

This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published document:

Ayala, Francisco, Sainz de Baranda, Pilar, De Ste Croix, Mark B ORCID logoORCID: https://orcid.org/0000-0001-9911-4355 and Santonja, Fernando (2012) Efecto agudo del estiramiento activo sobre la fuerza y potencia de la flexión y extensión de rodilla Acute effect of active stretching on knee flexion and extension strength and power output. Revista Andaluza de Medicina del Deporte, 5 (4). pp. 127-133. doi:10.1016/S1888-7546(12)70020-5

Official URL: http://dx.doi.org/10.1016/S1888-7546(12)70020-5

DOI: http://dx.doi.org/10.1016/S1888-7546(12)70020-5 EPrint URI: https://eprints.glos.ac.uk/id/eprint/2439

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

This is a peer-reviewed, pre-print (final draft post-refereeing) version of the following published document:

Ayala, Francisco and Sainz de Baranda, Pilar and De Ste Croix, Mark B and Santonja, Fernando (2012). Efecto agudo del estiramiento activo sobre la fuerza y potencia de la flexión y extensión de rodilla. Revista Andaluza de Medicina del Deporte, 5 (4) 127-133.

Published in Revista Andaluza de Medicina del Deporte, and available online at:

http://ac.els-cdn.com/S1888754612700205/1-s2.0-S1888754612700205-main.pdf?_tid=5621bd7c-2ad8-11e5-9e72-00000aab0f6c&acdnat=1436954615_deda2b5e6c8625211f3f926cd402eca8

We recommend you cite the published (post-print) version.

The URL for the published version is http://dx.doi.org/10.1016/S1888-7546(12)70020-5

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Título: Efecto agudo del estiramiento activo sobre la fuerza y potencia de la flexión y extensión de rodilla

Title: Acute effect of active stretching on knee flexion and extension strength and power output.

Autores: Francisco Ayala¹, Pilar Sainz de Baranda¹, Mark De Ste Croix², Fernando Santonja³

Dirección postal: Francisco Ayala. Avenida Carlos III, s/n. 45071 Toledo (Castilla La Mancha, España). E-mail: franciscoayalarodriguez@gmail.com; Tlf: 0034968862469; Fax: 0034968862484.

Apoyo recibido: "Este trabajo es resultado de la ayuda concedida por la Fundación Séneca, en el marco del PCTRM 2007-2010, con financiación del INFO y del FEDER de hasta un 80 %".

¹ Facultad de Ciencias del Deporte. Universidad de Castilla La Mancha (Spain)

² Faculty of Sport and Applied Sciences, University of Gloucestershire, Gloucester (United Kingdom)

³ Facultad de Medicina. Universidad de Murcia (Spain)

Resumen

Objetivo: Analizar el efecto agudo de un protocolo de estiramientos estáticos activos de corta duración sobre la potencia y máxima fuerza isocinética concéntrica y excéntrica de la flexión y extensión de rodilla en deportistas recreativos.

Método: Un total de 27 hombres y 25 mujeres completaron tres sesiones de evaluación, una inicial de familiarización y dos experimentales (control y estiramientos en orden aleatorio), con un intervalo de 72-96 horas entre sesiones consecutivas. El protocolo de estiramientos estáticos activos consistió en 5 ejercicios unilaterales diseñados para estirar los principales grupos musculares de la extremidad inferior. Cada ejercicio de estiramiento fue realizado 2 veces, manteniendo la posición de estiramiento durante 30s (2x30s), con un periodo de descanso entre serie, pierna contra-lateral y/o ejercicio de 20s. En la sesión de control no se realizó el programa de estiramientos. Inmediatamente después de ambos tratamientos (control y estiramientos), se valoraron los índices isocinéticos pico de fuerza máximo (PFM) y potencia media (PM) durante los movimientos de flexión y extensión de rodilla concéntrica y excéntrica.

Resultados: El análisis ANOVA llevado a cabo reveló la no existencia de un efecto de interacción significativo entre las sesiones de evaluación (control y estiramiento) para las variables PFM y PM (concéntrica y excéntrica) de la flexión y extensión de rodilla.

Conclusiones: Un protocolo de estiramientos estáticos activos de corta duración (2x30s por grupo muscular) del miembro inferior no causó una alteración negativa en la potencia y máxima fuerza isocinética concéntrica y excéntrica de la flexión y extensión de rodilla

Palabras clave: Calentamiento, estiramientos activos, pico de fuerza máximo, potencia media, rendimiento deportivo

Abstract

Aim: To analyze the acute effect of a short duration active-static stretching protocol on

maximal isokinetic strength and power output during concentric and eccentric flexion and

extension knee movements in recreational athletes.

Method: A total of 27 males and 25 females completed three measurement sessions, an initial

session of familiarization and two experimental session (control and active stretching in

randomized order) with 72-96 hours interval among consecutive sessions. The active

stretching protocol consisted in 5 different unilateral exercises designed to stretch the major

lower limb muscle groups. Each stretching exercise was performed twice, holding the

position during 30s (2x30s), with a rest-interval among series, contra-lateral leg and /or

exercises of 20s. In the control session no stretching exercises were performed. Immediately

after performed both treatments (control and stretching), the isokinetic indexes of peak torque

(PT) and average power (AP) were tested during concentric and eccentric flexion and

extension knee movements.

Results: The ANOVA analysis carried out revealed no significant interaction effect between

testing sessions (control and stretching) for knee flexion and knee extension peak torque and

mean power in both concentric and eccentric muscle contractions.

Conclusions: Short (2x30s per muscle group) pre-exercise active-static lower-limb stretching

routine did not elicit stretching-induce reductions in knee flexor and knee extensor isokinetic

concentric and eccentric strength.

Key words: Warm-up, active stretching, peak torque, average power, sport performance.

Introducción

El calentamiento antes de un entrenamiento o competición deportiva es una práctica universalmente aceptada¹. En este sentido, la realización de estiramientos como parte fundamental de todo calentamiento ha sido ampliamente recomendada para individuos que participan en programas de rehabilitación física, prevención de lesiones, mejora de la salud y/o aumento del rendimiento deportivo^{2,3}. Numerosas son las técnicas de estiramiento descritas en la literatura científica, siendo la técnica de estiramiento estática la más utilizada en el ámbito clínico y físico-deportivo debido a su sencillez y seguridad⁴⁻⁶.

