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Abstract

It is widely acknowledged that robust and accessible ecological evidence is required to
underpin solutions to the current global biodiversity crisis. Reliable data are vital to inform
conservation action, but can be challenging to obtain for some taxa, particularly those that
are nocturnal, crepuscular, or cryptic. In the United Kingdom, one quarter of the mammal
species found nationally are perceived to be at risk of extirpation, yet many species lack
sufficient data to enable robust assessment of their distributions and the status of their

populations.

This thesis examined passive acoustic monitoring frameworks for surveying and monitoring
bat species in the United Kingdom, considering their ability to collect reliable data and to
provide insights into species ecology, and evaluated their application to ecological research

and practice.

Passive acoustic bat surveys were found to be most optimal when conducted for full nights,
and in the absence of moonlight and/or heavy rain. Moreover, they were found to be more
effective in recording comprehensive species assemblages, when compared to active
acoustic surveys. Empirical testing of different detectors used in Passive Acoustic Monitoring
(PAM) frameworks for bats, found that lower cost, open-source devices can serve as a viable
alternative for commercial equipment in certain scenarios (dependent on target species and
habitat), and when enough devices are deployed for a sufficient duration. The analysis of
large PAM datasets was also examined, finding pairwise disagreement between popular
automated bat classifiers, and supporting the recommendation that analysis should not, at

present, be fully automated.

These findings contribute to the development of best practice and demonstrate the key
advantages of PAM approaches, primarily in their potential to aid the up-scaling of both

local, and national bat monitoring schemes.
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CHAPTER ONE: Introduction

Post passive acoustic monitoring equipment set up for bats at Croome Park
August 2022

This chapter introduces the threats currently faced by biodiversity globally, and how the
requirements for species surveying and monitoring form a key component of international
targets and national legislation to address ongoing biodiversity loss. The state of nature in
the United Kingdom is introduced, with particular regard to its bats and wider mammalian
fauna. The broad methods used in surveying and monitoring of mammals in the region are
outlined, including both traditional and novel techniques, and those relating primarily to
bats are discussed in detail. Finally, the overall research aims of this thesis are defined, along
with the thesis structure and the scope of each chapter.




Chapter One: Introduction

1.1 Evidence-led biodiversity conservation

Halting the current rate of biodiversity decline is one of the foremost existential challenges
faced by humanity across the world. The planet is in the midst of a biodiversity crisis, with
notable reductions in species abundances and spatial distribution, and increases in human-
accelerated species extinctions (Cowie et al., 2022). It is generally accepted that the planet
is undergoing its sixth mass extinction event (Barnosky et al., 2011; Ceballos and Ehrlich,
2023), with the observed extinction rates estimated to be 100-1,000 times greater than the
natural background rate of 0.1-1 E/MSY (extinctions per million species per year) (Lamkin
and Miller, 2016). The International Union for Conservation of Nature’s (IUCN) Red List
states that upwards of 45,300 (28%) of the species assessed are currently threatened with
extinction (IUCN, 2024). The drivers behind the elevated extinction rates are considered to
be predominantly anthropogenic in origin (Ceballos et al., 2015; Jaureguiberry et al., 2022).
Species are primarily threatened by climate change, habitat loss and non-native species
introductions, as well as habitat fragmentation, the impact of pollution and eutrophication,
agricultural intensification, and unsustainable harvesting or poaching (Mittermeier et al.,
2011; Dudley and Alexander, 2017; Groh et al., 2022; Hald-Moretensen, 2023). The process
of land use change has resulted in increasingly few areas escaping direct anthropogenic
modification (IPBES, 2019; Jaureguiberry et al., 2022). Indeed, Theobald et al. (2020),
estimated that 14.6% of the Earth’s land had been subjected to direct anthropogenic
modification as of 2017. This is further compounded by the indirect effects of global or
ultra-widescale pressures of climate change, atmospheric pollution, and ocean warming and
acidification. Anthropogenic threats have implications not only on the intrinsic value of
species and habitats within the biosphere, but also for humanity as a result of impacts on

the range of ecosystem services upon which humanity depends (Ceballos et al., 2015).
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The concept of ecosystem services, used to describe the links between ecological and
economic systems, was formally explored in the Millennium Ecosystem Assessment (2005)
and the TEEB project (2007) (Braat and de Groot, 2012). The former defines ecosystem
services as “the benefits people obtain from ecosystems”. The assessment divided these
services into four categories: regulating, supporting, provisioning, and cultural. It has been
argued that those in the former two categories essentially act as mechanisms to obtain the
services listed in the latter two categories (Wallace, 2007). Regulating and supporting
services include processes driven by mobile organisms that forage at a landscape scale and
distribute seeds (Lundberg and Moberg, 2003), as well as pollination by organisms including
insects (Allsopp et al., 2008), bats (Kunz et al., 2011) and birds (Paton and Ford, 1977), all of
which are vital to both natural and agricultural systems (Kremen et al., 2007). Essential
regulating and supporting ecosystem services are also provided by sessile organisms,
especially plant species that regulate hydrogeological cycles, remediate contaminated
water, and facilitate soil formation and retention (Asbjornsen et al., 2013). The resulting
provisioning and cultural ecosystem services include food, fresh water, recreation and
aesthetic value (Wallace, 2007). The provision of these vital services is becoming
increasingly under threat as ecosystems are subjected to perturbations from land use
change (Hasan et al., 2020), climate change (Weiskopf et al., 2020), and biodiversity loss

(Bullock et al., 2011, Le Provost et al., 2023).

1.1.1 International efforts to conserve biodiversity
The significance of preserving biodiversity is recognised in the majority of countries globally.
This is the first step along a complex pathway towards slowing the rapid rate of species loss

and preserving natural processes (Rands et al., 2010). The key to achieving the end goal lies
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in producing evidence that leads to the detection, measurement and monitoring of change
(Field et al., 2005), an understanding of the impacts of different anthropogenic actions
(Mihoub et al., 2017), support for the development of conservation action and practice, and
allows the identification of priorities (Pullin et al., 2004). An international approach to
tackling biodiversity loss was first initiated in the late 1980s, with the formation of the
United Nations Environment Programme (UNEP) working group, whose aim was to compile
evidence to establish the requirement for an international convention relating to conserving
biodiversity. At the historic Earth Summit in Rio de Janeiro in 1992, 168 nations signed the
first Convention on Biological Diversity (CBD) thereby recognising the need, and obligation,

to conserve global biodiversity in international policy for the first time (CBD, 2024).

In response to the Rio Summit, many countries opted to devise Biodiversity Action Plans
(BAPs) (e.g. United Kingdom, New Zealand, Australia) or Species Recovery Programmes (e.g.
United States) to focus conservation efforts on priority species and habitats (Goodenough
and Hart, 2017). Commitments were reaffirmed in 2002 at the Johannesburg summit, and
190 countries committed to achieving a significant reduction in biodiversity loss at global,

regional and national scales by 2010 (Balmford et al., 2005).

The next significant renewals of agreements were made at the 2010 Convention on Global
Biodiversity in Nagoya, Japan, where the Strategic Plan for Biodiversity was adopted for the
forthcoming decade, ending in 2020 (McCarthy et al., 2012). This ten-year plan included five
strategic goals, supported by twenty targets for global biodiversity that were originally
known as the Aichi targets (Figure 1.1). However, a mid-term analysis undertaken by

Tittensor et al. (2014) indicated that although there had been a marked upward trend in the
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prioritisation of biodiversity in policy and implementation of conservation action, it would
likely be insufficient to meet the targets by 2020. Furthermore, the initial publication of the
official report for the CBD, Global Biodiversity Outlook 5, released in June 2020, predicted
that despite the action taken by the signatories, the majority of the agreed targets would be

missed at a global scale (Secretariat of the Convention on Global Biodiversity, 2024).
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Figure 1.1: The 20 Aichi targets (Sumalia et al., 2017).

The current, post-2020 Global Biodiversity Framework (GBF), was adopted at CBD COP15
(Montreal, Canada) in December 2022, and sets out global biodiversity goals for the decade
up to 2030 (CBD, 2022). The framework aims to put forward measurable and verifiable
objectives, with a tangible target of first achieving no net loss of biodiversity, before striving

for net gain by the end of the decade (Milner-Gulland et al., 2021).
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1.1.2 Surveying and monitoring

Within ecology, the terms “surveying” and “monitoring” tend to be used interchangeably,
however, there are marked differences. Surveys are generally used to collect primary data
and ascertain the ecological conditions at a given place and time. For example, this might
include determining species presence (or likely absence) and estimating species richness.
This differs from a census, whereby the species/taxa identified in a survey are counted to
assess population size. Surveillance and monitoring, on the other hand, involve repeated
survey effort over an extended time period and, if appropriate, a wider geographical range
(Goodenough and Hart, 2017). Ecological monitoring usually aims to answer a specific
scientific question (Spellerberg, 2005), whereas surveillance typically involves long-term
data collection, which may cover multiple species and locations. The aim of ecological
surveillance is to detect and measure change from the baseline conditions, for example, in
identifying the introduction of an invasive species (Jarrad et al., 2011) or disease (Walton et

al., 2016).

Long-term conservation and effective species management depends on robust data from
rigorous surveying and monitoring (Roberts, 2011). The monitoring of both species and
habitats is essential in providing the data required to establish baseline ecological
conditions, initiate and inform conservation action, and evaluate and compare the long-
term efficacy of such action in attaining the desired outcome (Nichols and Williams, 2006;
Burns et al., 2018). Monitoring data to map species distributions and densities are also vital
in designating priority areas for conservation (Jenkins et al., 2013). This could be in the form
of protected areas or nature reserves, where targeted management can be undertaken

(Gaston et al., 2006). Moreover, long-term monitoring and surveillance programmes aim to
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identify trends from the outset, whether they be positive or negative. Where negative, this
enables the appropriate action to be taken to understand and address the cause, before the
impacts become severe and potentially irreversible. In addition to directly informing
conservation efforts, surveying and monitoring also form a key component of ecological
research (Goodenough and Hart, 2017). Furthermore, ecological surveys frequently play a
key role in legislation compliance and informing Ecological Impact Assessments (EclAs)
within the planning and development sector (Sutherland, 2008). The data from such surveys
ensure that relevant environmental and wildlife law, such as that concerning protected
species and habitats, is adhered to (Drayson et al., 2015). Additionally, surveys inform
mitigation/compensation strategies which strive to prevent development and land use

change from resulting in biodiversity losses (Treweek, 2009).

Ecological surveying and monitoring can focus on species, habitats, or parameters within
wider ecosystems or landscapes. Species specific monitoring tends to be question-driven
and uses rigorous methodology to gain valuable insights into the population dynamics of the
species concerned. Habitat monitoring is generally broader in approach, using spatial
techniques to map and monitor habitat distribution and quality (Lengyel et al., 2008).
Monitoring of habitat processes and wider ecosystems frequently focuses on selected
indicator species; for example studying plant communities to study ecological succession
(Goodenough and Hart, 2017). Additionally, data relating to environmental parameters,
such as water quality and soil chemistry, are used to build robust assessments and monitor

temporal changes in the quality of the environment (Spellerberg, 2005).
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1.1.2.1 Resourcing ecological surveying and monitoring

Ecological surveying and monitoring often requires substantial resources, both in terms of
the economic cost and the time and effort required by surveyors (Spellerberg, 2005). The
drivers behind funding and conducting ecological surveying and monitoring, therefore, can
generally be divided into two categories: those that support conservation and habitat
management, including national schemes, and those that exist to ensure legislative
compliance, concerning protected species and habitats, and requirements for biodiversity
net gain. Under the CBD, all countries have an international obligation to conserve
biodiversity, with those who are able making funds available for conservation action and the
ecological monitoring schemes which underpin such actions (Coad et al., 2019). Effective
management of key habitats and species requires the use of well-established baseline
information, which can only be obtained by ecological surveying. Furthermore,
perturbations, whether natural or anthropogenic, are generally long-term and/or
cumulative and synergistic. Being able to detect and manage the impact of such
perturbations effectively, therefore, requires ecological monitoring over extended time
periods (Lindenmayer and Likens, 2010). In the case of legislation compliance, the local
authority or developer has a legal obligation to fund ecological surveys, as appropriate, to
ensure laws regarding protected species and habitats are upheld. This involves both the
collection of baseline data prior to any development/land-use change and longer-term
monitoring to confirm that the proposed mitigation and/or compensation is sufficient in

preventing ecological harm (Treweek, 2009).
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1.1.2.2 Designing effective ecological monitoring schemes

Despite the need for ecological surveying and monitoring at local, national and international
scales, surveying and monitoring efforts vary widely in extent and effectiveness. A review
undertaken by Lindenmayer and Likens (2010), concluded that successful monitoring actions
share a number of characteristics, including clear questions, a conceptual understanding of
the species population or ecosystem concerned, and seamless collaboration between
scientists, managers and policy makers. However, ecological monitoring has often faced
criticism. For example, surveys undertaken for localised EclAs, were found to be deficient in
recommendations for, or evidence of, repeated survey effort to serve as follow up
monitoring in order to document the ecological response to development (Drayson et al.,
2017). Moreover, national scale monitoring schemes have faced particular criticism from
within the scientific community. In this instance, the main failing is considered to be a lack
of focus or development of specific scientific questions within their design. This lack of focus
can lead to those species that are less abundant, and often most in need of conservation
action, going undetected (Nichols and Williams, 2006). Furthermore, Yoccoz et al. (2001)
also agree that schemes can lack the effective collaboration between scientists and
managers, which is essential in designing monitoring schemes that are effective both in

terms of scale and cost.

Question-driven monitoring, such as that carried out for research purposes, is often able to
give valuable insights into the population dynamics of the target species, and most often has
sufficient rigour to identify emergent trends and potential drivers. However, this approach
can be difficult to apply across the geographic scales required by the mandated monitoring,

initiated for legislation compliance (e.g. national and international biodiversity targets).
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Monitoring schemes that cover wider landscape or that are national or international in
scope, have seen some success in detecting temporal changes within populations but are
largely too broad to identify the drivers behind the observed trends (Lindenmayer and
Likens, 2010). Therefore, the key challenges in undertaking effective ecological monitoring
are: (1) adopting a focused approach with defined questions and objectives, (2) utilising the
appropriate methods for both the target species and the spatiotemporal scale required, and
(3) ensuring that the necessary support is in place, from scientists and policy makers, to
confirm that the monitoring is suitably targeted to meet the relevant objectives (Stout,

1993).

1.1.3 The state of nature in the United Kingdom

Following the Rio Convention in 1992, the United Kingdom (UK) became the first country to
develop and implement a series of nationwide BAPs (Ruddock et al., 2007) for what
ultimately became 1,150 priority species and 65 priority habitats (Joint Nature Conservation
Committee (JNCC), 2024). Despite such efforts towards conserving biodiversity in the UK,
the most recent State of Nature Report (State of Nature Partnership, 2023), revealed that,
overall, the abundance of 753 terrestrial and freshwater species has decreased by an
average of 19% since 1970, and that 16.1% of the taxa for which sufficient data are available

(10,008), are currently threatened with extirpation (Figure 1.2).
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Habitat loss and degradation, pollution, and insufficient policy are considered to be among

the primary drivers behind the observed declines in the UK (Burns et al. 2016). Further

pressures include agriculture, which has intensified significantly since the middle of the 20t

Century (Matson et al., 1997; Firbank et al., 2008; McKay et al., 2019), with mechanisation

and increasing demand for food production leading to habitat loss and dramatic

modification of the landscape (Boatman et al., 2007). Global climate change is also being

seen to have additional and synergistic impacts on national level species abundance,

distribution, ecology and life history parameters, with average temperatures rising by

approximately 1.1°C since the late 19t" Century (Intergovernmental Panel on Climate

Change (IPCC), 2023).
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The UK’s sixth National Report to the CBD, published in May 2019, predicted that the
country was on track to meet only a quarter of the twenty Aichi targets by 2020 (JNCC,
2019a). Policy and funding are now focused on renewed global commitments to halting
biodiversity declines by 2030 (State of Nature Partnership, 2023). This has included actions
such as committing to the 30 by 30 target to conserve a minimum of 30% of land and sea for
biodiversity by 2030 (Natural England, 2023). Moreover, national Agri-Environment
Schemes (AES) were reformed after the UK departed the European Union (Baldock and Cam,
2024). The introduction of the new Environmental Land Management scheme (ELMs) offers
financial incentives to promote sustainable farming practices, and to encourage
conservation activities on farmland (Hurley et al., 2022). Additional government funding has
included the UK Nature for Climate Fund, which pledged £640 M for habitat restoration
(Seddon et al., 2020). Furthermore, the legal protections afforded to many species under
former European legislation were upheld in national law under the Conservation of Habitats
and Species Regulations (2017). This ensured a continuation of the protections for European
Protected Species (EPS) found in the UK after Brexit, along with the financial and custodial

penalties incurred for committing an offence.

1.1.4 Monitoring approaches and obligations in the United Kingdom

The UK has an obligation to undertake species monitoring under agreements and legislation
made at both international and national levels. However, despite agreed targets, many
species populations in the UK are vulnerable, with challenges in carrying out effective
monitoring, resulting in data on many species being scarce (Battersby and Greenwood,
2004; Burns et al., 2018; Coomber et al., 2021). These pitfalls in the country’s monitoring

schemes are not due to a lack of surveyor effort. The 2019 State of Nature report estimated
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that 18,700 professional and volunteer naturalists were involved in formalised species
monitoring schemes, reflecting a long-standing interest in natural history and wildlife
recording (State of Nature Partnership, 2019). This report also revealed that the
commitment to nature within the country was continuing to grow, with both the amount of
time invested by volunteers and non-governmental organisation (NGO) spending increasing
over the past decade. These figures were not updated in the recent 2023 report (State of

Nature Partnership, 2023).

A significant proportion of the monitoring undertaken nationally, therefore, relies on
valuable input from volunteers. Volunteer records broadly fall into two categories:
structured and unstructured. Structured records are obtained through rigorously designed,
co-ordinated, and repeated surveys, involving standardised methodology. This produces
high quality datasets, which are statistically analysed to study population trends over time.
The data obtained through these schemes are frequently utilised within scientific research.
Examples include the British Trust for Ornithology’s Breeding Bird Survey (Greenwood,
2003) and the Bat Conservation Trust’s (BCT’s) National Bat Monitoring Programme (NBMP)
(Barlow et al., 2015). Unstructured records, on the other hand, include records submitted to
the Biological Records Centre (BRC) or Local Environmental Records Centres (LERCs), which
are usually acquired independently of any formal monitoring activities. The principal caveat
associated with such records, is the potential for bias, stemming from inconsistencies in
survey methods and locations. However, these records span a wide range of taxa and the
ability to account for bias in statistical analysis, makes such records invaluable. They are

currently collated by the BRC, along with data from formalised monitoring schemes. When
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both types of records are combined, biological recording is estimated to involve 70,000

surveyors annually (Pocock et al., 2015).

1.2 Mammals in the United Kingdom

The anthropogenic alteration of the landscape in the UK has profound implications for the
country’s mammalian fauna. Fragmentation of the landscape into smaller, more isolated
habitat patches restricts population sizes, prevents genetic exchange, and inhibits dispersal
to other patches of suitable habitat (Scopes et al., 2024). Where populations already exist at
low densities, or have a limited ability for dispersal, habitat fragmentation increases the
likelihood of local extirpation (Bright, 1993). The Mammal Society lists 59 volant and von-
volant terrestrial mammal species as present in the UK across six taxonomic orders:
Eulipotyphla, Lagomorpha, Rodentia, Carnivora, Artiodactyla, and Chiroptera. Of these, 48
species are considered native. More than 50% of the country’s native mammals are afforded
at least basic protection under the Wildlife and Countryside Act (1981), with those that are
rarer, declining, disturbance sensitive, or where the UK holds a substantial proportion of the
global population being afforded additional protection, both under the Wildlife and
Countryside Act (1981) and/or the Conservation of Habitats and Species Regulations (2017).
Despite such provisions, the most recent national red list issued by the Mammal Society
(2020), which assessed 47 native or formally native species, indicated that one quarter of
the country’s mammal species are at risk of extirpation. This included six species in the

order Chiroptera.

14



Chapter One: Introduction

The Mammal Society has been instrumental in coordinating national mammal recording
efforts since the 1950s, with a number of targeted schemes yielding valuable insights and
leading to successful conservation action (Flowerdew, 2004). This included identifying the
loss of hazel dormice (Muscardinus avellanarius) at the northern extent of their range
(Bright et al., 1996) and determining the abiotic factors affecting the distribution of yellow-
necked mice (Apodemus flavicollis) (Marsh et al., 2001). The Mammal Society were also the
primary NGO coordinating national bat monitoring efforts, prior to the formation of the BCT
in 1990 (Flowerdew, 2004). However, many of the country’s mammal species have
historically lacked sufficient data, either spatially or temporally, to determine the status of
populations (Battersby and Greenwood, 2004). As a result, assessing changes in populations
and distributions to inform national Biodiversity Framework actions cannot be made with
reasonable confidence for the majority of bat species and some terrestrial mammals, such
as harvest mice (Micromys minutus) (Mathews et al., 2018). This highlights the importance
of well-designed and robust monitoring schemes, both to establish a clear baseline for data
deficient species and monitor trends throughout the course of any ensuing management

action, in order to safeguard against further losses.

Developing effective monitoring schemes to study the UK’s mammal fauna is of prime
importance. Owing to its early separation from continental Europe, the UK supports a
relatively limited number of mammal species compared to mainland Europe. Additionally,
limited prey and the impacts of numerous non-native and invasive species has resulted in
populations of several native mammals becoming extremely fragile, and thus at risk from

even minor perturbations and stochastic processes. Appropriate conservation therefore
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relies heavily on targeted management action, informed by rigorous monitoring data (Harris

and Yalden, 2004).

Mammal conservation and monitoring in the UK face a number of challenges, particularly
when compared to other taxa. Bird monitoring has a history of being rigorous and highly co-
ordinated, largely as a result of a large pool of volunteer surveyors (Greenwood, 2007).
Mammal monitoring, however, tends to attract fewer volunteer surveyors, principally owing
to the specialist skills and field equipment required to survey a large number of mammal
species. In comparison to birds, small mammals in particular are difficult to observe and
survey techniques are difficult to standardise, with specific methods required to effectively

survey for individual species (Battersby and Greenwood, 2004).

