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Prelin-driaries Abstract 

ABSTRACT 

This thesis aimed to establish criteria for defining V02rmx, and to investigate test-retest reliability, test 

duration, event specialism and pacing strategy as determinants of the % ý102. attained during 400 and 
800 in running. 
Study I established criteria to define ý702rmx 

' 
Each participant (n = 8) completed four ramp tests. ýr02 

was determined using 15 and 45 s sampling periods. A ý702 
-plateau and a criterion 'ý02max were 

identified using a modelling approach. For the 15 s data, two averaging methods and periods were used 

to define the highest ýr02 attained (ý702peak) and the criterion validity and test-retest reliability of these 

were derived. A ý'02 
-plateau was identified in all participants for both the 15 and the 45 s data. Bias 

between 'ý02Pýak and the criterion ý702max was less than 0.9 ml. kg-1. min71. Test-retest variation in 

'ý02peak was less than ±1 ml. kg-l. nlWl for 30 s averages for a ý702peak of 70 ml. kg". niin7l. It was 

concluded that deriving ý702peak using a 30 s moving average is both valid and reliable for the 

determination of ýrOlmx 
* 

Study II investigated test-retest reliability and ýr02. as determinants of the % ýrO 
2.,, attained during 

800 in running. Each participant (n = 15) completed a ramp test and two 800 ra runs. Participants were 

split into high and low ýro2max groups. 'ý02peak was reliable in both groups but more so in the high 

ý702max group (±2.3 vs. ± 3.5 ml. kg-1. min7'). There was a significant (p = 0.001) negative correlation (r 

n" -0.77) between ý702ma, 
and the %'ý02. attained. The %ý702. attained by the low ýr02 

group was significantly (p < 0.001) higher than for the high group (96.5 vs. 89.7%). It was concluded 
that ý702,., cannot be attained by aerobically fit runners during 800 in running and that the % ý02nax 

attained is negatively related to 'ýO 2max * 

Study III investigated test duration and event specialism as determinants of the %1ý02. attained during 

400and8OOmmnning. Six 800 in specialists completed a ramp test, ' a 400 and an 800 in run. Six400rn 

specialists completed a ramp test and a 400 rn run. The%'ý02. attained was significantly (p = 0.018) 

higher for the 800 than for the 400 in run (89.1 vs. 85.7%). The%ýr02. attained was significantly (p 

= 0.001) higher for the 400 m specialists than for the 800 m specialists during the 400 in run (93.9 vs. 
85.7%). It was concluded that there is a between-event (but within group) difference in the % ý102nax 

attained by 800 in specialists during 400 and 800 m running. However, there is also a between-group (but 

within event) difference in the %ý702. attained between 40.0 and 800 rn specialists during 400 in 

running. 

Study IV investigated pacing strategy as a determinant of the %1ý02. attained during 800 rn running. 
Participants (n = 8) completed a ramp test, constant speed accelerated start, and accelerated fast-start 800 

in runs. The % ýrO 
2. x attained was significantly (p = 0.048) higher for the fast-start run compared to 

the constant one (92.5 vs. 89.3%). It was concluded that pacing strategy is an important determinant of 
the % ý702na,, attained during 800 m running. 

In conclusion, this thesis has shown that the determinants of the % ýr02. attained during 400 and 800 

rn running are more complex than previously reported. The % ý'02. attained varies within (i. e. as a 
function of aerobic fitness) and between 400 and 800 rn running for 800 m specialists, between 400 and 
800 m specialists for 400 in running, and in response to different pacing strategies during 800 in running. 
It was beyond the scope of this thesis to identify mechanisms that may explain these findings. However, 
there appears to be a potential link with differences in aerobic fitness between and within event specialists 

and how these differences may influence the ý702 response to severe intensity exercise. 
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Chaptcr II Introduction 

CHAPTER I 

INTRODUCTION 

In 1913 the formation of the International Amateur Athletic Federation (LAAF) 

signalled the introduction of a rigorous system for measuring, verifying and recording 

world record performances (Schutz and Lui, 1998). It was the foundation for a rich 

source of accurate and precise time-distance data that were collected under constant and 

controlled conditions and recorded with a high resolution (0.01 s). As these data 

accumulated during the twentieth century a series of mathematical afialyses 

materialized, modelling the relationship of past, and predicted future, performances with 
time (Blest, 1996; Chatteýee and Chatteýee, 1982; Deakin, 1967; Kennelly, 1926; 

Meade, 1916; Morton, 1984; Rumball and Coleman, 1970; Ryder et al., 1976; Schutz 

and Lui, 1993; Smith, 1988). 

Modelling world running records was not simply restricted to analysing the 

relationships between record performances and time. Indeed, A. V. Hill (1925a) stated 

that "some of the most consistent physiological data available are contained, not in 

books on physiology, not even in books on medicine, but in the world's records for 

running different distances" (p 98). Thus, these data provoked an interest in modelling 

energy supply during running to explain the physiological basis for these records. In 

1923 Hill and Lupton proposed the first model of middle-distance running based on two 

sources of energy supply: the maximum oxygen intake and the maximum oxygen debt. 

Various authors (Di Prampero et al., 1993; Henry, 1954; Lloyd, 1966,1967; P6ronnet 

and Thibault, 1989; Sargent, 1926; Ward-Smith, 1985,1999; Wood, 1999a) have since 
developed Hill and Lupton's (1923) original model, yet no additional sources of energy 

supply have been introduced. Indeed, if it is accepted that maximum oxygen uptake 
(V02,,.,, ) is synonymous with maximum oxygen intake and that the oxygen equivalent 

of the anaerobic capacity is synonymous with the maximum oxygen debt, it can be 

concluded that contemporary models (Di Prampero et al., 1993; P6ronnet and Thibault, 

1989; Ward-Smith, 1985,1989; Wood, 1999a) are, at least conceptually, the same as 
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Cbapter I Intmduction 

Hill and Lupton's (1923) traditional model. What has changed, however, is the way in 

which these sources of energy supply are modelled and, in turn, the assumptions that are 

made. 

The models of middle-distance running performance each contain a set of parameters. 

Assumptions are then made about these parameters and values are ascribed to the 

parameters in order to assess the accuracy of the models. An important parameter 

common to the models is an asymptote for the ý702 attained during middle-distance 

running. 
. 

Arguably the most critical, and most widely accepted, assumption 

underpinning this parameter is that the asymptote is the maximum oxygen uptake (i. e. 

V02,, 
a,, ) and that this asymptote will either be simply attained or that V02 Will rise 

towards it and be attained, providing the duration is sufficient, for all middle-distance 

running events (i. e. 400 to 3000 m) (Di Prampero et al., 1993; Henry, 1954; Hill and 

Lupton, 1923; Lloyd, 1966,1967; Sargent, 1926; Ward-Smith, 1985). 

Since middle-distance events are performed at an intensity that is considered to be in the 

severe intensity domain [i. e. above the 'fatigue threshold', which typically occurs 
halfway between the lactate threshold and ý702rriax (Ward, 1999)], this assumption is in 

accordance with the view of many influential physiologists (Di Prampero, and Ferretti, 

1999; Gaesser and Poole, 1996; Ward, 1999; Whipp, 1994) that provided the exercise 
duration is sufficient, severe intensity exercise will always result in the achievement of 
ý102tnax (Gaesser and Poole, 1996). The assumption is also supported by two recent 

studies (Hill and Ferguson, 1999; Williams et al., 1998) in which ýr02rmx was 

apparently attained during short exhaustive running bouts equivalent to middle-distance 

events. 

However, two models (P6ronnet and Thibault, 1989; Ward-Smith, 1999) assume that 

the asymptote parameter for the V02 attained will be below V02,.,.,, for the 3000 m 

event. Additionally, Wood (1999a) assumes that this asymptote parameter will be 

below ý702=x in the 400,800 and 1500 m events and that it will only be V02max in the 

3000 m event. These assumptions oppose the widely accepted view that V02,,.,, Will 

be attained during all exercise bouts equivalent to middle-distance events. However, 

these assumptions receive support from two recent studies by Spencer et al. (1996) and 
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Chaptcr I Introduction 

Spencer and Gastin (2001). These studies show that ýr02 rises to an asymptote of 88 to 

94% and 90 to 94% ý702ma,, during the 800 and 1500 ra events, respectively. 

Furthermore, inspection of the Hill and Ferguson (1999) and the Williams et al. (1998) 

data, which were interpreted by the authors as providing support for the assumption that 

ý702niax. is attained, reveals that the highest V02 attained was in fact 5% lower for a 

run which lasted -2 min than for one which lasted -5 min. 

Typically the values ascribed to the parameters in the models are based on data 

determined from constant speed running. Constant speed test protocols have been used 

with the motorised treadmill to simulate track running and the laboratory has been used 

to provide a controlled environment (e. g. Spencer et al., 1996). However, constant 

speed test protocols fail to simulate important elements of middle-distance track races 

and hence may compromise the ecological validity of the data on which the values 

ascribed to the parameters in the models are based. Importantly, the acceleration phase 
that occurs at the start of every track race, and represents a significant portion of the 

total duration for a middle-distance race, is ignored when such a protocol is used, as is 

the influence of pacing strategy. 

The accuracy of the models has typically been assessed by comparing the predicted 

performance times from the models with World Record times for each of the middle- 

distance events (Di Prampero et al., 1993; Henry, 1954; Hill and Lupton, 1923; 

P6ronnet and Thibault, 1989; Sargent, 1926; Ward-Smith, 1985,1999). Since the 

assumptions underpinning the parameters in the models may cancel one another out, the 

models may yield accurate predictions Aespite each parameter being less meaningful 

when considered alone. Hence, the accuracy of the models' predictions does not 

guarantee that each parameter in the models is accurately represented or physiologically 

meaningful. For example, a model that assumes an asymptote below ý102niax for the 

ý702 attained following a rapid rise in ýr02 during the 800 rn event may yield a similar 

value for the total amount of 02 used as a model that assumes a relatively slow rise, but 

that the asymptote for the ý102 attained is ý702niax 
- 

Such a model would, therefore, 

yield an accurate prediction of performance, assuming that the other parameters are 

accurate. However, it would fail to accurately represent the rate of rise in V02 and the 

ýr02 attained. 
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It is important that these assumptions are addressed if models of middle-distance 

running performance are to be meaningfully applied. Practitioners use these models to 
determine which variables they should focus on when they conduct a physiological 

assessment of a middle-distance runner and which variables they should encourage such 

a runner to target in training. Researchers use them to ensure that the research they 

conduct has as its focus those factors that are most likely to exert a meaningful effect on 

performance in middle-distance running. To ensure that the application of these models 
is meaningful, it is imperative that the ecological validity of the data on which the 

values ascribed to the parameters in the models are based and the assumptions 

underpinning these parameters is addressed. 

The aims of this thesis were: 

1. to establish criteria for defining V02,., both validly and reliably; 

2. to determine the test-retest reliability in the highest V02 attained during a 
simulated middle-distance ran; 

3. to investigate how the duration of the run affects the highest ý10, attained; 

4. to investigate how event specialism affects the highest ý70, attained during a 
simulated middle-distance run; 

5. to investigate how an acceleration phase and pacing strategy affects the highest V02 

attained during such a run. 

Data showing that the asymptote for the V02 attained is V02,,,,,, during exercise bouts 

equivalent to middle-distance events would support the assumption common to most 

models of performance (Di Prampero et al., 1993; Henry, 1954; Hill and Lupton, 1923; 

Lloyd, 1966,1967; Sargent, 1926; Ward-Smith, 1985). Alternatively, data showing that 

the asymptote for the V02 attained is below V02,,.,, during bouts equivalent to the 

shorter middle-distance events would support the assumption in Wood's (1999a) model. 

In addition, if it could be demonstrated that the highest V02 attained during a constant 

speed test protocol does not accurately reflect the highest V02 attained during a 

protocol that simulates the speed profile of a middle-distance track race, the ecological 

validity of the data on which the values ascribed to the parameters in the models are 

based would be questioned. Alternatively, were the highest V02 attained similar for 

b oth these protocols, the ecological validity of these data would be established. 

LE Sandals (2003) 5 



Chapter I Introduction 

There are four parts to this thesis. Part I reviews the literature on models of middle- 
distance running performance: it raises the assumptions underpinning the parameters in 

the models (chapter 2) and addresses the validity of these assumptions (chapter 3). Part 

II covers methodological considerations for the determination of V02 (chapters 4 and 
5), and includes a study (chapter 6) that addresses the first aim of the thesis. Part III 

investigates ýr02 during middle-distance running and comprises three studies (chapters 

7 to 9) that address the remaining aims (2 to 5) of the thesis. Finally, in Part IV, the 
findings are discussed (chapter 10) and recommendations are given for modelling 

energy supply during middle-distance running events (chapter 11). 
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CHAPTER 2 

HISTORICAL PERSPECTIVES ON MODELLING THE ENERGETICS OF 

MIDDLE-DISTANCE RUNNING: RAISING THE ASSUMPTIONS 

2.1 Modelling the energetics of running 

2.1.1 Methods andformulae 

A common method of modelling running performance, which has been used throughout 

the twentieth century, is based on energy considerations (Di Prampero et al., 1993; 

Henry, 1954; Hill and Lupton, 1923; Lloyd, 1966,1967; P6ronnet and Thibault, 1989; 

Sargent, 1926; Ward-Smith, 1985,1999; Wood, 1999a). The foundation for this 

method is the relationship that exists between the energy that is available, and supplied, 

to a runner and the related energy cost or requirement of the running bout: it is assumed 

that a balance can be established between the energy supplied and the energy cost, and 

that this balance can be used to predict performance. Models using this approach 

collectively assume that the energy supplied to a runner is based on two sets of 

parameters: the first set represents the energy available from a fixed store, which is 

synonymous with anaerobic metabolism, and the second set represents energy supplied 

at a rate, synonymous with aerobic metabolism. 

However, these models differ in the way in which assumptions have been made about 

the parameter representing the energy cost of running: some assume a fixed value per 

metre travelled that is independent of speed (Di Prampero et al., 1993; Lloyd, 1966, 

1967; P6ronnet and Thibault, 1989; Ward-Smith, 1985,1999) while others (Henry, 

1954; Hill and Lupton, 1923; Sargent, 1926) assume a non-linear relationship between 

the energy cost and speed (i. e. the energy cost is dependent on speed). Additionally, 

different assumptions have been made about the effect of air resistance and accelerating 

the body from a stationary position, on the energy cost of running. 

Since the parameter representing the energy cost of running allows predictions of 

performance to be made, it is an important part of the modelling process. However, it is 

beyond the scope of this thesis to review the assumptions associated with this parameter 
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Chapter 2 Modelling middle-distance running: raising the assumptions 

in addition to those associated with modelling energy supply. Rather, the focus of this 

thesis is on the parameters representing energy supply and the predicted performances 

associated with each model will be included only to illustrate the accuracy with which 
they make such predictions. 

The models have been presented in the literature as mathematical formulae, but there 
has been no consistency in the form or presentation of these. Thus, the different forms 

of thernathematical expressions used to denote the relationship between the parameters 

representing energy supply in the models, at times, causes confusion. This makes it 

difficult to assess the different assumptions underpinning these parameters. Therefore, 

all formulae have been rearranged and presented in a consistent form in this chapter. In 

doing so, it is hoped that the development of the parameters in the models, and 

assumptions underpinning these parameters, will become clearer at the expense of being 

consistent with the way in which they have been presented in the literature. 

2.1.2 Terminology 

Despite the models collectively using a set of parameters representing a fixed store of 

available energy and a set to represent a rate of energy supply, various terms have been 

used to denote these parameters. This inconsistency may also, therefore, cause 

confusion when comparing the parameters in the models. Early models (Henry, 1954; 

Hill and Lupton, 1923: Sargent, 1926) included the term oxygen intake to denote the 

rate at which the body uses oxygen (i. e. aerobic metabolism). They used this term, 

however, in a way that suggests that they were in fact referring to oxygen uptake 

(VO2), the term used by contemporary physiologists. Likewise, such models used the 

term oxygen debt to denote the total volume of oxygen used in the recovery from 

exercise in the belief that this reflected a store of anaerobically derived energy (i. e. 

anaerobic metabolism). This encapsulated the notion of a fixed store of available 

energy and, is conceptually, equivalent to the anaerobic capacity term used presently. 

Moreover, the remaining models used a variety of terms to denote both the parameters 

representing the store of available energy and those representing the rate of energy 

supply. These models also differed in the measurement units associated with the 

parameters: some used kilocalories while others used oxygen equivalents. To overcome 

these problems, a single set of terms, and associated measurement units, will be used in 
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this chapter to represent the parameters in the models (see section 2.1.3). The basis for 

these terms is similar to that in the models, defining a store (S), a rate (R), and the 

aerobic (Ae) and anaerobic (An) sources of energy supply. 

2.1.3 Terms 

The following terms have been adopted for this part of the thesis to denote the 

parameters in models of middle-distance running performance. All terms that are 
expressed relative to body mass are oxygen equivalents. 

DF Decline rate of FS SAnmAx An mAx with In T when T> TRAemAx 

I DFRAe Decline rate of FRAeMAX (ml. kg'. min") with In T when T> TRA, 
mAx , MAX 

FRAýMAX Fraction of RAýmAx attained: fraction of V02,,.,, above resting attained 

Fs. 
MAX 

Fraction of SA, 
MAX used: fraction of the maximum anaerobic capacity used 

RAe Rate of aerobic energy supply above rest: V02 above resting (ml. kg". min") 

RAeMAX Maximum RAe: maximum ýr02 above resting 0702max) (ml. kg-l. min-1) 

RAeSS Steady state RAc: steady state V02 above resting (ml. kg-l. min") 

RAe(t) RA, at t: 
V02 

above resting at t (ml. kg-l. min") 

RTOT Average rate of total energy supply, above resting, over T (ml. kg". min-1) 

Sm(T) Store of anaerobic energy available for T: anaerobic capacity (ml. kg-I) 

SAnMAX Maximum store of SAn(T): maximum anaerobic capacity (ml. kg-1) 

T Race duration (min) 

TRAeMAX Maximal race duration for which RmmAx can be sustained (min) 

t Time elapsed from the start of the race (min) 

TAc Time constant for the kinetics of RA, at the race onset (min) 

TAn Time constant for the depletion of Sm(T) (min) 
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2.2 The pioneering work of A. V. Hill and his colleagues 

2.2.1 Background 

Throughout the 1920s Archibald Vivian Hill pioneered theories on the physiology of 

middle-distance running. Having been a prominent physiologist and a competent 

middle-distance runner, Hill was intrigued by the emerging world record performance 
data in athletics. In particular, he was interested in explaining "... the factors 

determining the variation of speed with distance" (1925b, p. 5323). He acknowledged 

the advantages of studying athletics: "the processes of athletics are simple and 

measurable" and "athletes themselves ... can be experimented on without danger and 

can repeat their performances exactly again and again" (Hill, 1927, p. 3). And perhaps 

equally important, he believed "that the study of athletes and athletics is 'amusing' 

(Hill, 1927, p. 3). 

In 1922 Hill began a series of studies on the physiology of severe intensity exercise with 

several colleagues, including H. Lupton, C. N. H. Long, and K. Furusawa (Furusawa et 

al., 1924; Hill et al., 1924a, b; Hill and Lupton, 1922,1923). These studies provided the 
foundation for Hill's theories on the physiology of running and he presented and 
developed these theories in later lectures (Hill, 1925a, 1927,1933). The theories were 
based on the concept of a maximum oxygen uptake (V02=3A which would be attained 

during middle-distance races, and a maximum oxygen debt. Hill and Lupton (1923) 

showed that as long as these are known for a given individual it is possible to calculate 

the total energy supply for any race distance between 0.25 and two miles (i. e. for any 

middle-distance event). In turn, they predicted the highest speed that this individual 

will be able to sustain for these event distances. Thus, effectively, they defined the first 

model of middle-distance running with two parameters representing energy supply: one 

representing an asymptote for the highest ý702 attained (equivalent to the contemporary 

concept of ý702rmx) and the second representing a store of energy derived from 

anaerobic metabolism (equivalent to the contemporary concept of anaerobic capacity). 

2.2.2 The concept ofan attainable V02 

In their early studies Hill's group (Hill et al., 1924b; Hill and Lupton, 1922,1923) 

determined the V02 that could be attained during a series of constant speed runs 
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around a circular grass track (84.5 rn in circumference). The subjects carried a Douglas 

bag, together with the associated valves and taps, while they ran to allow the collection 

of expirate. This combined mass of -5 kg (Sargent, 1926) would have increased the 

energy cost of running at a given speed, something which Hill and Lupton (1923) 

acknowledged. 

Using this procedure, Hill and Lupton (1923) determined V02 over a series of 30 s 

collection intervals from the onset of, and throughout, various constant speed runs. 
They showed that ý702 "rises rapidly from the start, reaching its final exercise value in 

100 to 150 secs., and half its final value in about 25 secs" (p. 150) and that this final 

V02 increased with an increase in the running speed. However, at the highest running 

speeds "the fact that the intake of oxygen has reached a constant value within 2Y2min. 

represents nothing more than the fact that its maximum level has been attained" (P. 

15 1). Hill and Lupton then suggested that "there is clearly some critical speed for each 
individual, below which there is a dynamic equilibrium ... above which, however, the 

maximum oxygen intake is inadequate" (p. 151) and that "However much the speed be 
increased beyond this limit, no further increase in oxygen intakc can occur: the heart, 

lungs, circulation, and the diffusion of oxygen to the active muscle fibres have attained 
their maximum activity" (p. 156). 

Hill and Lupton (1923) therefore proposed that there is a maximum ý702 (i. e. a 

ý'02niax). Hill et al. (1924b) tried to confirm this by determining V02 across a range 

of running speeds for six subjects, three of whom were the authors of the paper. These 

data are important because at no other time did Hill's group present data on the 

relationship between V02 and running speed for a range of speeds and a range of 

subjects. They fitted the entire set of data with a function that reached an asymptote at a 

ý'02 of 4 I. min-. They scaled the data on two of their subjects (C. N. H. L. and H. L. ), 

who had body masses of 68 and 58 kg respectively, "to the same body weight as Hill's 

before plotting" (p. 156) to allow these data to be compared with the corresponding data 

for Hill and the other three subjects (all of whom had a body mass of - 73 kg). They 

provided no details of how they actually did this scaling. 
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On the basis of these data, Hill et al. (1924b, pp. 156-157) concluded that "at high 

speeds ... the oxygen intake attains its maximum value, which in athletic individuals of 
about 73 kg ... is strikingly constant (in the case of running) at about 4 litres per minute. 
The oxygen intake fails to exceed this value, not because more oxygen is not required, 
but because the limiting capacity of the circulatory-respiratory system has been 

attained". They made no attempt to determine 'ý70 2 at speeds above 18 km. h', partly 
because "greater speeds were not comfortable" on their small grass track, and partly 
because "much higher speeds could not be maintained long enough to allow a sufficient 
fore period and collection interval" (p. 157): they could not be maintained long enough 
for a steady state to be attained. They then added (p. 157) that "the form ... of the 

oxygen intake curve ..., approaching a constant level of 4 litres per minute, makes it 

obvious that no useful purpose would be served by investigating higher speeds in this 

way". 

Hill's group did much more than present the idea of a ý102,, 
mx - Indeed, they also 

speculated on what factors might limit this ý702rnax: "The chief determining factor 
... 

in the oxygen intake is the rate of circulation of the blood" (Hill et al., 1924b, p. 165). 

They went so far as to calculate that a cardiac output of - 30 L min-' would be required 

to support a ý702nmx of 4L min-'. Moreover, they proposed a method for quantifying 

how energy could be provided, in the absence of 02 (i. e. the oxygen debt), above the 

critical speed that elicits ý702ffiax 
- 

2.2.3 The concept of an oAygen debt 

The concept of an oxygen debt was first introduced by Hill and Lupton (1922), and the 

same authors later outlined how this oxygen debt could be determined by monitoring 
the amount of oxygen used in the initial stages of recovery from a given exercise bout 

(Hill and Lupton, 1923). Hill et al. (1924a) and Furusawa et al. (1924) elaborated on 
the procedures involved, explaining that the oxygen debt should be calculated as the 
difference between the total volume of 02 used during the first 30 min of recovery and 

that which would have been used during this period had the subject been at rest (i. e. the 

total volume of 02 used, above resting, during the first 30 min of recovery). 
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The general assumption implicit in this approach is that, for a given exercise bout, the 

volumeof 02 taken up, above resting, during recovery represents the extent to which 

energy is derived from anaerobic metabolism during the exercise. Specifically, the 

assumption is that the amount of energy derived from anaerobic metabolism during 

exercise (expressed as anO2 equivalent) and the amount 
'of 

excess 02 used during 

recovery are equal. 

Hill's group never actually used the term 'anaerobic metabolism. However, they did 

propose that there is an upper limit to the oxygen debt that an individual can incur (i. e. a 

maximum oxygen debt). It seems reasonable to argue that their maximum oxygen debt 

was equivalent, conceptually at least, to a maximum store of anaerobically derived 

energy (i. e. an anaerobic capacity). 

2.2.4 Thefirst physiological model of middle-distance runningperformance 

Hill and Lupton (1923) did calculations, using data that they had collected on Hill 
himself, to derive a model describing energy supply for race distances from 0.25 to 2 

miles (400 to 3200 m). Though they never formally presented these calculations in a 
model, it is given by: 

RTOT : -- 

SAnMAX 

+ RAeMAX (1) 
T 

where RTOT (ml. kg'I. mm7) is the average rate of energy supply, above resting, over T; 

SAnM,, 
X 

(ml. kg") is the maximum store of anaerobic energy available for T; T is the race 

duration (min); and RAe kg-l. min") is the asymptote for the highest 
, MAX 

(Ml 02 ý702 

attained above resting (i. e. ý702 
.. a,, above resting). 

They ascribed values of 137 ml. kg" to SAn 
MAX and 55 ml. kg". min-1 to RAemAx. They 

chose this value for Sm 
MAX simply because it was close to the highest oxygen debt value 

that they had observed at the time the paper was written. In a later paper (Hill et al., 

1924a) they report a maximum oxygen debt of 150 ml. kg" for Hill. In selecting a value 

for RAeMAX they considered the fact that the race times they used were achieved by Hill 

some 10 years prior to the experiments they reported. The highest V02 
.. ax attained by 

Hill in their experiments was - 52 ml. kg-l. min-1, and the value they used in their 
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calculations was 3 ml. kg". min-1 higher than this. They assumed, therefore, that Hill's 

V02,,.,, had declined since his best times were recorded. Furthermore, they assumed 

that SA, 
MAX and RAeMAX would be attained during all middle-distance event durations, 

and that RAemAx would be attained immediately at the start of the exercise. Importantly, 

they assumed that the highest ý102 attained would be V02max (i. e. RAemAx) during all 

middle-distance events and that V02max would be attained immediately at the start of 

these events. 

Hill and Lupton (1923) predicted the running speed that would be associated with RToT 

for a range of middle-distance event durations. In doing so, they found that the speeds 
they obtained were lower than those that Hill had actually sustained. To resolve this, 

they suggested "that the respiration apparatus used in the experiments ... offered a 
definite, if small, hindrance to movement, and we may allow for this provisionally by 

assuming that ... the speed is reduced 15 per cent by the apparatus carried" (p. 159). It 

is apparent that carrying the resp , iratory apparatus would have affected the efficiency 

with which Hill could have run (see section 2.2.2) and their adjustment appears 

reasonable. However, they provided no rationale for why a value of 15% should be 

used. 

For the range of middle-distance events that Hill and Lupton (1923) examined, the 

agreement between Hill's actual and predicted performance times is shown in table 2.1 

(the predicted times shown here were subsequently corrected, as described above, to 

compensate for Hill carrying the respiratory apparatus). On the basis of these data, they 

concluded "that the maximum duration of an effort of given intensity is related to the 

intensity in a manner depending simply upon the supply of oxygen, actual or potential 
(their emphasis), i. e. upon the maximum rate of oxygen intake and the maximum 

oxygen debt of the subject in question" (p. 159). 
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Table 2.1 Actual vs. predicted times for race distances from 0.25 to 2 miles (Hill 
and Lupton, 1923) 

Race Distance (miles) 

0.25 0.33 0.50 1.00 2.00 

Actual (A) Time (s) 53 77 123 285 630 

Predicted (P) Time (s) 62 90 145 341 743 

AT 1.17 1.17 1.18 1.20 1.18 

2.3 Modelling the rise in ý702 at the start of exercise: the developments of Sargent, 
Simonson, and Henry 

2.3.1 The limitation offfill and Lupton's (1923) model 

Hill (1925b) acknowledged that his assumption that V02 rises to its maximum 
immediately at the onset of exercise was false: "for a more accurate calculation the 

gradual rise of the oxygen intake at the beginning of exercise can be taken into account" 
[p. 482 (footnote)]. In 1922 Hill and Lupton had determined V02 

. using 30 s samples, 

at the onset of running "... to determine the rate at which the oxygen usage rises to its 

steady value ... " (p. xxxii). They observed that V02 "rises exponentially from the 

start, reaching a steady value within two minutes, the total deficit at the beginning of 
I 

exercise being compensated in the early stages of recovery" (p. xxxii). Therefore, Hill 

and Lupton (1922) knew, and possessed data which showed, that V02 rises 

exponentially at the onset of running, but they neither used these data in their model of 

running performance nor expressed this relationship mathematically. 

Hill and Lupton (1923) could, therefore, have included a parameter in their model to 

represent the rise in ýr02 to its maximum. The fact that they acknowledged that this 

would be necessary for an accurate calculation of the rate of aerobic energy supply 

suggests that they chose to simplify their model. In 1926 Sargent published a report of 

an experiment in which he attempted to circumvent not only the problems associated 

with the assumption that the parameter representing the highest ý102 attained is reached 
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immediately during running but also those associated with carrying the respiratory 

apparatus. 

2.3.2 Accountingfor the rise in Jý02 in the calculation ofRTOT 

Sargent tested one subject (N), a well-trained middle-distance runner, who completed a 

set distance (110 in) at a series of constant speeds. The subject did not carry any 

respiratory apparatus; rather, he held his breath while he ran. The mouthpiece was 
handed to him as soon as he stopped running, and his expirate was collected for the first 

30 to 60 min of recovery. For each speed Sargent determined the V02 and oxygen debt 

associated with the exercise; he then modelled RTOT in the same way as Hill's group 
[see equation (1)]. 

However, in doing so, Sargent accounted for the rise in ýr02 at the onset of running. 

He determined the rate of rise in ý702 
. in the same way that Hill's group had previously 

done (see section 2.2.2), over varying successive time intervals from the start of 

exercise, assuming that the rate of this rise was the same for all race durations. These 

data were plotted OrO2 vs. the mid-point of the time interval) and Sargent derived a 

smoothed curve relating ýr02 to time for the first three minutes of exercise. This curve 

was then used to calculate the rise in ý702 to the parameter representing the highest 

ýr02 attained. Sargent (1926) assumed that this parameter would be V02ma,, and he 

ascribed a value of 55 ml. kg". min" to it. However, no details were given to explain 

either how this rise in ý702 to its maximum was calculated or how the curve smoothing 

was done. In contrast to Hill and Lupton (1923), Sargent made use of this curve when 

he calculated RTOT for a range of middle-distance events. 

Sargent revised Hill and Lupton's (1923) model of running performance to calculate 

N's RTOT for a range of race durations. He used the smoothed curve to account for the 

rise in ý702 at the onset of exercise and he ascribed a value of 55 ml. kg-l. min-I to 

RAeMAX9 the ý702niax observed for N. He ascribed a value of 217 ml. kg-1 for SA,, 
MAX' 

the 

maximum oxygen debt observed for N, and assumed that both RAemAX and SA,, 
m. 

would be attained for all middle-distance events > 300 yds. Sargent then calculated 

RTOT for each race distance in the same way as Hill's group [see equation (1)]. These 
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predicted times were then compared to N's actual (or estimated) performance times: the 

agreement between these, for the range of race distances examined, is shown in table 

2.2. 

Table 2.2 Actual vs. predicted times for race distances from 0.17 to 2 miles 
(Sargent, 1926) 

Race Distance (miles) 

0.17.0.25 0.33 0.50 1.00 2.00 

Actual (A) Time (s) 33 52 73 121 281 611 

Predicted (P) Time (s) 34 51 75 122 280 610 

AT 1.03 0.98 1.03 1.00 1.00 1.00 

0 

Sargent successfully resolved the problems, encountered by Hill's group, associated 

with subjects carrying respiratory apparatus during running and the assumption that 

ýr02rrmx is immediately attained at the onset'of exercise. The agreement between N's 

calculated and actual times (table 2.2) confirms this and demonstrates the accuracy with 

which Sargent's model could predict middle-distance running performance. Since 

Sargent gave no details of how the rise in V02 at the onset of exercise was calculated, 

his revised model cannot be expressed mathematically, and is limited in its application 

to his single subject. Therefore, despite the fact that Sargent- (1926) accounted for the 

rise in V02 at the onset of exercise, he failed to include a parameter to represent this 

rise. Sergeant's model was, therefore, essentially the same as Hill and Lupton's (1923) 

model, at least in its mathematical presentation. It was not until the work of Simonson 

(1927) that the relationship between the rise in ý702 and time at the start of exercise 

was first described mathematically. 

2.3.3 Expressing the rise in ý02 as a mathematicalfunction 

In 1927 Simonson hypothesised that, under conditions where the molecular 02 SUPPlY 

is adequate and not limited by factors such as blood supply, the increase of ý102 
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proceeds in a very regular logarithmic curve, so that it may be expressed by a simple 

mathematical formula: 

RAe (t) = RAeSS 
(1- 

e-t/"Ac 
) 

(2) 

where RAe(t) (ml. kg-l. min") is the'V02 above resting at t, RAess (ml. kg". min-1) is the 

steady state ýr02 above resting, -TAe is the time constant (min) for the kinetics Of V02 

and t is the time (min) elapsed from the start of the race. 

In 1951 Henry independently arrived at the same conclusion as Simonson (1927) and 

elaborated on the theoretical basis underpinning this exponential rise in V02 at the start 

of exercise. Indeed, he predicted that RAeSs and TAe are entirely independent 

mathematically and, hence, should be uncorrelated. Moreover, he suggested that -rAe 

should be independent of the exercise intensity while RAeSS should show a linear 

relation with exercise intensity up to the point where limitations of 02 supply begin. 

Henry (195 1) did more than simply elaborate on the theoretical basis for the exponential 

rise in V02 at the start of exercise. Indeed, he determined ý702 during the onset, and 

throughout, exercise at a moderate intensity on a cycle ergometer for 12 subjects to 

provide data to examine this theory. Henry derived semi-log plots of V02 against time 

to determine the curve constants RAeSs and -rA,, with the ordinate representing the V02 

'deficiency' (i. e. the difference between the asymptotic V02 and the actual V02 for 

each minute). He then used these constants in equation (2) to calculate the V02 curve 

at the onset of exercise, and plotted this together with the average V02 data points 

determined experimentally from his 12 subjects (figure 1, curve A; Henry, 1951; p. 
430). The agreement between the calculated curve and the experimental data points was 

excellent and was something that Henry found particularly convincing "since the 
formula for oxygen consumption has only 2 parameters and there are 6 experimental 
data points in the curved portion of the line" (Henry, 195 1, p. 432). 

Henry also used equation (2) to calculate theoretical curves for two other data sets: 
ý702 determined from a single subject during stepping exercise (taken from Berg, 

1947) and V02 determined from a single runner (taken from Hill et al., 1924a). These 
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data also showed excellent agreement [figure 1, curves B and C; Henry (1951), p. 430] 

with their respective calculated curves. 

Henry (1951) proposed, and confirmed with experimental data, that the rise in V02 at 

the onset of exercise is an exponential function of time. In doing so, he assumed that 

the rA, of this exponential rise in V02 was 0.61 min (37 s) for the curve derived from 

the 12 subjects' data. In 1954 Henry incorporated this equation in a model of running 

performance. 

2.3.4 Incorporating the exponential rise in Jý02 in a model ofperformance 

Henry (1954) developed Sargent's (1926) model of middle-distance running 

performance by including a mathematical term [equation (2)] for the exponential rise in 

ý702 at the start of exercise. He calculated RTOT for race distances from 200 to 3000 m 

based on the 1952 World Records times. While Henry never formally presented his 

model, it is clear that it was given by the following expression: 

[SAnMAX 

+T -t/TAe RTOT 

T 
fRAeMAX (I 

-e 
0 

)l (3) 

Like his predecessors, Henry assumed that the parameter representing the highest ý'02 

attained would be ý102=x (i. e. RAeMAX). For this parameter Henry ascribed a value of 

73 ml. kg-I. min7' and for Sm MAX a maximum oxygen debt value of 240 ml. kg". He 

simply assumed that these represented maximal values for a hypothetical 75 kg runner. 

Having included a parameter to represent the exponential rise in ýr02 at the start of 

exercise, Henry gave no details of the value he ascribed to this parameter and it is not 

clear what value (or values) he used from the data that fie gives. Consequently, it is 

clear that Henry assumed that ýr02 would rise towards ý702 
.. a,, and that V02=x would 

be attained if the exercise duration was sufficient. Without knowing the value he 

ascribed, to the parameter representing the time constant for this rise in ý102, it is 

impossible to determine the shortest event duration during which V02na,, would have 

been attained. 
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Henry's (1954) model was an important development in the history of modelling 

middle-distance running performance. However, he only addressed the assumption that 

Sargent (1926) had originally set out to challenge: that V02max is not immediately 

attained at the start of exercise. Consequently, despite the 31 years that had elapsed 

since Hill's group's model was first proposed, several assumptions underpinning the 

parameters in the models of middle-distance running performance remained 

unchallenged in 1954. 

2.4 The concept of an anaerobic capacity: the developments of Lloyd, Ward-Smith, 
and Di Prampero et al. 

2.4.1 The notion ofa single 'anaerobic'energy store 

Hill's group's pioneering work on the physiological determinants of middle-distance 

running performance continued to influence physiologists into the 1960's. In 1966, B. 

B. Lloyd prefaced his Presidential Address to the Physiology Section of the British 

Association, on the energetics of running, with reference to Hill's group's work. He 

then went on to propose a model of performance, which principally challenged the 

assumptions underpinning 'anaerobic' energy supply. Lloyd revised his own model in 

1967 and others (Di Prampero et al., 1993; Ward-Smith, 1985) went on to develop his 

work over the next 30 years. During this time, the focus of these studies centred on the 

parameters representing anaerobic energy supply and few developments were made in 

relation to the parameters representing aerobic energy supply during middle-distance 

running. 

Lloyd (1966) proposed that the maximum energy available to a runner was determined 

by a set of parameters representing a rate of energy supply over the whole event 

duration, and by a set of parameters representing a fixed store. Like Hill, he used a 

financial analogy to describe this relationship as the store "corresponding with capital" 

and the rate "with income" (p. 517). In calculating this rate, he assumed that the highest 

ýr02 attained parameter would not be V02na,, but rather a steady state V02 (RA, 
ss) 

that may be below V02=x. Furthermore, he assumed that this parameter would be 

attained after a short delay. By assuming this, Lloyd failed to consider Henry's (1951, 
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1954) exponential equation. This is surprising since Lloyd had made reference to 
Henry's 1954 paper throughout his address. 

Lloyd's (1966) most important contribution, however, was the way in which he 

modelled the parameters representing the store of energy provision. He referred to this 

store as the oxygen debt and had clearly been influenced by Hill's group's work in 

doing so. However, the way in which he used the oxygen debt term was not consistent 
with Hill's group's reasoning: Lloyd did not use the oxygen debt to represent the excess 
02 taken in during recovery. Lloyd had therefore, effectively, described the notion of 

an 'anaerobic capacity' though, like Hill's group, he never used the term 'anaerobic'. It 

was given by: 

SA,, (T) = SA,, 
MAX 

(I 
-e 

-T/TAn 
) 

(4) 

where SAn(T) (ml. kg") is the store of anaerobic energy available over T and -T,,. is the 

time constant (min) for the kinetics of Sm(T) at the start of the race. 

Hill's group, Sargent (1926), and Henry (1954) had assumed that SM 
MAX could not be 

exhausted in short exercise durations and that several seconds were required to incur 

SAnMAX' Whereas they did not include a parameter for this in their models, Lloyd's 

inclusion of the parameter representing the exponentially decreasing store did so. 

To derive the physiological parameters for his model Lloyd applied an approach that 

was conceptually the same as a 'critical speed' model, based on the work of Scherrer 

and Mctnod (1960) (though he never referred to their work). The approach involved 

grouping the range of World Record event distances (50 yd to 623 miles) into six sets, 
for each of which he plotted the distance against performance time and fitted a straight 
line. The slope of this line represented RA, ss, and the; intercept represented SAnMAX . For 

the set of data that included the range of middle-distance events (800 to 3000 m), RAe , ss 

was 67 ml. kg-l. min-1. The SAnMAX was 29 ml. kg" and -rA. was 0.42 min (25 s). 

Therefore, SAn 
MAX would equal Sm(T) for event durations greater than 125 to ISO s. 

Lloyd did not explicitly assume that RmmAx would be attained. Rather, he assumed that 

a sustainable rate of energy supply (RA, ss) would be attained for the range of race 
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durations. Since Sm MAX would only be completely exhausted for race durations greater 

than 120 to 150 s, he assumed that it would be exhausted for the race distances of 1500 

m and above (> 215.6 s), but not for the 800 m (105.1 s) 

Lloyd (1966) failed to take account of the effect of air resistance on the parameter 

representing the energy cost of running and in his 1967 paper he resolved this by 

correcting his value ascribed to this parameter. As a result, the aforementioned values 
for RAess and SA,,.. were corrected to 76 ml. kg-l. min" and 50 ml. kg", respectively. 

Additionally, 7-A. was 0.28 min (17 s), meaning that Sm 
MAX would be exhausted by 102 

s: it would be exhausted during race distances > 800m. 

Lloyd's (1966,1967) work was later developed by Ward-Smith (1985) who 
incorporated a parameter representing the exponential rise in ý102 at the onset of 

exercise, equivalent to that outlined by Henry (1951). Thus, he overcame the potential 
limitations of Lloyd's model. Additionally, though Hill's group, Sargent (1926), Henry 

(1954), and Lloyd (1966,1967) had all encapsulated the idea of an anaerobic capacity in 

their models, and the term anaerobic capacity had been introduced in the 1960's 

(Margaria et al., 1966), Ward-Smith (1985) was the first to include this term in a model 

of running performance. Di Prampero et al. (1993) later presented a model that was 

essentially the same as Ward-Smith's. Their model contained the same parameters as 
Ward-Smith's but they ascribed different values to these parameters in order to assess 
the accuracy of the model. 

2.4.2 Yhe concept ofan anaerobic capacity 

Ward-Smith's (1985) model was based on the same principles as that of his 

predecessors: a set of parameters representing a rate of aerobic energy supply and a set 

of parameters representing a store of available energy derived from anaerobic 

metabolism. However, he assumed that the parameter representing the highest ý702 

attained would be ý102nwx 
9 something that Lloyd (1966,1967) did not explicitly 

assume. Ward-Smith also included a parameter representing the time constant for the 

exponential rise in ý702 at the onset of exercise and overcame the problems with 
Lloyd's (1966,1967) models, in which he assumed that the parameter representing the 
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highest ý702 attained would be reached after a short delay. Ward-Smith's (1985) 

model is given by: 

R To =1 

[SAnMAX 
(I 

- e-T/'rAn 
)T 

RAeMAX 
(1 

- e-t/rAe TT+I 
0 

)l (5) 

For RAeMAx he ascribed a value of 67.5 ml. kg-l. min7l, ýA. and -rA, were both ascribed 

values of 0.5 min (30 s), and SmmAx was ascribed a value of 81.3 ml. kg-1. Thus, SA,, 
MAX 

would be completely exhausted for event durations above 150 to 180 s. The RAemAX 

parameter (i. e. V02max) would not have been reached during 800 rn running because 

the duration is insufficient. However, the important point here is that about 95 to 97% 

V02max would have been attained during 800 m running and that ý702 would be rising 

towards V02max. This is different to assuming that V02 would not be attained because 

it is rising towards an asymptote parameter that is below V02max 

Ward-Smith predicted the performance times that would be attained by a hypothetical 

runner, with the above values, for the 100 to 10000 m events. He then compared these 

times with the actual average times attained by the medallists for the four Olympic 

games between 1960 and 1976. For the middle-distance events analysed, these times 

are presented in table 2.3. 

Table 2.3 Actual vs. predicted times for race distances from 400 to 1500 m (Ward- 
Smith, 1985) 

Race Distance (m) 

400 800 1500 

Actual (A) Time (s) 44.93 105.48 218.24 

Predicted (P) Time (s) 44.50 104.15 221.49 

AT 1.01 1.01 0.99 
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Di Prampero et al. (1993) also referred to an 'anaerobic capacity' when they presented a 

model that specifically dealt with middle-distance running perfonnance (800 to 5000 m. 

events). This model is given by: 

T 
RTOT = -1[SAnMAX + RAe 

(I 
- e-t/"Ac 

TI MAX 
0 

)l 
(6) 

Di Prampero et al. (1993) did not include a parameter to represent the exponential 
decrease in Smm: rather, they assumed that it would be exhausted during all middle- 
distance running events. Likewise, they assumed that RAemAx would be attained during 

all these events. They then used three sets of values to test their model. 

The first set was based on a hypothetical (75 kg) runrier with a RAe 
, mAx of 74 ml. kg- 

'. min-'. For the second set, they determined ý102ffiax in 16 'intermediate level' runners: 

RA, 
mAx of 60.2 ± 3.0 ml. kg-l. min"l and 50.0± 5.2 ml. kg-l. min" for males and females, 

respectively. For the third set, they used data determined in a study by Lacour et al. 
(1990) on 27 elite runners: RAeMAX of 71.3 ± 4.5 ml. kg'l. min". For all these data, Di 

Prampero et al. (1993) ascribed values of 68 ml 02, kg" to Sm 
MAX and 0.17 min (10 s) 

to -r,,. They predicted the times that could be achieved by the hypothetical runner and 
the 'real' runners on whom they had collected, or obtained, data. These times were then 

compared with the actual 1989 World Record times for the hypothetical runner and with 
the 'real' runners' actual seasonal best times. These comparisons are-given in table 2.4. 

Table 2.4 Mean ratio of actual to predicted times, for three data sets, for race 
distances from 800 to 3000 m (Di Prampero et al., 1993) 

Data Set Race Distance (m) 

800 1500 3000 

(1) Hypothetical Runner 1.03 1.00 1.00 

(2) Di Prampero et al. (1993) 1.16 1.04 1.03 

(3) Lacour et al. (1990) 1.08 1.02 1.02 
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Table 2.4 shows that Di Prampero et al. 's (1993) model essentially overestimates 

performance and, more importantly that, the magnitude of this overestimation is greater 
for the shorter race distances. They suggested that their assumption that SM 

MAX would 

be exhausted during the shorter distances may have been false and that these distances 

may be too short for its full exploitation. Something that Di Prampero et al. failed to 

consider, however, was that the highest ý'02 attained may be below ýr0l,. during 

these shorter event durations and that they may, therefore, have overestimated the 

associated aerobic energy supply. 