Los principales objetivos que teóricamente se le atribuyen a la realización de estiramientos previos a una actividad deportiva son: a) incremento del rendimiento incluyendo la mejora de la coordinación y propiocepción⁷⁻⁹; b) incremento del rango de movimiento¹⁰; c) reducción del riesgo potencial de lesión^{11,12}; d) aumento de la circulación sanguínea y descenso de la viscosidad intra e inter muscular¹³; así como e) incremento de la temperatura muscular y corporal¹⁴. Sin embargo, los actuales hallazgos científicos sugieren que los estiramientos estáticos que se realizan como parte del calentamiento parece tener pocos efectos positivos y que incluso podrían contribuir a un descenso temporal en el rendimiento deportivo^{6,15}. Además, numerosos estudios recientes, aunque no todos, observan que una carga aguda de estiramientos estáticos puede reducir: a) la máxima fuerza ante una resistencia externa constante¹⁶; b) la máxima fuerza isocinética concéntrica¹⁷⁻²³ y excéntrica²⁴; c) la máxima fuerza isométrica²⁵⁻²⁸; d) la máxima potencia²⁹; así como e) la capacidad de salto vertical³⁰⁻³³ y de carrera a la máxima velocidad³⁴⁻³⁷.

Basados en este cuerpo de conocimiento científico, ciertos autores han concluido que el estiramiento estático debería ser suprimido como parte inherente a todo proceso de calentamiento previo a un evento deportivo o ejercicio físico extenuante^{3,38}. Sin embargo, si se analiza con profundidad el diseño de los diferentes estudios científicos que informan de

descensos temporales en el rendimiento deportivo como consecuencia de la realización de rutinas de estiramientos, es posible encontrar ciertos aspectos que podrían sesgar sus conclusiones, tales como: a) reducidos tamaños muestrales objeto de estudio, fluctuando entre los 7 y los 20 participantes ^{19-22,24-26,28,29,33,35,39-45} además de b) un empleo casi monopolístico de la técnica de estiramientos estática en su modalidad pasiva ^{17-23,26-28}; y c) donde la carga de entrenamiento oscila entre los 180 segundos ⁴⁶ y la hora de duración ^{40,41}.

Por tanto, parece clara la necesidad de llevar a cabo estudios científicos donde se analice el efecto agudo del estiramiento: a) con mayores tamaños muestrales (n > 30); b) utilizando la técnica de estiramiento estática en su modalidad activa; y c) empleando una carga de entrenamiento adaptada a la realidad físico-deportiva (30-60s). Esta información podría ser de vital importancia para entrenadores, preparadores físicos y demás profesionales del ámbito físico-deportivo, pues les permitirá adoptar decisiones justificadas sobre la utilización de estiramientos estáticos activos en sus calentamientos con el propósito de aumentar el rendimiento deportivo.

Por ello, el objetivo de este estudio fue analizar el efecto agudo de un protocolo de estiramientos estáticos activos de corta duración sobre la potencia y máxima fuerza isocinética concéntrica y excéntrica de la flexión y extensión de rodilla en deportistas recreativos. Como hipótesis inicial se estableció que la rutina de estiramientos estática activa de corta duración estudiada no produciría alteraciones negativas en la potencia y máxima fuerza isocinética de la flexión y extensión de rodilla debido al teórico aumento en la activación y coordinación intermuscular que determinados autores le atribuyen^{47,48}.

Método

Participantes

Un total de 27 hombres (edad = $21,4\pm2,5$ años; estatura = $176,3\pm8,3$ cm; peso = $74,7\pm10,5$ kg) y 25 mujeres (edad = $20,4\pm1,8$ años; estatura = $164,7\pm7,6$ cm; peso = $62,9\pm8,6$ kg)

adultos jóvenes deportistas recreativos (1-5 horas de práctica de actividad físico-deportiva de intensidad moderada, un total de 3-5 días a la semana) completaron este estudio. Todos los participantes fueron invitados a mantener sus niveles regulares de práctica de actividad físico-deportiva durante todo el proceso exploratorio, aunque se instó a evitar las prácticas vigorosas durante las 48 horas previas a cada sesión de evaluación.

Como criterios de exclusión se establecieron: a) presentar alteraciones músculo-esqueléticas, tales como desgarros de la musculatura isquiosural y del cuádriceps, fracturas, cirugías y/o dolor en la columna vertebral en los últimos 6 meses previos al presente procedimiento exploratorio; b) tener experiencia previa en la aplicación de pruebas de valoración isocinética; y c) no asistir a una o más sesiones de valoración durante todo el proceso de recogida de datos. Asimismo, un criterio de exclusión adicional fue establecido para las participantes mujeres, de tal forma que ninguna de ellas podía estar inmersa en la fase de ovulación de su proceso menstrual durante toda la fase de recogida de datos con el propósito de minimizar las fluctuaciones en la rigidez de la unidad músculo-tendón y laxitud de la articulación de la rodilla^{49,50}. Todos los criterios de inclusión y exclusión fueron evaluados por dos investigadores con dilatada experiencia en el ámbito científico y clínico empleando para este fin un cuestionario de evaluación médica y físico-deportiva.

Todos los participantes fueron verbalmente informados de la metodología a utilizar, así como de los propósitos y posibles riesgos del estudio, y un consentimiento informado fue firmado por cada uno de ellos. El presente estudio fue aprobado por el Comité Ético y Científico de la Universidad Católica San Antonio de Murcia (España).