As technology has become more accessible in terms of economic cost and capability,
researchers have successfully piloted the use of technology-based techniques, such as
bioacoustics and camera traps, in surveying and monitoring increasing numbers of species.
This includes smaller or otherwise elusive mammals, including bats and hazel dormice, for
which monitoring data are often lacking. Technology therefore has the potential to establish
rapid and non-invasive methods to monitor some of Britain’s most vulnerable mammals
(Mills et al., 2016). Moreover, such methods support recent calls to move monitoring
techniques from invasive to non-invasive through the 3Rs principals for animal research:

Replace, Reduce and Refine (Zemanova, 2020).
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1.2.1 Methods of surveying and monitoring mammals

Mammal surveys can take a number of forms, depending on the target species, the question
posed, and the primary data required. For example, surveys may be used to establish
mammalian species richness, or a census may be used to quantify population sizes of one or
more specific species (Sutherland, 1996). Alternatively, survey data can be used to map
species distributions or to infer abiotic parameters using biological indicator species
(Goodenough and Hart, 2017). Data can be obtained directly or indirectly, observationally or
invasively and may also be collected across a range of spatial scales, from site level to

landscape level or even national scale.

Mammal surveys are carried out by a wide variety of surveyors, from licenced professionals
to citizen scientists and volunteers. Many species require specialist knowledge and skills for
surveyors to legally be permitted to be in close proximity to, or handle individuals. This
primarily relates to species protected by some form of national legislation, such as hazel
dormice, where a licence is required to complete nest box checks (Bright et al., 2006). In
these instances, only suitably qualified persons will be able to conduct surveys, although
unlicenced individuals are often able to observe, or work under the supervision of the
licenced surveyor (Natural England, 2025). Where surveys can be undertaken less invasively,
either without the need to handle the species directly or where specialist licences are not
required, a wider range of surveyors can become involved. This includes students, early
career researchers or volunteers undertaking surveys under direct or indirect guidance of
experienced individuals. A key example is the National Harvest Mouse Survey, which
engages a wide range of volunteers to conduct surveys looking for distinctive harvest mouse

nests (Clifton, 2024). Moreover, surveys that gather data exclusively using distanced
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observation or field signs can be carried out by almost anyone, with little or no supervision,
but after appropriate training. This approach is frequently employed by large-scale citizen
science projects, involving a variety of surveyors, often distributed across a wide geographic

range (Dickinson et al., 2010).

The techniques used to survey and monitor mammals across the country can be grouped
into four broad categories: observational, interventional, indirect and remote. Observational
surveys include walked transects, with surveyors recording individuals seen/heard along a
particular route (Smart et al., 2003). Interventional surveys include live trapping, usually
with the intention of marking individuals for capture, mark, recapture studies (Sutherland,
1996). Indirect surveys include footprint tunnels (Bullion and Looser, 2019) and hair tubes
(Gurnell et al., 2009), whereby surveyor efforts are focused on deploying and maintaining
equipment to gather evidence of species presence, as opposed to direct observation.

Finally, remote surveys, such as camera trapping (Kilshaw et al., 2014) and remote
ultrasonic recording (Gibb et al., 2019), require little surveyor input once deployed, and

automatically gather data over extended time periods.

Indirect and remote survey techniques have the potential to fill the gaps in surveying and
monitoring efforts using observational or interventional methods (Mills et al., 2016).
Mammals can be particularly challenging and labour intensive to study (Battersby and
Greenwood, 2004), especially through observational and interventional techniques, with
protected species licences often required. Consequently, population monitoring data are

severely lacking for many species (Flowerdew, 2004). There is, therefore, rapidly growing
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interest in the use of novel indirect survey techniques and the application of increasingly
accessible technological approaches, in mammal surveying. Technological approaches can
offer the potential to gather data on a fully- or semi-automated basis, often over extended
time periods and with reduced levels of surveyor effort (Silveira et al., 2003). However,
many such techniques are yet to be widely used in the UK and methods regarding their use
remain unstandardised, or with guidance for their use in the early stages of development.
The following sections briefly outline the broad categories of mammal survey techniques
commonly undertaken to survey and monitor mammals in the region; these are then

summarised in Table 1.1.

1.2.1.1 Observational surveys

Observational surveys are those which involve direct observation by the surveyor, whether
it be sight or sound. Direct observational survey methods for mammals fall into three broad
categories: transect sampling, point sampling and mapping (Goodenough and Hart, 2017).
Although transects and point counts are commonly used to survey other taxa, for example,
birds (Newson et al., 2005), for mammals, their use tends to be restricted to larger and
readily observable mammals (Sutherland, 1996; Smart et al., 2003). However, when
supplemented with technology e.g., thermal imaging equipment and/or ultrasonic detection
equipment, they can have wider application, primarily in surveying bats (Collins, 2023)
(section 1.3). Such methods are also used within wider mapping surveys, such as mapping

distributions and abundance of species using Geographic Information Systems (GIS).

Perhaps the most novel observational mammal surveying technique currently being used in

the United Kingdom is that of employing specially trained Conservation Detection Dogs
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(CDDs). This methodology employs the dog’s olfactory senses (Bennett et al., 2019), and has
grown principally from using the technique to locate missing persons and in law
enforcement and military applications (Beebe et al., 2016). This technique has since been
proved successful in detecting both live mammals (Bearman-Brown et al., 2020) and bat
carcasses (Mathews at al., 2013). Moreover, numerous studies to date have found CDDs to
be more effective in species detection, when directly compared to alternative methods
(Beebe et al., 2016), for example in detecting hedgehogs (Erinaceus europaeus) (Bearman-

Brown et al., 2020).

1.2.1.2 Interventional surveys

When individuals cannot be directly observed, or where additional data are needed,
interventional trapping surveys may be necessary. These surveys usually involve some form
of temporary trapping and restraint of the survey species. A key example of mammal
trapping surveys undertaken in the UK is the use of Longworth traps for small terrestrial
mammals (mice, voles, shrews) (Flowerdew et al., 2004; Gurnell and Flowerdew, 2006).
Longworth traps are typically deployed along mammal runs (Sutherland, 1996), and are
particularly effective for capture-mark-recapture (CMR) studies to determine species
distributions and abundance (Sutherland, 1996; Goodenough and Hart, 2017; Jung et al.,
2020). The ability to take individuals into the hand enables biometric data (weight, sex, age)
to be collected in order to assess population structure and health (Flowerdew et al., 2004).
Moreover, trapping surveys are also essential in studying species movements and home
ranges (Bontadina et al., 2001) whereby tracking devices, such as PIT tags, need to be fitted

(Marsh et al., 2022).
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1.2.1.3 Indirect surveys

Some mammal survey methods are entirely indirect and do not require any direct
observation of the target species, instead relying on the documentation of evidence
pertaining to species presence indirectly. These could be indicators of a species’ physical
presence in the survey area such as hair and skeletal remains, evidence of their behaviour
such as footprints and refuges, or evidence of a species’ physiological processes, including
feeding remains and faeces (Goodenough and Hart, 2017). These techniques are of
particular value in establishing the presence of small, nocturnal or otherwise elusive species.
Indirect methods often involve the use of equipment to “harvest” indirect evidence.
Examples include the use of footprint tunnels to study hedgehogs (Yarnell et al., 2014) and
arboreal mammals (Bright, 2006; Mills et al., 2016), or hair tubes to establish the presence
of red squirrels (Sciurus vulgaris) (Mortelliti and Boitani, 2008). Hair samples are analysed
under the microscope to identify species with the aid of a reference collection or key
(Teerink, 2003). Moreover, if the root of the hair is present, hairs can further be used for
DNA analysis, allowing the identification of individuals in some cases (Sheehy et al., 2018).
Other indirect methods may involve simply noting indirect evidence based on observation
alone (e.g., the presence of distinctly gnawed hazelnuts (Bright et al., 1996)). Alternatively,
comparatively more novel techniques can be used to ascertain species presence, including
Conservation Detection Dogs (CDDs) being used to detect scat and living quarters (e.g.,
roosts and dens) (McKeague et al., 2023), and sampling for environmental DNA (eDNA) in

the soil and in waterbodies (Sales et al., 2020; Broadhurst et al., 2021).
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1.2.1.4 Remote surveys

Over the past few decades, digital technology, particularly in the form of devices that
generate and store data, are becoming increasingly widely used in surveying and monitoring
of many species worldwide (Besson et al., 2022). Such technological advances have enabled
the development of a number of remote methods, whereby surveyors are able to gather
data on their study species passively, often over extended time periods, without needing to
be in the field directly (Rovero and Zimmermann, 2016). In the UK, several remote,
technology-based techniques have been applied to mammals. Firstly, camera traps proved
successful in studying medium and large terrestrial mammals, for example the Scottish
Wildcat (Felis silvestris silvestris) (Kilshaw et al., 2015), with more recent advances enabling
the study of smaller and even arboreal taxa, including hazel dormouse (Mills et al., 2016).
Secondly, thermal imaging devices have proved valuable in surveying crepuscular and
nocturnal mammals, for example elusive European hedgehogs (Bearman-Brown et al.,
2020). Finally, bioacoustic techniques, whereby recording devices are used to remotely
capture mammal vocalisations, have been piloted for a range of terrestrial mammals from

deer to shrews (Middleton et al., 2023).

Although the initial cost of equipment required to undertake remote surveys can be
substantial, they have the potential to provide much less labour intensive and cost-effective
surveying while keeping ecological disturbance to a minimum and improving accuracy of
data collected (Silveira et al., 2003). Moreover, technological survey methods are
predominantly non-invasive and can be widely undertaken without the need for species
specific survey licences (Rovero and Zimmermann, 2016). This could prove invaluable for

vulnerable species, which are otherwise challenging to study. Efficient and reliable analysis
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of the extensive datasets typically produced by remote methods remains a key area of
research. Artificial Intelligence (Al) technologies continue to become more capable and
accessible, unlocking the potential for automated identification of species present in camera
trap (Falzon et al., 2019) and thermal imaging (Keery, 2024) footage/images, and within
acoustic recordings (Linhart et al., 2022). The use of remote techniques to study bats

specifically, is discussed in greater depth in section 1.3
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Point counts, transects,
mapping

Capture-mark-recapture,
Longworth trapping, mist
nets, harp traps

Hair tubes, footprint
tunnels, feeding remains,
scat, eDNA

Camera trapping, passive
acoustic monitoring

Rapid form of faunal assessment

Uses sight/sound/smell — no need for
trapping

Minimal ethical/legal considerations
Accurate species identification

Can provide a more in-depth assessment
of population structure/health

Provides an opportunity to fit equipment
for further remote surveys

Enables data to be obtained for hard to
observe species e.g.
nocturnal/crepuscular

Effective in establishing species presence

Non-destructive and non-invasive.

Time efficient — little surveyor input
needed whilst the survey is underway
Ability to obtain records undetectable by
direct observation or verify indirect
evidence

Potential to study species
presence/abundance over extended
time periods/larger areas

Inclusion of night vision/infra-red
thermography to study nocturnal species

Individuals/species can easily be missed
Frequently underestimate population
sizes

May require specialist licences/skills
Time consuming

Individuals may be trap-happy or trap-
shy, impacting population estimates

Limited ability to calculate species
abundance — no live individuals seen.
Individual species can be difficult to
decipher e.g. multiple footprints on
footprint trap

High equipment costs

Potential for technical errors/equipment
failure

Camera resolution may limit which
species can be detected with sufficient
detail to be identified.

Considerable time investment needed to
process footage and extract data
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1.3 Bats in the United Kingdom

With >1,000 species globally, bats (Chiroptera) form the second largest order of mammals,
accounting for approximately one fifth of all mammal species (Simmons, 2005). The
Chiroptera are divided into two sub-orders: Megachiroptera (megabats), and
Microchiroptera (microbats). Apart from Antarctica, Microchiroptera are found on every

continent on Earth, with eighteen species present in the UK.

Bats are extremely sensitive to disturbance and land use change, and are thus considered to
be particularly susceptible to the pressures faced by nature across the country, as outlined
in section 1.1.3. Bats are afforded full legal protection under the Wildlife and Countryside
Act (1981), and additional, more specific, protection under the Conservation of Habitats and
Species Regulations (2017). However, six species are considered to be at risk from
extirpation from the region according to the national red list issued by the Mammal Society
(2020), with a further three species listed as data deficient. The species present in the UK,

along with their conservation status and legal protections, are summarised in Table 1.2.
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Table 1.2: Bat species resident in the UK (conservation status: N/A=not assessed, DD=Data Deficient,
LC=Least Concern, NT=Near Threatened, VU=Vulnerable, EN=Endangered, CR=Critically Endangered),
(legal protection: WCA5=Wildlife and Countryside Act (1981) — Schedule 5, WCA6=schedule 6,

CHSR=The Conservation of Habitats and Species Regulations (2017) — Schedule 2).

Common name Scientific name Global Red List  National Red List Native Legal
status (IUCN) status (GB) protection

Greater Rhinolophus LC LC v WCAS5, WCAS,
horseshoe bat ferrumequinum CHSR

Lesser horseshoe  Rhinolophus LC LC v WCAS5, WCAS,
bat hipposideros CHSR

Alcathoe bat Myotis alcathoe DD DD v WCAS5, WCAS,
CHSR

Whiskered bat Myotis mystacinus LC DD v WCAS5, WCASG,
CHSR

Brandt’s bat Myotis brandtii LC DD v WCAS5, WCAS,
CHSR

Bechstein’s bat Myotis bechsteinii NT LC v WCAS5, WCAS,
CHSR

Daubenton’s bat Myotis daubentonii LC LC v WCAS5, WCAS,
CHSR

Greater mouse- Myotis myotis LC CR v WCAS5, WCAG6,
eared bat CHSR

Natterer’s bat Myotis nattereri LC LC v WCAS5, WCAS,
CHSR

Serotine bat Eptesicus serotinus LC VU v WCA5, WCAGb,
CHSR

Leisler’s bat Nyctalus leisleri LC NT v WCAS5, WCAS,
CHSR

Noctule bat Nyctalus noctula LC LC v WCAS5, WCAS,
CHSR

Common Pipistrellus LC LC v WCAS5, WCAS,
pipistrelle bat pipistrellus CHSR

Soprano Pipistrellus LC LC v WCAS5, WCAS,
pipistrelle bat pygmaeus CHSR

Nathusius’ Pipistrellus nathusii LC NT v WCAS5, WCAS,
pipistrelle bat CHSR

Barbastelle bat Barbastella NT VU v WCAS5, WCAS,
barbastellus CHSR

Brown long-eared  Plecotus auritus LC LC v WCAS5, WCAS,
bat CHSR

Grey long-eared Plecotus austriacus LC EN v WCAS5, WCAS,
bat CHSR
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1.3.1 Non-acoustic bat survey methods

Microbats such as those present in the UK, are notoriously challenging to study (Barlow et
al., 2015), being small, volant, and nocturnal. The use of acoustic techniques to detect and
record echolocation calls is often imperative. However, interventional trapping techniques,
indirect signs, and Night Vision Aids (NVAs) can yield valuable insights, and are frequently
used to supplement acoustic surveys. The principal non-acoustic bat survey techniques used

in the UK, are discussed in more detail in the following sections.

1.3.1.1 Observational: Roost counts

Although low light levels hinder direct observational techniques, observation is important
within roost surveys to establish presence of bats, and perform direct counts with the aid of
artificial light, low-light videography, or Light Detection and Ranging (LIDAR) laser scanners
(Azmy et al., 2021), or to observe/count emerging and swarming bats at dusk and dawn
(Warren and Witter, 2002; Collins, 2023). As disturbance to roosting bats is normally illegal,
counts of individuals undertaken within roosts using torches and endoscopes must be

carried out by licensed surveyors (Froidevaux et al., 2020).

Bats can also be observed and counted directly on emerging from the roost at dusk, or when
swarming prior to returning to the roost at dawn. Here, light levels are often sufficient for
direct observation of earlier-emerging species, however, such surveys are typically
supplemented by acoustic detectors (Collins, 2023). Unlike counts within the roost, these
counts are not a licensed activity and can therefore be undertaken by a wider range of

surveyors. Such counts form a key part of the methods undertaken largely by volunteers for
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the National Bat Monitoring Programme (NBMP), which contributes valuable monitoring

data (Barlow et al., 2015).

1.3.1.2 Interventional: Live trapping

Live trapping for bats was traditionally undertaken using mist nets, similar to those used to
capture birds. However, since the invention of the harp trap in the 1950s, this has become
the preferred choice for bats, as such traps are more efficient (Berry et al., 2004) and limit
any stress experienced by captured animals (Kunz and Kuta, 1988). Trapping bats and
examining them in the hand, enables definitive species identification that cannot always be
ascertained through bioacoustics (section 1.3.2) alone (Collins, 2023). Some species, such as
those in the genus Myotis are inseparable when conducting visual roost counts (Barlow et
al., 2015), or using acoustics, therefore, trapping may be necessary where rarer species
within the genus are suspected to be present. Furthermore, as with terrestrial mammals,
live trapping bats allows for the collection of biometric data (Walters et al., 2013) or tissue
samples for genetic studies (Rossiter et al., 2002). Trapping of bats, however, is a licenced

activity, and can only be carried out by trained surveyors.

1.3.1.3 Indirect: Scat and DNA

In addition to non-volant mammals (outlined in section 1.2.1.3 above), indirect surveys are
also valuable in surveying bats. The presence of scat/droppings is an effective means of
establishing the presence of roosting bats, and are frequently encountered during
Preliminary Roost Assessments (PRAs) of buildings and potential roosting structures

(Froidevaux et al., 2020). Moreover, bat droppings can be sent for DNA analysis in order to

28



Chapter One: Introduction

determine the species present, which can be advantageous for species such as those in the
genus Myotis, which are challenging to identify to species level in acoustic surveys (Collins,

2023).

1.3.1.4 Remote: Night Vision Aids and camera traps

Night Vision Aids (NVAs), based on either thermal imaging (mid and long wavelengths) or
infrared thermography (IRT) (short wavelength) technology, take precise measurements of
infrared radiation to determine surface temperature (Mccafferty, 2007). NVAs display the
observed variations in temperature into a digital signal. Data output is in the form of a
thermogram, generated by either the device itself or a computer from the signal, to give a
visual representation of the observed radiation (Fawcett-Williams, 2019). The application of
NVAs in the fields of ecology and zoology, has enabled valuable insights into the activity and
health of both bats (Hristov et al., 2008), and an array of other mammal taxa, including
burrowing species (Boonstra et al., 1994), terrestrial mammals (Dunn et al., 2002) and large
sea mammals (Perryman et al., 1999). Cameras can be used terrestrially, both at close range
and from a distance, with larger mammals successfully detected from a distance upwards of
1000m (McCafferty, 2007) and aerially, with even early aerial studies being able to count
groups of large mammals from altitudes of 300m in uncluttered environments (Graves et al.,
1972). Furthermore, NVAs can either be used in live view, to take user defined photographs
(Goodenough et al., 2018), or record video footage for post hoc analysis (Hristov et al.,

2008).

NVAs have huge potential to assist in both active and remote monitoring of mammal

species, with a key advantage being able to observe diurnal and nocturnal species, including
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bats, that are otherwise challenging to observe (Cilulko et al., 2013). Standard methods to
study such animals are susceptible to visibility bias, arising from reduced detection ability as
levels of visible light decline (Havens and Sharp, 2016). However, the costs involved in
purchasing or hiring equipment, and the level of skill and knowledge required to successfully
carry out surveys, remain significant barriers to the widespread use of the technology within
ecology. Despite the large initial costs when used as a standalone method, thermal imaging
cameras can effectively replace one or more surveyors, reducing the amount of night-time

working required to carry out surveys (Fawcett-Williams, 2019).

Although not previously widely used, the ecological application of thermal imaging in the UK
is growing, primarily owing to its ability to aid in surveying and studying bats (Figure 1.3),
both in activity surveys, and when locating roosts in trees and buildings (Fawcett-Williams,

2019).

AL
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Figure 1.3: Bats in flight, observed through a thermal imaging camera (Fawcett-Williams, 2019)
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Ensuring accurate species identification from NVA footage remains an ongoing challenge,
both in the case of large mammals, especially when counted from a distance (Goodenough
et al., 2018) and smaller mammals, including bats (Darras et al., 2022). In the case of bat
surveys, NVAs can be used in tandem with acoustic bat detectors, and bioacoustics can be
used to verify the species of bats present within the thermal imaging footage (Collins, 2023).
The Bat Conservation Trust has recently integrated protocols for the use of NVAs into their
bat survey guidelines (Collins, 2023), with further guidelines for a broader range of species

in development (Inside Ecology, 2018).

Although standard ‘trail camera’ style camera traps are not typically suited to capturing
images of fast-moving bats, Rydell and Russo (2015) successfully piloted a custom, remote-
triggered camera set up to capture high quality images of bats drinking. The species richness
recorded was comparable to that of mist netting, and highlighted the value of such
techniques in recording species that are typically infrequently recorded in acoustic surveys

as a result of minimal echolocation.

1.3.2 Acoustic bat survey methods

Bioacoustic monitoring is a rapidly developing field, offering the potential to non-invasively
gain insights into the ecology of rare and cryptic species (Teixeira et al., 2019), in addition to
devising cost effective and reliable monitoring schemes to study species populations and
communities at scale (Gibb et al., 2019). Analysis of animal sound has been applied to
biological studies since as early as the 18™ Century, with the earliest research focusing on

identifying birdsong (Rose et al., 2022). The use of mammal sound in scientific research soon
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followed, with ultrasound having been used in the study of bats since the 1930s, following
the work of Galambos and Griffin (1942) examining echolocation. At present, a range of
weatherproof bioacoustic sensors are used, including sound recorders, ultrasonic detectors,
and hydrophones, often on an automated basis, to gather sound data from animals and
their environment (Gibb et al., 2019). In addition to bats (Sugai et al., 2019), this technique
has been successfully applied to the study of birds (Pérez-Granados, 2021), amphibians
(Desjonquéres, 2020), Orthoptera (Newson et al., 2017), and both marine (Mellinger et al.,
2007) and terrestrial mammals (Enari et al., 2019). In the UK, bioacoustic monitoring is
frequently used in the surveying of bats (Collins, 2023), but has additionally been piloted for

birds (Abrahams, 2018), and small terrestrial mammals (Newson et al., 2020).