2.5 The notion of a fractional use of ý10.... during middle-distance running: the 
developments of Wronnet and Thibault, Ward-Smith, and Wood 

2.5.1 Pironnet and Yhibault's (1989) model 

In 1989 P6ronnet and Thibault presented a model that developed the work of Ward- 

Smith (1985). However, they assumed that SAnMAX would only be attained for race 

durations longer than 120 to 150 s, yet shorter in duration than the maximal duration for 

which RAeMAX could be sustained (TRA, 
MAx). 

Indeed, they assumed that for event 

durations greater than T RAeMAX , the amount of energy available from anaerobic 

metabolism decreases progressively with increasing T. In doing so, they had been 

influenced by the work of Gollnick and Hermansen (1973) who proposed that SM(T) 

decreases with the natural logarithm of race duration when T>T RAeMAX* 

P6ronnet and Thibault's most important contribution, however, was the way in which 

they modelled RAeMAX. They assumed that RAeMAX would only be attained for event 

durations less than T RAIMAX . 
On the basis of several studies (Costill and Fox, 1969; 

Londeree, 1986; P6ronnet et al., 1987), they assumed that for event durations greater 

than TRA, 
MAX 

only a fraction of RAýMAx would be attained, and that this fraction would 

decrease linearly with In T. Their model was given by: 

(T)(I - e-T/tAn 
)R 

-t/tAe 
TOT T 

+f AeSS(I-e 

IS 

0 
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where 

RAeSS -" RAeMAX (I +D FRAeMAX (In(TIT RAeMAX 
)) (8) 

SAn (T) = SAnMAX (I +D FSAnMAX (In(t I TRAeMAX )) (9) 

where DFRAeMAx and DFS 
AnMAX are negative coefficients representing the decline of 

, mAx 
FRAe and F SAnMAXI respectively, as a function of In T. 

On the basis of breath-by-breath data (Fox et al., 1980; Hagberg ct al., 1978; 

Linnarsson, 1974), they ascribed values of 0.5 min (30 s) to 7-m and 80.1 ml. kg-l. min" 
to RAemAV They also ascribed values of 0.3 min (20 s) to -rA,,, 79.3 ml. kg-1 to SAnMAX and 

- 420 s (Costill and Fox, 1969; Londeree, 1986) to TRA, 
'mAx 

This was the first model to explicitly assume that the highest ýrO. attained would not 

be V02max for all middle-distance event durations. Rather, they assumed that the 

parameter representing the highest ýrO, attained would be below ýrO2niax for the 3000 

m event, which is greater than 420 s. Furthermore, their use of a high value for TA, 

means that ýrOlnax would not be reached during the 800 m event. However, since th6 

duration of the 3000 in event is very close to TRAýmAx (452 s in P6ronnet and Thibault's 

analysis) this effect is only conceptually important and has little physiological meaning. 
Indeed, P6ronnet and Thibault's model predicts that 99.7% of RAe MAX will be attained 

during the 3000 in event. P6ronnet and Thibault were also the first to assume that 
SmmAx may not be totally exhausted during longer duration events. They assumed that 

it could only be completely exhausted for event durations greater than 120 to 150 s but 

less than 420 s (i. e. the 1500 m event). However, since the contribution of SA,, 
MAX 

to 

RTOT would be relatively unimportant during event durations > 420 s this development 

was considered to be of little importance by some authors (Di Prampero et al., 1993). 

For assessing the predictive accuracy of the models this would be so, but for assessing 
the physiological importance of each energy supply term, and how they may interact, 

this would not be so. 
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Using equation (7), Peronnet and Thibault compared the predicted performance times 
for a hypothetical male runner with the actual 1987 World Record performance times 
for the 60 to 42195 m events. This comparison, for the 400 to 3000 rn events, is 

presented in table 2.5. 

Table 2.5 Actual vs. predicted times for race distances from 400 to 3000 m 
(Wronnet and Thibault, 1989) 

Race Distance (m) 

400 800 1500 3000 

Actual (A) Time (s) 44.1 101.7 209.5 452.1 

Predicted (P) Time (s) 43.8 102.8 210.0 441.9 

AT 1.01 0.99 1.00 1.02 

\1 
2.5.2 Ward-Smith's (1999) model 

In 1999 Ward-Smith revised his previous model (Ward-Smith, 1985) to include the 

assumption that only a FRAe for event durations greater than 420 s and incorporated 
'MAX 

P6ronnet and Thibault's (1989) term for this [equation (8)]. Otherwise, the terms in his 

model were identical to his previous 1985 model. 

Ward-Smith (1999) revised some of the values used in his model: SM 
MAX was 75.1 

ml. kg-1 and RAeMAX was 73.1 ml. kg-I. mm-1. He, then predicted times for a hypothetical 

runner and compared these with the actual 1997 World Record times for the 1500 to 

10000 m events. This comparison for the 1500 and 3000 m events is given in table 2.6. 
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Table 2.6 Actual vs. predicted times for race distances from 1500 to 3000 m 
(Ward-Smith, 1999) 

Time Race Distance (m) 

1500 3000 

Actual (A) 207.4 440.7 

Predicted (P) 207.9 442.0 

Ratio of A to P 1.00 1.00 

Ward-Smith (1999) appeared to have improved the predictive capability of his model by 

assuming that the highest ý70 
2 attained would be below ý702rnax for event durations 

greater than 420 s. In particular, the agreement between the predicted and actual 1500 

m performance times was better than in his 1985 paper. However, since this duration 

was less than 420 s, this agreement could not have been due to his revised model per se. 

Rather, it was. likely due to the higher value for RAeMAX that he used (73.9 vs. 71.3 ml 

0,. kg-l. min"). 

2.5.3 Wood's (1999a) model 

Wood (1999a) developed the notion of a fractional use of RAeMAX during middle- 

distance events, based on data from Spencer et al. (1996) and incorporated this in a 

model of middle-distance running. In his model, Wood assumed that only a fraction of 

RAeMA'X (FRAýmAx) could be attained for the 400 to 3000 m events, for a hypothetical 

middle-distance runner. Though the model was not formally presented, it calculated 

RTOT as: 

T 
RTOT 

[F 

AnMAX + 
ff 

RAeMAX x RAeMAX 
(1 

- e-t/"Ac (10) 
T SAn MAX 

XS 
)l 

where Fs AnMAX is the fraction Of SAnMAX 
used. 
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Wood ascribed a set of typical values for a hypothetical runner: RAeMAX of 70 ml. kg' 

'. min-' and SA,, 
MAX of 72 ml. kg". He also ascribed a set of values that were specific to 

each middle-distance event (see table 2.7). Wood's (1999a) model was, therefore, the 

first to assume that the parameter representing the highest ý10, attained would be 

below V92max for the shorter middle-distance events (400 to 1500 in). Indeed, he 

assumed that ýF02 would rise towards an asymptote that is below V02,,.,, and that the 

extent to which this asymptote is below ý102rnax will be dependant on event duration: 

the %V02,,. x attained will decrease with event duration for a typical middle-distance 

runner. Furthermore, Wood (1999a) was the first to ascribe different values to the 

parameter representing the-time constant for the rise in V02 at the start of exercise, 

assuming that this parameter was dependant on event duration. 

Table 2.7 Values used to model the 400 - 3000 rn events (Wood, 1999a) 

Event (m) F SAnMAX FRAeMAX T (S) 

400 0.72 0.85 12.0 

800 1.00 0.94 18.0 

1500 1.00 0.98 17.5 

3000 1.00 1.00 42.0 

2.6 Raising the assumptions and their implications 

2.61 Yhe assumptions 

Since the first physiological model of middle-distance running was published by Hill 

and Lupton in 1923, no additional sources of energy supply have been introduced. 

Indeed, when the models are presented in a common form, and with common 

parameters, it is clear that they are all similar. What has changed is the way in which 

these parameters have been modelled and, in turn, the assumptions that have been made. 
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All of the models contain parameters that encapsulate the concept of an anaerobic 

capacity. Only the most recent models (Di Prampero et al., 1993; P6ronnet and 
Thibault, 1989; Ward-Smith, 1985,1999; Wood, 1999a), however, have made explicit 

reference to this. All models collectively assume that the anaerobic capacity will not be 

completely exhausted during the 400 m event (< 60 s). However, different assumptions 

are made about events of greater duration. Some (Di Prampero et al., 1993; Henry, 

1954; Hill and Lupton, 1923; Lloyd, 1967; Sargent, 1926) assume that the anaerobic 

capacity will be exhausted for all durations > 100 s (i. e. ZýMO m, event). Others (Ward- 

Smith, 1985,1999) assume that it will be exhausted for event durations > 120 s (i. e. ý_- 
1500 m event). In two models it is assumed that it will only be exhausted during the 
1500 m event (P6ronnet and Thibault, 1989; Wood, 1999a). 

With the exception of Lloyd's (1967) model, it is assumed that V02ma" exists (i. e. 
RAýmj. In fact, it could be argued that, whilst Lloyd (1967) did not refer to V02rmx 

9 

I the value of 79 ml. kg- min" he used is typical for an elite runner. It is assumed in most 

models (Di Prampero et al., 1993; Henry, 1954; Hill and Lupton, 1923; Lloyd, 1967; 

Sargent, 1926; Ward-Smith, 1985) that this V02rnax will be the highest V02 attainable 

during all middle-distance events. Moreover, whilst some (P6ronnet and Thibault, 

1989; Ward-Smith, 1999) assume that the highest ýrO2 attained will not be V02max in 

the 3000 rn event, this is only conceptually important and has little physiological 

meaning. Finally, Wood (1999a) assumes that the highest ýF02 attained will be below 

V02max in all but the 3000 m event. 

The models that have included a parameter to represent the rise in V02 at the start of 

exercise (Di Prampero et al., 1993; Henry, 1954; P6ronnet and Thibault, 1989; Ward- 

Smith, 1985,1999; Wood, 1999a) have assumed that this rise in V02 is mono- 

exponential. Each of these models assumes that ý702 will rise towards the asymptote 

representing the highest ý702 attained. In three of these models (P6ronnet and Thibault, 

1989; Ward-Smith, 1985,1999) the high value (30 s) ascribed to the parameter 

representing the time constant for the rise in ýr02 means that V02, 
nax will not be 

reached during the 800 m event: only 95 to 97% V02Tmx will be reached during this 

event. With the exception of Wood's (1999a) model, it has been assumed that the 
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parameter representing this rise in ýr02 is independent of exercise intensity: a single 

value has been ascribed to the parameter for all event durations. 

All of the models have ascribed a single value to ý702.,, and to the anaerobic capacity 

across all event durations: these values will not vary between runners specialising in 

different events. Finally, most of the values used in the models are based on data 

determined from constant speed running. It is, therefore, assumed that these data are 

ecologically valid: constant speed running, on which the models' predictions are mainly 
based, is assumed to reflect the pacing strategy used by middle-distance runners during 

'actual' performances. 

2.6.2 The implications 

It is important that the assumptions underpinning the parameters, and the values 

ascribed to these parameters, are addressed if models of middle-distance running 

performance are to be meaningfully applied. It is insufficient to accept the models as 

valid on the grounds of their ability to accurately predict World Record performance 

times, which has been the typical approach for assessing their accuracy (Di Prampero et 

al., 1993; Henry, 1954; P6ronnet and Thibault, 1989; Ward-Smith, 1985,1999). The 

assumptions associated with each parameter may cancel one another out when the 

parameters are modelled and, hence, yield accurate predictions; yet each parameter may 

be less meaningful when considered alone. The accuracy of a model's predictions does 

not guarantee that each parameter is accurately represented or physiologically 

meaningful. For example, a model that assumes an asymptote below ý702rrax for the 

highest ýr02 attained following a rapid rise in ý702 during the 800 m event may yield 

a similar value for the total amount of 02 used as a model that assumes a relatively 

slow rise, but that the asymptote for the highest V02 attained is V02,,. 
x . 

Such a 

model would, therefore, yield an accurate prediction of performance, assuming that the 

other parameters are accurate. However, it would fail to accurately represent the rate of 

rise in V02 and the V02 attained. 
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CHAPTER 3 

CONTEMPORARY PERSPECTIVES ON MODELLING THE ENERGETICS 

OF MIDDLE-DISTANCE RUNNING: ADDRESSING THE ASSUMPTIONS 

3.1 The notion of an anaerobic capacity 

3.1.1 Terminology 

Models of the energetics of middle-distance running have incorporated a parameter 

representing a fixed store of available anaerobically derived energy (i. e. SANmAX ). This 

is a maximum store since a single value, which is independent of event duration, has 

been ascribed to the parameters in the models. Different terms, which reflect those used 
in the wider scientific literature (Green, 1994), have been used in the models to describe 

this store. Likewise, different mechanisms, supporting this store, have been suggested 
by the proponents of the models. Despite these differences, the fixed store is consistent 

with the contemporary concept of an 'anaerobic capacity' (Cm): "the maximum amount 

of ATP re-synthesised via anaerobic metabolism (by the whole organism) during a 

specific type of short duration, maximal exercise" (Green, 1994, p 170). 

Knowledge of the mechanisms supporting CAn is important for applying the models: 

such knowledge may -inform training strategies to target and develop, or racing 

strategies that maximise the effectiveness of, specific mechanisms. However, for the 

sole purpose of accurately modelling the energetics of running it is important that the 

maximum anaerobic capacity (CA,, mAx) and the relationship between available capacity 

and event duration is known. The use of the term CA,, MAx 
is only of theoretical interest 

and has limited application to specific middle-distance event durations. Rather, it is the 

available CA,, that is the important parameter for specific events. However, the use of a 

single maximum value simplifies the process of modelling different race durat ions and 

removes the need to have several anaerobic capacities for specific event durations. 

However, it is important that the value ascribed to CmmAx can potentially be elicited 

during running (i. e. it is mode specific) and is not a theoretical capacity, which can only 

be attained during other modes of exercise. 
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3.1.2 Yhe maximum anaerobic capacity 

Hill and Lupton (1922) first introduced the concept of CmmAx through their early work 

(Green, 1994), which developed methods for determining the oxygen debt (02 debt) 
during running. This method assumed that the oxygen. deficit (Krogh and Lindhard, 

1920), which represents the delay in oxidative metabolism at the onset of exercise, 

would equal the amount of oxygen used in the recovery from this exercise (i. e. the 

02 debt). However, since Hill and Lupton's ideas were initially devised, data have been 

presented that show the assumptions supporting the 02 debt method to be incorrect. 

Christensen and H6gberg (1950) first acknowledged that the 02 debt "always ought to be 

greater than the deficit" (p 251) and showed that, during horizontal treadmill running at 

speeds between 10 and 15 kin. h-, the oxygen deficit remained relatively constant at 

approximately half the value of the 02 debt. Henry (1954) was presumably unaware of 

these data when he used 02 debt values to test his model. 

Using a one-legged knee extensor model and direct methods for determining anaerobic 

energy production (Bangsbo, 1998), Bangsbo et al. (1990) showed that the anaerobic 

energy supply for Cm during a high intensity exercise bout was much smaller than 

would be predicted on the basis of the 02 debt method: the 02 equivalent of CA,, 

represented only - 30% of that determined using the 02 debt method. This confirmed 

that the 02 debt method overestimates anaerobic metabolism during exercise (Green and 

Dawson, 1993) and demonstrated that the elevated oxygen uptake that is observed 

during recovery from severe exercise cannot be considered to represent the repayment 

of an 02 deficit that was incurred during the exercise. 

Contemporary physiologists have attempted to quantify the CA,, 
MAx 

by determining the 

'maximum accumulated oxygen deficit' (MAOD) (Medbo et al., 1988). This is the most 

promising method for determining the CAnmAx during whole body exercise despite 

having theoretical limitations (Green and Dawson, 1993). For treadmill running, this 

method typically involves a participant completing several bouts at various sub- ý102niax 

speeds and exhaustive bouts at supra-V02rriax speeds. A regression equation relating 

ý702 to speed is derived from the sub- V02n,,, 
x bouts and this equation is used to 
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calculate theoretical 'ý702 values, which are equivalent to the rates of oxygen 

requirement, for the supra-ý702,,, a. bouts (Medbo et al., 1988). The MAOD is then 
derived by calculating the total oxygen requirement and subtracting the actual amount 
of oxygen used for the duration of the bout. 

There are three main conceptual problems with the MAOD method. Firstly, the oxygen 

requirement of the supra- ý702max speed bouts must be extrapolated from a linear V02 - 

running speed relationship determined from the sub- V02max speed bouts: it is assumed 

that Ahe relationship remains linear for supra- VOIax speeds. For both cycling 
(Bearden and Moffatt, 2001; Green and Dawson, 1995; ) and running (Bangsbo et al., 
1993) this relationship has been shown to be non-linear above the anaerobic threshold. 
Thus, the oxygen requirement may be underestimated when extrapolated from the linear 

relationship determined at sub- V02rnax speeds. Consequently, the true oxygen deficit 

may be underestimated and, the extent of this underestimation may be a function of the 

chosen intensity for the supra- V02ffmx speed running bouts (Bangsbo, 1998). Secondly, 

since the non-linearity in the V02 -running speed relationship is caused by an additional 
V02, which is delayed in onset (Whipp and Wassermann, 1972), the V02-running 

speed relationship is dependent on when V02 is determined (Bangsbo, 1998) and the 

test protocol that is used (Green and Dawson, 1996). Thirdly, the MAOD method 

assumes that the total energy demand remains constant throughout the supra- V02ff.,, 

speed bout. However, it has been shown that this energy demand may vary during 

constant load exercise (Bangsbo, 1996). 

Despite these conceptual problems, it is noteworthy that when the one-legged knee 

extensor exercise model has been studied, good agreement has been found between the 

AOD and the oxygen equivalent of the anaerobic ATP production as determined from 

changes in [ATP], [CP], [IMP], and [lactate]. With no alternative for quantifying the 
CAnmAx during running (Bangsbo, 1996), the MAOD method is widely accepted and is 

potentially useful for assessing the validity of the assumptions underpinning the 

parameter representing anaerobic metabolism in the models of middle-distance running 

performance, and the values ascribed to these parameters. 
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The contemporary models have ascribed similar values to CAnmAX, expressed as oxygen 

equivalents: 68 ml. kg-1 (Di Prampero et al., 1993), 79 ml. kg-1 (P6ronnet and Thibault, 

1989), and 75 ml. kg-1 (Ward-Smith, 1999). These agree with published MAOD values, 

albeit they most likely represent the upper range. Despite the limitations of MAOD 

(Green, 1995), the study of Olesen et al. (1994) reports a median MAOD of 59.9 ml. kg-1 

for 400 to 1500 m runners and Svedenhag et al. (1991) report a mean MAOD of 65 

ml. kg-1 for Swedish national team middle-distance runners. 

3.1.3 The available anaerobic capacity 

While the models of the energetics of middle-distance running contain a set of 

parameters representing CmmAx they vary in their assumptions about the availability of 

this parameter during the different events. It is assumed in all of the models that 

CA,, 
mAx cannot be completely exhausted during the 400 m event. However, some (Di 

Pramp'ero et al., 1993; Henry, 1954; Hill and Lupton, 1923; Lloyd, 1967; Sargent, 1926) 

assume that CA,, mAx will be exhausted for the 800-3000 m events. Others (Ward-Smith, 

1985,1999) assume that it will be exhausted in the 1500 and 3000 m events or in the 

1500 m event alone (P6ronnet and Thibault, 1989; Wood, 1999a). 

It has been argued that CA, is independent of exercise duration during short exhaustive 
bouts longer than 30 s (Hermansen, 1969). If so, the Cm would be completely 

exhausted during the 400 m event. It is unfortunate that studies that have determined 

AOD during middle-distance running events (Spencer et al., 1996; Spencer and Gastin, 

2001) have used different specialist athletes to study the energetics of 400 and 800 m 

running: a comparison of AOD between the two events is not possible. However, 

Medbo et al. (1988) studied exhaustive treadmill running lasting from 15 s to 9 min and 
found that AOD increased with exercise duration for bouts lasting less than 2 min. The 

AOD was constant for all bouts lasting longer than 2 min and they interpreted this to 

mean that a maximum value had been attained for these bouts. These findings were 

confirmed in a further study by Medbo and Tabata (1989) and provide support for the 

assumption, regarding the 400 rn event, in the models. 

For the events that are longer in duration than the 400 rn the situation is more 
complicated. The finding that MAOD can only be completely utilised for exercise 
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durations greater than 2 min (Medbo et al., 1988; Medbo and Tabata, 1989) could be 

interpreted as lending support to the assumption that CA,, mAX will not be exhausted in 

the 800 m event. However, AOD was determined during separate I min and 2 min runs 
and, while there was no increase in AOD after 2 min (i. e. for the 4 and 7 min runs), it is 

not clear how AOD would have changed for exercise durations between I and 2 min. 
Based on the relationship between the percentage of MAOD attained and duration 
(Medbo et al., 1988), MAOD would have been - 90% utilised after 90s of running. 
Therefore, it is likely that MAOD will be virtually, though not necessarily completely, 
utilised in the 800 in event. This is supported by the findings of Spencer et al. (1996), 

which showed that the mean AOD attained by a group of middle-distance trained 

runners was greater in the 1500 in (47.4 ±'6.9 ml. kg-1) than in the 800 in event (44-9: 1: 
6.6 ml. kg-1). If it is assumed that the 1500 in AOD value iý maximal (i. e. MAOD), - 
95% of MAOD was attained in the 800 m event. 

The assumption that the CAnmAx parameter will be completely exhausted in the 1500 in 

event is supported by the work of Medbo's group (Medbo et al., 1988; Medbo and 
Tabata, 1989). Unfortunately, Spencer et al. (1996) did not determine AOD for event 
durations greater than the 1500 in so it is not clear whether the reported AOD value for 

this event is a maximum. For the 3000 in event P6ronnet and Thibault (1989) and 
Wood (1999a) assume that CmmAx will not be exhausted. P6ronnet and Thibault (1989) 

based this assumption on the work of Gollnick and Hermansen (1973), suggesting that 
CAnmAx would not be exhausted for event durations greater than 420 s. Medbo et al 

(1988) determined AOD for a7 min run and, while this was equivalent to the 2 min 
AOD value, these data are difficult to compare due to an increasing error in the 
determination of AOD: the error increased from 4 to 10% for the 2 and 7 min runs, 

respectively. Finally, while Karlsson (1971) has shown that the oxygen deficit is the 

same for exercise durations between 2 and 15 min, there are limited data available that 

examine the relationship between AOD and exercise duration either generally or 
specifically for durations <2 min (i. e. the 400 and 800 in events). 

Whether CAn will be completely exhausted during the 3000 in event will have little 

impact on the predictive capability of the models since its contribution to the total 

energy supply would be relatively small. Furthermore, those who assume that Cm is 
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not exhausted in the 3000 m event assume that it is very nearly exhausted. While this 

has been the view of some authors (Di Prampero et al., 1993), it is important that this 

assumption is not disregarded so that the models parameters have physiological 

meaning and validity. 

3.2 The concept of a maximum oxygen uptake 

3.2.1 Background 

The work of Hill's group, while being the foundation to the first model of middle- 

distance running performance, has principally been associated with the concept of 

V02,.,,. The concept of V02rnax is central to models of middle-distance running 

performance as they assume that any factor that influences the rate at which an 

individual can take up and use 02 will influence running performance. In recent years, 

Noakes (1988,1997,1998,2000) has criticised this concept of V02nax, and 

particularly Hill's group's work, arguing that they failed to demonstrate the existence of 

V02max 
- 

When Noakes delivered the J. B. Wolfe Memorial Lecture at the American 

College of Sports Medicine 1996 conference, he questioned some of the fundamental 

theories on which modem exercise physiology is based. He directed his questioning 

mainly at Hill's group's notion of a maximal ý702, developing what he had argued 

previously (Noakes, 1988). He challenged other physiologists to respond and Bassett 

and Howley (1997,2000) accepted this challenge. They take an opposing stance, 

arguing that Hill's group did in fact demonstrate that a maximal V02 could be attained. 

Noakes (1988,1997,1998) has developed the argument that factors unrelated to 0. 

supply might be important in determining the peak work rate that can be reached during 

progressive exercise. He challenges the theory that factors related to 0. supply limit 

the ýF02,,.,, an individual can attain, arguing that whilst Hill's group proposed that the 

ýFO, -running speed relationship would plateau at high speeds, they did not demonstrate 

that such a plateau exists. His argument is twofold: on the one hand he raises 

methodological issues associated with determining a plateau in Ný02; on the other, he 
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challenges the theoretical basis for the physiological factors that are assumed to 

determine the incidence of this plateau. 

3.2.2 Methodological problems with determining a plateau in V02 

Noakes (1998) raises several methodological problems with Hill's group's work. First, 

Noakes criticises the way in which Hill et al. (1924b) scaled their data to allow a 

comparison between subjects of different body masses. While they provided no details 

of this scaling, it appeared to simply involve calculating the V02 per kg of body mass 

(ml. kg". min-1) and multiplying this by 73 to obtain a value (in Lmin-) representative 

of the ýr02 that would be obtained by a 73 kg person. They concluded that "at high 

speeds ... the oxygen intake attains its maximum value, which in athletic individuals of 

about 73 kg ... is strikingly constant (in the case of running) at about 4 litres per 

minute" (Hill et al., 1924b, pp 156-157). Noakes (1998) criticised this, claiming that 

they failed to "explain ... whether that transformation influenced their conclusions" (P. 

1383). However, the procedure is equivalent to expressing all V02 data in ml. kg". min- 

and it is hard to conceive that, in doing so, they would have "influenced their 

conclusions" in any way. 

Secondly, Noakes (1998) interprets Hill's group's scaling procedure to aV02,,.,, of 4 

I. min-1 to mean that they believed, not"that V02 would plateau at a value characteristic 

of the individual but rather, that it would not exceed -4I. min' in any individual. 

However, Hill and Lupton (1922) had noted that whilst Hill (73 kg) who reached a 

maximum 'ýO, of 4.175 I. min-' during running was 'fairly fit he was not, and never 

had been, a 'first-class runner'. They suggested (p. xxxii) that a champion middle- 
distance runner would attain "considerably higher values (e. g. 5000 cc or more)". 

Thirdly, Noakes (1998) suggests that Hill's group's data did not demonstrate the plateau 

phenomenon. He re-presented a graph of data (Hill et al., 1924b) determined from Hill 

himself, and for which Hill's group had made a concerted effort to demonstrate a VO 2- 

plateau, and suggested these data were best described by a linear function. Bassett and 
Howley (1997) criticised Noakes re-interpretation of these data, claiming it was "biased 

towards the view that a plateau does not exist" (p. 592) and concluded that Hill et al. 
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(I 924b) "clearly demonstrated the ý102 plateau" (p. 592). They focused on individual 

data from the Hill et al. (1924b) study, noting that "A. V. Hill did demonstrate a plateau 
in himself and also in subject P (p. 592): a plateau was evident in two of the five 

subjects on whom V02 data were presented for more than one speed. 

Finally, Noakes (1998) has suggested that the variability in Hill et al. 's (1924b) data 

was considerable (data on Hill were collected over several days) and even if a V02- 

plateau was present in the data on Hill it would be difficult to identify. Consequently, 

despite their efforts to demonstrate a ý702 -plateau, the data they collected showed such 
high variability that a genuine plateau was dubious. If the Hill et al. (1924b) data were 
limited to those on Hill himself, Noakes would be correct in claiming that the data to 

show a plateau in the V02 -running speed relationship were lacking. However, data 

were also presented on the relationship between V02 and running speed for four other 

subjects (S, W, CNHL, and J). Of these, a plateau in the ý702 -running speed 

relationship was evident in only one subject. This subject (J) appears to have been able 

to run at a much higher speed than the others (> 15 kin. h'). 

It is clear that Hill's group failed to demonstrate that a plateau in the V02 -running 

speed relationship typically occurred in their subjects: only one of five subjects 
demonstrated a plateau, and in this subject the plateau was defined by only two data 

points. What is not clear, however, is why the work of Hill's group has had such a 

profound influence on so many exercise physiologists despite the fact that Hill's group 

presented no convincing data to support their theory. It can only be assumed that 

physiologists have been swayed by the authoritative nature of Hill's group's writing to 

the extent that they have felt it unnecessary to scrutinise the group's data. 

Noakes (1998) criticisms are not restricted to Hill's group's methods and have also been 

directed at more recent studies that have attempted to establish whether a V02 -plateau 

exists. Indeed, he cites a study by Myers et al. (1990), who showed that there is 

considerable variability in the V02 response to progressively increasing (ramp) work 

rate, to suggest that the plateau phenomenon may occur randomly during this type of 

exercise. Given this, and the fact that V02max is central to the parameters representing 

aerobic energy supply in the models of middle-distance running performance, some of 
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the issues raised by Noakes are discussed in chapter 4 (section 4.2.3) and addressed in 

chapter 6. 

3.2.3 Theoreticalproblems with the concept ofa 

Hill and Lupton (1923) presented a theoretical argument to suggest that there should be 

a limit to the ýr02 an individual can attain: "It is open to question whether the oxygen 
intake is limited by the heart or by the lungs. It is possible that, at the higher speeds of 
blood-flow, the blood is only imperfectly oxygenated in its rapid passage through the 
lungs; on the other hand, the limit may be placed simply by the sheer capacity of the 
heart" (p. 155). They did not determine arterial oxyhaemoglobin saturation or cardiac 

output (0c) in any of their studies, * but they did perform some calculations which 

indicated that a Oc of between 28 and 38L. min-' would be required to support a ý102 

of 4.175 L. min-' (the highest value they observed in the course of their studies). On 

the basis that this Oc was much higher than anything that had been reported previously, 

they concluded that it is "impossible to be a good runner without possessing a powerful 
heart" (p. 154). 

Implicit in Hill and Lupton's argument was the idea that the ýrO2 that can be attained 

during running is limited not by the rate at which the muscles can use 02 but by the 

rate at which the cardiovascular/respiratory system can supply it. Indirect support for 

this idea came from some classic studies, conducted in the 1960s, which showed a) that 
Oc varied linearly with V02 for both maximal and sub-maximal values of V02 

(Astrand et al., 1964; Saltin et al., 1968) b) that among endurance athletes peak Oc 

varies with the highest V02 attained and c) that these values for V02 and Oc are 

much higher than those attained by sedentary individuals (Ekblom, 1969; Ekblom and 
Hermansen, 1968). 

The above data were obtained during "whole body" exercise (running or cycling) and 

were interpreted as evidence that the V02 that can be attained during such exercise was 

limited because Oc was limited. The notion that the lungs might limit the V02 that 

can be attained received little attention despite the fact that marked arterial desaturation 
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was reported to occur during 'maximal' exercise in some endurance athletes (Rowell et 

al., 1964). This was because other data were available which indicated that arterial 02 

saturation decreased little from rest to 'maximal' exercise in both sedentary (Astrand et 

al., 1964; Mitchell et al., 1958; Saltin et al., 1968; Stringer et al., 1997) and highly 

trained (Ekblorn and Hermansen, 1968) individuals. Subsequently, various studies were 

conducted in an attempt to demonstrate that the capacity of the skeletal muscle 

vasculature to dilate and receive blood flow is such that when at least two legs are 
involved in the exercise the heart is unable to supply the entire working muscle mass 
with a sufficient blood flow. 

This argument, which has been presented in a series of publications by Saltin and 

associates (Saltin, 1986,1988,1990a, bý Saltin and Strange, 1992), suggests that for 

exercise involving a large muscle mass V02 reaches a maximum because Oc reaches a 

maximum and the a-v 02 difference does not increase sufficiently to compensate. 

Evidence to support this argument comes from studies of one-legged vs. two-legged 

cycling (Davies and Sargeant, 1974; Gleser, 1973; Klausen et al., 1982; Saltin ct al., 
1976; Stamford et al., 1978), from studies of one-legged dynamic knee extensor 

exercise (Andersen and Saltin, 1985; Richardson et al., 1993,1995; Rowell et al., 
1986), and from studies which have demonstrated that there is competition for blood 

flow between different muscle groups during whole body exercise (Harms et al., 1997; 

Secher et al., 1977). 

This argument suggests that, when a progressive exercise test is performed, Oc and 

V02 initially increase with work rate in an essentially linear fashion. However, if the 

exercise involves a large fraction of the individual's total muscle mass, there should be 

a time when Oc becomes limited and the Oc -work rate relationship plateaus. From 

this time onwards, the blood flow that the working muscles demand will exceed that 

which the heart is able to supply, and hence vasoconstriction will have to occur in the 

active muscles so that blood pressure does not drop (Rowell, 1986). In theory, the 

extent of this vasoconstriction should increase in proportion to the active muscle mass. 
In practice, plasma noradrenaline levels during 'maximal' exercise increase as the active 

muscle mass increases, being highest in combined arm and leg exercise (Savard et al., 
1989). 
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If Qc plateaus and vasoconstriction occurs in the active muscles, assuming that other 

vascular beds are already maximally constricted (Rowell, 1986), leg blood flow should 

also plateau. This is consistent with the work of Knight et al. (1992) and the view that 

W2max is set by peripheral diffusion limitation, secondary to a limited 0. delivery 

rate (Hogan et al., 1989; Roca et al., 1989; Wagner, 1992,1995,1996). Given that leg 

blood flow plateaus, 'whether the ý102 -work rate relationship plateaus in a progressive 

test will presumably depend on whether exercise is continued up to, and for a sufficient 

period beyond, the point at which such a diffusion limitation is reached. Whether the 

exercise can be continued beyond this point will depend on whether energy can be 

derived from anaerobic metabolism at a rate sufficient to support the increase in work 

rate. Hence, both02 delivery and anaerobic energy production must be involved in 

determining the peak work rate that can be reached on a progressive test. 

Noakes (1988) has referred to this framework of interpreting data as the 
'cardiovascular/anaerobic model' and has challenged its validity. He has repeatedly 

stressed (1988,1997,1998) that when a plateau in the ý'02 -work rate relationship is 

not observed in a progressive test it is impossible to be certain that the highest V02 

attained was limited by factors related to 02 delivery to, or use by, skeletal muscle. In 

his 1988 paper he proposed an alternative model to interpret such data, suggesting that 

the peak work rate that can be attained in such a test might instead be limited by factors 

related to muscle contractility. The implication here was that any intervention that 

increased muscle contractility would also increase the peak work rate that could be 

attained, and thus the peak ý702 that could be reached, in a progressive exercise test. 

In 1997 Noakes presented a different model. He suggested "skeletal muscle contractile 

function is regulated during exercise in both health and disease by a hierarchy of central 

and peripheral mechanisms, the goal of which is likely to prevent organ damage, 

including death" (Noakes, 1997, p. 581). To support his argument, he cited studies 

which show that when the ability to produce ATP is markedly reduced, either as a result 

of muscle ischemia (Spriet et al., 1987) or as a result of a disease of skeletal muscle 

metabolism such as phosphorylase deficiency (Lewis and Haller, 1986), skeletal muscle 

contractile function (and its rate of ATP use) is also reduced so that the decrease in 

[ATP] that occurs during exercise is not abnormally large. He went on to stress that 
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progressive exercise at high altitude is terminated at a time when both [La7]B (Green et 

al., 1989) and the integrated electromyographic activity of the active muscles (Kayser et 

al., 1994) are low relative to similar exercise performed at sea level, and that 

progressive exercise in heart failure patients, both before and after transplant, is 

terminated at a time when work rate, V02, and [La71B levels are greatly reduced relative 

to those at which such exercise is terminated in normal subjects. Finally, he proposed 
that in healthy subjects (at sea level) skeletal muscle recruitment might be limited (i. e. 
the test might be terminated) once the maximal cardiac output has been reached in a 

progressive exercise test so that vasodilation does not occur to the point where a drop in 

blood pressure occurs. 

Noakes' (1997) paper is important as it shows that there are situations in which factors 

other than those related to a limited 02 supply, and the associated demand for 

anaerobic metabolism, might limit progressive exercise to exhaustion. Nevertheless, the 

explanation he gives for what might limit the peak work rate for a progressive test in 

which no plateau is observed is very similar to that which explains the occurrence of a 

ý702 -plateau. In both cases, the maximal Oc is the primary determinant of the highest 

ýr02 that can be attained during a progressive test. The 'cardiovascular/anaerobic' 

model would assume that exercise will continue for as long as anaerobic metabolism 

was able to supply ATP at a sufficient rate, with excessive vasodilation being prevented 

by sympathetically mediated vasoconstriction in the active muscles. Noakes' argument 

suggests that ýr02 would not plateau, and that exercise would be terminated shortly 

after the maximal Oc is reached to prevent a drop in blood pressure. 

In 1998 Noakes questioned the notion that there is a maximal Oc. Starting from the 

premise that a plateau in Oc must be the result of a plateau in the 02 supply to the 

myocardium, he went on to point out that whilst myocardial 02 supply will only 

plateau if coronary blood flow plateaus, there is no logical reason to believe that 

coronary blood flow would plateau before Oc. He proposed that instead skeletal 

muscle function might be regulated to prevent myocardial ischemia in such a way that 

neither ý102 nor Oc would plateau in a progressive test. 
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There are three problems with this most recent of Noakes' theories. The first is that it is 

not consistent with those studies (Mitchell et al., 1958; Stringer et al., 1997) that have 

shown that Oc does in fact plateau in the later stdges of a progressive test. The second 

is that he is unaware of the study by Stenberg et al. (1966), which showed that during 

maximal exercise at an altitude of 4000 m blood pressure, stroke volume and cardiac 

output were similar to at sea level despite a reduction in 02 saturation to 70%. Bergh 

et al. (2000) has argued that this is incompatible with the theory that the performance of 

the heart muscle is regulated to avoid ischemia. The third problem is that it fails to take 

account of the fact that Oc might plateau even if myocardial 02 supply is completely 

adequate. Concerning the second problem, the obvious point is that, since "the heart ... 

cannot pump out what it does not receive" (Rowell, 1986, p. 137), Oc will plateau if 

venous return plateaus. It has been shown that whilst the left ventricular ejection 

fraction typically increases from rest to moderate intensity exercise, little or no increase 

is observed when exercise intensity increases beyond that at which the lactate threshold 

occurs (Boucher et al., 1985; Clausell et al., 1993; Foster ct al., 1995; Goodman et al., 

1991). Furthermore, the ejection fraction typically reaches 70 to 80% (Di Bello et al., 

1996; Clausell et al., 1993; Foster et al., 1995; Goodman et al., 1991) in young normal 

subjects during exercise at intensities close to that at which the highest V02 is attained. 

It is unlikely, therefore, that the tendency for Oc to plateau in response to a plateau in 

the rate of venous return would be offset by an increase in the ejection fraction. 

Noakes has made a significant contribution to the debate on the concept of V02,,.,, 
- 

However, the available evidence suggests that ý702 does plateau over the closing stages 

of progressive exercise. The challenge for the exercise physiologist is identifying this 

plateau, particularly given the methodological issues surrounding the definition of 

V02rnax (see section 4.2.3). 
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3.3 The time constant for the rate of increase in ý'02 at the onset of exercise 

3.3.1 Severe exercise intensity domain 

The rate of increase in ý702 (V02 kinetics) at the onset of exercise is dependent on the 

intensity of the exercise (Whipp et al., 1980). Typically, three domains are used to 

define exercise intensity: moderate, heavy, and severe. The severe intensity domain is 

of the greatest relevance to middle-distance running events since these events are 

typically performed in this domain. The severe domain is distinguished as being above 

the maximal lactate steady state (Gaesser and Poole, 1996). Poole et al. (1988) have 

shown that the highest work rate at which a steady state in V02 can be attained 

coincides with the maximal lactate steady state and this work rate, termed the fatigue 

threshold (Gaesser and Poole, 1996) or critical power, has also been used to represent 

the lower limit of the severe intensity domain. The upper limit to this domain has not 

been firmly established. Hill and Ferguson (1999) define the upper limit of the severe 

intensity domain as the lowest intensity at which exhaustion occurs before V02rmx is 

attained. This is consistent with the view that exercise in the severe intensity domain 

will always result in the attainment of V02max if the duration is sufficient (Whipp, 

1994). 

The ý102 kinetics during severe intensity exercise can be described by three distinct 

phases. Phase 1 represents a transit delay of venous blood from the exercising muscle 

returning to the lung (Whipp, 1994). However, the exact mechanisms supporting this 

phase are unclear: ý702 has been shown to increase during this phase through an 

increase in cardiac output (Wasserman ct al., 1974), but mechanisms other than cardiac 

output also influence ý702 kinetics during this phase (Casaburi et al., 1989). The phase 

2 ý702 kinetics represent muscle oxygen uptake and further increases in pulmonary 

blood flow (Whipp, 1994). During moderate intensity exercise phase 2 kinetics project 

to a steady state in ý702 but during heavy and severe intensity exercise this is distorted: 

instead of V02 reaching a steady state, a third phase that is delayed in onset 

materialises. The phase 3 V02 kinetics has been termed the 'slow component of V02' 

(Whipp and Wasserman, 1972) due to its delayed onset. This slow component starts 

approximately 80-100 s after the onset of exercise (Poole et al., 1994) and represents an 
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excess ýr02 that exceeds that predicted from a linear V02-work rate relationship 

calculated from sub- 
V02max 

work rates. 

3.3.2 Modelling V02 kinetics during severe exercise 

The notion that V02max will be attained in the severe exercise intensity domain is 

consistent with the models that collectively assume, with the exception of Wood 

(1999a), that the highest 1ý0, attained will be ý702rnax in all middle-distance events. 

However, the important consideration for the models is that the assumptions supporting 

the parameter representing the time constant f6r ý102 kinetics is accurate. This is 

particularly important since this parameter determines whether V02max is attained 
during all middle-distance event durations. Furthermore, there are relatively few studies 
investigatingV02 kinetics during severe intensity exercise and, of these, some have 

been published since the models of the energetics of middle-distance running were 
developed. 

0 Modelling ý702 kinetics in this domain is problematic since the exercise duration may 

not be sufficient for the slow component to develop (Whipp, 1994) and the kinetics 

have typically been modelled as a mono-exponential function (Billat et al., 2000). 

Whether a slow component is manifest depends on the duration of the exercise. For 

severe intensity exercise lasting up to 2 to 3 minutes a mono-exponential model is 

appropriate but for longer durations a bi-exponential model is needed to properly 

characterise theV02 response. This makes it difficult to model V02 kinetics over the 

range of middle-distance'events with a single approach and makes it difficult to 

compare the speed ofV02 kinetics across this range of events. However, the effect of 

a ýF02 slow component is to slow the overall response. Models of middle-distance 

running performance assume a mono-exponential V02 response. Such a response can 
be used to determine the total oxygen uptake but to account for the presence of a slow 

component in the longer event durations it is necessary to allow the effective time 

constant of this mono-exponential response to increase with increasing event duration. 

There is also uncertainty as to whether the V02 response should be referenced to 
ý702rnax or the V02 required. This is a further factor that makes it difficult to 
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determine the real effect of event duration on the speed of the 1ý02 response. 

Nonetheless, ý702 kinetics appear to be intensity dependant within the severe domain. 

Hughson et al. (2000), using a model that used the 
V02 

required as the asymptote, 

showed that exercising at 125%VO2rnax produced a faster T (40 s) than exercising at 
96%VO2rmx (50 s)- Williams (1997), using a model that used V02,,.,, as the 

asymptote, showed that a faster -r (32 s) occurred during exercise at I 10% ý702,,,, than 

during exercise at 95% V02ý,.,, (7- 
equalled 39 s). Finally, during middle-distance 

running events, Spencer et al. (1996) have shown that the percentage of 
V02rMx 

attained after 30 s of running was 69 and 59% for the 800 and 1500 m, respectively. 

3.4 The idea that ý10 
2max is attained during event durations < 420 s 

With the exception of Lloyd (1966,1967) and Wood (1999a), the models of the 

energetics of middle-distance running performance assume that ý702,,.,, willbeattained 
in the range of middle-distance events. This assumption is supported by studies 
investigating ý702 kinetics during severe intensity exercise (see section 3.3) and studies 

that claim V02max is attained during short exhaustive exercise (Astrand and Saltin, 

1961; Hill and Ferguson, 1999; Williams, 1997). 

Astrand and Saltin (1961) studied cycle ergometer exercise and showed that the highest 
ýr02 attained was lower for an exhaustive bout of cycling that lasted -2 min than for 

one that lasted -6 min. They mentioned this effect, but having claimed that the V02 

attained was only 2% higher for the longer bout, they dismissed it. A closer inspection 

of the individual data reveals, however, that in four of the five participants the 
difference between the highest and lowest values for the ýr02 attained was 5%. The 

lowest V02 was typically observed in the shortest bout (- 2 min) and the highest was 

typically observed in the longest bout (- 5-7 min). 

Williams (1997) studied theý102 response during short exhaustive running bouts 

lasting 120-300 s. The highest mean ý102 attained during the - 120 s run (3020 

ml. min") was 5% lower than that attained during the - 300 s run (3180 ml. min7l) and 
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the incremental test (3182 ml. min7l). Hill and Ferguson (1999) also studied the V02 

attained during short exhaustive running bouts. The highest V02 attained was 5% 

lower for a run which lasted -2 min than one which lasted -5 min, despite the authors 

claiming that V02 reached V02max. This finding is consistent with that of Williams 

(1997) and suggests that V02rnax was not attained during the shorter run. It is 

interesting to note that in both these studies, the aerobic fitness of the runners was low 

(mean V02max < 55 ml. kg-l. min-1). 

Spencer et al. (1996) investigated the ý702 attained during constant speed 400,800 and 

1500 m race pace running, using specialist sprinters for the 400 m and middle-distance 

runners for both the 800 and the 1500 m. This study showed that V02 reached a 

plateau at - 90 and - 94% V02max in the 800 and 1500 in runs, respectively. These 

findings provide support for the notion that the highest V02 attained during middle- 

distance running may be below ý702na. during the shorter middle-distance events. In 

the same study, the V02 response to a 400 in ran was determined for the group of 

sprinters. The V02 response to this run reached a plateau at - 98% of V02max after 35 

s. The aerobic fitness of these sprinters was much lower than the middle distance 

runners [ V02rriax (mean ± SEM): 53 ±3 vs. 65 ±2 ml. kg-l. min-1]. 

Spencer and Gastin (2001) extended the Spencer et al. (1996) study to include an extra 

running event (200 m) and a specialist sample of athletes for each of the events. 

Furthermore, each race pace run was customised to reflect the athlete's race pace 

strategies: they were free-range non-constant pace runs. The findings were similar to 

the Spencer 6t al. (1996) study for the 800 and 1500 m events: the V02 attained 

reached a plateau at - 88 and - 94% V02max for the 800 and 1500 m runs, respectively. 

The V02 response to the 400 in run was, however, different: the V02 attained reached 

a plateau at - 89% of V02rmx. The aerobic capability of these sprinters was higher 

than those previously studied in the 1996 paper (59 ±3 vs. 53 ±3 ml. kg-l. min-1). 