Diseño experimental

Un diseño de medidas repetidas fue utilizado para analizar el efecto agudo de una rutina de estiramientos estática activa de corta duración sobre la potencia y máxima fuerza isocinética concéntrica y excéntrica de la flexión y extensión de rodilla. Una semana antes del comienzo

de la fase experimental, todos los participantes fueron sometidos a una sesión de familiarización con el propósito de conocer la correcta ejecución técnica de los estiramientos y del procedimiento exploratorio a utilizar mediante la realización práctica de los diferentes ejercicios de estiramientos activos, así como numerosos intentos máximos y sub-máximos de acciones de flexión y extensión de rodilla empleando diferentes velocidades (60°/s, 180°/s y 240°/s) y contracciones musculares (concéntrica y excéntrica). Tras la sesión de familiarización, cada participante fue examinado en 2 ocasiones distintas, con un intervalo de tiempo de 72-96 horas entre sesiones⁵¹. Así, durante las dos sesiones experimentales, y en orden aleatorio, todos los participantes realizaron un tratamiento consistente en estiramientos activos seguidos (2 minutos de descanso) de una evaluación de la máxima fuerza y potencia isocinética (sesión de estiramientos) o, por el contrario, únicamente llevaron a cabo la evaluación isocinética (sesión control). La rutina de estiramientos activos tuvo una duración de 12 ± 2 minutos, mientras que la evaluación isocinética tuvo una duración de 15 ± 3 About here minutos. Figure 1 Figure 2

Cada una de las sesiones de valoración (estiramientos y control) fue llevada a cabo por los mismos dos experimentados clínicos (uno controlaba la correcta posición del participante durante los ejercicios de estiramiento y/o todo el proceso exploratorio y el otro conducía el test) bajo las mismas condiciones ambientales y franja horaria para tratar de minimizar la posible influencia de la variabilidad inter-examinador y ritmos circadianos sobre los resultados⁵². Además, los participantes fueron instados a realizar cada una de las sesiones de valoración en los mismos días y franja horaria que normalmente realizaban sus sesiones de práctica físico-deportiva para minimizar la variabilidad intra-sujeto⁵³.

Rutina de estiramientos

La rutina de estiramientos activos consistió en 5 ejercicios unilaterales diferentes diseñados para estirar los principales grupos musculares del miembro inferior involucrados durante

acciones de carrera (glúteo, psoas, isquiosurales, cuádriceps, aductores) y reflejan los ejercicios que comúnmente realizan deportistas y sujetos físicamente activos en sus calentamientos (figura 1). El orden de los ejercicios fue aleatorio para cada uno de los participantes con el propósito de eliminar el sesgo que una secuencia específica podría presentar sobre los resultados obtenidos. Cada ejercicio de estiramiento se realizó un total de dos veces no consecutivas, manteniendo la posición de estiramiento durante 30 segundos (2x30s) gracias a la activación isométrica de la musculatura agonista al movimiento^{47,48}. Ambas piernas fueron estiradas antes de realizar el siguiente ejercicio. Un periodo de descanso entre pierna contra-lateral y/o ejercicio de 20s fue permitido. La intensidad del estiramiento fue establecida a través de la sensación subjetiva e individual de discomfort, pero no dolor.

Evaluación isocinética

En cada sesión experimental, únicamente la pierna dominante fue evaluada⁵⁴. Todos los participantes adoptaron como posición de valoración la de decúbito prono sobre la camilla del dinamómetro con cadera fijada a 0° de flexión y cabeza en posición neutra (figura 2)^{55,56}. La posición de tendido prono (0° de flexión de cadera) fue seleccionada en lugar de la extensivamente utilizada posición de sentado (80-110° de flexión de cadera) por dos razones principales: a) la colocación de los participantes en tendido prono refleja con mayor exactitud la posición corporal durante actividades funcionales como la carrera a diferencia de la posición de sentado; y b) la posición prono simula mejor la disposición de la curva fuerzalongitud de la musculatura flexora y extensora de rodilla presente durante la última fase y el inicio de la fase de contacto de la habilidad de carrera a la máxima velocidad^{55,56}.

El eje de rotación del brazo telescópico del dinamómetro fue estrictamente alineado con el epicóndilo lateral de la rodilla evaluada. El implemento donde ejercer la fuerza fue colocado aproximadamente a 3 cm del borde superior del maleolo medial del tobillo en posición

relajada. La pelvis, parte posterior del muslo (próximo a la rodilla) y pie fueron fuerte y consistentemente cinchados para focalizar el movimiento únicamente en la flexión y extensión de rodilla. El rango de movimiento del proceso de valoración fue individualmente establecido entre 0° (referencia anatómica 0) y 90° de flexión de rodilla activa. Toda la configuración del proceso de valoración fue individualmente registrada para cada participante durante la sesión de familiarización con el propósito de mantener la misma disposición durante todas las sesiones de valoración⁵⁷. Asimismo, la configuración del freno del movimiento del brazo telescópico al final del rango de movimiento fue pre-fijada en sus valores más bajos (categorizada como "dura") para reducir el efecto de la desaceleración de la pierna durante movimientos articulares opuestos⁵⁸.

La evaluación de la máxima fuerza y potencia isocinética de la flexión y extensión de rodilla fue dividida en dos partes. La primera parte del proceso exploratorio fue destinada a la evaluación simultanea y recíproca de la máxima fuerza isocinética de la flexión y extensión de rodilla por medio de ciclos de movimiento concéntricos/concéntricos (CON/CON). La segunda parte de la exploración estuvo destinada a la evaluación simultánea y recíproca de la máxima fuerza de la flexión y extensión de rodilla por medio de ciclos excéntricos/excéntricos (EXC/EXC). El procedimiento exploratorio se realizó a través de ciclos de movimiento recíprocos de igual modalidad de contracción muscular (CON/CON y ECC/ECC) por ser más sencillos, fáciles de entender y requerir menos demandas físicas que los ciclos recíprocos con diferentes contracciones musculares (CON/ECC y ECC/CON)^{60,61}. En ambas partes del proceso exploratorio, 2 ciclos de flexión y extensión de rodilla fueron realizados para cada una de las tres diferentes velocidades angulares 60%, 180% y 240% (siempre en orden ascendente⁵⁹). Cuando se encontró una variación mayor del 5% en los valores de PFM o PM entre ciclos de la misma velocidad, un ciclo extra fue realizado y los

dos ciclos más próximos en cuando a magnitud de sus resultados se refiere fueron seleccionados para el posterior análisis estadístico.

Entre ciclos de movimientos consecutivos se permitió un descanso de 30s, mientras que un periodo de descanso de 5 minutos fue establecido entre ambas partes del proceso exploratorio. En ambas partes del proceso exploratorio, los participantes fueron verbalmente animados a empujar/resistir lo más fuerte y rápido posible el brazo telescopio a lo largo de todo el rango de movimiento mediante palabras clave estandarizadas tales como "resiste", "empuja", "más rápido",...