As a taxonomic group that is otherwise incredibly difficult to observe, acoustic monitoring of
ultrasonic bat calls has revolutionised bat ecology. Initially, ultrasonic bat calls could only be
captured by heterodyne bat detectors. This technology was first tested in the 1950s, with
the first commercial detectors becoming available in 1963 (Zamora-Gutierrez et al., 2021).
These detectors require manual tuning to the desired frequency, and detected sound is
converted into lower frequency within human hearing range, with an output in the form of
audible clicks. The ability to listen to bat echolocation calls provided valuable insights into
species identification, ecology, and their spatiotemporal distribution (Russ, 2012). The
technology developed to enable bat calls to be recorded, initially onto cassette tape, for
further post hoc analysis. Handheld units continued to advance, with modern units offering
full spectrum recording capabilities, inclusive of visual spectrograms, directly onto memory
cards. The technology to enable Passive Acoustic Monitoring (PAM) of bats is a more recent

development, starting with memory efficient zero crossing and frequency division detectors
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in the 1980s (Corben, 2004). Full spectrum, passive bat detectors were introduced to the
market even more recently, with their first use documented in 2009 (Zamora-Gutierrez et
al., 2021). Passive detectors enabled bat surveys to be conducted over full nights and over
several consecutive nights, increasing the temporal sampling range compared to transect
surveys, carried out by surveyors with handheld detectors, during a set time period, on a

given night (Goodenough et al., 2015).

Bioacoustics shares many of the same key advantages as other remote methods (e.g.,
camera trapping), in that it can be used to monitor populations at scale, whilst being non-
invasive and automated (with the exception of transect bat surveys). However, whilst
identifying individual species from camera trap images/videos relies on animals entering the
camera’s field of view, microphones are typically omnidirectional and can capture sounds

that carry across the landscape (Larsen et al., 2022).

Species classification of sound recordings remains a key challenge facing wider application
of bioacoustics, as post-hoc analysis of sound recordings can be time consuming and fraught
with inaccuracies (Barré et al., 2019). Advances in machine learning and Al have begun to
offer algorithms for automating analysis as the pool of training data available widens
(Stowell, 2022), but at present much uncertainty surrounds their reliability (Mac Aodha et
al., 2018; Barré et al., 2019). Moreover, financial costs incurred in the purchase of both
hardware and analysis software still represent a barrier to the accessibility and scalability of
bioacoustic methods. Despite falling costs, commercial acoustic detectors remain

substantially more expensive than equivalent camera traps (Gibb et al., 2019). However, the
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recent development of open-source acoustic loggers, has provided opportunities to access

bioacoustic monitoring at a much lower price point (Hill et al., 2017) (Figure 1.4).

Figure 1.4: A commercial (bottom) and open source (top) acoustic detector deployed in the field,
targeting bats.

1.4 Research Outline

The research contained in this thesis investigates the effectiveness of passive acoustic
techniques to survey and monitor British bats in field conditions. Although protocols for
open-source acoustic loggers have been piloted by researchers and some are now becoming
more widely used, many have yet to be empirically tested. Research questions remain
regarding their performance when tested against commercial detectors, variation between
different habitats, and how the quality of the data impacts analysis. Moreover, regardless of

the devices used, there remain gaps in knowledge around the impacts of abiotic factors on
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acoustic bat surveys, and how best to optimise the methodology based on the aims of the

survey.

The research focuses on PAM for bats, considering the influence of abiotic variables on data
collection, comparing data from different methods (walked transects versus automated
fixed-point) and detector types (cost; data compression), and the analysis of acoustic data
including use of automatic classifiers. Overall, therefore, this research will empirically test,
critique and evaluate the relative benefits and caveats of methods used in the field for
collecting optimal monitoring data, how they contribute to furthering knowledge of species
ecology and behaviour, and how they can be effectively applied in ecological research and
conservation practice. The importance and originality of this research centres on
developing, testing, refining and improving survey techniques to enable the collection of

robust data in quantity and as cost-effectively as possible.

This thesis is modular, with each data chapter concerning each specific research aim. These
are set out in section 1.4.1 with section 1.4.2 introducing the research sites and data types
used throughout the research and section 1.4.3 detailing publications arising from this work

completed during PhD study.

1.4.1 Thesis structure

This research comprises several linked studies on different focal mammal species and/or
guilds, with technological approaches to ecological surveying being the linking theme. The
thesis is divided into seven chapters. This chapter (Chapter One) has introduced the

scientific and legislative requirements for biological surveying and monitoring, both globally

35



Chapter One: Introduction

and in the UK. It has also summarised the methods used for surveying and monitoring, both
generally and with emphasis on those used widely for mammals in the UK, along with their
strengths and caveats. Chapters Two to Five focus on the use of bioacoustics technology to
survey and monitor bats. Chapter Two tests the influence of spatiotemporal and abiotic
factors on bat activity recorded using passive acoustic monitoring and examines the benefits
and caveats of this methodology in practice. Chapter Three evaluates the benefits and
caveats associated with two widely used acoustic bat survey techniques; passive fixed-point
monitoring and walked transect surveys. Chapter Four focuses on addressing some of the
knowledge gaps associated with designing and financing passive bat surveys in relation to
the type of detectors used and the number deployed (and how this differs according to
habitat). The final data chapter, Chapter Five examines the analysis of the data collected in
Chapter Four, comparing the performance of a suite of automated classifiers on data
collected using different detectors. Chapter Six summarizes the key findings of the
preceding data chapters, considers their implications for applied ecological practice, and

suggests potential avenues for future research.

1.4.2 Thesis research sites and data types

The research is primarily based on primary data collected from sites in Gloucestershire and
Worcestershire including parkland at Croome managed by the National Trust (52°05'48"N ,
002°10'13"W) and private farms/estates. Additional secondary data were used in two data
chapters (Chapters Two and Three). These data were collected from sites across the south
of England as being representative of sites typically encountered in ecological consultancy
settings. The author, who at the time was a seasonal fieldworker for an ecological

consultancy company, was involved in equipment set-up and carrying out surveys at the
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majority of these sites, and undertook all acoustic data analysis before commencing PhD
studies. These data, which were essentially secondary data in the context of the PhD despite
having been collected by the author, were used with consent from the owner, and all field
sites were accessed with full permission from the landowner/manager. The locations of all
field sites are shown in Figure 1.5. The acoustic data collected and used throughout this
research were collected exclusively under field conditions. Axiomatically, therefore,
classifications, whether manual or determined by automated classifiers, could not be
verified and are thus subject to error despite careful use of industry standard methods. Lack
of ‘ground truthing’ bioacoustic data is a challenge faced by all practitioners undertaking bat
surveys, especially where data are collected passively, and thus the level of uncertainty
inherent in the data used in this PhD is representative of real-world data. This is
acknowledged openly throughout this research, with acoustic data analysis workflows
incorporating automated classification forming the focus of Chapter Five. For consistency,
throughout this research the term ‘pass’ is used to denote an acoustic recording containing

bat vocalisations, and ‘call’ to denote an individual bat vocalisation.

37



Chapter One: Introduction

Cnve

Aberystwyth ¢ S

Q@@ Bats - Chapters 2&3

ntry

Hinton-on-the-Green

Q@ Bats - Chapters 4&5

Y National Trust Croome \. or.

s Glouce

AQP@ Bats - Chapters 283 ’

Somerset

L er ~uton
) ) QP Bats — Chapters 2&3 O Xfo rd [DEP\ Bats - Chapters 2&3
'._— ¥, L o " Bristol & South Glos. ~» ° Essex
LONDON

Cam?ridge

QPP Bats — Chapters 4&5

Hinton-on-the-Green &
Dumbleton Estate

® ® <8 r
Readi ‘

Bats — Chapters 2&3
Berkshire, Buckinghamshire & London

k Ports_'r‘ﬁ‘outh

QP Bats - Chapters 2&3 I

Q@@ Bats — Chapters

Wiltshire

283 AQP@ Bats — Chapters 2&3

East Sussex

Cornwall —3
o Plymauth

Pl P ﬂ'"w‘ % 19 - _},.-I

- ) ENGISH

. Primary data

CHANNEL

@ Ssecondary data

0 25

50 75 100 125 150 km

Figure 1.5: Locations of the field sites within the south of the UK used for data collection according to thesis chapter. The secondary data were
collected in a development context and exact locations are not appropriate to disclose, therefore, the locations shown are approximated.

38



Chapter 1: Introduction

1.4.3 Publications arising from this PhD

Chapters Two and Three have been published in peer-reviewed journals during PhD study in
2020 and 2021, respectively. The material has been reformatted for inclusion in this thesis
to provide consistency across the chapters and align with the University of Gloucestershire’s
thesis requirements, and additional summaries have been written at the start and end of
each chapter to set the chapters within the thesis context, but have not otherwise been
amended. Chapter Four was presented in-progress as a poster at the British Ecological
Society Annual Meeting in 2023. Content from Chapters Four and Five is intended to be

published in peer-reviewed journals in due course.
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CHAPTER TWO: The influence of abiotic and spatiotemporal
factors on the detectability of bats in passive acoustic
surveys

Full moon over Bredon Hill —July 2021

Bat activity surveys are essential in the contexts of scientific research, conservation,
assessment of ecosystem health, monitoring progress towards sustainable development
goals, and legislative compliance in development and infrastructure construction. However,
environmental conditions have the potential to influence bat activity and, in turn, their
detectability in acoustic surveys. Here, 3,242 hours of acoustic survey data from 323 nights
of bat monitoring at 14 sites over a 4-year period, are used to explore the influence of
spatiotemporal factors, lunar phase, and weather conditions on bat activity.

Publications arising from this chapter:

Perks, S. J. and Goodenough A.E. (2020) ‘Abiotic and spatiotemporal factors affect activity of
European bat species and have implications for detectability of acoustic surveys’. Wildlife
Biology, 2020(2), pp.1-8.

The material has been reformatted for inclusion in this thesis to provide consistency across
the chapters and align with the University of Gloucestershire’s thesis requirements, with
summaries at the start and end of each chapter to set the chapters within the thesis
context, but have not otherwise been amended. The data used for this chapter are
explained in relation to the PhD process in Section 1.4.2.
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2.1 Introduction

Bats (Chiroptera) are the second largest mammalian order with 1,100 species worldwide
(Kunz and Lumsden, 2003; Simmons et al., 2008). They have diversified over the past 52
million years to inhabit numerous habitats and utilise a range of food sources and foraging
techniques (Patterson et al., 2003). Insectivorous species, such as those found in Europe,
are nocturnal and typically use echolocation to catch prey by aerial hawking (e.g.

Pipistrellus) or from the surface of water (e.g. Myotis), as well as for navigation.

Although the broad-scale biogeographical ranges of most species are widely documented,
and habitat requirements are reasonably well understood, at least for roost sites, there
remain considerable gaps in knowledge regarding the factors that influence local-scale
foraging activity both spatially and temporally (Barclay, 1991; Walsh and Harris, 1996a;
1996b; Erickson and West, 2002; Ciechanowski et al., 2007). Given that acoustic bat surveys
depend on detecting echolocation during foraging (and when bats are commuting between
roost and feeding grounds), understanding the spatiotemporal and abiotic factors that
influence detection is key to obtaining robust survey data (Hayes, 1997). This is of particular
importance given the use of bat surveys in conservation contexts (Barlow et al., 2015) and
to quantify ecosystem health (Jones et al., 2009), as well as when surveys of legally-
protected species are a statutory obligation in infrastructure and development planning
(Collins, 2016). In Europe, bats are protected under the European Protected Species
licensing framework to ensure compliance with the EC Habitats Directive (92/43/EEC), with
countries implementing this via their own national legislation (e.g. Wildlife and Countryside

Act 1981 and Conservation of Habitats and Species Regulations 2010 in the UK).
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Bats are not spatially uniform in occurrence. Habitat suitability for foraging is largely
determined by insect prevalence and foraging opportunities. High-quality foraging habitat
includes broadleaf woodland, water and linear vegetation corridors (Walsh and Harris,
1996a) whereas arable land and improved grassland are generally less favoured (Walsh and
Harris, 1996b). Some species have particular habitat requirements for foraging. For
example, Daubenton’s bats (Myotis daubentonii) forage over water (Rydell et al., 1999,
Russ, 2012), greater horseshoe bats (Rhinolophus ferrumequinum) are often associated with
cattle (Ransome, 1996), while brown long-eared bats (Plecotus auritus) depend on areas
where there is suitable vegetation for gleaning (Rydell, 1989a, Anderson and Racey, 1991).
Distribution of foraging sites also fundamentally depends on the location of roost sites and
the distance individuals commute to their feeding grounds. For British bats, commuting
distance can range from as little as <1km (e.g. Bechstein’s bat Myotis bechsteinii) to up to

14km (e.g. Leisler’s bat Nyctalus leisleri) (Hundt, 2012).

Temporal factors can also affect bat foraging and feeding behaviour, and thus their
detection on bat surveys. Seasonality affects the presence of foraging temperate bats as
they typically hibernate overwinter or migrate to other areas. Females are most active in
early summer due to the high energy demands of pregnancy and lactation (Racey and
Speakman, 1987, Ciechanowski et al., 2007). Late in the summer, young bats increase the
size of the population foraging (Erickson and West, 2002). This, together with the fact that
adults often spend more time away from the roost after weaning, typically increases
observed activity levels from late July to September (Maier, 1992). Different bat species also
have different circadian rhythms and emerge at different times post-sunset (Jones and

Rydell, 1994) both relative to one another and potentially also in response to night duration.
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Abiotic factors also have the potential to affect bat activity and thus detectability in acoustic
surveys. Light levels, including moonlight duration and intensity, could be especially
important. A global meta-analysis by Saldafia-Vazquez and Munguia-Rosas (2013) combined
results of multiple studies to research the effects of moonlight on bats. Their analyses found
a significant negative relationship between moonlight intensity and levels of bat activity,
indicating that some species were lunar phobic. The strongest effect was found in tropical
frugivorous species, for example Neotropical fruit bats (Artibeus) (Morrison, 1978), and in
Neotropical species that forage over water, such as the greater bulldog bat (Noctilio
leporinus) (Bork, 2006). The limited research on the effect of moonlight on insectivorous
bats in at higher latitudes is less conclusive. Negraeff and Brigham (1995) found no
indication of lunar phobic behaviour based on work in Canada. This is possibly because bats
at higher latitudes have lower nocturnal predation risk than those in the tropics (Karlsson et
al., 2002). However, even if predation pressures in temperate bats are low, there remains
the potential for impacts on emergence times and bat activity patterns, both spatially and
temporally (Lima and O’Keefe, 2013). In the Pacific northwest, Erickson and West (2002)
suggested that variation in insectivorous bat activity might relate to moonlight intensity but
did not explicitly test this hypothesis. The phenomenon has not been extensively studied for
European species. Weather conditions can also influence bat activity. As small, endothermic
mammals, bats use a large proportion of their energy to thermoregulate (Lewis, 1993).
Lower air temperatures and rainfall require the bats to utilise more energy to maintain
suitable body temperature, such that foraging in these conditions may be unfavourable.
Insect prey may also be less abundant in poor weather (Racey and Speakman, 1987).

Although weather conditions can cause bat activity to differ substantially on consecutive
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nights (Hayes, 1997), it does not account for all within- or between-night variation.
Moreover, a study by Erickson and West (2002) showed that rain and temperatures

accounted for 37% of the variation in insectivorous bat activity.

Here we explore the influence of spatiotemporal and abiotic variables on bat activity using
data from automated monitoring from 14 sites over a four-year period (3,242 survey hours
over 323 nights). This encompassed both overall bat activity, as well as species- and genus-
specific trends in relation to site, nocturnal emergence patterns, duration of moonlight, and
weather variables. Understanding the effect of these multifaceted and interlinked factors on
the activity of different bat species is a vital step in ultimately developing maximally
effective survey protocols, which, in turn, will improve the reliability of conservation and

planning decisions made using survey data.

2.2 Methods

2.2.1 Data collection

Data were collected between 2014 and 2017 across 14 sites in the south of England. The
sites represented a range of habitat types. Most of the sites (n = 9) comprised agricultural
land with dividing hedgerows. The remaining sites were rural sites with heterogeneous
habitat including well established treelines, woodland, and/or watercourses (n = 3), or were
green spaces within urban areas (n = 2). An Anabat Express bat detector unit (Titley
Scientific, Ballina, Australia) was deployed at the study sites in rotation to record data across
the sites for a total of 323 nights between sunset and sunrise. Deployment and positioning

was carried out in a consistent manner at all sites with units mounted about 1.75 m above
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the ground adjacent to a suitable hedgerow or treeline to ensure detection of commuting
and foraging activity along linear features. The units recorded data directly onto an SD card.
Post fieldwork, all data from the bat detectors were downloaded for sonogram analysis. The
analysis was performed in AnalookW software (Titley Scientific, Ballina, Australia) developed
specifically for Anabat detectors. Initially recordings were processed on a night-by-night
basis and then data were subdivided into hourly units relative to sunset. This gave a total of
3,424 hours of survey data over 323 nights, with each night of data being from a single site
(i.e. sites were sampled independently not concurrently). Survey effort (number of survey
nights per month and per site) is given in Table S1. Species identification was carried out by
assessment of the range and peak frequency, together with shape of each sonogram in

terms of pitch and amplitude over time (Russ, 2012).

Data relating to temporal and abiotic factors were collected for use as explanatory factors in
statistical modelling. The variables are explained in Table 1. Sunset, sunrise and lunar data
were taken from Time and Date AS (www.timeanddate.com). Weather data were obtained
via BBC (www.bbc.co.uk/weather) for the nearest town or using Time and Date AS using the

nearest available weather station.

2.2.2 Statistical analysis
To examine whether there were significant deviations from a uniform distribution of bat
passes throughout the night, Kolmogorov-Smirnov two-sample tests were used as per Milne

et al. (2005) for Australian bat species.
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To explore the influence of spatiotemporal and abiotic factors on bat activity, Generalised
Linear Mixed Models (GLMMs) were constructed. Models were developed for overall bat
activity (total number of bat passes per hour regardless of species: n = 3424) and also the
activity of each of the four most prevalent species/genus groups; common pipistrelle
(Pipistrellus pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), Myotis spp. and
Nyctalus spp. (specific bat passes per hour: n = 3424). In all cases, a full model was
constructed whereby the factors listed in Table 2.1 were entered as continuous fixed factors
(hour post sunset, temperature, wind speed) or categorical fixed factors (illumination,
rainfall). Two random factors were also entered: site (coded 1-14 with no underlying
rationale for the order and thus entered as a categorical random factor) and month (April to
October). Because the dependent variable of bat activity (total or species-specific) used
count data (number of bat passes per hour), a Poisson distribution was used with a log link
function: this gave the lowest Akaike’s Information Criterion (AIC) value (Akaike, 1971)
relative to other options for count data of Poisson with identity link, negative binomial with
log link, and negative binomial with identity link. For the random factors, a scaled identity
covariance type was specified as this covariance structure was associated with the lowest
AIC score. To ascertain the effect of the fixed factors in explaining bat activity, marginal r?
was calculated. To ascertain the effect of both fixed and random factors, conditional r? was
calculated. The relative importance of the random factors can be inferred from the

difference between conditional and marginal r2.
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Table 2.1: Temporal and abiotic data collected for use in statistical analyses. All data were hourly (n
=3,242)

Name Details Data type
Time post Bat survey hour relative to sunset, whereby 1 was the first hour post sunset, 2 Continuous
sunset was the second hour post sunset etc. The number of full survey hours varied

between 8 and 14 depending on the length of night, with a modal duration of 10 hrs.

Illumination  Illumination based on moon presence taking into account moonrise and moonset  Categorical
times, as well as cloud cover. Note that depending on the lunar phase, on some
nights moonrise was at/before sunset (such that potential moonlight was at the
start of the night) but that on other nights moonrise was after sunset (such that
there was no potential moonlight for the first part of the night). The moon was
potentially present for part of the night on all survey nights. Lunar timing
information was combined with hourly cloud cover to give a ranking scale
whereby: 0 = no illumination (no moon present for any part of the survey hour
and/or overcast skies; 56.9% of cases); 0.5 = partial illumination (moon present
for part of the hour only and/or patchy cloud; 30.3% of cases); and 1 = full
illumination (moon present for full survey hour and clear skies; 12.8% of cases).
None of the 14 survey sites was subject to artificial illumination.

Temperature Measured in degrees Celsius (°C). Continuous
Min =1°C; max = 27°C; mean = 13.2°C

Wind speed  Average miles per hour (mph). Continuous
Min = 0 mph, max = 30 mph; mean = 7 mph.

Rainfall Ranking scale of: 1 = none (63.4% of cases), 2 = intermittent and/or light (18.6% of Categorical
cases) , 3 = persistent and/or heavy (18.0% of cases).

Once full models had been computed for bat activity, reduced models were tested by
dropping different combinations of fixed factors to establish whether the full model was
optimal or whether a simpler model might better balance explanatory power and
parsimony. Competing models were compared using delta (A) AIC on the basis that models
with AAIC < 2 had essentially have the same support and models with AAIC of 3-4 had
strong support; models with AIC > 5 were considered to have substantially less support and
were discounted (Burnham and Anderson, 2002). In all cases the full model was optimal
and hence only full models are reported. All statistical analysis was carried out in IBM SPSS

Statistics (version 24).
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2.3 Results

In total, 52,628 bat passes were recorded over 3,242 survey hours between sunset and
sunrise across 323 nights. The majority of passes were: common pipistrelle = 29,657,
soprano pipistrelle = 13,034, Myotis spp. = 7,146 and Nyctalus spp. = 831. The remaining
1,960 passes were split between serotine (Eptesicus serotinus), brown long-eared (Plecotus
auritus), greater horseshoe (Rhinolophus ferrumequinum), lesser horseshoe (Rhinolophus
hipposideros), barbastelle (Barbastella barbastellus) bats: these species were encountered
too infrequently for meaningful statistical analysis. As common pipistrelle or soprano
pipistrelle overlap in call frequency, there were also some Pipistrellus calls between 50 and
51 kHz that could not be definitively identified. As per Russ (2012), we classified Pipistrellus
calls with a maximum energy (peak) frequency <50.2 kHz as common pipistrelle and
Pipistrellus calls with a maximum energy (peak) frequency >50.6 kHz as soprano pipistrelle,
while those between 50.2 and 50.6 were discounted from analysis unless they were part of
a series of calls that had already been identified definitively to species level. The mean
number of bat passes per hour for total activity and the four specific taxa are given in Table

S2.1 on a per month, per site basis.