It is noteworthy that Spencer et al. (1996) and Spencer and Gastin (2001) showed that in 

aerobically fit runners ý702 plateaus 'below V02rnax 
- 

In contrast, studies that have 

investigated a similar exercise duration have shown that ý702max may be attained. 
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Similarly, in the Spencer et al. (1996) and Spencer and Gastin (2001) studies, the sprint 

specialists, with lower aerobic fitness than the 800 and 1500 in specialists, were able to 

attain a higher % ý702niax than the other specialists in their specialist event. The highest 

ý'02 attained during middle-distance running may, therefore, be related to V02max 
- 

3.5 The ecological validity of constant speed running 

Several studies have investigated the effect of various strategies, including pacing 
(Foster et al., 1993a), free-range exercise (Foster et al., 1997), and simulated 

competition (Foster et al., 1993b), on cycling performance. Similar studies have also 
been conducted for running. The most relevant of these to modelling the energetics of 

performance are the simulated competition experimental designs since performance in 

competitions is what the models of the energetics of middle-distance running ultimately 

attempt to predict. 

Most of the values ascribed to parameters in the models of middle-distance running 

performance are based on data determined from constant speed running. This has 

presumably been done because limited data are available on the pacing strategies used 
in middle-distance running events and on the physiological responses to such strategies. 

Nonetheless, some authors have investigated the V02 response to different pacing 

strategies used in short duration (- 4 min) exhaustive running. 

Uger and Ferguson (1974) studied two different pacing strategies (fast-medium-very 

slow and slow-medium-slow) during an exhaustive - 200 s run. These strategies were 

chosen because they were considered to reflect those used in competitions at the time of 

the study. After - 140 s the V02 attained was 4% less for the fast (4.16 Lmin) than 

for the slow start strategy (4.33 I. min-1). At the end of the runs (- 212 s) this difference 

in the V02 attained had reduced to just 2% and there was little difference in the total 

amount of 02 used during both pacing strategies (13.28 vs. 13.32 L). Since a control 

(constant pace) condition was not included in the experimental design it is not possible 

to assess the implications of these findings for the assumptions supporting the energetic 

models. However, one important finding that arises from this study is that the highest 
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percentage of ý702,,, 
a,, attained was 90%, lending further support to the notion that in 

aerobically fit middle-distance runners ý702rmx cannot be attained during severe 

intensity exercise. 

Ariyoshi et al. (1979a) investigated three different pacing strategies (fast-slow, slow- 
fast, and constant) during an exhaustive run. The time to exhaustion was significantly 
longer for the fast start strategy than for the others: the fast start strategy yielded a time 

to exhaustion that was 17% longer than for the constant pace run (99 s vs. 82 s). The 

amount of 02 used during the runs was similar for both the fast start (12.5 L) and 

constant pace (12.4 L) strategies. This implies that the differences in time to exhaustion 

may have been caused by the effect of the pacing strategies on the anaerobic energy 

contribution to the fast start run. The oxygen debt following the runs was 15% lower 

for the fast start compared to the constant pace strategy (4.4 vs. 5.2 L). Unfortunately, 

due to the limitations with this method (see section 3.1) it is difficult to draw any 
inferences about the potential interaction between aerobic and anaerobic energy 

contributions from these data. 

Ariyoshi et al. (1979b) replicated their previous study but this time they focused on the 

V02 response. Although the total02 used during the exhaustive runs was similar for 

the three pacing strategies, the rate of increase inV02was faster for the fast start than 

the other two strategies. Blood lactate levels reached a peak after 2-4 min and this peak 

was significantly lower for the fast start than the other pacing strategies. Finally, the 

ý102 attained, which clearly'reache4 a plateau, was only - 90% of V01"a". This 

provides further support for the argument that only a percentage ofV02rnax may be 

attained by aerobically fit middle-distance runners. 

3.6 The use of assumed values for the models parameters 

The energetic models have typically ascribed a single set of values, representative of a 

typical runner, to their parameters. While these values are in accordance with published 
data, the models assume that the values are independent of race duration. That is, it is 

assumed that middle-distance runners all share the same physiological characteristics, 
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regardless of which event they specialise in. While most studies have focused on the 
differences in physiological characteristics between middle- and long-distance runners 
(e. g. Svedenhag and Sj6din, 1994), some data are available on the differences among 
different middle-distance specialists. 

Svedenhag and Sj6din (1984) have shown that V02.,, differs among athletes who 

specialise in specific middle-distance events: 63.7 ml. kg-l. min", 400 in; 68.8 ml. kg- 
'. min", 800 m; 71.9 ml. kg-l. min-1,800 -1500 m; and 75.0 ml. kg"'. min-1,1500-5000 m. 
Furthermore, other physiological characteristics such as the fractional utilisation of 
V02max were also shown to be different between the event specialists. When running 

economy at 20 km. h" was expressed as a percentage of V02,, 
wx this factional 

utilisation of V02,,. 
x decreased with increasing race duration: 94.1%, 800 m; 92.4%, 

800-1500 m; and 87.9%, 1500-5000m. 

3.7 Addressing the assumptions and their implications 

3.7.1 Yhe assumptions 

The early models (Hill and Lupton, 1923; Henry, 1954; Sargent, 1926) collectively 

assumed that the oxygen debt method accurately represented Cm. However, research 
has shown that this assumption is false (see section 3.1) and these early models would 

have overestimated the contribution of anaerobic metabolism to the energetics of 

middle-distance running. Since the early models used the oxygen debt to determine the 

oxygen requirement of running, the models would have also overestimated the true 

oxygen requirement, particularly for high speeds. This explains why these early models 

were still able to predict race times with a reasonable degree of accuracy despite 

overestimating the CAnMAx and the total energetic requirement. The more recent models 

(i. e. post Henry, 1954) have encapsulated the assumption, supported by contemporary 

physiologists, of a CmmAx and the values used in these models agree with those 

published in the literature. Current research on the relationship between the fraction of 

CmmAx that is available and exercise duration (see section 3.1) suggests that the 

assumption that CAnMAX will be exhausted in the 800 rn event is false. Consequently, 
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CA-MAX may be overestimated in the models of Di Prampero et al. (1993) and Lloyd 

(1967). 

Challenges to the concept of V02rnax (see section 3.2) have largely been based on 

speculation and are largely conjectural: there has been no convincing evidence to 

suggest that the assumptions supporting the concept of V02m,,,, are false. With the 

exception of Wood (1999a), all of the models have assumed that V02max will be 

attained during all middle-distance events. However, there is evidence to suggest that 

this assumption, though consistent with the commonly held view that V02m,,., Will 

always be attained during severe intensity exercise provided the duration is sufficient, is 

invalid (see section 3.4). That is, V02max may not be attained during middle-distance 

events, particularly the 800 in, and the percentage of V02rmx attained may be a function 

of event duration: the percentage of V02, 
nax attained may increase with increasing 

event duration. This is not due to fatigue terminating the exercise before VON= is 

attained. Rather, it seems that V02 may plateau below V02rnax 
- 

Consequently, with 

the exception of Wood (1999a), the models may overestimate the contribution of 

aerobic metabolism to the total energetics of middle-distance running. This 

overestimation may be greater for the shorter events (i. e. 400 and 800 in) than for the 

longer ones (i. e. 3000 in). 

The process of modelling V02 kinetics during severe intensity exercise has important 

implications for the mono-exponential functions used in the contemporary models (see 

section 3.3). With the exception of Wood (1999a), the models that have included a 

parameter to account for the VO 2 kinetics at the onset of running have assumed a mono- 

exponential function referenced to V02max as the asymptote. Also with the exception 

of Wood's (1999a) model, a single -r, which is independent of exercise intensity, has 

been ascribed to this parameter. These values for 7- have typically been either fast or 

slow: Di Prampero et al. (1993) assume 10 s whereas P6ronnet and Thibault (1989) and 
Ward-Smith (1999) assume 30 s. It is conceptually important that the correct 

asymptote, whether it be V02=x or the V02 required, or some other value, is 

referenced in the models and that an appropriate 7- for this asymptotic reference point is 

used. There is also evidence to suggest that V02 kinetics are intensity dependent 
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within the severe intensity domain, regardless of the asymptotic value that is used in the 

modelling process, and that using a single 7 in the models is invalid. Since T Will 
become slower with increasing event duration, the models using a single value for -r that 
is representative of the ý702 kinetics for 800 m running for example, will overestimate 

and underestimate the aerobic and anaerobic contribution, respectively, to the energetics 

of 1500 and 3000 m running. Likewise, the models using a slower T representative of 
the V02 kinetics during 3000 m running for example, will underestimate and 

overestimate the aerobic and anaerobic contribution, respectively, to the energetics of 
800 and 1500 m running. 

There are data available (see section 3.5) which suggest that physiological responses 

may differ between simulated competition and constant speed running. This is 

important because most of the values used in the models are based on data determined 

from constant speed running, yet the models are used predict competitive track 

performances. The amount of 02 used during running appears to be independent of the 

pacing strategy used, yet V02 kinetics appear to be quicker for a fast-start than for a 

constant pace strategy 

Finally, each model has assumed a set of values for the physiological parameters, which 
is typical of a middle-distance athlete. Unfortunately, this approach assumes that the 

physiological characteristics of middle-distance runners are similar across the range of 

events. There are data available (see section 3.6) that show this assumption to be false: 

different event specialists have different physiological characteristics. Therefore, at 
best, the models will be valid only for a given event. Even this will only be the case if 

the chosen values are representative of a specialist in this event. 

3.7.2 Yhe implications 

To ensure that the application of the models is meaningful, it is imperative that the 

validity of the models and their associated assumptions is addressed. While the 

problems associated with accurately determining CAn (see section 3.1) restrict the 

potential to test the assumptions associated with this component of the energetics of 

middle-distance running, the assumptions associated with the aerobic component can be 

readily tested. 
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If it could be shown that V02rmx is attained during middle-distance events the 

assumption common to most models of performance (Di Prampero et al., 1993; Henry, 

1954; Hill and Lupton, 1923; Lloyd, 1966,1967; Sargent, 1926; Ward-Smith, 1985, 

1999) would be upheld. Alternatively, data showing that V02,, 
mx is not attained would 

support the assumption in Wood's (1999a) model and would suggest that the aerobic 

contribution to middle-distance running has been overestimated in the past, especially 
for the shorter events. Such data would also have wider implications for the 
demarcation and characterisation of the severe intensity exercise domain. 

Finally, if it could be demonstrated that the highest V02 attained during constant speed 

running does not accurately reflect the highest V02 attained during simulated 

competition, the ecological validity of the data on which most of the values ascribed to 

the parameters in the models are based would be questioned. Alternatively, were the 

highest V02 attained similar for both these strategies, the ecological validity of the data 

would be established. 
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CHAPTER 4 

ERGOMETRIC CONSIDERATIONS FOR THE ASSESSMENT OF GAS 
EXCHANGE INDICES 

4.1 Motorised treadmill running 

4.1.1 Background 

Since the models of the energetics of middle-distance running are typically applied to 

track running, it could be argued that the assessment of ýr02 during middle-distance 

running events should be evaluated in this situation. VAlile portable equipment is 

available and has the potential to determine V02 during track running, the running 

track does not offer a controlled environment for experimental research. It is difficult to 

accurately measure and control running speed on the track and attempting to control 

environmental conditions is troublesome. An alternative approach is to simulate track 

running using an ergometer (motorised treadmill). If this is done successfully the 

assessment of V02 will be applicable to track running. A motorised treadmill 

approach was taken in this thesis; the following sections describe the motorised 

treadmill (MT) and test protocols used for the determination of gas exchange indices. 

4.1.2 Yhe motorised treadmill as an ergometer 

It is typically assumed that running mechanics are similar during over-ground and MT 

running. However, some studies have shown mechanical differences to exist between 

these two modes of running (Dal Monte et al., 1973; Elliot and Blanksby,. 1976; Nelson 

et al., 1972; Sykes, 1975). In particular, Williams (1985) has suggested that mechanical 
differences are observed for running speeds above 18 km. h". Mechanical differences 

between over-ground and MT running are therefore important considerations for 

simulating middle-distance running events on the MT, as these events are typically 

performed at. speeds well above 18 kin. h". 

Van Ingen Schenau (1980) has used a theoretical approach to show that the mechanics 
of MT and over-ground running are essentially the same provided the MT speed is 
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constant. He suggested that particular MT specifications were required to achieve this 

constant speed assumption: the ability to absorb maximal load opposing the mat surface 

and a feedback mechanism with a sufficiently short response time to prevent changes in 

speed. Van Ingen Schenau (1980) also suggested that the construction of the MT must 
be such that the runners' perceptual information during MT running is close to that 

received during over-ground running. If these specifications are satisfied, the only 
mechanical difference between MT and over-ground running will be air resistance (Van 
Ingen Schenau, 1980). 

Nigg et al. (1995) have suggested that the different types of MT used in research may 

explain the observed sources of variation between MT and over-ground running. These 

authors suggested that the larger MT, designed for research and high-performance 

testing, * fulfil the specifications discussed above to a greater extent than smaller MT, 

designed for fitness-related testing. The MT used in this thesis is the former type and 

satisfies these specifications and the assumption of constant speed. This is in contrast to 

latter MT type, which typically consists of a rubber conveyor belt running over a 

wooden bed and around two rollers. This design is more likely to cause deviations in 

MT speed due to friction causing the rubber belt to expand and lose tension between the 

rollers. In addition, the size of the mat surface, and the safety functions, on the MT 

used in this thesis should have ensured that the runners felt safe and that their 

perceptions of running on this MT were equivalent to over-ground running. 

In this thesis all exercise tests were performed on a Woodway Ergo ELG 70 motorised 

treadmill (Woodway, Weil and Rhein, Germany). The running mat surface (2 in x 0.7 

m) consists of 104 transverse rubber slats fitted on a set of continuous toothed belts, 

which engage in deflection rollers, at the front and back of the MT. These deflection 

rollers prevent the mat from slipping and the front roller engages in the drive motor. 
The continuous belts are reinforced with steel wire to hold the slats together and prevent 
the mat from slipping laterally. 

Two rails and 200 ball bearings support the running mat. This reduces friction, which is 

important for preventing the mat from decelerating on foot-strike, and distributes load 

evenly across the running mat. The friction is such that the MT can be used without the 

drive motor by simply pushing the treadmill to get it started. 
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A Syncron-servo-motor drives the MT, receiving load output from the deflection rollers 

and the roller guides to adjust the torque to compensate for any deviations in the speed 

of the mat as a result of foot-striking. This drive motor, therefore, is constantly updated 

with information on the forces and moments that are applied to the running mat to 

maintain a constant speed. The MT has an incline range of 0- 30% and a speed range 

of 0- 40 km. h" with a resolution of 0.1% and 0.01 km. h" when computer-interfaced, 

respectively. Due to the high speeds that can be attained on this MT, a safety harness 

(worn around the waist) was used for all tests. This harness was adjusted to the 

participant's height so that it did not impede running mechanics and, when activated in 

the event of a stumble or fall, it immediately stopped the power supply to the MT. This 

safety mechanism was in addition to a further three emergency stop buttons. 

The MT was interfaced to a computer and was always operated in this way. This 

allowed warm-ups and test protocols to be programmed, thus removing the need for 

manual operation of the MT and ensuring the precision of test protocols. The software 

was capable of storing 100 stages for a given test protocol. This was sufficient for all 

protocols used in this thesis. 

4.1.3 Calibration ofthe motorised treadmill 

Throughout this thesis the MT was only used on the flat (0% gradient). This was 

checked with a spirit level, and if necessary adjusted, before each experimental study. It 

was also important that the actual MT speed agreed with the displayed MT speed and 

that this actual speed was constant. The actual MT speed can be derived from 

measuring the running mat surface and recording the time for a given number of 

revolutions of the mat (Consolazio et al., 1963). Though this may be a practical and 

relatively accurate method, providing a large number of revolutions are timed, it is 

difficult to use this method at high speeds. This difficulty can be overcome by using a 

simple electrical circuit (Ricci, 1979) to time the number of belt revolutions. However, 

this method is also limited because it does not allow the assumption of constant speed to 

be fully assessed: it determines variability in speed between, but not within, complete 
belt revolutions. 
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The approach taken in this thesis was to use an electrical circuit to time four measured 
sections (- 0.45 m) of the MT belt at a range of speeds. Belt speed was then derived 
(distance/time, in m. s-) and converted to km. h" (by multiplying by 3.6). This was done 
for the speeds likely to be encountered during middle-distance running events (21 to 25 
kin. h-1), with and without a runner (body mass of 75 kg) on the MT belt. This approach, 
therefore, gave an independent calculation of belt speed to compare to the displayed 

speed on the MT. - VUle the MT cannot be easily adjusted to calibrate any bias in actual 
(belt) speed versus the displayed speed, the MT was regularly serviced by Woodway 
technical engineers. This involved adjusting the motor to accurately receive the load 
feedback loop from the deflection rollers and roller guides to maintain a constant belt 

speed. Table 4.1 shows the agreement between the displayed MT speed (i. e. the 

nominal speed) and the actual belt speed for the upper range of speeds over which the 
MT was used in this thesis. 

Table 4.1 95% Limits of Agreement (Bland and Altman, 1986) for displayed vs. 
actual MT belt speed 

Limits of Agreement between displayed and actual belt speed (krn. If ')* 

Displayed Speed Without n=er With nmner 
(km. If 1) 

21 0.00 ± 0.05 0.00 ± 0.17 

22 0.01 ± 0.07 0.01 ± 0.17 - 

23 0.00 ± 0.06 0.00 ± 0.18 

24 0.01+0.07 0.01 ± 0.20 

25 0.00 ± 0.07 0.00 ± 0.24 

* Limits of agreement are presented as the mean difference (bias) ± 1.96 x the SD of the differences. 

Table 4.1 shows that the bias was always less than 0.01 km. h-1: the displayed speed is 

accurate. The random variation of the difference between the displayed and the actual 
belt speed was reasonably constant across the range of speeds when no load was applied 
to the MT belt (without a runner). However, when a load was applied to the MT belt 

(with a runner) this random variation increased for speeds greater than 23 lan. h". This 

random variation is acceptable for the purpose of this thesis, given that ± 0.2 km. h" is 
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likely to be the worst-case scenario (i. e. high speeds), that it is unlikely to have an 
impact on the determination of ý'02 

. and that the random variation is difficult to 

interpret given that there are no comparable data for other types of MT. 

4.1.4 Facial Cooling 

The air resistance encountered running outdoors provides facial and body cooling. This 

is important for cooling the body and reducing thermoregulatory stress. Since no air 

resistance is encountered during MT running, convective heat loss will be absent. This 

may cause thermoregulatory stress, which may affect the ecological validity of 

physiological responses determined during MT running. For all exercise tests in this 

thesis, three electronic fans passed ambient air over the runner's body. Two of these 
fans were floor mounted and one was mounted overhead. Although a valid simulation 

of air movement would require an air speed equivalent to the running speed for each 

exercise test, this is not permissible with the above fans. The air speed emitted from 

these fans and encountered on the runner's body ranged from - 11 to - 15 km. h-1 from 

the legs to the head, respectively. 

4.2 Test protocols to assess ýro2max 

4.2.1 Terminology 

Following the work of A. V. Hill and his colleagues (see section 2.2), V02,,., during 

running has traditionally been defined as a plateau in ý702 with increasing running 

speed. However, confusion among physiologists surrounds the definition of ý702max 

and whether Ný02,,. x has been attained during a progressive test. It has been suggested 

that the term 1ý02rnax should only be used for situations in which a V02-plateau is 

observed; in situations where no V02-plateau is observed the term peak ý702 

(V02 peak), the highest V02 observed, should be used (Armstrong and Welsman, 1994; 

Davis, 1995). The term ý702 
peak is used by some authors (Barnett et al., 1996; Barstow 

et al., 1996; Gastin and Lawson, 1994a, b; Green et al., 1996; Londeree et al., 1997) to 

define the highest ý702 attained in a progressive test regardless'of whether a V02- 
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plateau has been observed. Equally, the term ýF02rnax is often used to describe this 

highest ý702 attained in a progressive test regardless of whether a V02-plateau has 

transpired. Whether the use of the terms V02niax or V02 
peak reflects a conscious belief 

among those who use them that the highest V02 attained in a progressive test, despite 

the absence of a V02 -plateau, is a maximal V02 
. is unknown. In study I (chapter 6) 

these issues are addressed and a method, with associated terminology, to define V02rnax 

is established for use throughout the remainder of this thesis. 

4.2.2 Test protocols: speed ramped test 

Exercise testing guidelines typically recommend that exercise protocols should be 

individualised for the participants being tested and for the purpose of the test (Myers 

and Bellin, 2000). Unfortunately, this is often overlooked and test protocols are 
frequently selected based on familiarity, convenience, or tradition (Myers and Bellin, 

2000). For the purpose of this thesis, the important considerations for the use of a 

suitable test protocol to assess V02rnax were that the incidence of a plateau in V02 was 

high, 'ý102n= was equivalent to that which could be attained in middle-distance track 

running events, and the protocol did not place excessive time demands on the 

participants. 

Many protocols have been, and are, used to assess V02rmx. The two most common 

types are incremental protocols, where work rate increases in a 'step' pattern with time, 

and ramped protocols, where work rate increases as a continuous linear function of 

time. For both types of protocol, work rate can be manipulated during running by 

increasing the speed or the gradient. However, it has been suggested that some people 

may lack the necessary skill to run at the speeds required to elicit ý702max on a level 

MT (Taylor et al., 1955). Taylor et al. (1955) argued that "raising the grade, with the 

speed held constant, is the most satisfactory method of increasing work load with the 

motor driven treadmill to attain a maximal oxygen uptake" (p. 75) and recommended 

that a constant speed grade incremented protocol should be used for the assessment of 

ý702niax 
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Indeed, such a protocol has been used by a variety of researchers for the assessment of 
V02,,.,, in middle-distance and long-distance runners (Boileau et al., 1982; Conley and 
Krahenbuhl, 1980; Costill, 1970; Daniels and Daniels, 1992; Foster et al., 1978; Morgan 

et al., 1989; Saltin and Astrand, 1967; Spencer et al., 1996; Svedenhag and Sj6din, 

1984). Moreover, published guidelines for the assessment of V02ra,, during MT 

running recommend that this protocol is used, regardless of whether the athletes being 

assessed are trained runners or athletes who specialise in sports other than running (Bird 

and Davison, 1997; McConnell, 1988; Thoden, 1991). 

Ramped protocols were introduced over 20 years ago (Whipp et al., 1981). At the time 

it was suggested that the incidence of a ýr02 -plateau might be higher for a ramped than 

for an incremental protocol. Whipp et al. (1981) compared a ramped protocol with two 

incremental protocols during cycling. They reported that "a plateau in V02 was 

typically discerned from the ramp test, whereas this was often not the case with the ... 
incremental tests" (p. 219) but they presented no data to support this statement. Such 

ramped protocols have typically been used during cycling, presumably with the 

emergence of electronically-braked cycle ergometers permitting work rate to be pre- 

programmed. Likewise, the more recent emergence of computer interfaced MTs has 

allowed ramped protocols to be easily pre-programmed. 

Draper et al. (1998) compared ý702,,,,, assessed during three ramped protocols on a 

MT: increasing speed (1.2 km. h-1 per min) at a 0% gradient, increasing gradient (1% per 

min) at a constant (individually determined) speed, and increasing speed (1.2 km. h" per 

min) at a 5% gradient. The incidence of a ý702 -plateau was 92% for the increasing 

speed protocol at a 0% gradient and 100% for the other two protocols. Values for 

ý702niax were lower for the increasing speed protocol at a 0% gradient than for the other 

two protocols. Draper et al. (1998) suggested that these differences in V02max, might 

reflect differences in the muscle mass recruited. This is consistent with the finding that 

a greater muscle mass is recruited during uphill running than during running on the flat 

(Sloniger et al., 1997), allowing a higher V02rrmx to be attained. 

Several important points emerge from the Draper et al. (1998) study. First, the 

incidence of a V02 -plateau is high (92%) for a speed ramped protocol at a 0% gradient. 
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Furthermore, this incidence is higher than that reported elsewhere in the literature for 

incremental protocols (Duncan et al., 1997; Rivera-Brown et al., 1994; Sheehan et al., 

1987). Second, the high incidence of a V02 -plateau suggests that the runners attained 

ý702 
.. a,, and were not limited by cadence, as suggested by Taylor et al. (195 5). Thirdly, 

if the V02 attained on a speed ramped protocol is to be compared to the V02 attained 

during a simulated middle-distance event on the MT, both must be done on a 0% 

gradient. This is to ensure that the V02na,, attained on a speed ramped protocol at a 0% 

gradient on the MT will be equivalent to the V02rmx that could potentially be attained 

during track running: the same muscle mass is recruited during the speed ramped 

protocol as during track running. 

The protocol used in this thesis was a speed ramped protocol (0.16 km. h" per 5 s) at a 

0% gradient. It has been suggested (Buchfidirer et al., 1983) that 10 ±2 min is the 

optimal duration for a progressive test used to determine ý702n=. The starting speed 

was therefore set for each participant so that the test lasted for - 10 min. This was done 

by assuming that the peak speed attained on the test would be equivalent to the 

participant's average speed for the 800 m. event and subtracting 12 km. lf 1 from this 

estimated peak speed (0.16 lan. h-1 per 5s equates to 1.2 lan. h-1 per min) to determine 

the start speed. 

4.2.3 Criteriafor defining V02. 

Taylor et al. 's (1955) study was the first in which a systematic approach to defining a 

ý102 -plateau was taken. They established confidence limits for the expected increase 

in V02 between incremental stages (A ý702) and reported that the mean ± SD A V02 

I associated with a gradient increase of 2.5% was 4.18 ± 1.07 ml. kg- min", ranging from 

2.2 to 5.9 ml. kg-l. min-1. They proposed that a V02-plateau could be confirmed if a 

Aý702 of less than 2.1 ml. kg-l. min-1 was observed between two consecutive 

incremental stages. 

The Taylor et al. (1955) study was the first to emphasise that the random variation in 

ýr02 data may obscure the identification of a plateau. Implicit in their approach was 

the idea that an increase in V02 might be observed between consecutive incremental 
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stages when the true A V02 is zero. Therefore, it is not appropriate to consider that a 

plateau has only occurred when ýr02 shows no change or a decrease in response to an 

increase in work rate. 

Since the publication of the Taylor et al. (1955) paper several different approaches using 

a criterion A ý102 have been used to define a VO 2 -plateau. The criterion that has been 

commonly used is that of aA V02 less than the lower 95% confidence limit for the 

A ý10 2 determined from sub- ý102 
peak data for the group of participants (Mitchell et al., 

1958; Niemeld et al., 1980; Sheehan et al., 1987) or for individuals (Rowland and 

Cunningham, 1992). A modification of this approach (Holthoer, 1996) involves 

deriving a linear regression equation relating V02 to work rate for sub-V02peak 

intensities and calculating a predicted V02 for the work rate corresponding to the final 

sampling interval. A V02 
-plateau would be defined as an actual observed V02 for the 

final sampling interval of less than the lower 95% confidence limit of the predicted 

V02 (Draper et al., 1998). 

An alternative approach has been taken by Wood (1 999b) who identified the occurrence 

of a V02 -plateau by fitting a linear model and a plateau model to the V02 vs. time 

data from a progressive ramp test. This approach assumes that V02 either increases as 

a linear function of time throughout the test (linear model) or increases as a linear 

function initially and then plateaus in the closing stages (plateau model). The linear 

model was defined by a single equation (y = aix + bi) and the two-segment plateau 

model by two equations: an initial linear segment (y = a2x + b2) and a final horizontal 

segment (y = c). Standard least squares regression techniques were used to derive the 

best-fit linear model and the best fit plateau model and the goodness of fit was evaluated 

by calculating the standard error of estimate (SEE). A plateau was deemed to have 

occurred when the SEE was lower for the plateau than for the linear model. 

Other criteria that have been used to identify a V02 -plateau include aA V02 less than 

the mean sub-V02peak Aý702 (Freedson et al., 1986) or some fraction of this mean 

Aý702 (Cumming and Friesen, 1967). Alternatively, some researchers have used an 

'absolute plateau', defined as no increase or a decrease in ý102 despite an increase in 
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work rate (Clark and McConnell, 1986; Froelicher et al., 1974; Mayhew and Gross, 
1975). Many researchers (Armstrong et al., 1996; Boileau et al., 1977; Cunningham et 
al., 1977; Davies et al., 1984; Rivera-Brown, et al., 1992; Rowland, 1993; Sidney and 
Shephard, 1977) have also carelessly applied Taylor et al. 's (1955) AV02 Criterion 

value of 2.1 ml. kg-l. min-1 which would only be in circumstances where the sub- 

maximal A VO 2 is likely to differ from that reported by Taylor et al. (195 5). 

There is a clear rationale for using the criterion of aA ý702 less than the lower 95% 

confidence limit for the sub-ý702peak Aý7022 the modification of this approach 

(Holthoer, 1996), and the modelling approach taken by Wood (1999b), for determining 

whether a V02 
-plateau has occurred. There is no obvious rationale for the use of the 

other approaches. It could be argued, therefore, that whilst many studies have presented 

data on the incidence of a V02 
-plateau, the extent to which these data reflect the true 

incidence of such a plateau is questionable. 

4.3 Test protocols to assess the lactate threshold 

4.3.1 Testprotocols 

Throughout this thesis the V-slope method was used to identify the lactate threshold 

(LT) using gas exchange data determined from the speed ramped test (see section 4.2.2). 

However, the ramp rate that is ideal for determining V02max is not necessarily ideal for 

determining the LT. Whipp, et al. (1987) have argued that the ability to discern a break 

point in ý7C02 relative to that of V02 during progressive exercise depends on the 

effects of C02 storage. Factors that cause a rapid loading of C02 into the body stores 

in the early stages of a progressive test have the potential to impair valid discrimination 

of the LT. Such factors include a very rapid ramp rate (Ward and Whipp, 1992) and 

participants hyperventilating immediately prior to the exercise bout (Ozcelik et al., 
1999). 

The speed ramped test protocol was primarily selected for the determination of V02rnax 

and the rapid ramp rate was not ideal for the application of the V-Slope method. 
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However, the LT was only used as a control variable (i. e. to determine warm-up 

intensities) and was of secondary importance to the determination of V02rnax. To 

satisfy the recommendations for determining the LT using the V-slope method, an 

additional ramp test, with a slower ramp rate, would have been required. This would 

have placed excessive time commitments on the participants and was considered to be 

unnecessary. Strict criteria were however used to determine whether the break point in 

ý7C02 was genuine or 'pseudo'. Hyperventilation of the participants prior to a test is 

difficult to eliminate and at best can only be minimised by relaxing the participants. 

4.3.2 Criteriafor defining the lactate threshold 

The V-slope method (Beaver et al., 1986) identifies the LT as the V02 at the point 

when the slope of the relationship between ýr02 and ý7C02 changes during a 

progressive test. The rationale for this approach is that there will be an increase in 

arterial lactate concentration and a corresponding decrease in the concentration of 

arterial bicarbonate, the major buffer of lactic acid, at the LT. Consequently, this 

increase in bicarbonate concentration results in a proportionate increase in C02 Output 

at the lungs. This increase during a progressive test, relative to V02 
. signals the point 

at which arterial blood lactate begins to increase (Ozcelik et al., 1999): the VC02 - V02 

relationship shows an increased slope at this point. 

In this thesis the VC02 - VO 2 relationship was modelled using least squares piecewise 

linear regression (Vieth, 1989). The first minute of the test and the portion over which a 

plateau in ýr02 was evident was excluded from the analysis. The remaining data were 

divided into two segments, each of which was fitted by a simple linear model. All 

possible solutions were evaluated for this approach. That is, initially the first two data 

points were included in the first segment and the remainder were allocated to the 

second. Then the first three points were included in the first segment and the remainder 

were allocated to the second, and so on. This procedure continued until the last two 

points were allocated to the second segment. Each data point was included in either the 

first or the second segment; no data points were common to both. Each of the solutions 

was evaluated to assess whether the slope of the first segment was between 0.7 and 1.0; 

from those solutions that satisfied this criterion, the best-fit model (the solution for 
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which the residual sum of squares was lowest) was selected. The intersection of these 

two segments was taken as the LT and was expressed as the corresponding ý702 
- 

Published data to date show that the V-slope method is an accurate and precise approach 
to detecting the point at which blood lactate appearance exceeds its removal (Koike et 

al., 1990; Wasserman et al., 1990; Wasserman et al., 1994b). Criteria (Ward and 
Whipp, 1992) were used to check whether a true or 'pseudo' LT was detected. First, 

when expressed as a fraction of ý702=x 
2 the LT should be > 49% for normal adults 

(Davis et al., 1979; Jones et al., 1985; Orr et al., 1982); a 'pseudo-threshold' is 

characterised by an unusually low fraction of V02max which is < 49% (Hansen et al., 
1984; Ozcelik et al., 1999). Second, the slope of the first sub-threshold segment sh6uld 
be between 0.95 and 1.00 (Beaver and Wasserman, 1992; Wasserman et al., 1994a); a 
'pseudo-threshold' has an unusually low value of < 0.7 (Ozcelik et al., 1999). Low 

values for the slope of this first segment may also be apparent for subjects who are 

glycogen depleted (Cooper et al., 1992). The respiratory exchange ratio (RER) during 

unloaded cycling or at rest will also be low for these subjects. Hence, the ratio of this 

RER to the slope of the first linear segment may be used as a discriminatory index when 
the validity of the LT is questionable (Beaver and Wasserman, 1992). In studies that 
have demonstrated a valid LT, this ratio has been consistently <I (Beaver and 
Wassennan, 1992; Cooper et al., 1992; Ozcelik et al., 1999; Ward and Whipp, 1992); in 

studies in which 'pseudo-threshold' has been apparent, it has been >I (Ozcelik et al., 
1999; Ward and Whipp, 1992). Throughout this thesis, a pseudo threshold was deemed 

to have occurred if one of the above criterions was not met. 
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CHAPTER 5 

CONSIDERATIONS FOR THE DETERMINATION OF RESPIRATORY GAS 
EXCHANGE 

5.1 Accuracy and precision 

5.1.1 Background 

The focus of this thesis is the assessment of oxygen uptake (V02) during exercise bouts 

equivalent to the duration of middle-distance running events. The key variable is 

therefore ý702, though carbon dioxide Output 07C02) is also important for the indirect 

determination of the lactate threshold (V-Slope method: see section 4.3.3). Oxygen 

uptake and VC02 are not, technically, measurements, rather they are calculations based 

on a number of component variables. The Douglas bag method is the gold standard 

method for determining these variables, against which other methods are evaluated 

(Davies, 1995). It is a gold standard because few assumptions are made in the 

determination of the component variables and the calculation of V02 and VC02. The 

key requirement is, therefore, to be able to determine each of these component variables, 

and therefore V02 and VC02 
. with a high degree of accuracy and precision. 

Accuracy and precision are defined as the extent to which measured values agree with 

the actual (or expected) values and the extent to which these measured values agree with 

one another, respectively (Challis, 1997; Topping, 1972). To illustrate this an analogy 

can be drawn between the accuracy and precision of measurements and the accuracy and 

precision of rifle shooting. Imagine a rifle fixed to a rigid support and aimed at a target. 

If successive firing yields a tightly grouped set of shots, the rifle might be said to be 

precise, even if its accuracy is poor [i. e. even if the group of shots lie some distance 

from the intended (or expected) centre of the target]. 

With respect to accuracy, the difference between the actual value and the measured 

value is typically referred to as a systematic error (bias) or systematic uncertainty 

(Challis, 1997). On the other hand, for precision, the difference between repeated 

measured values is typically referred to as a random error or random uncertainty 

LE Sandals (2003) 68 



Chapter 5 Considerations for the determination of respiratory gas exchange 

(Challis, 1997). While the terms error and uncertainty are often used interchangeably 

(Challis, 1997), they do not refer to the same phenomena. 

An 'error' is a mistake and in the case of a systematic difference between the measured 

and the actual value this is the appropriate term to use. These differences arise from the 

measurement instrument and may be constant in magnitude or vary in some regular 

(predictable) way. They should therefore be eliminated, or corrected for, with careful 

calibration procedures, and failure to do so is a mistake. In the above analogy, failing to 

adjust the sight of the rifle for a downhill aim would be an error of this type and would 

affect the accuracy of the shots. 

The difference between repeated measured values is not an error but an 'uncertainty'. 

Such differences may arise from a lack of uniformity in the instruments used, small 

changes in other factors that influence the measurement, or variability of the 

experimenter. Uncertainties are, therefore, disordered in their incidence and variable in 

their magnitude. The random nature of the differences between repeated measured 

values means that they can not be eliminated; they can at best, only be estimated as a 

likely range of uncertainty in the measured value (by calculating confidence intervals). 

In the above analogy, the effect of environmental factors such as a variable crosswind, 

or the variability of the performer, would be uncertainties of this kind and would affect 

the precision of the shots. Throughout this thesis, the terms error and uncertainty will 

be used separately to describe systematic differences between the measured and the 

actual value and differences between repeated measured values, respectively. 

Experimenters must strive for both accuracy and precision in their measurements. 

Without accurate measurements, the generalisation and comparison of findings beyond 

the laboratory in question is difficult. Without precision of measurement the chance of 

detecting 'real' changes in the measured value, in response to an intervention, is limited. 

This chapter describes the Douglas bag method used to determine V02 and VC02 in 

the studies reported in this thesis. A novel approach has been taken with this method to 

examine its potential for continuous short collections of expirate. Therefore, this 

chapter also examines the errors and uncertainties in the determination of V02 and 

VC02 that arise from using this Douglas bag method. "The descriptions are given in 
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considerable detail, as attention to small matters of detail is often of much importance" 
(Haldane, 1912, Preface). 

5.2 Calculations involved in the determination of VO, and VCO, 

5.2.1 Background 

The basic calculation of ý102 is: 

V02 
---: 

VI X F102 - 
VE X FE02 (1) 

where V, and VE are the rate at which air is inspired and expired respectively, and F102 

and FE02 are the fractions of oxygen in the inspired and expired air, respectively. 

The basic calculation of ýC02 is: 

VC02 
": -- 

VE X FEC02 - VI X FIC02 (2) 

where FEC02 and F, CO 2 are the fractions of carbon dioxide in the expired and inspired 

air, respectively. 

The volume of a gas varies depending on its temperature (Charles Law), pressure 

(Boyle's Law), and content of water vapour. Further calculations to standardise V, and 
VE are therefore necessary in order that comparisons can be made between data 

collected in different circumstances. Volumes of expirate are measured at ambient 

temperature and pressure saturated (ATPS), where ambient temperature and pressure are 

the temperature of the expirate and the pressure acting on it at the time the volume is 

measured. Since the typical ambient temperature for a physiology laboratory (15-25*) is 

below body temperature (- 37"), expirate will be fully saturated with water at this 

ambient temperature. By convention, gas volumes, though measured at ATPS, are 

reported as the equivalent volume that would be obtained were the measurement made 

under standardised conditions (STPD): a temperature of O'C (273 K), a pressure of 760 

LE Sandals (2003) 70 



Chapter 5 Considerations for the determination of respiratory gas exchange 

mmHg (sea level), and dry (no water vapour content). Gas volumes, at standard 
temperature (ST), can be calculated (from ATPS) as follows: 

V(ST) = V(ATPS) X 
273' 
TEXP (3) 

where 273" is the absolute temperature (in Kelvin), and TEXP is the temperature of the 

expirate (in Kelvin) at the time the expirate is measured. 

To correct a gas volume (ATPS) to standard pressure dry (SPD) the following 

calculation is used: 

V(SPD) = V(ATPS) X 

(PB 
- 

PH20) 

760 (4) 

where P13 is the pressure acting on the expirate (in mmHg) at the time its volume is 

measured, and PH20 is the saturated vapour pressure of water associated with a given 

value for TEXP- 

These standard correction factors [equations (3) and (4)] can then be combined into one 

expression to correct a gas volume measured at ambient temperature and pressure, 

saturated (ATPS) to an STPD volume: 

V(STPD) = V(AT? 
S) - 

273 x (PB -PH 2 0) 

TExp x 760 
(5) 

The accuracy and precision with which 
V02 can be calculated using equations (1) and 

(5) will be affected by the accuracy and precision with which the variables 
ý'I 

(ATPS) P 

VE 
(ATPS) 9 P13, TEXPP F1 02, and FE 02 can be determined. Likewise, the accuracy and 

precision with which VC02 can be calculated using equations (2) and (5) will be 

affected by the accuracy and precision with which the variables ý11 
(ATPS) i 

VE 
(ATPS) P 

PBP 

TExP, FIC02, and FEC02 can be determined. The following sections focus on these 

issues and outline the procedures and equipment used to determine the above variables. 
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5.3 Procedures involved in the determination of 
ý702 

and 
ýC02 

5.3.1 Determination of V, 

When the Douglas bag method is used to determine ý702 and VC02 
9 

V1 is not 

typically measured. Instead, V, is calculated from VE. The assumption on which this 

calculation is based is that nitrogen (N. ) is metabolically inert, such that the volume of 

N2 expired and the volume of N2 inspired are equal. This can be represented by the 

following equation: 

V, x FN2 = 
VE 

x FEN2 (6) 

where FIN2 and FEN2 are the fractions of N2 in inspired and expired air, respectively. 

Equation (6) can then be rearranged to calculate V, from VE: 

ý7E 
X 

FEN2 

FIN2 (7) 

Neither FIN2 nor FEN2 are typically measured when the Douglas bag method is used. 

Alternatively, it is assumed that inspired air is composed only of 02 
p 

C02, and N2 
v 

and an expression for FIN2 that involves F, 02 and FC02, both of which are typically 

measured or estimated, can be used: 

FIN2 1- F102 
- FIC02 (8) 

This assumption is valid because the trace gases (i. e., argon, neon, helium etc) that 

comprise - 0.93% of inspired air are metabolically inert and can, therefore, be combined 

with N2 
. Similarly, if it is assumed that expired air is composed only of 02 

9 
C02, and 

N2 
. an expression for FEN2 that involves FE02 and FEC02, both of which are 

typically measured, can be used: 

FEN2 =1- FE02 - FEC02 (9) 
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Substituting equations (8) and (9) into equation (7) yields an expression that can be used 
to calculate VI: 

VE X 
(I - FE02 - FEC02) 

(I-FI02 -FIC02) 

Substituting for V, in equation (1) gives 

V02 : -- VE X 
(I - FE02 - FEC02) 

X F102 - 
VE X FE02 

(I - Fl 02 - Fl C02) 

and rearranging gives 

(10) 

V02 
---: 

VE X 
(I-FE02 -FEC02) 

X FI02 - FE02 
( 

(1 - F102 - FIC02) 

The equality of inspired and expired volumes of N2 during respiration was first 

demonstrated by Lavoisier in 1775 (Cissik & Johnson, 1972a). Its incorporation as 

equation (7) in the determination of ý702 has been attributed to J. S. Haldane (1912) by 

some physiologists (Cissik & Johnson, 1972a; Dudka et al., 1971), and equation (7) is 

commonly referred to as the 'Haldane transformation'. However, others (Otis, 1964; 

Poole and WhiPp, 1988) believe this procedure was first presented by Geppert and 

Zuntz (1888). In recognition of the fact that the N2 correction factor may properly 

belong to Geppert and Zuntz (1888) it will be referred to as the N2 corTection factor 

hereafter. The N2 and gas volume correction factors [equations (11) and (5), 

respectively] can be combined to yield the following equation for the determination of 

ý702 (STPD): 

V02(STPD) ý-- VE(Alrai 
-- 

273 x (PB - PH20) 
x 

(I-FE02 -FEC02) 
XF102-FE02 (12) 

TExp x 760 

( 

(I-FI02 -FIC02) 

The N2 correction factor could also be used to derive V, from VE in the calculation of 
ýT02. However, for this calculation it is typically assumed that VE and V, are equal 
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(Lamarra & Whipp, 1995). The error in VC02 associated with this assumption is equal 

to FIC02 X (VE - VI). For a V02 of 4 L. min-', VC02 of 5 L. min-', and VE of 110 

L. min-', the true V, would equal 109.1 L. min-' (VI ý VE - VC02 + V02) and the 

error introduced in the calculation of VC02 would be equal to FC02 X0 10 - 109")* 

For the range of FIC02 measured in the laboratory (see section 5.3.5) the error in the 

calculation of VC02 would range from 0.00036 to 0.00099 L. min-', or 0.00007- 

0.0002%. Consequently, VC02 can be calculated as: 

VC02 
: -- 

VE X (FEC02 
- FIC02) (13) 

Equations (13) and (5) can be combined to yield the following equation for the 

determination of 
ý'C02: 

VC02(SITD) ý VE(ATPS) X 
273 X (PB - PH20) 

x 
(FEC02 

- 
FiCO2) (14) 

TExp x 760 

The accuracy and precision with which V, can be determined, using equation (10), will 

depend on the validity of the assumption that there is no disparity between the inspired 

and expired volume of N2(assuming that VE, FE02, FECO2, F, 02, and FC02 can be 

determined accurately and precisely). 

Since Lavoisier's proposition of N2 equality during respiration the hypothesis has been 

alternately confirmed and refuted. Dudka et al. (1971) conducted 36 resting and 35 

exercise experiments on four subjects and reported a mean N2 retention of 27 ml. min-' 

at rest, and a mean N2 elimination of 132 
- ml. min-' during exercise. The uncorrected 

ý702 (i. e. the value derived from measured values for VI and VE) at rest and during 

exercise was 12% and 8% less, respectively, than the corrected V02 (i. e. the value 

derived using the N2 correction factor). Cissik et al. (1972a) reported N2 retention (38 

ml. min-') in resting fasted subjects, and N2 elimination of 44,84, and 128 ml. min-' in 

resting subjects after 22,34, and 61 g Protein meals, respectively. The uncorrected 

V02 was I I% greater, in fasting subjects, than the corrected V02 
- In a further study, 
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Cissik et al. (1972b) demonstrated N2 elimination of 217 ml. min-' in exercising 

subjects in the post-absorptive state, and of 319,409, and 509 ml. min' following 21, 

35, and 61 g protein meals, respectively. The uncorrected V02 was up to 31% less than 

the corrected V02. They concluded that published values of V02 determined using 

the N2 correction factor might be substantially in error. 

The work of Cissik's group was challenged in a phase of research (1972-1976) that 

revived support for the original N2 equality hypothesis. Initially, in response to the 

Cissik et al. (1972a) study, Farhi (1972) cited evidence of N2 in mixed venous blood 

and gaseous N2 in solution in blood to suggest that the cardiovascular system could not 

supply the observed uptake of N2 at the rate of 36 ml. min' in fasting subjects. 

Wagner et al. (1973) conducted 72 determinations of V02 at rest and during exercise 

on 10 subjects in a post-absorptive state, the corrected ýr02 was 1.1% greater using 

assumed F, 02 and FIC02 values (20.93% and 0.03%, respectively), and 0.5% greater 

using measured FO, and FC02 values (20.91% and 0.03%, respectively), than the 

uncorrected ýr02. Fox and Bowers (1973) conducted 20 determinations of FIN, and 

FEN2 at rest in five fasted subjects. They reported no difference between the 

uncorrected and the corrected V02 (290 ± 50 m 1. min' vs. 288 ± 48 m). 

