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Conventionally, the assessments of endothelial function and arterial stiffness require different sets of equipment, making the
inclusion of both tests impractical for clinical and epidemiological studies. Pulse wave analysis (PWA) provides useful information
regarding the mechanical properties of the arterial tree and can also be used to assess endothelial function. PWA is a simple, valid,
reliable, and inexpensive technique, offering great clinical and epidemiological potential. The current paper will outline how to
measure arterial stiffness and endothelial function using this technique and include discussion of validity and reliability.

1. Introduction

Cardiovascular disease (CVD), the leading cause of mortality
in the Western world [1], has a very long asymptomatic
phase of development, starting as early as the first decade
of life [2]. It is imperative, therefore, that clinical scientists
and epidemiologists have at their disposal simple, valid,
and reliable techniques to assess and track the progression
of CVD. Noninvasive assessment techniques fall under two
broad categories: those that assess endothelial health and
those that assess arterial stiffness. Assessment of endothelial
function indicates the functional health of the vascular sys-
tem, whereas arterial stiffness assesses structural characteris-
tics. Together, these techniques may provide complimentary
indices of CVD risk.

Conventionally, assessments of endothelial function and
arterial stiffness require different sets of equipment, making
the inclusion of both tests impractical for clinical and
epidemiological studies. Pulse wave analysis (PWA) is a
simple and noninvasive technique that has been widely
used in epidemiological [3] and interventional studies [4].
PWA provides useful information regarding the mechanical
properties of the arterial tree and the ventricular-vascular
interaction [5] and can also be used to assess endothelial

function [6]. PWA is a simple, valid, reliable, and inexpensive
technique, offering great clinical and epidemiological poten-
tial. The current review will outline how to measure arterial
stiffness and endothelial function using this technique and
include discussion of validity and reliability.

2. Arterial Stiffness

Arterial stiffness is a general term that collectively describes
distensiblility, compliance, and elastic modulus of the arterial
vascular system. These properties are not homogenous along
the arterial tree and muscular and elastic vessels differ.
Arterial stiffness can be measured systemically, regionally, or
locally. Local measurements provide important physiological
information and are more quantitative and sensitive than
systemic indices. However, these measurements give no
indication of how the artery of interest interacts with central
function (i.e., the heart) as part of an integrative system.
Regional arterial stiffness is measured at arterial sites of
major physiologic importance such as the aorta where the
arterial buffering function is principally expressed, or a
particular limb. Systemic arterial stiffness affects the global
buffering properties of the arterial system, just as arterial
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blood pressure can be considered as a global value of
hemodynamic load, systemic arterial stiffness reflects the
overall opposition of large arteries to the pulsatile effects of
ventricular ejection.

A number of methodologies have been applied to the
in vivo assessment of arterial stiffness. These methodologies
fall into three broad groups: (1) relating change in area
of an artery to distending pressure, that is, local arterial
stiffness, (2) measuring pulse wave velocity, that is, regional
arterial stiffness, and (3) pulse wave analysis, that is, systemic
arterial stiffness. Ultrasound and magnetic resonance
imaging (MRI) are capable of measuring local arterial
stiffness [21–23] as well as pulse wave velocity [24–30],
but these methodologies require expensive equipment
(especially in the case of MRI) and a high level of technical
expertise and are often impractical within the clinical or
epidemiological setting. PWV can also be assessed using
dedicated equipment, including oscillometric [31–34],
tonometric [32, 35–37], volume plethysmographic [38, 39],
and photo plethysmographic [40–43] devices. These devices
either measure the pulse wave at two peripheral sites or
record the electrocardiogram and measure the pulse wave
at a peripheral site, to estimate the regional arterial stiffness.
Alternatively, a number of devices are also available to
estimate systemic arterial stiffness using PWA.

2.1. Measurement. A number of commercial devices are
available to automate PWA assessments, including Compi-
lor (tonometric device) [44, 45], Sphygmocor (tonometric
device) [44, 46–49], PulsePen (tonometric device) [50, 51],
ARCSolver [47, 52] (oscillometric device), Arteriograph
[33, 53–57] (oscillometric device), Omron (oscillometric
device) [55, 58], PulseCore [59, 60] (oscillometric device),
Viscorder [32, 34, 49] (oscillometric device), and PulseTrace
[6, 42, 48, 61] (photoplethysmographic device). Applanation
tonometry is considered the “gold standard” and is the most
widely used technique [62]. A probe is conventionally placed
on the skin overlying the radial artery, and pressure is applied
to distort or applanate (flatten) the artery, creating a signal
which approximates arterial pressure. The peak and trough
of the radial pulse wave correspond, respectively, to systolic
and diastolic blood pressure measured conventionally on the
brachial artery, since blood pressure is practically identical
in brachial and radial arteries [63]. Mean blood pressure is
determined by integration of the radial wave. A generalized
transfer factor is then used to generate the corresponding
central arterial waveform [64–67].