2.3.1 Temporal distribution

Two sample Kolmogorov-Smirnov tests demonstrated that passes of all species/genera
differed significantly from a uniform distribution (P < 0.046 in all cases). The majority of bat
passes, regardless of species, occurred in the first hour post sunset and then decreased as
the night progressed, with a small increase in activity towards dawn that made the overall
activity distribution slightly bimodal (Figure 2.1a). Both pipistrelle species also showed

higher activity in the hours immediately following sunset (Figure 2.1b-c), however, soprano
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pipistrelle alone showed an additional peak in activity towards dawn (Figure 2.1c). The
temporal distribution of Nyctalus passes (Figure 2.1d) was the most sporadic, with higher
peaks in activity occurring haphazardly throughout the night. However, this species was
recorded much less frequently than pipistrelle species or Myotis spp. and thus the variability
in passes, as shown by the standard error bars, was considerably higher. Myotis passes were
relatively infrequent in the first hour post sunset (Figure 2.1e), but increased thereafter,
peaking in the third hour post sunset and then decreasing, with a small peak in activity prior

to dawn.
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2.3.2 Spatiotemporal and abiotic influences on bat activity

Hour post sunset, temperature, wind speed, illumination and rainfall all had a significant
effect on overall bat activity (bat passes per hour regardless of species) and the activity of
the four focal taxa; the single exception was temperature for soprano pipistrelle, which was

not significant (Table 2.2).

Hour post sunset was significantly negatively related to overall bat activity: bat passes per
hour decreased by 0.147 per hour (+ 0.002 SEM) as the night progressed. Similar negative
relationships were seen for activity in all four specific taxa, with gradients varying between -
0.051 + 0.017 (Nyctalus) and -0.176 + 0.004 (common pipistrelle). These relationships
largely reflect the temporal pattern of bat activity decreasing throughout the night (Figure
2.1), with the shallower gradients being for species with a notable pre-dawn peak in activity

(soprano pipistrelle) or species whose activity was sporadic throughout the night (Nyctalus).

The relationship between temperature and overall bat activity was weakly positive, with bat
activity increasing by 0.015 bat passes per hour (+ 0.002 SEM) for each °C increase in
temperature. A similar pattern was seen for common pipistrelle (0.022 + 0.003), with a
stronger positive relationship being found for Nyctalus (0.383 + 0.017). A weak negative
relationship was observed between temperature and Myotis (-0.029 + 0.006). There was a
significant positive relationship between bat activity and wind speed for overall bat activity
and for activity of common pipistrelle, soprano pipistrelle and Myotis: all relationships were

comparatively similar with bat passes per hour increasing by ~0.067 (+ ~0.002 SEM) for each
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additional mile per hour in wind speed. The exception was Nyctalus where bat passes

decreased by 0.111 (+ 0.011 SEM) for each additional mph in wind speed.
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Table 2.2: Generalized linear mixed models exploring the influence of temporal and abiotic factors on overall bat activity (bat passes per hour) and activity for four specific

Chapter 2: Acoustic bat surveys — abiotic factors

taxa (n = 3,242 survey hours across a total of 323 nights and 14 sites). The models used a Poisson distribution with a log link function. For the three continuous fixed factors —
hour post sunset, temperature, and wind speed — the gradient of any significant relationship with bat activity is given with the standard error below in parentheses. For the
two fixed factors — illumination and rainfall — the estimated marginal mean (EMM) is given with the standard error below in parentheses. In all models, site (n = 14) and
month (n = 7) were included as random factors. The importance of the fixed factors in explaining bat activity can be assessed using the marginal r squared value (r?,), while
the additional importance of the random factors can be assessed using the difference between r’., and the conditional r squared value (r’.). For more details of the variables,
including the categories for illumination and rainfall, please see Table 2.1.

Overall model Hour post sunset Temperature Wind speed Illumination Rainfall
EMM EMM EMM EMM EMM EMM

2 2 i i i

r*m rec F P Gradient F P Gradient F P Gradient F P None Partial Full F P None Light Heavy
Total 0.369 0.474 | 6798 <0.001 -0.147 61 <0.001 0.015 | 2822 <0.001 0.067 { 208 <0.001 4.838 4.002 2.934 | 393 <0.001 5.668 5.114 2.628
Activity (0.002) (0.002) (0.001) (0.054)  (0.044) (0.044) (0.063) (0.057) (0.029)
Common 0.286 0.347 | 2986 <0.001 -0.176 78 <0.001 0.022 i 2402 <0.001 0.071 18 <0.001 2.390 2.222 2.203 71 <0.001 2.791 2.614 1.606
Pipistrelle (0.002) (0.003) (0.002) (0.030) (0.032) (0.032) (0.040)  (0.038) (0.023)
Soprano 0.423 0.478 | 2406 <0.001 -0.133 1 0.592 N/A 589 <0.001 0.065 { 128 <0.001 0.214 0.163 0.127 { 314 <0.001 0.280 0.257 0.062
Pipistrelle (0.004) (0.003) (0.006)  (0.005) (0.004) (0.009)  (0.009) (0.002)
Myotis 0.282 0.513 962 <0.001 -0.133 20 <0.001 -0.029 322 <0.001 0.067 57 <0.001 0.131 0.096 0.120 29 <0.001 0.139 0.109 0.100
spp. (0.005) (0.006) (0.004) (0.005)  (0.003) (0.004) (0.005)  (0.004) (0.004)
Nyctalus 0.354 0.357 11 0 -0.051 518 <0.001 0.383 111 <0.001 -0.111 4 0.020 0.055 0.068 0.053 13 <0.001 0.117 0.043 0.040
spp. (0.015) (0.017) (0.011) (0.002) (0.003) (0.002) (0.005)  (0.002) (0.002)
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Bat activity, both overall and for each of the four focal taxa, was significantly lower in heavy
rain. In the case of overall activity, bat passes per hour were fairly consistent in dry conditions
and in light rain (5.668 and 5.114 bat passes per hour, respectively), but decreased
substantially in heavy rain (2.628 bat passes per hour). This notable decrease in activity in
heavy rain also occurred for both pipistrelle species. In contrast, Myotis declined linearly as
rain intensified, while Nyctalus activity dropped substantially between dry conditions and

light rain with activity levels in light and heavy rain being approximately equal.

The impact of moon illumination on bat activity was more varied between taxa. Overall bat
activity was significantly lower in instances of full illumination (2.934 bat passes per hour),
than in partial or no illumination (4.002 and 4.838, respectively). The effect of moonlight on
activity of both common and soprano pipistrelle was more gradual but remained negative.
The effect of moonlight on Nyctalus and Myotis bats was less clear: partial illumination was

associated with peak activity of Nyctalus and lowest activity of Myotis.

The random factors of site and month increased the amount of variance in total bat activity
explained by the GLMM (r?m = 0.369 versus r’c = 0.474; a difference of 0.105). This
demonstrates the importance of site-specific factors and seasonality on overall bat activity.
For specific taxa, site and month varied in how much they influenced bat activity, with the
difference between conditional and marginal r? values being negligible for Nyctalus (0.003)
and low for soprano and common pipistrelle (0.055 and 0.061, respectively), but substantially
higher for Myotis (0.231). It is important to note that the fixed factors (hour post sunset,
temperature, wind speed, illumination and rainfall) together accounted for substantially more

variation in bat activity than did the random factors of site and month in all cases.
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2.4 Discussion

2.4.1 Spatiotemporal factors

Bat populations differ across time and space suggesting that resource partitioning is
important in facilitating the co-existence of multiple species (Arlettaz, 1999). Within the
United Kingdom, such partitioning has been observed previously between Pipistrelle
species, which differ in foraging locations and feeding times (Nicholls and Racey, 2006).
Here, we found that random factors of site and month typically accounted for 12-22% of the
variation in bat activity but were particularly important for Myotis, where they accounted
for 45% of the variation explained by the GLMM model. This is likely driven by Daubenton’s
bats (Myotis daubentonii), which are associated with water as they glean insect prey from
the surface of lakes and ponds (Jones and Rayner, 1988; Russ, 2012) and were thus present
in large numbers at some sites and absent from others. Seasonality (accounted for here by
adding month as a random factor) is also likely to impact observed levels of activity.
Temperate bats in the United Kingdom are most active during the summer months, foraging
regularly to prepare for, or to recover from, the high energy demands of raising young
(Racey and Speakman, 1987; Ciechanowski et al., 2007). All bats remain active for the
remainder of the summer and into early autumn to ensure they have sufficient energy
reserves for winter hibernation (Speakman and Racey, 1989). The time at which bats enter
and emerge from hibernation is primarily dependent on temperature. They enter torpor
when energy demands are higher than can be met by decreasing insect densities (Speakman
and Racey, 1989). Depending on ambient temperature, bats typically become active in April

and seek out hibernation sites in late September as temperatures drop.
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Bat activity was not uniform throughout the night, as shown by the clear patterns in the
temporal distribution of activity across the night and reinforced by hour post sunset being
significant in each GLMM. Bats emerge at different times (Russ, 2012) and also commute
different distances, at different speeds, between roosts and foraging areas. Some bats
return to their roost part way through the night and then re-emerge for a pre-dawn feed
and this likely explains the increase in bat activity shown towards sunrise shown here for
soprano pipistrelle and Myotis. This has been seen to vary between nights and seasons
(Anthony et al., 1981) and may be influenced by peaks in insect densities at dusk and, to a
lesser extent, at dawn (Rydell et al., 1996). Ultimately different temporal patterns in activity
levels between species, as demonstrated here, plays an important role in niche partitioning
in multi-species assemblages of insectivorous bats (Milne et al., 2005; Ciechanowski, et al.,

2007).

2.4.2 Weather

Temperature was weakly positively correlated with bat activity both overall and for
common pipistrelle (i.e. more passes in warmer conditions). This was expected given that
bat activity tends to peak in the summer months, when temperatures are usually highest.
The weak negative relationship between temperature and bat activity for Myotis and
Nyctalus was more surprising. However, as surveys were undertaken between April and
early October, when it is typically warm enough for bats and their insect prey to be active,
one explanation is that temperature is important as a threshold, rather being linearly
related to activity levels (Rydell, 1989b). The notable pre-dawn peak for Myotis, when
nightly temperatures are usually at their coldest, might also be a partial driver for this

finding (and may also provide an explanation as to why there was no significant relationship
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between temperature and activity of soprano pipistrelle; the other species with a pre-dawn
peak in activity). Rainfall was negatively correlated with bat activity in all cases (i.e. more
passes in dry conditions). This is consistent with previous findings that rain imposes an
additional energetic cost and decreased prey abundance (Erickson and West, 2002; Downs
and Racey, 2007). Wind speed was positively correlated with bat activity in all cases with the
exception of Nyctalus. This finding is surprising given the potential for additional energetic
costs posed by flight in strong winds (Norberg, 1990). However, insectivorous bats, and
specifically pipistrelles, are known to utilise linear features such as treelines and hedgerows
to provide shelter when foraging in windy conditions (Verboom and Spoelstra, 1999; Russ et
al., 2003). This spatial shift in foraging activity might account for the increase in detected
echolocation calls as the detectors used in this study were predominantly placed along
linear features as is common in automated surveys (Collins, 2016). In this way, automated
survey results might be affected by the three-way relationship between the presence of

linear features, detector placement, and wind conditions.

2.4.3 Moon illumination

Previous studies on the effects of moonlight on bats have shown mixed effects. For
example, Lang et al. (2006) found that activity of some insectivorous bats such as the white-
throated round-eared bat (Lophostoma silvicolum) in Panama to be lower on moonlit nights,
while Appel et al. (2017) found bat activity was positively correlated with moonlight for
Parnell's mustached bat (Pteronotus parnellii) and lesser sac-winged bat (Saccopteryx
leptura) in Brazil. Here, we found that moon illumination was negatively related to bat
activity. This agrees with work by Adams et al. (1994) on the Virginia big-eared bat

(Corynorhinus townsendii virginianus) in the US but contrasts with previous work on non-
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British Myotis species, which did not find a link between activity and moonlight (Negraeff
and Brigham, 1995; Hecker and Brigham, 1999) - although it is notable that neither of these
studies included the modifying effect of cloud cover on illumination.

Although it has been suggested previously that bats at higher latitudes are exempt from the
predation pressures that impact tropical species (Karlsson et al., 2002), predation risk on
bright nights could still be an important modifier of activity in temperate species (Lima and
O’Keefe, 2013). It has also been suggested that temperate insectivorous bats may seek
more enclosed (shaded) habitats when foraging in bright moonlight (Reith, 1982; Erickson
and West, 2002), such that an apparent decrease in activity in open areas nights might
actually be a repositioning of foraging activity spatially. We therefore suggest that the bats
in our study might be avoiding bright moonlight conditions because of an increased risk of
predation, either real or perceived. Moreover, it is notable that Myotis and Rhinolophus
bats in Europe have previously been found to have an aversion to artificial illumination

(Rydell, 1992; Stone et al., 2009), which again was provisionally attributed to predation risk.

2.4.4 Implications and recommendations

Bats comprise an important, and legally-protected, part of mammal fauna in the UK.
Surveying and monitoring is important in the contexts of scientific research, conservation,
assessment of ecosystem health, monitoring progress towards sustainable development
goals, and in compliance with legislation on development planning and infrastructure
construction (Jones et al., 2009; Barlow et al., 2015; Collins, 2016). It is thus vital that the
factors which underpin bat activity, and thus detectability in acoustic surveys, are clearly

understood. Bat surveys are notoriously difficult to standardise in terms of timing and the
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abiotic conditions under which they are conducted and only with robust understanding of

optimal foraging conditions is it possible for this to be achieved.

We recommend that automated fixed-point surveys are undertaken throughout the night
where possible (where this is not possible, they should be conducted for 4 hours post-
sunset and 2 hours pre-sunrise to ensure peak activity times for all species are covered). As
long as bats are active, temperature is largely immaterial but nights with heavy rainfall
should certainly be avoided. Wind speed should also be taken into account, as linear
features might be preferred habitat when shelter is sought from the wind, potentially
increasing estimates of activity if detectors are placed close to such features. Surveying
during high summer gives the simultaneous advantages of higher activity and greater
concentration of activity as nights are shortest. We recommend that given increasing
urbanization, the effect of light on bats should be further investigated, and that such
research take cognisance of cloud cover as well as lunar phase (Stone et al., 2009; Russo et
al., 2017). Given that the findings of this research indicate that overall bat activity decreases
when the moon is unobscured by cloud, there remains potential for light from artificial
sources to also impact bat activity. Passive monitoring of light levels in the field during

surveys might be particularly helpful in such research.

2.5 Chapter summary

1. Within-night bat activity was not uniform, with peaks in overall activity found in the
3-4 hours post sunset, and again shortly before dawn for particular taxonomic groups

(soprano pipistrelle, Myotis spp.).
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Further spatiotemporal factors of site and month were found to driving 45% of the
observed variation in activity for Myotis spp.

Rainfall was negatively correlated with bat activity in all cases.

Moonlight was also negatively correlated with bat activity, suggesting “lunar
phobia” or a spatial shift in activity on moonlit nights.

Results from this chapter inform the methods used for primary data collection in
Chapters Four and Five by ensuring data collection occurred throughout the night in
suitable weather conditions and sites being surveyed in rotation to mitigate the

influence of seasonal patterns.
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2.6 Supplementary material

Table S2.1: Number of survey nights at each site (1-14) within each month (April-October). The mean number of bat passes per hour are given for total bat activity and for
four specific taxa, both per month, per site and overall.

Mean bat passes per hour

Site Month Nights Surveyed Total Activity Common Pipistrelle Soprano Pipistrelle Myotis spp. Nyctalus spp.

1 April 3 17.63 9.99 4.29 2.38 0.28
May 9 17.58 9.96 4.27 2.73 0.28
June - - - - - -
July - - - - - -
August - -
September 23 15.67 8.63 3.86 2.29 0.22

October 15 15.49 8.49 3.83 2.28 0.22

2 April - - - - - -
May 17 17.15 9.65 4.21 2.32 0.28

June - - - - - -

July - - - - - -

August - - - - - -
September 16 15.59 8.59 3.83 2.28 0.22

October - - - - - -

3 April - - - - - -
May 7 18.81 9.55 3.95 2.33 0.28

June - - - - - -

July - - - - - -

August - - - - - -

September - - - - - -

October - - - - - -

4 April - - - - - -
May - - - - - -
June 3 18.44 10.48 433 2.56 0.31
July - - - - - -
August - - - - - -
September - - - - - -
October - - - - - -
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4.29

3.92
3.79

0.58
0.28
0.19
1.68

0.16
0.14

2.56

2.34
2.26

0.34
0.22
0.42
0.11

1.48
0.74

0.27

0.25
0.24

0.08
0.20
0.21
0.06

0.23
0.10
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CHAPTER THREE: Comparing acoustic data from transect
and automated bat surveys

Hand-held detector on a transect survey versus passive detector on an automated survey

Chapter Two investigated the effect of spatiotemporal and abiotic factors on the bat activity
(recorded in automated fixed-point bat surveys via passive acoustic monitoring). However,
acoustic bat surveys can also be conducted via activity surveys using walked or driven
transects. Transect surveys are typically performed for two hours commencing around
sunset, where automated, fixed-point, surveys record continually between sunset and
sunrise, often over multiple consecutive nights. Here, a subset of the fixed-point data used in
Chapter Two are supplemented by transect data collected at the same sites totalling 2,349
survey hours over a 3-year period (some of the earlier data used in the previous chapter did
not correspond with a transect survey). These data are used to investigate the relative
effectiveness of walked activity transects and automated fixed-point methods for 12 species
of European bats.

Publications arising from this chapter:

Perks, S. J. and Goodenough, A. E. (2021) ‘Comparing acoustic survey data for European
bats: do walked transects or automated fixed-point surveys provide more robust data?’.
Wildlife Research, 49(4), pp.314-323.

The material has been reformatted for inclusion in this thesis to provide consistency across
the chapters and align with the University of Gloucestershire’s thesis requirements, with
summaries at the start and end of each chapter to set the chapters within the thesis
context, but have not otherwise been amended. The data used for this chapter are
explained in relation to the PhD process in Section 1.4.2.
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3.1 Introduction

There are approximately 1400 species of bats globally (Bat Conservation International,
2021), many of which are declining due to natural and/or anthropogenic processes (Hutson
et al., 2001; O’Shea et al., 2016). Direct causes of mortality include disease and extreme
weather events, which often differ spatially: for example, White Nose Syndrome is a major
cause of mortality in North America while extreme heat is a major cause of mortality in
Australia (O’Shea et al., 2016). Indirect threats are often more varied and affect bats
through loss of, or disturbance to, roosts or feeding grounds (Walsh and Harris, 1996b;
Hutson et al., 2001). For example, bats are extremely sensitive to habitat change and
fragmentation, agricultural intensification, and deforestation or sub-optimal forest
management (Walsh and Harris, 1996a; 1996b; Willig et al., 2007; Lintott et al., 2016;
O’Shea et al., 2016; Alder et al., 2020). Climate change is likely to become an increasing
threat worldwide (Jones et al., 2009), while pesticides and pollutants can also pose

substantial threats to regional or national populations (O’Shea and Johnston, 2009).

Bat data are important in establishing species’ distribution, quantifying population metrics,
and understanding ecological relationships, as well as assessing temporal trends in relation
to environmental change and conservation initiatives (Hutson et al., 2001; Walsh et al.,
2004; Barlow et al., 2015). Because of the ecological importance of bats and the ecosystem
services they provide, as well as their vulnerability to anthropogenic processes, bats can be
a useful bioindicator of habitat quality and climate change (Jones et al., 2009; Russo and
Jones, 2015). Population change is thus often used as an indicator of ecosystem health (e.g.
in the USA: Treanor et al., 2019; throughout Europe under EUROBATS scheme) and to

monitor progress towards sustainable development (e.g. UK: JNCC, 2019b).
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In addition to monitoring bats spatially and temporally through national-level initiatives,
such as the North American Bat Monitoring Programme and EUROBATS, site-level bat
surveying is often undertaken in research contexts and, in parts of the world where bats are
legally protected, site-level survey data are often required to allow planning authorities to
make informed decisions on infrastructure development (Drayson et al., 2015; Goodenough
and Hart, 2017). For example, in Europe, a considerable amount of bat survey effort is
driven by the need for compliance with the EC Habitats Directive (92/43/EEC) and European
Protected Species licensing framework, as well as national legislation through which these
are implemented (Goodenough et al., 2015). Site-based bat surveys are thus often
undertaken within mandatory Ecological Impact Assessments (EclAs) to quantify bat
presence and abundance, assess potential development impacts, and devise suitable
mitigation and compensation measures (Treweek, 2009; CIEEM, 2018), as well as to support
license applications to permit work around bat roosts that would otherwise be illegal

(Mitchell-Jones, 2004).

Bat surveys can involve counting bats visually (roost counts: Barlow et al., 2015; Warren and
Witter, 2002) or trapping bats in flight (harp traps or mist netting: Law et al., 1998; O’Farrell
and Gannon, 1999). However, non-invasive acoustic surveys are commonly undertaken
whereby ultrasonic devices are used to detect echolocation calls. Acoustic surveys typically
involve either: (1) automated fixed-point ultrasonic detectors to record bats continually
between sunset and sunrise or (2) transect surveys using ultrasonic detectors in real-time
(Collins, 2016). Automated fixed-point surveys are used worldwide, including throughout
Europe, North America and Oceania, but also increasingly in Asia and Africa (Sedlock et al.,

2014; Weier et al., 2020). In contrast, transect acoustic survey methodologies vary between
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countries. Where activity is typically monitored across large geographic scales, such as in the
USA and Canada, ultrasonic detectors may be fitted to vehicles to enable transects to be
driven (Braun de Torrez et al., 2017a; D’Acunto et al., 2018). However, throughout Europe,
walked transects with handheld detectors are more commonly used (Russo and Jones,
2003; Ciechanowski et al., 2007; Stahlschmidt and Bruhl, 2012; Henkens et al., 2014;
Goodenough et al., 2015; Collins, 2016). Outside of Europe, walked transects are used in
Oceania (O’Donnell, 2000; O’Donnell and Sedgeley, 2001; Scanlon and Petit, 2009; Lavery et
al., 2020), Africa (Bambini et al., 2006; Taylor et al., 2013; Musila et al., 2019), and Asia
(Pottie et al., 2005; Lee et al., 2017; Mullin et al., 2020). In addition to use in formal surveys
for research, legislative complacence, and long-term monitoring, walked transects are
increasingly being used in citizen science or volunteer-led bat surveys, for example in the
Bat Walks Programme by Bat Conservation International and the National Bat Monitoring
Programme in the UK. Better insight into how such survey data compare to data derived

from more formal automated fixed-point surveys would thus be beneficial.

For any form of monitoring to be effective, underpinning data must be collected in a
consistent and rigorous manner appropriate to the aim of the survey (Collins, 2016). Survey
methods need to be logistically-feasible, robust, and comparable (Balmford et al., 2003;
Collins, 2016) and account for the influence of spatiotemporal and abiotic factors (Perks and
Goodenough, 2020; Chapter Two). This is particularly important in applied settings when
legally-protected species are affected by resulting actions, either through conservation
interventions (Barlow et al., 2015) or development decisions (Mitchell-Jones, 2004). In fixed-
point detection, spatial coverage is limited to a (very) few points per site, but temporal

coverage is extensive with detectors usually recording sunset to sunrise for 5-21 consecutive
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nights. This allows the entire nocturnal period to be sampled over multiple nights as per the
recommendations of Law et al. (1998) and Hayes (1997). In the case of transects (walked or
driven), coverage is restricted temporally — often to a two-hour period commencing at or

near sunset (O’Donnell, 2000; Goodenough et al., 2015; Braun de Torrez et al., 2017a) — but

a much wider spatial area is covered.