Índices isocinéticos

La fuerza máxima isocinética fue evaluada a través del momento o pico máximo de fuerza o torque (PMF) conseguido durante la fase de velocidad constante⁶² de cada movimiento articular (flexión y extensión de rodilla), tipo de contracción muscular (concéntrica y excéntrica) y velocidad angular (60°/s, 180°/s y 240°/s) seleccionada. De igual forma, el índice isocinético potencia media (PM) se calculó como el área bajo la curva fuerza-longitud dividida entre el tiempo empleado en la ejecución del ciclo de movimiento. Para ambos índices isocinéticos (PFM y PM) el valor medio entre los dos ciclos de movimiento efectuados para cada velocidad fue seleccionado para el análisis estadístico. En este sentido, el valor medio entre semejantes ciclos de movimiento podría ser un buen indicador del nivel real de fuerza y potencia de cada participante debido a que la magnitud del componente error desciende con el aumento del número de intentos⁶³. Además, Sole et al.⁵³ encontraron mejores valores de precisión de los índices PFM y PM cuando emplearon el valor medio de tres intentos en lugar del valor máximo.

Análisis estadístico

Previamente a la exploración, con el objetivo de establecer la fiabilidad de las medidas PFM y PM, se realizó un estudio a doble ciego con 15 adultos jóvenes físicamente activos (8

hombres y 7 mujeres), obteniendo coeficientes de correlación intraclase (ICC) que oscilaron entre 0,89 y 0,96. El protocolo de evaluación isocinética fue realizado dos veces con intervalo de una semana.

Anterior a todo análisis estadístico, la distribución normal de los datos fue comprobada a través de la prueba Kolmogorov-Smirnov. Una estadística descriptiva de todos los índices isocinéticos fue llevada a cabo a través del cálculo de la media, el error estándar de la media y el 95% intervalo de confianza.

Un modelo ANOVA de un factor fue empleado para identificar cambios significativos en los valores medios entre las sesiones experimentales (control versus estiramiento activo) para cada uno de los índices de fuerza isocinéticos evaluados (Bonferroni post hoc test).

El análisis estadístico fue realizado mediante el paquete estadístico SPSS (Statistical Package for Social Sciences, v. 16.0 para Windows; SPSS Inc, Chicago) y la significatividad estadística fue fijada al nivel de 95% (p < 0.05).

Igualmente, un análisis post-hoc de la potencia estadística fue llevado a cabo a través del programa estadístico $G^*Power 3.1.2^{64,65}$. Un total de 52 participantes fueron utilizados para el análisis de la potencia estadística. El nivel de significación estadística fue establecido en p < 0,05 y el tamaño del efecto (d) fue fijado en 0,80.

Resultados

En las tablas 1 y 2 se presentan los estadísticos descriptivos de los índices isocinéticos PFM y PM obtenidos para cada una de las sesiones experimentales durante los movimientos de flexión y extensión de rodilla respectivamente.

El análisis estadístico indicó que no existían diferencias significativas entre sesiones experimentales para el PFM y PM concéntrico y excéntrico de la flexión y extensión de rodilla evaluados a velocidades de 60, 180 y 240°/s.

El análisis post-hoc reveló una potencia estadística para este estudio de 0,82. Por ello, el tamaño de la muestra podría ser considerada lo suficientemente amplio como para detectar interacciones significativas⁶⁶.

Discusión

Los principales resultados del presente estudio indican que un protocolo de estiramientos estáticos activos para la extremidad inferior con parámetros de la carga contextualizados respecto a la realidad físico-deportiva no produce alteraciones negativas sobre la capacidad de producción de fuerza y potencia isocinética de la flexión y extensión de rodilla concéntrica y excéntrica en deportistas recreativos.

Estos resultados no son consistentes con la evidencia científica existente para la técnica de estiramiento estática pasiva, la cual indica que una carga aguda de estiramientos pasivos podría causar un descenso en la capacidad de producción de fuerza isocinética¹⁷⁻²⁹, así como en determinadas habilidades motrices, tales como la carrera a la máxima velocidad^{10,35,36} y la capacidad de salto³⁰⁻³³. Además, ciertos estudios sugieren que este descenso en la capacidad de producción de fuerza se manifiesta inmediatamente después de realizar los estiramientos⁶⁷ y se podría prolongar hasta 2 horas después del cese de los mismos²⁸.

En este sentido, Cramer et al.¹⁹ informaron que una carga aguda de estiramientos estáticos pasivos para la musculatura del cuádriceps con un volumen total de 480s produjo un descenso significativo en la magnitud del PFM concéntrico de la extensión de rodilla, tanto en la pierna estirada (ipsi-lateral) como en la pierna no estirada (contra-lateral). Asimismo, Costa et al.^{17,18} también observaron un descenso en el PFM concéntrico de la flexión de rodilla tras la aplicación de una carga aguda de 480s de estiramientos estáticos pasivos para la musculatura isquiosural.

Tabla 1: Estadística descriptiva de los índices isocinéticos pico de fuerza máximo (PFM) y potencia media (PM) para cada una de las dos sesiones experimentales (control y estiramientos activos) durante la acción muscular de flexión de rodilla*.