Wilmore and Costill (1973) determined ýr02 using the N2 correction factor and direct 

methods during three exercise intensities in six subjects. The corrected V02 was 32 ± 

20 ml. min-1 greater than the uncorrected V02 but the error in V02 decreased from 

1.8% (6.4 km. h-) to 0.8% (12.1 km. h-') across the three exercise intensities. Finally, 

Musch and Brooks (1976) reported no N2 retention or N2 production at rest but a 

retention of 106 ml. min7l during exercise. In this study, the corrected V02 was 1.8% 

less than the uncorrected V02 during exercise. 

These more recent studies support Lavoisier's original hypothesis and the use of the 

N2 correction factor in the determination of V02 
- If N2 retention or production does 

occur in respiration its magnitude appears to be independent of exercise intensity. 
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Importantly for this thesis, the magnitude is small enough to have little effect on 

calculations of V02 during heavy or severe intensity exercise where minute ventilation 
is high. The conflicting findings by Dudka et al. (1972) and Cissik's group, where light 

exercise and resting metabolism were studied, suggest that errors associated with the use 

of the N2 correction factor may be substantial if minute ventilation is small. 

5.3.2 Determination of 
PE 

(4 Tps) 

5.3.2.1 Calculation of VE (ATps) 

When the Douglas bag method is used, VE (ATps) is not technically measured but is 

calculated. For a given Douglas bag, the volume of expirate collected in the bag is 

divided by the time of the collection period (VE(ATps) = VE(Al-ps) / collection period) to 

yield the average rate of ventilation. The accuracy and precision with which VE(ATps) 

can be determined will, therefore, be affected by the accuracy and precision with which 

VE(ATps) can be collected in the Douglas bag and VE(ATPS) can be measured. 

5.3.2.2 Collection of VE (AT-ps) 

Subjects wore a nose clip and a flanged rubber mouthpiece of their choice (Collins, 

Massachusetts, USA; Hans Rudolph Inc., Kansas, USA). They breathed through a low- 

resistance valve box (Jakeman and Davies, 1979), the expired side of which was 

connected to a 1.2 rn length (34.2 mm internal diameter) of falconia tubing (Hans 

Rudolph Inc., Kansas, USA). The falconia tubing was connected to a transparent plastic 

cylinder, within which was fixed a rubber diaphragm. The plastic cylinder was 

connected to a two-way master valve (Hans Rudolph Inc., Kansas, USA) that was 

mounted on a tripod approximately 1.3 in above the ground. 

Douglas bags (Cranlea and Co., Birmingham, LJK) were connected to the master valve 

to allow continuous sampling of expirate (Figure 5.1). Each 150 L bag was fitted with a 

two-way bag valve (Type 343, Georg Fischer, Switzerland) so that whilst the bags were 

connected to the master valve the subject's expirate could be collected (bag valve open), 

or the bags could be sealed and exchanged for another bag (bag valve closed). The bags 
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were arranged on an overhead rail so that the bags could be orientated above the master 

valve during collections and quickly removed after collections. 

The procedure for continuous bag collections was as follows: 

1) Bag I and bag 2 were connected to the exposed ports on the master valve while both 
bag valves were closed; 

2) The master valve was opened to bag 2 and the subject's expirate was vented through 
to the laboratory; 

3) The bag valve on bag I was opened and the master valve was turned to bag I to 
initiate the collection of expirate in this bag; 

4) The bag valve on bag 2 was opened and the master valve was turned to bag 2 to 
terminate collection in bag I and initiate collection in bag 2; 

5) The bag valve on bag I was closed and the bag was removed; bag 3 was attached to 
the master valve and the bag valve was opened; 

6) The master valve was turned to bag 3 to terminate collection in bag 2 and initiate 
collection in bag 3. The bag valve on ba 2 was closed and the ba was removed, 
and so on. 

A Odd Numbered Douglas Bags 
B Even Numbered Douglas Bags 
C Master Valve 
D Rubber Diaphragm 
E Falconia From The Subject 

Figure 5.1 Schematic of the master valve system used for continuous collections of 
expirate. 
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To ensure accurate and precise collections of VE(, Tps3, a whole number of breaths was 

always collected. To identify the end of expiration (to initiate and terminate a collection 

period) the experimenter observed the rubber diaphragm located in the plastic cylinder 

(see figure 5.1). 

The falconia tubing between the subject and the master valve was always flushed with 

expirate (for - 60 s) before bag I was opened to the master valve to ensure that the 
initial collection was expirate and not ambient air. However, each time the bags were 

removed from the master valve thereafter, all valves were exposed to ambient air (for - 
5 s). It was not possible to both flush these valves with expirate and make continuous 

collections. The initial collection of expirate in each bag (excluding bag 1) would 
therefore have been ambient air, or a mixture of ambient air and expirate. The total 

exposed dead-space volume, between the master valve and the bag valve, was 50 ml. 
The response kinetics of the entire gas analysis system (see section 5.3.6.1.1) were not 

rapid enough to allow the 02 andC02 fractions in this dead-space to be determined 

between bag changes. It was assumed, therefore, that the 50 ml dead space contained 

ambient air. The contaminating effect of this dead space was corrected for in the 

determination of expired gas fractions (see section 5.3.6.2.2). 

The accurate and precise collection of VE (ATPS) is dependent on the assumption that all 

valves, Douglas bags, and plumbing do not leak (Lamarra and Whipp, 1995). In an 

attempt to prevent leaks in the system all connections, such as those between the bags 

and the bag valves, were secured with metal Oubilee) clips. The entire system was also 

consistently checked for leaks by sealing one end of the plumbing and attempting to 

extract air through the dry gas meter. Similarly, the bags and the bag valves were 

checked for leaks by evacuating the bag and attempting to extract air through the dry gas 

meter. 

5.3.2.3 Timing of VE (ATps) 

EI ach Douglas bag collection period was manually timed with a stopwatch (Fastime; 

Cranlea and Co., Birmingham, U. K. ). This stopwatch was capable of recording up to 

100 split times with a resolution of 0.01 s. Collection periods were timed continuously 
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and recalled after completion of the data collection. The stopwatch was started at the 
initiation of the first collection period; thereafter, the split-time was taken each time the 

master valve was turned, until the end of the final collection when the watch -was 

stopped. 

5.3.2.4 Measurement of VE (ATPS) 

The volume of expirate (VE (AT? s)) in each Douglas bag was measured by evacuating its 

contents through a dry gas meter (Harvard Apparatus Ltd.,, Edenbridge, U. K. ). Hart et 

al. (1992) and Hart and Withers (1996) have shown that the principle on which dry gas 

meters operate may produce alinearity in the volumes measured depending on where the 

gas is passed in the expansion range of the bellows. These authors further suggested 
that a volume of at least 25 L must be passed through the dry gas meter per 

measurement to ensure an alinearity-induced error of < 1% (based on a maximal 

absolute error of 0.25 L). Collection periods < 30 s may contain small volumes (< 25 L) 

so it was important to assess the accuracy and precision of the Harvard dry gas meter 

across the full range of volumes. 

An attempt - was made to replicate the situation in which VE would be collected and 

measured using the Douglas bag method. A3L precision syringe (Hans Rudolph Inc., 

Kansas, USA) was used to pump known volumes (V,, ranging from 3 to 150 L, in 3L 

increments) of room air into a Douglas bag, via a valve-box and falconia tubing, which 

was subsequently evacuated through the dry gas meter. The air from the Douglas bag 

was pulled through the meter by a vacuum pump connected, via corrugated tubing, to 

the outlet side and the meter volume (Vm) was noted for each V, In this situation an 

analogy can be drawn between room air being pumped by the syringe and expirate being 

exhaled into a Douglas bag. The V. represents the expirate actually exhaled in a given 

time (which would be collected in a Douglas bag) and Vm represents the expirate that 

would be evacuated from the Douglas bag through the dry gas meter. 

Hart and Withers (1996) suggest that when a rapid syringe bolus is executed through a 

valve-box the gas in the connected tubing temporarily keeps moving due to its 

momentum after flow through the valve-box has stopped. A brief negative pressure in 
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the tubing may briefly open the inspiratory diaphragm and, therefore, draw in a volume 

of gas in addition to that delivered by the syringe. Sealing the inspiratory side of the 

valve-box during each expiratory syringe bolus would control such an effect. However, 

the effect would also be present during respiration, when a valve-box and- falconia 

tubing are used. It should not, therefore, be controlled when the accuracy and precision 

of the measurement of VE(ATps) are evaluated. The above procedure yielded 50 data 

pairs (Vm vs. V, ) which were used to derive a linear regression equation relating V. to 

Vm. A typical set of data is given in figure 5.2. 
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Figure 5.2 The volume measured by the dry gas meter versus that delivered by the 
syringe. 

Figure 5.2 shows that the relationship between the volume delivered by the syringe and 

that measured by the dry gas meter is linear and that the intercept of this relationship is 

very close to zero. - The absolute value of the intercept was always less than 0.2 L. For 

each study the above procedure was performed and the regression equation was used to 

derive a corrected meter volume (the predicted syringe volume) for the values used in 

the calculation of W2 and ý7C02. The Vm was multiplied by the slope of the 

regression equation, and the intercept was added, to obtain the corrected VE. If this 

corrected 
. 
VE differs from the volume of expirate that is actually exhaled an uncertainty 

will be introduced in the determination of V02 and VC02. This uncertainty will be 

proportional to the difference between the corrected VE [(slope x Vm + intercept)] and 

that which is actually exhaled (Vs). 
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In figure 5.3 the data presented in figure 5.2 are presented again, but this time the 
difference between Vs and the corrected VE [(slope x Vm + intercept)] is plotted as a 
function of Vs. This is equivalent to plotting the uncertainty in the corrected VE as a 
function of the 'actual' VE (equivalent to the Vs). 
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Figure 5.3 Estimated uncertainty in the corrected VE as a function of the actual 
VE (VS)- 

Figure 5.3 shows the residuals for the regression equation presented in figure 5.2. The 

standard deviation of the differences between Vs and the corrected VE is 0.29 L, and the 
95% confidence interval is -0.57 to + 0.57 L (figure 5.3). This interval is equivalent to 
the 95% confidence interval for the uncertainty in the corrected VE. 

From figure 5.3 it can be seen that the uncertainty in the corrected VE is independent of 

the 'actual' VE. Consequently, when it is expressed as a percentage of the 'actual' VE, 

this uncertainty, and therefore the uncertainty in V02 and VC02 
. will decrease as 

exercise intensity increases for a given collection period. Similarly, for a given exercise 
intensity the uncertainty in V02 and VC02 will decrease as the collection period 

increases. To illustrate the impact of this uncertainty on V02 and ý7C02 a typical set 

of data were compiled to yield values that might realistically be obtained for exercise of 
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a moderate, heavy and severe intensity (table 5.1). Equation (12) was used to calculate 
V02 

. whilst VC02 was calculated using equation (14). For these calculations, it was 

assumed that T(EXP) was 293 K (20'), PB was 760 mmHg, and PH20 was 17.4 mmHg at 

the time the volume measurement was made. ' F102 and FIC02 were assumed to be 

0.20915 and 0.0007, respectively (see section 5.3.5). Using the data and calculations on 

which table 5.1 was compiled, the uncertainty incurred in the calculation of V02 and 
VC02 for a±0.57 L uncertainty in the corrected VE was determined (table 5.2). 

Table 5.1 Variables used to calculate 'ýO 
2 and 

ý7CO 
2 for 3 levels of exercise 

intensity. 

Exercise FE02 FEC02 YE (ATPS) VE (STPD) 
ýr02 ýIC02 

Intensity (L. min7l) (L. rnin7l) (L. mirf (L. min7l) 

Moderate 0.150 0.050 44.0 40.0 2.472 1.973 

Heavy 0.165 0.041 87.9 80.0 3.616 3.226 

Severe 0.180 0.032 175.8 160.0 4.574 5.008 

Table 5.2 Effect of a±0.57 L uncertainty in the corrected VE on the % 

uncertainty incurred in the calculation of ý702 and ý7C02 at three 
levels of exercise intensity and for four collection periods. 

% Uncertainty in V02 % Uncertainty in VC02 

Collection Period (s) Collection Period (s) 

Exercise 15 30 45 60 15 30 45 60 
Intensity 

Moderate ± 5.19 ± 2.59 ± 1.73 ± 1.30 ± 5.19 ± 2.59 ± 1.73 ± 1.30 

Heavy ± 2.59 ± 1.30 ± 0.86 ± 0.65 ± 2.59 ± 1.30 ± 0.86 ± 0.65 

Severe ± 1.30 ± 0.65 ± 0.43 ± 0.32 ± 1.30 ± 0.65 ± 0.43 ± 0.32 
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Before VE is measured a sample of expirate is drawn from the Douglas bag for the 

analysis of expired gases (see section 5.3.6.1). It is important that this sample volume 

can be quantified, and added to the corrected VE, for the accurate and precise 

determination of VE. A flow control device regulated the flow of expirate from the 

Douglas bag through the gas analysis system (see section 5.3.6.1) so provided this 

sample period is timed the sample volume could be calculated. The displayed flow was 

set at 2 L. min-1 and the sample period was always 1 min (see section 5.3.6.1.1). 

However, if this displayed flow differed from the actual flow an error and an uncertainty 

would be introduced in the measurement of VE. To examine this, the 'actual' flow-rate 

of the gas analysis system was calculated by repeatedly filling a Douglas bag with 

known volumes (V, ) and timing the evacuation of these through the gas analysis system. 

The 'actual' mean flow-rate was 1.3 L. min-1 when the displayed flow was set at 2 L. min' 
1. This would introduce an error of 0.7 L in the measurement of VE and, thus, in the 

calculation of V02 and ý7C02. To eliminate this the 'actual' flow of 1.3 L. min-1 was 

used for all sample volume calculations. The standard deviation of the mean flow was ± 

0.03 L. min-1. This yielded 95% confidence limits of ± 0.07 L. min" and would 

introduce a small uncertainty in the measurement of VE and the calculation of V02 and 

ý7C02. This is illustrated in table 5.3 using the data and calculations used to compile 

table 5.1 

Table 5.3 
I 

Effect of a±0.07 L. min-1 uncertainty in sample volume on the % 

uncertainty in ý70, and ý7C02 at three levels of exercise intensity 

and for four collection periods. 

% Error in V02 % Error in ýrC02 

Collection Period (s) Collection Period (s) 

Exercise 15 30 45 60 is 30 45 60 
Intensity 

Moderate ± 0.64 ± 0.32 0.21 ± 0.16 ± 0.64 ± 0.32 ± 0.21 ± 0.16 

Heavy ± 0.32 ± 0.16 0.11 ± 0.08 ± 0.32 ± 0.16 ± 0.11 ± 0.08 

Severe ± 0.16 ± 0.08 ± 0.05 ± 0.04 ± 0.16 ± 0.08 ± 0.05 ± 0.04 
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The timing of the sample volume evacuation was considered to have little impact on 

errors in VE since a timing error of 2s during a 60 s sample would not affect the 

calculated sample volume (to 1 decimal place). 

5.3.3 Measurement of P, 6 

Barometric pressure (PB) was measured, using a Fortin mercury barometer (F. D. and Co 

Ltd, Watford, UK), immediately after the last Douglas bag had been evacuated. This 

barometer is equipped with a vernier scale, and has a resolution of 0.05 mmHg. The 

laboratory was situated 75 rn above sea level (determined from ordinance survey maps) 

and the PB was, therefore, calibrated to this height using the following equation (WMO, 

1996): 

PBSL = PBLAB(II/29.27TATM) 

Which can be rearranged to give PBL, ý, B as follows 

PBLAB ý PBSL/(W29.27TLAi3) (16) 

where PBSL is the PB at sea-level, PBLAB is the P13 for the laboratory (and both pressures 

are in hPa where I mm Hg = 1.33 hPa), H is the laboratory elevation in metres, and 
TATm is the atmospheric (outside) temperature in Kelvin. 

Measurements of PBwere always taken to the nearest 0.05 mmHg and equation (16) 

was used regularly to check the accuracy of the barometer. The error in the 

measurement of PB associated with the use of the above barometer and calibration 

procedure is likely to be small (< I mmHg). The uncertainty in the measurement of PB 

associated with setting the ivory pointer in contact with the mercury column or reading 

the vernier scale is also likely to be small (< ±0.2 mmHg). 

The % error in the. calculation of VE (STPD) from VE (ATps) that would be associated with 

an error of I mmHg in the measurement of P. is equal to 1/(PB - PH20) and will be 

directly reflected in the calculation of V02 and VC02. For the typical values used to 
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calculate V02 
and VC02 in table 5.1, aI mmHg error in the measurement of PB 

would introduce an error of 0.13% [1/(760-17.4)] in the calculation of 
VE(STpD) from 

VE 
(ATps) and thus in the calculation of 

V02 
and 

VC02 
- Similarly, an uncertainty of ± 

0.2 mmHg in the measurement of PB would induce a±0.03% uncertainty [± 0.2/(760- 

17.4)] in the calculation of 
V02 

and 
VC02 

- 

5.3.4 Measurement of 
T(E. 

1p) 

In the standardisation of gas volumes from ATPS to STPD it is the T(Exp) at the time the 

volume measurement is made that should be used. This was achieved by placing a 

thermistor probe (Hanna Instruments NS920; RS Components, Corby, UK), with a 

resolution of 0.1 'C, in the inlet port of the dry gas meter. This thermistor was factory 

calibrated to give a maximum error of 0.2 "C and this is also likely to be the upper limit 

for the uncertainty associated with temperature measurements. The % error in the 

calculation of VE(STPD) from VE(ATPS) that would be associated with an error or 

uncertainty of 0.2 *C in the measurement of T(E. Xp) 
is equal to T(Exp)/(T(Exp) + 0.2) - 1, 

and, again, will be directly reflected in the calculation of V02 and VC02. For the 

typical values used to calculate V02 and VC02 in table 5.1, an error or uncertainty of 

0.2 'C in the measurement of T(Exp) would introduce a maximum error of - 0.07% 

(293/(293 + 0.2) - 1] in the calculation of VE(STPD) from VE(ATPS) and thus in the 

calculationof V02 and VC02. 

The measured value for T(Exp) is also used to calculate PH20 in the standardisation of 

VE(ATPS) to VE(STPD). An error or uncertainty in T(E, ) may therefore propagate an 

error or uncertainty in the calculation of PH2o. The relationship between temperature 

and PH20 is non-linear (Hall & Brouillard, 1985) but over the temperature range likely 

to be encountered in the laboratory (15-20 *Q this relationship can be approximately 

represented by a linear function with a slope of 1. A 0.2 'C error or uncertainty in T(Exp) 

would induce an error or uncertainty of - 0.2 mmHg in the calculated PH20. The 

percentage error or uncertainty in the calculation of VE (STPD) from VE (ATPS) that would 
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be associated with this error or uncertainty in the calculated PH 20 is equal to - 0.2/(PB 

- PH20). For the typical values used to calculate ýr02 and ýT02 in table 5.1, an error 

or uncertainty of 0.2 mmHg in the calculation of PH20 would introduce an error or 

uncertainty of - 0.03% [- 0.2/(760 - 17.4)] in the calculation of VE(sTpD) from 

VE (ATPS) , and thus in the calculation of V02 and VC02 
- 

For a given error or uncertainty in the measurement of T(,. ), the error and uncertainty 

introduced in the calculation of VE(STPD) through using incorrect values for PH2o and 

T(E, xy) are both in the same direction. Nonetheless, the error incurred in the calculated 

VE(STPD), and therefore in the calculation of V02 and VC02, will be :: 5 0.10% 

provided the error in T(Fm) is :! ý 0.21C. Similarly, the uncertainty in the calculation of 

V02 and VC02 will be: 5 ± 0.10% provided the uncertainty in T(Exp) is: 5±0.2*C. 

5.3.5 Measurement of F, 02 and F, C02 

When the Douglas bag method is used to determine V02 and ýT02 in normoxic 

conditions FO, and FC02 are rarely measured. instead, many physiologists assume 

that FO, is 0.2093 and FC02 is 0.0003 (Davis, 1995; McArdle et al., 1996; Powers 

and Howley, 1997) and these values are used in the calculation of V02 and VC02. 

Equation (12), for the determination of V02, can be rearranged to give the following 

calculation: 

ýr02(STPD) 
-": V*E(ATFS) 

" 

273 x (PB -PH 
20) x 

FI02 
-x (I - FE02 - FEC02) - FE02 (17) 

TEucp x 760 

((1 

- F102 - FIC02) 

Inserting the above assumed FO, and FCO2 values gives a value of 0.2648 for the 

inspired ratio [ F102 /(I- F102 
- 

FIC02)1* 

Precise measurements of the atmospheric 02 fraction since 1915 have been in the range 

of 0.20945 to 0.20952 (Machta and Hughes, 1970) and recent data suggest that a 

realistic current value for the C02 fraction would be - 0.00036 (Keeling et al., 1995). 

LE Sandals (2003) 86 



Chapter 5 Considerations for the determination of respiratory gas exchange 

It is not clear why the 0.2093 and 0.0003 values for F, 02 and FC02, respectively, have 

been so widely adopted in the physiological literature. However, it is plausible that they 

arose from Haldane's investigations of mine air at the start of the twentieth century and 
have been assumed to be constant over time (Haldane, 1912). Nonetheless, it is unlikely 

that F, 02 and FC02 will reflect atmospheric (outside) air when the inspirate is room 

air. This is because the extent to which the composition of room air differs from 

atmospheric air might depend on factors such as how many subjects are exercising and 
how well ventilated the laboratory is. It is likely, therefore, that the C02 fraction will 

be higher and the 02 fraction will be lower for room air than for atmospheric air and 

that these fractions will vary both between laboratories and between exercise tests. 

To investigate this, measurements of F102 and FC02 were made during 38 tests, all of 

which were conducted in the same laboratory with one window open (- 0.5 m). None of 

these tests involved more than one subject exercising at the same time and there were 

typically two experimenters present. For each test, the 02 and C02 fractions of the 

laboratory room air were recorded at 2 min intervals and these data were averaged to 

yield mean values for F102, and FC02, respectively. These measurements were made 

by placing a sampling tube within 0.5 rn of the exercising subject's mouth. This tube 

was connected to the gas analysis system (see section 5.3.6.1) which was calibrated (see 

section 5.3.6.1.2) prior to each exercise test. Following each test outside air was 

immediately sampled to ensure that the readings on the 02 and C02 gas analysers were 

restored to atmospheric air values. This was the case for each of the 38 exercise tests. 

For the 38 tests the mean (95% confidence limits) of the measured values was 0.20915 

(± 0.00035) for F, 02 and 0.0007 (± 0.0003) for FCO.. The corresponding value for 

the inspired ratio was 0.2647 (± 0.0005). As the mean value for the inspired ratio was 

0.2647, an error would be incurred if the assumed value of 0.2648 was used in the 

calculation of V02 (table 5.4). If the mean inspired ratio (0.2647) was used in the 

calculation of ýr02 in place of the assumed 0.2648 inspired ratio, this error would be 

removed but an uncertainty would remain. Since the N2 correction factor is not used in 

the calculation of ýC02 only an error or uncertainty in the FC02 term in equation 
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(14) will introduce an error or uncertainty in ýFC02. Furthermore, because errors or 

uncertainties are independent of the determination Of VE (ATPS) . the associated errors or 

uncertainties in V02 and VC02 will not be affected by the collection period. The 

above effects are shown in table 5.4, which was compiled using the calculations and on 

which table 5.1 is based. 

Table 5.4 Effect of an error or uncertainty in the FO, /(l-F, O,, -FC02) ratio and 
F, C02 on errors or uncertainties in the calculation of ý'02 and 
ýICO 

2 respectively, at three levels of exercise intensity. ' 

% Error 

ý'02 ýTC02 

Exercise F102 /('-FI02-FIC02) FIC02 * Intensity 
. 
2647 vs. 2648 

. 
0007 vs . 

0003 

Moderate 0.13 0.81 

Heavy 0.18 0.99 

% Uncertainty 

V02 VC02 

F102/("FI02'FIC02) FIC02 

. 2647 ±. 0005 . 0007 ±. 0003 

± 0.65 ± 0.61 

± 0.88 ± 0.74 

Severe 0.28 1.28 ± 1.38 ±0.96 

These errors in the calculation of V02 and VC02 could be eliminated by measuring 

the 02 and C02 fractions in the laboratory room air for a large number of tests to 

derive mean inspired values. However, the uncertainty that arises from the inter-test 

variation in F, 02 and F, C02 can only be eliminated if these are measured during every 

test. Consequently, to eliminate this uncertainty, inspired gas fractions were measured 
for every test and used in all calculations of ý102 [equation (17)] and ýrC02 [equation 

(14)] throughout this thesis. 

5.3.6 Determination of FE 02 and FE C02 

5.3.6.1 Sensitivity of 
V02 

and 
VC02 to errors in FE02 and FEC02 

Accurate and precise gas analysis equipment and procedures are paramount for the 

determination of expired gas fractions. This is because errors in the determination of 
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expired gas fractions, and particularly errors in the determination of FE02, can have 

harmful effects on the calculation of ý702 and ýC02. The effect of a 1% increase in 

FE02 and FEC02 on the calculated values for ý702 and VC02, respectively, shown in 

Table 5.5, illustrates this. This table has been compiled using the calculations and data 

used to compile table 5.1. 

Table 5.5 Effect of a 1% increase in FE02 and FEC02 on the error incurred in the 
calculation of ý10 

, and "VCO 2 respectively, at three levels of exercise 
intensity. 

I% Increase in FE02 

Exercise % Error in V02 % Error in ýrC02 
Intensity 

Moderate -3.07 0.00 

Heavy 4.61 0.00 

1% Increase in FEC02 

% Error in ýr02 

-0.21 

-0.24 

Error in ýrC02 

+1.01 

+1.01 

Severe -7.94 0.00 -0.30 +1.01 

Table 5.5 clearly demonstrates that a small error in the determination of FF02 Will 

translate into a large error in the calculation of V02. This is because the FE02 variable 

is used twice in the calculation of V02 and the error incurred at the first stage of the 

calculation is in the same direction as that which is introduced at the second stage [(I- 

FE02 - FEC02) -FE02, see equation (17)]. In the calculation of ý7C02 no variable is 

used twice so this amplification effect does not occur. 

The data in table 5.5 suggest that the calculation of V02 is highly sensitive to errors in 

the determination of F,, 02 and FEC029 particularly when F. 02is high and FEC02 is 

low, such as is typically seen during severe exercise. Consequently, for the accurate 

determination of V02 in this exercise intensity domain accurate and precise 

measurements of expired gas fractions are paramount. Though FEC02 is considered of 

secondary importance in the determination of V02 
. many of the factors that affect the 
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accuracy and precision with which F. 0, can be determined will also affect the 

accuracy and precision with which FC02 can be determined. 

The accuracy and precision with which FE02 and FEC02 can be determined will 

largely depend on two factors. First, it will depend on the accuracy and precision with 

which the fractional concentrations of 02 and C02 in the sample of expirate can be 

measured. Second, it will depend on the extent to which the composition of the sample 

of expirate passed through the analysers reflects that of the actual expirate collected 

from the subject. Issues surrounding the control of water vapour in the gas analysis 

system and the calibration of 02 and C02 analysers are related to the first factor. 

Issues surrounding the fact that a plastic Douglas bag may never be completely 

evacuated and the possibility that the expirate collected may become contaminated, with 

residual air present in the bag, are related to the second factor. The gas analysis system 

described below has consequently been developed to ensure that the measurement of 

expired gas fractions can be achieved with a high degree of accuracy and precision. The 

following sections describe the equipment and procedures that were used to derive 

values for FE02 and FEC02 
* 

5.3.6.2 Measurement of 02 and C02 fractions in expirate 

The system used to analyse samples of expirate for the fractions of 0. and C02 is 

shown in figure 5.4. The three-way valves shown in this figure are electronically 

controlled solenoid valves (124N Burkert Contromatic Ltd; RS Components, Bristol, 

U. K. ). These valves were controlled to ensure that only one of the four gases (zero 

cylinder, span cylinder, outside air, expirate) could be sampled at any given time. 
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AB 

A Sample To Outside Air G Naflan Tubing 
B Sample To Douglas Bag H Condenser 
C Zero Gas Cylinder I C02 Analyser 
D Span Gas Cylinder 1 02 Analyser 
E Flow Control Device H Three-way Valve 
F Pump 0 Vent For Excess Pressure 

Figure 5.4 Schematic of the gas analysis system used to analyse samples of expirate 
for the fractions of 0. and CO.. 

The concentrations of 02 and C02 in expirate were measured using a paramagnetic 

02 analyser (static cell) and an infrared C02 analyser (series 1440; Servomex p1c, 

Crowborough, U. K. ). The 0. analyser was calibrated using reference gases and outside 

air; the C02 analyser was calibrated using reference gases only (see section 5.3.6.1.2). 

The reference gases used for calibration were stored under pressure (200 bar) and it was 
important that the gas analysers were not exposed to these high pressures. A vent for 

excess pressure and a flow control device (GT/GTV Gapmeter; CT Platon Limited, 

Hampshire, U. K. ) were therefore placed before the analysers in the gas analysis circuit. 

The flow to the gas analysers was controlled at 1.3 L. min" (see section 5.3.2.3) and the 
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pressure regulators (Legris; Airco Pneumatics Ltd, Cheltenham, U. K. ) on the cylinders, 
in which the reference gases were stored, were set to ensure that the rate at which these 

gases were released was 1.5 L. min-1. The excess gases were expelled through the vent. 
In addition to the calculation of the sample volume (5.3.2.3), it was important that 

expirate, outside air, and each of the reference gas mixtures entered the analysers at the 

same flow rate because, for a given concentration ofo, or C02 in a gas mixture, the 

reading obtained on a partial pressure analyser is proportional to the rate at which this 

sample passes through the analysers. 

Both the 02 and C02 analysers measure the partial pressure generated by the specified 

gas and not the absolute concentration of this gas. In this type of analyser water vapour 

acts as a diluent, such that if a sample of expirate (which is saturated with water vapour 

at room temperature) was analysed wet and the same sample was then dried and re- 

analysed, the analysers would give a higher reading for the gas fractions for the dry 

expirate than for the wet expirate (Beaver, 1973; Norton and Wilmore, 1975). It was 

therefore important to give -consideration to the control of water vapour content in the 

gases entering the analysers. 

The 02 analyser was calibrated using both outside air and reference gas cylinders. 

Outside air is partially saturated, with its water vapour content proportional to the 

ambient temperature and the relative humidity. The reference gases are dry and expirate 
is fully saturated at normal room temperature. Norton and Wilmore (1975) highlighted 

that when a dry (cylinder) gas mixture is sampled after moist gases (such as expirate), 

the dry gas mixture will collect moisture from the plumbing, between the cylinder and 

the analyser, and thus will become partially humidified before it reaches the analyser. 

They suggest that the concentration read, by the analyser will gradually increase to the 

nominal (dry) value as this moisture is carried away and the calibration mixture entering 

the analyser becomes increasingly drier. It follows, therefore, that the opposite effect 

might occur when a moist gas mixture (expirate) is sampled after a dry gas. In this 

situation some of the water vapour in the moist gas might condense in the dry plumbing 

and on the dry Valves. Were this to occur, some water vapour would be lost and the 
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measured concentrations of02 and C02 would continue to decrease as the water 

vapour content of the moist gas entering the analysers slowly increases. 

All the gases that were analysed, whether they were calibration gases, outside air, or 
expirate, were passed through a condenser (Buhler PKE3; Paterson Instruments, 

Leighton Buzzard, UK) on their way to the analysers to ensure that their water vapour 
content was at a low and constant level (see figure 5.4). This condenser consists of an 
aluminium core, the temperature of which is maintained within 5±0.1 IC by an 
electrical cooling unit. At this temperature the saturated vapour pressure of water is 
6.47 ± 0.05 mmHg. When expirate is passed through this condenser prior to analysis 
the water vapour content of the sample that enters the analysers should be controlled 

within a narrow range. However, since the cylinders of reference gases are dry, and the 

water vapour pressure of water in outside air will, on some days, be less than 6.5 mmHg 
(see Appendix II), it was important that all gases enter the analysers with the same water 

vapour content as expirate. This was achieved by saturating the reference gases and 

outside air with water vapour by passing them through a. length of Naflan tubing (MH 

Series Humidier; Perma Pure Inc, New Jersey, USA. ) before entering the condenser. 
This tubing was submerged in water and is selectively permeable to water vapour (see 

figure 5.4). 

5.3.6.1.1 Response time for the gas analysers 

The full response time was determined for each analyser by sampling expirate at regular 

intervals using the system shown in figure 5.4. The determined response times, 

therefore, represent the response time for this system as a whole. For each analyser, the 

me asured response time will reflect the time required to wash out the dead space of this 

system and the response kinetics of the analysers. In table 5.6 the values given for each 

time point are mean values for 10 measurements of FE02 or FC02 
- 

LE Sandals (2003) 93 



Chapter 5 Considerations for the detennination of respiratory gas exchange 

Table 5.6 Response times for the 02 and C02 gas analysers 

Time from start of sampling Measured 02 fraction Measured C02 fraction 
(S) (mean ± SD) (mean ± SD) 

20 0.1973 ±. 0064 0.0406 ±. 00043 

30 0.1668 ±. 0024 0.0413 ±. 00003 

40 0.1661 ±. 0010 0.0413 ±. 00003 

50 0.1658 ±. 0001 0.0413 ±. 00003 

60 0.1658 ±. 0001 0.0413 ±. 00003 

These results show that a stable reading was obtained on the 0. analyser after 50 s and 

on the CO, analyser after 30 s. The quicker response time of the CO, analyser is due 

to the fact that any samples passed through the gas analysis system (see figure 5.4) pass 
through the C02 analyser before reaching the - 0. analyser. Throughout this thesis, all 

gases (expirate, calibration gases and gas mixtures) were sampled for 60 s. Readings 

were noted in the last 5s of this period, by which time stable values had always been 

reached on both analysers. 

5.3.6.1.2 Calibration of gas analysers 

A two point calibration (zero and span) was available for both the 02 and the C02 

analyser. In each case, adjusting the zero setting was equivalent to altering the intercept 

of a linear function relating the analyser reading to the output from the sample cell. 
Adjusting the span was equivalent to altering the slope of this relationship. For both 

analysers, the zero setting was adjusted to ensure that the reading on the analyser was 

zero when a cylinder of N2 was passed through the analyser (the zero gas in figure 5.4). 

For the 02 analyser the span setting was adjusted to ensure that the reading on the 

analyser was 0.2095 when outside air was passed through the analyser. For the C02 

analyser the span setting was adjusted to ensure that the reading on the analyser was 

LE Sandals (2003) 94 



Chapter 5 Considerations for the detem-dnation of respiratory gas exchange 

0.0400 when a sample from a gravimetrically prepared cylinder of a reference gas 

mixture (0.1600 021 0.0400 C02 
. balance N2: the span gas in figure 5.4) was passed 

through the analyser. 

Arieli et al. (1999) have shown that infrared C02 analysers respond differently, 

depending on whether the background gas (present in a gas mixture) is N2 or 02 . The 

implication of their findings is that if the N2/02 ratio is different in the calibration 

span gas mixture to that of the measured gas mixture an error will be incurred in the 

measuredC02 fraction. This error increases relative to increases in both theC02 and 

02 fraction in the calibration gas mixture (Arieli et al., 1999). Calibration gas mixtures 

should therefore be carefully selected to contain a C02 fraction close to the highest 

C02 fractions likely to be measured, and the lowest 02 fraction which satisfies the 

linearity check on the 0, analyser. For the calibration gas mixture used in the above 

procedure, the error in measured C02 fractions will be less than 0.00001, but of 

unknown direction, as a result of the background gas effect. 

The calibration procedure adopted was as follows: 

1. The zero adjustment was made for both analysers; 

2. The span adjustment was made for the02 analyser; 

3. The span adjustment was made for the C02 analyser. 

This procedure allowed the linearity of the 02 analyser to be checked each time the 

analysers were calibrated by comparing the reading obtained on this analyser at stage 3 

with the nominal concentration of 02 in the reference span gas cylinder. 

Some authors appear sceptical of the precision with which gas mixtures in cylinders can 

be prepared (Howley et al., 1995). These authors recommend the concentrations of 02 

andC02 in reference gas mixtures used for the calibration of manometric analysers are 

measured using volumetric techniques such as those developed by Haldane (1912) and 

later modified by Lloyd (1958), and Scholander (1947). 
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For the Lloyd-Haldane technique, with five repeat analyses, Abdul-Rasool et al. (1981) 

report a SD of ± 0.0002 and ± 0.0006 for gas mixtures with low (< 0.2000) and high (> 

0.4000) 02 fractions, respectively. Consolazio et al. (1963) suggest that an operator 

should be considered unreliable if duplicate analyses of expired air do not agree within 

± 0.0004 for 02 and ± 0.0003 for C02, respectively. For gas analysis using the 

Scholander technique, Collins et al. (1977) reports a SD of ± 0.00012 for 02 and of ± 

0.00006 forC02 for 36 repeat analyses of fresh outside air. Hermansen (1973) reports 

a SD for 10 repeat analyses of the same gas mixture (0.158 029 0.062 C02) of 

0.0003 for02 and ± 0.0002 forC02. 

The precision of these volumetric techniques is similar, but for both methods the 

precision is lower than the precision of the 02 fraction in fresh outside air and the 

precision with which gas mixtures can be prepared gravimetrically. Recent data from 

the meteorological literature show that the 02 fraction in fresh outside (atmospheric) air 

is relatively constant, varying by - 0.00002, within a year (Keeling and Shertz, 1992). 

The precision of the gravimetrically prepared gas mixtures used in the above calibration 

procedure is reported to be within ± 0.0001 of the actual nominal gas fraction (BOC 

Gases, New Jersey, U. S. A). In particular, the precision of the 02 analyser calibration 

procedure will be extremely high because the reference gas mixture cylinder is only 

used to check the linearity of the 02 analyser and is not a calibration gas mixture per Se. 

This analyser was, therefore, considered to be calibrated when it read within ± 0.0001 of 

the nominal 02 fraction in the reference gas mixture cylinder during the linearity check. 

5.3.6.1.3 Accuracy and precision of measured F. 02 and F,, C02 

The above section implies that the error in the measurement of 02 and C02 fractions, 

as a result of the calibration procedure used for the system shown in figure 5.4, is 

unlikely to exceed 0 . 000 1 and 0.000 11, respectively. To determine the precision with 

which the fractions of 02 and C02 in expirate can be determined with the system 

shown in figure 5.4,10 repeat analyses were performed on two different samples of 

expirate. For the first sample, the mean (± SD) was 0.1644 ± 0.00005 for 02 and 
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0.0427 ± 0.00005 for C02 For the second sample, the mean (± SD) was 0.1796. ± 

0.00005 for02 and 0.0309 0.00004 forC02 . These data yielded - 95% confidence 

limits of ± 0.0001 for both the02 andC02 fractions. It seems reasonable to conclude, 

therefore, that the uncertainty in the measured fractions of02 andC02 in expirate is 

unlikely to exceed ± 0.0001. 

Table 5.7 shows the impact of a±0.0001 uncertainty in the measurement of both FE02 

and FEC02 on the uncertainty incurred in ý702 
and 

ý7C02. This table has been 

compiled using the calculations and data used to compile table 5.1. 

Table 5.7 Effect of a±0.0001 uncertainty in both FE02 and in FEC02 on the 

uncertainty incurred in ý70, and VC0., at three levels of exercise 
intensity. 

± . 000 1 Uncertainty in FE02 and in FEC02 

Exercise % Uncertainty in ýr02 % Uncertainty in ýrC02 
Intensity 

Moderate ±0.25 ±0.20 

Heavy ±0.34 ±0.25 

Severe ±0.53 ±0.32 

The calculation of ý702 is sensitive to an uncertainty in both FE02 and FEC02. Hence 

the uncertainty in V02 reported in table 5.7 is a worst-case scenario for an uncertainty 

of ± 0.0001 in both F. 0, and FECO2. The errors in the calculation of V02 and 

VC02, as a result of an - 0.0001 error in the calibration of the gas analysers, would be 

of a similar magnitude to the uncertainties reported in table 5.7. 

5.3.6.2 Contamination of02 andC02 fractions in expirate 

As discussed previously (section 5.3.6), a possible source of error with the Douglas bag 

method may arise from the contamination of the bag volume with ambient air. This has 

been suggested to occur when an evacuated Douglas bag creates a partial vacuum and, 
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by suction, draws in a small volume of ambient air through the bag valve (Welch and 
Pedersen, 198 1). The impact of this contamination with ambient (normoxic) air will be 

greatest when the inspirate is a hyperoxic mixture. Indeed, in such a situation, 
contamination with only 100 to 200 ml of ambient air could induce an error of 75% in 

the calculated ý702 (Welch and Pedersen, 198 1). 

A further source of contamination may arise from the Douglas bag itself, as it is unlikely 
that a Polythene Douglas bag could ever be evacuated fully. Any residual mixture that 
is Present in the bag before the collection of expirate begins will mix with the expirate 

and the measured expired fractions will reflect this. This effect is summarised by the 
following equation: 

FmEAs = (FREs x VRES + FACT X VEXVE + VRES) (18) 

where FmEAs is the measured fraction of 02 or C02, FREs is the fraction of 02 or C02 

in the residual mixture, FACT is the actual fraction of 02 or C02 in the expirate, VREs is 

the volume that is present in the Douglas bag before any expirate is collected, and VE is 

the volume of expirate collected (ATPD). 

From equation (18) it follows that the measured fraction of 02 or C02 will only equal 

the actual fraction if the VREs is zero or the composition of this VREs is the same as that 

of the expirate. Rearranging equation (18) to yield an expression for the error in the 

measured fraction of 02 or C02 (FmEAs - FACT) leads to the conclusion that the error in 

the measured gas fraction depends on just two factors: the ratio of VREs to the VE and 

the extent to which the composition of the residual mixture differs from that of the 

expirate: 

FmEAs 
- 

FACT ý VRESIVE X (FREs - 
FmEAs) (19) 

The only study in which the influence of VREs contamination has been considered is that 

of Prieur et al. (1998) who report a mean VREs of 644 ml for polythene Douglas bags. 

The capacity of these bags was not specified, but given that contamination with only 
100 to 200 ml of ambient air could induce an error of 75% in the calculated V02 when 
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the inspirate is a hyperoxic mixture (Welch and Pedersen, 1981), a VREs of - 600 ml 

could pose major problems for studies in which the Douglas bag method is used to 

determine ý702 in hyperoxia. However, the effect of VREs contamination is not 

confined to situations in which the inspirate is a hyperoxic mixture. The contamination 
Welch and Pedersen (1981) describe, in which ambient air enters the Douglas bag after 
it has been evacuated, has no effect on the determination of V02 when the inspired 

mixture and the contaminating mixture are the same because the measured expired 

volume includes this contaminating volume. Residual volume contamination, on the 

other hand, has the potential to influence the determination of V02 not just when the 

inspirate is a hyperoxic or a hypoxic mixture but also when the inspirate is normoxic 
(ambient air) because the VREs is not included in the measured expired volume. In fact, 

as equation (19) shows, the only situation in which VFýEs contamination will have no 

effect on the measured gas fractions (and thus on the calculated V02) is when the 

composition of the residual mixture is identical to that of the expirate. 

It was decided that rather than attempting to minimise the effect of VRES contamination, 
it might be possible to correct for this effect if the size of VREs could be determined. 

The following sections describe how VREs was quantified and, its contaminating effect, 

corrected for. 

5.3.6.2.1 Quantification of VREs 

The approach adopted in this thesis involved adding a small volume of ambient air to an 

evacuated Douglas bag and measuring the changes in the 02 and C02 fractions that 

occurred when the added air mixed with the residual mixture. Expirate (50-60 L) was 

collected in a pre-evacuated Douglas bag from a subject who was cycling at a moderate 
intensity (to ensure that there was a marked difference between the fractions of 02 and 

C02 in the expirate and those in ambient air). The contents of the bag were mixed and 

the fractions of 02 and C02 were measured. The Douglas bag was evacuated again 

and a3L precision syringe was used to deliver a known volume of ambient air, the 02 

and C02 fractions of which had been measured, to the evacuated bag. The contents of 

the bag were mixed and the fractions of 02 and C02 were measured once more. The 
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equipment and procedures used in this approach have been described in previous 

sections. 

It follows from equation (18) that the 02 or C02 fraction measured at the final stage of 

the process (Fmix) should be a function of VRES, the syringe volume (Vs), the fraction of 

02 or C02 in the ambient air delivered to the bag (FAIR), and the fraction of 02. or 

C02 in the expirate collected during the moderate intensity cycling (FExp): 

Fmix = (FEXP ý4 VRES + FAIR X VS)/(VS + VRES) (20) 

The following expression for VREs can then be derived by rearranging equation (20): 

VRES ý VS X (FAIR 
- Fmix)/(Fmix - 

FExp) (21) 

As both the02 andC02 fractions were measured, two versions of equation (21) were 

used (one for02 and one forC02) and two values of VRES were calculated. The mean 

of the two values was used as the representative value for VRES. Because the gas 

analysers (see section 5.3.6.1) were calibrated to measure gas fractions relative to the 

total volume of a dry gas mixture, the Vs in equation (21) was expressed as the 

equivalent dry volume (ATPD) as follows: 

VS (ATPD) ý VS (ATP) X (PB - PH20)/P]3 

VRES was determined for a total of 12 Douglas bags: four times each for eight of these 

bags (inter-bag data) and eight times each for the remaining four bags (intra-bag data). 

It was suspected that there might be between-bag variation in VRES, depending, for 

example, on how the bags hang when empty. It was of interest therefore to evaluate the 

variability in VREs for different bags relative to that for repeat determinations on the 

same bag. The intra-bag data were separated into four data sets, each of which 

contained eight values for repeat determinations of VREs on the same bag. The inter-bag 

data were separated into four data sets, each of which contained eight values for VRES 
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that were determined on eight different bags. For each data set both the mean VREs and 
the SD about this mean were calculated. 

The VREs value obtained was 0.12 ± 0.012 L for the inter-bag analysis and 0.12 ± 0.016 

L for the intra-bag analysis. These data do not support the notion that VREs varies 

systematically for different Douglas bags. Instead, they suggest that a common VRES 

can be assumed for all bags. The uncertainty in VREs associated with this assumption, 

expressed as 95% confidence limits, would be ± 0.024 L. The uncertainty in VREs for a 

given bag is unlikely to exceed ± 0.031 L (95% confidence limits). 

5.3.6.2.2 Correcting for the effect of VREs contarnination 

Throughout this thesis all Douglas bags were flushed with room air immediately prior to 

use. The aim was to ensure that the composition of the residual air was essentially the 

same as that of the room air (determined from the measurement of F, 02 and FC02 . see 

section 5.3.5). Corrected values for FE02 and FEC02 were calculated for each sample, 

assuming that the expirate that entered the analysers was contaminated with 0.17 L of 

room air [this includes the 0.12 L VREs and the 0.05 L volume in the master valve which 

was assumed to be exposed to room air during each bag change (see section 5.3.2.1)]. 

These corrected values [equation (22)] were then used for the determination of V02 

and ýC02, respectively. The corrected value (FCORR) was derived as follows: 

FcoRR = (FmEAs + 0.17/ VE) x (FmFAs - FAiR) (22) 

and as both the measured 02 and C02 fractions. were corrected, two versions of 

equation (22) were used (one for 02 and one for CO. ). 