Although the need to monitor bat populations is recognised (Barlow et al., 2015), and there
are commonly-used acoustic techniques to achieve this, there have been few attempts to
either compare the efficacy of different acoustic surveys or determine whether data from
different survey types are directly comparable. This is important because although both
transect and fixed-point methods are commonly used and industry-standard techniques, it
is common for just one method to be used to survey bats at a specific site. Published
evidence that has focused on comparing automated fixed detection with transects surveys
is limited to Tonos et al. (2014) in Indiana, USA, and Braun de Torrez et al. (2017a) in Florida,
USA. Work to date, therefore, has compared automated detection and driven transects on
American Chiropteran guilds. In this study, we empirically compare automated fixed-point

acoustic surveys with walked transect acoustic surveys for a European Chiropteran guild.

We examine overall bat activity as well as species-specific activity for 12 European bat
species and two wider genera (Myotis sp. and Nyctalus sp.) at the same sites to determine:
(1) differences between the survey methods over exactly the same time period (i.e. walked
transect acoustic surveys starting two hours post sunset with automated fixed-point
acoustic surveys over the same two hour window) and (2) differences between the survey

methods over a longer timeframe (i.e. one two-hour walked transect acoustic survey that
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commenced at sunset compared with whole-night automated fixed-point acoustic surveys
for multiple nights within a 21 night window). Undertaking both comparisons enables full
exploration of the ability to passively monitor bats whole and consecutive nights, as
opposed to the traditional survey window of two hours post sunset. We also use the
automated data to quantify hourly bat activity patterns, to explore how peak levels of
activity varies throughout the night and how this related to the two-hour walked survey
transect period. Our conclusions and recommendations are necessarily related primarily to
European bat species, but we also make tentative broader comments relating to walked bat

transects in other geographical regions, and for other species, with appropriate caveats.

3.2 Methods

3.2.1 Data collection

We used a paired survey design whereby data were collected from 14 sites across the south
of England, encompassing a range of habitat types. Most of the sites (n = 9) comprised
agricultural land with dividing hedgerows, but other sites included high quality rural habitat
or lakeside (n = 3) and green spaces within more urbanised areas (n = 2). At each site, the
bat community was surveyed in two ways: (1) walked transect acoustic surveys, and (2)

automated fixed-point acoustic surveys.

Walked transect acoustic surveys were conducted in accordance with the Bat Conservation
Trust Guidelines (Collins, 2016) using Anabat SD1 detectors (Titley Scientific, Ballina,
Australia). These two-hour surveys commenced at sunset and were carried out by two
surveyors; either walking in opposite directions around a single perimeter transect (n =7
sites), or walking separate transects on larger sites (n = 7 sites). Automated fixed-point

acoustic surveys were conducted using Anabat Express Units (Titley Scientific, Ballina,
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Australia). Deployment and positioning of these units was carried out in a consistent
manner at all sites with units mounted about 1.75m above the ground adjacent to a suitable
hedgerow or treeline to ensure detection of commuting and foraging activity along linear
features. The SD1 detectors enabled audio allowing fieldworkers to identify the bats present
in situ, whereas the Express units were weatherproof and had long battery life and
facilitated extended periods of automated recording of sound files to a memory card where
sound output was unnecessary. In both cases, the default or recommended settings were
used (data division ratio = 8 on both SD1 and Express; sensitivity = 6 on SD1 and 8 on

Express): both units had identical frequency ranges.

In total, 24 walked transect acoustic surveys were carried out across the 14 sites. These
surveys were matched with data from automated fixed-point acoustic surveys from multiple
(minimum of 3) nights within a 21-night window. The 21-night window was set to ensure
that seasonality did not confound method comparison analyses. This gave 24 cases where
walked transect data (for two hours post sunset on a single night) were matched to
automated fixed-point data (encompassing the entire period between sunset and sunrise
over several nights) at the same site at the same time of year. This is henceforth referred to
as the multi-night dataset. A subset of 14 transects coincided exactly with automated fixed-
point surveys so that there were data from the same two-hour window, on the same night,
at the same site, from the two different methods. This gave 14 cases of directly-matched

data, which are henceforth referred to as the concurrent dataset.

Post fieldwork, all data, which were in zero crossing format, were downloaded from internal

SD cards in the bat detectors for sonogram analysis. Sonogram analysis was performed

70



Chapter 3: Comparing automated and transect bat surveys

using AnalookW software version 4.1z (Titley Scientific, Ballina, Australia) developed
specifically for Anabat detectors. Initially recordings were processed on a night-by-night
basis and then data were subdivided into hourly units relative to sunset. Species
identification was carried out by assessment of the frequency range and peak frequency,
together with shape of each sonogram in terms of pitch and amplitude over time using
information in Russ (2012). As is typical for acoustic surveys (Russ 2012), Myotis bats were
challenging to identify to species level. Where possible, Daubenton’s (Myotis daubentonii)
and Natterer’s (Myotis nattereri) bats were identified as separate species. Brandt’s bat
(Myotis brandtii) and whiskered bat (Myotis mystacinus) were generally distinguishable
from other Myotis bats but not from one another and were grouped accordingly.
Indistinguishable Myotis bats were grouped at genus level. In most cases, noctule (Nyctalus
noctula) bats could be distinguished to species level but some calls could not be

differentiated from Leisler’s (Nyctalus leisleri) and were thus grouped at genus level.

3.2.2 Statistical analysis

To compare overall species richness recorded in exactly the same two-hour window at the
same site via the two different survey methods (i.e. the concurrent data), paired sample t-
tests were used for the comparison of mean values between matched samples. This
approach was also used to compare total activity of bats (regardless of species) and species-
specific or genus-specific activity when there was sufficient data and for species that were
recorded in both survey types. To undertake these analyses, walked transect survey data
and automated fixed-point survey data were converted to mean bat passes per hour and
then log transformed (/n+1). Parametric assumptions were met for these transformed data

(i.e. the difference between the mean bat passes per hour for the two survey types — the
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difference scores — were normally distributed in all cases). To compare species richness,
total activity, and species-specific activity of bats recorded via the walked transect surveys
compared to multi-night data from automated fixed-point surveys, the same paired-sample
approach was used. This was adopted on the basis that although the data were not exactly
matched in time, they were still exactly matched in space and very similar in time. Again,
data were converted to mean bat passes per hour and then log transformed (/n+1) to meet

parametric assumptions.

To explore nightly activity patterns, trends in bat activity across the night were examined for
each species using the automated fixed-point data from the multi-night dataset. Data were
grouped on an hourly basis and graphed. Significant deviations from a uniform distribution
throughout the night were tested using Kolmogorov-Smirnov two-sample tests. This allowed
better understanding of possible differences between walked transect data (which were
temporally restricted) and automated fixed-point data (which spanned the entire night). All

statistical analysis was carried out in IBM SPSS version 24.

3.3 Results
Data were collected on 223 nights of automated fixed-point acoustic recording and 24
walked transect acoustic surveys giving a combined sample size of 2,349 hrs of bat recording

data summarising 47,915 individual bat passes.

3.3.1 Species richness
Over the entire study, more species were detected using automated fixed-point surveys (n =

11 species plus Myotis sp. and Nyctalus sp.) than using walked activity surveys (n = 8 species
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plus Myotis sp. and Nyctalus sp.). However, mean species richness per hour was significantly
higher in the walked transect acoustic surveys compared to the automated fixed-point
acoustic surveys when considering both the concurrent data (2.89 + 0.29 SEM versus 1.96
0.31 species per hour, respectively: paired samples t-test t= 3.501, n= 14 pairs, P = 0.004)
and the multi-night data (2.92 + 0.22 SEM versus 1.32 + 0.12 SEM species per hour,

respectively: paired samples t-test t= 9.338, n= 24 pairs, P <0.001).

3.3.2 Species prevalence

In the concurrent dataset, lesser horseshoe bats (Rhinolophus hipposideros) were only
detected in automated fixed-point acoustic surveys. Common pipistrelle (Pipistrellus
pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), noctule (Nyctalus noctula), serotine
(Eptesicus serotinus), brown long-eared (Plecotus auritus) and Natterer’s bats, in addition to
bats identified at Myotis and Nyctalus genus level only, occurred on both survey types but
were more prevalent in the walked transect acoustic surveys (Figure 3.1a). Conversely,
Brandt’s/whiskered (Myotis spp.) and barbastelle (Barbastella barbastellus) occurred on
both survey types but were more prevalent in the fixed-point acoustic surveys (Figure 3.1a).
Greater horseshoe (Rhinolophus ferrumequinum) and Daubenton’s bats (Myotis

daubentonii) were absent in both survey types.

In the multi-night dataset, common pipistrelle, soprano pipistrelle, noctule, serotine, brown
long-eared, Brandt’s/whiskered, barbastelle and Natterer’s bats, in addition to bats
identified as Myotis and Nyctalus genus level occurred in both survey types, but were more
prevalent in walked transect acoustic surveys (Figure 3.1b). Two species that were not
detected in the concurrent data (greater horseshoe, Daubenton’s) were detected in the

multi-night dataset in the automated fixed-point surveys only. Lesser horseshoe, which was
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detected at very low levels in the automated fixed-point surveys in the concurrent dataset,
increased in prevalence marginally (<1%) in the multi-night dataset. The three species that
only occurred in the automated fixed-point surveys (greater and lesser horseshoe and

Daubenton’s) were present in <10% of the total recording hours.

a) 100

©
o
1

M Fixed-point

O Transect

Recording hours present (%)

Recording hours present (%)

Figure 3.1: Prevalence of each species/genus in acoustic automated fixed-point and acoustic walked
transect surveys (a) within the same two-hour window post-sunset whereby data are directly paired;
and (b) using fixed-point data from multiple (minimum of 3) nights
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3.3.3 Species activity

Within the concurrent data, there was no significant difference in overall bat activity
between automated fixed-point surveys and walked transect surveys (19.86 + 5.65 SEM and
24.18 + 7.91 SEM, respectively; paired samples t-test: t= 0.870, n= 14 pairs, P= 0.400).
However, there was a significant difference between these survey types over multiple
nights, with walked transect surveys recording higher overall mean activity (17.53 + 5.93
SEM, 24.09 + 5.66 SEM; paired samples t-test: t= 2.610, n = 24 pairs, P= 0.016).

Moreover, there were significant species-specific differences between survey methods.
Within the concurrent data, the mean number of brown long-eared bat passes per hour was
significantly higher in the walked transect surveys (paired samples t-test: t = 2.235, n = 14
pairs, P = 0.044; Figure 3.2a). In the multi-night dataset, the mean number of brown long-
eared bat passes per hour was also significantly higher during the walked transect surveys
than fixed-point surveys (paired samples t-test t = 2.275, n = 24 pairs, P = 0.033: Figure
3.2b). For common pipistrelle, there was no significant difference between survey methods
within the concurrent data, however, within the multi-night data, the mean number of
passes per hour was significantly higher during the walked transect surveys, than was
recorded in the fixed-point surveys (paired samples t-test: t = 2.777, n = 24 pairs, P = 0.011).
For soprano pipistrelle, walked transect surveys recorded a significantly higher number of
passes per hour in both the concurrent and multi-night data (t = 2.228, n = 14 pairs, P =

0.044; t = 2.159, n = 24 pairs, P = 0.042, respectively).
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Figure 3.2: Mean number of bat passes per hour from acoustic automated fixed-point and acoustic walked transect surveys (a) within the
same two-hour window post-sunset whereby data are concurrent (significance values from paired samples t-tests undertaken on log-
transformed data); and (b) using fixed-point data from multiple (minimum of 3) nights within a 21-night window using the multi- night
dataset (significance values from paired samples t-tests undertaken on log-transformed data). Error bars show SEM (+1se).
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3.3.4 Temporal distribution

Analysis of the temporal distributions of each species/genus in relation to hour post sunset
is shown in Figure 3.3. Two sample Kolmogorov-Smirnov tests demonstrated that the
activity of all species/genera differed significantly from a uniform distribution (P < 0.046 in
all cases). Most species were detected throughout the night, including within the walked
transect survey window (the first two hours post sunset). The exception was the greater
horseshoe bats, which were detected in low numbers from 4 hours post sunset onwards.
Moreover, although Daubenton’s and lesser horseshoe bats were detected in the initial two
hours post-sunset they were recorded as frequently (lesser horseshoe) or more frequently
(Daubenton’s) later in the night. Both pipistrelle species showed a tendency towards being
more active in the earlier period of the night, however, the distribution for soprano
pipistrelle showed a slight increase in the hours before dawn, making the distribution

slightly bimodal.
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Figure 3.3: Temporal distribution of each bat species/genus based on mean passes per hour post
sunset using automated fixed-point survey data. Number of sites at which species were encountered
shown in brackets, the normal transect survey window (two hours post sunset) is shown by the
dashed lines. Error bars show SEM (+1se).
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3.4 Discussion

This study found that, for a European bat guild, although more species were recorded via
automated fixed-point acoustic surveys than walked transect acoustic surveys in the entire
dataset, species richness per hour was substantially and significantly higher in transect
surveys. This finding was significant in both the paired dataset (2 hr post sunset) and the
multi-night dataset (which fully exploited the recording abilities of the automated method)
where per-hour species richness found using walked transects was almost double that

found using automated fixed-point acoustic surveys.

Three species - greater horseshoe, lesser horseshoe and Daubenton’s - were not detected
on the walked transect surveys, which reduced the species community detected using this
method relative to the automated fixed-point surveys. This means that while the walked
transects often detect more bat passes, both overall and for some specific species, fixed-
point surveys provide a more comprehensive overview of the bat community. Interestingly,
the three species not detected on the walked surveys occurred as often (lesser horseshoe),
more often (Daubenton’s) or exclusively (greater horseshoe) after the two hours post-
sunset window when walked transects took place. Greater horseshoes typically emerge late
relative to sunset (Collins, 2016) and can travel up to 8 km to reach favourable foraging
habitat (Billington, 2003a; 2003b; Billington, 2004), both of which might mean detection is
unlikely during the standard two-hour survey window post sunset as the likelihood of
detecting the species on transects will depend largely on roost proximity. This highlights the
importance of secondary data in identification of known roost locations, particularly to
target on-ground surveys for legislative compliance in development contexts. Bat mitigation

guidelines recommend extending the duration of walked transect acoustic surveys to 3
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hours, on sites within commutable distance (4 km) to greater horseshoe roosts (Mitchell-
Jones, 2004). This aims to account for bat commuting time and minimizes the potential risk
of the species being wrongly assumed as absent. However, in this study, greater horseshoes
were only detected >4 hrs post sunset, which suggests that this species could still be missed
especially if the site constitutes a rich feeding ground that could attract bats from up to 8
km away. Lesser horseshoe bats were detected throughout the night, including within the
two-hour transect survey window, but only in the automated fixed-point acoustic surveys.
They were always recorded in low densities, probably because they tend to forage within
closer proximity to their roosts (Bontadina et al., 2002) and can move easily between roost
and foraging grounds throughout the hours of darkness. Given this nocturnal pattern and
the comparative rarity of lesser horseshoes, automated fixed-point surveys covering the
entire night would be more likely to detect this species. Daubenton’s bats were also
recorded throughout the night, although they were much more abundant after the end of
the transect survey window. Daubenton’s roost predominantly in close proximity to the
waterways on which they forage (Dietz et al., 2006) and are a later emerging species
(Collins, 2016), which likely explains their absence from the walked transect acoustic
surveys. The decline of activity in both common and soprano pipistrelle throughout the
night is also likely responsible for the higher activity of these species in walked transect data

compared to fixed-point acoustic data.

The absence of key species from walked transect data emphasises the key advantage of
recording for the entire nocturnal period, and over several nights, when surveying bat
communities at specific sites: it increases the likelihood of encountering locally rare species

or species that emerge (or arrive at foraging grounds) after the widely-used transect survey
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window two hours post sunset. This is much easier to achieve using fixed-point (passive)
surveying, where a fieldworker need not be present, rather than transects. It is not
surprising to find different temporal patterns in different bats as multi-species assemblages
of insectivorous bats frequently use niche partitioning by selecting different prey, different
habitats, or different activity times (Rydell et al., 1996; Milne et al., 2005; Ciechanowski et
al., 2007). A similar result was found for US bats whereby three rare species were detected
on whole-night automated surveys in Florida, but not on two-hour driven transects that
commenced 30 minutes after sunset (Braun de Torrez et al., 2017a). Tonos et al. (2014) also
found a higher overall species richness on fixed-point surveys relative to driven transects in
Indiana. This suggests that although our study has focused on European species and walked
transects, this finding is potentially relevant in other bat guilds and for other types of

transect including driven and even boat transects (Weier et al., 2020).

Walked transect data and automated fixed-point data were also notably different for the
brown long-eared bat. This species was not particularly abundant in either of the acoustic
survey methods, despite being fairly common in the UK (Russ, 2012), but was detected
significantly more often in the walked transect data. This finding was consistent regardless
of whether paired data or multi-night data were analysed. Brown long-eared bats are
principally gleaners rather than aerial hawkers and thus usually take moth and beetle prey
directly from plants (Swift and Racey, 1983; Russ, 2012). Foraging is often undertaken
visually or using sound directly (Anderson and Racey, 1991; Ekl6f and Jones, 2003) as
echolocation is not always useful in close proximity to vegetation when hunting (Simmons et
al., 1979). Any echolocation sounds they do produce, therefore, are short and quiet (Russ,

2012) and have historically been almost impossible to pick up using an ultrasonic detector
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(Anderson and Racey, 1991). Although technological advances have now made it possible to
detect echolocation from a distance of around 5m (Russ, 2012), brown long-eared bats
would still have to echolocate very close to the detector to be recorded, which is potentially
less likely to occur if the detector is fixed. Moreover, an advantage of walked transect
surveys is that light levels at the start of the survey often permit brown long-eared bats to
be identified visually (Russ, 2012); the surveyor can also manually orient the detector to
obtain a clear recording for sonogram analysis, which can significantly improve detection
rates as shown by Milne et al. (2004) for Australian bats. Failure to undertake walked

surveys might lead to this species being under-represented in data (Russo and Voigt, 2016).

3.4.1 Conclusions and recommendations

Compared to walked transect surveys, automated fixed-point surveys are sometimes
considered to be a more effective acoustic survey method (Stahlschmidt and Bruhl, 2012),
primarily because walked transect surveys are difficult to standardise and can miss activity
patterns even in homogenous landscapes. However, our study indicates that the survey
types have different strengths and different weaknesses, certainly for European bats and
potentially for other bat guilds too. This highlights the value of using a combination of the
two methods to collect bat activity data, either for specific sites (e.g. for research, legislative
complacence, or conservation) and for national monitoring programmes. While this study
has focused on comparing data from paired surveys, examining whether multi-year walked
transect and automated fixed-point surveys show the same temporal trends in bat activity

would be a useful avenue for future research.
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Walked surveys that occur in the standard window of two hours post sunset are likely to

under-record rare species, especially those that emerge from roosts late and/or travel a

considerable distance to foraging grounds. In Europe, if relying on walked activity surveys,

especially in legislative compliance contexts, the survey window for at least one site visit

should be extended to 4 hours post sunset by conducting two back-to-back transects to

maximise the chances of encountering greater and lesser horseshoe bats, especially if the

site is within 8 km of a known horseshoe roost.

In terms of specific recommendations for European bat surveys, we suggest:

Walked transect acoustic surveys should be used if the aim is to obtain initial
baseline data on bats at a specific site, since these are effective in recording high
levels of activity, and species richness, in a very time-effective way. Gauging differing
activity levels across the whole site also aids in determining its ecological value to
bat populations spatially, particularly in heterogenous landscapes.

Automated fixed-point acoustic surveys should be used if the aim is to catalogue the
complete bat species assemblage at a site. As this approach provides data over a
longer time period, both throughout the night and over several consecutive nights,
issues of temporal niche partitioning and different nocturnal activity patterns
between species are negated. This method also allows for differences in activity due
to different environmental conditions on different nights.

Fixed-point surveys are likely to under-record brown long-eared bats, probably
because of infrequent and quiet echolocation as a result of their highly-specific
foraging strategy. In Europe, walked activity surveys should be conducted where this

species is the target (research contexts) or where habitat is favourable and
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determining presence conclusively is important for legislation compliance or
informing conservation decisions. Pending specific research in other geographical
areas, it is suggested that where species are known to undertake infrequent or quiet
echolocation, or for species known to glean as their main foraging strategy rather
than being primarily aerial insectivores (e.g. Gould’s long-eared (Nyctophilus gouldi)
and Lesser long-eared (Nyctophilus geoffroyi) bats in Australia (Grant 1991); African
yellow-winged bat (Lavia frons) in sub-Saharan Africa (Vaughan and Vaughan 1986)),
transect surveys are undertaken to complement any fixed-point surveying.

e Walked activity and automated fixed-point acoustic surveys are combined where
possible for site assessments, and certainly for national monitoring programmes to
ensure that data, and any decisions made on those data including in bioindicator

metrics or sustainable development indicators, to be comprehensive, valid and robust.

3.5 Chapter summary

1. The fixed-point surveys recorded the highest species richness overall, however, the
walked transects recorded a higher mean species richness per hour.

2. Three species: greater horseshoe, lesser horseshoe and Daubenton’s bat, were only
recorded in the fixed-point surveys, possibly because the survey window
encompassed the entire night rather than the period immediately after sunset.

3. The number of brown long-eared bat detections was significantly higher in the
walked transect surveys, suggesting that this method of surveying is optimal for such
species which glean prey, thus emitting infrequent or quiet echolocation calls.

4. The strengths of automated surveys, as highlighted in this chapter, and the

subsequent expansion in their use, informed the decision to evaluate automated
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fixed-point detectors in a Passive Acoustic Monitoring (PAM) framework in Chapters

Four and Five.
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CHAPTER FOUR: Evaluating Passive Acoustic Monitoring
(PAM) protocols for bats in lowland habitats in the UK

Field sites used for PAM data collection: riparian, woodland, arable, wood pasture (clockwise)

As discussed in Chapters Two and Three, acoustic bat surveys are vital methods of collecting
data to inform bat research, conservation, and mitigation. Chapter Three (published as
Perks and Goodenough, 2021) investigated the relative effectiveness of using fixed-point
detectors in a passive acoustic monitoring (PAM) framework and found these to be superior
overall and for all species except brown long-eared relative to using handheld detectors on
walked activity transect surveys at dusk, although the results of Chapter Two demonstrated
the need to allow for abiotic factors and seasonality when collecting data in this way. This
chapter builds on this work by exploring differences in PAM devices and settings on the bat

data collected.

