provides 10 primitives as shown in Figure 4.4. 

 

Figure 4.4 OpenGL primitives 

4.5.3 Vertices 

Recall that a primitive is made up of one or more vertices. A vertex, in 

computer graphics, has these attributes: 

1. Position in 3D space V=(x, y, z): typically expressed in floating point 

numbers. 

2. Colour: expressed in RGB (Red-Green-Blue) or RGBA 

(Red-Green-Blue-Alpha) components. The component values are typically 

normalized to the range of 0.0 and 1.0 (or 8-bit unsigned integer between 0 and 

255). Alpha is used to specify the transparency, with alpha of 0 for totally 

transparent and alpha of 1 for opaque. 

3. Vertex-Normal N=(nx, ny, nz): the normal vector is perpendicular to the 

surface. In computer graphics, however, we need to attach a normal vector to 
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each vertex, known as vertex-normal. Normals are used to differentiate the 

front- and back-face, and for other processing such as lighting. Right-hand rule 

(or counter-clockwise) is used in OpenGL. The normal is pointing outwards, 

indicating the outer surface (or front-face). 

4. Texture T=(s, t): In computer graphics, we often wrap a 2D image to an 

object to make it seen realistic. A vertex can have a 2D texture coordinates (s, t), 

which provides a reference point to a 2D texture image. 

4.5.4 Pixel vs. Fragment 

Pixels refer to the dots on the display, which are aligned in a 2-dimensional grid 

of a certain rows and columns corresponding to the display's resolution. A pixel 

is 2-dimensional, with a (x, y) position and a RGB colour value (there is no 

alpha value for pixels). The purpose of the Graphics Rendering Pipeline is to 

produce the colour-value for all the pixels for displaying on the screen, given 

the input primitives. In order to produce the grid-aligned pixels for the display, 

the rasterizer of the graphics rendering pipeline, as its name implied, takes each 

input primitive and perform raster-scan to produce a set of grid-aligned 

fragments enclosed within the primitive.  

A fragment is 3-dimensional, with an (x, y, z) position. The (x, y) are aligned 

with the 2D pixel-grid. The z-value (not grid-aligned) denotes its depth. The 

z-values are needed to capture the relative depth of various primitives, so that 

the occluded objects can be discarded (or the alpha channel of transparent 

objects processed) in the output-merging stage. Fragments are produced via 

interpolation of the vertices. Hence, a fragment has all the vertex's attributes 

such as colour, fragment-normal and texture coordinates. 

4.6 OpenGL Applications 

OpenGL aims at drawing 2D or 3D object into a frame buffer. The object is 

defined as a series of vertices or pixels, used to describe geometric objects and 

images, respectively. Then, OpenGL performs a data conversion to pixels with 

some processing, and these pixels can form the eventual display graphics in the 

frame buffer. All OpenGL interfaces are open and can be applied to various 

hardware platforms and operating systems. Then, users can create static and 

dynamic 3D colour images of high-quality which close to the ray tracing with 

effectively employ OpenGL. So, the application features of OpenGL are: 
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1. Portability. OpenGL is a software interface which is independent of the 

hardware platform. Intuitively, source code without modifications, can be run 

on different operating systems of personal computers and workstations.  

2.  Offline programming. The working mechanism of OpenGL is client/server 

mode; it is transparent to the network. So OpenGL is convenient to operate in a 

remote network environment. 

3.  Dynamic link. In Visual C++ 6.0, we can compile the dynamic link library 

for other procedure calls through the interface of OpenGL and the Windows 

system using the MFC class library.  

4.  Cost and efficiency. Owing to the enhancement in hardware performance 

and the development of the operating system, the overall performance of 

computation has increased over early workstations. Because OpenGL has been 

integrated into Windows, users either develop OpenGL application procedures in 

the Windows environment, or can easily transplant procedures of existing 

workstations onto Windows. Therefore, it is convenient to achieve interactive 

and high-quality 3D graphics based on Visual C++ and the OpenGL graphics 

library on a PC.  

The next section will discuss the relationship between OpenGL and SVG, and 

the reason why cannot export the rendering result of OpenGL to SVG directly, 

and it is necessary to develop a new 3D library for integrating 3D into SVG. 

4.7 OpenGL and SVG 

Through the introduction of OpenGL, the necessary features of a 3D graphics 

presentation framework should be: 

1. Defining and developing 3D Primitive Geometries. 

2. Transforming 3D objects in 3D space. 

3. Illuminating and shading the 3D object. 

4. Adding texture to 3D object to enhance the realistic. 

5. Adding 3D object to SVG file which can be rendered directly within a 

standard web browser. 

In order to integrate all those features into SVG, there are two options: 

1. Using OpenGL to process the 3D models, and export the render result to 

SVG directly. 
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2. Develop a proprietary 3D graphics processing library for SVG, using this 

3D library to implement all 3D processing, and generate an SVG file according 

to the process result. 

Table 4.2 Features supported by SVG and OpenGL 

Features SVG OpenGL 

Geometry 2D  2D, 3D 

Transformation 2D  2D, 3D 

File format XML based Vector Graphic Pixel  

File size Small  Big 

Browser support Supported by major browser 

without plug-in 

Cannot be render on 

web browser 

Shading method Using filter to achieve 2D 

illumination 

Flat shading, Gouraud 

shading and Phong 

shading 

Texture mapping Add image on 2D shape Add texture on 3D 

object 

(Table 4.2) shows features supported by SVG and OpenGL. OpenGL is a 2D 

and 3D graphical library, the render results of OpenGL are colour, depth, and 

depth/stencil in frame buffer; SVG is an XML-based vector image format for 

two-dimensional graphics. SVG images and their behaviours are defined in 

XML text files. There is no direct support to export OpenGL rendering result to 

SVG. Therefore, work needs to be done to implement the OpenGL render result 

in SVG. In order to integrate 3D with SVG, it is necessary to develop a new 3D 

library from scratch; this 3D library will fulfil all 3D model definitions, 3D 

transformations, and other 3D modelling features. The final result will be used 

to create an SVG file, and will be rendered on the web browser directly. All 

those works will be introduced Chapter 5 in details. This is one of the new 

technology contributions of this PhD project. 
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4.8 Summary 

SVG is an XML based markup language used to describe and integrate vector 

graphics, raster graphics and text. The language contains ways to draw vector 

objects (lines, polygons), raster images and text in various colours and styles on a 

specified canvas area. SVG's rich visualization options and the support of 

interactivity make it a natural candidate for providing graphics and interactive 

examples in different areas. 

SVG can be used in a variety of scenarios. SVG can be used for design, GIS and 

mapping, embedded systems, location-based services (such as traffic and weather 

reports, mapping and positioning, navigating etc.), animated picture messaging, 

multimedia messaging, animation and interactive graphics, entertainment, 

e-Business, and user interfaces information. Some work in these areas has been 

reviewed and the current state of this technology is also described and assessed. 

Despite the advantages of SVG, it is still a technology which only supports 2D 

graphics. In order to use SVG to present 3D graphics for web-based application, 

there are still many problems to be solved, such as: the addition of depth 

information, generation of a realistic shading model, and the application of 

texture to 3D models. 

OpenGL is a fully functional primitive-level API that allows the programmer to 

efficiently address and take advantage of graphics hardware. Many high-level 

libraries and applications make use of OpenGL due to its performance, ease of 

programming, extensibility, and widespread support. Since there is no direct 

support to export an OpenGL rendering result to SVG. Thus, it is necessary to 

develop a new 3D graphic library to define 3D primitives, implement 3D 

transformation, projection, illumination, texture mapping, and create an SVG 

file accordingly. The new 3D graphic library will be installed on the server side. 

All 3D graphics processing is carried on the server side, then the result will be 

sent to client side, and the 3D scene will be rendered on client‘s web browser 

directly.    

The next chapter will go on to focus on the new framework-SVG GL for 

web-based 3D presentation. 
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Chapter 5 A New Framework-SVG GL for Web-Based Graphical 

Presentation 

5.1 Introduction 

As presented in the Chapters 4, SVG is a well-known technique used for 

describing 2D vector graphics in XML. SVG is well suited to playing a major 

role in 2D graphics rich environments. It can be used for design, location-based 

services, animated picture messaging, multimedia messaging, animation and 

interactive graphics, entertainment, and graphic user interfaces. When it comes to 

3D graphics applications, there are limited successful works. As far as the author 

is aware, the only reported work is applying JavaScript to implement the SVG 

GL. Most research reports the use of JavaScript to implement 3D operations for 

SVG (Lindsey, 2003; Tautenhahn, 2002). The benefit of using JavaScript is that 

it is integrated within the webpage; it provides flexibility to manipulate the object 

defined in SVG. The drawback is JavaScript is a scripting language; it is not 

efficient when it come to heavy arithmetic calculations that are the nature of 3D 

graphics. And it is impossible to implement texture mapping and complex 

illumination models. Hence, some researchers still don‘t believe that SVG will 

be suitable for 3D graphics (Peter, 2011; Tautenhahn, 2002 ). 

However, it is important to implement 3D for web-based applications. As 

discussed above, SVG is developed by W3C. SVG integrates and leverages other 

W3C standard technologies already familiar to web programmers: DOM, 

JavaScript, and CSS. SVG is supported natively by the most current versions of 

the major web browsers, and it is resolution independent. Since SVG has many 

advantageous features that would be highly beneficial in the field of 3D graphics 

for web-based applications, it is worth further research to integrate 3D with SVG, 

which can benefit 3D graphics for web-based applications. 

As mentioned at the beginning of Chapter 4, SVG is an XML-based vector image 

format for 2D graphics. SVG images and their behaviours are defined in XML 

text files. But the render results of the existing 3D library, such as OpenGL, are 

colour, depth, and depth/stencil in frame buffer, and cannot be export to SVG. So 

a new framework has to be developed to use SVG to present 3D graphics for 

web-based application. A new framework-SVG GL for 3D model creations and 

manipulations in a web browser is proposed and developed in this chapter. The 

new framework should have the following functions: 

1. Defining and developing 3D models of primitive geometries. 
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2. Defining and developing 3D models through sweeping. 

3. Creating 3D free-form models by using Bezier surface. 

4. Generating 3D models through point clouds. 

5. Transforming 3D models in 3D space. 

6. Projecting 3D models onto 2D screen. 

7. Illuminating and shading the 3D models. 

8. Adding texture to 3D models to enhance their realistic. 

9. Adding 3D models to SVG file that can be rendered directly in a standard 

web browser. 

In this chapter, the fundamental structure of the new framework-SVG GL will be 

firstly proposed; the algorithms for geometrical transformation and projection 

will be secondly explained; then the different  3D modelling of primitive 

geometries, sweeping, Bezier surface and point clouds in the SVG GL will be 

developed. More advanced 3D graphics technologies, such as illumination, 

shading and texture mapping will be proposed in Chapter 6, and Chapter 7. 

5.2 Proposition and Design of a New Framework-SVG GL for Web-Based 

Graphical Presentation 

The structure of the new framework-SVG GL is described in Figure 5.1. There 

are 7 components in this new framework. 

1. 3D primitive models: define a set of 3D primitives as the fundamental 

building block in SVG GL. 

2. 3D complex models: provide more complex 3D modelling methods in SVG 

GL. 

3. Geometrical transformations: provide methods of changing the shape and 

position of objects. 

4. Perspective projections: transform points in 3D space to a point into 2D 

space. 

5. Shading and illumination: determine the colour of a surface of an object 

based on the interaction of light and surface. 

6. Texture mapping: maps an image, onto a 3D surface. 
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7. SVG file generator: transfers the 2D image to the viewport of SVG for final 

rendering. 

 

Figure 5.1 The new framework-SVG GL 

In the new proposed the SVG GL, the following aspects of a 3D model are 

specified individually: a 3D model in the world space; a view volume of the 

camera or observer; a projection onto a projection plane; and a viewport on the 

SVG file. World space is the base reference system for the overall model, to 

which all other model coordinates are related. The view volume of the camera is 

the 3D volume seen by camera. The Viewport is a subset of the screen space 

where the model is to be displayed. Typically the viewport will occupy the entire 

screen window, or even the entire screen, but it is also possible to set up multiple 

smaller viewports within a single screen window. Conceptually, an object in the 

3D world space is defined firstly. Then the object is transformed from the world 

space to the camera space. And then the content in the camera‘s view volume is 

projected onto the projection plane. Finally, the projection plane is mapped onto 

the viewport on the SVG file for display. Figure 5.2 shows this conceptual model 

of the 3D viewing process in the SVG GL. 
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Figure 5.2 3D view processing in the SVG GL 

There are four stages for 3D view processing in the SVG GL. Stage 1, 3D 

modelling: provides an internal mathematical representation of any 3D models 

that are eventually to be imaged. Stage 2, geometric transformation: transforms 

the 3D models from world space to camera space. Stage 3, projection: converts 

3D coordinates onto a 2D projection plane. Stage 4, mapping: transfers the 2D 

image from the projection plane to the viewport of SVG for final rendering. 

Stage 1: 3D Modelling 

The 3D Modelling system needs to support the concept of a geometric 

coordinated system and provide some way of describing the geometry of the 3D 

object to be imaged in the world space. For example, a sphere in 3D space 

consists of the set of all points in 3D space at a fixed distance r from a central 

point P and can be described by the following Equation: 

V =
3

4
πr3                           (5.1)  

The procedure of 3D modelling in the SVG GL is shown in Figure 5.3. There are 

three steps in stage 1: 

Step 1: A 3D model is defined by the primitives, sweeping, Bezier surface and 

point clouds provided in the SVG GL. 

Step 2: The vertexes of the 3D model are calculated by the definition of the 3D 

model. 

Step 3: The fragment triangles that consist the 3D model are generated based on 

the vertexes of the model.  
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Figure 5.3 3D modelling in the SVG GL 

3D primitives are the foundation for 3D modelling in the SVG GL. Primitives 

defined in the SVG GL are: 

1. Triangle. 

2. Plane.  

3. Sphere.  

4. Cylinder.  

5. Cone.  

6. Cube. 

And some more complex 3D model methods are also defined, including: 

1. Sweeping, including extrusion and revolution. 

2. Bezier surface. 

3. 3D points clouds. 

The detail of primitives in the SVG GL will be discussed in Section 5.3. 

Stage 2: Geometrical Transformation 

After the definition of 3D model, the 3D model will be transformed from world 

space to camera space by geometrical transformations. In this section, the math 

behind geometrical transformations will be introduced first; and then the 

geometrical transformations implementation in the SVG GL will be developed.  

The basic purpose of geometrical transformations is to provide methods of 

changing the shape and position of objects (Belongie, 2002), but the use of these 

transformations is pervasive throughout computer graphics. In fact, geometrical 

transformations are arguably the most fundamental mathematical tool for 

computer graphics. 

A transformation on 𝓡𝟑  is any mapping 𝑭:𝓡𝟑 ⟼𝓡𝟑 . That is, each point 

𝑷 ∈ 𝓡𝟑 is mapped to a unique point, F(P), also in 𝓡𝟑, 𝓡𝟑  is the usual 3D 

Euclidean space consisting of point (x, y, z). 
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Let F be a transformation. For a linear transformation, the following two 

conditions hold:  

1.  For all 𝑎 ∈ 𝓡 and 𝑷 ∈ 𝓡𝟑, 𝑭 𝑎𝑷 = 𝑎𝑭(𝑷). 

2.  For all 𝑷, 𝑸 ∈ 𝓡𝟑, 𝑭 𝑷 + 𝑸 = 𝑭 𝑷 + 𝑭(𝑷). 

A transformation can act on a single point at a time, and it can also act on 

arbitrary geometric objects since the geometric object can be viewed as a 

collection of points and, when the transformation is used to map all the points to 

a new location, this changes the form and position of the geometric object. 

Affine transformations are the most fundamental transformations used in 

computer graphics (Buss, 2003). Affine transformations are transformations that 

preserve points, lines, and planes and parallelism (maps parallel lines to parallel 

lines). Also, affine transformations preserve ratios of distances between points 

lying on a string line, but do not preserve the angles between lines or distances 

between points. To be more specific, for a point, an affine transformation can be 

represented in the form: F (P) =A (P) + v, where A is the linear transformation, 

and v is a vector in 𝓡𝟑. It can be seen that any affine transformation is the 

composition of a linear transformation and a translation. In computer graphics, 

the most often used affine transformations include translation, rotation, and 

scaling. Several affine transformations can be combined into a single overall 

affine transformation. 

Translation and rotation are also known as rigid-body transformations (Eggert, 

1997). The combination of translations and rotations cannot change the shape or 

volume of an object; they can only alter the object‘s location and orientation. 

A translation is a transformation that displaces points in 3D space by a fixed 

distance in a given direction. A translation can be represented as: 𝑭 𝑷 = 𝑷 +

𝒅 where P is point in 3D space, d is a specified displacement vector in 𝓡𝟑. 

Translation is denoted as 𝑻𝒅, thus 𝑻𝒅 𝑷 = 𝑷 + 𝒅. 

The translation transformation can also be represented in the matrix form as: 

 

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑻  

𝑥
𝑦
𝑧
1

                                 (5.2) 

where T is called the translation matrix, and can be expressed as: 
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𝑻 =  

1 0 0 𝑑𝑥
0 1 0 𝑑𝑦
0
0

0
0

1 𝑑𝑧
0 1

                          (5.3) 

Translation has 3 degrees of freedom since the 3 components of the displacement 

vector can be specified arbitrarily. Equation (5.3) translates a point P(x, y, z) by 

an offset vector 𝐝 = (𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧), 𝑷′(𝑥 ′, 𝑦 ′, 𝑧 ′) is the coordinate of the new 

point.  

A rotation is a transformation that rotates all points on a 3D object around the 

axis through a fixed angle θ in a given coordinate axis. This transformation is 

denoted as  𝑹𝜃𝑋/𝑌/𝑍, where X, Y, Z represents the x, y, z coordinate axis, θ is the 

rotation angle. 

The rotation transformation can be represented in matrix form as: 

 

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑹𝑧  

𝑥
𝑦
𝑧
1

                              (5.4) 

where 𝑹𝑧  is the rotation matrix for rotation around the z-axis, and can be 

expressed as: 

𝑹𝒛 =  

𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0          0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0          0

0
0

0
0

1          0
 0          1

              (5.5) 

Equation (5.5) rotates point P(x, y, z) around z-axis by an angle 𝜃, 𝑷′(𝑥 ′, 𝑦 ′, 𝑧 ′) 

is the coordinate of the new point. The rotation matrices for rotation around x- 

and y- coordinate axis can be derived through an identical argument. The x 

values are unchanged for rotation about x axis; and the y value are unchanged for 

rotation about y-axis. So the rotation matrices are 

𝑹𝑥 =  

1 0 0          0
0 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
0
0

𝑠𝑖𝑛 𝜃
0

𝑐𝑜𝑠 𝜃    0
0           1

                  (5.6) 

for rotation around the x-axis; and  
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𝑹𝑦 =  

𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛 𝜃    0
0 1 0          0

− 𝑠𝑖𝑛 𝜃
0

0
0

𝑐𝑜𝑠 𝜃    0
0           1

                 (5.7) 

for rotation around the y-axis. 

There are 3 degrees of freedom corresponding to the ability to rotate 

independently about coordinate axes. Since the matrix multiplication is not 

commutable, rotation about the x- axis by an angle θ followed by rotation about 

y-axis by an angle ϕ does not give the same result as the one that obtained by 

reversing the order of the rotations.  

However, apart from rigid-body transformations, there is also some non-rigid 

body transformations used in computer graphics. Scaling is an affine non-rigid 

body transformation which scales points by 𝑠𝑥  along the x axis, 𝑠𝑦  along the y 

axis and 𝒔𝒛 along z axis respectively. If 𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 = 1, it is called a uniform 

scaling, otherwise it is called a non-uniform scaling.  

A scaling transformation for independent scaling along each coordinate axes can 

be specified as:   𝑥 ′ = 𝑠𝑥𝑥 ,  𝑦 ′ = 𝑠𝑦  ,  𝑧 ′ = 𝑠𝑧𝑧 . These 3 Equations can be 

combined to express the generic scaling transformation as: 

 

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑺  

𝑥
𝑦
𝑧
1

                                    (5.8) 

where S is called the scaling matrix, it can be written as 𝑺(𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧), and can be 

expressed as: 

𝑺 =  

𝑠𝑥 0    0         0
0 𝑠𝑦       0          0

0
0

0
0

      
 𝑠𝑧         0

0           1

                      (5.9) 

All these transformation matrices have an inverse. The inverse of a translation 

𝑻𝒅, is a translation in the opposite direction 𝑻−𝒅. The inverse of a rotation is the 

same rotation with the opposite sign on the angle. The inverse of scale 

𝑺(𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) is 𝑺(1
𝑠𝑥 , 1

𝑠𝑦 , 1
𝑠𝑧 ). For a series of matrices 𝑴 = 𝑴𝟏𝑴𝟐⋯𝑴𝒏, 

the inverse matrix is 𝑴−𝟏 = 𝑴𝒏
−𝟏𝑴𝒏−𝟏

−𝟏 ⋯𝑴𝟏
−𝟏. 
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Any number of rotation, scaling, and translation matrices can be multiplied 

together. The result always has the form 

𝑴 =  
𝑹 𝑻
𝟎𝟑
𝑻 𝟏

                           (5.10) 

The 3×3 upper-left submatrix R gives the aggregate rotation and scaling, whereas 

T is a 3D translation vector that gives the subsequent aggregate translation. 𝟎𝟑 

is a 3D zero vector 

In the SVG GL, geometrical transformations include translation and rotation 

(Figure 5.4).  