60°/s	180°/s	240°/s	60°/s	180°/s	240°/s
72.0 . 2.0					
72.0 . 2.0					
$72,9 \pm 3,9$	$67,5 \pm 3,6$	$68,3 \pm 4,5$	81,6 ± 4,4	81,8 ± 4,4	80,1 ± 4,2
(64,9 - 80,9)	(60,1 - 75,0)	(58,9 - 77,7)	(72,6 – 90,4)	(72,8 - 90,9)	(71,4 - 88,7)
$43,9 \pm 2,2$	$78,3 \pm 4,1$	$88,1 \pm 5,8$	$47,5 \pm 3,0$	$83,2 \pm 4,9$	$93,4 \pm 5,5$
(39,3 - 48,5)	(70,0 - 86,7)	(76,1 - 100,1)	(41,3 - 53,6)	(73,2 - 93,2)	(82,1 - 101,6)
os activos					
$71,2 \pm 3,7$	$65,2 \pm 3,6$	$61,2 \pm 4,0$	$81,9 \pm 4,3$	$78,5 \pm 3,8$	$79,5 \pm 3,9$
(63,5 - 78,8)	(57,8 - 72,5)	(52,9 - 69,4)	(73,4 – 90,6)	(70,8 - 86,3)	(71,5 - 87,5)
$42,8 \pm 2,3$	$77,0 \pm 4,4$	$82,0 \pm 5,7$	$48,9 \pm 2,6$	$80,7 \pm 4,7$	$92,5 \pm 5,4$
(38,1 - 47,5)	(68,0 - 86,0)	(70,0 - 93,9)	(43,5 - 54,4)	(71,0 - 90,4)	(81,6 - 103,5)
	$(64,9 - 80,9)$ $43,9 \pm 2,2$ $(39,3 - 48,5)$ os activos $71,2 \pm 3,7$ $(63,5 - 78,8)$ $42,8 \pm 2,3$	$(64,9 - 80,9) \qquad (60,1 - 75,0)$ $43,9 \pm 2,2 \qquad 78,3 \pm 4,1$ $(39,3 - 48,5) \qquad (70,0 - 86,7)$ os activos $71,2 \pm 3,7 \qquad 65,2 \pm 3,6$ $(63,5 - 78,8) \qquad (57,8 - 72,5)$ $42,8 \pm 2,3 \qquad 77,0 \pm 4,4$	$(64,9 - 80,9) \qquad (60,1 - 75,0) \qquad (58,9 - 77,7)$ $43,9 \pm 2,2 \qquad 78,3 \pm 4,1 \qquad 88,1 \pm 5,8$ $(39,3 - 48,5) \qquad (70,0 - 86,7) \qquad (76,1 - 100,1)$ os activos $71,2 \pm 3,7 \qquad 65,2 \pm 3,6 \qquad 61,2 \pm 4,0$ $(63,5 - 78,8) \qquad (57,8 - 72,5) \qquad (52,9 - 69,4)$ $42,8 \pm 2,3 \qquad 77,0 \pm 4,4 \qquad 82,0 \pm 5,7$	$(64,9-80,9) \qquad (60,1-75,0) \qquad (58,9-77,7) \qquad (72,6-90,4)$ $43,9\pm2,2 \qquad 78,3\pm4,1 \qquad 88,1\pm5,8 \qquad 47,5\pm3,0$ $(39,3-48,5) \qquad (70,0-86,7) \qquad (76,1-100,1) \qquad (41,3-53,6)$ os activos $71,2\pm3,7 \qquad 65,2\pm3,6 \qquad 61,2\pm4,0 \qquad 81,9\pm4,3$ $(63,5-78,8) \qquad (57,8-72,5) \qquad (52,9-69,4) \qquad (73,4-90,6)$ $42,8\pm2,3 \qquad 77,0\pm4,4 \qquad 82,0\pm5,7 \qquad 48,9\pm2,6$	$(64,9-80,9) \qquad (60,1-75,0) \qquad (58,9-77,7) \qquad (72,6-90,4) \qquad (72,8-90,9)$ $43,9\pm2,2 \qquad 78,3\pm4,1 \qquad 88,1\pm5,8 \qquad 47,5\pm3,0 \qquad 83,2\pm4,9$ $(39,3-48,5) \qquad (70,0-86,7) \qquad (76,1-100,1) \qquad (41,3-53,6) \qquad (73,2-93,2)$ os activos $71,2\pm3,7 \qquad 65,2\pm3,6 \qquad 61,2\pm4,0 \qquad 81,9\pm4,3 \qquad 78,5\pm3,8$ $(63,5-78,8) \qquad (57,8-72,5) \qquad (52,9-69,4) \qquad (73,4-90,6) \qquad (70,8-86,3)$ $42,8\pm2,3 \qquad 77,0\pm4,4 \qquad 82,0\pm5,7 \qquad 48,9\pm2,6 \qquad 80,7\pm4,7$

^{*} valores presentados como media ± error estándar de la media y el 95% intervalo de confianza.

Tabla 2: Estadística descriptiva de los índices <u>isocinéticos</u> pico de fuerza máximo (PFM) y potencia media (PM) para cada una de las dos sesiones experimentales (control y estiramientos activos) durante la acción muscular de extensión de rodilla*.

	Extensión de rodilla concéntrica			Extensión de rodilla excéntrica		
	60°/s	180°/s	240°/s	60°/s	180°/s	240°/s
Sesión control						
PFM (Nm)	$116,6 \pm 5,7$	95,2 ± 5,9	$98,8 \pm 6,0$	166,9 ± 10,9	$156,2 \pm 7,5$	$155,1 \pm 8,7$
	(105,1 - 128,1)	(83,2 - 107,2)	(86,4 - 111,2)	(144,7 - 189,1)	(141,0 - 171,5)	(137,4 - 172,9)
PM (W)	$59,4 \pm 3,1$	$96,7 \pm 5,9$	$110,4 \pm 7,8$	$79,6 \pm 5,3$	$145,7 \pm 10,6$	165,8 ± 11,0
	(53,1 – 65,7)	(84,6 - 108,8)	(94,4 - 126,4)	(68,8 - 90,3)	(124,2 - 167,3)	(143,3 - 188,3)
Sesión estirami	entos activos					
PFM (Nm)	$117,3 \pm 6,1$	$91,3 \pm 5,1$	$91,1\pm6,1$	$150,6 \pm 9,3$	$153,7 \pm 9,6$	$164,2 \pm 10,2$
	(104,9 - 129,6)	(80,9 - 101,6)	(78,6 - 103,5)	(131,6 - 169,5)	(134,2 - 173,2)	(143,5 - 185,0)
PM (W)	$60,2 \pm 3,1$	$92,4 \pm 5,5$	$106,4 \pm 7,6$	$75,6 \pm 4,7$	$147,0 \pm 7,6$	$178,3 \pm 11,6$
	(53,9 - 66,48)	(81,2 - 103,6)	(90,7 - 122,2)	(66,1 - 85,4)	(131,5 - 162,4)	(154,7 - 201,9)

^{*} valores presentados como media ± error estándar de la media y el 95% intervalo de confianza.