Figure 1 shows typical features of the aortic pulse pres-
sure waveform, from which can be derived augmentation
pressure (AP), augmentation index (AIx), and arrival time
of reflected waves at the central aorta (Tr). Tr represents
the time from the onset of the ejected pulse waveform to
the onset of the reflected wave and reflects aortic pulse
wave velocity [68]. AP is the additional aortic systolic
pressure generated by the return of the reflected waves at
the central aorta, expressed in absolute terms [62]. AIx is
the AP as a percentage of central pulse pressure and is a
composite measure of aortic wave reflection and systemic
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Figure 1: Aortic pulse pressure waveform. Systolic and diastolic
pressures are the peak and trough of the waveform. Augmentation
pressure is the additional pressure added to the forward wave by the
reflected wave. Augmentation index is defined as the augmentation
pressure as a percentage of pulse pressure. The dicrotic notch
represents closure of the aortic valve and is used to calculate ejection
duration. Time to reflection is calculated as the time at the onset of
the ejected pulse waveform to the onset of the reflected wave.

Figure 2: Electronics module (SphygmoCor device, AtCor Medical,
Sydney, Australia).

arterial stiffness [62, 69]. Although the timing of the arrival of
the reflected wave at the proximal aorta is largely determined
by large artery PWV, AIx is not interchangeable with PWV.
It is influenced by vasoactive drugs independently of PWV
[70], suggesting that it is also determined by the intensity
of wave reflection, which, in turn, is determined by the
diameter and elasticity of small arteries and arterioles.
A number of variables are known to influence AIx. AIx
increases with MAP [71] and is inversely related to body
height [72] and heart rate [73, 74], with a 10 bpm increase
in heart rate resulting in a 4% reduction in AIx [73].
AIx should be normalized for a heart rate of 75 beats per
minute (AIx@HR75). One of the most widely used devices,
SphygmoCor, automatically adjusts the AIx at an inverse rate
of 4.8% for each 10 bpm increment. The AIx@HR75 is only
calculated when the patient’s heart rate is between 40 and
110 bpm. Outside of this range the software will display an
N/C indicating that no calculation was possible.

Using the SphygmoCor to illustrate the procedure (a
typical setup is shown in Figure 2), PWA takes approximately
20 minutes to complete. Following at least 10 minutes supine
rest, brachial artery systolic and diastolic blood pressures are
measured in the nondominant arm and used to calibrate
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the PWA measurements taken on the radial artery. Radial
artery waveforms are then recorded in duplicate. A high-
fidelity tonometer is used to obtain pressure waveforms
by applying gentle pressure over the nondominant radial
artery and repositioning the device until the greatest pulse
signal is detected. Data is collected directly into a personal
computer, and recordings are assessed visually to ensure that
the best possible recording is obtained. After 20 sequential
waveforms are acquired, an averaged peripheral waveform is
generated and a corresponding aortic waveform is derived
(see Figure 3). When consecutive AIx@HR75 readings differ
by more than 4%, a third reading is obtained, and the mean
of the closest two readings is taken.

2.2. Validity. There is evidence that increased aortic wave
reflections have adverse effects on ventricular afterload and
coronary perfusion, and their pathological role has been
demonstrated in several diseases [75–78]. Furthermore,
increased central arterial wave reflections have been shown
to independently predict cardiovascular risk and mortality
[5, 79, 80]. Increased amplitude and the earlier return of
the reflected wave within the cardiac cycle augments the
central systolic blood pressure, resulting in increased wave
reflections [69]. The amplitude and timing of reflected pres-
sure waves are determined primarily by vascular elasticity,
peripheral vascular resistance, heart rate, and left ventricle
function [81].