 

Figure 5.4 Transform from world space to camera space 

Geometrical transformations are implemented in a 3DMath Library; and the 

following classes are defined in this Math Library: 

1. Matrix3, a matrix class for 3x3 matrix operation. 

2. Matrix4, a matrix class for 4x4 matrix operation. 

3. Vector2, a vector class for 2D vector operation. 

4. Vector3, a vector class for 3D vector operation.; 

5. Vector4, a vector class for 4D vector operation. 

Stage 3: Projection 

After the geometrical transformations, the vertexes in camera space will be 

projected onto projection plane by projections transform. 

In general, projections transform points in a coordinate system of dimension n 

into points in a coordinate system of dimension less than n (Kennedy, 2001). The 

projection of a 3D object is defined by straight projection rays (projectors) 

emanating from a center of projection, passing through each point of the object, 

and intersecting a projection plane to form the projection. 

The class of projections used in the SVG GL is known as planar geometric 

projection because the projection is onto a plane rather than some curved surface. 

Projection onto a curved surface will cause the distortion of the 3D model 
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according to the curved surface. Since the purpose of the SVG GL is to create 

realistic 3D model for web-based application, so only planar geometric 

projection is used in the SVG GL. Planar geometric projection can be divided 

into 2 basic classes: perspective and parallel (Carlbom, 1978). The distinction 

between them is in the relation of the center of projection to the projection plane. 

If the distance from the center of projection to the projection plane is finite, then 

the projection is perspective; if the distance is infinite, the projection is parallel. 

1. Perspective projection 

Perspective projection was originally discovered for applications in drawing and 

painting (Coxeter, 1974). An important principle in the classic theory of 

perspective projection is the notion of a ‗vanishing point‘ - the intersection of the 

projections of a set of parallel lines in space onto the projections plane. In 

computer graphics applications, it is able to avoid all considerations of vanishing 

points and similar factors. Instead, an object is placed in 3D space, a projection 

center (camera position) is chosen, and the correct perspective transformation is 

mathematically calculated to create the scene as viewed from the projection 

centre. 

Perspective projection is used to create the view when the camera or eye position 

is placed at a finite distance from the scene. The use of perspective means that an 

object will appear larger as it moves closer to the viewer. Perspective is useful 

for giving the viewer the sense of being ‗in‘ a scene because a perspective 

projection shows the scene from a particular viewpoint. Perspective is heavily 

used in entertainment applications, where it is desired to give an immersive 

experience; it is particularly useful in dynamic situations in which the 

combination of motion and correct perspective gives a strong sense of the 

three-dimensionality of the scene. Perspective is also used in applications as 

diverse as architectural modelling to show the view from a particular viewpoint. 

For simplicity, the projection center is placed at the origin looking down the 

negative z-axis. It is a model of image formation that projects a 3D scene towards 

a single point – the projection center. The image is not defined at the projection 

center, but rather it is defined on a plane, called the projection plane. The 

projection plane is perpendicular to the camera z axis. 

This perspective projection model is shown in Figure 5.5. The model consists of 

a plane (projection plane/image plane) and a 3D point P. Point O is the 

projection center, f is the distance between the projection plane and the 
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projection center, and is called focal length. 𝑷′ is the projection of point P on the 

projection plane. The line through O and perpendicular to the image plane is the 

optical axis.  

Using the triangular mathematic operation, the relation between the coordinate of 

point P and point 𝑷′ is: 

 

𝑥 ′

𝑦 ′

𝑧 ′

𝑤

 = 𝑀𝑝  

𝑥
𝑦
𝑧
1

                          (5.11) 

where (x, y, z, 1) is the homogenous coordinate of a point P in 3D coordinate 

system,  (𝑥 ′, 𝑦 ′, 𝑧 ′, 𝑤 ) is the homogenous coordinate of perspective projection of 

point P  in 3D coordinate system, and (𝑥 ′/𝑤, 𝑦 ′/𝑤 ) is the coordinate of 

perspective projection of point P on the projection plane.  

𝑀𝑝  is the perspective projection matrix, it can be expressed as: 

𝑴𝒑 =  

𝑓 0 0 0
0 𝑓 0 0
0
0

0
0

𝑓 0

1 0

                     (5.12) 

 

Figure 5.5 Perspective projection  

Perspective projection has the following properties: 

(1) The size of the projection image is inversely proportional to the distance 

from the object to the image plane. 

(2) The smaller the f (focal length), the wider the view field. 

(3) Line is preserved, but distances and angles are not preserved. 

(4) Parallel lines in space project onto lines that on extension intersect at a single 
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point in the image plane called the vanishing point. 

(5) The vanishing points of all the lines that lie on the same plane form 

vanishing line. 

2. Parallel projection 

The parallel projection mentioned is an orthographic parallel projection in which 

the direction of the projection is perpendicular to the projection plane (Maynard, 

2005; Riley, 2006). In this type of projection, the projection plane is 

perpendicular to a principal axis, which is therefore the direction of the 

projection. 

Unlike the perspective projection described earlier, orthographic projection does 

not cause closer objects to appear larger and distant objects to appear smaller. 

For this reason, orthographic projection is generally preferred for applications 

such as architecture or engineering applications, including CAD and CAM since 

the parallel projection is better at preserving relative sizes and angles. 

An orthographic projection is shown in Figure 5.6. In this model, the projection 

ray is orthogonal to the image plane and parallel with the z axis. P is a 3D point, 

𝑷′ is the projection of point P on the image plane. The relation between the 

coordinate of point P and point 𝑷′ is: 

 

𝑥 ′

𝑦 ′

𝑧 ′

1

 = 𝑀𝑜  

𝑥
𝑦
𝑧
1

                           (5.13) 

where (x, y, z) is the coordinate of a point P in the 3D coordinate system, and 

(𝑥 ′, 𝑦 ′) is the orthographic projection of point P on plane 𝑧 ′ = 0, 𝑀𝑜  is the 

orthographic projection matrix, it can be expressed as 

 𝑀𝑜 =  

1 0 0 0
0 1 0 0
0
0

0
0

0 0
0 1

                      (5.14) 

An orthographic projection‘s properties are: 

(1) Parallel lines project to parallel lines. 

(2) Size does not change with the distance from the camera. 

(3) Angles are not preserved. 
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Figure 5.6 Orthographic projection 

The purpose of the SVG GL is to provide a realistic interactive 3D model for 

web-based application, so only perspective projection is used (Figure 5.7). 

 

Figure 5.7 Projection from 3D camera space to 2D projection plane 

Combining the transformation matrix M in Equation (5. 10) with projection 

matrix, the final perspective projection result can be described as: 

 

𝑥 ′

𝑦 ′

𝑧 ′

𝑤

 = 𝑴𝒑𝑴 

𝑥
𝑦
𝑧
1

                         (5.15) 

where 𝑴𝒑 is a projection matrix, M is the concatenated matrix of translation, 

rotation and scale transformation. 

3. Camera View Volume 

The role of the camera in a 3D computer graphics system is to provide both a 

point of view from which to render an image and the basic parameters of the 

mathematical projection that will be used to form the virtual image. The 

camera‘s position and orientation are specified as part of the scene description. It 

is typical for the camera to be positioned in the global coordinate system, usually 

with some positioning controls that correspond to the operation of a real studio 

camera. 

Theoretically, cameras can have any projection characteristics, corresponding to 

the variety of lens type. However, practical 3D graphics implementations usually 
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implement only the standard parallel or perspective projections that are common 

in architectural and design drafting. 

In the SVG GL, the camera is implemented by a camera class. This class has the 

following properties: 

(1) Position, the centre position of the camera. 

(2) Direction, the facing direction of the camera. 

(3) Focus, the focus length of the camera. 

(4) Near, the distance from the camera to the near clipping plane. 

(5) Far, the distance from the camera to the far clipping plane. 

(6) Fov, view angle, in degrees. 

Stage 4: Mapping 

A viewport is a 2D rectangle on screen defining where the image will appear. 

Mapping is simply the process of transforming 2D scene on project plane in 

world space onto viewport on screen or device space (Figure 5.8). In particular, 

objects inside the clipping window are mapped to the viewport. The viewport is 

displayed in the interface window on the screen. In other words, the clipping 

window is used to select the part of the scene that is to be displayed. The 

viewport then positions the scene on the output device. 

 

Figure 5.8 Viewport transformation 

The relation between the coordinate of point P and point 𝑷′ in Figure 5.8 is: 

 
𝑥 ′

𝑦 ′

1

 =  

𝑢1−𝑢0

𝑥1−𝑥0
0 −𝑥0

𝑢1−𝑢0

𝑥1−𝑥0
+ 𝑢𝑜

0
𝑣1−𝑣0

𝑦1−𝑦0
−𝑦0

𝑣1−𝑣0

𝑦1−𝑦0
+ 𝑣𝑜

0 0 1

  
𝑥
𝑦
1
           (5.16) 
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where (x, y) is the coordinate of a point P on the 2D projection plane, and (𝑥 ′, 𝑦 ′) 

is the coordinate of point 𝑷′ on the viewport, 

  

𝑢1−𝑢0

𝑥1−𝑥0
0 −𝑥0

𝑢1−𝑢0

𝑥1−𝑥0
+ 𝑢𝑜

0
𝑣1−𝑣0

𝑦1−𝑦0
−𝑦0

𝑣1−𝑣0

𝑦1−𝑦0
+ 𝑣𝑜

0 0 1

  is the viewport transformation matrix. 

The viewBox attribute in SVG is used to define the viewport in the SVG GL. 

The value of the viewBox attribute is a list of 4 numbers min-x, min-y, width and 

height. Min-x, min-y defines the coordinate of the lower left corner of the 

viewport, and the width and height define the width and height of the viewport. 

The viewport transformation is used to map vertexes on projection plane on the 

SVG viewbox (Figure 5.9) 

 

Figure 5.9 Transform from projection plane to SVG viewport 

5.3 3D Modelling of Primitive Geometries in the SVG GL  

A model is a representation of some features of a concrete or abstract entity. The 

purpose of a model of an entity is to allow people to visualize and understand the 

structure or behaviour of the entity, and to provide a convenient vehicle for 

‗experimentation‘ and prediction of the effects of inputs or changes to the model 

(Foley, 2013). In 3D computer graphics, real worlds can be modelled with 

geometric objects; and modelling is the process of developing a 3D model by 

using a set of points in 3D space, that are connected by various geometric data 

such as lines, and polygons. 

There are a great variety of geometric objects in 3D world. All these geometric 

objects that fit well with existing graphics hardware and software have the 

following 3 features: 

(1) The objects are described by their surfaces and can be thought of as being 

hollow. 

(2) The objects can be specified through a set of vertices in 3D. 

(3) The objects either are composed of or can be approximated by flat, convex 

polygons. 
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Generally there are four popular methods for 3D modelling: polygonal modelling, 

primitive modelling, NURBS (nonuniform rational B-splines) modelling, and 

splines & patches modelling. Polygonal modelling is a method of creating a 3D 

model by connecting line segments through points in a 3D space. Primitive 

modelling creates geometric primitive such as cube, cone, and sphere firstly, then 

using those primitives to create complex 3D models. NURBS modelling defines 

3D model surface by curves, the curve is created by NURBS. Splines & patches 

modelling is similar to the NURBS modelling procedure, they depend on curved 

lines to identify the visible surface. A spline is a curve in 3D space defined by at 

least two control points. Using splines to create a model is perhaps the oldest, 

most traditional form of 3D modelling available. 

In the SVG GL, Polygon modelling method is used for creating 3D models, such 

as cube, cone, sphere and so on. It is very common for 3D geometric shapes to be 

modelled firstly as a set of polygons and then mapped to a polygonal 2D to 

display. The basic display hardware is generally pixel based, but most computers 

now have special-purpose graphics hardware for processing polygons or, at least, 

triangles. Polygonal-based modelling is used in nearly every 3D computer 

graphics system (Wong, 2013). It is a central tool for the generation of 

interactive 3D graphics and is used for photo-realistic rendering.  

Polygon modelling requires the application to either specify simple planar 

polygons or triangles to connect a list of vertices. For a simple polygon specified 

with more than 3 vertices, if the vertices do not lie in the same plane, there will 

be no simple way to define the interior of the object, and then the results of 

rasterizing the polygon are not guaranteed to be what the developer might desire. 

Since triangles are always flat, either the modelling system is designed to always 

produce triangles, or the system provides a method to divide, or triangulate an 

arbitrary polygon into a triangle mesh. The same procedure can be used to 

represent a curved object, such as a sphere that can be approximated by a small, 

flat polygon. 

All 3D models in the SVG GL are specified through a set of vertices; and then 

lines or triangles are used to connect the vertices. While vertices define the shape 

of the object, triangles are the shapes onto which the shade, light, and texture are 

put. The results of the modelling process are a set of vertices that specify a group 

of geometric objects used by the rest of the graphics system. 

Primitives are selected from a universe of possible shapes. The commonly used 

geometric primitives include point, line, plane, circle, triangle, and spline curves. 
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But the primitives defined in the SVG GL are slight different with the primitives 

mentioned above. Such primitives include triangle, plane, sphere, cylinder, cone, 

and cube. These are considered to be primitives in 3D modelling because they 

are the building blocks for many other shapes and forms (Watt, 1999). A 

primitive is instantiated by assign values to certain parameters. The SVG file 

created by the SVG GL for some of the primitives can be found in Appendix A. 

1. Triangle: Triangle is the elementary primitive in 3D graphics, which can be 

used to model all other 3D objects. A triangle specified by 3 vertices that form a 

closed area in 3D space. The vertices of a triangle can be defined with a 3D 

coordinate (x, y, z). Casting a ray from each vertex of the triangle to the 

projection center, each ray intersects with the projection plane. By using 

Equation (5.12), a triangle in 3D world space is projected to a triangle in 2D 

window space, and then mapped to the SVG viewport (Figure 5.10). 

 

Figure 5.10 Triangle in the SVG GL 

In the SVG GL, a triangle object can be created by the Triangle class constructor 

as Triangle (𝒗𝟎, 𝒗𝟏, 𝒗𝟐), where 𝒗𝟎, 𝒗𝟏, 𝒗𝟐 are non-collinear points in 3D space 

that specify 3 vertices of the triangle. 

2. Plane: The plane defined in the SVG GL is not the same as the one defined 

in geometry, it is actually a rectangle. A plane is specified by 4 vertices; and can 

be treated as 2 triangles that share 2 common vertices. By mapping the triangle to 

the SVG viewport, a 2D polygon correspondence to the plane is finally generated 

(Figure 5.11). 

A plane object can be initialized by the Plane class constructor Plane (Width, 

Height), where Width is the width of the plane, and Height is the plane‘s height. 

Then the vertices accordingly are (0, 0, 0), (Width, 0, 0), (Width, Height, 0), and 

(0, Height, 0). It shows the default location of a plane object is the original point 

and xy-plane of the coordinate system. 
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Figure 5.11 Plane in the SVG GL 

3. Sphere: In geometry, a sphere can be viewed as the surface formed by 

rotating a circle about any diameter, a sphere can be defined by: 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝑟2             (5.17) 

where (x, y, z) is the point on the surface of a sphere, r is the radius of a sphere, 

and (𝑥0, 𝑦0, 𝑧0) is the center of the sphere. This equation shows that a point on 

the surface of a sphere is at a fixed radial distance r from its center. 

Equation (5.15) can also be converted to a formula in spherical polar coordinates 

as 

 
𝑥 = 𝑥0 + 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑  
𝑦 = 𝑦0 + 𝑟𝑐𝑜𝑠𝜑           
𝑧 = 𝑧0 + 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑   

                          (5.18) 

where θ is an azimuthal angle ranging from 0 to 2π, ϕ is a polar angle ranging 

from 0 to π, and r is the radius (Figure 5.12). The surface of a sphere with radius 

r can simply be covered by varying θ from 0 to 2π, angle ϕ from 0 to π. By 

subdividing these ranges into small enough sections, sufficient points on the 

surface of the sphere can be generated to form the vertices of a polyhedral 

approximation to the surface, replacing the curved surface with small polygon 

faces. 

 

Figure 5.12 Point on the surface of a sphere 
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In the SVG GL, a sphere can be created by using the Sphere class constructor as 

Sphere(r, segmentA, segmentP), where r is the radius, segmentA is the number of 

sections divided along longitude direction, and segmentP is the number of 

sections along latitude direction (Figure 5.13). 

 

Figure 5.13 Sphere with different segmentsA and segmentsP 

4. Cylinder: Similar to the sphere formula defined in spherical polar 

coordinates, a cylinder can be defined in cylindrical polar coordinates as: 

  
𝑥 = 𝑟𝑐𝑜𝑠𝜃                        
𝑦 = 𝑟𝑠𝑖𝑛𝜃  0 ≤ 𝜃 ≤ 2𝜋
𝑧 =  𝑢            0 ≤ 𝑢 ≤ 𝑕

                         (5.19) 

where θ is an azimuthal angle ranging from 0 to 2π, and r is the radius of the 

cylinder. By generating angle θ from 0 to 2π, and values of z from 0 to h (h is the 

height of the cylinder) while holding r as a constant value (Figure 5.14), the full 

curved surface of the cylinder can be found. By taking sufficient subdivisions of 

θ, the curved surface of the cylinder can be approximated with small polygon 

surfaces. 

 

Figure 5.14 Point on the curved surface of a cylinder 

Constructor Cylinder(r, h, segmentA) is used in the SVG GL to create a cylinder 

object, where r is the radius, h is the height of the cylinder respectively, and 
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segmentA is the number of sections divided along longitude direction (Figure 

5.15). 

 

Figure 5.15 A cylinder without top and bottom face in the SVG GL 

5. Cone: The parametric Equation of a cone can be defined as 

 

𝑥 =
𝑕−𝑢

𝑕
𝑟𝑐𝑜𝑠𝜃                        

𝑦 =
𝑕−𝑢

𝑕
𝑟𝑠𝑖𝑛𝜃  0 ≤ 𝜃 ≤ 2𝜋

𝑧 =  𝑢                  0 ≤ 𝑢 ≤ 𝑕

                  (5.20) 

where h is the height of the cone, r is the base radius of the cone, and θ is an 

azimuthal angle ranging from 0 to 2π. By varying angle θ from 0 to 2π, and 

values of z from 0 to h, all points on the surface of the cone can be found (Figure 

5.16). By taking sufficient subdivisions of θ, the curved surface of the cone can 

be approximated with small polygon surfaces. 

 

Figure 5.16 Point on the curved surface of a cone 

A cone object can be defined as Cone(r, h, segmentA) in the SVG GL, where r is 

the base radius, h is the height of the cone respectively, , and segmentA is the 

number of sections divided along longitude direction (Figure 5.17). 



76 

 

 

Figure 5.17 Cone in the SVG GL 

6. Cube: A cube is specified by 8 vertices; 6 planes are used to connect the 

vertices, each plane consists with 2 triangles (Figure 5.18). 

A cube object can be initialized by the Cube class constructor Cube (Width, 

Height, Depth), where Width is the width, Height is the height, and Depth is the 

depth of a cube respectively. Then the vertices accordingly are (0, 0, 0), (Width, 

0, 0), (Width, Height, 0), (0, Height, 0), (0, 0, -Depth), (Width, 0, -Depth), (Width, 

Height, -Depth), and (0, Height, -Depth). It shows the default location of a cube 

object is the original point and all its 6 sides parallel to different coordinate plane 

respectively. 

 

Figure 5.18 Cube rendered with different material 

5.4 3D Modelling through sweeping 

A sweep object is generated when a space curve C(s) is transformed by a 

transformation rule T(t) (Martin, 1989). Curve C(s) is referred to as the profile 

curve. The surface of the sweep object is swept by the profile curve when that 

curve is transformed by the transformation rule T(t). The expression of the 

surface is simply the product.  

Two typical sweep objects are discussed here: extrusion, and revolution. The 

different between these two types is determined by the transformation rule T(t) 

5.4.1 Extrusion 
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Extrusion is a kind of sweeping, it is defined by translating a space curve along a 

linear trajectory normal to the plane of the shape to create 3D object (Shum. 

2001). The trajectory curve can be specified by a vector t= (𝒕𝒙, 𝒕𝒚, 𝒕𝒛). When a 

space curve C(s) is translated along a vector v, then the transformation matrix E(t) 

is given by  

𝑬 𝒕 =  

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0
0

0
0

1 𝑡𝑧
0 1

                        (5.21) 

If a space curve is expressed by C(s), where 𝟎 ≤ 𝒔 ≤ 𝟏, then the surface of 

extrusion has the form C(s, t) = C(s)E(t), The surface of the extrusion can be 

covered by varying s from 0 to 1. By subdividing these ranges into small enough 

sections, sufficient points on the surface of the extrusion object can be generated, 

replacing the surface with small polygon faces. 

Figure 5.19 shows that an elliptic tube is created by extruding an ellipse on the 

xy-plane along y-axis. 

 

Figure 5.19 Extruding a ellipse along y-axis 

5.4.2 Revolution 

Revolution is a special case of sweeping. It is obtained when a space curve C(s) 

is rotated about an axis in space (Kent, 1992; Blundell, 2008). The rotation angle 

can be 2π or less. A general rotation in 3D is fully specified by the axis of 

rotation and the rotation angle. If the rotation angle is θ and rotation axis is r, 

then the rotation matrix R(θ) is given by 
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rx
2 + cosθ(1 − rx

2) rxry 1 − cosθ − rzsinθ rxrz 1 − cosθ − rysinθ

rxry 1 − cosθ + rzsinθ ry
2 + cosθ(1 − ry

2) ryrz 1 − cosθ − rxsinθ

rxrz 1 − cosθ − rysinθ ryrz 1 − cosθ + rxsinθ rz
2 + cosθ(1 − rz

2)

         

(5.22) 

If a space curve is expressed by C(s), then the surface of revolution has the form 

C(s, θ)=C(u)R(θ), where 𝟎 ≤ 𝒔 ≤ 𝟏  and 0 ≤ θ ≤ 2π . The surface of the 

revolution can be covered by varying s from 0 to 1, angle θ from 0 to 2π. By 

subdividing these ranges into small enough sections, sufficient points on the 

surface of the revolution object can be generated, replacing the curved surface 

with small polygon faces. 