Aunque el mecanismo exacto por el cual las rutinas de estiramientos estáticos pasivos podrían alterar el rendimiento en las distintas pruebas de fuerza examinadas es actualmente desconocido, en la literatura científica parecen coger fuerza dos hipótesis: a) factores mecánicos, como el descenso en la rigidez muscular y el incremento de la longitud de reposo de los sarcómeros que alteran la relación tensión-longitud de la unidad músculo-tendón²⁰; y b) factores neuromusculares, que podrían alterar las estrategias de control motor y/o la sensibilidad de los reflejos neuromusculares^{26,39,40,67}, o a una combinación de ambos.

Aunque a nivel conceptual ambas modalidades de estiramiento estático (pasiva y activa) presentan un procedimiento similar, mantenimiento de la posición de estiramiento durante un periodo de tiempo, quizás el hecho de que el estiramiento estático activo se ejecute a través de una contracción isométrica mantenida de la musculatura antagonista al estiramiento, lo cual puede mejorar la coordinación agonista-antagonista y la activación de la musculatura antagonista al estiramiento, podría ser un factor que justifique los diferentes resultados obtenidos en nuestro estudio en comparación con el resto de trabajos científicos.

Otro aspecto que diferencia el presente trabajo del resto de estudios científicos es el volumen total de la carga de estiramientos por grupo muscular. En este sentido, la mayor parte de los estudios científicos que analizan el efecto agudo del estiramiento estático sobre la capacidad de producción de fuerza^{17-23,26,27,31,39,40,43,46}, aunque no todos^{24,32,34,68}, utilizan protocolos de estiramiento con duraciones totales del estimulo tensional por grupo muscular que oscilan entre los 90 y 3600s, lo cual está muy alejado de la realidad deportiva.

En este sentido, en la actualidad se está desarrollando un cuerpo de conocimiento científico que considera que el descenso temporal en la capacidad de producción de fuerza resultante de la aplicaciones de estiramientos estáticos podría ser proporcional a la magnitud del estimulo tensional, de tal forma que un volumen mayor de 90s por grupo muscular podrían ser suficiente para provocar alteraciones negativas en el mecanismo de producción de fuerza^{44,68}.

Apoyando esta línea argumental, Zakas et al.⁶⁸ después de examinar y comparar el efecto agudo de dos duraciones diferentes del estiramiento estático (3x15s y 20x15s) sobre el PFM concéntrico de la extensión de rodilla en jugadores adolescentes de fútbol (n = 16) informaron que el estiramiento causó un descenso significativo en la capacidad de producción de fuerza (5-12%) cuando la duración total fue de 300s, mientras que la duración de 45s no alteró el mecanismo de producción de fuerza.

Por lo tanto, el menor volumen de estiramientos empleado en este estudio podría ser otro factor que permita explicar los diferentes resultados encontrados con respecto al resto de la literatura científica.

Una de las potenciales limitaciones de este estudio fue la población utilizada, aunque el n (52 participantes) utilizado en el presente estudio es mayor al utilizado en numerosos estudios previos 19-22,24-26,28,29,33,35,39-45, todos ellos fueron homogéneos en edad y nivel de condición física, pudiendo con ello limitar levemente la validez externa de los resultados.

Además, en el presente estudio no se evaluó directamente el efecto de la rutina de estiramientos activos sobre el rango de movimiento y rigidez de los grupos musculares sometidos a estiramiento. Sin embargo, estudios previos han demostrado que una carga aguda de estiramientos estáticos activos similar a la empleada en el presente estudio fue eficaz para incrementar la flexibilidad de la unidad músculo-tendón sometida a estímulos de tracción mediante el aumento de la tolerancia al estiramiento y sin alteraciones de la rigidez^{69,70}.

Otra limitación a destacar del presente estudio es el hecho de que únicamente la fuerza y potencia isocinética fueron objeto de estudio, por lo que no es posible determinar si el protocolo de estiramientos activos diseñado podría también alterar negativamente la ejecución de destrezas motrices tales como el salto y la carrera a la máxima velocidad.

En conclusión, los resultados del presente estudio demuestran que un protocolo de estiramientos activos de corta duración de la extremidad inferior no produjo alteraciones

negativas en la máxima fuerza y potencia isocinética de la flexión y extensión de rodilla concéntrica y excéntrica en deportistas recreativos.

Por lo tanto, entrenadores, deportistas y demás profesionales del ámbito físico-deportivo podrían conseguir los beneficios esperados de la aplicación de estiramientos como parte fundamental de su proceso de calentamiento previo a un evento deportivo que requiera acciones máximas de fuerza y potencia (ej.: incremento de la flexibilidad, aumento de la coordinación intermuscular) sin alteraciones negativas en el mecanismo de producción de fuerza si se emplea la técnica activa con volúmenes inferiores a los 60s (2x30s) por grupo muscular.

Bibliografía

- Young WB. The use of static stretching in warm-up for training and competition. Int J Sports Physiol Perform. 2007;2:212-6.
- 2. American College of Sport Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30:975-91.
- 3. Shrier D. Does stretching improve performance? A systematic and critical review of the literature. Clin Sport Med. 2004;14(5):267-73.
- 4. Alter MJ. Sports stretch. Champaign, IL: Human Kinetics; 1997.
- 5. Hedrick A. Dynamic flexibility training. Strength Cond J. 2000;22:33-8.
- 6. Janot J, Dalleck L, Reyment C. Pre-Exercise Stretching and Performance. IDEA Fitness J. 2007;44-51.
- 7. Andersen JC. Flexibility in performance: Foundational Concepts and Practical Issues. Athle Ther Today. 2006;3:9-12.
- 8. Kovacs M. The argument against static stretching before sport and physical activity. Athle Ther Today. 2006;2(3):6-8.