Provided the actual VRES and master valve volume combined is always 0-17 L, FCORR 

should be equivalent to the actual gas fraction. For a given error in VREs, the error 

incurred in the calculated value for FcoRR is a function of both VE and FMEAS. For both 

FE02 and FEC02 
9 the error incurred in the calculated value will be highest when VE is 

small. For FE02, this error will be highest when the FmEAs for 02 is low. For FEC02 

the error will be highest when FmEAs for CO. is high. For a given exercise intensity VE 
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will increase and the variation incurred in FcoRR as a result of variation in VREs will 

decrease, as the sampling period increases. Similarly, for a given sampling period, VE 

will increase as exercise intensity increases. However, FE02 tends to increase and 

FEC02 tends to decrease. Hence the variation incurred in FcORR for 02 and FCORR for 

C02 as a result of variation in VREs decreases markedly as exercise intensity increases. 

T able 5.8 shows data on the uncertainty that would be incurred in V02 and VC02 as a 

result of the ± 0.031 L uncertainty in VREs. This table was compiled using the 

calculations and data used to compile table 5.1. In all cases it was assumed that the 02 

and CO 2 fractions in the residual mixture were . 2093 and . 0007, respectively. - 

Table 5.8 Effect of a±0.031 L uncertainty in VREs on the uncertainty incurred in 
ý70 

2 and 'ýC02 at three levels of exercise intensity and for four 

collection periods. 

%Uncertainty in V02 %Uncertainty in ý7C02 

Collection Period (s) Collection Period (s) 

Exercise 
Intensity 

15 30 45 60 15 30 45 60 

Moderate 0.28 0.14 0.09 0.07 0.28 0.14 0.09 0.07 

Heavy 0.10 0.07 0.05 0.04 0.10 0.07 0.05 0.04 

Severe 0.07 0.04 0.02 0.01 0.07 0.04 0.02 0.01 

Assuming that the actual VREs is 0.12 L (and the 0.05 L master valve volume is 

contaminated with room air only), the error in V02 and VC02 will be zero for any 

sampling period and any exercise intensity. The uncertainty (table 5.8) in V02 or 

ý7C02, associated with this assumption, is extremely small and will decrease as either 

exercise intensity or sampling period increases. 

5.4 Accuracy and precision of the derived data for VO, and VC02 
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5.4.1 Background 

In section 5.3 data were presented on the errors and uncertainties that might realistically 
be incurred in ý102 and VC02 for a variety of sampling periods and exercise 
intensities, assuming incorrect values for a given variable were used in the calculation of 
ý702 and ý7C02. This approach is useful in that it can provide some insight into which 

factors are likely to exert the greatest influence on the accuracy and precision with 

which V02 and VC02 can be determined. However, it does not allow an estimate to 

be made of the overall accuracy and precision of the derived V02 and VC02 data. 

Estimating the total accuracy of V02 and VC02 is of interest to ensure that these data 

are comparable with the findings of other laboratories (assuming that these other 
laboratories are concerned with the accuracy of their measurements). Estimating the 

total precision of V02 and VC02 provides an indication of the technological day-to- 

day variability in repeated determinations when these are partitioned into biological and 

technological components. Finally, estimating the total precision of V02 and VC02 

allows one to assess whether changes in these values, in response to an intervention, are 
due to the intervention itself or to the technological/biological variability. 

The following sections provide estimates of the total error (accuracy) and the total 

uncertainty (precision) in the calculated values for V02 and VC02 when the 

procedures outlined in the preceding sections are followed. 

5.4.2,4ccuracy of the derived datafor P02 and JýCO2: the effect of errors 

As far as errors in the determination of V02 and ý7C02 are concerned, the situation is 

relatively straightforward. There may be an error of 0.1 mmHg error in the 

measurement of P. (see section 5.3.3), a 0.2 *C error in the measurement of T(EXP) and 

consequently a 0.2 mmHg error in the calculation of PH20 (see section 5.3.4), and an 

error of 0.0001 and 0.00011 in the measurement of F. O. and FEC02, respectively (see 

section 5.3.6.1.2). The worst-case scenario for the total error in the calculation of V02 

or VC02 would be if these errors were present in each of the variables at the same time 

in a direction (+ or -) that maximised the error in the calculated value. For the 
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calculation of V02 this scenario would arise if all the above errors were in a negative 

direction, with the exception of the error-in PB. ForVC02 the worst case scenario 

would arise if all the above errors were also in a negative direction, with the exception 
I of the error in PB and the error in FEC02 (and excluding FE02). These worst case 

scenarios for the total error in the calculation of 
ý702 

and 
ýrC02 

are presented in table 

5.9. This table was compiled using the calculations and data used to compile table 5.1. 

Table 5.9 Total error incurred in the calculation of VO 
2 and VCO 

2 at three levels 

of exercise intensity and for four collection periods. 

Total % error in V02 Total % error in ýrC02 

Collection Period (s) Collection Period (s) 

Exercise 15 30 45 60 Is 30 45 60 
Intensity 

Moderate 0.50 0.50 0.50 0.50 0.51 0.48 0.47 0.47 

Heavy 0.59 0.59 0.59 0.59 0.56 0.53 0.52 0.52 

Severe 0.78 0.78 0.78 0.78 0.64 0.61 0.60 0.60 

5.4.3 Precision of the derived datafor P02 and ýCO2: the effect of uncertainties 

As far as uncertainties are concerned, the situation is more complicated than it is for 

errors. It is possible to estimate the total uncertainty that would be incurred in the 

calculation of ý702 and ýT02 for the situation in which the direction of the individual 

uncertainties involved in each calculation is such that the total uncertainty in the 

calculated value is maximal. However, this estimation is likely to be an overestimation 

of the total uncertaintyjhat might realistically be incurred because in practice some of 
the above uncertainties would cancel. Formulae are available that allow an estimate to 
be made of the total uncertainty that would be incurre4 in the dependent variable for the 

situation in which one variable is a function of several independent variables (Challis, 

1997; Topping, 1972). The requirements are that an estimate of the uncertainty that 

would be present is available for each of the independent variables and that the 
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dependent variable can be expressed algebraically as a function of the independent 

variables. For a function of the form Pý f(XIo X2. 
..., 

X4), the formula is: 

(5p =[ t5p x 
(5xi il 

(23) 

There will be an uncertainty of ± 0.57 L in the corrected VE measurement (see section 

5.3.2.3) and a±0.07 L. min-1 uncertainty in the calculation of the sample volume lost 

during the measurement of expired gas fractions (see section 5.3.2.3). Additionally, 

there will be an uncertainty of ± 0.2 mmHg in the measurement of PB (see section 

5.3.3), a±0.2 'C uncertainty in the measurement of T(,. ), and consequently a±0.2 

mmHg uncertainty in the calculation of PH20 (see section 5.3.4). However, an 

important assumption underpinning the above approach to estimating the propagation of 

uncertainties is that the uncertainties in the independent variables are independent of 

each other. This is not the case with T(,. ) 
because a given uncertainty in T(,. ) will 

introduce uncertainties in P1120 and, thus in the determination of VE(STPD) from 

VE(ATPS), as well as in the determination of VE(sTps) from VE(ATPS). The combined 

effect, for an uncertainty of ± 0.2 IC in T(,. ), 
is that an uncertainty of 0.10% will be 

incurred in the calculated ý702 and VC02 (see section 5.3-4). A similar effect can be 

obtained, however, by assuming that the uncertainty in T(E, ) 
is ± 0.3 'C and ignoring 

the effect that this uncertainty would have on PH20- This is what was done when 

equation (23) was used to estimate the total uncertainty in the- calculation of ý702 and 

ý7C02 
- 

The effect of the ± 0.024 L uncertainty in the size of VREs (see section 5.3.6.2) was 

quantified in terms of the effect that this variation would have on the corrected values 

for expired gas fractions. This uncertainty, which is equivalent to the difference 

between FACT and FCORR, was calculated for each exercise intensity and each sampling 

period, and for both FE02 and FEC02. Finally, a±0.0001 uncertainty in the 
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measurement of FE02 and FEC02 (5.3.6.1) was also included in the above estimation 

of the total uncertainty. 

All of the above uncertainties will affect the precision with which V02 can be 

determined. The precision with which VC02 can be determined will be affected by 

each of the above uncertainties with the exception of uncertainties in the determination 

of F. 02. The total uncertainty in V02 and ýC02 was calculated using equation (23) 

with equations (17) and (14), respectively. The total uncertainty in the calculation of 
VO 2 and VCO 2 is shown in table 5.10. This table was compiled using the calculations 

and data used to compile table 5.1. 

Table 5.10 Total uncertainty incurred in the calculation of ý'02 and VC02 at 
three levels of exercise intensity and for four collection periods. 

Total % uncertainty in V02 Total % uncertainty in ý7C02 

Collection Period (s) Collection Period (s) 

Exercise 15 30 45 60 15 30 45 60 
Intensity 

Moderate 6.0 3.3 2.4 2.0 6.2 3.5 2.6 2.1 

Heavy 3.2 1.8 1.4 1.1 3.4 1.9 1.4 1.2 

Severe 1.9 1.2 0.9 0.8 1.8 1.1 0.8 0.7 

Two important conclusions can be drawn from the data presented in this chapter. First, 

since it has been shown that the error in the calculated V02 will always be < 0.9% it 

can be concluded that the procedures adopted in this thesis allow V02 to be determined 

accurately across a wide range of exercise intensities and, in particular, for short 

sampling periods. Second, it can be concluded that whilst the uncertainty in the 

calculated V02 is likely to be very small when a long sampling period is used or severe 

intensity exercise is studied, this uncertainty or variability will increase as the sampling 

period decreases. Furthermore, the possibility that the variability in ý102 may decrease 

as exercise intensity increases suggests that short sampling periods should only be used 
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during severe intensity exercise, where the two determinants of variability (sampling 

period vs. exercise intensity) may partly counter each other. These conclusions are 

important for establishing criteria to define ý702,, 
a, and are investigated further in 

Study I (Chapter 6). 
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CHAPTER 6 

STUDY 1: ESTABLISHING CRITERIA TO DEFINE ýO 
2max 

6.1 Background 

6 1.1 Identifying the issues 

The notion of V02rnax was originally conceived at the start of the twentieth century (see 

section 2.2.2) and since this time there has been some confusion among physiologists 

over. the definition of ý70Z,,, 
x and whether a true V02,,. 

x has been attained during 

exercise (see section 4.2). Since the concept of V021nax, and whether it is attained 

during middle-distance running, is central to this thesis, it is essential that an V02n= C 

be quantified both validly and reliably. 

This study addressed some of the issues raised in chapters 4 and 5. The focus was on 

establishing criteria for defining V02rnax (see section 4.2.3) and assessing the reliability 

and criterion validity of the off-line Douglas bag system used in this thesis (see chapter 

5) to determine V02max. The important considerations for this study were that: 

criteria for defining ý702,.,, can undeniably demonstrate the true incidence of a 
plateau in ý'02 during progiessive exercise to exhaustion; 

2. a method for quantifying the value of such a ý702 plateau (i. e. V02rnax) can be 

established; 

3. this quantification method can be used to determine the highest ýrO. attained 
during exercise protocols (e. g. constant intensity square-wave exercise) other 
than those typically used to determine ý702ffiax (e. g. progressive exercise); 

4. this quantification method is both valid and reliable. 

6.1.2 Criteriafor defining V02,.,. 

Traditionally, V02,,. during running has been defined as a plateau in W2 with 

increasing running speed (see section 2.2.2). If this definition is adopted, the process of 

determining V02rrm)c can be split into two clear stages. First, a ýr02 -plateau must be 
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demonstrated during progressive exercise if the experimenter is to be confident that 

ýr02,,. 
x has been attained. Second, if a V02-plateau is identified, a value for this 

plateau (i. e. the criterion 
ý702max) 

must be derived. 

There are several approaches that could be taken to determine whether a V02 -plateau 

occurs during a progressive test, thus satisfying the first of these stages (see section 

4.2.3). Confidence interval based approaches have been the most common method. 

These approaches attempt to identify whether the observed ý102 values during the 

closing stages of a progressive test depart from the linear Ný02 -work rate relationship. 

These observed V02 values must be less than a criterion lower confidence limit for the 

predicted ý'02 for a plateau to be identified. Such approaches are, however, limited to 

identifying the point at which the V02 -work rate relationship begins to plateau. They 

do not identify an asymptotic V02 value (Howley et al., 1995). 

The mathematical modelling approach (Wood, 1999b) discussed in chapter 4 (see 

section 4.2.3) allows a ý'02 
-plateau to be identified and a ý702 value for this plateau to 

be derived (the criterion ý702niax)- It therefore satisfies the two stages for defining 

ý702rnax. This approach could be used for individual participants both to identify a 

plateau in V02 and to derive the value of this plateau. However, this would only be the 

case if all participants were to demonstrate a V02 -plateau. Alternatively, providing the 

majority of participants demonstrate a V02 -plateau, the highest V02 observed (i. e. 

V02peak) could be used to represent the criterion V02nmx on the basis that it is likely to 

be a maximal VO 2- 

For this thesis, the drawback of solely using the modelling approach proposed by Wood 

(1999b) to define V02,,.,, is that it cannot easily be applied to a range of exercise 

protocols: it is constrained to those protocols where a linear ý702 -work rate relationship 

followed by a plateau in V02 is expected. However, this modelling approach could be 

used to identify whether V02 typically plateaus in the participants studied during 

progressive exercise. If there is a high incidence of a V02 -plateau, the experimenter 

can be confident that V02mw, has typically been attained for the test protocol and 
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procedures used. A ýr02 
peak value, representing the highest V02 attained during the 

progressive test, could then be used to define ý702rnax 
- 

If this ýr02 
peak value agrees 

with the criterion V02,.,, from the model for those participants demonstrating a V02 
- 

plateau, the experimenter can be confident that the method of using V02 
peak to define 

V02,. has criterion validity. Furthermore, this ý702 
peak method could be readily used 

during middlemdistance running to determine the highest ýr02 attained. 

61.3 Variability in V02: effect ofsamplingperiod 

It is possible that a V02 -plateau is something that may occur very late in a ramp test. It 

is also possible that thý duration of this plateau will vary between individuals. When 

the aim is to maximise the incidence of a ý'02 
-plateau, a short sampling period should 

be used so that the plateau can be identified, even if it occurs late in the test. The logic 

of this suggestion is apparent when a scenario in which a true ý102 
-plateau occurs over 

the last 60 s of a ramp test is considered. Two data points would identify the plateau if 

30 s sampling periods were used and the first of these was initiated at the onset of the 

plateau (i. e. 60 s before the end of the test). However, at least three data points would 
identify the plateau if 15 s sampling periods were used, regardless of when the first of 
these was initiated. 

It has been suggested previously (see chapter 5) that the variability in 1ý0, is likely to 

increase as the sampling period decreases. This suggestion was made on the basis of an 

analysis of the technical uncertainty that might realistically be incurred in the 

determination of ý10, and how this uncertainty might be affected by sampling period. 

This suggestion is also in agreement with the work of Myers et al. (1990) who 

determined ý702 on-line during exercise that elicited a ý702 equivalent to - 50% 

V02 
peak and, having averaged the breath-by-breath data over various periods (from 5 to 

60 s), showed that the variability in ýr02 increased as the sampling period decreased. 

This notion of the variability in VO, decreasing with an increase in sampling period 

raises a potential contradiction between the two stages for establishing criteria to define 

ý'02rmx. The effect of sampling period on the variability in ýrO. causes a conflict 
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between the need to use a relatively short sampling period to identify a plateau in 1ý02 

and the need to use a relatively long sampling period to ensure that the presence of a 

plateau is not obscured by excessive variability in the ýr02 data. In addition, the 

variability in ý702 associated with using a relatively short sampling period to increase 

the chance of identifying a plateau may affect the criterion validity and reliability of the 

value used to represent this ý102-plateau. 

It is possible that if ý02pcak were used to represent V02,,, 
a,,, this value may increase in 

response to a decrease in sampling period, as a result of the associated variability in 

'ý02 
. 

Gomes et al. (1997) compared ý102P,. 
k values derived from raw breath-by-breath 

data with those determined by averaging these data over 5,15,20,30, or 60 s periods. 

The peak ý10, increased as the averaging period decreased (1ý02Pk was 5% higher for 

the 5 than for the 60 s period) but there were no statistically significant differences in 

ýro2peak among the various sampling/averaging periods. 

The issues identified above could be partially resolved by using a relatively short 

sampling period (e. g. 15. s) to allow a plateau in ý702 to be identified and then 

averaging the data over a longer period (e. g. 30 s) to derive a 1ý02peak value to represent 

this plateau value (i. e. ý702max). This approach would potentially increase the chance 

of detecting a short plateau (e. g. 45 s) occurring late in a progressive test in comparison 

to using a longer sampling period. The subsequent use of a longer avera ging period 

would potentially ensure that the variability in ý702peak is reduced in comparison to the 

15 s raw data used to identify the ý702-plateau. The use of averaging periods longer 

than 15 s could also be applied to 15 s raw ý702 data determined during middle- 

distance running to identify the highest ýr02 attained. The key consideration here is 

that the averaging period should be short enough to enable the highest ýr02 attained to 

be validly quantified, since the duration of such runs may be < 120 s (i. e. the 400 and 

800 m), but long enough to ensure that the variability in ý102 is controlled. 
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6.1.4 Variability in ý02: effect of exercise intensity 

It was suggested previously (see chapter 5) that the variability in ý702 might decrease 

as exercise intensity increases. Once again, this suggestion was made on the basis of an 

analysis of the technical uncertainty that might realistically be incurred in the 

determination of ý702 and how this uncertainty might be affected by exercise intensity. 

This notion agrees with a similar analysis done by Wood (1999b) but it conflicts with 

the work of Lamarra et al. (1987) who showed that the standard deviation for raw 
breath-by-breath data, was the same for unloaded (0 W) and moderate intensity (100 W) 

cycling. However, the highest exercise intensity studied by Larnarra et al. was moderate 

and this exercise intensity domain was the lowest considered in the analysis presented in 

chapter 5. It is conceivable that variability in ý702 does decrease as exercise intensity 

increases but that this effect is only apparent at higher exercise intensities (i. e. in the 

heavy or severe intensity domains). 

If the variability in ý'02 does decrease with increasing exercise intensity, the variability 

in 'ý02 for a givcn sampling pcriod will dccrcasc throughout a progrcssive exercisc 

test. Therefore, the variability associated with a relatively short sampling period (i. e. 15 

s) used towards the end of a progressive test may be such that a plateau in ý70, is not 

obscured by excessive variability. That is, the intensity-effect may counterbalance the 

sampling-effect. This would resolve the potential problem of excessive variability 

associated with short sampling periods obscuring the identification of a plateau in ý'02 
- 

Consequently, the approach of using a short sampling period (i. e. 15 s) to identify a 

plateau in ý702 and a longer averaging period (e. g. 30 s) to derive a ýro2peak to 

represent this ýr02 
-plateau value (i. e. the criterion ý702rmx ) could satisfy the two stages 

for establishing criteria to define ý702rnax (see section 6.1.1), providing this approach 

can be shown to be both valid and reliable. 
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In the present study, the criterion validity and test-retest reliability of the above 

approach to defining ý702rnax was evaluated in accordance with the first aim of this 

thesis by assessing the: 

1. incidence of a plateau in rawV02 data determined from 15 and 45 s sampling 
periods, using the modelling approach proposed by Wood (1999b); 

2. agreement between ýFo2peak 
values determined from various averaging periods 

of the 15 s raw data and the plateauV02 value (i. e. the criterion 
V02rMx) 

derived from the model (Wood, 1999b); 

3. agreement between repeat determinations ofV02peak based on the 15 and 45 s 
raw data and various averaging periods of the 15 s raw data. 

6.2 Methods 

62.1 Participants 

Eight male trained runners (age 26.3 ± 4.9 yr; height 1.80 ± 0.08 m; mass 72.0 ± 7.6 kg) 

volunteered to participate. All were well habituated with laboratory procedures in 

general and with motorised treadmill running in particular. Each participant was in 

regular running training at the time of the study. 

62.2 Preliminary tests 

All participants initially completed a progressive ramp test (0.16 km. h" per 5 s) on a 
level motorised treadmill (see section 4.2.2 for a more detailed description of this ramp 

test). This test allowed an appropriate starting speed to be selected for future tests to 

ensure that exhaustion would be reached in - 10 min (Buchfuhrer ct al., 1983) for each 

participant (see section 4.2.2 for more detail of this process). The ý102 at which the 

lactate threshold occurred was determined by means of the V-slope method (Beaver et 

al., 1986) for each participant (see section 4.3.3). The corTesponding speed for this 

ý702 was then determined from each participant's ýr02 -running speed relationship. 
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6.2.3 Experimental design 

Study 1: Defining ý02max 

Following the preliminary test, each participant completed a further four ramp tests 

(0.16 km. h-1 per 5 s) on a level motorised treadmill. Participants were encouraged to 

continue running for as long as possible. For two of the tests a nominal 15 s sampling 

period was used and for the other two tests a nominal 45 s sampling period was used to 

determine ý'02: 

1. test A: 15 s sampling period; 

2. test B: 15 s sampling period; 

3. test C: 45 s sampling period; 

4. test D: 45 s sampling period. 

The preliminary test described above was always completed first, but thereafter the 

eight participants completed tests A-D in a random order. Two participants were 

allocated to each sequence within a4x4 Latin Square to control for order and 

carryover effects. Each participant completed their own sequence of tests at the same 
time of day. All five tests (i. e. preliminary and tests A-D) were completed within 14 

days, with at least 48 hours between each test. Each of the four tests (A-D) was 

preceded by a5 min warm-up at 10% below the speed corresponding to each 

participant's lactate threshold (see section 6.2.2) to control for the effects of prior 

exercise on the determination of ý'02 (Gerbino et al., 1996). 

62.4 Data collection 

The off-line Douglas bag system described in chapter 5 was used to determine all gas 

exchange variables. The sampling periods were nominally 15 and 45 s. A whole 

number of breaths was always collected, so typically the actual period was not identical 

to the intended nominal one (i. e. 15 or 45 s). Every effort was made to ensure that the 

actual was as close to the nominal sampling period as possible. For the 15 s sampling 

period, the actual period was usually between 15 and 20 s, and on no occasion was it 

less than 15 s. For the 45 s nominal sampling period, the actual period was between 40 

and 50 s. 
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6.2.5 Treatment ofdata 

6.2.5.1 Defining a 'ý02 
-plateau 

For each test (A-D), ý'02 data from the first 90 s were excluded from the analysis of 

the incidence of a ý'02-plateau to account for the initial lag in the ý702 response to 

exercise. The remaining data were fitted with two different models. The first was a 
linear model (y = aix + bl) and the second was a two segment plateau model (Wood, 
1999b): the first segment was a linear function (y = a2 x+ b2) and the second was a 
horizontal line (y = c). The independent variable was running speed (km. h") and the 
dependent variable was ý'02 (ml. kg-l. min-1). 

Model fitting was done using standard piecewise least squares regression (Vieth, 1989). 

For the plateau model, all possible groupings were evaluated. Initially, the first two 

data points were included in the first segment of the model and the remainder were 

allocated to the second segment. Then, the first three data points were included in the 

first segment and the remainder were allocated to the second segment, and so on. This 

procedure was continued until the last two data points were allocated to the second 

segment and the remainder were allocated to the first segment. 

Each data point was included in either the first or the second segment: no data points 

were common to both. The residual sum of squares (RSS) was calculated for each 

grouping and the grouping that yielded the lowest RSS was selected. Goodness of fit 

was evaluated by means of the standard error of estimate (SEE): \rR--SS/df , where df 

(degrees of freedom) is equal to the total number of data points minus the number of 

parameters (Vieth, 1989). There were two parameters (a, and bi) for the linear model 

and three for the plateau model (a2, b2, and c). 

In those cases in which the SEE was lower for the plateau model than for the linear 

model, a plateau in the ý102 -running speed relationship was deemed to have occurred. 

When such a V02 
-plateau was identified, the V02 for this plateau was derived from 

the value of the horizontal line (y = c) that defines the second segment of the plateau 

model. The duration of the V02 -plateau was calculated by solving the two equations (y 

= a2 x+ b2 and y= c) to yield a set of coordinates (running speed, VOO for the 
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intercept between the two segments. The time corresponding to this intercept was then 
derived and subtracted from the end test time to yield the plateau duration. 

6.2.5.2 Defining V, O2=x 

For each set of raw ýF02 data [i. e. 15sRAw (test A and B) and 45sRAw (tests C and D)] 

ýro2pnk was noted. For each set of l5sRAw data (i. e. tests A and B), four sets of 

averaged data were derived and 'ý02p,, k was calculated from these: 

1.30 s standard (30ssTAN): [i. e. sample (I + 2)/2, (3 + 4)/2 ... 
2.30 s moving (30smovE): [i. e. sample (1+ 2)/2, (2 + 3)/2 ... ]; 

3.45 s standard (45ssTAN): [i. e. sample (I +2+ 3)/3, (4 +5+ 6)/3 

4.45 s moving (45smovE): [i. e. sample (I +2+ 3)/3, (2 +3+ 4)/3 

The averaging always started with the final 15 s sample from the end of the test and 

worked back towards the start. A 60 s averaging period was not considered here 

because it would not be practical for determining ýro2peak during middle-distance 

running. Therefore, for each set of l5sRAw data (tests A and B), five ýro2pcak values 

were derived: 15sRAw, 30SSTANq 30SMOVE, 45ssTAN, and 45SMOVE. Additionally, ý702P,, 
k 

was derived for each set of 45sRAw data (tests C and D). 

6.2.6 Statistical analysis 

6.2.6.1 General 

All tests were analysed at an alpha level of 0.05 and all data are presented as mean ± SD 

unless otherwise stated. Individual data can be found in Appendix I, together with full 

results for each of the tests described below. 

'6.2.6.2 Criterion validity of ýro2peak 

For each participant a mean 
ýro2pnk 

value was calculated from the two tests [(A + B)/2] 

for each of the five sampling/averaging periods (described in section 6.2.5.2) based on 
the l5sRAw data. This was also done for the 45sRAw V02p,,, k data [(C + D)/2]. 
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Similarly, for each participant a mean criterion Xý02-plateau value from the second 

segment of the plateau model, determined from the 15sRAw data, was calculated [(A + 

B)/2]. In total, this gave six data sets: the criterion ý102 
-plateau value from the model 

vs. the ý702peak derived from the 15sRAw, 30ssTAN, 30SMOVE9 45ssTAN, 45SMOVEY and 

45sRAw data. 

It was assumed that the plateau model based on 15sRAw data will yield the greatest 
incidence of a ý702-platcau, that the value of this plateau will therefore be the true 

criterion ý102rmx, and that the agreement between this criterion value and the various 
ýro2peak values will represent the bias (i. e. criterion validity) associated with using the 

sampling/averaging periods to define ý702niax. Bias was assumed to. be a constant 
function of ý702,,, 

ax and was calculated as the mean difference between each of the six 
data sets. 

6.2.6.3 Test-retest reliability of 
ý702pcak 

The difference between repeat determinations of ýro2pcak (e. g. test A- test B and test C 

- test D) was derived for each participant and for each of the six sampling/averaging 

periods described in section 6.2.5.2. The bias in these test-retest determinations of 
ýro 

2peakwas calculated as the mean difference as described in section 6.2.6.2. 

To investigate hcterosccdasticity, the absolute test-retest differences were plotted as a 

function of the mean ý02peak for each of the six sets of paired data. A positive slope 

for such a plot indicates positive heteroscedasticity (i. e. an increase in the magnitude of 
the differences with an increase in the mean), whereas a negative slope indicates 

negative heteroscedasticity (i. e. a decrease in the magnitude of the differences with an 
increase in the mean). For determining test-retest reliability using 95% limits of 

agreement (LOA), a log-transformation is appropriate for positive heteroscedasticity, 

however for negative heteroscedasticity, a regression based approach is required (Bland 

and Altman, 1999). The slopes for the plots in this study were all negative, indicating 

negative heteroscedasticity. Hence regression based 95% LOA were used. These 
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regression based 95% LOA were derived by regressing the absolute differences (R) on 

the mean 
ý702pnk (A) to get: 

R= a4A + b4 (1) 

The SD of R is then obtained by multiplying the predicted values by Vn /2 (Bland and 

Altman, 1999). The 95% LOA for the reliability of ý702peak are then given by: 

95% LOA 1.96, NF7r/2 R (2) 

6.3 ResuIts 

63. ] Defining a ý02 
-plateau 

Table 6.1 gives data on the SEE and the incidence of a ý10, 
-plateau for the 15sRAw and 

45sRAw data. In addition, the plateau duration and the value of this plateau (i. e. 
V02=x) derived from the plateau model are given. In determining the incidence of a 
VO, -plateau, it was assumed that a plateau had occurred if the SEE was lower for the 

plateau than for the linear model. 

Table 6.1 SEE for the linear and the plateau model and the incidence of a ý102- 

plateau for the four sets of raw data (n = 8). 

SEE - linear SEE - plateau Incidence Duration ýrO 
2niax 

Test (rnl. kg-. rnin7 1) (rnl. kg-1. rnin") M (s) 
(ml. kg". min7l) 

A- 15sRAw 1.54 ± 0.61 1.00 ± 0.25 100 81.7 ± 41.5 62.5 ± 5.6 

B- 15sRAw 1.61 ± 0.38 1.06 ± 0.19 100 82.7 ± 24.3 62.2 ± 5.4 

C- 45sRAw 1.48 ± 0.52 0.85 ± 0.30 75 73.0 ± 32.7 62.5 ± 5.8 

D- 45sRAw 1.28 ± 0.56 0.91 ± 0.35 88 61.9 ± 28.7 62.5 ± 5.6 
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For the 15sRAw data the SEE was lower for the plateau than for the linear model in all 

cases. For the 45sRAw data there were two cases in test C, and one in test D, where the 

SEE was lower for the linear than for the plateau model. The ý102 
-plateau values were 

similar across all data sets. Data from a representative participant for the plateau model 
based on 15sRAw data are given in Figure 6.1. 
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Figure 6.1 Data from a representative participant showing ý702 determined from 
15sRAw sampling periods as a function of running speed. 

6.3.2 Defining P02,,,.,, 

6.3.2.1 Criterion validity of V02maic 

Figure 6.2 gives data on the agreement between the mean V02 value derived from the 

second segment of the plateau model (i. e. the criterion V02".,, ) from test A and B, and 

the mean ý02pcak values derived from the 15sRAw [(A + B)/2)], the 45sRAw [(C + 

D)/2)], and each of the four averaging periods based on the 15SRAw data (see section 

6.2.6.2). The bias between V02,,.,, derived from the plateau model and Xý02pcak 

derived using each of the six sampling/averaging periods was calculated as the mean 

difference (see sectiop 6.2.6.2). This represents the bias in the particular approach to 
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using V02peak to define ýr02rnax. Given that a plateau in ýF02 was observed in all 

participants when a 15 s sampling period was used with the modelling approach, it is 

assumed that the plateau model based on 15sRAw data represents the true or actual 
ý702niax. Therefore, this criterion plateau model value was considered to be the 'gold 

standarX approach to defining ý702nax against which the approach of defining V02,,. 
x 

as the ý702peak observed for a particular averaging technique and period should be 

evaluated. 

The bias in ýrO,,,, 
k determined from each of the four averaged sets of 15sRAw data, and 

the 15smw and 45sRAw data themselves, is given in table 6.2. The mean ± SD ý02pcak 

values, for each of the sampling/averaging periods, are also given. 

Table 6.2 Bias in V02p,, k derived from six sampling/averaging periods. 

Averaging or sampling period (s) 

15SRAW 45sRAw 30sSTAN 30SMOVE 45SSTAN 45smovE 

Bias in ýro2peak 0.98 0.86 0.80 0.88 0.68 0.73 

(nil. kg-l. min7l) 

Mean ± SD ýrO 
2p,,, k 

63.4 ± 5.4 63.0 ± 5.4 63.0 ± 5.4 63.0 ± 5.5 62.7 ± 5.4 62.8 ± 5.4 

(ml. kg-l. min7l) 

Table 6.2 shows that the bias in 'ý02peak was positive (i. e. ýro2pnk overestimated the 

criterion ý702,,, 
a,, derived from the plateau model) and that the magnitude of this bias 

decreased with an increase in sampling/averaging period. For a given averaging period, 

the two averaging methods gave similar bias in ýro2peak 
P within 0.1 ml. kg-l. min". Table 

6.2 also shows that the mean ± SD ý702peak values were similar across all of the 

sampling/averaging periods. 
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6.3.2.2 Test-retest reliability of V02rmx 

The bias between repeat tests (A and B for the l5sRAW and averaged data, and C and D 

for the 45sRAw data) was calculated as the mean difference between repeat tests (see 

section 6.2.6.2). This bias was always :50.35 ml. kg". min-_'. Regression based 95% 

LOA were calculated using equation (2) in section 6.2.6.3 to give the test-retest 

reliability (i. e. the random variation) Of ý02peak 
* 

Plots of the absolute test-retest 

differences against the mean ý02peak are shown in Figure 6.2. The limits for the test- 

retest reliability (i. e. the random variation in ý702peak) are given in table 6.3 for the 

range of ý02peak values likely to be encountered in this thesis. The random variation 

decreased as a negative function Of ý02pcak (i. e. the data showed negative 

heteroscedasticity) and was greatest for the 15sRAw data and lowest for the 45sRAw data 

for the range of ý702peak values considered. 

Table 6.3 Test-retest reliability of 
ý702puk for six sampling/averaging periods. 

Test-retest reliability of 
ýro2pcak (mlIg". min7l) 

15SRAW 45sRAw 30SSTAN 30smovE 45SSTAN 45SMOVE 
- ZPCKK 

(mLkg-l. min7l) 

55 ± 3.02 ± 1.78 3.69 ± 3.63 ± 3.56 ± 3.29 

60 ± 2.53 ± 1.42 2.69 ± 2.76 ± 2.80 ± 2.72 

65 ± 2.04 ± 1.06 1.69 ± 1.88 ± 2.04 ± 2.14 

70 ± 1.55 ± 0.70 0.69 ± 1.00 ± 1.28 ± 1.56 
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Figure 6.2 Relationship between the absolute differences in ýro2peak, derived from 

repeat tests, and the mean ý702pnk for six sampling/averaging periods. 
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6.4 Discussion 

64. ] Defining a V02 -plateau 

The results of the present study suggest that in trained runners the ýr02 -running speed 

relationship does plateau over the closing stages of a ramp test. A ýF02 -plateau was 

evident in all participants, and in repeat tests, when a 15 s sampling period was used in 

conjunction with the modelling approach of Wood (1999b). This is in contrast to the 

lower incidence (:! ý88%) seen when a longer 45 s sampling period was used. The use of 
this modelling approach, therefore, satisfies the first stage of establishing criteria to 

define ý702rnax: it identifies whether the 'ý02 -running speed relationship plateaus for 

the majority of individuals during progressive exercise. Furthermore, if 15 s sampling 

periods are used to derive the ý702 data on which the modelling is based, the incidence 

of identifying a V02 
-plateau will be relatively higher than if longer sampling periods 

are used. 

The modelling approach to defining a plateau assumes that ý702 either increases as a 

linear function of running speed throughout the ramp test or increases as a linear 

function initially and then plateaus in the closing stages of the test. When the 15sRAw 

ýF02 data were modelled, at least 26 data points were typically included in the model. 

Were the ý'02-running speed relationship linear, each of these data points would vary 

randomly around a straight line. The goodness of fit would only be better for the 

plateau model if the final few data points varied in such a way that they were generally 

lower than would be predicted from a linear ý702 
-running speed relationship. For 

example, the plateau -model would be the best fit model for a set of data in which all 

data points except the last fit a straight line, provided the final point falls well below this 

line. The chance of this randomly occurring, and a spurious plateau being identified, 

when 26 or more data points are available and the VO, -running speed relationship is 

linear, is, however, small. 

For the I SsRAw data, the duration of the ý702 
-plateau ranged from 33 to 165 s across the 

two tests. Together with the mean ± SD plateau duration of 82.2 ± 32.8 s for the two 

tests, these data suggest that when a plateau is evident in a ramp test it generally occurs 
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within the last 1-2 min of the test. The relatively higher incidence of a ý702 
-plateau for 

the l5sRAw compared to the 45sRAw data suggests that the greater density of data for the 
final 1-2 min of the test, when 15 s sampling periods are used, allows a greater chance 

of a plateau being identified (assuming one exists). This suggestion is logical as the 

greater density of data over the closing stages of the test would increase the chance of 
the final data points falling well below the straight line of the linear model. 

The high incidence of a VO 
2-plateau for the 15 s samples also suggests that the 

relatively high variability associated with short sampling periods did not obscure the 

identification of a plateau. This is important because the variability associated with 

short sampling periods potentially causes a conflict between the first stage (defining a 
V02-plateau) and the second stage (assigning a value to this plateau) of establishing 

criteria to define V02max 
- 

It is possible that the increased variability in V02 with a 

decrease in sampling period (highlighted by the lower 95% LOA for the reliability of 

45SRAw than 15sRAw V02peak data) is counterbalanced by a decreased variability in V02 

at high exercise intensities close to V02niax. This latter point is loosely supported by 

the decreased variability in ý702peak between repeat tests as a function of the size of 

V02p., 
k (see section 6.4.3). This potential counterbalancing effect, coupled with the 

greater density of data points for the final 1-2 min of the test, should ensure that the use 

of 15 s sampling periods will allow a V02 
-plateau to be identified whenever one lasting 

at least 30 s exists. Therefore, short (e. g. 15 s) sampling periods should be used to 

determine ý702 over the closing stages of a progressive test when the primary aim is to 

identify a plateau. 

The findings of the present study also lend support to the use of speed ramped tests on a 
level motorised treadmill to determine ýr02niax in runners. The high incidence of a 
ýr02 -plateau in the present study for this type of ramp test on a level treadmill, even 

when 45 s sampling periods are used to determine ýr02 (81% incidence of a plateau 

across the two repeat tests), is in agreement with the high (92%) incidence of a ýr02 
- 

plateau reported by Draper et al. (1998) for a similar test protocol. Furthermore, this 

incidence is higher than has been reported elsewhere in the literature for incremental 
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protocols (Duncan et al., 1997; Rivera-Brown et al., 1994; Sheehan et al., 1987). 

Finally, the present study suggests that the runners attained ýr02rnax, and were not 
limited by cadence, as has been suggested by Taylor et al. (1955). 

6 4.2 Defi n ing ý0, 

Since a ý'02-plateau was identified in all participants when a 15 s sampling period was 

used to determine ý10., the results of the present study suggest that the ý102 value 

associated with this plateau is likely to be maximal (i. e. ýr02inax) for level treadmill 

running. The use of 15 s sampling periods in conjunction with the modelling approach 

satisfies the first stage of establishing criteria to define V02rnax: a ý'02 
-plateau was 

identified in all participants and the experimenter can be confident that this plateau 

value is a true ý102rmx. Deriving the value of this plateau is the second stage of 

establishing criteria to define ýF02,,,,, and it is important that this derivation is both 

valid and reliable. Furtherinore, for the purpose of this thesis, it is important that the 

method used to associate aV02 value with the plateau identified during a progressive 

ramp test can also be used to identify the highest V02 attained during simulated 

middle-distance running events on the motorised treadmill. 

6.4.2.1 Criterion validity of ý02max 

The results of the present study show that ýr02,,, 
k values derived from averages of raw 

data determined from 15 s sampling periods provide a valid representation of the 

criterion ý702niax (i. e. that derived from the plateau model). Indeed, when a moving 

average approach was used, ý702peak was within 0.9 ml. kg'l. min" of the criterion 

ý702rmx 
- The criterion ý102.,. 

x based on 15sRAw data was considered to be the true 

value since a ýr02 -plateau was evident in all participants using this approach and it is, 

therefore, likely that this value was maximal. Furthermore, the V02max values derived 

from the plateau model based on 15sRAw data (62.5 ± 5.6 and 62.2 ± 5.4 ml. kg". min", 
for tests A and B respectively) were very similar to those based on the 45sRAw data 

(62.5 ± 5.8 and 62.5 ± 5.6 ml. kg". min", for tests C and D respectively). 
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The bias in 'ý02peak decreased from 0.98 to 0.73 ml. kg7l. min" as the averaging period 

increased between the 15sRAw and 45SMOVE ýFo2peak data. While this effect is very 

small it may be explained by the fact that the variability in 'ý021, 
e. k derived from the 

averaged data would have decreased with an increase in the averaging period. 

Therefore, some of the variability in the 15sRAw data may have been smoothed as the 

averaging period used to determine ýr02p,, 
k increased. The bias in 'ý02p'eak was 

positive: 
ý02peak 

consistently overestimated the criterion 
V02niax. This is logical 

because 'ý02peak is an average of two or three data points whereas the criterion 
V02max 

could have been averaged over as many as six data points. Therefore, the variability in 

the 'ý02peak values would have been greater than in the criterion 
V02max 

values. 

The mean ý02peak values (from repeat test data) for each of the six sampling/averaging 

periods were very similar (see table 6.2). This finding is similar to that reported by 

Gomes et al. (1997) who reported no statistically significant differences in ý102pýak 

among 5 to 60 s averages of raw breath-by-breath data. Gomes et al. reported a 5% 

difference in ý702p,, 
k between the 5 and 60 s averages. In the present study, the l5sRAw 

ýFo2peak (63.4 ml. kg-l. min-1) was 1% greater than the 45SSTAN (62.7 ml. kg"l. mirf'). 

6.4.2.2 Test-retest reliability of ý702max 

The bias in repeat determinations of ý702peak 
was considered to be constant and was 

very small (< 0.35 ml. kg^'. min-1). This confirms that the experimental design and, in 

particular, the Latin Square effectively controlled for any order or carryover effects. 

The random test-retest variation in ýro2p. 
k decreased through the process of averaging 

the 15sRAw data. For a 'ý02peak of 70 ml. kg-l. min'l, the variation was ± 1.55 and ± 1.00 

ml. kg-l. min-1 for the 15sRAw and 30SMOVE data, respectively. The random variation was 

similar for the 30SMOVE and 30ssTAN averaging methods and the 30SMOVE is, therefore, 

preferable. 
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The decrease in random variation in ýro2pcak with an increase in sampling period 

supports the suggestion made in chapter 5 that the technical uncertainty in ý102 Will 

decrease with an increasing sampling period. This is mainly due to the uncertainty in 

the measurement of the volume of expirate (± 0.57 L) causing greater variability in 

V02when this volume is small (i. e. when the sampling period is short). Therefore, the 

averaging of the 15sRAw data may have smoothed some of these uncertainties in the 

derivedVo2peak values. This finding also supports that of Myers et al. (1990) who 

report a decrease in the SD for repeat determinations of ý702 from 1.7 to 1.4 ml. kg- 
I. min7l (95% LOA of ± 3.3 and ± 2.7 ml. kg-l. min-1) flor 15 and 30 s averages of breath- 

by-breath data, respectively, during exercise at a ýr02 equivalent to - 23.5 ml. kg". min' 
1. While this agreement appears to be much better than that reported in the present 

study, it should be noted that Myers et al. (1990) studied variability within a single test, 

where biological and technical variability would presumably be very small, as opposed 

to the between-test variability studied here. Since theV02 equivalent of the exercise 
intensity studied by these authors was also very low, it would be meaningless to 

extrapolate the regression based 95% LOA (based on V02 values of 55 to 68 ml. kg" 
'. min-') reported here to enable a comparison with the Myers et al. study. 

The effect of the uncertainty in the measurement of the volume of expirate may also 

help to explain why the random variation in ý02pcak decreased as a function of ý7021)cak, 

Just as an increase in sampling period will increase the volume of expirate collected and 

reduce the impact of the associated uncertainty in measuring this volume, a similar 

effect will occur when exercise intensity increases. Indeed, while all participants were 

exercising at the same relative exercise intensity towards the end of the ramp test (i. e. 

the speed corresponding to ý702peak)l those exercising at the higher absolute exercise 

intensities (i. e. those with the higher ý102p,, 
k) may have a relatively larger volume of 

expirate collected for a given sampling period. In turn, this would reduce the impact of 

the uncertainty in the measurement of the volume of expirate. 
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6 4.3 Establishing criteria to define ý02max 

The findings of the present study suggest that using 15 s sampling periods to determine 

ý'02 during progressive exercise satisfies the two key stages for defining V02,,.,, 
- 

First, the incidence of a V02 
-plateau is high (100%) when a IS s sampling period is 

used to determine ý702 with the modelling approach of Wood (1999b). Second, when 

these 15 s data are smoothed using a 30SMOVE averaging approach and ý102P,,,, 
k 

is 

derived from these averaged data, ý02peak is within 0.9 ml. kg-l. min"l of the criterion 

ý702rrmx value and can, therefore, be considered to be, maximal. This ý702peak value 

will also be reliable, with 95% LOA ranging from + 2.76 to ± 1.00 ml. kg-l. min-I for 

ýro2peak values from 60 to 70 ml. kg-l. min-1 when the 30SMOVE averaging approach is 

used. Finally, the 30SMOVE averaging approach used here to define V02na, could be 

used during middle-distance running to identify the highest ý702 attained. This would 

ensure that the variability in ý702 associated with the sampling/averaging period is the 

same for the test used to determine V02nax and that used to derive ý702pcak during 

constant speed running. 

The term ýr02rnax will only be used in the rest of this thesis to define the value 

determined from a progressive test, using the approach described above. This ensures 

that the term is consistent with the traditional definition of V02ff,,, (i. e. that a plateau in 

ýF02 is observed) and that the value ascribed to this plateau closely agrees with the 

criterion V02niax (to within 0.9 ml. kg-l. min"). The term ý702peak will only be used 

from this point onwards to define the highest ý702 attained during middle-distance 

running. 
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CHAPTER 7 

STUDY 11: TEST-RETEST RELIABILITY AND ý702max AS DETERMINANTS 

OF PEAK V02 DURING 800 M RUNNING 

7.1 Background 

7.1.1 Identifying the issues 

A critical assumption in the majority of models of middle-distance running is that the 

parameter representing the asymptote for the highest V02 attained will be V02".,, for 

all events. That is, it is assumed that V02 will rise towards V02,.,,, with V02rmx 

being attained provided the duration is sufficient (see chapter 2). This is consistent with 

the view of many influential physiologists (Di Prampero and Ferretti, 1999; Gaesser and 

Poole, 1996; Ward, 1999; Whipp, 1994) who believe that V02rmx will be attained 

during such running events as they are performed at intensities considered to be in the 

severe intensity domain [i. e. above the 'fatigue threshold', which typically occurs 

halfway between the lactate threshold and V02rmx (Ward, 1999)]. 

The findings of several studies contradict this belief, showing that V02,,.,, is not 

attained during short (- 2 min) exhaustive exercise equiyalent to 800 m running 
(Ariyoshi et al., 1979b; Astrand and Saltin, 1961; Hill and Ferguson, 1999; Uger and 
Ferguson, 1974; Spencer and Gastin, 2001; Spencer et al., 1996; Williams, 1997). In 

particular, Spencer et al. (1996) showed that the highest V02 attained during 800 m 

running reached an asymptote below V02rmx (i. e. that V02 was not rising towards an 

asymptote equal to V02niax)- Physiologists, including the authors of the above studies, 
have consistently overlooked such findings. This is presumably because the attainment 

Of ý702rnax was not the focus of the above studies. To date, no study has been designed 

specifically to establish whether ý102max is attained during the 800 m running event. 