Figure 5.20 shows a chess pieces model is created by revolving the outline on the 

left side around y-axis. 

 

Figure 5.20 A chess pieces generated by revolution 

5.5 Bezier Surface 

At the lowest level, the smooth surfaces of geometric objects are approximated 

by triangles. However, many useful surfaces can be described mathematically by 

a small number of parameters such as a few control points. Saving a few control 

points for a surface requires much less storage than saving hundreds triangles. 

Bezier surface is a typical type of freeform surface. A Bezier surface is defined 

by a set of control points (Farin, 1996; Gálvez, 2007). The Equation of a Bezier 

surface defined by m+1 rows and n+1 columns of control points is: 

  𝒑 𝒔, 𝒕 =   𝑩𝒎,𝒊
𝒏
𝒋=𝟎

𝒎
𝒊=𝟎  𝒔 𝑩𝒏,𝒋(𝒕)𝒑𝒊𝒋              (5.23) 

where 𝒑𝒊𝒋 are the set of control points, 𝑩𝒎,𝒊(𝒔) and 𝑩𝒏,𝒋(𝒕) are the i-th and 

j-th Bezier basis function in the u and v directions, and are defined as follows: 
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𝑩𝒎,𝒊 𝒔 =

𝒎!

𝒊! 𝒎−𝒊 !
𝒔𝒊(𝟏 − 𝒔)𝒎−𝒊

𝑩𝒏,𝒋 𝒕 =
𝒏!

𝒋! 𝒏−𝒋 !
𝒕𝒋(𝟏 − 𝒕)𝒏−𝒋   

                   (5.24) 

A Bezier curve is defined by n+1 control points; it passes through the two 

extreme points, and uses the interior points to determine its shape. Similarly, a 

Bezier surface is defined by a grid of (m+1)×(n+1) controls, it is anchored at the 

four corner points and uses the other grid point to determine its shape. Closed 

surface can be formed by setting the last control equal to the first. A curved 

surface can be created by varying s from 0 to 1, t from 0 to 1. By subdividing 

these ranges into small enough sections, sufficient points on the surface can be 

generated; replacing the curved surface with small polygon faces (Figure 5.21). 

 

Figure 5.21 Curved surface generated by Bezier surface 

5.6 3D Modelling Through 3D Point Clouds 

A 3D point cloud is a set of data points in a 3D coordinate system, these points 

are usually defined by x, y, and z coordinates, and are used to represent the 

external surface of an object (Golovinskiy, 2009). These data sets are often very 

large. They can be used to display objects directly if the graphics system supports 

point primitives. 

Since the smallest primitive in the SVG GL graphics is the triangle, it cannot 

display point clouds. In order to generate 3D object from point clouds, more 

structure information have to be added.  
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Figure 5.22 Structured point clouds 

A simple 3D surface is shown in Figure 5.22 consisting of 5 vertices. Besides the 

vertex-list, there is also a face-list to specify how to connect the vertices by 

triangle face. The point cloud with face information is called a structured point 

cloud. By using the face-list, a set of triangle meshes will be generated to form a 

3D object from the point clouds. 

5.7 Summary 

Since the render results of the existing 3D library cannot be export to SVG. A 

new framework has to be developed to use SVG to present 3D model for 

web-based application. 

A new framework-SVG GL was proposed is this chapter. There are four stages in 

the new framework-SVG GL. Stage 1, 3D modelling: provides an internal 

mathematical representation of any 3D models that are eventually to be imaged. 

Stage 2, geometric transformation: transforms the 3D models from world space 

to camera space. Stage 3, projection: converts 3D coordinates onto a 2D 

projection plane. Stage 4, mapping: transfers the 2D image from the projection 

plane to the viewport of SVG for final rendering. 

By using the new proposed framework, an object in the 3D world space is 

defined first. Then the object is transformed from the world space to the camera 

space. And then the content in the camera‘s view volume is projected onto the 
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projection plane. Finally, the projection plane is mapped onto the viewport on the 

SVG file for display. 

In order to implement all the 3D graphics operations in the SVG GL: 

1. A 3DMath Library in the SVG GL is developed to implement geometric 

transformations, including translation, rotation, and scaling. 

2. A perspective projection is developed in the SVG GL to project 3D models 

onto 2D projection plane. 

3. A viewport transformation is also defined in the SVG GL to transfer the 2D 

image from projection plane to viewport in SVG. 

4. A set of primitives are developed in the SVG GL as the foundation for 3D 

modelling in the SVG GL, Such primitives include triangle, plane, sphere, 

cylinder, cone, and cube. And some more complex 3D model methods are also 

developed, including: extrusion, revolution, Bezier surface and point clouds. 
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Chapter 6 New Algorithms for Shading in the SVG GL 

6.1 Introduction 

With the technologies discussed in Chapters 5, a 3D model can be built and 

rendered. But the result is not really promising since it looks flat and fails to 

show 3D nature of the object. This appearance is a consequence of the 

assumption that each surface is lit such that it appears to a viewer in a single 

colour (Figure 6.1). 

 

Figure 6.1 Lighting surfaces with single colour 

To produce a 3D model that looks more realistically, the model has to be lit and 

shaded. Figure 6.2 shows two versions of same object (a cuboid), (a) without 

lighting and (b) with lighting. It can be seen that the unlit cuboid looks no 

different from a uniformly coloured polygon. The lit cuboid also shows the 

gradations of colour give the cuboid the appearance of being 3D. 

 

Figure 6.2 A lit and unlit cuboid 

The basis of the calculation for lighting or shading objects is the interaction of 

light and surfaces of the objects in an environment. The technique for 

determining the colour of a surface of an object at a given point based on the 

interaction of light and surface is called an illuminating or lighting model 

(Strauss, 1990; Tabellion, 2004; Ritschel, 2012). The factors that govern the 
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illuminating model determine the visual representation of the 3D object. 

Modelling only lighting directly from a light source is called local illuminating or 

direct illuminating model. In such model, the calculation for shading assigned to 

a point on a surface depend only on the material properties of the surface, the 

local geometry of the surface, and the locations and properties of the light source, 

independent from the shading of all other surfaces. A lighting model that handles 

inter reflection-the light that is reflected from other surfaces to the current 

surface is called global illuminating model. A global illuminating model is more 

comprehensive, more physically correct, and produces more realistic images. But 

it is also more computationally expensive. For the purpose of efficient processing 

only local illuminating model is used in the SVG GL. Once the illuminating 

models are defined, a shading model will be used to apply the illuminating model 

on the 3D object. A shading model is a broader framework that determines how 

an illuminating model is used and what parameters it receives. For instance, the 

illuminating model may be used for every pixel covered by an object or just for 

its vertices. 

In this chapter, the lighting filter in existing SVG is introduced firstly, and the 

problem for using this method in the SVG GL is discussed; then the illumination 

model in 3D graphic is discussed; finally new Gouraud shading and new shading 

algorithms in the SVG GL are proposed and developed. In both shading 

algorithm, the areas are used to interpolate the intensity of colour or normal. 

6.2 Discussion of the Existing Algorithms in SVG and Its Problems 

Lighting is done in SVG with some specific filter effects. Filters can make the 

difference between an appealing image with sizzle and one that is dull and 

ordinary (Figure 6.3). SVG has its own set of filter effects that allow the user to 

combine several of these effects and apply the filter to the graphic. 

 

Figure 6.3 Compare ordinary image with the result of filter effect 

Lighting effect can be added to SVG with the ‗feDiffuseLighting‘ and 

‗feSpecularLighting‘ filter effects, and the details of the lighting effect can be 
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controlled through one of three filter effects: fePointLight, feDistantLight, and 

feSpotLight. 

6.2.1 Filter Element 

A filter effect consists of a series of graphics operations that are applied to a 

given source graphic to produce a modified graphical result. The result of the 

filter effect is rendered to the target device instead of the original source graphic. 

Filter effects are defined by <filter> elements. By setting the value of the filter 

attributes on the given element, a filter effect can be applied to a graphics 

element or a container element. <filter> element uses an id attribute to uniquely 

identify it. Filters are defined within <def> elements and then are referenced by 

graphics elements by their ids. The syntax declaration of <filter> element is 

shown: 

 

In Figure 6.4, the 3D effect is produced by using SVG filter. Although it looks 

like 3D, it is actually 2D graphic. This method cannot be used on 3D model for 

shading, especially when the 3D model is transformed in 3D space. 

 

<filter 

   filterUnits="units to define filter effect region" 

   primitiveUnits="units to define primitive filter subregion" 

x="x-axis co-ordinate" 

   y="y-axis co-ordinate"      

   width="length" 

   height="length" 

   filterRes="numbers for filter region" 

   xlink:href="reference to another filter" > 

</filter> 
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Figure 6.4 An example of a filter effect and the SVG file 

6.2.2 Lighting Filters 

SVG lighting is accessed through the use of feDiffuseLighting or 

feSpecularLighting filters, that establish its calculations based on the appropriate 

component of the Phong lighting model 

While diffuse light is light that hits a surface and gets scattered equally in all 

directions, specular light refers to a bright spot of light that gets reflected in a 

particular direction.  

<defs> 

<filter id="MyFilter" filterUnits="userSpaceOnUse" x="0" y="0" 

width="300" 

height="120"> 

<feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/> 

<feOffset in="blur" dx="4" dy="4" result="offsetBlur"/> 

<feSpecularLighting in="blur" surfaceScale="5" 

specularConstant=".75" 

specularExponent="20" lighting-colour="#bbbbbb" 

result="specOut"> 

<fePointLight x="-5000" y="-10000" z="20000"/> 

</feSpecularLighting> 

<feComposite in="specOut" in2="SourceAlpha" operator="in" 

result="specOut"/> 

<feComposite in="SourceGraphic" in2="specOut" 

operator="arithmetic" 

k1="0" k2="1" k3="1" k4="0" result="litPaint"/> 

<feMerge> 

<feMergeNode in="offsetBlur"/> 

<feMergeNode in="litPaint"/> 

</feMerge> 

</filter> 

</defs> 
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This feDiffuseLighting filter lights an image using the alpha channel as a bump 

map. The resulting image is an RGBA opaque image based on the light colour 

with alpha = 1.0 everywhere. The lighting calculation follows the standard 

diffuse component of the Phong lighting model. The resulting image depends on 

the light colour, light position and surface geometry of the input bump map. 

In feSpecularLighting filter, the lighting calculation follows the standard specular 

component of the Phong lighting model. The resulting image depends on the 

light colour, light position and surface geometry of the input bump map. The 

light source can be defined and controlled by the following 3 filter effects. 

1. fePointLight 

fePointLight establishes a specific point as the main light source when applying 

feDiffuseLighting or feSpecularLighting filter. 

The x, y, and z attributes here determine the location of the light source in the 

coordinate system on the appropriate axis. Z will adjust the perceived size of the 

point of light by determining its location from the point to the user; a higher 

value here results in a larger point of light that is "closer" to the user(Figure 6.5). 

 

Figure 6.5 The effect of z attribute on light effect 

2. feDistantLight 

feDistantLight defines a distant light source. 

The azimuth attribute within feDistantLight defines the clockwise direction angle 

in degrees for the light source on the XY plane. 

The elevation attribute within feDistantLight defines the direction angle in 

degrees of the light source from the XY plane towards the z axis (Figure 6.6). 
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Figure 6.6 Azimuth and elevation in XYZ coordinate 

The effects of Azimuth and elevation value on the final result are shown in 

Figure 6.7. 

 

 

Figure 6.7 The effect of azimuth and elevation attribute on light effect 

3. feSpotLight 

feSpotLight defines a spot light as a light source. 

The x, y, and z values establish the location of the light source along the 

appropriate axis within the coordinate system. 
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The pointsAtX, pointsAtY and pointsAtZ attributes define the point at which the 

light source is pointing. 

The limitingConeAngle restricts the area to which light is projected by 

disallowing light to render outside of it. This value sets the angle in degrees 

between the spot light axis and cone. A higher value here results in a less 

restricted area (Figure 6.8). 

 

Figure 6.8 The effect of limitingConeAngle and x, y, z attribute on light effect 

Although filter effect in SVG can be used to generate appealing image and 

sometimes they can add some 3D effects on the final image, they can only be 

used for 2D image processing. They cannot be used to add lighting effect on 3D 

object, especially when a 3D object is transformed in 3D space, it is impossible 

to use filter to create physical correct shading result. In order to use advanced 

shading effect such as Gouraud shading and Phong shading in the SVG GL, new 

algorithm have to be developed. 

Before propose the new Gouraud shading algorithm and Phong shading 

algorithm in the SVG GL, the illumination model and shading methods in 3D 

computer graphic will be discussed firstly. 

6.3 Illuminating Model 

In computer graphics, illuminating is the process used to simulate the interactions 

of light and the surfaces of an object. From a physical perspective, there are two 

independent parts involved in this procedure: the light source in the scene, and 

reflection models that deals with the interaction between material of the surface 

and light. The properties of the light source determine the properties of light 

received by the surface of an object; the reflection models define how the light is 

reflected from the surface of the objects. These reflection models can be 
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classified into 3 different types: ambient reflection model, diffuse reflection 

model, and specular reflection model. 

6.3.1 Light Source 

There are three basic types of light sources: point light, spot light, and distant 

light. 

1. Point light 

Point light can be defined as a point in space from which light emitted uniformly 

in all directions. The intensity of illumination received from a point source is 

proportional to the inverse square of the distance between the source and the 

surface (Wright, 2004). So the intensity of light at the point P on the surface 

coming from the point light is given by 

𝑰 𝑷 =
𝟏

|𝑷−𝑷𝟎|𝟐
𝑰(𝑷𝟎)                             (6.1) 

where 𝑷𝟎is the position vector of point light source, 𝑰(𝑷𝟎) is the intensity of 

the light at the light point, and |𝑷 − 𝑷𝟎|is the distance between point P and 

𝑷𝟎(Figure 6.9). 

 

Figure 6.9 Intensity of light at the point P on the surface 

2. Spot light 

Spot light can be seen as a subset of a point light. In contrast to a point light, a 

spot light has a direction, in which it spreads its light in the form of a cone. A 

simple spot light can be constructed from a point light by limiting the angles at 

which light emit from the source. 

A more realistic spot lights are characterized by the distribution of light within 

the cone. Usually the intensity of light is smaller where is closer to the boundary 

of the cone than at the center of it. Consider a point P on a surface that is 

illuminated by a spot light. Let L be a vector that points from point P to point 

𝑷𝟎where the spot light is located, 𝑳𝒔 be the direction of the spot light. The 

intensity of light at point P is computed by 
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𝑰 𝑷 =
𝟏

|𝑷−𝑷𝟎|𝟐
𝑰(𝑷𝟎)𝒄𝒐𝒔𝒆𝜽                       (6.2) 

where 𝑷𝟎is the position vector of point light, 𝑰(𝑷𝟎) is the intensity of the light 

at the light point, and θ is the angle between L and 𝑳𝒔(Figure 6.10). The light‘s 

intensity is highest in the center of the cone. It‘s attenuated toward the edges of 

the cone by the cosine of the angle θ, raised to the power of the spot exponent e. 

Thus, higher spot exponents result in a more focused light source. And e 

determines how rapidly the light intensity drops off. 

 

Figure 6.10 Related parameters in spot light 

3. Distant light 

A distant light, also known as an infinite light, is the light source radiates in a 

single direction from infinitely far away. Since the light source is far from the 

surface, the light from the light source strikes all objects that are in close 

proximity to one another at the same angle. Because the illuminated object is 

much smaller compared with its distance to the light source, so the intensity of 

light can be considered to be constant, which means the variation of intensity 

caused by the distance can be neglected. Therefore distant light is only defined 

by a direction. The intensity of light at point P is 

𝑰 𝑷 = 𝐼                                    (6.3) 

where I is the intensity of the distant light (Figure 6.11). 
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Figure 6.11 Intensity of distant light can be considered to be constant 

6.3.2 Ambient Reflection 

Ambient light is the low intensity light that arises from the many reflections of 

light on all surfaces in an environment (Cook, 1981; Zhang, 2009). Ambient light 

comes from every direction with equal intensity, thus illuminates all objects in 

the scene equally from all directions. The ambient reflection can be expressed as: 

𝑰 = 𝑰𝒂𝑲𝒂                              (6.4) 

where I is the intensity of reflected light from a surface; 𝑰𝒂is the intensity of 

ambient light, assumed to be constant for all objects in the scene; 𝑲𝒂 is object‘s 

ambient reflection coefficient, ranges from 0 to 1. The ambient reflection 

coefficient is a material property. Equation (6.4) shows that intensity I is not 

affected by the position or orientation of the object in the scene, and independent 

of the viewer‘s position.  

6.3.3 Diffuse Reflection 

A diffuse surface is one for which part of the light incident on a point on the 

surface is scattered in random direction (Blinn, 1977; Wolff, 1996, 1998). A 

perfectly diffuse surface reflects the light equally in all directions. This is called 

diffuse reflection, also known as Lambertian reflection (Angel, 2003), and 

because light is reflected uniformly in every direction, the appearance of the 

diffuse reflection appears the same to all views (Figure 6.12).  

 

Figure 6.12 Light is reflected uniformly in every direction 

The diffuse reflection is modelled by Equation (6.5): 
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𝑰 = 𝑰𝒅𝑲𝒅𝒄𝒐𝒔⁡(𝜃)                              (6.5) 

where I is the intensity of light reflected from a surface; 𝑰𝒅is the intensity of the 

light source; 𝑲𝒅 is the object‘s diffuse reflection coefficient, ranges from 0 to 1, 

𝜃 is the angle between the surface normal N and the light source direction vector 

L (Figure 6.13), θ have to be between 0o  and 90o  if the light source is to have 

any direct effect on the point being shaded. 

 

Figure 6.13 The intensity of diffuse reflection is related to the angle 

between the surface normal N and the light source direction vector L 

Assuming that the vectors N and L have been normalized, Equation (6.5) can be 

rewritten as 

𝑰 = 𝑰𝒅𝑲𝒅(𝑵 ∙ 𝑳)                       (6.6) 

The intensity of diffuse reflection depends on θ---the angle between surface 

normal and the direction of the light source and independent with the position of 

the viewer. 

6.3.4 Specular Reflection 

If only ambient and diffuse reflections are employed, the final image will be 

shaded and will looks like in3D, but all the surfaces will look dull, somewhat like 

chalk (Figure 6.14). What are missed are the highlights that reflected from shiny 

objects. In addition to ambient and diffuse reflections, surfaces tend to reflect 

light strongly along the path given by the reflection of the incident direction 

across the surface normal. It results in the appearance of a shiny highlight on a 

surface called specular reflection (Boivin, 2001; Seulin, 2002; Comninos, 2005). 

The visibility of specular reflection on a surface depends on the position of the 

viewer.  
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Figure 6.14 Without specular reflection, surfaces look dull, like chalk 

The specular component of the illumination model can be given as: 

𝑰 = 𝑾(𝜃)𝑰𝒑𝒄𝒐𝒔
𝑛⁡(𝜙)                          (6.7) 

where I is the intensity of light reflected form a surface; 𝑰𝒑is the intensity of the 

light source; n is the specular reflection exponent, the higher the power of n the 

smaller and brighter the specular highlight (Figure 6.15). 

 

Figure 6.15 Higher the power of n the smaller and brighter the specular highlight 

𝑾(𝜃) is the fraction striking the surface that is specularly reflected, it is often 

set as a constant referred to the object‘s specular-reflection coefficient; θ is the 

angle between surface normal N and light source direction L; ϕ is the angle 

between the viewer V and the reflected ray R (Figure 6.16). 
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Figure 6.16 The intensity of specular reflection is related to the angle 

between the viewer V and the reflected ray R 

The intensity of specular reflection not only depends on θ- the angle between 

surface normal N and light source direction L, but also depends on ϕ- the angle 

between the viewer V and the reflected ray R, this means the specular reflection 

is affected by the position of viewer. 

Light is additive. The reflected model can be achieved by add ambient, diffuse, 

and specular light together. So the basic illumination model is: 

𝑰 = 𝑰𝒂𝑲𝒂 + 𝑰𝒅𝑲𝒅 𝒄𝒐𝒔 𝜃 + 𝑾(𝜃)𝑰𝒑𝒄𝒐𝒔
𝑛⁡(𝜙)          (6.8) 

6.4 Discussion of Existing Shading Methods 

Illuminating model determines the colour of a point on the surface of an object. 

Shading model determines where the lighting model is applied (Schlick, 1994; 

Pharr, 2004).A surface can be shaded by calculating the surface normal at each 

visible point and applying the desired illuminating model at the point. 

Unfortunately, the amount of computation required for this kind of shading 

model is too big (Phong, 1975). 

The computation can be significantly reduced if the surfaces are approximated 

with flat polygons, such as triangle. When a triangle is rendered, information 

known at each vertex is interpolated across the face of the triangle, and then the 

results can be used to render the triangle. The most common forms of shading 

model are: Flat shading, Gouraud shading, and Phong shading.  

6.4.1 Flat Shading 

Flat shading, also known as constant shading applies an illuminating model once 

to determine a single intensity value used to shade an entire polygon, and each 

pixel on the polygon is assigned the same intensity (Nicolae, 2004). For a 

polygon, the colour is determined only for a single pixel based on the normal 



95 

 

vector of the polygon. All other pixels on the polygon are given the same colour 

(Figure 6.17). 

Flat shading is the simplest shading method, and applies only one illumination 

calculation for each primitive, so the performance is more efficiency. It is usually 

used for high speed rendering where more advanced shading techniques are too 

computationally expensive. The disadvantage of flat shading is that it gives 

low-polygon models a faceted look. 