Publications arising from this chapter:
Perks, S. J., Goodenough, A. E. and O’Connell, M. Evaluating Passive Acoustic Monitoring

(PAM) protocols for bats in lowland habitats in the United Kingdom. British Ecological
Society Annual Meeting, Belfast, 12™-15™ December 2023 [POSTER]
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4.1 Introduction

Passive Acoustic Monitoring (PAM) is becoming increasingly widely used in site-level species
and community surveys, as well as in longer-term monitoring schemes at regional and
national levels. PAM methods have the potential to be scalable, standardisable, and financially
viable, while also being substantially less labour intensive than traditional methods (Gibb et
al., 2019), especially if workflows can harness Artificial Intelligence (Al). The PAM approach
is developing rapidly as it is adapted and piloted for a wide range of taxa, including
terrestrial mammals (Enari et al., 2019), birds (Pérez-Granados, 2021), amphibians
(Desjonquéres, 2020), and insects (Newson et al., 2017); hydrophones also enable the
technology to be used within marine environments, particularly for cetaceans (Mellinger et
al., 2007). However, despite wide taxonomic potential, bats are the primary species group
to which PAM is applied in the terrestrial environment (Sugai et al., 2019). Unlike surveying
bats using traditional walked transect surveys, which are labour intensive and temporally
restricted (Collins, 2023; Perks and Goodenough, 2021; Chapter Three), collecting bat data
using passive detectors requires little to no surveyor input once deployed. Detectors also
automatically record bat activity for whole nights, and for several consecutive nights, vastly
improving the temporal sampling range when compared to transect surveys (Gibb et al.,
2019). This increased temporal sampling range increases the likelihood of detecting both
later emerging bats, as well as species that are locally less prevalent (Perks and

Goodenough, 2021; Chapter Three).

Bat detectors used in PAM frameworks were first developed in the late 1980s. Initially they
were simple units, adapted from heterodyne detectors used for walked transects, that

recorded bat calls onto cassette tape. Purpose-built detectors emerged onto the market in
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the early 2000s, expanding the capability of acoustic surveys considerably (Browning et al.,
2017). Such detectors comprise a fully waterproof housing, similar in design to a camera
trap, typically with an omnidirectional microphone fitted either directly to the detector, or
indirectly via an extension cable. However, storing the quantity of data generated over
extended survey periods presented an initial challenge. Recording ultrasound at the high
sampling rates needed to study bats in full spectrum produces large waveform audio (.wav)
files, the storage of which, even temporarily within the units, needs considerable memory

(Frick, 2013).

The design of passive bat detectors has evolved as the technology has advanced. Among the
key attributes that continue to improve are unit size (becoming smaller) together with data
storage capacity (larger) and battery life (longer) (Merchant et al., 2015). Detectors are now
manufactured by multiple companies, with the specifications of models available, often
varying substantially (Adams et al., 2012). Frequency division and zero crossing (zc) devices,
such as those within the Anabat range (Titley Scientific, Australia) launched in the 1990s,
were the first to offer a solution to prohibitive data storage limitations by reducing the
amount of call information written, initially to cassette tape, and later on to a memory card
(Corben, 2004). This allowed multiple nights of data to be stored on a single memory card.
The Anabat Express system, launched in 2014, then provided a second breakthrough in
device power by prolonging battery life for approximately two weeks (Titley Scientific,
2023). Further developments in storage capacity of memory cards have recently made
recording in full spectrum for extended periods possible. This means that most passive
detectors currently available record in full spectrum, either exclusively or with the surveyor

having the choice between full spectrum and zc formats. However, hardware costs remain a
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limiting factor in many applied ecology contexts as commercial PAM devices remain
substantially more expensive than camera traps. This has thus far hindered the scalability of
PAM, towards the use of multi-device networks at large spatial scales (Gibb et al., 2019). At
the time of writing, passive bat detectors available to purchase in the UK range from
approximately 700 GBP for the Batlogger S2 (Elekon, Switzerland) to >7000 GBP for the
Batmode 2S+ system (bioacoustic technology, Germany) for remotely monitoring bat
activity at wind turbines (Wildcare, 2024). Comparatively, camera traps typically range from

55 GBP up to 600 GBP per unit (NHBS, 2024).

The introduction of open-source acoustic loggers, such as the AudioMoth (Hill et al., 2019),
has created opportunities for researchers and practitioners to access PAM at a much lower
price point. AudioMoths are currently available to purchase at approx. 75 GBP per unit
(LabMaker, 2025). Despite this, however, they do not represent a ‘silver bullet’ to the high
financial costs associated with PAM. The microelectromechanical systems (MEMS)
microphones used are not as efficient as those used in commercial ultrasonic detectors, and
data quality, therefore, is not as high (Gibb et al., 2019). Very recent developments have led
to the release of configurable amplitude and frequency triggers for AudioMoth, however,
their reliability and how they compare to the sophisticated built-in triggering ability of
commercial units has yet to be rigorously tested. In the absence of a trigger, AudioMoth
users configure the devices to either record continuously (Revilla-Martin et al., 2020; Lépez-
Bosch et al., 2022), which is demanding in terms of battery life and data storage, or using
sleep and wake on a pre-configured cycle (e.g. Bota et al., 2023; Kunberger and Long, 2023;
Starbuck et al., 2024). The latter allows more nights of data collection without the need for

surveyor intervention but decreases the amount of data recorded per night, which risks
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missing species. The former provides more data overall, but the surveyor time associated
with frequent maintenance visits to download data or replace memory cards and batteries
contributes to survey costs in ways that are not always considered when simply comparing
per unit price (Gibb et al., 2019). Finally, there is still uncertainty regarding the recording
quality (Kunberger and Long, 2023) and detection capability of ultrasonic sound (Brinklgv et
al., 2023) compared to commercial units. Poor recording quality could have implications for
data analysis and accurate identification of species, especially those that echolocate at
higher frequencies (e.g. Rhinolophus spp.) or with low energy calls (e.g. Plecotus spp.). This
could be a substantial issue, especially when data processing is undertaken using automated

classifiers (Barré et al., 2019).

There is a longstanding need to both optimise and standardise passive acoustic sampling
schemes for bats in relation to habitat and target species, as well as available funds and
resources (Froidevaux et al., 2014). In the UK, the Bat Conservation Trust (BCT) bat survey
guidelines (Collins, 2023) set out specific recommendations in relation to conducting passive
bat surveys, typically for commercial applications, such as impact assessments. The level of
survey effort (number of detectors, number/duration of surveys) recommended is
determined by surveyor assessment of habitat suitability for bats. A minimum monitoring
period of five days in suitable weather conditions is specified, regardless of habitat type,
with the number of replicates required dependent on adjudged habitat quality. This ranges
from three seasonal replicates (spring, summer, and autumn) for sites with habitat assessed
as low quality, to seven replicates (monthly between April to October) for sites with habitat
assessed as medium or high quality. Additionally, habitat suitability for bats was originally

used to subjectively determine the number of locations within each site that should be
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sampled. In the previous edition of the guidelines (Collins, 2016), this ranged from one
location for low quality up to three locations for high quality. In the latest edition (Collins,
2023), this was updated to state that detector locations should instead provide a
representative sample of the habitats present within the site. This remains somewhat
subjective, and does not specifically consider the overall size of individual sites, or differing
requirements for the habitats found in heterogeneous sites, and how this might impact the
efficacy of passive surveys. Moreover, as PAM technology available continues to become
both more accessible and capable, a wider range of protocols for surveying and monitoring
are becoming feasible for practitioners, many of which are yet to be empirically tested and
compared to established protocols. It should also be noted that any updated
recommendations should allow for the fact that “optimisation” of PAM frameworks is
multifaceted as it involves considerations around detectors (type, settings, and number) and
deployment (duration and replicates) that affect both the amount and quality of data, and

survey costs (Figure 4.1).
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o Full spectrum/zero crossing
commercial detectors or open
source?

 Potential trade-off between
equipment cost and data quantity
and quality

 Triggered, cycled or continuous
recording?

* Higher sampling rates require
more memory and battery life,
but lower sampling rates risk
missing high frequency bats

¢ Fewer commercial or more open
source detectors?

 Potential trade-off between
spatial coverage and data
quality/quantity

* Typically 5 nights in suitable
weather conditions

* May need to be longer to detect
less abundant species, or shorter
to increase spatial coverage with
fewer detectors

* Increasing the number of
replicates, increases survey costs
and produces more data

* Fewer replicates risks missing
seasonal variations in species
richness and activity

Amount of data

* Larger datasets result in implications
for data storage and reliable analysis
Amount of data collected needs to be
sufficient for robust assessment of
species richness and activity

Quality of data

* Lower quality data present challenges
for reliable analysis and may miss
target species

Figure 4.1: Elements of passive acoustic bat survey design that need to be considered when
optimising sampling schemes.

This chapter empirically tests three types of passive acoustic detectors in surveying bats: full

spectrum commercial detectors (Anabat Swift, approx. £1000), zc commercial detectors

(Anabat Express, approx. £700), and open-source acoustic loggers (AudioMoth) to

investigate: (1) their comparative performance in different habitats when deployed

simultaneously at the same location, (2) variation in detections made by co-located

AudioMoths using different sampling rates to further explore the trade-off between data

storage and data quality, and (3) how the use of multiple detectors at the same site

(simultaneously deployed, multiple temporal replicates, or surveying being undertaken in

different parts of the site) affects the data collected.
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Bat activity was recorded for a total of 112 nights between mid-June and mid-October 2022,

across four sites, each representing a different habitat type (riparian, woodland, wood

pasture and arable). To provide an element of (semi-independent) spatial replication, each

site was split into two geographically-separated sub-sites. Monitoring was undertaken over

a seven-day period in rotation thus: the first sub-site of each of four sites was monitored

over data collection weeks 1-4, followed by the second sub-sites over weeks 5-8. To provide

an element of temporal replication, a compete second survey of all habitats and sub-sites

was then undertaken from weeks 9-12 and 13-16 (Table 4.1). A seven-night recording period

was undertaken to mitigate any nights of poor weather unsuitable for bats within the survey

period. Only five nights of data were carried forward for analysis for any replicate of any

sub-site as per the current bat survey guidelines in the UK (Collins, 2023).

Table 4.1: Monitoring schedule for each site and sub-site across the 16-week study period

(1=riparian, 2=woodland, 3=wood pasture, 4=arable)

Week Date Site Sub-site Replicate
1 16/06/22 — 23/06/22 Riparian 1 1
2 24/06/22 —01/07/22 Woodland 1 1
3 01/07/22 -08/07/22 Wood pasture 1 1
4 08/07/22 —15/07/22 Arable 1 1
5 15/07/22-22/07/22 Riparian 2 1
6 22/07/22 - 29/07/22 Woodland 2 1
7 29/07/22 - 05/08/22 Wood pasture 2 1
8 05/08/22 —12/08/22 Arable 2 1
9 12/08/22-19/08/22 Riparian 1 2
10 19/08/22 - 26/08/22 Woodland 1 2
11 26/08/22 —02/09/22 Wood pasture 1 2
12 02/09/22 —09/09/22 Arable 1 2
13 12/09/22 —19/09/22 Riparian 2 2
14 19/09/22 - 26/09/22 Woodland 2 2
15 26/09/22 —03/10/22 Wood pasture 2 2
16 03/10/22 -10/10/22 Arable 2 2
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4.2.1 Detector types

Three types of ultrasonic bat detectors were used to record bat echolocation call
sequences: Titley Scientific (Australia) automated bat detectors (n=4) and Open Acoustic
Devices (United Kingdom) AudioMoth full-spectrum acoustic loggers (n=10). The Titley
Scientific devices comprised Anabat Swift full-spectrum bat detectors (n=2) and Anabat
Express zero-crossing (zc) bat detectors (n=2). Both Anabat models were housed in
weatherproof cases, designed for extended periods of deployment, and were deployed in
lock boxes or fixed into position with cable ties. The AudioMoth devices were not
weatherproof. Only three proprietary AudioMoth waterproof cases were available from the
stockist at the time of the study, so deployment used a combination of these and seven

modified electrical junction boxes (Figure 4.2).

(highlighted in white), AudioMoth in proprietary case (highlighted in blue), and AudioMoth in
junction box case (highlighted in red).
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Manufacturing delays impacted the ability to acquire the necessary number of AudioMoths.
Therefore, three AudioMoths were used in the first replicate at each sub-site (weeks 1-8),
with an additional seven detectors arriving in time to be integrated into the study design for
the second replicates (weeks 9-16) to enable testing of two different sampling rates: 250
kHz (low) and 384 kHz (high). AudioMoths configured with a 250 kHz sampling rate are
hereby referred to as Low Frequency AudioMoth (LFAM), and those configured with a 384

kHz sampling rate as High Frequency AudioMoth (HFAM).

All the detectors were powered by AA batteries, renewed at the end of each recording
period to prevent any battery failures. Detectors recorded data onto either SD cards
(Anabat Swift = 64GB + 32 GB, Anabat Express = 32 GB) or microSD cards (LFAM = 32GB,

HFAM = 64GB)). All data were downloaded, and the cards erased, before redeployment.

4.2.2 Detector configuration

The Titley Scientific detectors were configured to use their standard on-board trigger, so
that only sounds that met the pre-programmed criteria based on known parameters for bat
calls, were recorded. They were configured to record all night at their standard sampling
rate of 500 kHz, and to automatically switch on 30 minutes prior to sunset and switch off 30
minutes after sunrise, with these times determined via a GPS fix for the deployment
location. At the time of this study, the AudioMoth did not feature a reliable trigger
specifically for bats, so these detectors were configured to record all sound based on a pre-
determined sleep:wake cycle. The times at which the detectors were to switch on and off
were configured at set-up: starting recording 30 minutes before sunset and stopping 30

minutes after sunrise, according to the sun times for the longest night of the each seven-day
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recording period. To facilitate storing seven nights of data onto each 32GB microSD card
supplied with the detectors, the LFAMs were configured to record on a five-second record,
15-second sleep cycle, for the first replicates. For the second replicates, the LFAMs were
configured on a five-second record, 25-second sleep cycle (the longer sleep period relative
to LFAM settings in replicate one was necessary to facilitate data collection throughout the
longer nights later in the survey season), and the HFAMs, configured on a five-second
record, 20-second sleep cycle. The HFAMs utilised larger 64GB microSD cards, which were

supported by the more recent AudioMoth units.

4.2.3 Detector location

For each recording replicate at each sub-site, the detectors were deployed at five locations.
To enable a direct comparison of detectors, there was one single “cluster” that comprised
one of each detector type (Anabat Swift, Anabat Express and LFAM for replicate one;
Anabat Swift, Anabat Express, LFAM, and HFAM for replicate two). The location for the
cluster within each sub-site was chosen subjectively, both to maximize the likelihood of
recording bats (as would typically happen within ecological consultancy) and to act as a
centralised location for the deployment of the four additional detectors (replicate one) or
10 additional detectors (replicate two). In non-linear habitats (woodland, wood pasture,
arable) the four additional detector locations were situated around the central cluster based
on three levels of random allocation. Firstly, the eight cardinal and sub-cardinal bearings
radiating from the central cluster were allocated a number (1-8), and four bearings selected
using a random number generator. If a bearing wasn’t accessible within the area of the sub-
site, or had already been used, random numbers continued to be generated until four

feasible bearings had been selected. Secondly, the position of the detector along the
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bearing was also randomised after allowing for appropriate inter-detector distances. Titley
Scientific specifies that lower frequency calling bats (e.g. noctule) can be detected by their
Swift and Express devices from a distance of up to 100m (Titley Scientific, 2024). Although
the detection distances for the AudioMoth are still largely unresearched, it was concluded
these were unlikely to exceed that of the Swift and Express units, especially considering the
lower quality of the MEMS microphone. Thus, to ensure that detections made by each of
the devices outside the cluster were truly independent both in relation to one another and
to the cluster, a minimum distance of 200m between all locations was used. Successive
numbered “zones”, each 20 m in length were laid out along each bearing starting at 200 m
from the cluster to a maximum of 360 m (based on logistical constraints). The location at
which the detector would be located along the bearing was determined randomly. The third
and final step was a random allocation of the specific detector type to each location. A
similar process was used in linear (riparian) habitats, whereby the additional locations were
located one side (upstream or downstream) of the main cluster, with distances (but not
bearings) and detector allocation per location randomly determined as for non-linear
habitats. In all cases, minor adjustments were made in the field as necessary based on

location of trees or fence posts upon which to mount the detectors.

Detectors were deployed at least 1 m above the ground using suitable features, most
commonly trees, shrubs, and fences, with microphones orientated towards open space to
increase the likelihood of ultrasonic sound reaching the microphone. Where appropriate,
the microphone extension cable was used to facilitate the placement of the Titley Scientific

detectors, either where vegetation was not substantial enough to secure the detector at a
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suitable height from the ground, or at sites with a high public presence, for better

concealment.

The number of detectors (but not the number of locations in which detectors were placed)
differed between replicates. During the first replicates, one of each detector type; Anabat
Swift (full-spectrum), Anabat Express (zero-crossing) and AudioMoth (full-spectrum) were
deployed together at the cluster location to conduct a direct comparison between detector
types. The remaining four detectors; Anabat Swift (n=1), Anabat Express (n=1) and
AudioMoth (n=2) were deployed individually at the remaining four locations to increase
spatial coverage. During the second replicates, the Anabat detectors remained at the same
locations as in the first, but two AudioMoths (LFAM and HFAM) were deployed at each of
the five locations. This is summarised in Figure 4.3, which also illustrates the spatial

arrangement of detector locations described above.
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a) Location
1
Randomised cardinal/sub-cardinal bearing

Randomised distance band (200m-360m)

CLUSTER

DETECTORS DEPLOYED

Replicate 1
Cluster: Anabat Swift, Anabat Express,
Location LFAM
. Location Sacatot Randomly allocated to locations 1-4:

2 3
¢ Anabat Swift

* Anabat Express
* LFAM

* LFAM
b)

Replicate 2
Locations as replicate 1, with

CLUSTER
Cluster: Anabat Swift, Anabat Express,
LFAM,
Locations 1-4:
Location ¢ Anabat Swift, )
1 * Anabat Express, ,
* LFAM,
* LFAM,

Location
2 Watercourse

Location
3

Randomised distance band Location
(200m-360m) 4

Figure 4.3: Determination of monitoring locations in relation to the “cluster” location and detector
allocation in (a) non-linear and (b) linear habitats. Gold text details detectors added for the second
replicates.
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4.2.4 Site-specific setup

The four field sites were situated within a 20 km radius in the south Worcestershire/north
Gloucestershire region of the UK. All sites were split to encompass two adjacent sub-sites.
Figure 4.4 below illustrates the broad areas within each site determined as being suitable
for detector deployment, for each of the sub sites. The individual monitoring locations
within each, and the detectors allocated, were then determined following the methods set

out in section 4.2.3.
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Figure 4.4: Locations of the four study sites within the Worcestershire/Gloucestershire area of the UK. Anti-clockwise from top left: riparian,
woodland, wood pasture, arable farmland. Overlay indicates broad areas suitable for detector deployment, for each sub-site.
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4.2.1.1 Riparian

The riparian site was situated within the estate at Croome Court, south Worcestershire,
5.6km west of Pershore, centred on 52°05’51”N, 002°10°08"W. The estate occupies
approximately 270 ha and has been managed by the National Trust since 2007. The Croome
River, a 1.7 km long artificial watercourse inclusive of a lake at its northern extent, transects
the parkland. The southern end of the Croome River was used as the first sub-site, and the
northern end, including the lake, as the second (Figure 4.5), with the cluster locations
situated at each extent. The randomised distances between each monitoring location,
necessitated a slight overlap between sub-sites, at the centre of the watercourse, but these
were never monitored at the same time such that the sub-sites were semi-independent
rather than fully independent but that, crucially, there was no pseudoreplication within

each sub-site replicate.
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Figure 4.5: Monitoring locations within the two sub-sites, within the riparian site (detectors
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered
by each detector.

4.2.1.2 Woodland and wood pasture

The woodland and wood pasture sites were situated within the Dumbleton Estate in north
Gloucestershire, approximately 12 km east of Tewkesbury. The estate is managed under
middle tier Countryside Stewardship (CS), with all woodland areas subject to woodland
management plans. Woodland to the north of the estate was selected to represent
woodland habitat (Figure 4.6). The two parcels of woodland on the northern edge of the
estate, Oxhill Wood to the west and the woodland on Dumbleton Hill to the east, were used
as the two sub-sites, with each cluster location positioned on opposite sides of the open

valley between the two. Similarly to the riparian site, the randomised distances and bearings
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resulted in a slight overlap between sub-sites, but these were monitored at different time

periods.

Anabat Express
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Figure 4.6: Monitoring locations within the two sub-sites, within the woodland site (detectors
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered

by each detector.

More open areas of sheep-grazed pasture and parkland, with areas of young woodland and

scrub to the south of the estate, were used to sample high quality wood pasture habitat

(Figure 4.7). The first sub-site was situated within and around the deep valley enclosed by

Bullman Bank to the south. The valley leading up to Dyers Hill to the north, was adopted as

the second sub-site.
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Figure 4.7: Monitoring locations within the two sub-sites, within the wood pasture site (detectors
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered
by the detectors

4.2.1.3 Arable

The arable farmland site was situated in Hinton-on-the-Green, South Worcestershire,
approximately 4 km south of Evesham. The site comprises arable farmland, situated
between the A46 trunk road to the east, and the river Isbourne to the west. At the time of
the study the land was planted with either wheat, or a meadow grassland mix for hay, and
was not managed under any CS options. The farm was broadly divided in two, with fields in
the southern half forming the first sub-site, and fields to the north, forming the second sub-

site (Figure 4.8).
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Figure 4.8: Monitoring locations within the two sub-sites, within the arable farmland site (detectors
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered
by the detectors.

4.2.4 Acoustic data processing

At the end of each 7-day monitoring period all data recorded were transferred onto a
central hard drive and the memory cards erased ready for the next monitoring period.