To address the second aim of this thesis, this study drew on the findings from study I to 
investigate whether ýr02niax is attained during the 800 rn middle-distance running 
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event. If it could be shown that V02 reaches'an asymptote that is below V02max 

during 800 m running, the assumption common to most models of middle-distance 

running performance (Di Prampero et al., 1993; Henry, 1954; Hill and Lupton, 1923; 

Lloyd, 1966,1967; Sargent, 1926; Ward-Smith, 1985,1999) that the asymptote will be 

ý702rnax would be refuted. Alternatively, if it could be shown that V02 reaches an 

asymptote that is V02ma,, during 800 m running, this assumption would be upheld. The 

important considerations for this second study were that: 

1. the, ý702 
a,, determined from a progressive ramp test must theoretically be 

attainable during constant speed 800 in running: this V02ma" must not be biased 
high due to the protocol and procedures used to determine V02ma"; 

2. the V02 in the closing stages of the constant speed run must be shown to plateau 
at a value lower than V02max to be confident that V02max is not, or could not 
have been, attained; 

3. the potential phenomenon of V02, 
rx not being attained during the 800 in run 

must be repeatable and not explained by variability in the determination of V02 
during this run. 

7.1.2 Jý02 attained during short duration exhaustive running 

Of the studies showing that V02rnax is not attained during short duration exhaustive 

exercise (Ariyoshi et al., 1979b; Astrand and Saltin, 1961; Hill and Ferguson, 1999; 

Uger and Ferguson, 1974; Spencer and Gastin, 2001; Spencer et al., 1996; Williams, 

1997) three have focused on both constant speed running and durations representative 

of the 800 in event (Hill and Ferguson, 1999; Spencer et al., 1996; Williams, 1997). 

Hill and Ferguson (1999) showed that V02peak was 5% lower for a run lasting - 120 s 

than for one lasting- 300 s. This finding is consistent with that of Williams (1997) who 

also studied the ý702 response to short exhaustive running bouts lasting - 120-300 s: 

the ý02peak for the - 120 s run (3020 ml. min-) was 5% lower than both that for the - 

300 s run (3180 ml. min-1) and ýr02,. x determined from an incremental test (3182 

ml. min-1). Collectively, the findings from these studies (Hill and Ferguson, 1999; 

Williams, 1997) suggest that V02max was not attained during the - 120 s run which is 

equivalent to 800 in running. 
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It could be argued that V02max was not attained in these studies because the exercise 
duration was not sufficient. Williams (1997) report a time constant of 30 s for the rate 

of rise in V02 at the onset of exercise. Therefore, V021nax would have been virtually 

attained (i. e. 97% ý702max) after - 120 s if ý102 was rising towards V02max or above. 

Spencer et al. (1996) were the first to actually acknowledge that V02, 
nax is not attained 

during 800 in running. These authors determined ý702 breath-by-breath in specialist 

middle-distance runners (i. e. 800 and 1500 in specialists) during constant speed 800 in 

race pace running to exhaustion. This study showed that V02 reached a plateau at - 90 

%V02, ý, a, after - 90 s for this 800 in ran. Since V02 reached an asymptote below 

V02max 
9 the Spencer et al. (19961study suggests that V02n,,,,, was not attained because 

V02 was rising towards an asymptote belowV02max. However, there are several 

problems with the experimental design of this study that cast doubt over whether the 

%V02niax attained was an artefact of the test protocols and procedures used to 

determine V02 
- 

First, V02,, 
a,, determined from a constant speed increasing gradient test protocol was 

used as the reference for the 'ý02peak derived from the 800 m run. Given that the 800 rn 

run was performed on a level treadmill, this was inappropriate. A greater muscle mass 
is recruited during uphill running than during running on the flat (Sloniger et al., 1997) 

and this may allow a higher ý702max to be attained. Therefore, theV02nax reference 

point in the Spencer et al. (1996) study would have overestimated the actual V02., 

that could be attained during level treadmill running (i. e. the V02nax that could 

potentially be attained during 800 rn running). In turn, the% ýr02,, 
ax attained (i. e. - 

90%) would have been an underestimate of the true percentage. 

Second, data were presented as 10 s averages for the 800 rn run. Given the relatively 

poor test-retes't reliability of ý702peak determined from short sampling/averaging periods 

(see section 6.3.2.2), the V02peak for the 800 m run, may have been Viased high. In turn, 

the % V02,,, 
a,, attained may have been overestimated. When the potential 

overestimation of 
V02max is coupled with the potential overestimation ofNý0211'k 9 the 
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exact value at which 
ý102 

plateaued below ýrOlriax in the Spencer et al. (1996) study is 

not clear. 

In the present study, the above issues with the Spencer et al. (1996) experimental design 

were resolved as part of a concerted effort to establish whether ýrOlnax is attained 
during 800 m running. This was done by assessing: 

L V02max in accordance with the approach established in study I and for a 
progressive ramp test on a level motorised treadmill; 

2. both ý02pnk during 800 m running and V02ffax using the same 30smovE 

averaging method; 

3. the test-retest reliability of 
ý02pcak during 800 m running; 

4. the role of V02,,.,, as a determinantOf ýr02pcak for 800 m running. 

7.2 Methods 

7.2.1 Participants 

Fifteen male middle-distance runners (age 23.3 ± 3.8 yr; height 1.80 ± 0.10 m; mass 
76.9 ± 10.6 kg) volunteered to participate. Of these, seven had a mean personal best 

time of 112.1 ± 3.5 s for the 800 m, which is within 11% of the World Record (101.11 

s) set by Wilson Kipketer on 24/08/97 in K61n. The remaining eight runners had never 
run within 20% of this World Record (i. e. none had run faster than 121 s). All were 
well habituated with laboratory procedures in general and with motorised treadmill 

running in particular. Each participant was in regular running training at the time of the 

study. 

7.2.2 Preliminary tests 

All participants initially completed a ramp test (0.16 km. h"l per 5 s) on a level motorised 
treadmill (see section 4.2.2 for a more detailed description of this ramp test) and a 

constant speed 800 m run, also on a level treadmill. The ramp test allowed an 

appropriate starting speed to be selected for future ramp tests to ensure that exhaustion 

would be reached in - 10 min (Buchfuhrer et al., 1983) for each participant (see section 
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4.2.2 for more detail of this process). The ýF02 at which the lactate threshold occurred 

was determined by means of the V-slope method (Beaver et al., 1986) for each 

participant (see section 4.3.3). The corresponding speed for this ý702 was then 

determined from each participant's ýr02 -running speed relationship. 

The speed for the 800 rn run was determined from each participant's seasonal best time 

for the 800 rn event. The time to exhaustion for this constant speed run was then 

compared to the participant's seasonal best time. If the two times differed markedly, the 

speed was adjusted accordingly for all future tests. The motorised treadmill was set at 
the constant speed and the experimenter initiated a 10 s countdown when the participant 

was ready to start the test. The participant stood astride the motorised treadmill belt and 

at the start of the countdown used the support rails to suspend their body above the belt 

while they developed cadence in their legs. The test officially started, and the first 

collection of expirate was initiated, when the participant released the support rails and 

started running on the treadmill belt. 

7.2.3 Experimental design 

Each participant completed one ramp test (0.16 km. h" per 5 s) and two constant speed 

800 m runs, all on a level motorised treadmill. The speed for both these 800 m runs was 

based on the findings from the preliminary test: the actual or adjusted speed 

corresponding to each runner's seasonal best performance time for the 800 m was used 

(see section 7.2.2). Participants were encouraged to continue running for as long as 

possible in all tests. 

The preliminary tests described above were always completed first, but thereafter the 

fifteen participants completed the three tests (i. e. the ramp test and the two constant 

speed 800 m runs) in a random order. Five participants were allocated to each sequence 

within a3x3 Latin Square to control for order and carryover effects. Each participant 

completed his own sequence of tests at the same time of day. All tests (i. e. the 

preliminary tests, ramp test, and the two constant speed 800 in runs) were completed 

within 14 days, with at least 48 hours between testing sessions. Each of the tests 

(excluding the preliminary tests) was preceded by a5 min warm-up at 10% below the 
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speed corresponding to each participant's lactate threshold (see section 7.2.2) to control 

for the effects of prior exercise on the detennination of ý702 (Gerbino et al., 1996). 

7.2.4 Data collection 

The off-line Douglas bag system described in chapter 5 was used to determine all gas 

exchange variables. The sampling period was nominally 15 s over approximately the 
final 4 min of the ramp test and throughout the 800 m ran. A whole number of breaths 

was always collected, so typically the actual period was not identical to the nominal 
period. Every effort was made to ensure that the actual was as close to the nominal 
sampling period as possible. For the 15 s sampling periods, the actual period was 
usually between 15 and 20 s, and on no occasion was it less than 15 s. 

7.2.5 Treatment of data 

7.2.5.1 Defining V02,,,,,, 

For the ramp test, a plateau in ý702 was modelled using the approach described in 

section 6.2.5.1. A 30 s moving average (30smovE) was used to determine the value of 
this plateau (i. e. ý102max) (see section 6.4.3). The averaging always started with the 

final 15 s sampling period and moved back towards the start of the test. This V02,.,, 

value was used as the reference point for the ý702peak attained during the 800 m runs. 

7.2.5.2 Defining V02peak 

For the 800 m runs, a 30 s moving average (30SMOVE) was used to identify the highest 
V02 

attained (i. e. 
ý702peak). The averaging always started with the final 15 s sampling 

period and moved back towards the start of the test (see section 6.2.5.2). 

7.2.6 Statistical analysis 

7.2.6.1 General 

All tests were analysed at an alpha level of 0.05 and all data are presented as mean ± SD 

unless otherwise stated. individual data can be found in Appendix 11, together with full 

results for each of the tests described below. 
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7.2.6.2 Test-retest reliability as a determinant of 
ý02peak 

The estimated bias in 'ýO 2peak between the two runs was assumed to be constant and 

was determined in the same way as for study I (see section 6.2.6.2). The test-retest 

reliability of ý702peak was then evaluated using regression based 95% LOA in 

accordance with the procedures outlined in section 6.2.6.3. 

7.2.6.3 ý702nia,, as a detenninant of 
ý702pmk 

To address the common assumption that the parameter in the models of middle-distance 

running performance representing the asymptote for the highest V02 attained will be 

ý102max 
9 

it was important to assess two questions: a) does ý702 plateau during 800 rn 

running? and b) is the highest ý702 attained during 800 m running below V02max ? 
- 

To address the first question, a paired samples West was used to assess whether there 

was a difference between each of the two data points that were averaged (i. e. 30SMOVE) 

to define 'ý02peak 
* 

If the two data points were not significantly different it could be 

argued that. V02 had reached a plateau and was not still rising. To address the second 

question, the 'ý02peak attained during the 800 m runs was expressed as a percentage of 

the reference V02max value determined from the ramp test (section 7.2.5.1) to give the 

0/0 V02,,. attained during 800 m running. This would indicate whether the highest 

V02 attained is below V02,. 
x and, coupled with the identification of a plateau in 

V02 
. would suggest that V02 reached an asymptote below V02max 

- 

The role of V02,,,,, as a detenninant of ý702peak was assessed in two ways. First, the 

15 runners were separated into two groups of seven (i. e. high and IOWýr02max) using a 

median-split (i. e. ranks 1-7 and 9-15) and an independent samples West was used to 

assess if there was a difference between the two groups in the % V02,.,, attained during 

800 m running. Second, Pearson's Correlation was used to evaluate for all 15 runners 

the strength of the relationship between V02ma,, and the % ýr02,., attained during 800 

m running. In both these analyses, each participant's mean % ý702 
.. a,, attained (from 

the repeat tests) was used. 
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7.3 Results 

7.3.1 Defining P02.,,, 

It was assumed that a plateau in ý702 had occurred if the SEE was lower for the plateau 

than for the linear model (see section 6.2.5.1). The SEE was lower for the plateau than 

for the linear model in all participants (1.42 ± 1.03 vs. 1.81 ± 1.01 ml. kg-l. min7l). 

Therefore, a ý70 2 -plateau was evident in all participants. The value for this V02nux 
9 

derived using the 30SMOVE averaging approach, was 58.9 ± 7.1 ml. kg-l. min" for the 15 

runners. For the low and high ýr02rnax groups it was 52.4 ± 1.8 and 65.7 3.0 ml. kg- 

'. min-', respectively. The peak speed attained on the ramp test was 20.5 2.3 km. h". 

The mean speed for the 800 rn constant speed runs was 21.6 ± 2.7 km. h". 

7.3.2 Test-retest reliability as a determinant Of ý02peak 

The bias in ý02peak between the 800 rn runs (i. e. the mean difference ) was 1.2 ml. kg, 

'. min-'. Regression based 95% LOA were calculated using equation (2) in section 

6.2.6.3 to evaluate the test-retest reliability of this 
ý702peak 

. The plot of the absolute 

test-retest differences against the mean 
ýro2pnk is shown in Figure 7.1. 
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Figure 7.1 Relationship between the absolute differences in ý102peak and the mean 
ý702pesk for the two 800 m constant speed runs. 
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The test-retest reliability for a 
ýro2peak 

of 50.6 ml. kg-l. min7l (the mean 
ýro2pcak for the 

low ý702, 
mx group) was ± 3.5 ml. kg-l. min7l. The test-retest reliability for a 

ý02peak 
of 

59.0 ml. kg-I min" (the mean ý702peak for the high V02. group) was J: 2.3 ml. kg' 

'. min-'. 

7.3.3 Jý02 as a determinant of ý02peak 

The 'ýO 
2peak for the 800 m runs was 54.8 ± 4.9 ml. kg". min" for the 15 runners. For the 

low and high ý102rnax 
groups it was 50.6 ± 2.0 and 59.0 ± 3.3 ml. kg-l. min", 

respectively. For the lowV02max 
group, there was no significant difference (mean 

difference of 0.70 ± 1.44 ml. kg-l. min-1, p=0.092) between the two V02 
values used to 

determine 'ý02peak 
* For the high ý702max 

group, there was also no significant 

difference (mean difference of 0.04 ± 0.60 ml. kg". min", p=0.800) between the two 
ý702 

values used to determine ý702peak' 

Figures 7.2 and 7.3 show data from representative participants from the low and high 
ý102rnax 

groups, respectively. In Figure 7.2 the 
ý702peak is 51.3 ml. kg". min-1 and 

ý702max is 52.1 ml. kg-l. min-1, yielding a% V02n,,, 
x attained of 98.5%. In Figure 7.3 the 

ý'02peak is 55.9 mI. kg-1. min-1 and 
V02rmx is 64.8 ml. kg-l. min", yielding a% 

ý702max 

attained of 86.2%. 
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Figure 7.2 Data from a representative participant from the low V02max group 

showing the 0/0 V02..,, attained during a constant speed 800 m run. 
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Figure 7.3 Data from a representative participant from the high ý702ma., group 

showing the 0/0 ý702..,, attained during a constant speed 800 m run. 
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Figure 7.4 shows the group (mean) V02 response to the 800 m run for the low and high 

V02rnax groups. For the low V02max group (filled squares), the ý702peak is 50.6 ml. kg' 

I 
-mm-' and V02rmx is 52.4 ml. kg-l. min-1, yielding a% V02nax attained of 96.5%. For 

the high ýr02rriax 
group (unfilled squares), the 

ý702pak is 59.0 ml. kg-I. min'I and 
ý102max is 65.7 ml. kg". min-1, yielding a% V02ma,, attained of 89.7%. 

1000/0 ..................................................... ............. 

800/0 

E 
10 70P/o 

60% 

50% 

4 0'/o 

3 O'Yo 

Mme (s) 

Figure 7.4 Mean data for the low (m) and high ([3) ý702max groups showing the 
% ý02max attained during the constant speed 800 m runs. For clarity 
error bars (representing one SD) have been omitted from all but the 
flnal data points. 

The relationship between ý702,.,, and % ýr0l,.,, attained for all 15 runners is given in 

Figure 7.5. This relationship was strong (- 0.77) and significant (p = 0.001). Using the 

regression equation from Figure 7.5 to estimate the V02rnax for which a given 

percentage of V02max will be attained during 800 m running suggests that 100,95 and 

90 %V02ffmx will be attained with V02. 
x values of 45,55 and 66 ml. kg". min-1, 
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respectively. This suggests that, typically, ýF02rnax will only be attained during 800 m 

running in individuals with a ý702max 
-<45 ml. kg". min-1. 

100% -0.0046x + 1.2061 

95% 
E 
1Z2 

90% 

85% 

V02Max (nd. kg". mid') 

Figure 7.5 Relationship between ý'02..., and % V02..,, attained during constant 
speed 800 m running (n = 15 - two data points overlap since twp 
participants had the sameV02..., and %V02..,, attained: see table 
AIM and A11.2). 

7.4 Discussion 

7.4.1 Test-retest reliability and 02max as determinants of Tý02peak 

The present study is the first to show that the % V02,,.,, attained during constant speed 

800 m running is inversely related to V02,,, 
a,,. As V02,.,, increases the % V02. 

x that 

can be attained during constant speed 800 in running decreases (r =-0.77, p=0.001). 
Additionally, when the regression equation defining this within-event relationship (i. e. 

Figure 7.5) is used to predict the V02max that can be attained during constant speed 800 

m running, it becomes clear that only runners with a low V02max (< 45 ml. kg". min") 
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will be able to reach -V02,. during this event. The significant difference in the 

%V02,,.,, attained between the low and high V02=x groups lends further support to 

the notion that there is a negative within-event relationship between V02,. 
x and the 

% V02 
ax attained during 800 m running. 

In middle-distance runners with a low V02max (i. e. the low V02max group; V02max Of 

52.4 :L1.8 ml. kg-l. min-1), the % V02ma,, attained averaged 96.5% (range = 93.4 to 

98.7%. The finding that there was no significant difference between the two V02 data 

points averaged to determine 'ý02p,, k during the 800 m. run suggests that V02 

plateaued. However, this statistical analysis is not entirely convincing given that the 

mean difference was 0.70 ± 1.44 ml. kg". min-1 and the p value was 0.092 for the low 
V02=x group. It may be that V02 plateaued in some individuals because V02,,,,, 

had been attained, while in others it was still tending towardsV02,. ', - 

In middle-distance runners with a highV02max (i. e. the highV02,.,, group; 
V02=x 

of 65.7 : 1: 3.0 ml. kg-l. min"), the% 
V02m,, 

x attained averaged 89.7% (range = 85.8 to 
92.7%). This finding is in agreement with that of Spencer et al. (1996) who showed that 

- 90% ýr02max is attained in middle-distance runners with a similar ý702n,,,,, (- 65 

ml. kg-l. min"). This suggests that the Spencer et al. (1996) study did not overestimate 

the %'ý702na,, attained during 800 m running in event specialist with a high V02max 
- 

The test-retest reliability of V02peak was generally good and showed that the 

phenomenon of ý702n,, not being attained is repeatable, at least for the high ý02max 

group. The reliability, however, was better in the high V01"a" group. 

The findings of the present study are convincing for several reasons. First, the fact that 

all participants showed a V02 -plateau during the ramp test suggests that V02rmx was 

attained in this test. More importantly, since this V02max was determined from a ramp 

test on a level motorised treadmill, it should potentially have been attainable during 800 

m constant speed running also on a level treadmill. Second, the peak speed attained 
during the ramp test (20.5 ± 2.3 km. h-1) was similar to the speed of the constant speed 
800 m runs (21.6 ± 2.7 kin. h-1) for all the runners. This suggests that cadence did not 
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prevent these runners from attaining their ý102,,, 
a,, during the 800 m runs. Third, Figure 

7.4 clearly shows that the V02 response in the runners with a high V02,,,,, plateaued 

(beneath ý702rnax) after 70 s. This is confirmed by the fact that there was no significant 

difference between the two V02 data points that were averaged to derive the V02p,, k 

for the 800 m runs. Fourth, the fact that the averaging approach used to define V02max 

from the ramp test and ý702peak from the 800 m runs was the same (i. e. the 30SMOVE 

average) suggests that the variability in V02 associated with these two V02 values 

would have been similar. The effect of the absolute exercise intensity (i. e. that the 

variability in ý702 decreases with an increase in V02) on the variability in V02 

would not have been controlled by the experimental design. However, this effect would 
have been reflected in the regression based 95% LOA for the test-retest reliability of 
ýro2peak during 800 m running. 

7.4.2 Implicationsfor models ofmiddle-distance running performance 

The findings of the present study suggest that the assumption that the parameter 

representing the asymptote for the highest ý102 attained will be ý702ffia, in the 

majority of models of middle-distance running (Di Prampero et al., 1993; Henry, 1954; 

Hill and Lupton, 1923; Lloyd, 1966,1967; Sargent, 1926; Ward-Smith, 1985,1999) 

during 800 in running, is false. The fact that ýr02 plateaued below V02nax at - 90% 

V02max in the high V02niax group confirms this and demonstrates that V02 was not 

rising towards an asymptote equal to V02max. This supports the assumption in Wood's 

(1999a) model that the asymptote for the highest V02 attained during 800 in running 

will be below V02max. The implication is that the majority of models overestimate the 

aerobic energy contribution to 800 in running. This overestimation will be greater for 

those authors that have ascribed relatively higher values to the asymptote parameter 

(i. e. V02rnax) in order to test their models. For example, Di Pranipero et al. (1993) use a 

V02rmx value of 74 ml. kg". min-I for a 75 kg hypothetical runner. Based on the 

negative within-event relationship between V02,. 
x and the % V02,.,, attained reported 

here for 800 m running, the %V02m,, attained for such a runner would be 86%. The 

LE Sandals (2003) 143 



Chapter 7 Study 11: Test-retest reliability and ýro2max 

effect of this on the model is equivalent to assuming that ý102rnac is attained and using a 
ý102max value of - 64.5 ml. kg-l. min-1 for the hypothetical runner. 

Since models of middle-distance running performance can accurately predict 

performance by overestimating the aerobic energy contribution to 800 in running, other 

components of the models must be in error. This suggests, therefore, that the 

application of the majority of models to 800 in running is meaningless. Since Wood's 

(1 999a) model has the greatest potential to accurately represent middle-distance running 

performance, the impact of the present study on his model is explored in more detail in 

Chapter 10. To assess the full impact of the findings from the present study on Wood's 

(1999a) model, it is important to further explore two potential determinants of the 

0/0 ý702, 
nax attained during middle-distance running. First, does the % VOIax attained 

vary with event duration in a given group of runners? If so, specific values should be 

ascribed to the parameter representing the asymptote for the highest V02 attained for 

each middle-distance event. Second, do event specialists attain the same % V02, 
ax as 

non-specialists during a given event? This will inform whether it is appropriate for a set 

of data based on a hypothetical nmer, with a given set of characteristics, to be used to 

evaluate a model across a range of events. These questions were the focus of study 111. 
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CHAPTER 8 

STUDY III: TEST DURATION AND EVENT SPECIALISM AS 

DETERMINANTS OF PEAK ý702 DURING 400 AND 800 M RUNNING 

8.1 Background 

8. LI Identifying the issues 

The models of middle-distance running performance have typically ascribed a single set 

of values (representative of a typical runner) to their parameters in order to assess the 

accuracy of their predictions. While these values are in accordance with published data 

(see section 3.6.1), the use of a single set of values assumes that these values are 

independent of event duration. That is, it is assumed that athletes who specialise in 

different middle-distance events will share the same physiological characteristics. 

Study Il showed that there is a negative within-event relationship between V02,,.,, and 

the %V02,,.,, attained during 800 m running. This finding makes the majority of 

models of middle-distance running performance meaningless since they assume that the 

parameter representing the asymptote for the highest V02 attained will be V02 
.. a., fo r 

all events. However, the findings from study II support the assumption in Wood's 

(1999a) model that this parameter will be below V02rmx for the 800 in event. Wood 

(1999a) did not include a negative within-event relationship between V02,, 
ýx and the 

%V02,,,,, attained for the parameter representing the asymptote below V02,,. 
x 

in his 

model (though this could be readily done). However, the fact that he ascribed different 

values to this parameter for each event suggests that he assumed there would be a 

between-event difference in the % V02rna,, attained. In order to assess the validity of 

Wood's (1999a) model, it is important to determine if there is a between-event (but 

within group) or between-group (but within event) difference in the % V02nw, attained 

during middle-distance running. 

To address the third aim of the thesis, this study developed the findings whether there is 

a between-event (but within group) difference in the % V02".,, attained during middle- 

distance running. In addition, to address the fourth aim, this study investigated whether 
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there is: a) a between-group difference in V02,,.,, and b) a between-group (but within 

event) difference in the % V02,.,, attained. If it could be shown that event duration is a 

determinant of the % V02,,, 
a,, attained for a given group of runners, a between-event 

(but within group) difference would be established, supporting the assumption in 

Wood's (1999s) model. Alternatively, if it could be shown that event specialism is a 

determinant of the % V02,,., attained in a given event, a between-group (but within 

event) difference in the % V02ma,, attained would be established and specific values 

may need to be ascribed to the parameters in Wood's (1 999a) model for each event. 

This study is in two parts. Part A investigates event duration as a. determinant of the 

OM702n, a,, attained during middle-distance running, assuming that the runners' event 

specialism is not a determinant of the % ý702,,. attained. Part B investigates whether 

the assumption that event specialism is not a determinant of the % V02,,.,, attained for a 

given event is valid. The important considerations for this study were that: 

1. criteria developed in studies I and II to define the % ý102,1, 
a,, attained in middle- 

distance running can be applied to different events and specialist middle-distance 
runners; 

2. the middle-distance events selected are such that the characteristics of the middle- 
distance runners (i. e. the event specialists) are likely to be different. 

8.1.2 Test duration as a determinant Of ý02peak (Part A) 

Astrand and Saltin (1961) studied cycle ergometer exercise and showed that the highest 

ý702 attained was lower for an exhaustive bout of cycling that lasted - 120 s than for 

one that lasted - 360 s. They mentioned this effect, but having claimed that the V02 

attained was only 2% higher for the longer bout, they dismissed it. A closer inspection 

of the individual data reveals, however, that in four of the five participants the 

difference between the highest and lowest values for the V02 attained was 5%. The 

lowest V02 was typically observed in the shortest bout (- 120 s) and the highest was 

typically observed in the longest bout (- 360 s). Williams (1997) showed that the 

highest V02 attained during a- 120 s run (3020 ml. min") was 5% lower than that 

attained during a- 300 s run (3180 ml-min-1). Similarly, Hill and Ferguson (1999) 

showed that the highest V02 attained was 5% lower for a run which lasted - 120 s than 

LE Sandals (2003) 146 



Chapter 8 Study III: test duration and event specialism 

one which lasted - 300 s. However, it is not clear from these studies whether the 

% ý102rrjax attained decreases with test duration because the asymptote for the highest 

V02 attained decreases with event duration or because the exercise duration is not 

sufficient for ý702 to rise to, and attain, V02max 
- 

Spencer et al. (1996) investigated the ý702 attained during constant speed 800 and 1500 

in running using 800 and 1500 in event specialists for both the 800 and the 1500 in runs. 
This study showed that ýr02 reached a plateau at - 90 and - 94% V02".,, for the 800 

and 1500 in runs, respectively. The findings provide further support for the notion that 

the % ý702na,, attained during middle-distance running decreases as test duration 

decreases in a given group of runners. More importantly, the fact that V02 reached an 

asymptote below V02max, and that this asymptote was lower for the 800 than the 1500 

in event, suggests that the asymptote for the highest V02 attained will decrease with a 
decrease in event duration, at least for the 800 and 1500 in events. 

8.1.3 Event specialism as a determinant Of Tý02peak (Part B) 

Spencer et al. (1996) also investigated the ý702 attained during constant speed 400 in 

running using 200 and 400 in event specialists. For these runners, the V02 response 

reached a plateau at - 98% ý702,. after 35 s. The aerobic fitness of these 200 and 400 

in event specialists was lower than that of the 800 and 1500 in event specialists (a mean 
ý7021nax of 53 ml. kg-l. min-1 versus 65 ml. kg-l. min-1). This study suggests that event 

specialism may be a determinant of the % V02na,, attained during 400 in running. 

Since the % V02na,, attained by the 800 and 1500 in specialists decreased with a 

decrease in event duration (i. e. 94% V02'niax for the 1500 in compared to 90% VOITax 

for the 800 in), it would be expected that these runners would have attained < 90 

% V02max for the 400 in run. The % V02,,, attained during 400 in running by the 200 

and 400 in specialists (i. e. - 98% V02max) is therefore greater than would be expected 

for 800 and 1500 in specialists. However, since the 800 and 1500 in specialists did not 

perform the 400 in run and the 200 and 400 in event specialists performed neither the 

800 nor the 1500 in run, it is not clear how event specialism affects the %V02". x 
attained during middle-distance running. 
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Svedenhag and Sj6din (1984) have shown that ý102,, 
a,, differs between athletes who 

specialise in specific middle-distance events. Runners who specialise in the 400 m 

event typically have a lower ýr02rmx (63.7 ml. kg-l. min-1) than those who specialise in 

the 800 m only (68.8 ml. kg". min") or the 800 and 1500 m (71.9 ml. kg-l. min"'). If there 

is a between-event (but within group) difference in the %V02,.,, attained during 

middle-distance running, it will be apparent between event specialists with the largest 

difference in ýrOlmx. The above data suggest that a between-group difference in 

ý102max, and hence a between-event (but within group) difference in the %V02niax 

attained, is likely to be apparent in the 400 rn event among 400 and 800/1500 m. 

specialists. Furthermore, it is typical for runners to specialise in a combination of the 

800,1500 and 3000 m events. It is less typical for runners to specialise in the 400 rn 

event in combination with any of the 800 to 3000 m events or even the 100 and 200 rn 

events. The 400 m event specialists are, therefore, a relatively clearly defined group of 

runners. It is debatable whether the 400 rn event should be considered to be a true 

middle-distance event. Nonetheless, the models of middle-distance running 

performance have all been applied to this event along with the 800,1500 and 3000 m. 

The previously identified limitation of the Spencer et al. (1996) study must be resolved 

to establish whether during 400 and 800 ra running:, a) a relationship exists between the 

% ý702,, 
a,, attained and event duration for a given group of runners [between-event (but 

within group) difference in the % V02. attained] and b) event specialism is a 

determinant of the % V02,,.,, attained for a given event [between-group (but within 

event) difference in the % V02,,.,, attained]. In the present study, the above issues were 

investigated in two parts. This was done by assessing the: 

% V02,,,. attained during 400 and 800 ra level treadmill running by 800 rn event 
specialists (part A)in accordance with the approach established in study II 

2.0/0 ýrOlna,, 
attained during 400 ra level treadmill running by 400 ra event 

specialists (part B); 

3. % ý702 
.. a,, attained during 400 m, running by 400 m. event specialists (part B) in 

comparison to that attained by the 800 rn event specialists (part A). 
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PART8A 

STUDY IIIA: TEST DURATION AS A DETERMINANT OF PEAK 'ý02 

8.2A Methods 

8.2. ]A Participants 

Six male middle-distance runners (age 24.8 ± 3.2 yr; height 1.79 ± 0.07 m; mass 68.3 ± 

4.9 kg) volunteered to participate. These runners had a mean personal best time of 
111.8 ± 3.7 s for the 800 m, which is within 11% of the World Record (101.11 s). All 

were well habituated with laboratory procedures in general and with motorised treadmill 

running in particular. Each participant was in regular running training at the time of the 

study. 

8.2.2A Preliminary tests 

All participants initially completed a ramp test (0.16 km-h'1 per 5 s) (see section 4.2.2 

for a more detailed description of this ramp test) and constant speed 400 and 800 m runs 

on a level motorised treadmill. The ramp test allowed an appropriate starting speed to 

be selected for future ramp tests to ensure that exhaustion would be reached in - 10 min 
(Buchfuhrer et al., 1983) for each participant (see section 4.2.2 for more detail of this 

process). The ýr02 at which the lactate threshold occurred was determined by means of 

the V-slope method (Beaver et al., 1986) for each participant (see section 4.3.3). The 

corresponding speed for this V02 was then determined from each participant's V02 

running speed relationship. The speed for the 800 m run was determined from each 

participant's seasonal best time for the 800 m event. The speed for the 400 m run was 

either determined from each participant's seasonal best time (for those who had 

competed in a 400 m) or estimated based on each participant's most recent 400 m 

performance time. The time to exhaustion for the 400 or 800 m constant speed run was 

then compared to the participant's seasonal best time or most recent time. If the two 

times differed markedly, the speed was adjusted accordingly for the subsequent test. 

The three preliminary tests (i. e. the ramp test, and the 400 and 800 m constant speed 

runs) were performed over two sessions. Typically, the ramp test and the 400 m run 
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were completed in one session and the 800 m run in the other. The procedure for the 

constant speed runs was the same as in study II (see section 7.2.2). 

8-2-3A Experimental design 

Each participant completed one ramp test (0.16 lan. If 1 per 5 s), a 400 and an 800 in 

constant speed run, all on a level motorised treadmilk. The speeds for the 400 and 800 

m runs were based on the findings from the preliminary tests: the actual or adjusted 

speed corresponding to each runner's seasonal best or most recent performance time for 

the 400 and 800 m events were used (see section 8.2.2A). Participants were encouraged 

to continue running for as long as possible in all tests. 

The preliminary tests described above were always completed first, but thereafter the 

six participants completed the three tests (i. e. the ramp test and the 400 and 800 in 

constant speed runs) in a random order. Two participants were allocated to each 

sequence within a3x3 Latin Square to control for order and carryover effects. Each 

participant completed his own sequence of tests at the same time of day. All five test 

sessions (i. e. the two preliminary test sessions, the ramp test, and the 400 and 800 in 

constant speed runs) were completed within 14 days, with at least 48 hours between 

each session. Each of the tests (excluding the preliminary tests) was preceded by a5 

min warm-up at 10% below the speed corresponding to the participant's lactate 

threshold (see section 8.2.2A) to control for the effects of prior exercise on the 

determination of ýr02 (Gerbino et al., 1996). ' 

8.2.4A Data collection 

The off-line Douglas bag system described in chapter 5 was used to determine all gas 

exchange variables. The sampling period was nominally 15 s over approximately the 

final 4 min of the ramp test and throughout the 400 and 800 m runs. A whole number 

of breaths was always collected, so typically the actual period was not identical to the 

nominal period. Every effort was made to ensure that the actual was as close to the 

nominal sampling period as possible. For the 15 s sampling periods, the actual period 

was usually between 15 and 20 s, and on no occasion was it less than 15 s. 
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8.2.5A Treatment ofdata 

8.2.51A Defining V02n,,,,, 

For the ramp test, a plateau in V02 was modelled using the approach described in 

section 6.2.5.1. A 30 s moving average (30smovE) was used to determine the value of 

this plateau (i. e. V02nax: see section 6.4.3). The averaging always started with the 

final 15 s sampling period and moved back towards the start of the test. This V02". 
x 

was used as the reference point for the ýro2peak attained during the 400 and 800 in runs. 

8.2.5.2A Defining ý702pcak 

For the 400 and 800 m runs, a 30 s moving average (30smovE) was used to identify the 

highest ý702 
attained (i. e. 

ý02pcak). The averaging always started with the final 15 s 

sampling period and moved back towards the start of the test. 

8.2.6A Statistical analysis 

8.2.6.1 A General 

All tests were analysed at an alpha level of 0.05 and all data are presented as mean ± SID 

unless otherwise stated. Individual data can be found in Appendix III, together with full 

results for each of the tests described below. 

8.2.6.2A Test duration as a detenninant ofVO2,,, k 

TheVO 2peak attained during the 400 and 800 rn constant speed runs was expressed as a 

percentage of the reference ý102max value determined from the ramp test (section 

8.2.5. IA) to give the%V02,,. x attained during the 400 and 800 rn runs, respectively. 

A paired samples West was used to assess if the% ý702, 
"a., attained differed between 

the 400 and 800 m runs. 
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8.3A Results 

8.3. ]A Defining P02max 

It was assumed that a plateau in V02 had occurred if the SEE was lower for the plateau 

than for the linear model (see section 6.2.5.1). The SEE was lower for the plateau than 

for the linear model in all participants (0.88 ± 0.27 vs. 1.15 ± 0.45 ml. kg-l. min"). 

Therefore, a V02 -plateau was evident in all participants. The value for this V02rm,, 
0 

derived using the 30smovE averaging approach, was 69.3 ± 4.5 ml. kg-1. min7 1. The peak 

speed attained on"the ramp test was 22.3 ± 0.8 lan. h-1. The speed of the 400 and 800 rn 

runs was 25.8 ± 1.2 lcm. h-1 and 24.3 ± 0.8 km. h-1, respectively. 

8.3.2A Test duration as a determinant of P02peak 

The test duration was 55.8 ± 2.3 s and 108.4 ± 21.2 s for the 400 and 800 m runs, 

respectively. Figure 8. IA shows the % V02, 
ýa,, attained in the 400 and 800 rn runs by a 

representative participant. Here, the ý702peak is 65.4 ml. kg-l. min" and 70.5 ml. kg". min' 

1 for the 400 and 800 rn runs, respectively; ý702,,. determined from the ramp test is 

75.7 ml. kg". min-1. These data yield a% V02,,.,, attained of 87.6 and 93.6% for the 400 

and 800 rn runs, respectively. 

The mean 
ý702peak for the group during the 400 and 800 m. constant speed runs was 59.4 

± 4.4 ml. kg-l. min-1 and 61.7 ± 5.4 ml. kg-l. min-1, respectively; the mean 
V02,.,, 

determined from the ramp test was 69.3 ± 4.5 ml. kg-l. min". The mean% 
V02max 

attained was 85.7 ± 3% and 89.1 ± 5% for the 400 and 800 rn runs, respectively. In 

Figure 8.2A, the mean 
ý702 

response, expressed as a percentage of 
V02, 

"., is given 

for both the 400 and the 800 in runs. There was a significant difference (p = 0.018) in 

theo/O V02,,.,, attained between the 400 and 800 in runs. 
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Figure 81A Data from a representative participant showing the % V02ma" 

attained during the 400 m (o) and 800 m (n) constant speed runs. 
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Figure 8.2A Group data showing the % ý702..,, attained during the constant speed 
400 m (o) and 800 m (n) runs. For clarity error bars (representing 
one SD) have been omitted from all but the flnal data points. 
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8.4A Discussion 

8.4. ]A Test duration as a determinant of ý02peak 

The results of the present study reinforce those of study II, showing that V02,.,, cannot 
be attained during 800 m constant speed running. The 800 rn event specialists studied 
here attained only 89% V02,,.,, during the 800 in run. This % V02,.,, attained is 

similar to that reported in study II (i. e. 90% ý702mx) for a comparable group of 800 in 

runners (i. e. the high ý702max group). The 800 in event specialists studied here also 
failed to attain ýr02 

ax during constant speed 400 in running. However, the fact that 

the % V02,,.,, attained decreased (from 89 to 86%) with a decrease in test duration 

(from 108 to 56 s), and was significantly different for these two runs, suggests that there 
is a between-event (but within group) difference in the % V02". 

x attained. This finding 

lends further support to those of Spencer et al. (1996) who showed that the % V02". 
x 

attained by 800 and 1500 in event specialists during 1500 and 800 in running was - 94 

and - 90% V021nax, respectively. 

Spencer et al. (1996) also showed that - 98% ý702rriax was attained during 400 m 
running by 200 and 400 in event specialists. However, since the 800 and 1500 m event 
specialists did not perform a 400 m run, the between-event (but within group) difference 
in the % V02,,.,, attained during 400 to 1500 m running was not fully explored. The 

findings of the present study suggest that if the 800 and 1500 in event specialists from 

the Spencer et al. (1996) study had performed a 400 in run, the % V02,.,, attained 

would have been lower than 90%. The fact that a similar group of 800 m specialists, 

with a similar ý102rrmx (65 vs. 69 ml. kg". min-1), attained 86% ý102,,. 
x during 400 m 

running in the present study therefore completes the partial relationship between event 
duration and the % ýr02,,. attained during 400 to 1500 m running established by 

Spencer et al. (1996). 

8.4.2A Implicationsfor models of middle-distance runningperformance 

The findings of the present study extend those of study 11 to provide further evidence to 

refute the assumption in the majority of models of middle-distance running performance 
that the asymptote representing the highest 'M2 attained will be ý102,, 

a,, during both 
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the 400 and the 800 m events. Furthermore, the between-event (but within group) 

difference in the %ýr02,., attained shown here suggests that the majority of models 

would have increasingly overestimated the aerobic energy supply for the shorter 

middle-distance events. That is, as the event duration increases the % V02,,.,, attained 

will tend towards 100% and, hence, the assumption that the asymptote parameter is 

equal to V02rmic. Additionally, if there is a within-event relationship between V02rnax 

and the % V02rra,, attained for the 400 m event, similar to that found in study Il for the 

800 m event, the high values (- 75 ml. kg'l. min") ascribed to the V02n,, asymptote 

parameter in the majority of models are likely to magnify the overestimation of aerobic 

energy supply for the shorter events. - 

For Wood's (1999a) model, the between-event (but within group) difference in the 

010'ý702,,.,, attained shown here supports his assumption that the parameter representing 

the asymptote for the highest ýr02 attained will be below V02".,, and will decrease 

with event duration. Indeed, the findings of the present study, in association with those 

of Spencer et al. (1996), would suggest that the %V02 .. a,, - 
attained during middle- 

distance running increases as a linear function of event duration. That is, the % V02=x 

attained by a similar group of event specialists with a similar V02na,, will be 

approximately 86,90 and 94% for the 400,800 and 1500 m events, respectively. If 

there is a within-event relationship between V02,,. 
x and the % V02na,, attained, similar 

to that shown in study II for the 800 m event, this would need to be considered for each 

event in Wood's (1999a) model to ensure that the model can be applied to event 

specialists of varying standards. 

The values ascribed to the parameters in Wood's model are based on the assumption 

that the relationship between the % V02,,, 
a,, attained and event duration [between-event 

(but within group) difference in the % V02,,. attained] is independent of event 

specialism. Therefore, it is important to investigate whether there is a between-group 

(but within event) difference in the % V02,.,, attained for a given event. Part B 

investigates this by determining the % V02,,, 
a,, attained by 400 m event specialists 

during 400 rn running. This % V02,,.,, attained is then compared to that attained by the 

800 m event specialists reported here. 
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PART8B 

STUDY IIIB: EVENT SPECIALISM AS A DETERMINANT OF PEAK ý702 

8.2B Methods 

8.2. IB Participants 

Six male 400 m event specialist runners (age 21.3 ± 1.5 yr; height 1.78 ± 0.07 m; mass 

74.5 ± 7.3 kg) volunteered to participate. These runners had a mean personal best time 

of 50.6 + 0.7 s for the 400 m, which is within 18% of the World Record (43.2 s) set by 

Michael Johnson on 26/08/99 in Seville. All were well habituated with laboratory 

procedures in general and with motorised treadmill running in particular. Each 

participant was in regular running training at the time of the study. 

8.2.2B Preliminary tests 

All participants initially completed a ramp test (0.16 km. h-1 per 5 s) (see section 4.2.2 

for a more detailed description of this ramp test) and a constant speed 400 m run on a 

level motorised treadmill. The purpose of these preliminary tests was the same as for 

Part A (see section 8.2.2A). The speed for the 400 m run was determined from each 

participant's seasonal best time for the 400 m event. The time to exhaustion for this 

constant speed run was then compared to the participant's seasonal best time. If the two 

times differed markedly, the speed was adjusted accordingly for the subsequent test. 

The procedure for the constant speed run was the same as in part A and study II (see 

sections 8.2.2A and 7.2.2). 

8.2.3B Experimental design 

Each participant completed one ramp test (0.16 km. h-1 per 5 s) and a 400 in constant 

speed run, on a level motorised treadmill. The speed for the 400 in run was based on 

the findings from the preliminary test: the actual or adjusted speed corresponding to 

each runners seasonal best performance time for the 400 in was used (see section 

8.2.2B). Participants were encouraged to continue running for as long as possible in 

both tests. 
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The preliminary test described above was always completed first, but thereafter the 

participants completed the two tests (i. e. the ramp test and the constant speed 400 rn 
run) in a counterbalanced order. Three participants completed the ramp test followed by 

the 400 rn run and the other three completed the 400 m run followed by the ramp test to 

control for order and carryover effects. Each participant completed his own sequence of 
tests at the same time of day. All three test sessions (i. e. the preliminary test, the ramp 
test, and the constant speed 400 m run) were completed within 14 days, with at least 48 
hours between each test. Each of the tests (excluding the preliminary tests) was 
preceded by a5 min warm-up at 10% below the speed corresponding to the participant's 
lactate threshold (see section 8.2.2A and 8.2.2B) to control for the effects of prior 

exercise on the determinationof ý102 (Gerbino et al., 1996). 

8.2.4B Data collection 

The off-line Douglas bag system described in chapter 5 was used to determine all gas 
exchange variables. The sampling procedure was the same as for Part A (see section 
8.2.4A). 

8.2.5B Treatment of data 

8.2.5. IB Defining V02max 

For the ramp test, V02max was defined using the approach described in section 

8.2.5. IA. This ýr02rmx 
was used as the reference point for the 

ý702P,, 
k attained during 

the 400 m run. 

8.2.5.2B Defining V02peak 

For the constant speed 400 m run, 
ý702peak 

was defined using the approach described in 

section 8.2.5.2A. 

8-2.6B Statistical analysis 

8.2.6.1 B General 

All tests were analysed at an alpha level of 0.05 and all data are presented as mean + SD 

unless otherwise stated. Individual data can be found in Appendix III, together with full 

results for each of the tests described below. 
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8.2.6.2B Event specialism as a determinant of ý10,, 
a, 

The VO 2peak attained during the 400 m run was expressed as a percentage of the 

reference 
ý702ffiax 

value determined from the ramp test (section 8.2.5. IB) to give the 

%ý702,,, a,, attained during 400 m running. An independent samples West was used to 

assess if there was a difference between this% 
V02,. 

attained by the 400 m event 

specialists and that attained by the 800 m event specialists in Part A. 

8.3B Results 

8.3. IB Defining Jý02.,,,, 

The SEE was lower for the plateau than for the linear model in all participants (0.88 ± 

0.28 vs. 1.38 ± 0.28 ml. kg-l. min-1). Therefore, a V02-plateau was evident in all 

participants. The value for this ý702max, derived using the 30SMOVE averaging approach, 

was 56.2 ± 4.7 ml. kg-l. min-1 (69.3 ± 4.5 ml. kg". min" for the 800 m event specialists in 

Part A). The peak speed attained on the ramp test was 19.0 ± 1.4 km. h" (22.3 ± 0.8 

km. h-1 for the 800 m event specialists in Part A). This compared to a speed of 26.1 1 

1.1 km. h-1 for the 400 m run (25.8 ± 1.2 km. h-1 for the 800 m event. specialists in Part 

A). 