 

Figure 6.17 All pixels on the same polygon are given the same colour in Flat 

shading 

6.4.2 Gouraud Shading 

Gouraud shading is a colour intensity interpolation method (Gouraud, 1971). In 

Goraud shading, the illuminating equation is used at each vertex of the polygon. 

Given a normal at each vertex of the polygon, the colour at each vertex is 

determined from the illuminating equation. The linear interpolation of the colour 

at each vertex is performed to generate the colour for each pixel on the edges of 

the polygon. Similarly, the linear interpolation is performed across each scan line 

to generate colour for each pixel in the polygon (Figure 6.18). 

 

Figure 6.18 Linear interpolation of the colour is performed to generate the colour 

in Gouraud shading 
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Gouraud shading is a very simple and effective method of adding a curved feel to 

a polygon that would otherwise appear flat. However, for large polygons, it can 

miss specular highlights or at least miss the brightest part of the specular 

highlight if this falls in the middle of a polygon. 

6.4.3 Phong Shading 

Phong shading is a normal vector interpolation shading method (Phong, 1975; 

Bishop, 1986). In Phong shading, the illuminating equation is used at each pixel 

in the polygon. Given a normal at each vertex of the polygon, the linear 

interpolation of the normal at each vertex is performed to generate normal for the 

pixels on the edges of the polygon. Similarly, linear interpolation is performed 

across each scan line to generate normal for each pixel in the polygon. Then the 

illuminating equation is used (Figure 6.19). 

 

Figure 6.19 Linear interpolation of the normal is performed to calculate the 

colour in Phong shading 

Phong shading overcomes some of the disadvantages of Gouraud shading and 

specular highlights can be successfully incorporated in the scheme. Phong 

Shading interpolation phase is three times as expensive as Gouraud Shading, so it 

significantly increase the computation cost. The other disadvantage of Phong 

shading is that all the information about the colours and directions of lights needs 

to be kept until the final rendering stage so that lighting can be calculated at 

every pixel in the final image. 

Although Gouraud shading and Phong shading have been around for years, but 

due to excessive computation cost, no one has used them in SVG for shading on 

3D model. In this PhD project, new Gouraud shading and Phong shading are 

proposed and developed. Instead of using linear interpolation, an area 

interpolation is used to generate colour or normal for each pixel inside a polygon. 
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The render results show that the new algorithms can be used to create ideal 

shading for the 3D model in the SVG GL.  

6.5 Flat Shading, New Gouraud Shading and Phong Shading Algorithms in 

the SVG GL 

6.5.1 Flat Shading in the SVG GL 

In the SVG GL, Flat shading uses only one colour per triangle. The illuminating 

models discussed in Section 6.3 can be used to calculate the desired colour for a 

triangle. Most of the calculations involve the determination of required vectors 

and dot products. 

1.  Normal vector 

For smooth surfaces, the normal vector to the surface exists at every point and 

gives the local orientation of the surface. The calculation of normal vector 

depends on how the surface is represented.  

Given 3 non-collinear points-𝐏𝟎,   𝐏𝟏,  𝐏𝟐 , they are sufficient to determine a 

triangle or a plane uniquely (Figure 6.20). The normal vector can be found by 

using the cross product 

𝑵 =  𝑷𝟐 − 𝑷𝟎 × (𝑷𝟏 − 𝑷𝟎)                    (6.9) 

A special care have to be taken about the order of the vectors in the cross product: 

reversing the order changes the surface from outward to inward, and that reversal 

can affect the lighting calculation. 

 

Figure 6.20 Triangle surface normal 

The curved surface can be approximated by triangle mesh, and the normal vector 

of each triangle can be calculated by Equation (6.9). 

2.  Reflection vector 

Once the normal at a point on the surface is calculated, the reflection vector can 

be computed by using this normal and the direction vector of the light source 

(Figure 6.21). Calculating reflection normal R required mirroring light source 
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direction vector L about surface normal N. Assuming L and N are normalized, 

the projection of L onto N is 𝑵𝒄𝒐𝒔𝜃, 𝑹 = 𝑵𝒄𝒐𝒔𝜃 + 𝑺, where 𝑺 = 𝑵𝒄𝒐𝒔𝜃 − 𝑳. 

Therefore, 𝑹 = 𝟐𝑵𝒄𝒐𝒔𝜃 − 𝑳, substitution 𝒄𝒐𝒔𝜃 = 𝑵 ·𝑳 yields 

𝑹 = 𝟐𝑵(𝑵 ·𝑳) – 𝑳                             (6.10) 

If the light source is at infinity, 𝑵 ·𝑳 is constant for a given polygon. For 

curved surfaces or for a light source not at infinity, 𝑵 ·𝑳 varies across the 

surface.   

 

Figure 6.21 Calculation of reflection vector 

Once the related vectors are calculated, the triangle colour can be decided by 

using the following Equation.  

𝑰 = 𝑰𝒂𝑲𝒂 + 𝑰𝒅𝑲𝒅 𝒄𝒐𝒔 𝜃                       (6.11) 

As mentioned in Chapter 5, SVG elements can be painted with uniform single 

colour, so this colour can be used as the filling colour for the triangle. Figure 

6.22 shows a 3D box rendered by using Flat shading. Since each side of the box 

has the same normal vector, so it is rendered with the same colour. 

 

Figure 6.22 Flat shading 3D Box  

Flat shading is easy to be implemented and often used for high speed render 

where advanced shading techniques are too computationally expensive. Since 
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Flat shading only applies one colour per triangle, the render result is not very 

realistic, and colour contrast artifacts between polygons are clearly visible, 

resulting in ‗facetted objects‘. For more smooth transitions between triangles, 

and more realistic rendering, more advanced shading methods---Gouraud 

shading and Phong shading need to be applied. 

6.5.2 A New Gouraud Shading Algorithm in the SVG GL 

Gouraud shading is a colour intensity interpolation method based on the 

illumination of vertex. These colour values are first calculated for each vertex of 

a triangle, and then interpolation is done between the three vertexes to obtain a 

gradient.  

In the SVG GL, a new Gouraud shading algorithm is proposed and developed to 

calculate the colour intensity of any point inside a triangle. Instead of using linear 

interpolation, an area interpolation is used to generate colour for each pixel in the 

polygon. 

Gouraud shading requires that the normal be known for each vertex of the 

triangle. Then the colour intensity of each vertex will be computed by using the 

vertex normal with any desired illumination model. Finally each triangle is 

shaded by area interpolation on three vertex intensities.  

𝑰 = α𝑰𝟎 + β𝑰𝟏 + γ𝑰𝟐                          (6.12) 

where 𝑰𝟎, 𝑰𝟏, 𝑰𝟐 are colour intensity of each triangle vertex, I is the colour 

intensity of any point P inside the triangle. 

 

Figure 6.23 Intensity interpolation based on triangle area 

The interpolation parameters α, β, and γ  can be calculated in terms of the area 

interpolation. Figure 6.23 shows a triangle, a point P inside the triangle divides 

the triangles into three subtriangles. The areas of these three small triangles 
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are S0, S1, and  S2, and so the area of the entire triangle is equal to S0+S1+ S2. 

Parameters α, β, and γ are proportional to the three areas S0, S1, and  S2. 

 α =
S0

 S0+S1+ S2
,   β =

S1

 S0+S1+ S2
,   γ =

S2

 S0+S1+ S20
        (6.13) 

The colour intesity of the point P inside triangle can be calculated by combining 

Equation (6.12) and Equation (6.13) together. Then the intensity can be used to 

fill the triangle. Since different point inside the triangle has different intensity, so 

the triangle can not be filled with a sigle colour. 

The area S0 can be calculated by: 

S0 =  d d − a  d − b (d − c)               (6.14) 

where 

d =
a+b+c

2
                                 (6.15) 

and a =  𝑷 − 𝑨 , b =  𝑷 − 𝑩 , c =  𝑷 − 𝑪 . 

The area of S1, S2 can be calculated by the similar equation. 

This new Gouraud shading algorithm defines an SVG pattern for each triangle, 

and then calculates the colour of each vertex of the triangle by applying the 

vertex‘s normal to Equation (6.11), and then the colour of the point inside 

triangle will be calculated by Equation (6.12), finally the colour will be used to 

fill the pattern, and the pattern is used to fill the triangle to achieve the Gouraud 

shading. 

 

Figure 6.24 Gouraud shading 3D Box 

Figure 6.24 shows a 3D box rendered by using the new Gouraud shading 

algorithm. By comparing Figure 6.22 and Figure 6.24, it shows that new 

Gouraud shading algorithm produces more smooth and realistic rendering result 

than Flat shading. Each triangle is shaded by gradient colour instead of a single 
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colour. Since the colour of each point inside the triangle need to be interpolated 

by Equation (6.12), and a pattern need to be generated for each triangle, so the 

new Gouraud shading algorithm needs more computational time, and the final 

SVG file is bigger than using Flat shading. 

Table 6.1 Gouraud shading render rate for linear interpolation and area 

interpolation 

Web browser IE Firefox Chrome Safari Opera 

Linear Interpolation Render 

Rate (seconds/frame) 

0.27 0.30 0.25 0.27 0.31 

Area Interpolation Render 

Rate (seconds/frame) 

0.11 0.12 0.11 0.12 0.12 

The average number of second per frame which was achieved with linear 

interpolation and area interpolation on different web browser is shown in Table 

6.1. As can be seen in the table, the render time required for area interpolation is 

less than linear interpolation, and can improve the performance of the Gouraud 

shading algorithm. 

6.5.3 A New Phong Shading Algorithm in the SVG GL 

Phong shading is a normal vector interpolation shading method. The normal 

vectors are first calculated for each vertex of a triangle, and then interpolation is 

done between the vertexes to obtain a normal vector for a point inside the 

triangle. Finally each triangle is shaded with colour intensity of the point 

computed by using the normal with any desired illumination model. 

When specular lights are involved, Phong shading produces more realistic result 

than Gouraud shading, since the specular highlights are completely missed or 

distorted by Gouraud shading for polygons whose areas are greater than the 

highlight areas. In spite of this, most of graphics application softwares do not 

perform Phong shading due to its computational expense. The cost comes from 

the interpolation of normal and the evaluation of an illuminating model at every 

pixel. Although Phong shading is computationally expensive, it is still necessary 

to implement it in the SVG GL. Especially for applications that have a high 

rendering quality requirement, but relative low rendering speed requirement.  

In the SVG GL graphics, new Phong shading is proposed and developed to 

calculate the normal of any point inside a triangle. Instead of using linear 
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interpolation, an area interpolation is used to calculate normal for each pixel in 

the polygon.  

Phong shading requires that the normal be known for each vertex of the triangle. 

Then the normal vector of a point P inside the triangle can be interpolation on 

three vertex intensities.  

𝑵 = α𝑵𝟎 + β𝑵𝟏 + γ𝑵𝟐                       (6.16) 

where 𝑵𝟎, 𝑵𝟏, 𝑵𝟐 are normal vectors of each triangle vertex, N is the normal 

vector of point P. 

Figure 6.25 shows a triangle, a point P inside the triangle divides the triangles 

into three subtriangles. The areas of these three small triangles are S0, S1, and  S2, 

and so the area of the entire triangle is equal to S0+S1+ S2. So parameters α, β,

and γ can be calculated by Equation (6.13). 

 

Figure 6.25 Normal vector interpolation based on triangle area 

In the SVG GL graphics, the new Phong shading algorithm defines an SVG 

pattern for each triangle, and then interpolate the normal of each point P inside 

the triangle by Equation (6.16), and then the colour of the point will be calculated 

by applying the normal vector to Equation (6.8), finally the colour will be used to 

fill the pattern, and the pattern is used to fill the triangle to achieve the Phong 

shading. 

Figure 6.26 shows a box is rendered by the new Phong shading algorithm 

introduced in this section. A specular highlight is added to achieve more realistic 

results. Although this method can be used to achieve Phong shading, it is obvious 

that it needs more computational time, but the final SVG file size is similar as the 

Gouraud shading. 
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Figure 6.26 Phong shading 3D Box  

Table 6.2 Phong shading render rate for linear interpolation and area 

interpolation 

Web browser  IE Firefox Chrome Safari Opera 

Linear Interpolation Render 

rate (seconds/frame) 

 0.51 0.50 0.55 0.52 0.50 

AreaLinear Interpolation 

Render rate (seconds/frame) 

 0.15 0.16 0.22 0.17 0.19 

The average number of second per frame which was achieved with linear 

interpolation and area interpolation on different web browser is shown in Table 

6.2. As can be seen in the table, the render time required for area interpolation is 

far less than linear interpolation, and can significantly improve the performance 

of the Gouraud shading algorithm. 

6.6 Summary 

In this chapter, SVG filter is discussed first. Although filter effect in SVG can be 

used to generate appealing image and sometimes they can add some 3D effects 

on the final image, they can only be used for 2D image processing. They cannot 

be used to add lighting effect on 3D object, especially when a 3D object is 

transformed in 3D space, it is impossible to use filter to create physical correct 

shading result.  

Then different illuminating models and shading methods are introduced in this 

chapter. Although Gouraud shading and Phong shading have been around for 

years, but due to excessive computation cost, no one has used them in SVG for 

shading on 3D model.  

In this chapter, new Gouraud shading and Phong shading are proposed and 

developed. Instead of using linear interpolation, an area interpolation is used to 

generate colour or normal for each pixel inside a polygon. The render results 
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show that the new algorithms can be used to create ideal shading for the 3D 

model in the SVG GL. 
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Chapter 7 New Algorithms for Texture Mapping in the SVG GL 

7.1 Introduction 

As detail of 3D model becomes finer and more intricate, 3D modelling with 

polygons or other geometric primitives becomes less practical. An alternative is 

to map an image, either digitized or synthesized, onto a surface. This approach is 

known as texture mapping. Texture mapping is one of the most successful 

techniques in high quality image synthesis (Carey, 1985; Heckbert, 1986; 

Haeberli, 1993). Its use can enhance the visual realism while only a relatively 

small increase in computation. 

Textures can be one, two, or three dimensional. For example, a 1D texture might 

be used to create a pattern for colouring a curve (Lefebvre, 2003). A 2D texture 

is mapped to the surface of a shape or polygon. This process is akin to applying 

patterned paper to a plain white box. It can be used to render complicated shapes 

like trees, clouds, or people, with a single polygon (Elinas, 2000; Harris, 2003). 

A 3D texture, also called solid texture, is basically the equivalent of carving the 

object out of a block of material (Dischler, 2001; Pietroni, 2007). It places the 

texture onto the object coherently, not producing discontinuities of texture where 

two faces meet. 3D texture can be used to simulate the wood grain on a cube to 

avoid discontinuities of grain along the edges of the cube (Heeger, 1995).  

Since the use of surfaces is so important in computer graphics, mapping 2D 

texture to surface is by far the most common use of texture mapping. The new 

proposed the SVG GL is a polygon based 3D modelling method; the 3D object 

created by the SVG GL is approximated by multiple triangles, so only 2D texture 

mapping that will be implemented in the SVG GL.  

There are lots of different textures mapping algorithms in 3D computer graphics. 

But they are all pixel-based, that means when a primitive is rendered, texture 

parameters for each image pixel are determined, and used to address the 

appropriate texture pixels. In the SVG GL, the elementary primitive is triangle. 

So the existing texture mapping algorithm cannot be used in the SVG GL. New 

texture mapping algorithms have to be proposed and developed. 

7.2 Texture Mapping in SVG 

SVG is a language for describing 2D graphics in XML. SVG pattern is used to 

fill a shape with a pattern made up from images. This pattern can be made up 

from SVG images (shapes) or from bitmap images. 



106 

 

A pattern is used to fill or stroke an object using a pre-defined graphic object that 

can be replicated at fixed intervals in x and y to cover the areas to be painted. 

Patterns are defined using a ‗pattern‘ element and then referenced by properties 

‗fill‘ and ‗stroke‘ on a given graphics element to indicate that the given element 

shall be filled or stroked with the referenced pattern. 

Attributes ‗x‘, ‗y‘, ‗width’, ‗height‘ and ‗patternUnits‘ define a reference 

rectangle somewhere on the infinite canvas. The reference rectangle has its 

top/left at (x, y) and its bottom/right at (x + width, y + height).  

Here is a simple SVG fill pattern example: 

 

The result is shown in Figure 7.1. 

 

Figure 7.1 SVG pattern 

Although an SVG pattern can be use to display a 2D image, to use it to wrap 2D 

texture on 3D object, it still has problems. First, not all 3D objects surfaces are 

flat, so using SVG pattern directly on curved 3D surface will cause unexpected 

distort (Figure 7.2); second, when 3D objects are transformed in 3D space, using 

the SVG pattern directly cannot create transformed texture accordingly, so the 

final texture mapping is incorrect (Figure 7.3). In order to use SVG pattern for 

wrapping texture on 3D objects in the SVG GL, there is still more works to be 

<defs> 

  <pattern id="pattern1" x="10" y="10" width="20" height="20" 

           patternUnits="userSpaceOnUse" > 

 <circle cx="10" cy="10" r="10" style="stroke: none; fill: #0000ff" /> 

 </pattern> 

</defs> 

<rect x="10" y="10" width="100" height="100" style="stroke: 

#000000; fill: url(#pattern1);" />   
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done, new algorithms have to be proposed. In this PhD project, the pattern based 

image transformed texture mapping algorithms for different 3D objects in the 

SVG GL are proposed, and discussed from Section 7.5 to Section 7.12. 

 

Figure 7.2 Compare using SVG pattern directly on an 3D cone with the correct 

texture mapping on the 3D cone 

 

Figure 7.3 Compare using SVG pattern directly on a rotated plane with the 

correct texture mapping on the rotated plane. 
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7.3 Texture Mapping  

Before discussing texture mapping, there are 3 coordinate spaces need to be 

defined. Screen space, is a 2D space where the final image is displayed; object 

space, is a 3D space where the objects upon which the textures will be mapped is 

defined; texture space, is a 2D space which the position of the texture is located.  

In computer graphics, texture mapping can be referred as a transformation from 

texture space to screen space (Oliveira, 2000). This transformation can be split 

into two phase (Figure 7.4). The first is the surface parameterization that 

establishes the one-to-one correspondence of points from texture space to object 

space, and then followed by the standard geometrical and projection 

transformations that affect the mapping from object space to screen space. 

 

Figure 7.4 Texture space to screen space transformation 

The mapping between texture space and screen space has to be evaluated for 

each pixel to be shaded. Generally there are two major types of implementations: 

forward texture mapping and backward texture mapping. 

Forward texture mapping, also called texture order, scans the data in texture 

space and maps from texture space to screen space (Chen, 1999; Deng, 2002). In 

forward texture mapping, each coordinate pair (u, v) on texture space is mapped 

to point (x, y) on screen space. Firstly, the coordinate (u, v) will be mapped to a 

point on a 3D surface in object space by parameterization; then the point on 3D 

surface will be projected to 2D screen. So coordinate (u, v) on texture space is 

mapped to point (x, y) on screen space via a pair of function: 

 
𝑥 = 𝑿 𝑢, 𝑣 
𝑦 = 𝒀(𝑢, 𝑣)

                                 (7.1) 

Forward texture mapping is performed with only one operation per pixel in the 

texture space. The application of this forward mapping algorithm to a texture will 

result in the kinds of situation shown in Figure 7.5. The output image on the 

screen space will be left with ‗holes‘ (pixels with unknown values) where the 
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output is scaled up compared with the input texture, and multiple pixel overlaps 

where the output is scaled down with respect to the input. 

 

Figure 7.5 Forward mapping leaves holes and overlaps 

One solution is to add mapped samples into a screen space accumulator buffer 

with a filter function. Forward texture mapping is preferable only when the 

texture-to –screen mapping is difficult to invert, or when the texture image have 

to be read sequentially. 

Backward texture mapping, also called screen order or inverse mapping, it scans 

the pixels in screen space and uses the mapping from screen space to texture 

space (Wei, 2008; Chen, 2010). The problems with the forward texture mapping 

can be solved by backward texture mapping. Instead of sending each input pixel 

to an output pixel, backward mapping looks at each output pixel and determine 

what input pixels map to it. In backward mapping, the coordinate (x, y) on 2D 

screen will be map to a point on a 3D surface in object space firstly; then the 

point on 3D surface will be mapped to 2D texture by parameterization. By 

inverting the forward mapping function X(u, v), Y(u, v) , the backward mapping 

function can be defined as: 

 
𝑢 = 𝑼(𝑿(𝑢, 𝑣), 𝒀(𝑢, 𝑣))
𝑣 = 𝑽(𝑿(𝑢, 𝑣), 𝒀(𝑢, 𝑣))

                         (7.2) 

Each pixel in screen space is inverse-transformed to texture space and the textel 

value there is read. Backward texture mapping is preferred when the screen has 

to be written sequentially, the mapping is invertible, and the texture is random 

access. 

As mentioned in previous section, texture mapping consists of a transformation 

of 2D texture space to a 3D object surface via parameterization, and then a 

projection of that surface onto 2D screen space. 2D mappings are central to each 

of these transformations.  
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Conceptually, a small area of the texture maps to the area of the surface of a 3D 

object, corresponding to pixels in the final image. Colour values can be used, 

either to modify the colour of the surface that might have been determined by a 

lighting model, or to assign a colour to the surface based on only the texture 

value.  

On closer examination of the texture mapping procedure, there are still a number 

of difficulties.  

1. Parameterization, the map from texture space to object space has to be 

determined. A texture is usually defined over a rectangle region in 2D texture 

space, but most surfaces in 3D object space are not flat. The mapping from this 

rectangle to an arbitrary region in 3D space may be a complex function or may 

have undesirable properties; there is often no single best method of assigning 

texture space to object space.  