2.3. Reliability. Any valid technique utilised for the mea-
surement of physiological variables must be reproducible
[82]. A high intra- and interobserver reproducibility of
baseline AIx has been observed in healthy controls and
patients with cardiovascular disease and renal dysfunction
[7, 38, 82–94]. Good reproducibility of baseline time to
reflection (Tr), an alternative index to AIx, has been reported
in several studies [88, 91, 94]. However, the majority of
these trials examined the reproducibility using simple Bland-
Altman analysis, whereas studies using more definitive intra-
class correlation coefficient (ICC) and the contribution of
variance components are limited [81, 82, 91, 93, 94]. ICC
values for repeated measurements taken at hourly or weekly
intervals have been reported to be 0.72–0.90 for AIx [91, 94],
0.90 for AP [81], and 0.43–0.84 for Tr [81, 91, 94]. In
addition, few trials have reported the reproducibility of heart
rate corrected AIx [82, 91, 93], although it is frequently used
in wave reflection studies. While this technique potentially
offers a valid and reliable marker of CVD risk, further study
is required to determine sample size recommendations for
AIx normalized to heart rate.

2.4. Recommendations. The PWA technique is particularly
suitable for incorporation into clinical trials. Strengths of
this technique include simplicity of assessment, relatively
short training requirements for investigators, low time
commitment for subjects, noninvasiveness, portability, and
cost-effectiveness. Both AIx and AP confer similar repro-
ducibility and have been reported as more reliable than Tr.
Since AIx is strongly influenced by heart rate, both AIx

Figure 3: Radial artery applanation tonometry recording. The
upper long panel shows the radial pressure waveform above the
derived central pressure waveform. The upper right panel shows
the overlaid radial waveforms, including the operator index, and
the middle panel shows the quality control indices. The bottom left
panel demonstrates a magnified radial arterial waveform. Systolic
and diastolic pressures are 145/92 mmHg. The bottom right panel
provides a magnified derived central pressure waveform. Central
pressure is 137/93 mmHg.

and AP should be corrected for this confounding factor
[73]. Further study is warranted to determine whether the
three indices of arterial stiffness provide additive prognostic
value.

3. Endothelial Health

Functionally, the endothelium is a large autocrine, paracrine,
and endocrine organ that plays a key role in vascular
homeostasis [95]. Endothelial dysfunction is a pivotal, yet
potentially reversible, step that has been shown to precede
and predict overt CVD [96]. The endothelium has been
recognized for the important role it plays in regulating
vascular reactivity via the release of dilator mediators,
including nitric oxide (NO) [97–100], prostaglandins [101],
and endothelial-derived hyperpolarizing factor [102, 103].
The capacity of the endothelium to regulate vascular tone
(reactivity) is used to confirm the health of the endothelium.

Established methodologies for evaluating peripheral
endothelial function include strain-gauge venous occlusion
forearm plethysmography [104, 105], ultrasound-measured
flow-mediated dilation (FMD) [105–107], peripheral arterial
tonometry (e.g., using the EndoPat device) [105], and
laser Doppler flowmetry [105]. These techniques assess
the vasodilator responses to endothelium-dependent stimuli
such as acetylcholine and increased shear stress and to
endothelium-independent stimuli, including sodium nitro-
prusside and glyceryl trinitrate (GTN). The two most com-
monly used techniques are strain-gauge plethysmography
and FMD, with FMD being considered the “gold standard”
for assessing endothelial function. FMD is a noninvasive,
valid [10–13], and moderately reliable [14, 15] technique
but is expensive and highly technical (Table 1). Strain-gauge
plethysmography also offers acceptable reliability [17–20]
but is an invasive technique when coupled with intra-
arterial infusion of vasodilators (Table 1). As such, these
techniques are often impractical for use in clinical trials or
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Table 1: Comparison of noninvasive techniques for assessing endothelial function.

Technique Equipment Cost Skill level Test time Validity Reliability Ref

PWA
Applanation
tonometry

Medium
US$15,000

Low 35 mins Medium∗ Medium-high∗

d = 0.9–2.3%
[6–9]

FMD
(i) Ultrasound
(ii) Tourniquet

High
>US$50,000

High 20 mins High
Medium
CV : 14–50%

[10–16]

Plethysmography Strain-gauge
Low
US$10,000

Med. 30 mins Medium
Medium
CV: 8–27%

[17–20]

FMD: flow-mediated dilation; CV: coefficient of variation; d: sample bias (mean difference); PWA: pulse wave analysis. ∗Further study is needed to corroborate
these findings.

epidemiological studies. Alternatively, a limited number of
studies have used PWA to assess endothelial function.