8.3.2B Event specialism as a determinant Of Jý02peak 

The test duration was 55.1 ± 4.2 s for the 400 rn run (55.8 ± 2.3 s for the 800 rn event 

specialists in Part A). Figure 8.1 B shows the % V02max attained in the 400 m run by 

representative 400 and 800 m event specialists. Here, the ý702peak is 51.8 ml. kg". min"l 

and 55.4 ml. kg-l. min-1 for the 400 and 800 m event specialists, respectively; whilst 

ýr02ma, determined from the ramp test is 55.7 ml-k9-I. min'I and 65.6 ml. kg". min" for 

the 400 and 800 m event specialists, respectively. These data yield a% ýr02 
.. a,, attained 

of 93.0 and 84.5% for the 400 and 800 m event specialists, respectively. 

The mean 'ýO 2peak for the 400 and 800 m event specialist groups during the 400 m 

constant speed run was 52.8 ± 4.6 ml. kg". min-1 and 59.4 ± 4.4 ml. kg". min't, 
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respectively; the mean V02rmx determined from the ramp test was 56.7 ± 4.2 ml. kg7 

'. min" and 69.3 ± 4.5 ml. kg-l. min7l for the 400 and 800 in event specialists, 

respectively. The mean % V02ra,, attained was 93.9 ± 2% and 85.7 ± 3% for the 400 

and 800 in event specialists, respectively. In Figure 8.2B, the mean ýr02 response 

during the 400 in run, expressed as a percentage of V02max 
o 

is given for the 400 and the 

800 in event specialist groups. There was a significant difference (p = 0.001) in the 

% ý702rn,,,, attained during the 400 rn run between the 400 and 800 in event specialists. 

1000/0 

900/0 

70'/o 

10 60'/o 
. cq 

4Wo 

3 Wo 

2 0'/o 

100/0 + 
0 

Time (s) 

Figure 8.1B Data from representative 400 m (m) and 800 m ([i) event specialists 
showing the % V02..,, attained during the constant speed 400 m run. 
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Figure 8.213 Group data for 400 m (n) and 800 m (o) event specialists showing the 
0/0 ý702..,, attained during the constant speed 400 m run. For 
clarity error bars (representing one SD) have been omitted from all 
but the final data points. 

8AB Discussion 

8.4. IB Event specialism as a determinant of ý02Deak 

In part A it was assumed that the set of characteristics of middle-distance runners, and 
in particular V02rnax 

i is common to both the 400 and 800 in events. This assumption is 

consistent with that of Wood (1999a) where a common set of values are ascribed to the 

parameters in the model, and assumed to be independent of event specialism, for the 
400 to 3000 in events. Using this approach, it was shown that there is a between-event 

(but within group) difference in the % V02,,.,, attained during 400 and 800 in running. 

This finding was combined with those of Spencer et al. (1996), to suggest that the 

LE Sandals (2003) 160 

0 10 20 30 40 50 60 



Chapter 8 Study III: test duration and event specialism 

%ýr02 
a,, attained during 400 to 1500 m running is likely to decrease with an increase 

in event duration, for a group of runners with a ý102rmx of - 65-69 ml. kg". min" 

The results of the present study refute the assumption that a common set of values can 
be ascribed to the parameters in the models for all middle-distance events. Indeed, there 

is a between-group difference in V02,,.,, among 400 and 800 rn event specialists (57 

vs. 69 ml. kg-l. min-1 for the 400 and 800 in event specialists, respectively). Furthermore, 

since the V02nw, attained during 400 in constant speed running by the 400 in event 

specialists studied here (94%) is significantly higher than was attained by the 800 rn 
event specialists (86%), there is a between-group (but within event) difference in the 

% ý702,.,, during 400 m. running. Therefore, it is inappropriate to assume that V02", 

and the % V02,. attained during 400 in constant speed running will be the same for 

400 in event specialists as for other event specialists. 

The approach taken in this thesis to benchmark the standard of the event specialists has 

been to express personal best times relative to the World Record for a given event 

specialism. This objective approach is useful for highlighting the standard of event 

specialists on an international level and allowing a comparison between different event 

specialists. Given this, it could be argued that the 400 and 800 m. event specialist 

groups studied here were not comparable since the 400 in event specialists had only run 

within 18% of the 400 rn World Record whereas the 800 rn event specialists had run 

within I I% of the 800 in World Record. It is important that the standard of these 

groups is comparable so that the difference in the % ýr02,.,, attained during 400 m 

running between the two groups can confidently be assumed to be a group effect and 

not the standard of the groups themselves. This latter point is reflected in the findings 

of study 11, where 800 in event specialists who had never ran within 20% of the 800 in 
World Record attained a higher % V02rmx than specialists who had run within I I% of 
the 800 in World Record (96.5 vs. 92.6%). 

For the 400 in event specialists, benchmarking their standard relative to Michael 
Johnson's World Record of 43.18 s is misleading for a comparison with other event 

specialists as the 400 m World Record is relatively more challenging than the 800 rn 
Record. In 2003,64 athletes in the World ran within 5% of the 800 m World Record 
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(101.11), with the fastest (Wilfred Bungei: 102.52 s) being within 1%. In comparison, 
in 2003 only 42 athletes in the World ran within 5% of the 400 rn World Record, with 
the fastest (Tyree Washington: 44.33 s) being within 3%. Furthermore, when British 

runners alone are considered, only 37 athletes in history have run within 5% of the 800 

rn World Record whereas 19 athletes have ran within 5% of the 400 rn World Record. 

When the standard of the event specialists studied here is considered at a national level, 
the 400 and 800 rn event specialists' personal best times are within II and 14% of the 
British Records (101.73, Sebastian Coe and 44.36, Iwan Thomas), respectively. 
Therefore, the standard of the event specialist groups is reasonably comparable, at least 

on a British national level. 

The present study showed that 94% V02,,.., can be attained during constant speed 400 

m running by 400 m event specialists with a ý102max of 57 ml. kg'l. min". In contrast, 
Spencer et al. (1996) showed that - 98% V02=x is attained during constant speed 400 

m running by 200 and 400 m event specialists with a V02rnax of 53 ml. kg". min". 
However, limitations in the methods used in the Spencer et al. (1996) study to 
determine the % V02,,. 

x attained (see section 7.1.2) may have resulted in these values 
being overestimated. Alternatively, the fact that the V02,. of the event specialists in 

the Spencer et al. (1996) study was lower than for the event specialists studied here, 

there may be a within-event relationship between V02,,. 
x and the % V02,,. 

" attained 
during 400 m running, similar to that shown in study 11 for 800 m running. 

It is not clear whether the difference in the % ý102,.,, attained during 400 m running 
between 400 and 800 m specialists is due to the difference in ýr02niax itself or some 

other difference in the characteristics of the 400 and 800 m specialist groups. There 

may be a within-event relationship between ý102,,.,, and the % V02,.,, attained during 

400 m running for 400 m specialists. However, it is likely that V02",,,, will always be 

lower for 400 m than for 800 m specialists. Indeed, Svcdenhag and Sj6din (1984) have 

shown that 400 m event specialists typically have a lower 'V02rmx (63.7 ml. kg-l. min") 

than those specialising in the 800 m event (68.8 ml. kg"l. min-1). Furthermore, the 400 m 

specialists studied here, and by Spencer et al. (1996), all had lower V02,. 
x values than 

800 m event specialists. Therefore, even if there is a within-event relationship between 
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ýr02rmx and the % V02max attained by 400 m event specialists during 400 m running, 

the V02max of these runners is unlikely to be large enough for the % V02ff', attained 

during 400 m running to be as low for 400 as for 800 m specialists. 

8.4.2B Implicationsfor models ofmiddle-distance running performance 

The findings of the present study extend those of part A and refute the assumption in 

Wood's (I 999a) model that a between-event (within group) difference in the % V02,.,, 

attained is appropriate for 400 and 800 in running. This between-event difference may 
be appropriate for 800 to 1500 m running, where the characteristics of these specialists 

are likely to be similar. However, the between-group difference in V02,,.,, and the 

between-group difference in the %V02na,, attained during 400 m running, among 400 

and 800 in specialists, suggests that specific assumptions should be made in Wood's 

(I 999a) model for at least the 400 in event. 

To ensure that the % ý102 
.... . attained during middle-distance running is accurately 

modelled it is also important to determine any factors other than ý102=x 
9 event 

duration, and event specialism which may influence the peak V02 attained during 

middle-distance running. One such factor is pacing strategy since most of the values 

ascribed to the parameters in models of middle-distance running performance are based 

on data determined from constant speed running. This was the focus of study IV. 
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CHAPTER 9 

STUDY IV: PACING STRATEGY AS A DETERMINANT OF PEAK ý'02 

DURING 800 M RUNNING 

9.1 Background 

9.1.1 Iden tifying th e iss u es 

The values ascribed to the parameters in the models of middle-distance running 

performance (Di Prampero et al., 1993; Henry, 1954; Hill and Lupton, 1923; Lloyd, 

1966,1967; Sargent, 1926; Ward-Smith, 1985,1999; Wood, 1999a) are typically based 
k 
on data determined from constant speed running. This is mainly because limited data 

are available on the pacing strategies used in middle-distance running and the 

physiological responses to such strategies. Furthermore, certain parameters such as the 

time constant for ýr02 kinetics can only be derived from constant speed running where 

the kinetics at any time are progressing towards a stable asymptotic value. 

Nonetheless, the split times from international competitive events demonstrate that a 

constant speed is not employed during the 800 ra and that a relatively fast start over the 
initial 200 m is the preferred strategy. Regardless of any pacing strategy used in 800 m 

running, the initial acceleration phase at the start, and its potential impact on 

physiological responses, is ignored when data determined during constant speed running 

are used to ascribe values to the parameters in the models. 

In the studies that have investigated pacing strategies (Ariyoshi et al., 1979a, b; Uger 

and Ferguson, 1974) during short duration (Le. < 240 s) running, there has been no clear 

rationale for the strategies adopted. That is, the strategies have not been based on those 

used in competitive events and, therefore, lack ecological validity. Spencer and Gastin 

(2001) developed their previous investigations [i. e. Spencer et al. (1996)) to customise 

middle-distance running to reflect an individual runner's race pace strategy. However, 

the lack of standardisation of these pacing strategies makes it difficult to make 

inferences about the effect of pacing on 'ý02pnk - Furthermore, both Uger and 
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Ferguson (1974) and Spencer and Gastin (2001) failed to include a constant speed 
control condition in their experimental design. 

To date, no study has investigated the ýro2pak attained during simulated 800 m 

competitive running, taking into consideration the acceleration phase and the pacing 

strategies used in competition. To address the fifth aim of this thesis, this study 

investigated the influence of an acceleration phase with a pacing strategy on ýro2peak 

during 800 in running. If it could be shown that the ýro2peak and, consequently, the 

0/0 V02rmx attained significantly differs between simulated 800 m track event runs and 

constant speed 800 in running, the ecological validity of the values ascribed to the 

parameters in models of middle-distance running performance would be questioned. 
Indeed, the performance predictions based on the values ascribed to the parameters in 

the models would be constrained to 800 ni track events performed at a constant pace. 

Alternatively, if the 01"702,,. attained during 800 in running is unaffected by an 

acceleration phase or a pacing strategy, the ecological validity of the values ascribed to 

the parameters in the models would be demonstrated. The important considerations for 

this final study were that: 

the acceleration phase at the start of 800 m. competitive running could be 
accurately simulated on the motorised treadmill; 

2. optimal competitive pacing strategies, as opposed to typical racing tactics, during 
800 rn running could be identified and accurately simulated on the motorised 
treadmill. 

9.1.2 Pacing strategy as a determinant Of ý02peak 

Spencer and Gastin (2001) extended their previous investigation' to include an extra 

running event (200 in) and event specialists for each of the events studied (i. e. 200 to 
1500 in). Furthermore, each race pace run was customised to reflect the athlete's race 

pace strategies: they were free-range non-constant pace runs. Similar findings to their 

previous study [i. e. Spencer et al. (1996)] for the 800 and 1500 in events were reported, 

with the ý102 attained reaching a plateau at - 88 and - 94% V02max for the 800 and 

1500 in runs, respectively. However, as the focus of this study was not on pacing 

strategy, their experimental design did not include a constant speed 800 and 1500 rn 
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control condition and the effect of these custornised pacing strategies on the V02 
attained is unclear. 

Uger and Ferguson (1974) studied two different pacing strategies (fast-medium-very 

slow and slow-medium-slow) during an exhaustive - 200 s run. The % V02,,.,, attained 
for the slow start strategy (90%) was significantly different from that attained using the 
fast start strategy (88%). Since a constant speed control condition was not included in 
the experimental design it is not possible to assess the implications of these findings for 
the assumptions underpinning the models of middle-distance running performance. 

Ariyoshi et al. (1979b) showed that the rate of increase in V02 was significantly faster 

for a fast start 240 s run than for a slow start or constant pace strategy. However, there 
i 
was no difference in the ý02pcak attained between any of the pacing strategies. It is 

interesting to note, however, that in this study and in that of Uger and Ferguson (1974) 

the ý702 attained plateaued at - 90% of V02max 
- 

In the present study, a concentrated effort was made to accurately simulate the 

acceleration phase and pacing strategy used in competitive 800 rn running. This was 
done by: 

I determining the acceleration phase at the start of 800 rn track running; 

2. assessing the current pacing strategies used by international 800 m event 
specialists during performances within 2% of the 800 ra World Record; 

I simulating the acceleration phase, both alone and in combination with a 
competitive race pace strategy, on the motorised treadmill; 

4. comparing the ý'02P,,. 
k attained during three different 800 m running protocols: a) 

constant speed b) constant speed combined with an acceleration phase and c) fast 
start speed combined with an acceleration phase. 

9.2 Methods 

9.2.1 Participants 

Eight male middle-distance runners (age 25.8 ± 3.3 yr; height 1.78 ± 0.1 m; mass 67.8 

4.7 kg) volunteered to participate. These runners had a personal best time of 112.0 

LE Sandals (2003) 166 



Chapter 9 Study IV: Pacing stratcgy 

3.3 s for the 800 m, which is within 11% of the World Record (101.11 s) held by 

Wilson Kipketer. All were well habituated with laboratory procedures in general and 
with motorised treadmill running in particular. Each participant was in regular running 
training at the time of the study. 

9.22 Preliminary tests 

All participants initially completed a ramp test (0.16 km. h-1 per 5 s) (see section 4.2.2 
for a more detailed description of this ramp test) and an 800 m run with an acceleration 
phase, on a level motorised treadmill. The ramp test allowed an appropriate starting 
speed to be selected for future ramp tests to ensure that exhaustion would be reached in 

- 10 min (Buchfuhrer et al., 1983) for each participant (see section 4.2.2 for more detail 

of this process). The VO, at which the lactate threshold occurred was determined by 

means of the V-slope method (Beaver et, al., 1986) for each participant (see section 

4.3.3). The corresponding speed for this V02 was then determined from the 

participant's V02 
-running speed relationship. The 800 m ran allowed the participants 

to become familiar with the acceleration phase and the starting procedure for this run 
(see section 9.2.3.2). 

9.2.3 800 m test protocols 

9.2.3.1 Constant run (C,,,,, ) 

The constant speed 800 in run (C!,,,,, ) was the same as those reported thus far in this 
thesis. All of the event specialists who participated in this final study had participated 
in study II or III. The constant speed 800 m run was therefore based on the participants' 
most recent test performance and adjusted accordingly if necessary. That is, it was 
based on the average speed over the entire 800 in. As in previous studies, the motorised 
treadmill was set at the constant speed and the experimenter initiated a 10 s countdown 
when the participant was ready to start the test. The participant stood astride the 

motorised treadmill belt and at the start of the countdown used the support rails to 

suspend their body above the belt while they developed cadence in their legs. The test 

officially started, and the first collection of expirate was initiated, when the participant 
released the support rails and started running on the treadmill belt. 
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9.2.3.2 Acceleration run (Ar ) 

Six of the participants performed the first 200 m of an 800 m track run as they would at 

the start of a competitive event. These runs were performed in the same lane of an 

outdoor 400 m track and each participant performed four runs by themselves (i. e. the 

participants ran individually). Electronic timing lights were placed at 5,10,15,20,25, 

50,100, and 150 m from the starting line of the track lane. The speed for each section 
(i. e. the displacements) was then derived. A mean speed for each of these sections was 
derived from the repeat runs to yield eight speeds for each participant during the first 

150 m of the run. A mean group speed for each of the eight sections was then derived 

(Figure 9.1). 
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clJ 
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I 

Figure 9.1 Mean data for six participants showing the relationship between 
running speed and distance during a simulated start to an 800 m track 
run. 

Figure 9.1 shows that speed had peaked by 25 m but declined relatively little thereafter. 

The relationship between speed and distance during the starting acceleration phase 

appears to be approximately exponential and so was modelled as an exponential 
function, given by: 

V(s) =A (I - e-"") 
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where V is velocity (i. e. speed) in m. s-1, s is the distance in m, A is the asymptote value, 

and -r is a rate constant. The value of the asymptote (i. e. A) was calculated as the mean 
group speed sustained between 25 and 150 m. The value of T was derived from a semi- 
log plot of the midpoint digtance (i. e. s) against the mean group asymptotic speed (7.94 

m. s_I) minus the mean group speed for each of the midpoint distances over which speed 

was increasing (i. e. 2.5,7.5,12.5, and 17.. 5 m). The reciprocal of the absolute value of 
the slope from this semi-log plot gave a rate constant equal to 5.3 m (i. e. 1/0.188). The 

semi-log plot is shown below in Figure 9.2. 
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ou 
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Mdpoint (is tance (m) 

Figure 9.2 Mean data showing the relationship between the natural log of the 
asymptotic speed minus the actual speed and distance over the initial 
17.5 m. of a simulated start to an 800 m. track run. 

Equation (1) with aT of 5.3 rn was used to model the acceleration phase at the start of 
the 800 in Ar,,,, for each participant. This was done using each participant's constant 

speed in m. s" (see section 9.2.3.1) as the value of the asymptote in equation (1) and 

converting this acceleration profile to km. h" (by multiplying bý 3.6). The A,,, n, 
therefore, consisted of an acceleration phase over the first 25 in projecting to the 

constant speed from section 9.2.3.1, which was then sustained for the remainder of the 

test. 
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The test was conducted by setting the treadmill at an initial walking speed, with the 

participant stood astride the treadmill belt. A 10 s countdown was given prior to the 

start of the acceleration profile, during which the participant walked on the treadmill 
belt. Once the countdown reached zero the acceleration profile began and the 

participant started running. This point defined the start of the test and was when the 
first collection of expirate was initiated. The test protocol was equivalent to starting the 
800 in event from a walking start as opposed to a standing one. This was necessary 

since the response of the treadmill belt from zero speed (i. e. a standing start on the 
treadmill belt) had a time delay and was initially too slow to accurately simulate the 

acceleration profile. Furthermore, pilot testing revealed that it was too difficult and, 
indeed, dangerous for participants to lower themselves onto the treadmill belt while it 

was accelerating as they could not cope with the rapid change in speed. The 

acceleration profile was programmed for each participant via the computer interface to 
the motorised treadmill (see section 4.1.2). An example A,,, n, showing both the starting 

protocol and the collection of expirate, is included on the compact disk attached. 

9.2.3.3 Race run (R,,,,, ) 

When the speeds over each of the four 200 in sections of 800 in performances within 
2% of the 800 ni World Record time are expressed relative to the speed sustained over 
the whole 800 m, it is evident that a fast start strategy is used. That is, the speed 
sustained over the first 200 rn is 107.4%, the middle 400 in is - 98.3%, and the last 200 

in is 97.5% of the average speed sustained over the entire 800 in. Using performance 
times within 2% of the World Record hopefully ensures that these racing strategies had 

optimal performance as the aim (i. e. achieving a fast time) and not tactics (i. e. winning 
the race). 

For the R,,,, equation (1) was used as in section 9.2.3.2 with the asymptote value as 
107.4% of the constant speed in section 9.2.3.1, the second 400 m as 98.3% and the 
final 200 m, as 97.5% of this constant speed for each participant. The speed was 

gradually decreased from 107.4% to 98.3% so that the change in speed was not abrupt. 
The starting procedure for this test was the same as for the A,,,,, (see section 9.2.3.2). 

In summary, the three runs expressed relative to the constant 800 m speed [i. e. 800 

(m)/seasonal best time(s)] for each participant, consisted of a run at 100% throughout 
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(C.. ), an acceleration phase to 100% (A,,,,, ), and an acceleration phase to 107.5% for the 
first 200 m followed by 98.3% for the middle 400 in and 97.5% for the remainder of the 

ran (P,,, ). The runs were not terminated at 800 m; rather, each was continued for as 
long as possible. The speed profiles of these three runs are shown in Figure 9.3. 
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Figure 9.3 Speed profiles of the C,. n (-), A,,,,, and R,,.. (---) 800 m test 
protocols. 

9.2.4 Experimental design 

Each participant completed one ramp test (0.16 km. h" per 5 s) and the three 800 m runs 
(i. e. Crun) Arunq Rn), all on a level motorised treadmill. Participants were encouraged to 

continue running for as long as possible in all tests. The preliminary tests described 

above were always completed first, but thereafter the eight participants completed the 
four tests (i. e. the ramp test, C,.,,, A,,,,,, and R,,,,, ) in a random order. Two, participants 

were allocated to each sequence within a4x4 Latin Square to control for order and 

carryover effects. Participants completed their own sequence of tests at the same time 

of day. All five tests (i. e. the preliminary tests, ramp test, C,,,, Aun, and R'U") were 

completed within 14 days, with at least 48 hours between each test session. Each of the 

tests (excluding the preliminary test) was preceded by a5 min warm-up at 10% below 

the speed corresponding to the participant's lactate threshold (see section 7.2-2) to 
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control for the effects of prior exercise on the determination of 
ý702 (Gerbino et al., 

1996). 

9.2.5 Data collection 

The off-line Douglas bag system described in chapter 5 was used to determine all gas 

exchange variables. The sampling period was nominally 15 s over approximately the 

final 4 min of the ramp test and throughout each 800 m run. A whole number of breaths 

was always collected, so typically the actual period was not identical the nominal 

period. Every effort was made to ensure that the actual was as close to the nominal 

sampling period as possible. For the 15 s sampling periods, the actual period was 

usually between 15 and 20 s, and on no occasion was it less than 15 s. 

9.2.6 Treatment ofdata 

9.2.6.1 Defining ý702niax 

For the ramp test, a plateau in V02 was modelled using the approach described in 

section 6.2.5.1. A 30 s moving average (30smovE) was used to determine the value of 

this plateau (i. e. V02niax) (see section 6.4.3). The averaging always started with the 

final 15 s sampling period and moved back towards the start of the test. This V02max 

value was used as the reference point for the ý702peak attained during the 800 m runs. 

9.2.6.2 Defirýng Vo2peak 

For each 800 m run, a 30 s moving average (30smovE) averaging approach was used to 

identify the highest ý702 attained (i. e. 
ý702peak). The averaging always started with the 

final 15 s sampling period and moved back towards the start of the test. 

9.2.7 Statistical analysis 

9.2.7.1 General 

All tests were analysed at an alpha level of 0.05 and all data are presented as mean ± §D 

unless otherwise stated. Individual data can be found in Appendix IV, together with full 

results for each of the tests described below. 
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9.2.7.2 Pacing strategy as a detenninant of 
ý102p... 

Differences among the three 800 m runs (i. e. C. ""' ALý,,, and Rt .. ) in the % V02max 

attained were evaluated using repeated measures ANOVA. The degrees of freedom 

were corrected for any violation of the sphericity assumption. This correction was done 

in line with the recommendations of Huynh and Feldt (1976). That is, the Huynh-Feldt 

correction was used when an estimate of the true value for c [the average of the Huynh- 

Feldt and the Greenhouse-Geisser c (Howell, 1997)] was ý-0.75 and the Greenhouse- 

Geisser correction was used when this estimate was -<-0.75. Post hoc trend analysis was 

used to describe the influence of acceleration and pacing on the % V02,,.,, attained. 

9.3 Results 

9.3.1 Dq fning ý02 

It was assumed that a plateau in V02 had occurred if the SEE was lower for the plateau 

than for the linear model (see section 6.2.5.1). The SEE was lower for the plateau than 

for the linear model in all participants (1.77 ± 1.32 vs. 2.10 ± 1.21 ml. kg-l. min-1). 

Therefore, a ýF02 -plateau was evident in all participants. The value for this V02,,. 
x t 

derived using the 30SMOVE averaging approach, was 67.2 ± 4.3 ml. kg-l. min". 

9.3.2 Pacing strategy as a determinant Of ý02peak 

Figure 9.4 shows data from a representative participant. Here, ý702peak is 56.2 ml. kg' 

'. rnin-', 58.1 ml. kg". min-1, and 61.6 ml. kg-l. min" for the C,,,,,, A,,,,, and IR,.,,,,, 

respectively; ý102,.,, determined from the ramp test is 65.0 ml. kg". min-1. These data 

yield 86.4,89.4, and 94.7% for the %V02,,.,, attained during the C,,,,,, A,,,, and Rrunp 

respectively. 
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Figure 9.4 Data from a representative participant showing the O/o ý702..., attained 
during the C,... (m), Arun (A) and Rrun (13) 800 m runs. 

The time to exhaustion was similar for the A.,,,, (110.7 ± 15.3 s) and the R,, (111.2 ± 
20.0 s) but both these times were greater than that for the C. (107.9 ± 20.7 s). The 

mean ýFo2peak was 60.1 ± 5.1 ml. kg". mid', 61.1 ± 5.2 ml. kg". min", and 62.2 ± 4.9 

ml. kg-l. min" for the C,,,,, A,,,,, and R ..... respectively. These yielded% ý102niax attained 

values of 89.3 ± 2.4%, 90.8 ± 2.8%, and 92.5 ± 3.1% for the C,,,,,, A,., and R,,, n, 
respectively. These mean group data are shown in Figure 9.5. The repeated measures 
ANOVA revealed that there was a significant main effect (p = 0.048). Post hoc trend 

analysis identified a significant linear trend (p = 0.025) with the %ýr02rwx attained 
being higher for the A,,,,, than the C,,,,,, and higher still for the R,,,,,. 
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Figure 9.5 Mean data for the group showing the 0/0 ý702..,, attained during the 
Crun (m), Arun (A) and R,. u. (o) 800 m runs. For clarity error bars 
(representing one SD) have been omitted from all but the flnal data 
point. 

9.4 Discussion 

9.4.1 Pacing strategy as a determinant of ý02peak 

The results of the present study lend further support to the findings from studies II and 

III that V02rnax cannot be attained during 800 in rurming. The highest % V02niax 

attained here was 92.5%. Moreover, V02 plateaued below V02rnax and was not 

tending towards an asymptote equivalent to V02max. The acceleration phase at the start 

of 800 in running, alone or in combination with a fast start pacing strategy, had a 

significant effect on the % V02, 
n,, ý attained: the % V02,.,, attained was 1.5 and 3.2% 

higher for the A,,,,, and R,,,,,, respectively, than for the C,.,,.,. The fact that V02., cannot 
be attained during simulated 800 m track running is important because the accuracy of 
the parameters in the models and the values ascribed to these parameters have typically 
been assessed by predicting track running performance (e. g. World Records). 
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The fact that ý702 plateaus below V02,,.,, and does not tend towards V02,,.,, during 

either constant speed running, from which the values ascribed to. the parameters in the 

models are derived, and simulated track running, for which the accuracy of the assumed 

parameters in the models and their ascribed values is assessed, provides convincing 

evidence that ý702rnax cannot be attained during 800 in running. More importantly, 

when the findings of the present study are coupled with those from studies 11 and III, the 

use of V02rnax to represent the asymptote for the highest V02 attained during 800 in 

running is shown to be inappropriate when modelling middle-distance running 

performance with the exception of Wood (1999a), is refuted. Additionally, the findings 

here also refute the inherent assumption that V02trux will be attained in the models that 

have used V02 
.. a, as the assumed parameter for the asymptote of the V02 kinetics 

with a low value ascribed to the assumed parameter for the time constant of the V02 

kinetics 

9.4.2 Implicationsfor models ofmiddle-distance running 

Since the use of ý102,.,, as the assumed parameter for the asymptote of the V02 

response for 800 in running has been shown to be inappropriate, the findings of the 

present study have no impact on the majority of models. Given that the difference in 

the 0/0 V02rna,, attained is small between constant speed and simulated track running, the 

effect of pacing is also likely to have a limited impact on the model of Wood (1999a). 

Therefore, the effect of pacing on the % V02,.,, attained during 800 m running is likely 

to be of more interest conceptually than practically. 

These implications of pacing strategy for models of middle-distance running 
performance, along with other implications identified in previous studies, are discussed 

and evaluated in greater detail in the following chapter. 
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CHAPTERIO 

GENERAL DISCUSSION 

10.1 Methodological considerations 

10.1.1 Ergometry 

All studies in this thesis were performed on a research standard motorised treadmill 

(Woodway Ergo ELG 70). Considerable attention was given to the use of this treadmill 

during high-speed running to ensure that it was both safe and accurate. Chapter 4 

summarised the issues associated with the use of motorised treadmill ergometry and 

evaluated the Woodway treadmill that was used throughout this thesis. It was 
demonstrated that, across the range of speeds likely to be encountered, speed 

fluctuations were negligible without a runner and small with a runner. It was suggested 

that these fluctuations are likely to be considerably smaller for the Woodway treadmill 

used in this thesis than for other types of motorised treadmill. 

10.1.2 Determination of Jý02 

0 
A novel Douglas bag system was used to determine all gas exchange variables. This 

system was designed to allow continuous and short collections of expirate to be made. 

It was described and evaluated in Chapter 5. The error associated with the 

determination of V02 was shown to be small (< 1%) throughout the range of exercise 

intensities likely to be encountered in this thesis. The corresponding uncertainty was 

also small. It did however increase as the sampling period decreased or the exercise 
intensity increased. This was mainly due to a reduction in the uncertainty associated 

with the measurement of the volume of expirate. The combination of these two 

opposing effects resulted in an estimated technical uncertainty in the determination of 
ý'02 of ± 1.9 ml. kg-l. min-1 for a 15 s sampling period during severe intensity exercise. 

Chapter 5 demonstrated, therefore, that the novel Douglas bag system developed for, 

and used throughout, this thesis allowed ý702 to be determined during severe intensity 

exercise with a high level of accuracy and precision. 
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10.1.3 Defining ý02,,,. 

Throughout this thesis it was repeatedly demonstrated that the ý10, 
-running speed 

relationship of trained runners plateaus over the closing stages of a ramp test. A ý702 
- 

plateau was evident in all participants and all tests when a 15 s sampling period was 

used in conjunction with the modelling approach of Wood (1999b). This modelling 

approach assumes that 'ý02 either increases as a linear function of running speed 

throughout the ramp test or increases as a linear function initially and then plateaus in 

the closing stages of the test. The former is consistent with Noakes' (1988,1997,1998, 

2000) argument that 'ý02 continues to increase linearly throughout the closing stages of 

a progressive exhaustive exercise test. The latter is consistent with the notion, 

originally proposed by Hill and Lupton (1923) and still supported by the majority of 

exercise physiologists, that ý102 will plateau (at V02rmx) over the closing stages of 

such a test. 

The findings of this thesis suggest that the ý702 response of trained runners is 

consistent with the traditional and widely accepted notion of ý02rnax. The* theoretical 

considerations presented in chapter 3 and addressed in study I (chapter 6) suggest that 

V02 does plateau in the majority of trained runners. However, since this plateau 

typically lasts -80 s, whether a plateau is identified will be determined by the methods 

and test protocols used. The modelling approach used in this thesis, which to date has 

only been applied to trained runners, appears to have considerable potential for 

addressing the issue of whether ý702 plateaus in other participant populations or 

exercise protocols. 

While this modelling approach is useful for identifying a 1ý02 -plateau and deriving the 

value of this plateau, it is constrained to those participants that demonstrate a plateau for 

an exercise protocol where a linear increase in ýr02 followed by a plateau is expected. 

The approach taken in this thesis was to define ý702, 
ý, a,, as the highest ýF02 attained 

during the ramp test. The influence of averaging period and method on the reliability 

and validity of this highest ý702 was evaluated in study I (chapter 6). This study 
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indicated that the highest ý10, attained, derived from a moving average of raw data 

determined using 15 s sampling periods, provides a valid representation of the criterion 
V02,,. (i. e. that derived from the plateau model). Both the bias and the test-retest 

variation in the highest ý102 attained decreased as the averaging period increased. 

However, it was important that the method used for associating a V02 value with the 

plateau identified during a ramp test could also be used to identify the highest V02 

attained by participants in whom no plateau was observed during simulated middle- 
distance running events. A 30 s moving average approach was selected as it best 

satisfied these requirements. 

This findings of this thesis lend support to the use of speed ramped tests on a level 

motorised treadmill to determine V02max in runners. The high incidence of a ýrO 
2- 

plateau in the present study is in agreement with the high (92%) incidence of a V02 
- 

plateau reported by Draper et al. (1998) for a similar ramp test. Furthermore, this 

incidence is higher than has been reported for incremental protocols (Duncan et al., 
1997; Rivera-Brown et al., 1994; Sheehan et al., 1987). It seems then that, contrary to 

the suggestion of Taylor et al. (1955), the trained runners studied in this thesis were not 
limited by cadence in a speed-ramped test on a level treadmill. 

10.2 Determinants of the % ý02max attained during 400 and 800 m running 

10.2.1 Test-retest reliability Of 
ý02peak 

The findings from study II (chapter 7) showed that test-retest determinations of V02p,, k 

during 800 rn running were generally reliable, but more so in middle-distance runners 

with a higher V02nmx 
- 

Indeed, the 95% limits of agreement for ý702p, 
ak were ± 2.3 

ml. kg-l. min-1 for runners with a high V02rnax in comparison to ± 3.5 ml. kg-l. min-I Bor 

those with a lower V02max 
- 

10.2.2 V02..., 
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This thesis showed, for the first time, that the % ý102,,. attained during constant speed 

800 m running is negatively related to ý702rrax. As ýr02max increases the %ý02max 

attained during constant speed 800 m running decreases (chapter 7). In middle-distance 

runners with a high ý02rmx (65.7 ± 3.0 ml. kg". min-1), the % V02rna,, attained averaged 

89.7% (range = 85.8 to 92.7%), whereas in middle-distance runners with a low ýr02rnax 

(52.4 ± 1.8 ml. kg-l. mirfl), the %V02max attained averaged 96.5% (range = 93.4 to 

98.7%). The former finding is in agreement with that of Spencer et al. (1996) who 

showed that - 90% ý702tnax is attained in middle-distance runners with a high V02max 

(- 65 ml. kg-l. min-1) during 800 m running. During 800 in running, the ý702 response 

of middle-distance runners with a low V02 
.. ax has not previously been studied. 

10.2.3 Test duration 

Part A of study III (chapter 8) showed that the % V02,,.,, attained by 800 m specialists 

decreased significantly (from 89 to 86%) with a decrease in test duration (from 108 to 

56 s). This suggests that there is a between-event (but within group) difference in the 

% ý702,, 
a,, attained, lending further support to the findings of Spencer et al. (1996) who 

showed that the % V02,,.,, attained by a mixed group of 800 and 1500 in specialists was 

- 94 and - 90% V02,,.,, during 1500 and 800 in running, respectively. The fact that a 

similar group of 800 in specialists, with a similar V02rmx (65 vs. 69 ml. kg-l. min"), 

attained 86% V02,, 
ax during 400 in running in study III (part A) therefore completes 

the partial relationship between event duration and the % ý702. 
ax attained during 400 to 

1500 in running established by Spencer et al. (1996). 

10.2.4 Event specialism 

The results of study III (part B) showed a between-group difference in V02,,.,, among 

400 and 800 in event specialists (57 vs. 69 ml. kg". min-1 for the 400 and 800 m. event 

specialists, respectively). Furthermore, since the %ý702,,, attained during 400 m 

constant speed running by the 400 m specialists (94%) was significantly higher than that 

attained by the 800 in specialists (86%), there is a between-group (but within event) 

difference in the % ý102,.,, attained during 400 m running. The between-group 

difference in V02rnax is consistent with the findings of Svedenhag and Sj6din (1984) 
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I who found 400 m specialists to have a lower ýr02rnax (63.7 ml. kg- min7l) than 800 m 

specialists (68.8 ml. kg-l. min7l), and with those of Spencer et al. (1996) and Spencer and 

Gastin (2001). The ý'02 response of different event specialists for a given duration of 

middle-distance running has not previously been compared. 

10.2 5 Pacing strategy 

The results of study IV (chapter 9) showed that the acceleration phase at the start of 800 

in running, alone or in combination with a fast start pacing strategy, had a significant 

effect on the % ýr0l,.,, attained. The % ý702,,.,, attained was 3.2% higher for a 

simulated competitive 800 in run on a motorised treadmill than for an equivalent 

constant speed run. Previous studies of the influence of pacing strategy on the ý702 

response during middle-distance running have neither used pacing strategies derived 

from actual competition time splits nor included a constant speed run within the 

experimental design. 

10.3 Possible mechanisms underpinning the determinants of V02peak 

Because physiologists are generally unaware that V02max is not attained during 400 

and 800 in running by runners with high aerobic fitness, no studies have investigated the 

possible physiological mechanisms underpinning this phenomenon. The following 

discussion therefore draws on relevant literature to speculate about the potential 

contributing mechanisms. 

Two findings are central to this discussion. First, it has been shown (Draper et al., 
2003) that the same subjects who fail to attain ý102rmx in an exhaustive square wave 

run lasting -2 minutes do attain ý702rmx when the duration of the run is 5 or 8 minutes. 

Second, it appears (see. Figure 7.4) that over the closing stages of an exhaustive run at 

800 in pace ý'02 plateaus in those subjects whose aerobic fitness is high but continues 

to rise in those whose aerobic fitness is low. The first point suggests that the duration of 

the exercise, or more likely the time spent exercising above the lactate threshold, is an 

important determinant of whether V02max is attained in exhaustive exercise. The 
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second suggests that the overall kinetics of the V02,,, response depend on the aerobic 
fitness of the subject. 

The VO, response to square wave exercise differs depending on whether the exercise is 

above or below the LT. For all exercise intensities, the pulmonary 1ý0, response is 

characterised by an initial delay (reflecting the muscle to lung transit time) followed by 

a rapid exponential increase. For sub-threshold exercise, this exponential increase takes 
ý'O. to a steady state. However, for supra-threshold intensities the primary exponential 

component is supplemented by an additional, slower component. This additional 

component (commonly termed the VO, -slow component) is of delayed onset: for 

supra-threshold exercise lasting 6 minutes or more, it typically emerges after 80 to 110 

seconds (Gaesser and Poole, 1996). 

Research on the 'ý02 -Slow component arguably provides a useful framework for 

interpreting the findings of this thesis, as well as those of Spencer et al. (1996), Spencer 

and Gastin (2001), Draper et al. (2003) and Draper and Wood (2004). For example, it is 

possible that increasing the duration of exhaustive exercise from -2 to -5 minutes 

enables subjects to achieve V02=x (Draper et al., 2003) because the 1ý0 2 -Slow 

component that emerges in the longer test is central to the attainment of V02,, 
x - 

Similarly, it is possible that the ý702 response to an exhaustive run at 800 in pace 

includes a slow component in subjects whose aerobic fitness is low but not in those 

whose aerobic fitness is high. Whether an exhaustive run at 800 in pace is long enough 

for a slow component to emerge in the ý702 response is uncertain. Though Gaesser and 

Poole (1996) report that the ý102 slow component typically emerges after 80 to 110 

seconds, the studies on which this statement was based all involved exercise lasting at 

least 6 minutes. There are just two studies in which the ý702 response has been 

modelled for exhaustive exercise lasting 2 minutes or less: Draper and Wood (2004) 

modelled the ý'02 response of aerobically trained subjects to exhaustive running at 800 

in pace (mean time to exhaustion of 118 seconds); Hughson et al. (2000) modelled the 

ý702 response of untrained subjects to exhaustive cycling at an intensity of -125% 

V02rrmx (Hughson et al. did not report the mean duration of this exhaustive exercise, 
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but data from a representative subject suggest that it may have been in the region of 1.5 

to 2 minutes). Both groups accounted for the initial delay. However, whereas Draper 

and Wood (2004) used a mono-exponential model to describe the ýF02 response for the 

remainder of the test, Hughson et al. (2000) used a two-component model that included 

an additional, slower component. Each group justified their approach on the basis that 

the residuals for the selected model showed no obvious pattern (though only Draper and 

Wood presented the residuals). In the Hughson et al. study, the mean delay for the 

second component was 40.5 seconds, suggesting that the slow component emerged 

much earlier than has previously been reported for lower intensities. However, the 

standard error of this mean was 6.2 seconds (in contrast, the standard error for the delay 

of the primary component was 0.6 seconds). For 8 subjects, a standard error of 6.2 

represents a SD of 17.5 seconds. The data of Hughson et al. do not therefore constitute 

conclusive evidence that the ý'02 -Slow component does emerge relatively early in 

exhaustive exercise lasting -2 minutes or less. Rather, they raise the possibility that 

this might occur. Further research is required to establish the influence of both exercise 

intensity and aerobic fitness on when (if at all) the ý702 -SloWcomponent emerges. For 

heavy-intensity cycling, high aerobic fitness has been shown to be associated with a 

relatively high gain for the primary component and a relatively low gain for the slow 

component (Barstow et al., 1996). It therefore seems plausible that the V02 response 

to exhaustive running lasting -2 minutes is dominated by the primary component in 

subjects whose aerobic fitness is high but includes a discemable slow component in 

those whose aerobic fitness is low. 

In addition to suggesting that the ýr02 response of aerobically trained runners (mean 

ý'02max of 69 ml. kg". min") does not include a slow component, the data of Draper and 

Wood (2004) show why in these runners ý'02 reaches a plateau in the course of an 

exhaustive run at 800 m pace. For the mono-exponential response described, the time 

constant averaged 10.7 seconds. This is considerably faster than has been reported in 

previous studies of treadmill running (Carteret al., 2000,2002; Hill et al., 2003), 

consistent with the observation of Scheuermann & Barstow (2003) that the time 

constant for the primary component of the ý702 response is negatively correlated with 

ý702max. This short time constant, when coupled with the average delay of 11.2 
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seconds, explains why the 
ý102 

response of these runners appeared to plateau over the 

final minute of the run: the mean values indicate that, on average, 99% of the 

asymptotic amplitude would have been attained after 60.4 seconds. 

As was the case for the aerobically trained subjects in this thesis (see Figures 7.4 and 

8.2A), the runners studied by Drap er and Wood (2004) demonstrated a submaximal 

plateau in the 800 in pace run. Scheuermann and Barstow (2003) report that the 

difference between the predicted 'ý02 (based on the sub-LT 1ý02-work rate 

relationship) and the attained ý'02 (at the end of the primary phase of the ý102 

response) for exhaustive cycling lasting between 3 and 5 minutes is positively 

correlated with aerobic fitness. Though it has yet to be established that a similar 

relationship exists for treadmill running, the relationship observed by Scheuermann and 

Barstow (2003) is consistent with the findings of this thesis. Scheuermann and Barstow 

isolated and focused on the primary component of the 1ý02 response. The Douglas bag 

method was used throughout the present thesis so it was not possible to isolate different 

components of the V02 response. However, if it is accepted that the V02 response of 

aerobically fit subjects to exhaustive running lasting -2 minutes or less is dominated by 

the primary component (see above), Scheuermann & Barstow's findings about the V02 

attained at the end of the primary component can be applied to the highest V02 attained 

in both 400 and 800 in pace running. The negative correlation observed in study Ii 

(Chapter 7) between V02.,, and the % V02,,,,, attained in the 800 m pace run is 

clearly consistent with Scheuermann & Barstow's findings. So too is the finding of 

study III (Chapter 8) that the peak V02 for a 400 in pace run represented a significantly 

lower % V02rrax in the 800 m specialists (mean V02max of 69 ml. kg-l. min-1) than it did 

in the 400 in specialists (mean V02. of 56 ml. kg-l. min-1). The Scheuermann and 

Barstow study is the first to examine the gain of a specific component of the ýr02 

response for exercise where the predicted V02 required is above V02 
.., - 

It is possible that during severe intensity exercise oxygen delivery limits both the speed 

of the 
ýr02 

response and the 
ý702 

attained (Hughson et al., 2000). However, it is more 

likely that the ý702 attained is limited either by oxygen demand or by oxygen demand 
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in combination with oxygen delivery. Oxygen demand has received considerable 

attention in relation to the slow component of the 
ý702 

response. Indeed, as has been 

stressed by Gaesser & Poole (1996), it is important to recognise that the 
ý102 

-Slow 

component takes Ný02 above that predicted from the ý702-work rate relationship for 

sub-LT work rates. 

The majority of the V02-SlOW component originates from exercising muscle (Poole, 

1994). It is therefore not surprising that considerable attention has been focused on 

muscle fibre recruitment in connection with this component of the V02 response to 

supra-LT exercise (e. g., Shinohara and Moritani 1992; Barstow et al., 1996; Pringle et 

al., 2003). The ramp tests used for the assessment of ý02nmx throughout this thesis 

lasted -10 minutes, whereas the 400 and 800 in runs typically lasted less than 60 and 
120 seconds respectively. The number and type of fibres recruited is known to progress 

with both the force/speed of the action and the duration of the exercise, particularly for 

exercise that can only be sustained for a short duration (Vollestad et al., 1990; 

Shinohara and Moritani, 1992; Sejersted and Vollestad, 1992). The recruitment of a 

greater number of fibres in total, or a greater proportion of type II fibres, towards the 

end of the ramp test could influence the ý70, attained. In comparison with type I 

fibres, type II fibres are known to rely to a greater extent on the less efficient ot- 

glycerophosphate shuttle, perhaps due to a saturation of the malate-aspartate shuttle 
(Whipp, 1994), resulting in a lower P: O ratio. This lower P: O ratio would in turn result 

in an increased oxygen demand (for a given rate of ATP turnover). Partial support for 

this argument comes from studies that have shown the oxygen cost of cycling at a given 

power output to be positively related to the percentage of type II fibres (Barstow et al., 

1996; Coyle et al., 1992; Pringle et al., 2003). However, using the work rate: V02 

relationship to make inferences about the P: O ratio rests on the assumption that the ATP 

turnover rate is constant for a given external work rate (or speed in the case of running). 
This assumption is unlikely to be correct, especially for running where the involvement 

of the stretch-shortening cycle is considerable. 

Both the type of fibres recruited and the duration for which they are recruited might also 

influence the extent to which perfusion (and thus presumably 02 supply) matches the 
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metabolic demand. Both the percentage of type I muscle fibres and the capillary: fibre 

ratio have been shown to be positively correlated with the gain of the primary 

component of theV02 response for severe intensity cycling (Pringle ct al., 2003). It is 

conceivable that metabolism-perfusion matching is better in a relatively prolonged 

exercise test (be it a square wave or a progressive test) than a square wave test that lasts 

-2 minutes or less. Of particular interest for the findings of this thesis is the possibility 
that the relatively long time spent above the LT in the ramp test enhanced both the 
demand for and the supply of oxygen (relative to the 400 and 800 m pace runs). Similar 

reasoning could also be used to explain the finding that the 800 rn specialists attained 
lower ý'02 in a 400 than they did in an 800 m run (see Chapter 8). However, this 

explanation should be treated with caution, sinceV02 was probably still rising at the 

point of exhaustion in the 400 m run. 