2. Although SVG supports 2D raster images, texture mapping in the SVG GL 

can be very tricky. 2D image can be displayed by using <Pattern> elements in 

SVG. But originally, they can only be used with 2D shape, in order to use them 

as texture for 3D objects; the 2 problems mentioned in section 7.2 have to be 

solved 

7.4 Texture Mapping in the SVG GL 

Due to the problem with existing SVG pattern for texture mapping in the SVG 

GL, and the traditional texture mapping also cannot be applied to the SVG GL, 

the new texture mapping algorithms are proposed and developed in this project. 

The new algorithms are based on SVG pattern and transformation of the 2D 

texture according to the geometric transformation of 3D model. The procedure of 

this algorithm is shown in Figure 7.6. There are four steps: 

Step1: Parameterization, mapping the 2D texture to 3D model by the 

parameterization equation.  

Step 2: Transformation, transforming the 2D texture according to the geometric 

transformation of the 3D model. 

Step 3: SVG pattern creation, generating SVG pattern based on the transformed 

texture. 

Step 4: SVG pattern application, applying the SVG pattern onto the 3D model. 
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Figure 7.6 The procedure of the pattern based image transformed texture 

mapping algorithms 

The new texture mapping algorithm is a mapping that transform a 2D texture in 

texture space into a 2D screen space. It maps a source point (u, v) in texture 

space to a destination point (x, y) in screen space according to the geometrical 

and projection transformation of the 3D object.  

The elementary primitive in the SVG GL graphics is triangle, so the new texture 

mapping algorithm with a triangle will be proposed and developed firstly; then 

texture mapping algorithm for different 3D models in the SVG GL will be 

proposed and developed from Section 7.6 to Section 7.12, namely: plane, 

cylinder, sphere, cone, and complex 3D models in the SVG GL. 

7.5 A New Texture Mapping Algorithm for a Triangle in the SVG GL 

A new texture mapping algorithm for a triangle is proposed and developed in this 

section. This new algorithm is based on the algorithm proposed in Section 7.4. 

The parameterization equation from a 2D texture to a triangle is used at the first 

step. 

A triangle can be defined by three non-collinear point A (𝑥0, 𝑦0, 𝑧0 ), B 

(𝑥1, 𝑦1, 𝑧1 ), and C (𝑥2 , 𝑦2, 𝑧2 ). The corresponding points in 2D texture space are 

D (𝑢0 , 𝑣0 ), E (𝑢1 , 𝑣1), and F (𝑢2 , 𝑣2 ) (Figure 7.7). The complete transformation 

from texture space to object space is: 
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𝑥 = 𝑎 ∙ 𝑢 + 𝑏 ∙ 𝑣 + 𝑐
𝑦 = 𝑑 ∙ 𝑢 + 𝑒 ∙ 𝑣 + 𝑓
𝑧 = 𝑔 ∙ 𝑢 + 𝑕 ∙ 𝑣 + 𝑖

                           (7.3)  

The unknown coefficients can be derived from the solution of a linear equations 

developed by putting the coordinates of points A, B, C, D, E, and F into this 

Equation. And the results are: 

 
𝑎
𝑏
𝑐
 =  

𝑢0 𝑣0 1
𝑢1 𝑣1 1
𝑢2 𝑣2 1

  

−1

 

𝑥𝐴
𝑥𝐵
𝑥𝐶
                         (7.4) 

 
𝑑
𝑒
𝑓
 =  

𝑢0 𝑣0 1
𝑢1 𝑣1 1
𝑢2 𝑣2 1

  

−1

 

𝑦𝐴
𝑦𝐵
𝑦𝐶
                         (7.5) 

 
𝑔
𝑕
𝑖
 =  

𝑢0 𝑣0 1
𝑢1 𝑣1 1
𝑢2 𝑣2 1

  

−1

 

𝑧𝐴
𝑧𝐵
𝑧𝐶
                         (7.6) 

Then the intermediate data will be transformed according to the geometrical and 

projection transformation of the plane by the following Equation. 

𝑷′ = 𝑴𝒑𝑴𝑮𝑷                                (7.7) 

where P is the intermediate data generated from the parameterization, 𝑷′ is the 

transformed intermediate data. 𝑴𝑮 and 𝑴𝒑 are the geometrical transformation 

and projection matrices according to the transformation and projection of the 

triangle. After the original texture is transformed according to Equation (7.7), the 

SVG pattern is generated from the transformed texture. Finally the texture is 

wrapped to the triangle by applying the pattern to the triangle. 

 

Figure 7.7 Parameterization of a triangle 
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The texture mapping algorithm for a triangle can be described in Figure 7.8.  

1. A triangle is defined in object space with coordinates (x, y, z), and the 

corresponding texture is defined in texture space with coordinates (u, v). The 

texture is parameterized by Equation (7.3) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 

projection transformation of the triangle by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the triangle by adding the pattern to the 

triangle. 

 

Figure 7.8 New texture mapping algorithm for a triangle in the SVG GL 

Figure 7.9 (a) shows the texture is wrapped on a triangle by using the new texture 

mapping algorithm. The triangle is rotated around x-axis, y-axis, and z-axis 

respectively. Figure 7.9 (b) shows the texture by applying SVG pattern directly 

(without transform according to the triangle) on the triangle, and this triangle is 

also rotated around x-axis, y-axis, and z-axis respectively.  
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Figure 7.9 Compare texture mapping create by new algorithm for a triangle and 

by using SVG pattern directly 

By comparing Figure 7.9 (a) and Figure 7.9 (b), it shows applying SVG pattern 

directly on the triangle will create distort when the triangle is transformed in 3D 

space. But the new texture mapping algorithm for a triangle can generate realistic 

texture for the triangle even the triangle is transformed in 3D space. 

7.6 A New Texture Mapping Algorithm for a Plane in the SVG GL 

A new texture mapping algorithm for a plane is proposed and developed in this 

section. This new algorithm is based on the algorithm proposed in Section 7.4. 

The parameterization equation from a 2D texture to a plane will be used at the 

first step. 

The parameterization of a plane can be derived from the parameterization of 

triangle, by subdividing the plane into 2 triangles and generating a 

parameterization for the separate triangles by Equation (7.3).  

The new texture mapping algorithm for a plane can be described in Figure 7.10.  

1. A plane is defined in object space with coordinates (x, y, z), and the 

corresponding texture is defined in texture space with coordinates (u, v). The 

plane is divided to 2 triangles, and then the texture is parameterized by Equation 

(7.3) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 
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projection transformation of the plane by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the plane by adding the pattern to the 

plane. 

 

Figure 7.10 New texture mapping algorithm for a plane in the SVG GL 

Figure 7.11(a) shows the texture is wrapped on a plane by using the new texture 

mapping algorithm. The plane is rotated around x-axis, y-axis, and z-axis 

respectively. Figure 7.11(b) shows the texture applying SVG pattern directly 

(without transform according to the plane) on the plane, and this plane is also 

rotated around x-axis, y-axis, and z-axis respectively. 
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Figure 7.11 Compare texture mapping create by the new algorithm for a plane 

and by using SVG pattern directly 

By comparing Figure 7.11(a) and Figure 7.11(b), it shows applying SVG pattern 

directly on the plane will create distort when the plane is transformed in 3D 

space. But the new texture mapping algorithm for a plane can generate realistic 

texture for the plane even the plane is transformed in 3D space. 

7.7 A New Texture Mapping Algorithm for a Sphere in the SVG GL 

A new texture mapping algorithm for a sphere is proposed and developed in this 

section. This new algorithm is based on the algorithm proposed in Section 7.4. 

The parameterization equation from a 2D texture to a sphere will be used at the 

first step. 

The implicit definition of a sphere around point (𝑥0 , 𝑦0, 𝑧0) with radius r is: 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝑟2               (7.8) 

An appropriate parameterization can be derived using a spherical coordinates:  

 
𝑥 = 𝑥0 + 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑  
𝑦 = 𝑦0 + 𝑟𝑐𝑜𝑠𝜑           
𝑧 = 𝑧0 + 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑  

                              (7.9) 



117 

 

The spherical coordinate 𝜃 represents the heading angle that covers the range 

 0, 360𝑜 , and 𝜑 represents the azimuth angle that covers the range −90𝑜 , 90𝑜 , 

thus, the appropriate choice for assigning texture map coordinates would be 

 
𝑢 =

𝜃

360
      

𝑣 =
2𝜑+180

360

                                   (7.10) 

The complete transformation from texture space to object space is: 

 

𝑥 𝑢, 𝑣 = 𝑥0 + 𝑟 ∙ 𝑐𝑜𝑠⁡(360 ∙ 𝑢) ∙ 𝑠𝑖𝑛⁡[180 ∙  𝑣 − 0.5 ]

𝑦 𝑢, 𝑣 = 𝑦0 + 𝑟 ∙ 𝑐𝑜 𝑠 180 ∙  𝑣 − 0.5                              

𝑧 𝑢, 𝑣 = 𝑧0 + 𝑟 ∙ 𝑠𝑖𝑛 360 ∙ 𝑢 ∙ 𝑠𝑖𝑛⁡[180 ∙  𝑣 − 0.5 ]  

 (7.11) 

The new texture mapping algorithm for a sphere can be described in Figure 7.12.  

1. A sphere is defined in object space with coordinates (x, y, z), and the 

corresponding texture is defined in texture space with coordinates (u, v). The 

texture is parameterized by Equation (7.11) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 

projection transformation of the sphere by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the sphere by adding the pattern to the 

sphere. 

 

Figure 7.12 New texture mapping algorithm for a sphere in the SVG GL 

The proposed algorithm is used to generate texture for a sphere, and the result is 

compared with the texture mapping created by using SVG pattern directly 
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(without transform according to the sphere). Figure 7.13(a) shows the texture is 

wrapped onto a sphere by using the new texture mapping algorithm for a sphere. 

The sphere is rotated around x-axis, y-axis, and z-axis respectively. Figure 7.13(b) 

shows the texture applying SVG pattern directly on the sphere, and this sphere is 

also rotated around x-axis, y-axis, and z-axis respectively. 

 

Figure 7.13 Compare texture mapping create by new algorithm for a sphere and 

by using SVG pattern directly 

By comparing Figure 7.13(a) and Figure 7.13(b), it shows applying SVG pattern 

directly on the sphere will create distort when the sphere is transformed in 3D 

space. But the new texture mapping algorithm for a sphere can generate realistic 

texture for the sphere even the sphere is transformed in 3D space. 

7.8 A New Texture Mapping Algorithm for a Cylinder in the SVG GL 

A new texture mapping algorithm for a cylinder is proposed and developed in 

this section. This new algorithm is based on the algorithm proposed in Section 

7.4. The parameterization equation from a 2D texture to a cylinder will be used at 

the first step. 

A cylinder of height H centered at the origin and located around the y axis has 

the following implicit Equation: 

𝑥2 + 𝑧2 = 𝑟2, 0 ≤ 𝑦 ≤ 𝐻                      (7.12) 
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The same cylinder can be conveniently expressed by cylindrical coordinates 

(𝜃 ∈  0, 360o , 𝑕 ∈  0, H ): 

 

𝑥 𝜃, 𝑕 = 𝑟 ∙ 𝑐𝑜𝑠𝜃
𝑦 𝜃, 𝑕 = 𝑕            

𝑧 𝜃, 𝑕 = 𝑟 ∙ 𝑠𝑖𝑛𝜃 

                            (7.13) 

One of the most natural choices for assigning texture space to the cylinder would 

be to use 

 
𝑢 =

𝜃

360
    

𝑣 =
𝑕

𝐻
       

                                   (7.14) 

This lets u vary linearly from 0 to 1 as θ varies from 0 to 360o  and lets v vary 

from 0 to 1 as h varies from 0 to H. The complete transformation from texture 

space to object space is: 

 

𝑥 𝑢, 𝑣 = 𝑟 ∙ 𝑐𝑜𝑠⁡(360 ∙ 𝑢)

𝑦 𝑢, 𝑣 = 𝐻𝑣                        

𝑧 𝑢, 𝑣 = 𝑟 ∙ 𝑠𝑖𝑛 360 ∙ 𝑢  

                     (7.15) 

This has the effects of pasting the texture onto the cylinder without any distortion 

beyond being scaled to cover the cylinder; the right and left boundaries meet at 

the front of the cylinder along the line where x=0 and z=r. 

The new texture mapping algorithm for a cylinder can be described in Figure 

7.14.  

1. A cylinder is defined in object space with coordinates (x, y, z), and the 

corresponding texture is defined in texture space with coordinates (u, v). The 

texture is parameterized by Equation (7.15) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 

projection transformation of the cylinder by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the cylinder by adding the pattern to the 

cylinder. 
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Figure 7.14 New texture mapping method for a cylinder in the SVG GL 

The proposed algorithm is used to generate texture for a cylinder, and the result 

is compared with the texture mapping created by using SVG pattern directly 

(without transform according to the cylinder). Figure 7.15(a) shows the texture is 

wrapped on a cylinder by using the new texture mapping algorithm. The cylinder 

is rotated around x-axis, y-axis, and z-axis respectively. Figure 7.15(b) shows the 

texture applying SVG pattern directly on the cylinder, and this cylinder is also 

rotated around x-axis, y-axis, and z-axis respectively. 

 

Figure 7.15 Compare texture mapping create by new algorithm for a cylinder and 

by using SVG pattern directly 
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By comparing the Figure 7.15(a) and Figure 7.15(b), it shows applying SVG 

pattern directly on the cylinder will create distort when the cylinder is 

transformed in 3D space. But the new texture mapping algorithm for a cylinder 

can generate realistic texture for the cylinder even the cylinder is transformed in 

3D space. 

7.9 A New Texture Mapping Algorithm for a Cone in the SVG GL 

A new texture mapping algorithm for a cone is proposed and developed in this 

section. This new algorithm is based on the algorithm proposed in Section 7.4. 

The parameterization equation from a 2D texture to a cone will be used at the 

first step. 

A cone of height H centered at the origin and located around the y axis has the 

following parametric equation of a cone can be defined as 

 

𝑥 =
𝐻−𝑕

𝐻
𝑟𝑐𝑜𝑠𝜃                        

𝑦 = 𝑕                    0 ≤ 𝑕 ≤ 𝐻

𝑧 =
𝐻−𝑕

𝐻
𝑟𝑠𝑖𝑛𝜃  0 ≤ 𝜃 ≤ 2𝜋

                     (7.16) 

One of the most natural choices for assigning texture space to the cylinder would 

be to use 

 
𝑢 =

𝜃

360
    

𝑣 =
𝑕

𝐻
       

                                  (7.17) 

This lets u vary linearly from 0 to 1 as θ varies from 0 to 360o  and lets v vary 

from 0 to 1 as h varies from 0 to H. The complete transformation from texture 

space to object space is: 

 

𝑥 =
𝐻−𝑕

𝐻
𝑟𝑐𝑜𝑠(360 ∙ 𝑢)                      

𝑦 = 𝐻𝑣                                                  

𝑧 =
𝐻−𝐻𝑣

𝐻
𝑟𝑠𝑖𝑛(360 ∙ 𝑢)                    

              (7.18) 

This has the effects of pasting the texture onto the cone without any distortion 

beyond being scaled to cover the cone; the right and left boundaries meet at the 

front of the cylinder along the line where x=0 and z=r. 

The new texture mapping algorithm for a cone can be described in Figure 7.16.  

1. A cone is defined in object space with coordinates (x, y, z), and the 

corresponding texture is defined in texture space with coordinates (u, v). The 
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texture is parameterized by Equation (7.18) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 

projection transformation of the cone by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the cone by adding the pattern to the 

cone. 

 

Figure 7.16 New texture mapping method for a cone in the SVG GL 

The proposed algorithm is used to generate texture for a cone, and the result is 

compared with the texture mapping created by using SVG pattern directly 

(without transform according to the cone). Figure 7.17(a) shows the texture is 

wrapped on a cone by using the new texture mapping algorithm for a cone. The 

cone is rotated around x-axis, y-axis, and z-axis respectively. Figure 7.17(b) 

shows the texture by applying SVG pattern directly on the cone, and this cone is 

also rotated around x-axis, y-axis, and z-axis respectively. 
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Figure 7.17 Compare texture mapping create by new algorithm for a cone and by 

using SVG pattern directly 

By comparing Figure 7.17(a) and Figure 7.17(b), it shows applying SVG pattern 

directly on the cone will create distort when the cone is transformed in 3D space. 

But the new texture mapping algorithm for a cone can generate realistic texture 

for the cone even the cone is transformed in 3D space. 

7.10 A New Texture Mapping Algorithm for a Bezier Surface in the SVG 

GL 

A new texture mapping algorithm for a Bezier surface is proposed and developed 

in this section. This new algorithm is based on the algorithm proposed in Section 

7.4. The parameterization equation from a 2D texture to a Bezier surface will be 

used at the first step. 

A Bezier surface is defined by a set of control points (Farin, 1996). The Equation 

of a Bezier surface defined by m+1 rows and n+1 columns of control points is: 

  𝑝 𝑠, 𝑡 =   𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0  𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗               (7.19) 

The parametric Equation of a Bezier surface can be defined as 
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𝑥 =   𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0  𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗  

𝑦 =   𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0  𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗

𝑧 =   𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0  𝑠 𝐵𝑛,𝑗 (𝑡)𝑝𝑖𝑗

                 (7.20) 

One of the most natural choices for assigning texture space to the Bezier surface 

would be to use 

 
𝑢 = 𝑠      
𝑣 = 𝑡       

                                    (7.21) 

The complete transformation from texture space to object space is: 

 

𝑥 =   𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0  𝑢 𝐵𝑛,𝑗 (𝑣)𝑝𝑖𝑗  

𝑦 =   𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0  𝑢 𝐵𝑛,𝑗 (𝑣)𝑝𝑖𝑗

𝑧 =   𝐵𝑚,𝑖
𝑛
𝑗=0

𝑚
𝑖=0  𝑢 𝐵𝑛,𝑗 (𝑣)𝑝𝑖𝑗

                (7.22) 

This has the effects of pasting the texture onto the Bezier surface without any 

distortion beyond being scaled to cover the Bezier surface. 

The new texture mapping algorithm for a Bezier surface can be described in 

Figure 7.18.  

1. A Bezier surface is defined in object space with coordinates (x, y, z), and the 

corresponding texture is defined in texture space with coordinates (u, v). The 

texture is parameterized by Equation (7.22) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 

projection transformation of the Bezier surface by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the Bezier surface by adding the pattern 

to the Bezier surface. 
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Figure 7.18 New texture mapping method for a Bezier surface in the SVG GL 

The proposed algorithm is used to generate texture for a Bezier surface, and the 

result is compared with the texture mapping created by using SVG pattern 

directly (without transform according to the Bezier surface). Figure 7.19(a) 

shows the texture is wrapped on a Bezier surface by using the new texture 

mapping algorithm. The Bezier surface is rotated around x-axis, y-axis, and 

z-axis respectively. Figure 7.19(b) shows the texture by applying SVG pattern 

directly on the Bezier surface, and this Bezier surface is also rotated around 

x-axis, y-axis, and z-axis respectively. 
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Figure 7.19 Compare texture mapping create by new algorithm for a Bezier 

surface and by using SVG pattern directly 

By comparing Figure 7.19(a) and Figure 7.19(b), it shows applying SVG pattern 

directly on the Bezier surface will create distort when the cone is transformed in 

3D space. But the new texture mapping algorithm for a Bezier surface can 

generate realistic texture for the Bezier surface even the Bezier surface is 

transformed in 3D space. 

7.11 A New Texture Mapping Algorithm for an Extrusion in the SVG GL 

A new texture mapping algorithm for an extrusion surface is proposed and 

developed in this section. This new algorithm is based on the algorithm proposed 

in Section 7.4. The parameterization equation from a 2D texture to an extrusion 

surface will be used at the first step. 

If a space curve is expressed by C(s), where 𝟎 ≤ 𝒔 ≤ 𝟏, the transformation 

matrix is E(t), then the surface of extrusion has the form: 

C(s, t) = C(s)E(t)                              (7.23) 

The parametric Equation of an extrusion surface can be defined as 

 

𝑥 = 𝐂𝐱(𝑠)𝐄𝐱(𝑡)  
𝑦 = 𝐂𝐲(𝑠)𝐄𝐲(𝑡)  

𝑧 = 𝐂𝐳(𝑠)𝐄𝐳(𝑡)  

                             (7.24) 

One of the most natural choices for assigning a point (u, v) in texture space to a 

point (s, t) on the extrusion surface would be to use 

 
𝑢 = 𝑠      
𝑣 = 𝑡       

                                   (7.25) 

The complete transformation from texture space to object space is: 

 

𝑥 = 𝐂𝐱(𝑢)𝐄𝐱(𝑣)  
𝑦 = 𝐂𝐲(𝑢)𝐄𝐲(𝑣)  

𝑧 = 𝐂𝐳(𝑢)𝐄𝐳(𝑣)  

                            (7.26) 

This has the effects of pasting the texture onto the extrusion surface without any 

distortion to cover the extrusion surface. 

The new texture mapping algorithm for an extrusion surface can be described in 

Figure 7.20.  

1. An extrusion surface is defined in object space with coordinates (x, y, z), and 

the corresponding texture is defined in texture space with coordinates (u, v). The 
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texture is parameterized by Equation (7.26) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 

projection transformation of the extrusion surface by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the extrusion surface by adding the 

pattern to the extrusion surface. 

 

Figure 7.20 New texture mapping method for an extrusion surface in the SVG GL 

The proposed algorithm is used to generate texture for an extrusion surface, and 

the result is compared with the texture mapping created by using SVG pattern 

directly (without transform according to the extrusion surface). Figure 7.21(a) 

shows the texture is wrapped on an extrusion surface by using the new algorithm. 

The extrusion surface is rotated around x-axis, y-axis, and z-axis respectively. 