To assist data storage, particularly with the AudioMoth detectors that recorded continually
when “awake”, a broad frequency filter (“All bats” in Anabat Insight) was used initially to
necessitate only storing those recordings likely to contain bat calls. Recordings which did not
contain sound with a characteristic frequency within a generous range for bats (4-300 kHz)
were not retained for further processing. Next, the weather conditions for each recording

period were assessed. The first five nights of data for each recording period were carried
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forward, except in the event of poor weather or equipment failure, whereby the affected
night or nights were substituted for more optimal consecutive nights later in the recording

period.

Five nights of acoustic bat data for each monitoring period was processed through
Kaleidoscope Pro’s bats of Europe (v. 5.4.0) auto-ID classifier, to remove recordings of noise
and obtain species classifications. Kaleidoscope’s auto-ID classifier analysed each call within
a recorded sequence and compared them to an extensive reference library for the region,
before making a single species classification for the sequence and reporting the match ratio.
To minimise false positives, Barré et al. (2019) recommend only retaining classifications with
a reported confidence score greater than or equal to 0.5 (50%). The match ratio reported by
Kaleidoscope Pro is often used as a measure of self-reported classifier confidence (Braun de
Torrez et al., 2017b; Springall et al., 2019; Smith et al., 2021; Taille et al., 2021). Therefore,
only those recordings with a match ratio greater than or equal to 0.5 (50%), were carried
forward for statistical analysis. Once the automated classifications were obtained,
classifications for species challenging to differentiate acoustically were grouped: Brandt’s
bat (Myotis brandti) and whiskered bat (Myotis mystacinus) were grouped, and grey long-
eared bat (Plecotus austriacus) classifications were grouped with those of brown long-eared
bat (Plecotus auritus) to form a single Plecotus group. Records for grey long-eared are
scarce, but cannot be distinguished from the much more widespread brown long-eared bat

on acoustics alone (Crawley et al., 2020).

A random sub-set of recordings from each classification species/group were manually

audited to verify classification plausibility and verify species presence. After manual
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auditing, recordings classified as Alcathoe bat (Myotis alcathoe) and Bechstein’s bat (Myotis
bechsteinii), were not carried forward for statistical analysis. Both species are relatively
sparsely distributed and challenging to discern from other Myotis species acoustically.
Recordings classified as greater horseshoe bat (Rhinolophus ferrumequinum) were also
discounted as none of the audited files were found to contain greater horseshoe calls.
Finally, recordings classified as Nathusius’ pipistrelle (Pipistrellus nathusii) were discounted
from statistical analysis. Although geographically widespread, few colonies have been
identified nationally, calling into question the reliability of the classifications. All remaining
species classifications were carried forward following manual auditing of a subset of
recordings. A summary of the workflow adopted to process these raw acoustic data is

shown in Figure 4.9.
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Broad frequency filter

All recordings processed through an “All Bats” filter in Anabat

Insight (Titley Scientific, Australia). Files containing calls with a

characteristic frequency between 4-300 kHz progressed to the
next stage of analysis.

Selection of optimal nights

Weather conditions and any equipment failures assessed, to

select five optimal recording nights. Files from the five optimal
nights progressed to the next stage of analysis.

Automatic identification software

Retained files processed through the “UK and Europe” bat
auto-ID classifier in Kaleidoscope Pro (Wildlife Acoustics, USA).

Auto-ID match ratio

Files with an auto-ID species classification with a match ratio
greater than or equal to 0.5 (50%) were retained for statistical
analysis.

Manual auditing

Files with auto-ID classifications of nationally or locally rare
species, or those outside of their known distribution were
manually audited by a technician prior to statistical analysis.

Figure 4.9: Workflow adopted to store and process acoustic data.
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4.2.5 Statistical analysis

All statistical analyses were carried out in R 4.2.2 (R Core Team, 2022). To test how co-
located passive bat detectors differed in performance in different habitats, multiple
Friedman tests were used to explore variations in total bat activity and individual
species/taxon activity from 20 (Swift, Express, LFAM) or 10 (HFAM) nights of recording per
habitat using data from the central cluster where all detector types were co-located. It is
recognised that bat activity is difficult to determine by passive acoustic techniques alone
because sequences recorded by a particular species may be the result of a single bat
remaining in close proximity to the microphone, or a larger number of individuals passing
the detector. For consistency with Chapters Two and Three, in this study, bat “passes” were
adopted as a metric of activity levels with a “pass” defined as a call sequence file as defined

by the detector.

Analyses were conducted firstly on all data recorded by the four detectors each night, and
secondly on two subsets of these data. Subset one included only those data recorded by the
Express and the Swift when time-matched to the wake periods of the LFAM; subset two
included only those data recorded by the Express and the Swift when time-matched to the
wake periods of the HFAM. Analysis of these subsets was necessary to avoid the potential
that differences between the AudioMoths and the Anabat devices might be driven by the
latter having the ability to record all bats at any point throughout the night, whereas the
AudioMoths were only able to record bats during their regular wake periods (two such
subsets of the data were necessary, due to the LFAM and HFAM being configured on
different recording cycles). Friedman tests, with paired Wilcoxon tests for post-hoc analysis,

were firstly conducted on the overall species richness and total bat passes for each habitat,
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before conducting taxon specific analyses. To conduct meaningful statistical analysis all
classifications in the genus Myotis were grouped into a single taxonomic group at genus
level (Myotis). This approach was also taken to combine classifications from the genus
Nyctalus with those of serotine, to form a single taxonomic group (Nyctalus/Eptesicus). The
same analytical approach (Friedman tests with pairwise Wilcoxon undertaken as a form of
post-hoc analysis) was used for these taxon-specific analyses. As seven species/taxonomic
groups were analysed at each habitat, the significance values produced by these tests were

Bonferroni adjusted to avoid family-wise error.

To test how co-located AudioMoths (one LFAM, one HFAM) recording at different sampling
rates differed in performance in different habitats, Wilcoxon matched-pairs tests were used
to explore variations in total bat activity, individual species/taxon activity and overall
species/taxon richness, from ten nights of recording at each habitat. As multiple
species/taxonomic groups were again analysed at each habitat, the results of the taxon-

specific tests were Bonferroni adjusted.

To explore how having multiple units of each detector type, multiple sub-sites and multiple
temporal replicates, affected the species richness recorded in different habitats, species
accumulation curves were constructed using the function specaccum in R package vegan
(Oksanen et al., 2022). Data for detectors that were deployed for 20 nights at each site were
used in the analysis (AudioMoth n=3, Swift n=2, Express n=2). Firstly, for the Anabat Swifts
and Anabat Expresses, two accumulation curves were generated using cumulative species
richness over successive nights for each habitat, the first using the combined data from two

detectors (to simulate a situation when two detectors were deployed at a field site) and the
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second using the mean of the data from two detectors (to simulate a situation when one
detector was deployed at a field site). Nightly data were added such that all data from the
first sub-site represented nights 1-10, and data from the second-sub-site represented nights
11-20. As such, the second replicates at each sub-site commenced on nights six and 16
respectively, thus allowing both the effect of a second replicate, and a second sub-site, to be
visualised. This approach was further applied to species richness data from 20-day
monitoring periods at each habitat to examine the effects of multiple detectors, replicates
and sub-sites on species richness for the AudioMoths, by plotting three accumulation curves

(one detector, two detectors, three detectors).

4.3 Results

A total of 571,380 recordings made by all the detectors deployed across the duration of the
fieldwork, passed the initial bat filter, and were carried forward for classification by
Kaleidoscope Pro. Of these recordings, 108,228 were classified as bat passes by
Kaleidoscope Pro, using a match ratio of > 50%, with the split between the detector types
shown in Table 4.2.

Table 4.2: Percentages of recordings classified as bats by Kaleidoscope Pro, using a match ratio of 2

50%, for each detector type (LFAM = Low Frequency AudioMoth, HFAM = High Frequency
AudioMoth).

Detector type Total no. recordings No. bat passes (> 50% match ratio) %

Anabat Swift 211,145 40,367 19.12
Anabat Express 101,491 28,161 27.75
LFAM (250 kHz) 177,655 29,700 16.72
HFAM (384 kHz) 81,089 10,000 12.33
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A breakdown of the number of classifications made for each individual species is shown in
Table 4.3. The majority of the classified bat passes were common pipistrelle (n=51,201) or
soprano pipistrelle (n=33,519), followed by Nyctalus and serotine (n=14,201). After manual

auditing, 538 bat passes were not carried forward for statistical analysis, being classified as

Alcathoe bat (n=2), Bechstein’s bat (n=46), Nathusius’ pipistrelle (n=329), or greater

horseshoe (n=61). See Methods for more detail.

Table 4.3: Number of recordings for each species, carried forward for statistical analysis.

Common name Scientific name No. recordings
Common pipistrelle Pipistrellus pipistrellus 51,201
Soprano pipistrelle Pipistrellus pygmaeus 33,519
Noctule Nyctalus noctula 11,981
Daubenton’s Myotis daubentonii 3,780
Leisler’s Nyctalus leisleri 1,930
Brown long-eared/Grey long-eared | Plecotus auritus/Plecotus austriacus 1,578
Lesser horseshoe Rhinolophus hipposideros 1,262
Barbastelle Barbastellus barbastellus 929
Brandt’s/Whiskered Myotis brandtii/Myotis mystacinus 785
Natterer’s Myotis nattereri 435
Serotine Eptesicus serotinus 290
Total 107,690

4.3.1 Co-located detectors

The detectors situated at the cluster location within each of the four sites recorded 46,428

bat passes in total: riparian = 17,650 (38.0%), woodland = 9,041 (19.5%), wood pasture =

16,537 (35.6%) and arable = 3,200 (6.9%).

4.3.1.1 Full dataset

Analysis of the full dataset found significant differences in the species richness and bat

passes overall and per taxonomic group that were detected by the different detector types
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in all habitats (Table 4.4). Details of relative detector performance in the different habitats is

given below, however, the general findings are: (1) there were few differences between the

Anabat Swift and Anabat Express, (2) both Anabat detectors frequently performed better

than either of the AudioMoths, and (3) the LFAM AudioMoth performed better than the

HFAM.

Table 4.4: Friedman test results comparing species richness or bat passes detected by the four

detectors, conducted on the full dataset (df = 3 in all cases).

Riparian Woodland Wood pasture Arable

x P x P x P x P
Species 18.832 <0.001 29.234 <0.001 25.863 <0.001 24.469 <0.001
richness
All bats 20.758 <0.001 30.000 <0.001 28.080 <0.001 25.948 <0.001
Common 19.653 0.001 26.196 <0.001 24.589 <0.001 18.582 0.002
pipistrelle
Soprano 19.320 0.001 29.277 <0.001 25.024 <0.001 19.709 0.001
pipistrelle
Plecotus 23.761 <0.001 23.543 <0.001 24.584 <0.001 19.800 0.001
Nyctalus/ 19.129 0.003 27.092 <0.001 22.055 <0.001 13.026 0.032
Eptesicus
Myotis 23.761 0.002 23.761 <0.001 25.710 <0.001 23.062 <0.001
Lesser 23.548 <0.001 27.710 <0.001 18.31 0.003 12.536 0.040
horseshoe
Barbastelle 2.000 1.000 27.903 <0.001 19.571 0.002 5.667 0.903

The best performing detectors for each of the species/taxonomic groups, at each habitat,

are summarised below (Table 4.5) and are discussed in more detail below with reference to

the supplementary figures at the end of the chapter.
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Table 4.5: Summary of best detector performance in analysis of the full dataset. Colour coding (key in
column headings) indicates the superior detector type (where statistically significant, grey=no
significant difference). Habitat codes: RI=Riparian, WL=Woodland WP=Wood Pasture, AR=Arable).
See Figures $4.2-4.5 for details of values.

Express vs Express vs Express vs Vs Vs LFAM vs
LFAM HFAM LFAM HFAM HFAM
Species richness RI:Express o\ oo ALLHABS:  ALLHABS:  RI:LFAM
AR: Swift WL: Express Exoress ’ Swift Swift WL: LFAM
AR: Express P WP: LFAM
Allbats RI:Express  RI:Swift ~ ALLHABS: . ..
AR: Express WL: Express WL: Swift Swift WL' LEAM
AR: Express AR: Swift ’
Common
- . RI: Swift
pipistrelle AR: Express \LVRL.' :)’(‘p::: :ILSS"\:’V'; WL: Swift  WL: LFAM
e ' AR: Swift
Soprano
pipistrelle . RI: Express e RI: Swift )
AR: Express P BT AR: Swift AR: Swift RI: LFAM
Plecotus RI: Express RI: Express WL: Swift RI: LFAM
. . ALL HABS:
AR: Swift WL: Express WL: Express WP: Swift Swift WL: LFAM
WQP: Express WQP: Express AR: Swift WP: LFAM
Nyctalus/
Eptesicus AR: Swift AR: Express  AR:Swift  AR: Swift RI: LFAM
Myotis .
RI: Swift RI: LFAM
AIE.)L( I-:ABS. A:;:; I-:ABS. WP: Swift ALI;‘::tBS. WL: LFAM
. S AR: Swift WP: LFAM
Lesser horseshoe RI:Express o RI:Swift  ALLHABS:
WL: Express $EXp WL: Swift Swift
AR: Swift
Barbastelle RI: Express WL: Express WL: Swift WL: Swift
WHL: Express  WP: Express  WP: Swift WP: Swift
AR: Swift

Post-hoc testing (plots are included as supplementary material at the end of this chapter) of

species richness across the four habitats, emphasised the higher performance of the Anabat

detectors which each having detected significantly higher mean number of species per night

than either of the AudioMoths (LFAM or HFAM) in all habitats (Figure S4.1). However, the
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different Anabat units did not differ significantly from one another, in the riparian,
woodland, and wood pasture habitats (Figure S4.1 a,d,g) in terms of species richness. Both
Anabat detectors outperformed the AudioMoths within the arable habitat, however, the

Swift detected significantly more species than the Express (Figure S4.1 j) in this instance.

In the riparian habitat (Figure S4.2), the Swift was the strongest of the four detectors,

recording significantly more bat passes per night than the HFAM both overall and for all
individual taxonomic groups except Nyctalus/Eptesicus. In this single exception, the only
significant difference was that of the LFAM recording significantly more passes per night

than the HFAM.

In the woodland habitat (Figure S4.3), post-hoc testing again highlighted the strengths of the
commercial Swift and Express detectors. When considering passes recorded by all bat
species, the Swift recorded significantly more bat passes per night than both the LFAM and
the HFAM (Figure S4.3 a). The Express recorded significantly more bats than the HFAM, but
no significant difference was found in the numbers detected when compared to the LFAM.
The two commercial Anabat detectors did not differ significantly from one another.
Moreover, the commercial detectors were each found to have recorded significantly more
bat passes than either of the AudioMoths, for Plecotus (Figure S4.3 j), lesser horseshoe
(Figure S4.3 s) and barbastelle (Figure S4.3 v). In contrast, and despite significant Friedman
tests, no significant pairwise post-hoc comparisons were identified for soprano pipistrelle

(Figure S4.3 g) or the Nyctalus/Eptesicus group (Figure S4.3 m).

116



Chapter 4: PAM protocols for bats

In the wood pasture habitat (Figure S4.4), the Swift recorded significantly more bat passes
per night than either of the AudioMoths for Plecotus (Figure S4.4 j), Myotis (Figure S4.4 p),
and barbastelle (Figure S4.4 v). The Express also performed significantly better than either of
the AudioMoths for these groups, except for Barbastelle. Additionally, the Swift recorded
significantly more passes per night than the HFAM, for both all bats (Figure S4.4 a) and the

lesser horseshoe group (Figure S4.4 s).

Finally, in the arable habitat (Figure S4.5), significantly higher numbers of bat passes were
recorded by the Swift, which detected significantly more passes than both AudioMoths for
all bats, and all taxonomic groups. Additionally, it detected significantly more passes than
the Express in the brown long-eared (Figure S4.5 j) and Nyctalus/Eptesicus groups (Figure

S4.5 m).

4.3.1.2 Temporally restricted datasets

Analysis of the two temporally restricted datasets (LFAM subset and HFAM subset), also
found significant differences between the bats detected by the different detector types
(Table 4.6). Significant differences were found extensively in the HFAM subset, but much
less often in the LFAM subset, where the significant differences between detectors in both
the species richness, and numbers of bat passes detected, were predominantly found in

woodland.
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Table 4.6: Friedman test results comparing species richness or bat passes detected by the three detectors, for each of the AudioMoth (LFAM and HFAM)
subsets (df = 2 in all cases).

LFAM HFAM
Riparian Woodland Wood pasture Arable Riparian Woodland Wood pasture Arable
X P X P x p X P x P x p x? P x2 P
Species 4.831  0.089 7.420  0.025 4906  0.086 3.397 0.183 | 10.316  0.006 18.200 <0.001 15.842 <0.001 17.684 <0.001
richness
All bats 29.200 <0.001 24.700 <0.001 25.139 <0.001 15.158 <0.001 | 14.600 <0.001 2.811 <0.001 14.368 <0.001 15.744 <0.001
Common 22.354 <0.001 15.474  0.003 14.889  0.004 12.329 0.011 | 9.556  0.042 11.806  1.000 11.706  0.020 8.222  0.082
pipistrelle
Soprano 21.641 <0.001 10.839  0.031 20.848 <0.001 4333 0573 { 14.000 0.005 12.560  0.019 10.207  0.043 14.774  0.003
pipistrelle
Plecotus 7.2766  0.158 0.031  1.000 2,711 1.000 INSUFFICIENT | 13.000  0.008 7.189  0.013 8539  0.098 INSUFFICIENT
DATA DATA
Nyctalus/ 34.816 <0.001 24514 <0.001 26.000 <0.001 7.404 0123 8267 0.016 11.200  0.192 7.294  0.183 9.769  0.038
Eptesicus
Myotis 7.614  0.133 14.358 <0.001 1.793  0.317 1.857 1.000 | 7.1538  0.028 12.562  0.026 13.862  0.006 7.760  0.103
Lesser 5.429  0.398 10.511  0.037 9.188  0.071 6.938  0.156 | INSUFFICIENT 11.812  0.013 5.546  0.437 3.500 0.869
horseshoe DATA
Barbastelle INSUFFICIENT 9.418 0.063 0.696  1.000 INSUFFICIENT INSUFFICIENT 18.200 0.019 5.765  0.392 INSUFFICIENT
DATA DATA DATA DATA
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The best performing detectors for each of the species/taxonomic groups, at each habitat, for

each subset, are summarised below (Table 4.7)

Table 4.7: Summary of best detector performance in analysis of the LFAM and HFAM subsets. Colour
coding (key in column headings) indicates the superior detector type (where statistically significant,
grey=no significant difference). Habitat codes: RI=Riparian, WL=Woodland, WP=Wood Pasture,
AR=Arable).

| LFAM subset i HFAM subset
Express vs Express vs Swift vs : Expressvs  Express vs Swift vs
Swift LFAM LFAM I Swift HFAM HFAM
Species richness I
ALL HABS:
Swift
All bats
WL: Swift
AR: Swift
Common
pipistrelle
Soprano
pipistrelle RI: Swift
AR: Swift
Plecotus
WL: Swift
Nyctalus/
Eptesicus AR: Swift
Myotis
WL: Swift
WP: Swift
Lesser horseshoe
WL: Swift
Barbastelle
WL: Swift
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Post-hoc testing (plots are included as supplementary material at the end of this chapter) of
species richness across the four habitats did not find any significant pairs between detectors
in the LFAM subset, despite an overall significant Friedman test result for the woodland
habitat. Within the HFAM subset, the overall significant differences found, were seen to be
driven by the AudioMoth detecting significantly fewer species at all habitats, a trend that
was particularly pronounced in woodland (Figure S4.1 f). Moreover, no significant
differences in species richness were found between the Swift and Express in analysis of the

HFAM subset.

In the riparian habitat (Figure S4.2), significant differences in the numbers of bat passes
recorded between detectors were found for the majority of the species/taxonomic groups in
both subsets. Where significant differences were seen in analysis of the LFAM subset (all
bats, common pipistrelle, soprano pipistrelle, Nyctalus/Eptesicus), the LFAM recorded
significantly more bat passes than the Express in all cases. Conversely, the differences
reported in all groups in analysis of the HFAM subset, were seen to be driven by either the
Swift or the Express recording more bat passes than the HFAM, where significant pairs were

found.

In the woodland habitat (Figure S4.3), analysis of the LFAM subset found few significant
pairs, even for groups (all bats, common pipistrelle, soprano pipistrelle, Myotis) where the
Friedman tests reported significant differences. In these cases, outlying nights with high
numbers of passes appear to be driving these significant overall differences. Notably, the
Swift detected significantly more passes for lesser horseshoe than the LFAM (Figure S4.3 t).

Conversely, however, the LFAM recorded significantly more Nyctalus/Eptesicus passes than
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the Express (Figure S4.3 n). Post-hoc analysis of the HFAM dataset in woodland, found the
Swift to have consistently recorded significantly more passes per night than the HFAM, both
for all bats (Figure S4.3 c) and for Plecotus (Figure S4.3 |), Myotis (Figure S4.3 r), lesser

horseshoe (Figure S4.3 u) and barbastelle (Figure S4.3 x).

In the wood pasture habitat (Figure S4.4), only a single significant pair was found in the
LFAM subset, with the LFAM performing better than the Express, recording significantly
more Nyctalus/Eptesicus passes (Figure S4.4 n). Moreover, few significant differences were
found in analysis of the HFAM subset. The only significant pairs found in this subset, were
the Swift and Express recording significantly more Myotis passes per night than the HFAM

(Figure S4.4r)

Finally, in arable habitat (Figure S4.5), no significant pairs were found in post-hoc testing of
the LFAM subset, even in instances where the Friedman tests found an overall significant
difference. Within the HFAM subset, for groups where overall differences were found; all
bats (Figure S4.5 c), soprano pipistrelle (Figure S4.5 i), and Nyctalus/Eptesicus (Figure S4.5 o),
these differences were found to be driven by the Swift detecting significantly more passes

than the HFAM in all instances.
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4.3.2 Co-located AudioMoths

The five pairs of AudioMoths, located at each of the five monitoring stations within each of
the four sites for the second replicates, recorded 27,347 classified bat passes in total:
riparian = 20,361 (74.5%), woodland = 2,533 (9.3%), wood pasture = 2,959 (10.8%) and

arable = 1,494 (5.4%).

4.3.2.1 Species richness

There were significant differences in the richness of species detected by the AudioMoth
pairs, across all four habitats. Across the pairs, the AudioMoths configured with a 250 kHz
sampling rate (LFAM) detected significantly more bat species each night than those
configured with a 384 kHz sampling rate (HFAM). This finding was consistent at all habitats:
riparian (V=405, P<0.001), woodland (V=849.5, P<0.001), wood pasture (V=683, P<0.001),
and arable (V=726, P<0.001). The mean species detected per night by each AudioMoth

configuration, at each habitat, is shown in Figure 4.10.
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Figure 4.10: Mean species richness detected by the AudioMoth pairs in each habitat (error bars
show SEM (+1se)).