- 9. Shehab R, Mirabelli M, Garenflo D, Fetters MD. Pre-exercise stretching and sports related injuries: Knowledge, attitudes and practices. Clin J Sports Med. 2006;16(3):228-31.
- 10. Ayala F, Sainz de Baranda P. Efecto agudo del estiramiento sobre el sprint en jugadores de fútbol de división de honor juvenil. Rev Int Cienc Deporte. 2010;6(18):1-12.
- 11. Croisier JL, Forthomme B, Namurois MH, Vanderthommen M, Crielaard JM. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med. 2002;30(2):199-203.
- 12. Wiltvrouw E, Mahieu N, Danneels L, McNair P. Stretching and injury prevention, an obscure relationship. Sports Med. 2004;34(7):443-9.
- 13. Fredette D. Exercise recommendations for flexibility and range of motion. En: Roitman I, editor. ACSM Resource Manual for Guidelines for Exercise Testing and Prescription (4th ed.). Baltimore, Lippincott: Williams & Wilkins; 2001. p. 84-112.
- 14. Shellock FG, Prentice WE. Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports Med. 1985;2:267-78.
- 15. Rubini EC, Costa AL, Gomes PS. The effects of stretching on strength performance. Sports Med. 2007;37(3):213-24.
- 16. Yamaguchi T, Ishii K, Yamanaka M, Yasuda K. Acute effects of dynamic stretching exercise on power output during concentric dynamic constant external resistance leg extension. J Strength Cond Res. 2007;21:1238-44.
- 17. Costa PB, Ryan ED, Herda TJ, DeFreitas JM, Beck TW, Cramer JT. Effects of stretching on peak torque and the H:Q ratio. Int J Sports Med. 2009;30:60-5.
- 18. Costa PB, Ryan ED, Herda TJ, Defreitas JM, Beck TW, Cramer JT. Effects of static stretching on the hamstrings-to-quadriceps ratio and electromyographic amplitude in men. J Sports Med Phys Fitness. 2009;49:401-9.

- 19. Cramer JT, Housh TJ, Jonson GO, Millar JM, Coburn JW, Beck TW. Acute effects of static stretching on peak torque in women. J Strength Cond Res. 2004;18(2):236-41.
- 20. Cramer JT, Beck TW, Housh TJ, Massey LL, Marek SM, Danglemeier S, Purkayastha S, Culbertson JY, Fitz K, Egan A. Acute effects of static stretching on characteristics of the isokinetic angle–torque relationship, surface electromyography, and mechanomyography. J Sports Sci. 2007;25(6):687-98.
- 21. Evetovich T, Nauman N, Conley D, Todd J. Effect of static stretching of the biceps brachii on torque, electromyography, and mechanomyography during concentric isokinetic muscle actions. J Strength Cond Res. 2003;17:484-8.
- 22. Marek SM, Cramer JT, Fincher AL, Massey LL, Dangelmater SM, Purkayastha S, Fitz KA, Culbertson JY. Acute effects of static and propioceptive neuromuscular facilitation stretching on muscle strength and power output. J Athl Train. 2005;40(2):94-103.
- 23. Nelson AG, Guillory IK, Cornwell A, Kokkonen J. Inhibition of maximal voluntary isokinetic torque production following stretching is velocity-specific. J Strength Cond Res. 2001;15:241-6.
- 24. Sekir U, Arabaci R, Akova B, Kadagan SM. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes. Scand J Med Sci Sports. 2010;20:268-81.
- 25. Behm DG, Bradbury EE, Haynes AT, Odre JN, Leonard AM, Paddock N. Flexibility is not related to stretch-induced deficits in force or power. J Sports Sci Med. 2006;5:33-42.
- 26. Fowles JR, Sale DG, MacDougall JD. Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol. 2000;89:1179-88.
- 27. McHugh MP, Nesse M. Effect of stretching on strength loss and pain after eccentric exercise. Med Sci Sports Exerc. 2008;40:566-73.

- 28. Power K, Behm D, Cahill F, Carroll M, Young W. An acute bout of static stretching: effects on force and jumping performance. Med Sci Sports Exerc. 2004;36(8):1389-96.
- 29. Cramer JT, Housh TJ, Evetovich TK, Johnson GO, Ebersole KT, Perry SR, Bull AJ. The relationships among peak torque, mean power output, mechanomyography, and electromyography in men and women during maximal, eccentric isokinetic muscle activations. Eur J Appl Physiol. 2002;86:226-32.
- 30. Bradley PS, Olsen PD, Portas MD. The effect of static, ballistic, and propioceptive neuromuscular facilitation stretching on vertical jump performance. J Strength Cond Res. 2007;21(1):223-6.
- 31. Cornwell A, Nelson AG, Sidaway B. Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. Eur J Appl Physiol. 2002;86:428-4.
- 32. Vetter RE. Effects of six Warm-up protocols on sprint and jump performance. J Strength Cond Res. 2007;21(3):819-23.
- 33. Wallmann HW, Mercer JA, McWhorter JW. Surface electromyographic assessment of the effect of static stretching of the gastrocnemius on vertical jump performance. J Strength Cond Res. 2005;19(3):684-8.
- 34. Fletcher IM, Jones B. The effect of different warm-up stretch protocols on 20 meter sprint performance in trained rugby union players. J Strength Cond Res. 2004;18:885-8.
- 35. Little T, Williams AG. Effects of differential stretching protocols during warm-ups on high-speed motor capacities in professional soccer players. J Strength Cond Res. 2006;20(1):203-7.
- 36. Nelson AG, Driscoll NM, Landin DK, Young MA, Schexnayder IC. Acute effects of passive muscle stretching on sprint performance. J Sports Sci. 2005;23:449-54.

- 37. Winchester JB, Nelson AG, Landin D, Young MA, Schexnayder IC. Static stretching impairs sprint performance in collegiate track and field athletes. J Strength Cond Res. 2008;22:13-9.
- 38. McHugh MP, Cosgrave CH. To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports. 2010;20:169-81.
- 39. Avela J, Kyrolainen H, Komi PV. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol. 1999;86(4):1283-91.
- 40. Avela J, Finni T, Liikavainio T, Niemela E, Komi P. Neural and mechanical responses of the triceps surae muscle group after 1 h of repeated fast passive stretches. J Appl Physiol. 2004;96:2325-32.
- 41. Cramer, J.T., Housh, T.J., Coburn, J.W., Beck, T.W. y Johnson, G.O. (2006). Acute effects of static stretching on maximal eccentric torque production in women. J Strength Cond Res. 2006;20(2):354-8.
- 42. Egan AD, Cramer JT, Massey LL, Marek SM. Acute effects of static stretching on peak torque and mean power output in National Collegiate Athletic Association Division I women's basketball players. J Strength Cond Res. 2006;20(4):778-82.
- 43. Herda TJ, Cramer JT, Ryanm ED, Mchugh MP, Stout JR. Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J Strength Cond Res. 2008;22(3):809-17.
- 44. Ogura Y, Miyahara Y, Naito H, Katamoto S, Auki J. Duration of static stretching influences muscle force production in hamstring muscles. J Strength Cond Res. 2007;21(3):788-92.
- 45. Papadopoulos C, Kalapotharakos VI, Noussios G, Meliggas K, Gantiraga E. The effect of static stretching on maximal voluntary contraction and force-time curve characteristics. J Sport Rehabil. 2006;15:185-94.