Figure 7.21(b) shows the texture by applying SVG pattern directly on the 

extrusion surface, and this extrusion surface is also rotated around x-axis, y-axis, 

and z-axis respectively. 
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Figure 7.21 Compare texture mapping create by new algorithm for an extrusion 

surface and by using SVG pattern directly 

By comparing Figure 7.21(a) and Figure 7.21(b), it shows applying SVG pattern 

directly on the extrusion surface will create distort when the cone is transformed 

in 3D space. But the new texture mapping algorithm for an extrusion surface can 

generate realistic texture for the extrusion surface even the extrusion surface is 

transformed in 3D space. 

7.12 A New Texture Mapping Algorithm for a Revolution in the SVG GL 

A new texture mapping algorithm for a revolution surface is proposed and 

developed in this section. This new algorithm is based on the algorithm proposed 

in Section 7.4. The parameterization equation from a 2D texture to a revolution 

surface will be used at the first step 

If a space curve is expressed by C(s), where 𝟎 ≤ 𝑠 ≤ 𝟏, C(s) is rotated about an 

axis in space, the rotation matrix R(t), then the surface of revolution surface has 

the form: 

C(s, t)=C(s)R(t)                               (7.27) 

The parametric Equation of a revolution surface can be defined as 
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𝑥 = 𝐂𝐱(𝑠)𝐑𝐱(𝑡)  
𝑦 = 𝐂𝐲(𝑠)𝐑𝐲(𝑡)  

𝑧 = 𝐂𝐳(𝑠)𝐑𝐳(𝑡)  

                         (7.28) 

One of the most natural choices for assigning a point (u, v) in texture space to a 

point (s, t) on the extrusion surface would be to use 

 
𝑢 = 𝑠       
𝑣 = 𝑡       

                                (7.29) 

The complete transformation from texture space to object space is: 

 

𝑥 = 𝐂𝐱(𝑢)𝐑𝐱(𝑣)  
𝑦 = 𝐂𝐲(𝑢)𝐑𝐲(𝑣)  

𝑧 = 𝐂𝐳(𝑢)𝐑𝐳(𝑣)  

                         (7.30) 

This has the effects of pasting the texture onto the revolution surface without any 

distortion to cover the revolution surface. 

The new texture mapping algorithm for a revolution surface can be described in 

Figure 7.22.  

1. A revolution surface is defined in object space with coordinates (x, y, z), and 

the corresponding texture is defined in texture with space coordinates (u, v). The 

texture is parameterized by Equation (7.30) to generate the intermediate data.  

2. The intermediate data will be transformed according to the geometrical and 

projection transformation of the revolution surface by Equation (7.7).  

3. The SVG pattern is generated from the transformed texture.  

4. Finally the texture is wrapped onto the revolution surface by adding the 

pattern to the revolution surface. 
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Figure 7.22 New texture mapping method for a revolution surface in the SVG GL 

The proposed algorithm is used to generate texture for a revolution surface, and 

the result is compared with the texture mapping created by using SVG pattern 

directly (without transform according to the revolution surface). Figure 7.23(a) 

shows the texture is wrapped on a revolution surface by using the pattern based 

image transformed algorithm. The revolution surface is rotated around x-axis, 

y-axis, and z-axis respectively. Figure 7.23(b) shows the texture by applying 

SVG pattern directly on the revolution surface, and this revolution surface is also 

rotated around x-axis, y-axis, and z-axis respectively. 

 

Figure 7.23 Compare texture mapping create by new algorithm for a revolution 

surface and by using SVG pattern directly 

By comparing Figure 7.23(a) and Figure 7.23(b), it shows applying SVG pattern 

directly on the revolution surface will create distort when the cone is transformed 

in 3D space. But the new texture mapping algorithm for revolution surface can 

generate realistic texture for a revolution surface even the revolution surface is 

transformed in 3D space. 

7.13 Summary 

SVG patter is discussed first in this chapter. Although SVG pattern can be use to 

display 2D image, to use it to wrap 2D texture on 3D object, it still has problems.  
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1. Not all 3D objects surfaces are flat, so using SVG pattern directly on curved 

3D surface will cause unexpected distort;  

2. When 3D objects are transformed in 3D space, using the SVG pattern 

directly cannot create transformed texture accordingly, so the final texture 

mapping is incorrect. 

Then existing texture mapping algorithms are also discussed. Since the existing 

texture mapping algorithms are pixel based, but the elementary primitive in the 

SVG GL is triangle. The existing texture mapping algorithms cannot be used in 

the SVG GL. 

Due to the reason mentioned above, new texture mapping algorithms in the SVG 

GL are proposed and developed in this chapter. The new algorithms are based on 

SVG pattern and transform the 2D texture according the transformation of the 3D 

model. The basic idea behind this method is to transform the original texture 

according to the transformation of the 3D object, and then generate the pattern 

that will be added to the screen image. A set of new texture mapping algorithms 

for different 3D models in the SVG GL are proposed in this chapter, include 

plane, sphere, cylinder, cone, Bezier surface, extrusion surface and revolution 

surface. And it also proves that the proposed algorithm can generate realistic 

texture for the 3D object even the object is transformed in 3D space. 
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Chapter 8 Design and Development of the Software Environment for 

Validation the Proposed Framework and Algorithms 

8.1 Introduction 

In this PhD project a new framework-SVG GL based on SVG technology is 

proposed for publishing 3D for web-based applications over Internet, that can be 

viewed on standard web browsers (except for IE which will need a plug-in) 

without having to install any plug-ins. New Gouraud shading algorithm and new 

Phong shading algorithm in the SVG GL are proposed and developed. And a set 

of new texture mapping algorithms are developed for different 3D primitives and 

3D complex models, including triangle, plane, sphere, cylinder, cone, extrusion, 

revolution, etc.  

To validate the proposed framework and algorithms, a dedicated test software 

system- SVG 3D graphics library (S3GL) has to be developed. After a close 

analysis of samples collected during the problem definition stage the analyst 

found that all the hardware and software requirements needed for development 

and implementation of the S3GL are readily available in the market.  

8.2 System Validation 

This PhD project is mainly exploratory with some experimental validation work 

through a self designed and developed software system- S3GL. S3GL is 

developed based on the proposed framework.  

S3GL will be validated firstly, to prove it can be used to create desired 3D scene. 

Then four 3D test applications are implemented to validate the new framework 

proposed in Chapter 5, the Gouraud shading and Phong shading algorithms 

proposed in Chapter 6, and the texture mapping algorithms developed in Chapter 

7. The primary purpose of the test applications is to validate the framework, 

algorithms and test the performance of S3GL.  

S3GL is developed following system development stages for smooth developing 

and running 3D models for standard web browsers. After an information 

gathering process from existing methods for 3D modelling for web-based 

applications by systematically reviewing the published literature, the system 

analyst saw that the new S3GL is indeed needed for generating 3D models for 

web-based applications. 
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S3GL is developed using visual C# programming language, it will help to 

develop 3D models for different web-based applications to realize their 

maximum potential in addition to their competence in the different fields. 

8.3 System Requirement Analysis 

8.3.1 Problem Definition 

The Goals of this project are to propose a new framework-SVG GL based on 

SVG technology for publishing 3D for web-based applications over Internet, that 

can be viewed on standard web browsers; develop new Gouraud shading and 

Phong shading algorithms; and develop a set of new texture mapping algorithms 

to enhance the realism of the final rendering result. For those goals, S3GL needs 

to be able to perform the following operations: 

1. Defining and developing 3D primitive geometries. 

2. Defining and developing 3D objects through sweeping. 

3. Creating free form surface by using Bezier surface. 

4. Generating 3D objects through point clouds. 

5. Transforming 3D objects in 3D space. 

6. Projecting the 3D objects to 2D screen. 

7. Illuminating and shading the 3D objects. 

8. Adding texture to 3D objects to enhance the realism. 

9. Adding 3D objects to an SVG file which can be rendered directly onto a 

standard web browser. 

3D primitive geometries includes: triangle, plane, sphere, cylinder, cone, and 

cube. Sweeping includes extrusion and revolution. 3D objects can be rotated 

around the x, y and z axes, and translated along the x, y and z axes. The new 

texture mapping algorithms are used to add texture onto the 3D objects. 

In addition to all the functions described above, the system should also be: 

1. Be user-friendly to develop and use. 

2. Improve the performance of 3D modelling for web-based application. 

3. Reduce the file size of the 3D objects. 

8.3.2 The Software System- S3GL  
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The Objectives of the software system- S3GL are: 

(1) To create 3D objects from 3D primitive geometries, extrusion, revolution, 

Bezier surface, and point clouds.  

(2) To integrate different shading methods such as Flat shading, Gouraud shading 

and Phong shading. 

(3) To add texture mapping to enhance the realism of the 3D scene. 

(4) To implement S3GL and validate it through development and evaluation of 

typical 3D web-based applications. 

S3GL will cover defining, creating, transforming, rendering 3D scene to SVG 

file, and finally render the 3D scene on standard web browser. Moreover, special 

effects such as Gouraud shading, Phong shading, and texture mapping will be 

automated by S3GL also, and will be efficiently handled by S3GL. 

To help S3GL smoothly carry out its intended purpose to meet the needs of 

web-based applications, the following components will be used in S3GL, each of 

these components relate directly to classes that are used by S3GL. 

1. Scene 

The scene is the entire composition of 3D objects in a 3D space. It is like a stage 

with three axes—x, y, and z. Each 3D object that the user wants to be visible 

should be added to the scene. If user doesn‘t add objects to the scene, they will 

not appear on the web browser. 

2. Camera 

As a real camera, that is somewhere in 3D space recording activity inside the 

scene. The camera defines the point of view from which viewer is viewing the 

scene. Camera in 3D space can usually do more than real camera. The camera is 

able to ignore objects that are not in a certain defined range. This is done for 

performance reasons.  

3. 3D objects 

A shape in 3D space is called a 3D object. A 3D object can be placed anywhere 

in 3D space and rotated over each of the three axes. S3GL has a set of primitive 

shapes. Such primitives include triangle, plane, sphere, cylinder, cone, and cube. 

However, working with more complex 3D objects is possible, as S3GL allows 

user to create 3D objects by extrusion, sweeping, Bezier surface and point clouds. 

User can also import 3D objects into application by using text file. 
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4. Material 

A material is the colour, or texture that is printed on a 3D object. When a 3D 

object doesn't have a material applied, it will be invisible. There are a variety of 

materials available to be used. For example, a very simple material is a colour; a 

more advanced example of a material can be a raster image 

5. Light 

The only available light in S3GL is a point light. This is a point somewhere in 

3D space that defines the origin of a light source. Each shader in S3GL requires a 

point light. S3GL does not provide other types of lights such as spot light and 

directional light. 

The advantages of S3GL include: 

(1) Enables easy and fast creating 3D objects. 

(2) Provides multiple 3D objects definition methods, including primitives, 

sweeping, Bezier surface, and point clouds. 

(3) Implements efficient 3D transformation methods. 

(4) Implements perspective projection methods. 

(5) Adds different shading methods. 

(6) Implements texture mapping methods. 

(7) Reduce the final file size of 3D scene. 

(8) Render 3D scene on standard web browser without the need of any plug-ins 

(except for IE). 

8.4 System Design 

S3GL was designed in Microsoft Visual Studio 2010. The system design phase 

describes the functional capabilities of the system.  

8.4.1 Development Environment 

C# is a .NET, general-purpose, object-oriented programming language. The 

advantages of C# over other languages such as C++, Java, and JavaScript are: 

1. It can be used to develop both window-based and web applications. 

2. C# being a .NET language, supports language interoperability, i.e. C# can 

access code written in any .NET compliant language and can also inherit the 
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classes written in these languages. 

3. It can access to all the .NET Framework class libraries, which are quite 

extensive.  While these libraries might support specific features better than 

other programming language. 

4. It is a compiled computer programming language, the source code will be 

compiled once when the program first run. This means it is much more efficient 

than an interpreted programming language. 

5. It has native garbage-collection. 

Due to all the advantages of C#, the system is developed by using C#, and 

Microsoft Visual Studio 2010 is used as the development environment for both 

S3GL development and web application test.  

 

Figure 8.1 Visual Studio 2010 integrate development environment 

Microsoft Visual Studio is an integrated development environment (IDE) from 

Microsoft. It is used to develop computer programs for Microsoft Windows, as 

well as web sites, web applications and web services. Visual Studio uses 

Microsoft software development platforms such as Windows API, Windows 

Forms, Windows Presentation Foundation, Windows Store and Microsoft 

Silverlight.  

The Visual Studio IDE is shown in Figure 8.1. It includes a code editor, a 

toolbox, and a solution explore. The code editor is where developers write code 

that makes everything in the application work; the toolbox is a palette of 

developer objects, or controls, that are placed on the forms or web pages; the 

solution explorer is a section that is used to view and modify the content of the 

project. The integrated debugger works both as a source-level debugger and a 

machine-level debugger. Other built-in tools include a forms designer for 



137 

 

building GUI applications, web designer, class designer, and database schema 

designer. 

Visual Studio supports different programming languages and allows the code 

editor and debugger to support nearly any programming language, provided a 

language-specific service exists. Built-in languages include C, C++ and C++/CLI 

(via Visual C++), VB.NET, C#, and F#. 

8.4.2 Classes Design and Definition 

The followings are the designs of the main classes that shall be used to store the 

data in S3GL: 

1. Triangle 

A triangle is the simplest shape among the primitives. There are totally 4 

arguments (Table 8.1) to be passed to the Triangle constructor. 

Table 8.1 Triangle‘s argument 

Argument Data type Default value Description 

id string  Defines a unique id to distinguish 

from other objects 

va point (0,0,0) Sets the coordinate of triangle vertex 

vb point (0,1,0) Sets the coordinate of triangle vertex 

vc point (1,0,0) Sets the coordinate of triangle vertex 

2. Plane 

A plane looks like a rectangle if it does not rotate over the x-axis or y-axis. There 

are totally 3 arguments (Table 8.2) to be passed to the Plane constructor. 
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Table 8.2 Plane‘s argument 

Argument Data type Default value Description 

id string  Defines a unique id to distinguish 

from other objects 

width int 0 Sets the desired width of the plane 

height int 0 Sets the desired height of the plane 

3. Sphere 

There are 4 arguments need to be set for a Sphere constructor. They are listed 

and described in Table 8.3. 

Table 8.3 Sphere‘s argument 

Argument Data type Default value Description 

id string  Defines a unique id to distinguish 

from other objects 

radius int 10 Sets the radius of the sphere 

segmentsA int 10 Sets the number of segments 

horizontally 

segmentsP int 10 Sets the number of segments 

vertically 

4. Cylinder 

There are more arguments for creating a cylinder. Table 8.4 show all the 

arguments need to be passed to a Cylinder constructor. 
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Table 8.4 Cylinder‘s argument 

Argument Data type Default 

value 

Description 

id string  Defines a unique id to distinguish from 

other objects 

top radius int 10 Sets the desired top radius of the cylinder 

bottom radius int 10 Sets the desired bottom radius of the 

cylinder 

height int 10 Sets the desired height of the cylinder 

segmentsA int 0 Sets the number of segments horizontally 

5. Cone 

The following arguments are available in the Cone constructor (Table 8.5). 

Table 8.5 Cone‘s argument 

Argument Data type Default value Description 

id string  Defines a unique Id to distinguish 

from other objects 

radius int 10 Sets the desired radius of the cone 

height int 10 Sets the desired height of the cone 

segmentsA int 0 Sets the number of segments 

horizontally 

The arguments for Cone constructor are similar with those for Cylinder 

constructor. Since cone always has a converged top, the radius in the cone 

constructor is set for the bottom of the cone. 

6. Cube 
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Instantiate a cube is similar to instantiate the previously discussed primitives. 

Table 8.6 shows all arguments for instantiating a cube. 

Table 8.6 Cube‘s argument 

Argument  Data type  Default value  Description 

id  string    Defines a unique id to distinguish 

from other objects 

width  int  10  Sets the desired width of the cube 

depth  int  10  Sets the desired depth of the cube 

height  int  10  Sets the desired height of the cube 

7. Complexobject 

ComplexObject is created from primitives introduced above. Table 8.7 shows all 

arguments for a constructor of ComplexObject. An AddObject() function is 

provided for ComplexObject to add primitives. Different primitives put together 

to build a complex object.  

Table 8.7 Complexobject‘s argument 

Argument Data type  Default value Description 

id string   Defines a unique id to 

distinguish from other objects 

primitiveobjects List<primitive>  null Primitives used to create a 

Complexobject 

8. Other 3D objects in S3GL 

Besides the 3D objects discussed above, there are other 3D objects in the S3GL. 

ExtrusionObject creates 3D objects by extruding a 2D shape along a given route; 

RevolutionObject creates 3D objects by revolving a 2D shape around coordinate 

axis; and BezierSurface is used to create free form surface in 3D space. 

ExtrusionObject takes 4 argument, they are shown in Table 8.8 
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Table 8.8 ExtrusionObject‘s argument 

Argument  Data type  Default value Description 

id  string   Defines a unique id to distinguish 

from other objects 

contour  Point list  null Sets the contour of the 2D shape 

route  Point list  null Sets the extruding route 

The arguments for a RevolutionObject constructor are shown in Table 8.9. 

Table 8.9 RevolutionObject‘s argument 

Argument  Data type  Default value Description 

id  string   Defines a unique id to distinguish 

from other objects 

contour  point list  null Sets the contour of the 2D shape 

axis  chart  ‗y‘ Sets the coordinate axis revolving 

around 

segmentsA  int  0 Sets the number of segments around 

the revolving direction 

Table 8.10 shows all the arguments for instantiating a Bezier Surface. 
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Table 8.10 BezierSurface‘s argument 

Argument  Data type Default value Description 

id  string  Defines a unique id to distinguish from 

other objects 

control 

points 

 Point list null Sets the set of the control points 

segmentsA  int 0 Sets the number of segments 

horizontally 

segmentsP  int 0 Sets the number of segments vertiaclly 

In the S3GL bicubics patches are used for the Bezier surface, which means the 

order of the Bezier surface is 3, and 16 control points in total are used to define a 

Bezier surface 

9. Materials 

There are 3 types of materials in the S3GL: FrameMaterial, ColourMaterial, and 

TextureMaterial. 

The different between FrameMaterial and ColourMaterial is: FrameMaterial 

connects the points by lines, but ColourMaterial connects the points by triangles. 

TextureMaterial creates a material that is made of a bitmap, and then the material 

is wrapping onto the surface of a 3D model to achieve more realistic effect than 

FrameMaterial and ColourMaterial. 

The constructor of FrameMaterial has 2 arguments shown in Table 8.11. 

Table 8.11 FrameMaterial‘s argument 

Argument  Data type Default value Description 

colour  Colour (0,0,0) Defines the colour of the frame 

thickness  int 1 Defines the thickness of the frame 

The constructor of ColourMaterial has only one argument (Table 8.12). 
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Table 8.12 ColourMaterial‘s argument 

Argument  Data type Default value Description 

colour  Colour (0,0,0) Defines the colour of the surface 

The constructor of TextureMaterial also has only one argument (Table 8.13). 

Table 8.13 TextureMaterial‘s argument 

Argument  Data type Default value Description 

filename  string null Defines the filename of the specified 

texture 

10. Light 

A point light source is defined in S3GL; Table 8.14 shows the arguments for a 

Light‘s constructor. 

Table 8.14 Light‘s argument 

Argument  Data type Default value Description 

direction  vector (1,0,0) The direction vector of the light 

position  vector (0,0,100) The position vector of the light 

colour  Colour (1,1,1) The colour of the light 

ambient  vector (1,1,1) Ambient component of the light 

diffuse  vector (0,0,0) Diffuse component of the light 

specular  int 1 Specular coefficient of the light 

11.  Camera 

The following arguments are needed to initiate a camera in S3GL (Table 8.15).  
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Table 8.15 Camera‘s argument 

Argument  Data type Default value Description 

direction  vector (1,0,0) The direction vector of the camera 

position  vector (0,0,0) The position vector of the camera 

focus  int 100 The focus length of the camera 

near  int 100 The near surface of the camera 

far  int 1000 The far surface of the camera 

12.  Scene 

The scene in the S3GL is a canvas on which all 3D objects are rendered. The 

following arguments are needed to initiate a scene (Table 8.16). 

Table 8.16 Scene argument 

Argument  Data type  Default value Description 

width  int  500 The width of the scene 

height  int  500 The height of the scene 

bcolour  Colour  (1,1,1) The background colour of the scene 

filename  string  null The final SVG file name 

camera  Camera  null The camera in the scene 

light  Light  null The light source in the scene 

objects  List<object>  null All objects in the scene 

Except for all the classes mentioned above, a math library was also developed in 

the S3GL. 2D vector, 3D vector, 3x3 matrixes, and 4x4 matrixes are developed 

in the 3DMath library, all related vector, and matrix operations are implemented. 
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8.5 System Implementation 

8.5.1 Web Server 

S3GL is developed by using C# based on ASP.NET technology. ASP.NET is an 

open source server-side web application framework designed for web 

development to produce dynamic web pages. It was developed by Microsoft to 

allow programmers to build dynamic web sites, web applications and web 

services.  

ASP.NET is a server-side web application framework designed for web 

development to produce dynamic web pages. Since ASP.NET is run on 

server-side, the web hosting provider must configure its servers appropriately to 

execute the necessary source code. In addition to providing connectivity, 

ASP.NET web hosting providers also provide the technological basis for the 

ASP.NET creative process.  

ASP.NET is a cross-platform technology; the application based on ASP.NET can 

run on almost all different platform, includes web server that has the .NET 

Framework and Internet Information Services (IIS) installed, and non-Microsoft 

sever that installed MONO (Delahunty, 2005) platform. The web server that 

supports ASP.NET includes: 

1. IIS, Internet Information Services, is a free component bundled with 

Windows System. 