A time-dependent influence on oxygen supply is a feature of the hypothesis presented 
by Wasserman et al. (1995). These authors postulate that time-dependent changes in 

blood pH and temperature result in greater unloading of 02 via the Bohr effect. In fact, 

Wassermann et al. (1995) argue that time-dependent changes in pH (be it of the blood or 

the muscle) may be responsible both for creating the elevated demand associated with 

the ý702 slow component and for providing the means of meeting this elevated demand 

(via the Bohr effect). In relation to the 02 demand, Wassermann et al. hypothesise that 

a decrease in muscle pH invokes a shift from the malate-aspartate shuttle to the less 

efficient cc-glycerophosphate shuttle, thus increasing the 02 demand. This hypothesis 

has potentially important implications for the findings of the present thesis, especially 

when considered in combination with the observation (Whipp, 1994) that the capacity 

of the malate-aspartate shuttle is lower in type Il than type I muscle fibres. For 

example, both the rate and the extent of H+ production may be lower during short 
duration exhaustive running in subjects whose aerobic fitness is high than in those 

whose fitness is low. Highly aerobically fit subjects would also be expected to have a 

relatively high capillary to fibre ratio and hence to demonstrate relatively high rates of 
lactate and H+ efflux. The combination of these factors would be a more rapid and 

pronounced drop in muscle pH in the less fit subjects, which, according to Wasserman's 

hypothesis, would result in the ý702 response of these subjects demonstrating the 
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relatively early onset of a relatively large slow component. If the low fit subjects also 
have a relatively low percentage of type I muscle fibres (c. f. 400 m specialists), the 

tendency for their 'ý02 response to demonstrate the early onset of a large slow 

component may be even more pronounced. Whether, the rate and extent of the drop in 

muscle pH for short duration exhaustive running does indeed vary with aerobic fitness 

remains to be established. It is important to appreciate, however, that the central focus 

of Wassermann et al. 's hypothesis is a time-dependent increase in the 02 demand (ý102 

required). This is also the case for hypotheses that focus on a time-dependent increase 

in muscle-fibre recruitment. The notion of a time-dependent increase in the ý102 

required (for constant speed running) has profound implications for "traditional" 

approaches to calculating the 02 deficit (e. g. Medbo et al., 1988). 

Conley et al. (2001) argue that two primary determinants of the rate of oxidative 

phosphorylation are intramuscular pH and [phosphocreatine]. According to Conely et 

al. (2001), the rate of oxidative phosphorylation will be highest'when pH is high and 

[phosphocreatine] is low but can reach high enough levels for 1ý02 
rMx to be attained if 

either of these conditions is met. They use data from Richardson et al. (1995) to argue 

that [phosphocreatine] drops to very low levels in the closing stages of a progressive 
V02 

=x test, thus compensating for a low pH. In addition, they present the rattlesnake 

tailshaker muscle as an example of muscle where, because of its high blood flow and 

small fibre diameter that facilitates lactate and H+ efflux, pH is maintained at close to 

resting levels even during exercise that elicits ý702 
rwx . 

The arguments of Conley et al. 

(2001) have potential implications for the findings of this thesis. For example, the 

finding that the peak ýr02 is lower for a run at 400 or 800 in pace than for a ramp test is 

consistent with these arguments if it is assumed that the intramuscular pH is lower, or 
the [phosphocreatine] higher, for the final stages of the constant speed run. It should 
however be noted that, in relation to muscle pH, the arguments of Conley et al. (2001) 

are contradictory to those of Wassermann et al. (1995): whereas Conley et al. argue that 

the rate of oxidative phosphorylation is likely to be highest when pH is high, 

Wassermarm et al. 's hypothesis suggests that the 02 demand is likely to be highest when 

pH is low. Whether Conley et al. 's arguments are consistent with the results of the 

present thesis in relation to intramuscular [phosphocreatine] is uncertain. It is certainly 
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possible, for example, that during exhaustive running lasting 2 minutes or less 

[phosphocreatine] reaches a lower level in subjects whose aerobic fitness is low than in 

those whose aerobic fitness is high. Further research is required to establish, for a range 

of subject characteristics and exercise durations, how muscle [phosphocreatine] and pH 

change during severe intensity exhaustive exercise. 

Greenhaff and Timmons (1998) suggest that interaction between aerobic and anaerobic 
I 

metabolism is likely to be important in determining the time course of the ý102 

response in the early stages of intense exercise. Studies in which the activation status of 
the pyruvate dehydrogenase complex (PDQ has been manipulated (Timmons et al.; 
1996,1997,1998) have revealed that this complex may be an important site for such 
interaction. Indeed, activation of the PDC before exercise in humans, via 
dichloroacetate administration, has been shown to reduce both the lactic acidernia and 
the depletion of intramuscular phosphocreatine for a given work rate (Timmons et al., 
1996,1998). This reduced dependence on anaerobic metabolism to meet the energy 
demand of exercise implies that the ý702 response could be faster with prior PDC 

activation. That is, the activation status of the PDC at exercise onset may constrain the 
ý702 response and increasing this status may result in greater oxidative ATP production 

and less ADP being rephosphorylated at the expense of intramuscular phosphocreatine. 

Timmons's group did not determine V02 in any of the aforementioned studies; rather, 

they speculated about the possible implications of their findings' for the V02 response. 

Rossiter et al. (2003) studied the influence of dichloroacetate administration on the 

ý702 response to heavy intensity cycling. They found that activation of the PDC 

reduced the amplitude but had no effect on the time constant for both the primary and 
the slow component. These findings indicate that, for heavy intensity knee extensor 

exercise, the initial (pre-exercise) activation status of the PDC influences the final ý102 

attained [presumably by influencing the build up of fatigue metabolites, and thus the 

extent to which additional muscle fibres are recruited over the course of the exercise 
(Rossiter et al., 2003)]. Such an influence could, in part, explain the finding (see 

Chapter 7) that the % ý'02 
.,, attained in an exhaustive run at 800 in pace was highest in 

the subjects with the lowest ý'02 
=X * 

However, this explanation rests on two important 
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assumptions: 1) that the influence of the initial activation status of the PDC on the 

ý702 attained is the same for exhaustive running lasting -2 minutes as for heavy 

intensity knee extensor exercise and 2) that, following a standardised (sub-threshold) 

warm-up (section 7.2.3), the activation status of the PDC is highest in those whose 

aerobic fitness is highest. The validity of these assumptions is presently unknown. 

Connett and colleagues (Connett et al., 1985; Connett and Honig, 1989; Honig et al., 
1992) have stressed the importance of the redox drive in allowing oxidative 

phosphorylation to proceed at a high rate when P02 is low- It is possible that NADH 
derived from glycolysis is an important stimulus for the increase in the rate of 
mitochondrial respiration that occurs at the onset of exercise (Connett et al., 1985). 
Equally, it is possible that the strength of the redox drive becomes an increasingly 

important determinant of the W2 attained as exercise intensity increases. The 

implication would be that an individual who is capable of generating a high flux 

through glycolysis at the onset of exercise would also be capable of accelerating 

mitochondrial respiration at a high rate, and may additionally reach a relatively high 

peak ý702 in short duration exhaustive exercise. This may go some way towards 

explaining why the peak W2 for an 800 m pace run was significantly higher for a "fast 

start" than for a constant speed strategy (see Chapter 9): the high ATP turnover rate 
associated with the fast start may have resulted in an increased flux through glycolysis, 
thus increasing the strength of the redox drive and allowing oxidative phosphorylation 
to proceed at a higher rate in the later stages of the run. 

10.4 Assumptions in models of middle-distance running performance 

The models of middle-distance running performance each contain a set of parameters. 
These typically relate to a store of anaerobic energy and a rate of aerobic energy supply. 
This thesis was concerned solely with the parameters representing the latter. All models 

embrace the concept of a maximum rate of aerobic energy supply (i. e. V02maj and all 

include a parameter representing the highest V02 attained. In relation to 400 and 800 

m running, each model makes one of three assumptions about this parameter. First, that 

ý702max will simply be attained, either immediately at the onset of exercise (Hill and 
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Lupton, 1923) or after a short delay (Lloyd, 1966,1967). Second, that ý102 Will 

increase exponentially towards ý702max (Di Prampero et al., 1993; Henry, 1954; 

P6ronnet and Thibault, 1989; Sargent, 1926; Ward-Smith, 1985,1999). Third, that 

ýr02 will rise towards an asymptote that is below V02trux (Wood, 1999a). For the 

second of these assumptions, whether ýrobmx is in fact attained within the duration of a 

400 or 800 m event depends on the value that is ascribed to the parameter representing 

the time constant for the exponential rise in ý702. 

The findings of this thesis show that the use of V02max to represent the asymptote for 

the highest V02 attained during 800 in running is inappropriate. The fact that V02 

plateaued at - 90% V02rmx in aerobically fit 800 in runners during an 800 m pace 

treadmill run demonstrates that V02 was not rising towards an asymptote equal to 

V02max 
ý supporting the assumption in Wood's (1999a) model that'the asymptote for the 

highest V02 attained during 800 in running is below V02,,, 
a,,. The implication is that 

the majority of models would have overestimated the aerobic energy contribution to 800 

m running. Since these models can accurately predict performance by overestimating 

the aerobic energy contribution to 800 m running, other components of the models must 
be in error. Wood's (1999a) model therefore has the greatest potential to accurately 

predict middle-distance running performance. This model provides the focus for the 

remainder of this discussion. 

Wood (1999a) assumes the % "Vo2rmx attained to be constant within a given event. The 

findings of this thesis suggest, however, that the %ýrO2.. attained during 800 in 

running is negatively related to ý702niax 
, This means that the % ý02max attained during 

800 in running (and possibly also during 400 in running) will be lower for an individual 

in whom ýr02niax is high than for an individual whose ý702nvx is lower. For Wood's 

(1999a) model to be applicable to middle-distance runners of varying aerobic fitness, 

this within-event relationship between ý702. 
x and the % ý702.,, needs to be 

incorporated. 
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Wood (1999a) assumes that the% V02=x attained will decrease with event duration for 

a given runner. Specifically, he suggests that the% ý'02,., attained will be 85 and 94% 

for the 400 and 800 in events, respectively. The findings of this thesis support Wood's 

(1999a) assumption that the parameter representing the asymptote for the highest V02 

attained will be below W2,. 
x and will decrease with event duration. These findings 

suggest that the % W2,. 
x attained by specialist 800 in runners will be 86 and 90% for 

the 400 and 800 in events, respectively. Spencer et al. (1996) report a %ý102,., 

attained of -90% for a similar group of event specialists with a similar V02rnax- It 

appears, therefore, that while Wood's estimate of the %1ý02rmx attained during 400 in 

running is appropriate, his corresponding estimate for the 800 in event is high. The 

implication is that Wood (1999a) may have overestimated the aerobic contribution to 

energy supply for the 800 in event. Wood's model, therefore, needs to be updated with 

values for the % ý'02=x attained during 800 in running based on the findings from the 

present thesis. His assumptions for the longer event durations also need to be tested 

(see section 10.7). 

Wood (1999a) applied his model to the same hypothetical middle-distance runner 

(ýro2uzx of 75 ml. kg". min") for both the 400 and the 800 m events. In effect, 

therefore, he assumed that middle-distance runners who specialise in different events 

share the same physiological characteristics (at least in relation to aerobic energy 

production). It follows from this that different event specialists should both share the 

same V02n= and. attain the same pI ercentage of this ý702. during a given middle- 

distance event. However, the findings of this thesis show that, in comparison to 400 in 

specialists, ýro2nux is higher, and the 0/0 ý702.,, attained during 400 m running is lower, 

for 800 m specialists. These between-group differences in V02.,, and the % V02". 
" 

attained during 400 m running suggest that event-specific values should be ascribed to 

the parameters representing V02ma. and the %V02ma,, attained in Wood's (1999a) 

model, at least for the 400 m event. Wood's model, therefore, needs to incorporate an 

event-specific value for V02.,, and further research is needed to establish how 

, 
V02max may vary among specialists in the longer events not covered in the present 

thesis. 
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Wood (1999a) based several of his assumptions on the work of Spencer et al. (1996) 

who studied the 'ý02 response to constant speed treadmill running. The results of this 

thesis suggest, however, that the 0/"102.,, attained during 800 in running is -3% 
higher for a treadmill run that includes both an acceleration phase and a fast start pacing 

strategy than for a constant speed run. Although small, this difference does suggest that 

the pacing strategy adopted can influence the% ýr02.,, attained during 800 m running. 

Because the influence is small, ignoring the role of pacing will have relatively little 

impact on the ability of a given model to predict performance. Nevertheless, the finding 

that pacing strategy influences the ýr02 response for middle distance running has 

potentially important implications for the training and competitive strategies of middle- 
distance runners. 

The findings of the present thesis have shown that modelling the aerobic energy 

contribution to 400 and 800 m running is more complex than previously thought. 

Nonetheless, Wood's (1999a) model offers a platform to build on in light of the findings 

from the present thesis and subject to further research (see section 10.7). The model 

should be developed and, in turn simplified, through the addition of three parameters 

that would remove the need for ascribing a range of event-specific values to the model. 

First, given that V02max varies between 400 and 800 in event specialists a single term 

describing the relationship between V02,,,,, and event duration could be incorporated 

to account for this (subject to accurately establishing this relationship with 1500 and 
3000 m event specialists). This could be based on the highest recorded values for 

ý702,, 
a,, among different event specialists and a separate parameter (see point 3 below) 

could be used to account for the within-event variation in V02max 
- Second, given that 

the % V02 
.. ax attained has been shown in the present thesis to depend on event 

duration, a single term that describes the relationship between the % V02max attained 

(based on the event-specific V02max term above) and event duration should be included 

to remove the need for ascribing specific values to each event. This approach assumes 
that an accurate relationship could be established and would be subject to further 

research into the % V02na,, attained during the whole range of middle-distance events. 

Third, a similar approach could be used to account for the finding that the WV02max 
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attained varies within an event and a single term, similar to the relationship between 
0/0 ýr02. attained and ý702rmx shown in Study II, could be included (based on the two 

terms above) to account for this (assuming that such a relationship exists within each 

event duration and is not restricted to the 800 m). 

10.5 Implications for the physiological assessment of middle-distance runners 

If physiologists are to be confident that a true V02,, 
a, has been defined during 

progressive exercise it is important that a two stage approach, similar to the one 

proposed in this thesis, is adopted. First, a ý702 
-plateau must be identified in the 

majority of participants for the experimenter to be confident that ý7021nax has been 

attained for the test protocol and procedures used. A short sampling period (e. g. 15 s) 

should be used over the closing stages of the test to increase the density of data points to 

the point where a plateau is likely to be identified whenever it occurs. This plateau 

must then be identified. The modelling approach of Wood (1999b) is an objective 

method for doing so that has a clear theoretical basis. Second, the value of this ý702rnax 

must be defined. Using a moving average, based on the raw 15 s data, and working 

back from the end of the test to derive the highest V02 attained, provides a valid 

estimate that is, on average, within I ml. kg'l. min" of the criterion ýr02rmx. This 

method can also be used to derive the highest ý702 attained during other exercise tests, 

such as constant speed running, ensuring that the variability in ý702 associated with the 

raw 15 s data is controlled. Furthermore, this method is not constrained to data 

determined using the Douglas bag method: it could also be applied to breath-by-breath 

ýr02 data. 

The findings of this thesis raise several important considerations for the assessment of 

aerobic fitness in middle-distance runners. First, since a high incidence of a 'ý02 - 

plateau was evident in these runners, it is clear that running at high speeds during the 

ramp test on the level motorised treadmill did not prevent ý702max from being attained. 

This suggests that a ramp test on a level treadmill should be used to determine V02,. 
x 

in middle-distance runners. Doing so would ensure that the V02max determined from 
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the ramp test could potentially be attained during middle-distance running, thus 

providing an appropriate reference point for the highest ý10, attained during middle 

distance running. 

Since this thesis showed that 800 rn specialists with high aerobic fitness cannot attain 
ý702,,,,,,, during 400 and 800 m running, it is important that a constant speed test of a 

duration specific to the runner's specialism is included in the physiological assessment 

of middle-distance runners. The primary aim of this test would be to determine the 

highest VO 
2 attained during constant speed running; this could then be used to derive 

the 0/0 V02,,., attained, using the highest ý102 from a ramp test on a level treadmill as 

the reference V02Tmx. As a secondary aim, the ýr02 kinetics of the response could also 

be determined. Deriving the % V02rmx attained would be useful in identifying 

individuals for whom aerobic training may be relatively unimportant (i. e. those in 

whom the % V02,,. 
x attained is particularly low; see section 10.6 below). 

10.6 Implications for middle-distance running training and racing 

For models of middle-distance running to be useful to middle-distance runners it is 

important not only that they are accurate in predicting performance but also that their 

parameters are meaningful. This thesis has supported the assumption in Wood's 

(1999a) model that middle-distance runners with a high ý702r,.,, are unable to attain 

V02,,.,, during 400 or 800 m running. This raises important questions about the type of 

training that such runners typically do. 

First, why is ý102,,,, high in these runners if it cannot be attained during middle- 

distance running? This could be due to runners and coaches alike, being unaware that 

ý702ffmx may not be attained by aerobically fit runners during 800 m running, focusing 

their training on increasing V02nx in the belief that V02max (and not the % V02, 
nax 

attained) is an important determinant of performance in middle-distance running. Given 

that physiologists are generally unaware that V02rmx cannot be attained during 800 m 

running, it seems unlikely that coaches or athletes would be. Alternatively, it may be 
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that middle-distance runners need a high V02rmx to tolerate the types of training they 

typically do, even though this high ý702rnax cannot be attained during competitive 

running. 

Second, could middle-distance runners train to increase their % ý702 
.. a,, attained without 

compromising ý702rmx ? If the interaction between the anaerobic and aerobic 

contributions to energy supply is an important determinant of the % ý702, 
na,, attained 

during middle-distance running, training could be focused on maintaining ý702rmx 

while attempting to improve anaerobic capabilities (e. g. race pace interval type training) 

as opposed to being focused solely on increasing ý702max (e. g. long distance running 
below race pace). 

Third, could a middle-distance runner benefit from focusing on improving their 

anaerobic capabilities to such an extent that their. V02,,,,, actually decreases? Afterall, 

it may be beneficial to performance if the highest ý702 attained during running 

increased at the expense of V02max 9 which cannot be attained. 

Fourth, how should event specialism influence the training of middle-distance runners? 
This thesis suggests that the 400 in specialists are a clearly defined group, whereas 800 

and 1500 in specialists are less so as they may train for a combination of the 800 to 
3000 in track events in the summer and cross-country events in the winter. This lack of 
focused training for a single event may prevent runners from focusing their training on 
the key determinants of performance in that event. 

10.7 Recommendations for further research 

At present, relatively little is known about the V02 response for severe intensity 

exercise in general or specific middle-distance event durations. In particular, little is 

known about the ý702 response to different exercise durations within the severe domain 

or for specific middle-distance events. On the one hand, there is a need to characterise, 

for specific event specialists of varying standards, the ýr02 response to the different 

middle-distance events. On the other, there is a need to establish whether the ýr02 
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response is the same for track and treadmill running for middle-distance event 
durations. 

This thesis raises several questions about the nature of the V02 response to short 

duration exhaustive running (see section 10.3). For example, it is possible, but remains 

to be established, that whether the ýr02 response to exhaustive running lasting -2 

minutes includes a slow component depends on the aerobic fitness of the subject. To 

investigate this issue, it would be necessary to model breath-by-breath data from a 

group of subjects who are heterogeneous for ýr02 
=x . 

Also of interest is the possibility 

that aerobically fit subjects who are unable to reach ýr02.,, during -2 minutes of 

exhaustive running do reach ýro2rmx when the duration of the run is increased to -5 

minutes because the ýr02 
-Slow component that emerges in the 5 minute run takes ýrO. 

to ý702 
rmx . 

Investigating this issue would again involve modelling breath-by-breath 

data. To investigate fully the role of exercise duration, and the associated development 

of the V02 
-Slow component, it would be of interest to study not only the previously 

studied durations of 2 and 5 minutes but also an intermediate duration. 

The focus of this thesis was exclusively on treadmill running. There were two reasons 

for this: first, there is an extensive literature base on, and several well-developed models 

of, the determinants of running performance; second, the findings of Spencer at al. 

(1996) and Spencer and Gastin (2001), which were of interest because they appeared to 

challenge current thinking on ý102 kinetics and question the assumptions underlying 

the majority of these models, were focused on treadmill running. However, the 

majority of research on V02 kinetics has used cycle ergometry. For exhaustive 

exercise lasting between 4 and 5 minutes, the overall kinetics are faster, and the 

contribution of the V02 -Slow 'component is smaller, for running than for cycling (Hill 

et al., 2003). It would be of interest, therefore, to investigate the influence of exercise 

mode (running vs. cycling) on the V02 response to severe intensity exercise across a 

range of exercise intensities. Draper et al. (2003) used the Douglas bag method to 

investigate this influence for exhaustive test durations of 2,5 and 8 minutes. Future 

studies in this area should a) make use of breath-by-breath data collection and 
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mathematical modelling to characterise the ý702 response and b) focus on exhaustive 

exercise lasting 5 minutes or less (for which studies comparing running with cycling are 

particularly scarce). The possibility that exercise mode and aerobic fitness interact to 

influence the ý702 response to such short duration exhaustive exercise should also be 

considered. 

Possible physiological explanations for the findings of this thesis were discussed in 

section 10.3. Characterising the ý70, response to short duration exhaustive exercise, 

and the influence of both aerobic fitness and exercise intensity and mode on this 

response, should provide much-needed insight into which (if any) of these explanations 
is appropriate. A complimentary approach would be to investigate the influence on the 

ýFO2 response to short duration exhaustive exercise of those interventions or subject 

characteristics that have previously been shown to influence the ý102 response for 

lower intensities of exercise (focusing primarily, but not exclusively, on running). 

Interventions that appear to be worth investigating include prior heavy intensity exercise 

(Jones et al., 2003), administration of dichloroacetate (Rossiter et al., 2003) and 

manipulation of the treadmill gradient (level vs. uphill) (Pringle et al., 2002). In addition 

to aerobic fitness (which has already been discussed), the primary characteristics that 

would be of interest are muscle fibre type and capillary density (Pringle et al., 2003). 

Also of interest, however, would be the sex of the subjects. The studies presented in 

this thesis focused exclusively on males, as did those of Spencer et al. (1996), Spencer 

and Gastin (2001), Draper et al. (2003) and Draper and Wood (2004). It is therefore 

unclear whether the finding that the ý702 of aerobically fit individuals plateaus below 

ýro2aax in exhaustive running lasting -2 minutes applies to females. It may be that, 

because V02. 
x 

is generally lower in females, the incidence of a sub-maximal plateau 

during such exhaustive running is also lower for females than for males. Alternatively, 

it may be that the incidence of this plateau is the same in males and females, provided 

their aerobic fitness levels are the same (relative to the sex-specific norm). A similar 
issue is whether, for a given intensity, the incidence of this sub-maximal plateau, or 

indeed the nature of the ý702 response, depends on the muscle mass involved in the 

exercise. By manipulating the active muscle mass, it may be possible to alter the 
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balance between 02 supply and 02 demand of oxygen. Establishing how (or indeed 

whether) this manipulation affects the ýr02 response to short duration exhaustive 

exercise could provide important information about the mechanisms that determine this 

V02 response. 

Finally, the hypotheses of Wassermann et al. (1995) (muscle and blood pH) and Conley 

et al. (2001) (muscle pH and [phosphocreatine]) provide a rationale for assessing the 

influence of severe intensity exhaustive exercise on muscle pH, muscle 
[phosphocreatine] and blood pH. Notwithstanding the limitations of the muscle biopsy 

technique (see, for example, Rossiter et al., 2003), it may be of interest to use this 

technique to measure muscle [phosphocreatine] and pH before and after exhaustive 

running. Though the temporal resolution would be much greater, such that the kinetics 

of the [phosphocreatine] response could be modelled, for NMR spectroscopy (Whipp et 

al., 1999), this technique is most commonly applied to knee extensor exercise and has 

never been applied to treadmill running. A fundamental difficulty with the finding that 

the ý10, of aerobically-fit individuals plateaus below ýro2n= in exhaustive running 

lasting -2 minutes is that the exercise modes for which the mechanisms underpinning 

this phenomenon could best be investigated are those for which it is by no means certain 

that the phenomenon will be observed. 

LE Sandals (2003) 199 



Chapter II Summary and conclusions 

CHAPTER11 

SUMMARY AND CONCLUSIONS 

11.1 Summary 

The findings presented in the preceding chapters have important implications for 

modelling middle-distance running, assessing the physiological characteristics of 

middle-distance runners, and applying the findings of this assessment, in association 

with the models, to improve performance in middle-distance running. The important 

findings have already been discussed, and the purpose of this section is not to repeat this 

discussion. Rather it is to provide a brief summary of these findings and to place them 

within the context of the aims of the thesis, which were outlined in Chapter 1. There 

were five aims, each of which was achieved, as the findings summarised in the next five 

paragraphs show. 

First, factors that determine whether V02,, 
a,, can be validly and reliably defined in 

middle-distance runners have been identified (section 6.4). The use of a short sampling 

period over the closing stages of a progressive test is one factor that is likely to 

influence the identification of a 1ý0. -plateau, as is the method used to objectively 

quantify whether a plateau has transpired (section 6.4.1). The use of a valid method to 

ascribe a value to this plateau (i. e. V02rnax), and to define the highest V02 attained 

during other test protocols, is another important factor (see section 6.4.2). Other factors 

include the test type, since the incidence of a ý'02 -plateau reported in this thesis for a 

ramp test is higher than has been reported elsewhere for incremental tests (section 6.4.1) 

and the importance of using a level motorised treadmill for this ramp test when the aim 

is to ensure that the V02,. 
x derived represents that which could potentially be attained 

during middle-distance running. The approach taken to defining V02 
.. ýx in this thesis 

supports the notion of a maximal oxygen uptake and refutes some of the methodological 

arguments of Noakes (section 3.2). 
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Second, the VO, response during 800 m running plateaus at -90% in aerobically fit 

800 m specialists (section 7.4.1). This is in agreement with that of Spencer et al. (1996) 

who showed that - 90% ýrOZnax is attained in middle-distance runners with a high 

ý702rnax (- 65 ml. kg-l. min-1) during 800 rn running. Furthermore, this phenomenon is 

repeatable, as shown by the good test-retest reliability of the ý702peak (section 7.4.1). A 

runner's ý702max is an important determinant of the % V02rnax attained during constant 

speed 800 m running: the % V02rnax attained is negatively related to ý702niax 
- 

Third, the 0/0 ý702,,.,, attained by 800 ra specialists decreases with a decrease in test 

duration, suggesting that there is a between-event (but within group) difference in the 

0/0 ýr02,. attained during middle-distance running (section 8.4. IA). This supports the 

findings of Spencer et al. (1996) who showed that the 0/0 ýr02.,, attained by a mixed 

group of 800 and 1500 m specialists was - 90 and - 94% ý102rna,, during 800 and 1500 

rn running, respectively. 

Fourth, there is a between-group difference in ýr02rrmý and a between-group (but within 

event) di ence in the % ý702,,.,, attained during 400 m running between 400 and 800 

m specialists (section 8.41B). The between-group difference in V02ma" is consistent 

with the findings of Svedenhag and Sj6din (1984) who fbuný 400 m specialists to have 

a lower V02rrmx than 800 m specialists and with those of Spencer et al. (1996) and 
Spencer and Gastin (2001). 

Fifth, the % V02,,.,, attained is higher for a simulated competitive 800 m run on a 

motorised treadmill than for a constant speed ran. 

11.2 Conclusions 
I 

Several conclusions can be drawn from the data presented in this thesis. For many 

years, physiologists have believed that ý702rmx will be attained in healthy individuals 

during progressive exercise to exhaustion, but recently this belief has been questioned. 

For trained middle-distance runners, ý102max was attained in every progressive test 

conducted in this thesis, thereby supporting the belief of physiologists over many years. 
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Furthennore, the objective approach adopted in this thesis has great potential in future 

studies that require verification of the attainment of V02max, and in the physiological 

assessment of middle-distance nmners. 

Models of middle-distance running performance have, with one exception (Wood 

1999a), assumed that V02rnax will be attained during such events. Data presented in 

this thesis provide support for the one model that assumes V02 
x will not be attained, ma. 

but rather the ý102 response will plateau below ý702rnax 
- In aerobically fit 800 m 

specialists, the ý'02 response during 800 m running plateaus at -90% V021mx 

Furthermore, a negative relationship is observed between V02n. and the % V02rmx 

attained. When the ý702 response of middle-distance runners is compared during 400 

m and 800 m race durations, it is evident that the % V02ma,, attained is lower in 400 m 

(-86%) compared with 800 m (-89%) race durations. Also, the event specialism of the 

runners is important, with 800 m specialists achieving lower % V02,,.,, compared with 

400 m specialists (86 vs 94%) during a trial of 400 m race duration. Interestingly, the 

one model (Wood 1999a) that assumed W2max will not be attained, also assumed that 

the 'ý02 attained will be positively related to the duration of the event, which is in 

agreement with the findings presented in this thesis. Wood (1999a) did not, however, 

assume that the specialist event of the runners would influence the % V02.,, attained 

for a particular event duration. These between group differences in the %V02". x 
attained during 400 m running should be ascribed to the relevant parameter in Wood's 

model. 

Providing parameters in models are meaningful, and they predict performance 

accurately, models of middle-distance running performance are useful to runners, and 
their coaches, for training and racing. The findings from the present t6sis raise several 
important questions in this regard: 

Why is V02,,.,, higher than the ýr02 attained during the runner's specialist 

event? 
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* Could a runner train to increase the %V02,,,,,, attained without compromising 
ýr02max 

- 

Could a runner benefit from focusing on improving their anaerobic capabilities 

at the expense of their aerobic capabilities? 

9 How should event specialism influence the training of middle-distance runners? 

The findings in the present thesis have allowed these questions to be raised in the 
knowledge that they are valid. Since tRese questions are fundamental to the training and 

racing strategies of middle-distance runners, they illustrate the practical contribution 
this thesis has made to the development of knowledge of middle-distance running. 
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Appendix 1: study I 

APPENDIX 1: STUDY I 

Table AM Participant characteristics for Study I (individual data). 

Participant Mass (kg) Height (m) Age (years) 

1 71.2 1.80 27 

2 65.0 1.70 28 

3 66.9 1.72 35 

4 77.3 1.82 24 

5 65.0 1.69 28 

6 79.8 1.89 28 

7 66.1 1.84 20 

8 84.5 1.85 20 

n 8 8 8 

MEAN (M) 72.0 1.8 26.3 

SD 7.6 0.01 4.9 

Table A1.2 Peak ý702 (ml. kg-l. min-1) for six sampling/averaging periods and for 

repeat tests (individual data). 
Sampling/averaging period (s) 

15A 15B 45C 45D 30A 30B 30A 30B 45A 45B 45A 45B 

RAW RAW RAW RAW STAN STAN MOVE MOVE STAN STAN MOVE MOVE 

1 56.1 57.3 55.9 56.3 55.5 57.2 55.5 57.2 55.2 57.2 55.3 57.2 
2 69.2 68.3 68.8 69.0 69.0 68.1 69.0 68.1 68.9 67.7 68.9 67.7 
3 67.1 66.7 65.0 64.8 66.5 66.5 66.7 66.5 66.4 66.6 66.4 66.6 
4 68.4 68.9 68.9 68.3 68.1 68.3 68.4 68.3 67.9 67.7 68.2 67.7 
5 66.0 66.5 66.1 66.3 65.5 65.8 65.5 66.4 65.2 66.0 65.2 66.0 
6 56.6 55.5 56.0 55.4 56.1 54.8 56.1 55.0 55.8 54.7 56.0 55.1 
7 66.9 65.4 66.2 65.7 66.2 65.2 66.3 65.2 , 66.0 64.8 66.0 64.8 
8 58.1 57.0 56.9 58.1 57.8 56.5 57.8 56.5 57.4 56.3 57.4 56.3 

n 8 8 8 8 8 8 8 8 8 8 8 8 
M 63.5 63.2 63.0 63.0 63.1 62.8 63.2 62.9 62.8 62.6 62.9 62.7 
SD 5.6 5.6 5.7 5.5 5.6 5.6 5.7 5.7 5.7 5.5 5.7 5.5 
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Table A1.3 SEE for the linear and plateau model for repeat tests (individual data). 

Linear SEE Plateau SEE 

15A 15B 45C 45D 15A 15B 45C 45D 

1 2.57 1.13 1.33 1.08 1.11 0.84 0.34 0.78 
2 1.24 1.43 1.82 1.58 0.99 1.12 1.23 1.29 
3 0.97 1.89 2.27 1.10 0.83 1.22 0.92 0.66 
4 1.70 1.58 1.84 1.74 0.94 1.24 1.23 1.29 
5 1.08 2.08 1.63 1.01 0.59 0.80 0.66 0.54 
6 1.15 1.40 0.69 0.73 0.92 1.03 0.76 0.58 
7 2.34 2.12 1.35 2.32 1.41 1.32 0.68 1.36 
8 1.30 1.24 0.89 0.68 1.22 0.94 0.95 0.76 
n 8 8 8 8 8 8 8 8 

M 1.54 1.61 1.48 1.28 1.00 1.06 0.85 0.91 
SD 0.61 0.38 0.52 0.56 0.25 0.19 0.30 0.35 

Table AIA Plateau value (ml. kg-l. min-1) and dura tion (s) derived from the plateau 
model for repeat tests (individual data). 

Value (ml. kg". min-1) Duration (s) 

15A 15B 45C 45D 15A 15B 45C 45D 
1 54.7 57.1 55.5 55.6 165.0 57.4 67.2 59.0 
2 68.0 67.4 68.5 68.7 72.8 69.0 87.5 68.6 
3 66.4 65.8 64.7 64.2 33.5 75.2 122.5 58.5 
4 67.7 67.4 68.5 68.1 90.6 79.0 87.7 76.5 
5 65.2 65.5 65.2 65.4 62.9 110.4 94.2 63.4 
6 55.8 54.4 55.4 55.1 59.0 68.0 26.9 33.2 
7 65.3 64.2 66.1 65.5 114.4 129.0 69.5 115.8 
8 57.2 56.1 56.3 57.5 55.3 73.6 28.3 20.1 
n 8 8 8 8 8 8 8 8 

M 62.5 62.2 62.5 62.5 81.69 82.69 72.99 61.89 
SD 5.6 5.4 5.8 5.6 41.48 24.25 32.72 28.68 
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APPENDIX 11: STUDY 11 

Table AIM Participant characteristics for Study 11 (individual data). 

Participant Mass 
(kg) 

Height 
(M) 

Age 
(years) 

800 m PB 
(S) 

Ramp peakVO 
(ml. kg". min-) 

Ramp peak 
speed 

(km. h-1) 

1 93.3 1.8 21 50.7 17.7 
2 94.0 1.8 21 50.7 17.4 
3 73.0 1.6 21 - 51.0 18.2 
4 89.2 1.9 24 - 52.1 21.2 
5 75.3 1.9 19 - 53.2 17.6 
6 79.0 1.7 21 - 54.6 18.0 
7 92.7 1.9 20 - 54.8 19.4 
8 76.8 1.8 22 - 56.4 20.0 
9 73.6 1.8 20 115.2 61.9 21.4 
10 69.7 1.8 30 105.7 64.8 22.7 
11 69.7 1.8 30 110.6 64.8 22.7 
12 66.1 1.8 20 114.9 64.9 22.1 
13 65.0 1.7 27 114.3 65.4 22.2 
14 73.7 1.8 26 114.1 66.5 22.7 
15 62.2 1.7 27 110.1 71.8 24.1 

n 15 15 15 15 15 15 
MEAN (M) 76.9 1.8 23.3 112.1 58.9 20.5 

SD 10.6 0.1 3.8 3.5 7.1 2.3 
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Table A11.2 Peak V02 (mi. kg". min-1) and test duration (s) for repeat 800 m runs 
(individual data). 

Speed Time A Time B VOIA V02B Mean %VO2 

(knLh-1) (S) (S) fmI :k (nd. k 
1 

V02 Time max 
. mm . rnin") 

1 19.0 109.1 113.7 48.4 49.4 48.9 111.4 96% 
2 18.0 132.0 132.2 49.5 48.2 48.9 132.1 96% 
3 19.0 131.1 128.9 47.4 49.8 48.6 130.0 95% 
4 19.5 112.6 110.3 50.3 51.1 50.7 111.4 97% 
5 19.0 99.3 96.4 52.8 52.2 52.5 97.8 99% 
6 19.5 111.6 115.6 52.7 49.. 4 51.1 113.6 93% 
7 20.5 100.0 100.2 53.3 54.3 53.8 100.1 98% 
8 20.0 93.4 99.5 54.9 54.8 54.8 96.4 97% 
9 23.4 138.0 131.5 55.7 54.7 55.2 69.0 89% 
10 25.0 108.4 111.5 57.0 56.2 56.6 109.9 87% 
11 25.0 64.9 64.8 55.0 56.2 55.6 64.9 86% 
12 23.4 125.4 122.6 61.4 59.0 60.2 124.0 93% 
13 24.0 110.7 112.7 60.3 60.3 60.3 111.7 92% 
14 24.0 79.4 80.0 61.3 59.8 60.6 79.7 91% 
15 25.0 92.8 86.5 64.5 64.1 64.3 46.4 90% 
n 15 15 15 15 15 15 15 15 
M 21.6 107.2 92.6 55.0 54.6 54.8 99.9 93% 
SD 2.7 20.0 41.4 5.1 4.7 4.9 24.9 4% 

Output AIM Paired samples West comparing the two data points averaged to 
define peak ý702 for the high and low VO 

2 ..,, groups. 

Paired Samples Test 

Paire d Difference s 
95% Confidence 

Interval of the 
Sid. Error Difference 

Mean Sid Deviation Mean Lower Upper t df Sig, (24alled) 
Pairl LOWMAXI-LOWMAX2 

. 7025 1.44365 . 38583 1310 1.6361 1.821 13 . 092 
Pair2 HIGHMAXI-HIGHMAX2 

. 0417 60448 . 16156 -. 3073 3907 258 13 Boo 
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Output A11.2 Independent samples West comparing the % 'ý 02.. attained 
between the high and low Vo 

2 maxgroups. 
Independent Samples Test 

Levene's Test for 
Eaualrty Variances West for Eaualitv of ans 

95% Confidence 
Interval of the 

n Mae Sid Error Difference 
F Siq t iff Sig (24ailed) Difference . Difference Lower Upper 

MAXATT2 Equal variances 
assumed . 738 . 407 5,372 12 . 000 . 0657 . 01223 . 03906 . 09237 

Equal variances 
not assumed 5.372 11.270 000 . 0657 . 01223 . 03887 - 09256 

Output A11.3 Pearson's correlation between the %'ýo attained and ý70 
2 

for the group (n = 15). 

Correlations 

MAXI MAXATTI 
MAXI Pearson Correlation 1 -. 765*1 

Sig. (2-talled) 
. 001 

N 15 15 
MAXAM Pearson Correlation -. 765** 1 

Sig. (2-tailed) 
. 001 

N 15 15 
**. Correlation is significant at the 0.01 level (2-tailed). 
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APPENDIX III: STUDY III 

Table AIIIA Participant characteristics for Study III (individual data). 
Participant Mass Height Age PB (s) Ramp peak "2 Ramp peak 

(kg) (m) (years) (ml. kg". min") speed 
(km. h7) 

800M 
1 70 1.79 30 105.7 65.0 22.7 
2 65 1.67 26 110.1 70.9 22.2 
3 74 1.85 22 115.2 67.1 21.4 
4 62 1.76 25 110.9 75.7 23.4 
5 65 1.81 21 114.9 64.5 21.3 
6 74 1.87 25 114.1 72.5 22.8 

n 6 6 6 6 6 6 
Al 68.3 1.8 24.8 111.8 69.3 22.3 
SD 4.9 0.1 3.2 3.7 4.5 0.8 

400 rn 
1 70 1.66 20 51.4 55.7 18.7 
2 83 1.89 22 51.2 54.7 18.3 
3 79 1.78 22 49.7 57.2 19.8 
4 67 1.78 19 50.1 55.3 19.6 
5 67 1.76 22 50.8 64.4 20.9 
6 81 1.80 23 50.2 50.1 16.8 

n 6 6 6 6 6 6 
At 74.5 1.8 21.3 50.6 56.23 19.00 
SD 7.3 0.1 1.5 0.7 4.67 1.41 
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Table A111.2 Peak 'ý02 (ml. kg". min") and test duration (s) for 400 and 800 m 
runs (individual data). 

400 m 800 m 
Speed Time V02 %V02 Speed Time V02 %V02 

(km. lfl) (s) (n-d. kg- max 
(km. h") (s) (ml. kg' max 

I. Milf) l. min") 

800m 
1 27.7 54.6 55.4 85% 25.1 108.4 57.0 88% 
2 26.2 55.4 62.3 88% 25.0 92.8 64.5 91% 
3 26.7 55.4 54.0 81% 23.4 138.0 55.7 83% 
4 24.8 57.9 65.4 86% 25.0 106.5 70.5 93% 
5 24.8 58.9 58.0 90% 23.4 125.4 61.4 95% 
6 24.8 52.5 61.4 85% 24.0 79.4 61.3 85% 
n 6 6 6 6 6 6 6 6 
Al 25.8 55.79 59.4 86% 24.3 108.4 61.7 89% 
SD 1.2 2.33 4.4 3% 0.8 21.2 5.4 0.05 

400 m 
1 26.7 54.3 51.8 93% 
2 25.7 52.9 53.3 97% 
3 27.7 58.4 51.9 91% 
4 26.7 48.4 51.7 93% 
5 24.8 60.2 61.1 95% 
6 24.8 56.4 47.0 94% 

n 6 6 6 6 
Al 26.07 55.10 52.78 94% 
SD 1.1 4.23 4.62 2% 

Output AIIIJ Paired samples west comparing the % V02m.,, attained by 800 m. 
event specialists during the 400 and 800 m runs. 

Paired Samples Test 

Pal d Difference s 

Error Std 

95% Confidence 
Interval of the 

Difference 
Mean Std Deviation . Mean Lower I Upper t df S12 (2-tailed) 

Pair I M800 - M400 0333 . 02368 . 00967 . 0085 1 0582 34, 
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Output AIII. 2 Independent samples West comparing the % ýro 
2 ,, attained by 

400 and 800 m event specialists during 400 m running. 
Independent Samples Test 

Levene's Test for 
Equality of Variances t-test for Equality of ans 

95% Confidence 
Interval of the 

Mean Std Error Difference 
F Sig t df Sig. (2-talled) Difference . Difference Lower U er 

- ALL400 Equal variances 576 A65 -5.121 
- 

10 000 -. 0812 
- 
i . 0158! -. 11648 11 -. 04585 1 assurned . . 

1 

Equal variances 
not assumed -5.121 8.917 . 001 -. 0812 . 01585 -. 1170 7 -. 04526 

LE Sandals (2003) 235 



Appendix IV: study IV 

APPENDIX IV: STUDY IV 

Table AIV. 1 Participant characteristics for Study IV (individual data). 

Participant Alass 
(kg) 

Height 
(M) 

Age 
(years) 

PB (s) RamppeakVO, 
(n-A. kg7l. min") 

Ramp peak 
speed 

(knLh") 

1 74 185 22 115.2 62.3 21.4 
2 70 179 30 105.7 65.0 22.7 
3 62 167 26 110.1 71.8 25.1 
4 66 181 21 114.9 66.0 22.1 
5 74 187 25 114.1 66.5 22.8 
6 70 179 30 110.6 65.0 23.1 
7 65 170 27 114.3 65.4- 22.5 
8 62 176 25 110.9 75.7 23.4 

n 8 8 8 8 8 8 
M 67.8 178.0 25.8 112.0 67.2 22.9 
SD 4.7 6.7 3.3 3.3 4.3 1.1 

Table AIV. 2 Peak ý'02 (ml. kg-l. min") and test duration (s) for three 800 m pace 
runs (individual data). 

C Pace R Pace A Pace 
Time ýro 

2 
% Time V02 % Time V02 % 

(S) (ml. kg- V02 (S) (ml. kg- 
V02 (S) (n-d. kj' V02 

. n-dn") max -min") max '. min') max 
1 126.8 54.7 88% 126.7 57.3 92% 128.0 54.4 87% 
2 111.5 56.2 86% 125.2 61.6 95% 122.9 58.1 89% 
3 78.0 63.8 89% 80.7 63.9 89% 98.4 63.4 88% 
4 138.3 59.0 89% 125.9 59.6 90% 107.1 61.2 93% 
5 80.0 59.8 90% 79.4 58.5 88% 81.8 60.0 90% 
6 111.5 56.2 86% 125.2 61.6 95% 122.9 58.1 89% 
7 110.7 60.3 92% 113.2 62.0 95% 116.6 61.5 94% 
8 106.5 70.5 93% 113.4 73.1 97% 108.2 72.1 95% 
n 8 8 8 8 8 8 8 8 8 
Al 107.9 60.1 89% 111.2 62.2 92% 110.7 61.1 91% 
SD 20.7 5.1 2% 20.0 4.9 3% 15.3 5.2 3% 
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Output AIV. 1 Repeated Measures ANOVA comparing differences among the 
three 800 m runs in the % 'ýO 2 max attained. 

Mauchly's Test of Sphericitp 

Measure: MEASURE I 

Epsilona 
Approx. Greenhous 

ýýiýthin Subjects Effect MauchlVs W Chi-Square df Sig e-Geisser Huynh-Feldt Lower-bound 
RUN 

. 432 5040 2 . 080 . 638 . 716 . 500. 
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables Is 
proportional to an Identity matrix. 

8. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed In the 
Tests of Within-Subjects Effects table. 

b. 
Design: Intercept 
Within Subjects Design: RUN 

Tests of Within-Subjects Effects 

Measure: MEASURE-1 

Source 
Type III Sum 

df Mean Square F Sig. 
RUN Sphericity Assumed 

. 004 2 . 002 4.888 . 025 
Greenhouse-Geisser 

. 004 1.275 . 003 4.888 . 048 
Huynh-Feldt 

. 004 1.433 . 003 4.888 . 042 
Lower-bound 

. 004 1.000 . 004 4.888 . 063 
Error(RUN) Sphericity Assumed 

. 006 14 . 000 
Greenhouse-Geisser 

. 006 8.927 . 001 
Huynh-Feldt 

. 006 10.029 . 001 
Lower-bound 

. 006 1 7.000 . 001 

Tests of Within-Subjects Contrasts 

Measure: MEASURE-1 
Type III Sum 

Source RUN of Squares df Mean Square F Sig. 
RUN Linear . 001 1 . 001 8.079 . 025 

Quadratic 
. 003 1 . 003 4.350 . 075 

Error(RUN) Linear . 001 7 . 000 
Quadratic . 005 7 . 001 
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