- 46. Papadopoulos G, Siatras TH, Kellis S. The effect of static and dynamic stretching exercises on the maximal isokinetic strength of the knee extensors and flexors. Isokinet Exerc Sci. 2005;13:285-91.
- 47. White SG, Sahrmann SA. A movement system balance approach to management of musculoskeletal pain. En: Grant R, editor. Physical Therapy of the Cervical and Thoracic Spine. New York, NY: Churchill Livingstone Inc. 1994. p. 339-357.
- 48. Winters MV, Blake CG, Trost JS, Marcello-Binker TB, Lowe L, Garber MB, Wainner RS. Passive versus active stretching of hip flexor muscles in subjects with limited hip extension: A randomized clinical trial. Phys Ther. 2004;84:800-7.
- 49. Bell DR, Myrick MP, Blackburn JT, Shultz SJ, Guskiewicz KM, Padua DA. The effect of menstrual-cycle phase on hamstring extensibility and muscle stiffness. J Sport Rehabil. 2009;18:553-63.
- 50. Eiling E, Bryant AL, Petersen W, Murphy A, Hohmann E. Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc. 2007;15:126-32.
- 51. Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiulet NA. Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging. 2008;28,(2):113-19.
- 52. Atkinson G, Nevill AM. 'Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine'. Sports Med. 1998;4:217-38.
- 53. Sole G, Hamrén J, Milosavljevic S, Nicholson H, Sullivan J. Test-retest reliability of isokinetic knee extension and flexion. Arch Phys Med Rehabil. 2007;88:626-31.
- 54. Maffiuletti NA, Bizzini M, Desbrosses K, Babault N, Munzinge U. Reliability of knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. Clin Physiol Funct Imaging. 2007;27(6):346-53.

- 55. Worrell TW, Perrin DH, Denegar CR. The influence of hip position on quadriceps and hamstring peak torque and reciprocal muscle group ratio values. J Orthop Sports Phys Ther. 1989;11(3):104-7.
- 56. Worrell TW, Denegar CR, Armstrong SL, Perrin DH. Effect of body position on hamstring muscle group average torque. J Orthop Sports Phys Ther. 1990;11(10):449-52.
- 57. Sauret J, De Ste Croix MBA, Deighan MA, James D, Iga J. Reproducibility of an isokinetic eccentric muscle endurance task. Eur J Sports Sci. 2009;9(5):1-9.
- 58. Taylor N, Sanders R, Howick E, Stanley S. Static and dynamic assessment of the Biodex dynamometer. Eur J Appl Physiol. 1991;62:180-8.
- 59. Gaul C. Muscular strength and endurance. En: Docherty D, editor. Measurement in Pediatric Exercise Science. Champaign, IL: Human Kinetics; 1996. p. 225-58.
- 60. Houweling TAW, Head A, Hamzeh MA. Validity of isokinetic testing for previous hamstring injury detection in soccer players Isokinet Exerc Sci. 2009;17:213-20.
- 61. Kellis E, Kellis S, Gerodimos V, Manou V. Reliability of isokinetic concentric and eccentric strength in circumpubertal soccer players. Pediatr Exerc Sci. 1999;11:218-28.
- 62. Brown LE, Whitehurst M, Buchalter DN. Comparison of bilateral isokinetic knee extension/flexion and cycle ergometry tests of power. J Strength Cond Res. 1994;83(3):139-43.
- 63. Portney LG, Watkins MP. Foundations of Clinical research: Applications to Practice. 2nd ed. Upperdale Saddle River (NJ): Prentice Hall Health; 2000.
- 64. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175-91.
- 65. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149-60.

- 66. Morton JP. Reviewing scientific manuscripts: how much statistical knowledge should a reviewer really know?. Ad Physiol Educ. 2009;33:7-9.
- 67. Behm DG, Bambury A, Cahill F, Power K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med Sci Sports Exerc. 2004;36:1397-1402.
- 68. Zakas A, Doganis G, Galazoulas C, Vamvakoudis E. Effect of Acute Static Stretching Duration on Isokinetic Peak Torque in Pubescent Soccer Players. Pediatr Exerc Sci. 2006;18:252-61.
- 69. Magnusson SP, Aagard P, Simonsen E, Bojsen-Moller F. A biomechanical evaluation of cyclic and static stretch in human skeletal muscle. Int J Sport Med. 1998;19:310-16.
- 70. McNair PJ, Dombroski EW, Hewson DJ, Stanley SN. Stretching at the ankle joint: viscoelastic responses to holds and continuous passive motion. Med Sci Sports Exerc. 2000;33(3):354-8.

Financiación

Este trabajo es resultado del proyecto (06862/FPI/07) financiado con cargo al Programa de Formación de Recursos Humanos para la Ciencia y Tecnología de la Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia. A su vez, este trabajo es resultado de la ayuda concedida por la Fundación Séneca en el marco del PCTRM 2007-2010, con financiación del INFO y FEDER de hasta un 80%

Figuras

Figura 1. Ejercicios de estiramientos activos (de izquierda a derecha (glúteo, cuádriceps, isquiosurales, psoas y aductores) mantenidos gracias a la contracción isométrica de la musculatura agonista al movimiento.

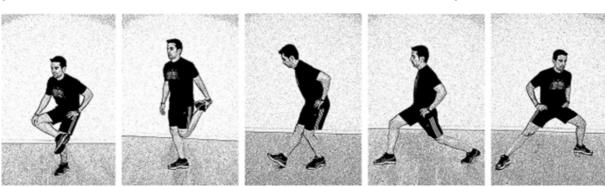


Figura 2. Posición de valoración en decúbito prono con cadera fijada a 0º de flexión y cabeza en posición neutral.