2. Apache, a classic web application server, ASP.NET can run on Apache that 

has MONO installed. 

3. XSP, a server with an independent standard. It is written in C#, and can be 

used to run ASP.NET application. 

4. Nginx, a high-performance HTTP server that supports ASP.NET and 

applications. 

5. Jexus, is based on .NET/MONO, supports ASP.NET and applications. 

Since S3GL is based on ASP.NET, so all applications developed by using S3GL 

can run on almost all different platforms. 

8.5.2 Support Platform 

The application developed based on S3GL is running on the web server (Figure 

8.2). The client side sends request for a S3GL web page to the web server, the 

S3GL application will run on the web server, and the render result will be sent 

back to the client side as a normal SVG file. The client side manipulation on the 

3D scene will be sent to the server side, after processing by S3GL on the server, 

the result will be sent back to client side again. This means S3GL has no special 
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requirement for the client side, all client side platform that support normal SVG 

can view the 3D model rendered by S3GL. 

 

Figure 8.2 S3GL running as a server side application 

Platforms on the client side that S3GL can be used are summarized in Table 8.17. 

The data in the table is based on the latest versions of the respective web 

browsers as of the writing of this thesis. 

All modern browsers support rendering SVG. Internet Explorer, up to and 

including IE8, was the only major browser not to provide native SVG support. 

IE8 and older require a plug-in to render SVG content. For mobile web 

developers wondering about compatibility, iOS 3.2+, Opera Mini 5+, Opera 

Mobile 10+ and Android 3+ also support rendering SVG graphics. 

Statistics show that 84.71% of Internet users have a web browser that supports or 

partial support SVG (Caniuse, 2013). 

The statistics therefore form an upper bound on what percentage of users can run 

3D graphics applications built upon S3GL.  

In a web browser that supports SVG, no extra software has to be installed for 

S3GL applications to be able to run. For Internet Explorer, that does not support 

SVG natively, there are number of plug-ins available to assist, including: Adobe 

SVG Viewer, SVG Web, or Google Chrome Frame. 
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Table 8.17: Supported operating systems and web browsers 

Operating System Browser SVG Client side manipulation 

Windows 

Internet Explorer Support via plug-in Yes 

Chrome Yes Yes 

Firefox Yes Yes 

Opera Yes Yes 

Safari Yes Yes 

Mac OS X 

Chrome Yes Yes 

Firefox Yes Yes 

Opera Yes Yes 

Safari Yes Yes 

Linux 

Chrome Yes Yes 

Firefox Yes Yes 

Opera Yes Yes 

Android 
Build-in web browser Yes Yes 

Opera Yes Yes 

iOS Safari Yes Yes 

8.6 System Testing 

The main technical activities in software testing process include planning, 

generating and selecting test cases, preparing test environment, testing the 

program under test and observing its dynamic behaviour, analyzing the observed 

behaviour on each test case, report test results (Figure 8.3). 
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Figure 8.3 Activities in software testing process 

The system testing is carried out using Use case based testing. Use cases have 

been derived from the requirements, and then system testing can be performed by 

testing that the system satisfies each of the Use cases. 

In order to test the developed S3GL, a test Use case is design, and the system 

testing is carried out as following: 

1. Design the test plan. Descript the 3D scenario that will be rendered on the 

web page.   

2. Prepare the test environment. All the test is carry on Microsoft Visual Studio 

2010.  

3. Prepare the test Use case. Define 3D models by using the functions provided 

by S3GL. 

4. Execute the test and observe the results; 

5. Analyze the test results. 

Use case 1: Adding a 3D object on web page 

The first Use case is described in Table 8.18. A 3D object is defined by using the 

primitives in S3GL. After geometrical transformation and perspective projection, 

the 3D object will be mapped to SVG viewport, and rendered on the web 

browser directly. 
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Table 8.18 Use case 1-Adding a 3D object on web page. 

ID Use case 001 

Title   Adding a 3D object on web page 

Actor User 

Description A cylinder is created by S3GL, and rendered on web browser 

directly. 

The result of the Use case 1 is shown in Figure 8.4. Since SVG supports many UI 

events and pointing events, mouse events are used to change the parameters 

(position, view angle) of the 3D camera in S3GL. By using the mouse, user can 

navigate the 3D scene, and view the 3D model from different angle. The test 

result shows that the S3GL can be used to develop 3D object, and render the 

result directly on web page. And the 3D scene can by navigated by using mouse. 

 

 

Figure 8.4 Screenshot of use case 1 

Use case 2: Adding multiple 3D objects on web page 

The second Use case is described in Table 8.19. 
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Table 8.19 Use case 2- Adding multiple 3D objects on web page. 

ID  Use case 002 

Title  Adding multiple 3D objects on web page 

Actor  User 

Description  A cone and a sphere are created by S3GL, and rendered on web 

browser directly. 

The result of the Use case 2 is shown in Figure 8.5. By using the mouse, user can 

navigate the 3D scene, and view the 3D model from different angle. The test 

result shows that the S3GL can be used to develop 3D objects, and render the 

result directly on web page. The position relationships between objects are 

displayed correctly.  

 

 

Figure 8.5 Screenshot of use case 2 

The test result shows that the S3GL can be used to develop 3D scene, and render 

the result directly on web page. And the 3D scene can by navigated by using 

mouse. 

After the validation of the testing environment, four 3D test applications will be 

implemented to test the algorithm proposed in Chapter 5, 6, 7. 

8.7 The Validation of the Theory and Algorithms Using Software System 
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Four 3D test applications are implemented based on S3GL to validate the new 

framework proposed in Chapter 5, the new Gouraud shading and Phong shading 

algorithm proposed in Chapter 6, and the new texture mapping algorithms 

developed in Chapter 7.  

1. 3D static objects.  

2. A Gouraud shading box 

3. A Phong shading box. 

4. A 3D plant. 

Those applications are tested on a Dell Laptop with Intel Core i5 CPU and with 

Windows 7 operating system. The version of the plug-in to view SVG was 

Adobe SVG Viewer 3.01 for Internet Explorer 9.0. Those case studies are also 

tested also on other major web browsers, includes: Firefox, Chrome, Opera, and 

Safari, that no plug-in needed. 

8.7.1 3D Static Objects 

The first test application is 3D static objects consist of a table, a lamp, a sphere, 

and a pen case (Figure 8.6). The purpose of this test application is to validate the 

algorithm provided in Chapter 5 and Chapter 7, and it will have the functionality 

outlined below. 

1. Build 3D SVG model.   

2. Rendering 3D object on web browser. 

3. Using texture on specified 3D object.  

4. Interactive manipulation. 

The reasons of choose this 3D scene are: 

1. It can be used to validate whether different 3D objects can be created and 

rendered correctly. 

2. It can be used to validate whether the position relationship between objects 

can be rendered correctly. 

3. It can be used to validate whether the texture mapping algorithm can 

generate correct texture for different object.  

The 3D static objects can be viewed from different angle. During the test, the 

average number of second per frame will be recorded, and the file size of the 

SVG file generated by S3GL will also be recorded for further analysis. 
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Figure 8.6 3D static objects 

The test result shows that the right depth test, and the objecst are rendered 

correctly. This application also apply texture mapping on sphere, cube, and 

cylinder. It generates right texture for each object, and improves the realism of 

the scene. The user can navigate the 3D scene and rotate the camera by using the 

mouse. 

The average number of second per frame that is achieved with this test 

application on different web browser is shown in Table 8.20. As can be seen in 

the table, the test application works well on different web browser, and the 

render times are also similar on different web browser. 

Table 8.20 Static object render time 

Web browser  IE Firefox Chrome Safari Opera 

Render rate 

(seconds/frame) 

 0.36 0.42 0.43 0.45 0.40 

Another performace measure is the amount memory the application uses. This is 

especially important if the developer wishes to target hardware with limited 

memory. The maximum amount of memory of this application is 101KB. 
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Figure 8.7 shows a 3D video case, the file size for such a 3D model created by 

X3D is 36,213 KB; and the file size created by VRML is 33,030 KB.  Compare 

with the 3D static objects created by S3GL, the file size is only about 1/300 of 

the file size created by X3D or VRML. 

 

Figure 8.7 3D video case (free model download from 

http://www.3dcadbrowser.com) 

Both those performance tests show the algorithm proposed in Chapter 5 can be 

used to generate 3D scene. And the texture mapping described in Chapter 7 can 

also work well to create realistic 3D object. By compare the final file size with 

X3D and VRML, it shows the S3GLcan significantly reduce the file size, which 

is important for web-based applcations. 

8.7.2 A Gouraud Shading Box 

The second test application is a box rendered by Flat shading and a box rendered 

by the new Gouraud shading algorithm separately. The purpose of this test 

application is to validate the Gouraud shading algorithm proposed in Chapter 6, 

and it will have the functionality outlined below. 

1. Build 3D SVG model. 

2. Rendering 3D object on web browser. 

3. Using Flat shading and Gouraud shading on 3D object. 

4. Interactive manipulation. 

The reason of choose this scene is that it can be used to check whether the 

Gouraud shading algorithm proposed in Chapter 6 can generate smooth colour 

transitions on hard boundary. 

During the test, the average number of second per frame will be recorded, and 

the file size of the SVG file generated by S3GL will also be recorded for further 

analysis. 

Figure 8.8(a) shows a green box viewed from different angle, and the box is 

rendered by Flat shading; Figure 8.8(b) shows a box rendered by the Gouraud 
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shading algorithm proposed in Chapter 6. The point light is defined on the top 

front side of the scene. 

 

 

Figure 8.8 Flat shading vs. Gouraud shading 

The test result shows that by using the new Gouraud shading algorithm, it can 

generate smooth colour transitions on hard boundary. 

The average number of second per frame which was achieved with this test 

application on different web browser is shown in Table 8.21. As can be seen in 
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the table, the test application works well on different web browser, and the 

render time required for Flat shading is far less than Gouraud shading algorithm 

since there are more arithmetic calculation involved in Gouraud shading 

algorithm. 

Table 8.21 Flat shading and Gouraud shading render rate 

Web browser IE Firefox Chrome Safari Opera 

Flat shading Render rate 

(seconds/frame) 

0.007 0.0072 0.0067 0.007 0.0069 

Gouraud shading Render 

rate (seconds/frame) 

0.11 0.12 0.11 0.12 0.12 

The maximum amount of memory of Flating shading is 2 KB, and maximum 

amount of memory of area interpolation Gouraud shading algorithm is 4KB. This 

shows the Gouraud shading algorithm will use more memory than Flat shading. 

Both those performance tests show the Gouraud shading algorithm developed in 

Chapter 6 can work well to create realistic 3D object. 

8.7.3 A Phong Shading Box 

The third test application is a box rendered by Flat shading and a box rendered 

by the new Phong shading algorithm. The purpose of this test application is to 

validate the Phong shading algorithm provided in Chapter 6, and it will have the 

functionality outlined below. 

1. Build 3D SVG model. 

2. Rendering 3D object on web browser. 

3. Using Flat shading and Phong on 3D object. 

4. Interactive manipulation. 

The reasons of choose this scene are: 

1. It can be used to check whether the Phong shading algorithm proposed in 

Chapter 6 can generate smooth colour transitions in hard boundary. 

2. It can be used to check whether the highlight can be rendered correctly on a 

big flat surface. 

During the test, the average number of second per frame will be recorded, and 

the file size of the SVG file generated by S3GL will also be recorded for further 

analysis. 

Figure 8.9(a) shows a green box viewed from different angle, and the box is 

rendered by Flat shading; Figure 8.9(b) shows a box rendered by the Phong 
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shading algorithm proposed in Chapter 6. The point light is defined on the left 

side of the scene. 

 

 

Figure 8.9 Flat shading vs. Phong shading 

The test result shows that there is no highlight by using Flat shading. By using 

the new Phong shading algorithm, it can generate smooth colour transitions on 

hard boundary, and the highlight of the object can be generated correctly. 

The average number of second per frame which was achieved with this test 

application on different web browser is shown in Table 8.22. As can be seen in 
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the table, the test application works well on different web browser, and the 

render time required for Flat shading is far less than area interpolation Phong 

shading algorithm since there are more arithmetic calculation involved in area 

interpolation Phong shading algorithm. 

Table 8.22 Flat shading and Phong shading render rate 

Web browser  IE Firefox Chrome  Safari  Opera 

Flat shading Render rate 

(seconds/frame) 

 0.007 0.0072 0.0067  0.007  0.0069 

Phong shading Render rate 

(seconds/frame) 

 0.15 0.16 0.22  0.17  0.19 

The maximum amount of memory of Flating shading is 2 KB, and maximum 

amount of memory of area interpolation Phong shading algorithm is 4KB. This 

shows the area interpolation Phong shading algorithm will use more memory 

than Flat shading. 

Both those performance tests show the Phong shading algorithm developed in 

Chapter 6 can work well to create realistic 3D object. 

8.7.4 3D Plant 

The forth test application is a plant in a flowerpot (Figure 8.10). The purpose of 

this test application is to validate the algorithm provided in Chapter 5 and 

Chapter 7, and it will have the functionality outlined below. 

1. Build 3D SVG model.  

2. Rendering 3D object on web browser. 

3. Using texture on specified 3D object.  

4. Interactive manipulation. 

The reasons of choose this 3D scene are: 

1. It can be used to validate whether different 3D objects can be created and 

rendered correctly. 

2. It can be used to validate whether the position relationship between objects 

can be rendered correctly. 

3. It can be used to validate whether the texture mapping algorithm can 

generate correct texture for different object.  
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The 3D plant can be viewed from different angle. During the test, the average 

number of second per frame will be recorded, and the file size of the SVG file 

generated by S3GL will also be recorded for further analysis. 

The flowerpot is created by using revolution object in S3GL; and the leaves of 

the plant are generated by using Bezier surface. Texture mapping proposed in 

Chapter 7 are used in this application, include texture mapping algorithms for 

Bezier surface, texture mapping algorithms for revolution surface, and p texture 

mapping algorithms for cylinder.  

 

Figure 8.10 Texture mapping 3D plant 

The average number of second per frame which was achieved with this test 

application on different web browser is shown in Table 8.23. As can be seen in 

the table, the test application works well on different web browser, and the 

render rate are also similar on different web browser. 

Table 8.23 3D plant render rate 

Web browser IE  Firefox Chrome  Safari  Opera 

Render rate (seconds/frame) 0.62  0.58 0.63  0.61  0.62 

The maximum amount of memory of this application is 66 KB. 



159 

 

Figure 8.11 shows a 3D paint pot model. Campare with the 3D plant, this is a 

relative simple 3D model. But the file size for such a 3D model created by X3D 

is 157 KB; and the file size created by VRML is 142 KB.  Compare with the 3D 

plant model created by the SVG GL, the file size is just about 1/2 of the file size 

created by X3D or VRML. 

 

Figure 8.11 3D paint pot model (free model download from 

http://www.3dcadbrowser.com) 

Both those performance tests show the algorithm proposed in Chapter 5 can be 

used to generate 3D scene. And the texture mapping described in Chapter 7 can 

also work well to create realistic 3D object. By compare the final file size with 

X3D and VRML, it shows S3GLcan significantly reduce the file size, which is 

important for web-based applcations. 

8.8 Summary 

A test software system-S3GL is developed by using Visual Studio 2010. The 

system is developed based on the theory proposed in this project. The purpose of 

S3GL is to validate the framework-the SVG GL proposed in Chapter 5; the new 

Gouraud shading and Phong shading algorithms developed in Chapter 6; and the 

new texture mapping algorithm developed in Chapter 7.  

Two Use case are developed firstly to validate the test environment. Then 4 test 

applications are implementing to validate the algorithm proposed in this project: 

1. 3D static objects, to validate the algorithms provided in Chapter 5 and 

Chapter 7. 

2. 3D Gouraud shading box, to validate the Gouraud shading algorithm 

proposed Chapter 6. 

3. 3D Phong shading box, to validate the Phong shading algorithm proposed 

Chapter 6. 

4. 3D plant, validate the algorithms provided in Chapter 5 and Chapter 7. 
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The testing shows satisfactory results in representing different graphics content. 

It proves the algorithms proposed in Chapter 5 can be used to generate 3D scene. 

And the new Gouraud shading algorithm and Phong shading algorithm 

developed in Chapter 6, the texture mapping algorithms proposed in Chapter 7 

can work well to create realistic 3D object. By compare the final file size with 

X3D and VRML, it shows S3GL can significantly reduce the file size, which is 

important for web-based applcations. 
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Chapter 9 The Discussions of the Proposed Methods for 3D Web-Based 

Presentations 

9.1 Introduction 

In this chapter, 4 demo applications based on S3GL will be presented: 

1. A 3D bottle, to test the potential application of the new framework for 

product presentation. 

2. Building site simulation, to test the potential application of the new 

framework for city planning and community management. 

3. Shopping mall, to test the potential application of the new framework for 

e-business. 

4. 3D landscape, to test the potential application of the new framework for 3D 

terrain simulation. 

Those applications are used to evaluate the suggested methods as proof of 

concept, and also investigate the potential application fields of S3GL. Those 

applications were tested on the same environment as the 4 test applications in 

Chapter 8. During the demo the average number of second per frame will be 

recorded, and the file size of the SVG file generated by S3GL will also be 

recorded for further analysis. 

9.2 3D Bottle 

The first demo application is 3D bottle (Figure 9.1). The purpose of this 

application is to test the potential application of the new framework for product 

presentation, and it has the functionalities: 

1. Build 3D SVG model.  

2. Rendering 3D object on web browser. 

3. Using texture on specified 3D object.  

4. Interactive manipulation. 
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Figure 9.1 3D bottle 

The geometry of the bottle is created by using the 3D objects provided in the 

S3GL. The cap of the bottle is created by the revolution object in S3GL, the 

outline of the cap is shown on the right side, and the rotate axis is y-axis; the 

neck of the bottle is created by revolution object as well, and the outline is shown 

on the right side, the rotate axis is y-axis; the body of the bottle is created by 

using cylinder in S3GL; finally, the bottom of the bottle is created revolution 

object. Two kids of texture mapping algorithms proposed in Chapter 7 are used; 

they are texture mapping algorithms for revolution object, and texture mapping 

algorithms for cylinder. The user can navigate the 3D scene and rotate the 

camera by using the mouse (Figure 9.2). By zooming in the camera, more details 

of the texture can be viewed. 
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Figure 9.2 Rotate the camera to navigate the 3D bottle 

The average number of second per frame which was achieved with this 

application on different web browser is shown in Table 9.1. As can be seen in the 

table, the test application works well on different web browser, and the render 

times are also similar on different web browser. The maximum amount of 

memory of this application is 36KB. 

Table 9.1 3D bottle render rate 

Web browser  IE Firefox  Chrome  Safari  Opera 

Render rate 

(seconds/ frame) 

 0.50 0.52  0.53  0.51  0.49 

Figure 9.3 shows a 3D coke can, the file size for such a 3D model created by 

X3D is 162 KB; and the file size created by VRML is 148 KB.  Compare with 
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the 3D bottle model created by S3GL, the file size is only about 1/5 of the file 

size created by X3D or VRML. 

 

Figure 9.3 A 3D coke can (free model download from 

http://www.3dcadbrowser.com) 

The results show S3GL can be used for simulating 3D houseware, such as bottle, 

can, flask, and similar product with realistic texture. It can be used for product 

presetation for web-based application, and can significantly reduce the file size 

of the 3D model. 

9.3 Building Site Simulation  

The second demo application is building simulation (Figure 9.4). The purpose of 

this application is to test the potential application of the new framework for city 

planning and community management, and it will have the functionality outlined 

below. 

1. Build 3D SVG model.  

2. Rendering 3D object on web browser. 

3. Using texture on specified 3D object.  

4. Interactive manipulation. 
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Figure 9.4 Building site simulation 

The geometry of the building site is created by using the 3D objects provided in 

the S3GL. Building 1 consist of one extrusion object and four planes, the 

extrusion is used as the roof, and the planes are used as wall; building 2 consist 

of a sphere and a cylinder, the sphere is used as roof, and the cylinder is used as 

wall; building 3 consist of 2 triangle and 5 planes; and building consist of 2 

triangle and 4 planes. Four kids of texture mapping algorithms proposed in 

Chapter 7 are used; they are texture mapping algorithms for triangle, texture 

mapping algorithms for plane, texture mapping algorithms for sphere, and texture 

mapping algorithms for cylinder. The user can navigate the 3D scene and rotate 

the camera by using the mouse (Figure 9.5).  
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Figure 9.5 Rotate the camera to navigate the building site 

The average number of second per frame which was achieved with this 

application on different web browser is shown in Table 9.2. As can be seen in the 

table, the test application works well on different web browser, and the render 

times are also similar on different web browser. The maximum amount of 

memory of this application is 48KB. 

Table 9.2 Building simulation render rate 

Web browser IE  Firefox  Chrome  safari  Opera 

Render rate 

(seconds/frame) 

0.87  0.89  0.87  0.92  0.85 

Figure 9.6 shows a 3D case wall model, the file size for such a 3D model created 

by X3D is 431 KB; and the file size created by VRML is 390 KB.  Compare 

with the 3D building site model created by the SVG GL, the file size is only 

about 1/8 of the file size created by X3D or VRML. 
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Figure 9.6 A 3D case wall model (free model download from 

http://www.3dcadbrowser.com) 

The results show that S3GL can be used for simulating 3D architecture, such as 

house, barn, tower, and similar building with realistic texture. It can be used for 

city planning and community management, and can significantly reduce the file 

size of the 3D model. 

9.4 Shopping Mall 

The third demo application consists of 2 scenarios, the first is the buildings of a 

supermarket, and the second is the inside of the supermarket (Figure 9.7, Figure 

9.8). The purpose of this application is to test the potential application of the new 

framework for e-business, and it will have the functionality outlined below. 