3.1. Measurement. Endothelial function can be assessed
noninvasively by evaluating the effects of inhaled salbutamol
on the AIx [6–8]. AIx is a measure of systemic arterial
stiffness [62]. Notably, NO, considered the central molecule
governing endothelial function [97–100], is a key modulator
of arterial stiffness [108]. Chowienczyk et al. [6] demon-
strated that salbutamol, a β2 agonist and endothelium-
dependent vasodilator, in part reduces wave reflection by
activation of the L-arginine-NO pathway.

The test takes approximately 35 minutes to complete;
following at least 10 minutes supine rest, baseline PWA is
recorded as described above, and PWA recordings are then
repeated after 5, 10, 15, and 20 minutes after the adminis-
tration of 400 μg inhaled salbutamol. The maximal decrease
in AIx from baseline following a salbutamol challenge is
used as an index of endothelial function. Endothelium-
independent function can also be assessed using PWA by
measurement of the reduction in AIx following sublingual
GTN administration.

3.2. Validity. Wilkinson et al. [7] and Hayward et al. [8]
evaluated the effects of inhaled salbutamol and sublingual
GTN on the AIx. Investigators observed a significant corre-
lation between the salbutamol-mediated reductions in AIx
and increase in forearm blood flow during infusion of
acetylcholine that was abolished by coadministration of NG-
monomethyl-L-arginine (L-NMMA), an endothelial NO
synthase inhibitor, suggesting that this may represent a valid
approach for assessing endothelial function. Conversely,
coadministration of intravenous L-NMMA has no influence
on sublingual GTN-mediated reductions in AIx, consistent
with an endothelium-independent effect [37, 74]. To date,
relatively few clinical studies have employed PWA to assess
endothelial function. However, preliminary validation stud-
ies have demonstrated blunted AIx responses to salbutamol
in subjects exhibiting diabetes [6], hypercholesterolaemia
[7], coronary artery disease [8], and peripheral vascular
disease [9] among others.

3.3. Reliability. Studies examining the reproducibility of
salbutamol-mediated effects on AIx are limited [7, 8, 82].

Hayward et al. [8] assessed reliability in healthy sub-
jects using Bland-Altman analysis and reported excellent
between-day mean difference (d = 0.9 ± 2%). Wilkinson et
al. [7] also assessed reliability in healthy subjects using Bland-
Altman analysis and reported similar findings; between-
day mean difference in the AIx response was −2.3 ±
3.0 for salbutamol-mediated changes and 0.2 ± 6.5 for
glyceryl trinitrate (GTN)-mediated changes. More recently,
Paul et al. [82] produced discrepant findings when they
assessed within-day reliability using the more definitive
ICC method [109]. Relatively low reliability was reported
for control (ICC: 0.18) and chronic heart failure groups
(CHF) (ICC: 0.04). However, relatively low reliability was
also reported for GTN-mediated changes in AIx for both
control (ICC: 0.58) and CHF groups (ICC: 0.17). Endothelial
function assessments were repeated at hourly intervals, and
the authors suggest that the low ICC values may reflect
diurnal variability or a carryover effect from the first
assessment. Further study is warranted to determine the
reliability and sample size requirements for this promising
technique.

3.4. Recommendations. Salbutamol-mediated effects on AIx
can be used to estimate endothelial function. This technique
offers a number of advantages, namely simplicity of assess-
ment, relatively short training requirements for investigators,
low time requirement, portability, cost-effectiveness, ease of
use, good reliability indicated by preliminary studies, and
the salbutamol challenge isolating the NO pathway. However,
more clinical studies are required to further validate this
test. Also, while NO is unarguably an important molecule
governing endothelial function, the endothelium can release
additional complimentary or compensatory molecules [110],
most notably prostacyclin [101] and endothelial-derived
hyperpolarizing factor [102, 103]. The relative importance
of these molecules varies by vascular bed and between
individuals, particularly between individuals exhibiting a
number of diseased states [111–120]. Therefore, while this
test can provide a snapshot of endothelial function it may
not provide a complete picture. Further study is warranted to
determine whether baseline AIx (systemic arterial stiffness)
and AIx following salbutamol inhalation confer additive
prognostic value. Further study is also required to clarify
sample size recommendations for this test.
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4. Conclusion

PWA is a simple technique capable of assessing systemic
arterial stiffness and endothelial function. This test is
particularly suitable for clinical and epidemiological studies.
Further study is required to determine: (1) sample size
requirements, and (2) whether baseline AIx (systemic arterial
stiffness) and AIx following salbutamol inhalation confer
additive prognostic value.
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