1. Build 3D SVG model.  

2. Rendering 3D object on web browser. 

3. Using texture on specified 3D object.  

4. Interactive manipulation.. 
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Figure 9.7 Supermarket 

 

Figure 9.8 The inner scenario of the supermarket 

The geometry of the supermarket is created by using the 3D objects provided in 

the S3GL, including plane, cylinder and Bezier surface. Three kids of texture 

mapping algorithms proposed in Chapter 7 are used; they are texture mapping 

algorithms for plane, texture mapping algorithms for cylinder, and texture 

mapping algorithms for Bezier surface. The user can navigate the 3D scene and 

rotate the camera by using the mouse (Figure 9.9). 

 

Figure 9.9 Rotate the camera to navigate the supermarket 
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The average number of second per frame which was achieved with this 

application on different web browser is shown in Table 9.3. As can be seen in the 

table, the test application works well on different web browser, and the render 

times are also similar on different web browser. The maximum amount of 

memory of this application for the supermarket is 44.5KB, and for the inner 

scenario is 477KB. 

Table 9.3 The supermarket render rate 

Web browser  IE  Firefox  Chrome  safari  Opera 

Outside render rate 

(seconds /frame) 

 0.83  0.79  0.83  0.77  0.80 

Inside render rate 

(seconds /frame) 

 0.72  0.73  0.73  0.85  0.72 

Figure 9.10 shows a 3D building model, the file size for such a 3D model created 

by X3D is 1,864 KB; and the file size created by VRML is 1,682 KB.  Compare 

with the 3D supermarket model created by the SVG GL, the file size is only 

about thirtieth of the file size created by X3D or VRML. 

 

Figure 9.10 A 3D building model (free model download from 

http://www.3dcadbrowser.com) 

The results show that S3GL can be used for simulating 3D supermarket, and the 

inner scenario of the market with realistic texture. It can be used for web-based 

e-business, and can significantly reduce the file size of the 3D model. 

9.5 3D Landscape 
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The final demo application is a 3D landscape (Figure 9.11). The purpose of this 

application is to test the potential application of the new framework for 3D 

terrain simulation, and it will have the functionality outlined below. 

1. Build 3D SVG model.  

2. Rendering 3D object on web browser. 

3. Using texture on specified 3D object.  

4. Interactive manipulation. 

 

Figure 9.11 3D landscape 

The geometry of the landscape is created by using the 3D objects provided in the 

S3GL, mainly extrusion object. The texture mapping algorithms for extrusion 

object proposed in Chapter 7 is used. The user can navigate the 3D scene and 

rotate the camera by using the mouse (Figure 9.12). 

 

Figure 9.12 Rotate the camera to navigate the landscape 

The average number of second per frame which was achieved with this 

application on different web browser is shown in Table 9.4. As can be seen in the 

table, the test application works well on different web browser, and the render 
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times are also similar on different web browser. The maximum amount of 

memory of this application is 120KB. 

Table 9.4 3D landscape render rate 

Web browser IE  Firefox  Chrome  safari  Opera 

Render rate 

(frame/seconds) 

0.95  0.96  0.99  0.95  0.94 

Figure 9.13 shows a 3D landscape, the file size for such a 3D model created by 

X3D is 32,328KB; and the file size created by VRML is 29,247 KB.  Compare 

with the 3D supermarket model created by the SVG GL, the file size is only 

about 1/200 of the file size created by X3D or VRML. 

 

Figure 9.13 3D model of Ciudad Del Puerto (free model download from 

http://www.3dcadbrowser.com) 

The results show that S3GL can be used for simulating 3D landsceape with 

realistic texture. It can be used for terrain simulation for web-based application, 

and can significantly reduce the file size of the 3D model. 

9.6 Evaluation of the Applications of S3GL Presentations 

Four demo applications are developed in this section. 

1. A 3D bottle model. 

2. A 3D building site. 

3. A supermarket. 

4. A 3D landscape. 
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Those applications are used to investigate the potential application fields of 

S3GL. By successfully running those demo application, it shows the S3GL can 

be used for product demonstration, urban environment simulation, city planning; 

for warehouse demonstration and 3D terrain simulation. 

Once again, those demo application also validate the new framework proposed in 

Chapter 5, the texture mapping algorithm developed in Chapter 7. 

Four similar 3D models are also developed by using X3D and VRML. By 

compare the file size created by X3D and VRML with the respective file size 

created by S3GL, it shows S3GL can significantly reduce the file size which will 

be benefit for web-based application. 

All these make the S3GL an ideal tool for creating 3D model for web-based 

applications, and achieving real time(less than 1 second) interactive with the 3D 

model. Currently, all calculations involving model transformation, texture 

processing are carried out by software, this significantly reduce the performance 

of the S3GL. If some calculation expensive operation can be implemented by 

hardware, the performance of S3GL can be significantly increased (the average 

rendering time can be reduced to 0.1 second), and even can be used for 

web-based 3D animation.   
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Chapter 10 Conclusions and Further Work 

This chapter concludes this thesis with a summary of what has been done, in the 

context of the research goals stated in the introduction, as well as with an outline 

of the original contribution to the body of knowledge, and a discussion of future 

work. 

10.1 Summary 

This thesis is a summary of an original research work, which is unique in several 

regards.  

1. It is a unique and original synthesis of the subjects related to web based 3D 

model, which is based on an analysis of a broad range of theoretical and practical 

resources from traditional and modern 3D models, as well as from the related 

disciplines such as SVG. 

2.  The discipline of the SVG GL is defined through both a technological 

description, and by the proposed unique set of defining factors –differentiators, 

which are: the use of 3D modelling; the use of SVG rules for the presentation 

efficiency maximization; high interactivity – which are also thoroughly 

discussed. 

3.  Numerous theoretical and functional, as well as practical and technological 

aspects of web based 3D model are described in depth. 

4.  The theoretical assumptions and rules are tested in practice, and validated 

through the practical process of development of a S3GL. 

5.  The developed S3GL is used in real-life applications, to demonstrate that 

efficient and effective 3D models may be developed today, without the need to 

wait for any further advances in computer technologies, or in data availability. 

6. Four demo applications of 3D models are presented, with a discussion of 

how and where they can be of benefit. 

10.2 Main Achievements 

This work provides a broad summary of knowledge relating to the subject of web 

based 3D model, including their different theoretical, functional, technological 

and practical aspects. In the process of its completion all of the research 

objectives stated in the introductory chapter were successfully fulfilled: 

1. Evaluation and analysis of web based 3D models: the state-of-the-art of the 

web based 3D models have been evaluated and analyzed. The importance of 

web-based 3D model has been discussed. Further research requirements have 

been identified and clearly stated. 
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2. Proposition, design and development of the new framework-SVG GL for 

web-based applications: the SVG GL has been defined through a technological 

description, and through a unique proposed set of defining factors, which include: 

the use of 3D visualization, the employment of SVG rules, high interactivity. 

3. Core development and practical validation: a test software system-S3GL has 

been developed, enabling the validation of the discussed the SVG GL principles, 

and of the proposed defining factors. This work includes the design and 

development of various new SVG 3D models of primitives, free form surfaces, 

new algorithms for SVG 3D model manipulations including transformation and 

projection, new algorithms for SVG 3D model enhancement including shading 

and texture mapping. 

4. S3GL functional description: practical knowledge has been gathered, and 

combined with the practical know-how of S3GL development, in order to discuss 

functional aspects and recommendations that maximize usability of the SVG GL 

products 

5. Application development: 4 specialized 3D web-based applications, based on 

the developed S3GL, have been developed and validated. 

6. Practical demonstration: the developed S3GL has been used to demonstrate the 

possibility of successful development of web-based 3D models, without the need 

to wait for further technological or scientific progress. 

7. Identification of applications: the usability of S3GL in different application 

areas has been further demonstrated by the identification and discussion of a 

wide range of potential applications. 

10.3 The Contributions to New Knowledge Generations 

The predicted contributions to the new knowledge body presented in Section 1.4 

have been achieved. The research work outlined in this thesis contributes to the 

body of scientific knowledge in a number of aspects, on two levels: theoretical 

and practical. A complete framework for web based SVG 3D modelling is 

presented, particularly focused on developing accurate and flexible algorithms 

and 3D modelling. Experimental results presented in this thesis show the 

efficiency and accuracy of the 3D models. A summary of the respective 

contributions is presented below: 

The primary contribution of this project is the proposition, design and 

development of a new generic framework for modelling and constructing 

SVG-based 3D models for efficient web-based applications. This framework can 

be applied widely in interactive manipulation web-based environments.  
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The main contributions of this PhD project are: 

1. Proposition, design and development of a new framework for SVG 3D 

modelling based on classical 3D graphic theory and SVG. While the model is 

initialized using classical 3D graphics, the scene model is extended using SVG. A 

new algorithm to present 3D graphics with SVG has been proposed. The 

framework including  (1) the definition of a 3D scene in the framework, (2) the 

integration of 3D objects, camera, transformation, projection, light model and 

texture in a 3D scene, (3) the rendering 3D objects on the web page and (4) 

enabling the end-user to interactively manipulate objects on the web page. 

2. Design and development of a new 3D graphics library for 3D geometric 

transformation and projection in SVG 3D. 

3. Design and development of a set of primitives in SVG 3D, include triangle, 

sphere, cylinder, cone, etc. 

4. Proposition, design and development of the new area interpolation Goraud 

shading algorithm and area interpolation Phong Shading algorithm to implement 

Gouraud shading and Phong shading in SVG 3D. The algorithms can be used to 

generate smooth shading and create highlight for 3D objects. 

5. Proposition, design and development of the new texture mapping 

algorithms-pattern based image transformed texture mapping algorithm for SVG 

3D oriented toward web-based 3D modelling applications. Texture mapping 

algorithms for different 3D objects such as plane, sphere, cylinder, cone, etc. will 

also be proposed, designed and developed. 

This constitutes a unique and significant contribution to the disciplines of web 

based 3D modelling, as well as to the process of 3D model popularization. 

10.4 Further Work 

Due to the time and resource limitation, a number of areas in this PhD project 

have been identified for further improvement. The proposed future work 

encompasses four distinguished themes: 1) improvements of the SVG GL; 2) 

new techniques SVG 3D solid modelling; 3) the development of new 

applications; and 4) the continued popularization of the SVG GL. 

The first theme concerns functional and technical improvements of the SVG GL. 

These include: the introduction of new data formats, the broadening of the range 

of the representational forms available, the strengthening of the 3D model 

handling mechanisms, the further development of the drawing optimization 

mechanisms, as well as other improvements that will be identified as desirable in 

the future. 
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The second theme is related to the study the new technology for SVG 3D solid 

modelling. In this project, the technologies have been developed mainly for SVG 

3D surface modelling. However, the SVG 3D models should also be very useful 

for product production purposes 

The third theme is concerned with development and – where possible practical 

deployment, of a broader range of applications of the SVG GL. This includes the 

practical development of the already-identified applications, as well as the 

identification, analysis and the potential subsequent implementation of the 

completely new application ideas. 

The last theme are related to the intended continuation of efforts in the 

popularization of the SVG GL, which may be done both through practical 

demonstrations of the newly developed applications, as well as through 

publication of research results in the future. 
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Appendix A 

1. SVG file for a triangle: 

<?xml version="1.0" encoding="utf-8" standalone="no"?> 

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]> 

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d" 

shape-rendering="geometricPrecision" 

xmlns:xlink="http://www.w3.org/1999/xlink" 

xmlns="http://www.w3.org/2000/svg"> 

  <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" /> 

  <defs /> 

  <g id="t01" enable-background="new"> 

    <path d="M0 90L180 90 180 -90z" style="fill: #54ac00 ;stroke: 

#54ac00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

  </g> 

</svg> 

2. SVG file for a plane: 

<?xml version="1.0" encoding="utf-8" standalone="no"?> 

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]> 

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d" 

shape-rendering="geometricPrecision" 

xmlns:xlink="http://www.w3.org/1999/xlink" 

xmlns="http://www.w3.org/2000/svg"> 

  <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" /> 

  <defs /> 

  <g id="p1" enable-background="new"> 

    <path d="M0 0L90 -90 0 -90z" style="fill: #54ac00 ;stroke: 

#54ac00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 0L90 0 90 -90z" style="fill: #54ac00 ;stroke: 

#54ac00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

  </g> 

</svg> 

3. SVG file for a Cylinder: 
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<?xml version="1.0" encoding="utf-8" standalone="no"?> 

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]> 

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d" 

shape-rendering="geometricPrecision" 

xmlns:xlink="http://www.w3.org/1999/xlink" 

xmlns="http://www.w3.org/2000/svg"> 

  <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" /> 

  <defs /> 

  <g id="body" enable-background="new"> 

    <path d="M0 -128.6L0 0 -13.3 -128.9z" style="fill: #5f5f00 ;stroke: 

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 0L-13.3 0 -13.3 -128.9z" style="fill: #5f5f00 ;stroke: 

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M13.3 0L0 0 0 -128.6z" style="fill: #484800 ;stroke: 

#484800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M13.3 -128.9L13.3 0 0 -128.6z" style="fill: #484800 ;stroke: 

#484800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M25.4 -129.8L25.4 0 13.3 -128.9z" style="fill: #2c2c00 ;stroke: 

#2c2c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-13.3 0L-25.4 0 -25.4 -129.8z" style="fill: #6d6d00 ;stroke: 

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-13.3 -128.9L-13.3 0 -25.4 -129.8z" style="fill: #6d6d00 ;stroke: 

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M25.4 0L13.3 0 13.3 -128.9z" style="fill: #2c2c00 ;stroke: 

#2c2c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-25.4 0L-35.4 0 -35.4 -131.1z" style="fill: #727200 ;stroke: 

#727200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-25.4 -129.8L-25.4 0 -35.4 -131.1z" style="fill: #727200 ;stroke: 

#727200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M35.4 -131.1L35.4 0 25.4 -129.8z" style="fill: #0c0c00 ;stroke: 

#0c0c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M35.4 0L25.4 0 25.4 -129.8z" style="fill: #0c0c00 ;stroke: 

#0c0c00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-35.4 0L-42.1 0 -42.1 -132.9z" style="fill: #6d6d00 ;stroke: 

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 
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    <path d="M-35.4 -131.1L-35.4 0 -42.1 -132.9z" style="fill: #6d6d00 ;stroke: 

#6d6d00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M42.1 -132.9L42.1 0 35.4 -131.1z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M42.1 0L35.4 0 35.4 -131.1z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-42.1 0L-45 0 -45 -135z" style="fill: #5f5f00 ;stroke: 

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-42.1 -132.9L-42.1 0 -45 -135z" style="fill: #5f5f00 ;stroke: 

#5f5f00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M45 -135L45 0 42.1 -132.9z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M45 0L42.1 0 42.1 -132.9z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M43.5 -137.1L43.5 0 45 -135z" style="fill: #5fc100 ;stroke: 

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M43.5 0L45 0 45 -135z" style="fill: #5fc100 ;stroke: 

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-45 -135L-45 0 -43.5 -137.1z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-45 0L-43.5 0 -43.5 -137.1z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M37.5 0L43.5 0 43.5 -137.1z" style="fill: #6ddf00 ;stroke: 

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M37.5 -139.1L37.5 0 43.5 -137.1z" style="fill: #6ddf00 ;stroke: 

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-43.5 -137.1L-43.5 0 -37.5 -139.1z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-43.5 0L-37.5 0 -37.5 -139.1z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M27.6 0L37.5 0 37.5 -139.1z" style="fill: #72e900 ;stroke: 

#72e900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M27.6 -140.7L27.6 0 37.5 -139.1z" style="fill: #72e900 ;stroke: 

#72e900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-37.5 -139.1L-37.5 0 -27.6 -140.7z" style="fill: #0c1900 ;stroke: 

#0c1900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 
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    <path d="M-37.5 0L-27.6 0 -27.6 -140.7z" style="fill: #0c1900 ;stroke: 

#0c1900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M14.6 -141.7L14.6 0 27.6 -140.7z" style="fill: #6ddf00 ;stroke: 

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M14.6 0L27.6 0 27.6 -140.7z" style="fill: #6ddf00 ;stroke: 

#6ddf00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-27.6 -140.7L-27.6 0 -14.6 -141.7z" style="fill: #2c5900 ;stroke: 

#2c5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-27.6 0L-14.6 0 -14.6 -141.7z" style="fill: #2c5900 ;stroke: 

#2c5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-14.6 -141.7L-14.6 0 0 -142.1z" style="fill: #489300 ;stroke: 

#489300 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-14.6 0L0 0 0 -142.1z" style="fill: #489300 ;stroke: 

#489300 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 0L14.6 0 14.6 -141.7z" style="fill: #5fc100 ;stroke: 

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -142.1L0 0 14.6 -141.7z" style="fill: #5fc100 ;stroke: 

#5fc100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

  </g> 

</svg> 

4. SVG file for a Cone: 

<?xml version="1.0" encoding="utf-8" standalone="no"?> 

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]> 

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d" 

shape-rendering="geometricPrecision" 

xmlns:xlink="http://www.w3.org/1999/xlink" 

xmlns="http://www.w3.org/2000/svg"> 

  <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" /> 

  <defs /> 

  <g id="body" enable-background="new"> 

    <path d="M0 -135L0 0 -13.3 0z" style="fill: #444400 ;stroke: 

#444400 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L13.3 0 0 0z" style="fill: #2e2e00 ;stroke: 

#2e2e00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L25.4 0 13.3 0z" style="fill: #131300 ;stroke: 

#131300 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 
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    <path d="M0 -135L-13.3 0 -25.4 0z" style="fill: #525200 ;stroke: 

#525200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-25.4 0 -35.4 0z" style="fill: #565600 ;stroke: 

#565600 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L35.4 0 25.4 0z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L42.1 0 35.4 0z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-35.4 0 -42.1 0z" style="fill: #525200 ;stroke: 

#525200 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-42.1 0 -45 0z" style="fill: #444400 ;stroke: 

#444400 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L45 0 42.1 0z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L43.5 0 45 0z" style="fill: #71e700 ;stroke: 

#71e700 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-45 0 -43.5 0z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L37.5 0 43.5 0z" style="fill: #7fff00 ;stroke: 

#7fff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-43.5 0 -37.5 0z" style="fill: #050a00 ;stroke: 

#050a00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L27.6 0 37.5 0z" style="fill: #84ff00 ;stroke: 

#84ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-37.5 0 -27.6 0z" style="fill: #234700 ;stroke: 

#234700 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-27.6 0 -14.6 0z" style="fill: #418400 ;stroke: 

#418400 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L14.6 0 27.6 0z" style="fill: #7fff00 ;stroke: 

#7fff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L-14.6 0 0 0z" style="fill: #5cbb00 ;stroke: 

#5cbb00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M0 -135L0 0 14.6 0z" style="fill: #71e700 ;stroke: 

#71e700 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

  </g> 

</svg> 

5. SVG file for Extrusion: 
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<?xml version="1.0" encoding="utf-8" standalone="no"?> 

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"[]> 

<svg viewBox="-150 -150 300 300" style="background-colour: #7d7d7d" 

shape-rendering="geometricPrecision" 

xmlns:xlink="http://www.w3.org/1999/xlink" 

xmlns="http://www.w3.org/2000/svg"> 

  <script type="text/ecmascript" xlink:href="../Jscript/Mouse.js" /> 

  <defs /> 

  <g id="e1" enable-background="new"> 

    <path d="M-51.4 -14.4L-54 0 -61.1 97.7z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M54 0L51.4 -14.4 58.2 82.8z" style="fill: #65ce00 ;stroke: 

#65ce00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M54 0L58.2 82.8 61.1 97.7z" style="fill: #65ce00 ;stroke: 

#65ce00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-51.4 -14.4L-61.1 97.7 -58.2 82.8z" style="fill: #000000 ;stroke: 

#000000 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-42.4 -27.4L-51.4 -14.4 -58.2 82.8z" style="fill: 

#000100 ;stroke: #000100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" 

/> 

    <path d="M51.4 -14.4L48.1 69.4 58.2 82.8z" style="fill: #7dff00 ;stroke: 

#7dff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M51.4 -14.4L42.4 -27.4 48.1 69.4z" style="fill: #7dff00 ;stroke: 

#7dff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-27.9 -37.2L-42.4 -27.4 -48.1 69.4z" style="fill: 

#2b5900 ;stroke: #2b5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" 

/> 

    <path d="M-42.4 -27.4L-58.2 82.8 -48.1 69.4z" style="fill: #000100 ;stroke: 

#000100 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M42.4 -27.4L31.7 59.2 48.1 69.4z" style="fill: #88ff00 ;stroke: 

#88ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M42.4 -27.4L27.9 -37.2 31.7 59.2z" style="fill: #88ff00 ;stroke: 

#88ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-27.9 -37.2L-48.1 69.4 -31.7 59.2z" style="fill: #2b5900 ;stroke: 

#2b5900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 
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    <path d="M-9.7 -42.6L-27.9 -37.2 -31.7 59.2z" style="fill: #53a900 ;stroke: 

#53a900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M27.9 -37.2L9.7 -42.6 11.1 53.7z" style="fill: #84ff00 ;stroke: 

#84ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M27.9 -37.2L11.1 53.7 31.7 59.2z" style="fill: #84ff00 ;stroke: 

#84ff00 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M9.7 -42.6L-9.7 -42.6 -11.1 53.7z" style="fill: #72e800 ;stroke: 

#72e800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M9.7 -42.6L-11.1 53.7 11.1 53.7z" style="fill: #72e800 ;stroke: 

#72e800 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

    <path d="M-9.7 -42.6L-31.7 59.2 -11.1 53.7z" style="fill: #53a900 ;stroke: 

#53a900 ;stroke-width: 1; stroke-linejoin: round" opacity="1" /> 

  </g> 

</svg> 

 

 