4.3.2.2 Total bat activity

Significant differences were found between the mean number of bat recordings per night,
with the LFAM having significantly more recordings found to contain bat calls, per night,
compared to HFAM. This finding was again consistent for all four habitats: riparian (V=1144,
P<0.001), woodland (V=811.5, P<0.001), wood pasture (V=958.5, P<0.001), and arable
(V=925.5). The mean number of recordings containing bat calls, made by each of the

AudioMoths, at each site, are shown in Figure 4.11.
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Figure 4.11: Mean numbers of recordings containing bat calls made by the AudioMoth pairs in each
habitat (error bars show SEM).

4.3.2.3 Individual taxonomic groups

Notable differences were recorded in the numbers of recordings of individual taxonomic
groups made by the AudioMoths in each pair. Firstly, within the riparian habitat, the LFAM
made significantly more recordings for soprano pipistrelle (V=1108, P<0.001), Plecotus
(V=66, P=0.014), and Myotis (V=66, P=0.013). In the case of the latter two groups, no

recordings were made by the HFAM over the duration of the study (Figure 4.12).
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Figure 4.12: Mean numbers of recordings containing bat calls of individual taxonomic groups,
made by the AudioMoth pairs within the riparian habitat (error bars show SEM (+1se)).
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In the woodland habitat, significant differences were again found for soprano pipistrelle
(V=558, P<0.001) and Plecotus (V=300, P<0.001), with the LFAM making insignificantly more
recordings than the HFAM (Figure 4.13). Additionally, this effect was seen in the

Nyctalus/Eptesicus group (V=741, P<0.001).
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Figure 4.13: Mean numbers of recordings containing bat calls of individual taxonomic groups, made
by the AudioMoth pairs within the woodland habitat (error bars show SEM (+1se)).
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Thirdly, in the wood pasture habitat, the LFAM made significantly more recordings per night
than the HFAM, for all the species groups where analysis was meaningful, with the
exception of lesser horseshoe (Figure 4.14). The paired Wilcoxon tests were significant for
common pipistrelle (V=644, P=0.002), soprano pipistrelle (V=650.5, P<0.001),
Nyctalus/Eptesicus (V=810.5, P<0.001), Plecotus (V=105, P=0.005) and Myotis (V=66,

P=0.021).
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Figure 4.14: Mean numbers of recordings containing bat calls of individual taxonomic groups, made
by the AudioMoth pairs within the wood pasture habitat (error bars show SEM (+1se)).
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Finally, in the arable habitat, the LFAM again made significantly more recordings per night
for those species groups with sufficient numbers to make statistical analysis meaningful,
with the exception of lesser horseshoe (Figure 4.15). These groups were common pipistrelle
(V=664.5, P<0.001), soprano pipistrelle (V=580, P<0.001), Nyctalus/Eptesicus (V=297,

P<0.001), and Myotis (V=63.5, P=0.036).
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Figure 4.15: Mean numbers of recordings containing bat calls of individual taxonomic groups, made
by the AudioMoth pairs within the arable habitat (error bars show SEM (+1se)).
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4.3.3 Species accumulation

Seven detectors were deployed for the full 20 nights at each site: Anabat Swift (n=2), Anabat
Express (n=2), and AudioMoth (LFAM) (n=3). Recording nights were divided into 5-night
recording periods, with nights 1-5 and 6-10 accounting for the first and second replicates at
the first sub-site, and nights 11-15 and 16-20 accounting for the first and second replicates
at the second sub-site, respectively. Kaleidoscope Pro classified 11 different species in the

recordings from these detectors over the duration of the study.

4.3.3.1 Riparian

In the riparian habitat, the two Anabat Swifts combined had recorded the maximum
richness within the first recording period, reaching maximum species richness on night
three. However, the single Anabat Swift, on average, took six nights to record the maximum
species richness, running into the second recording period at the first of the sub-sites
(Figure 4.16a). The two Anabat Expresses combined also recorded the maximum richness of
11 species within the first five-night recording period, at the first sub-site, and the
performance of two units was not superior to the performance of a single unit (Figure
4.16b). The three AudioMoths combined needed eight nights to record a lower maximum
richness of ten species. However, using fewer detectors (one or two units rather than three)
required not only two five-night recording periods at the first sub-site, but a further two
five-night recording periods at the second sub-site to record the maximum richness. The use
of two AudioMoths on average took until night 18 to reach maximum richness, with a mean
species richness of 9.66 (+ 0.33 SEM). The use of a single AudioMoth also took on average

until night 18 to record a mean maximum richness of 8.33 (+ 1.20 SEM) (Figure 4.16c).
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Express, and (c) AudioMoth (error bars show SEM (+1se)).
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4.3.3.2 Woodland

In woodland habitat, two Anabat Swifts combined took two five-day recording periods at
the first sub-site to reach maximum richness, recording all 11 species by night seven.
Reaching maximum richness was again slower for a single Anabat Swift, taking on average
12 nights (and, therefore, monitoring of the second sub-site) to record the same maximum
richness as the two detectors combined (Figure 4.17a). The superiority of two detectors
versus one was also seen for Anabat Express, although two detectors combined had
recorded the maximum richness of 11 species by the end on the first five-day monitoring
period (Figure 4.17b). Regardless of the number of detectors used, the AudioMoths
required monitoring of both sub-sites to reach maximum richness. The three AudioMoths
combined, had recorded the maximum 11 species by night 11. When using two detectors, it
took 19 nights to reach the same species total. Using one detector also took an average of
19 nights for the number of species to peak, at a lower mean richness of 9.66 (+ 1.33 SEM)

(Figure 4.17c).
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Figure 4.17: Species accumulation curves within the woodland habitat for (a) Anabat Swift, (b) Anabat
Express, and (c) AudioMoth (error bars show SEM (+1se)).
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4.3.3.3 Wood pasture

In the wood pasture habitat, use of either one or two Anabat Swift detectors needed two
monitoring periods to reach the maximum richness of 11 species at the first sub-site (Figure
4.18a). On the other hand, the two Anabat Express units in combination recorded the same
maximum richness more quickly, with the number of species recorded peaking on night
three, but using a single Anabat Express necessitated a second recording period at the first
sub-site, with peak richness reached, on average, on night seven (Figure 4.18b). The
difference observed between using two or three AudioMoths was negligible, with the
maximum richness of eleven species being reached on nights eight and six, respectively,
both within the second recording period at the first sub-site (Figure 4.18c). The use of a
single AudioMoth, however, recorded a lower mean maximum richness of 10 species (+ 0.58

SEM), which was reached on night 12, during monitoring of the second sub-site.
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Figure 4.18: Species accumulation curves within the wood pasture habitat for (a) Anabat Swift, (b)
Anabat Express, and (c) AudioMoth (error bars show SEM (+1se)).
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4.3.3.4 Arable

In the arable habitat, the use of either one or two Anabat Swift detectors recorded the
maximum richness of eleven species inside the first five-night recording period at the first
sub-site (Figure 4.19a). The Anabat Expresses took comparatively longer; using two
detectors didn’t reach the same maximum richness until night nine, towards the end of the
second recording period at the first sub-site. Recording with one Anabat Express took longer
again, with the maximum richness being reached by night 11 on average, requiring
recording at both sub-sites (Figure 4.19b). Only monitoring the site with all three
AudioMoths was sufficient to reach the same maximum richness as the Anabat devices, with
all 11 species having been recorded by night eight. When using either one or two
AudioMoth devices, the peak in species richness was not reached until the second recording
period at the second sub-site. Moreover, the mean maximum species richness recorded was
lower, with a mean species richness of 10.66 (+ 0.33 SEM) being reached on night 16 for two

AudioMoths, and 8.66 (+ 1.22 SEM) for a single AudioMoth (Figure 4.19c).
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Figure 4.19: Species accumulation curves within the arable habitat for (a) Anabat Swift, (b) Anabat
Express, and (c) AudioMoth (error bars show SEM (+1se)).
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4.4 Discussion

The commercial Anabat detectors generally outperformed the open-source AudioMoths
(LFAM and HFAM), both in terms of numbers of bat passes detected, overall species
richness, and detecting the same number (or more) species faster, with fewer detector
units, fewer replicate recording periods and fewer recording locations/sub-sites being
needed. Fewer significant differences in bat passes detected were found when restricting
analysis to the time periods in which the AudioMoths were awake and recording, with the
LFAM detecting similar numbers of bats as the Anabat devices overall, and even detecting
more bat passes than the Anabat Express for some taxonomic groups in certain habitats.
Analysing both the full dataset and the time matched subsets was important to understand
the differences in the detectors in both field conditions, as they are likely to be used by
practitioners (full dataset), and scientifically under the same conditions (time matched

subsets).

4.4.1 Comparative detector performance

In analysis of the full dataset, where significant differences between detectors were found,
the Anabat detectors recorded a higher species richness or a greater number of bat passes
than either of the AudioMoths. This finding highlights the major disadvantage in configuring
the AudioMoths to record on a sleep/wake cycle, as bat activity is inevitably missed when
the units are asleep. However, this was seen to have a bigger impact for Myotis and Plecotus
bats, which can be classed as short-range echolocators (SRE) (Frey-Ehrenbold et al., 2013;
Froidevaux et al., 2014) — this was also seen for brown long-eared in Chapter Three where
more passes were recorded on walked transects than using PAM, again likely due to the

influence of SRE. For Pipistrellus species, the LFAM only recorded significantly fewer bat
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passes than the Anabat Express in the arable habitat, even when only switching on to record
periodically. Few previous studies have examined the difference in detections from different
detector models, particularly to compare zero-crossing and full spectrum detectors.
However, Adams et al. (2012) and Kaiser and O’Keefe (2015) both compared a zero-crossing
detector (Anabat SD2) to at least one other full spectrum detector. The former study
reported that although the Anabat devices performed similarly, in the majority of cases it
recorded fewer bats than the full spectrum equivalents. Therefore, ability of the AudioMoth
units to record in full spectrum may enable them to perform similarly to the Anabat Express
for more abundant taxa, even when configured to sleep periodically. A firmware update
introducing a frequency trigger for the AudioMoth was released in mid-2022 (Open Acoustic
Devices, 2022a). It was not adopted here owing to the timing of the release and lack of
empirical testing; however, future research should aim to assess if utilising triggered
recording for AudioMoth yields more comparable results when compared to commercial

equipment.

In the analysis of the time matched subsets, fewer significant differences between the
detectors were seen, particularly when comparing the LFAM with the Anabat detectors. This
perhaps emphasises the superior ability of full spectrum detectors to detect bats, alluded to
in the analysis of the full dataset. On some occasions, the LFAM was found to have recorded
significantly more passes than the Anabat Express in the data subset. Neither of the
AudioMoths significantly outperformed the Anabat Swift in the subset analysis. These
findings are consistent with those of a recent detector comparison conducted by Starbuck et
al. (2024). The higher quality microphone in the Swift, is likely to be the principal driver

behind their superior performance.
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4.4.2 Comparison of AudioMoth configurations

Testing of the two AudioMoth sampling rate configurations yielded some perhaps
unexpected findings with the lower sampling rate, 250kHz LFAM, frequently outperforming
it’s co-located 384kHz HFAM partner in the analysis of the paired AudioMoths. Moreover,
the LFAM was therefore found to be closer in terms of performance to the two commercial
Anabat detectors. Analysis of the LFAM subset found it was only significantly outperformed
by the Anabat Swift in recording lesser horseshoe bats in woodland habitat. Configuring the
AudioMoth with the highest possible (384kHz) sample rate to record bats is recommended
by Hill et al. (2019) and has frequently been adopted in previous work using AudioMoth to
study bats (Katunzi et al., 2021; Lopez-Bosch et al., 2022; Carvalho et al., 2023). A recent
detector comparison study in the USA used this configuration (Starbuck et al., 2024),
however, they also reported reduced performance compared to commercial equipment.
Configuring the AudioMoths to use the highest possible sampling rate, does potentially have
disadvantages. Firstly, the use of a higher sampling rate can result in greater amounts of
self-noise from more frequent SD card writes, which may reduce recording quality.
AudioMoths require ultra-high speed microSD cards, however, U1 (10MB/s write speed)
cards will generate more noise than U3 (30MB/s write speed) cards, especially where higher
sampling rates are used (Pers. comm. Alex Rogers, Open Acoustic Devices). Increased noise
can result in calls being overlooked or less confidently identified by a classifier (Brinklgv et
al., 2023). In this study, only recordings classified with a match ratio of >0.5 were analysed,
with the HFAM having the lowest percentage of recordings exceeding this threshold
(12.33.%) of all the detector types. Secondly, in many cases the greater requirement in
terms of memory for each recording at higher sampling rates (Browning et al., 2017; Gibb et

al., 2019) may necessitate configuring the AudioMoth to record at less frequent
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intervals/for a shorter duration, to fit recordings from the required monitoring period, on to

the memory card.

4.4.3 Species accumulation

The Anabat detectors were found to have accumulated the full species inventory in all
habitats. When two detectors were used, the maximum accumulation was always reached
by the end of the second replicate at the first sub-site (10 nights). This could also typically be
achieved by using a single detector. However, on occasion, the use of a single detector
necessitated further monitoring of the second sub-site most notably within the woodland
habitat for both the Swift and the Express. In cluttered environments such as woodland,
calls may become obscured, and higher frequency calls produced by bats in clutter are more
easily attenuated (O’Keefe et al., 2014). This finding highlights the need for sufficient spatial
coverage in such habitats, even when using commercial detectors. Although the
AudioMoths generally accumulated species more slowly, using multiple detectors was seen
to have a positive impact. Using three AudioMoths enabled the full species inventory to be
recorded within one sub-site at all of the habitats, except for in woodland. The lower
purchase costs of the AudioMoths makes the necessity of using multiple detectors less of a
limitation (Browning et al., 2017), and doing so was shown here to be capable of recording

as many species as the Anabat detectors, over a similar monitoring period.

4.4.4 Habitat effects
The riparian site saw the highest levels of overall activity, with the watercourse and riparian
corridor likely providing plentiful foraging opportunities for a range of species (Smith and

Racey, 2008; Scott et al., 2010). Here, the AudioMoths were not able to record the same
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species inventory as the commercial detectors, and even the use of three units required a
second replicate of recording before no new species were recorded. This finding differs from
the other three habitats, where the use of three AudioMoths was eventually sufficient to
record the same species richness as the other detectors. More heterogeneous, species rich
habitats with high levels of activity, may present more of a challenge for the AudioMoth’s
lower quality microphone. The MEMS microphones are hypothesised to have a lower signal
to noise ratio, therefore, environments with high levels of background noise and
vocalisations from other species, may detract from the recording quality, and the

subsequent ability for bat calls to be confidently identified (Gibb et al., 2019).

The overall detected level of activity was lower at the woodland habitat compared to the
riparian habitat. Bats produce quieter echolocation calls in cluttered environments (Russ,
2012), which can result in fewer detections, and calls which are more challenging to identify.
As such, acoustic methods alone are not always sufficient to produce a complete species
inventory (Lintott et al., 2014). This was shown to impact the PAM protocols required to
record the maximum species richness. A single Anabat Swift was still capable of recording
the maximum observed species richness, however, unlike the other habitats, the use of the
second sub-site was necessary to achieve this. Moreover, more significant differences
between the detectors were found in woodland than any other habitat, with the Swift
typically recording more bat passes. This emphasises that high quality detectors are best

suited to robustly capturing bat activity and richness in these instances, and most efficiently.
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4.4.5 Implications and recommendations

The findings presented here show that the full spectrum, commercial detectors (Anabat
Swift) performed the most efficiently in all four habitats, recording the highest mean species
richness and mean numbers of bat passes each night. Moreover, they were seen to
accumulate the full species inventory at each site more quickly, and often with the use of
fewer units. However, consistent with the findings of Starbuck et al. (2024), the AudioMoths
were seen to be sufficiently capable in certain scenarios, and may serve as a viable
alternative in instances where the purchase of commercial equipment is financially
prohibitive. With adequate replicates, multiple AudioMoths were shown to be able to
accumulate the same species inventory as the Anabat Swift in all habitats except riparian.
For complex habitats, or those where species richness is anticipated to be high, commercial

PAM equipment should still be strongly considered.

The reduced numbers of bat passes recorded by the AudioMoths does indeed suggest a
trade-off between detector cost and recording quality (Gibb et al., 2019), which needs
careful consideration, especially if the analysis is to be partially or fully automated. These
findings suggest a 250kHz sampling rate better preserves recording quality by potentially
reducing self-noise generated by memory card writes. However, although high frequency
bats (lesser horseshoe) were still detected at the lower sampling rate, there may be some
reduction in microphone sensitivity at higher frequencies. Fully understanding the noise
generated by different memory cards and how this is impacted by recording at different
sampling rates will be of vital importance. Moreover, empirical testing of the updated
AudioMoth firmware with configurable frequency triggers will enhance understanding of

how these lower cost units compare to the commercial alternatives.
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Optimising efficient and reliable workflows for the analysis of the large datasets produced
by PAM is also of paramount importance. Manual auditing of these datasets is incredibly
time consuming and remains a subjective process. It is important to acknowledge that the
workflow adopted for this chapter was largely automated, with the degree of manual
auditing undertaken proportionate to the resources available. With multiple classifiers and
pipelines now available to process acoustic data, gaining an understanding of the relative
reliability of these algorithms, and how this is influenced by variation in the quality of
recordings from different detectors (Chapter Five), will be key in ensuring that PAM
produces accurate and reliable data (Browning et al., 2017; Gibb et al., 2019; Sugai et al.,

2019).

Acoustic bat surveys are a vital component in the monitoring and assessment of bat
populations and communities, for scientific research (Jones et al., 2013), informing
conservation action (Barlow et al., 2015), and to ensure legal compliance under protected
species legislation (Collins, 2023). With the ever-expanding availability of acoustic recorders
capable of passively recording ultrasonic bat calls, it is of vital importance that the relative
strengths and limitations of commercial and open-source recorders are fully understood.
Ensuring that PAM protocols are empirically tested, will aid in allowing practitioners to make
informed decisions when selecting the most suitable equipment and protocols for their

specific research aims.
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4.5 Chapter summary

1. The Anabat Swift and Express typically detected a significantly higher species
richness, and significantly more bat passes than the AudioMoths, over five-night PAM
periods (non-temporally restricted).

2. Analysis of the temporal periods in which all detectors were able to record, showed
the AudioMoth to be capable of recording significantly more bat passes than the
Anabat Express, for taxonomic groups which call at lower frequencies (Eptesicus,
Nyctalus and Pipistrellus species).

3. When comparing AudioMoth configurations, a 250kHz sampling rate was found to
detect a significantly higher species richness than a 384kHz sampling rate, and
always detected more bat passes for taxonomic groups where significant differences
were found.

4. Three AudioMoths were able to record the same number of species as one or two
AnaBats in all habitats except riparian, however, species accumulation typically took
longer, and a second sub-site was required in the woodland habitat.

5. The analysis workflow used in this chapter incorporated an automated bat call
classifier. Improving understanding of the reliability of the various classifiers and
pipelines currently available is important to ensuring large PAM datasets can be
analysed efficiently and accurately. The pairwise consensus between commonly used

classifiers is investigated in Chapter Five.
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Figure S4.1: Differences in species richness between detectors. Significant post-hoc pairwise Wilcoxon results displayed
with codes <0.05(*), <0.01(**), <0.001(***). Plots with reduced saturation indicate no significant overall difference.
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Figure $4.4.2: Continuation of figure 4.12.1. Significance codes: <0.05(*), <0.01(**), <0.001(***). Plots with reduced
saturation indicate no significant overall difference.
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CHAPTER FIVE: Comparing automated bat classifier
agreement on Passive Acoustic Monitoring (PAM) datasets
from Anabat Swift and AudioMoth

A bat call recorded by an Anabat Swift, classified by BatClassify as Brandt’s/Whiskered bat
with 61% confidence

As discussed in Chapter Four, Passive Acoustic Monitoring (PAM) is becoming an increasingly
popular means of conducting surveys and monitoring for bats for a range of applications,
including scientific research, and commercial surveys for legislation compliance purposes.
Although PAM protocols have the potential to be standardisable and scalable, they typically
produce vast acoustic datasets, which require considerable resources to analyse manually.
With the continually evolving capabilities of Artificial Intelligence (Al), multiple automated
classifiers now exist to classify specific bat guilds, with the potential to streamline analysis
workflows considerably. However, the reliability of such classifiers is poorly understood,
particularly in how their outputs differ from one another, and how their performance is
impacted by recordings of varying quality from different detectors. This chapter explores the
level of agreement between pairs of commonly used classifiers on two PAM datasets; one
produced using commercial bat detectors (Anabat Swift), and one produced by open-source
acoustic recorders (AudioMoth) using a subset of the recordings collected for Chapter 4.
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5.1 Introduction

As discussed in Chapter Four, Passive Acoustic Monitoring (PAM) is developing rapidly as an
increasingly important ecological method, with applications as diverse as surveying species
presence and monitoring spatiotemporal change in ecological communities (Wrege et al.,
2017; Lopez-Bosch et al., 2022), researching evolution and behaviour (Teixeira et al., 2019),
and detecting anthropogenic threats (Tleimat et al., 2022). As the technology develops and
acoustic detectors become more financially viable, PAM has the potential to become ever
more widely utilised to detect any species that produces sound. Ensuring effective data
management, and conducting robust and reliable analysis of the large datasets created,
however, remain key challenges (Browning et al., 2017; Gibb et al., 2019; Sugai et al., 2019;

Brinklgv et al., 2023).

In the terrestrial environment, bats are the taxonomic group most frequently surveyed and
monitored using PAM (Sugai et al., 2019) (Chapters Two, Three, and Four). The high
sampling rate required for recording ultrasonic sound results in large audio files, which
typically generates larger datasets in terms of memory than those for other taxa (Frick,
2013). In order to reduce memory requirements when recording in the field (thus
maximising survey duration) and facilitate post hoc data storage and analysis, passive bat
detectors typically use a built-in trigger whereby audio is only recorded if it meets specific
ultrasonic parameters consistent with bat echolocation frequencies (Browning et al., 2017;
Chapter Four). This system is common on most major commercial bat detectors, such as the
Anabat Swift (Titley Scientifics, Australia) and the SM4 (Wildlife Acoustics, MA, USA).
Whereas commercial detectors record only when triggered by ultrasonic sound, open-

source devices, such as AudioMoths, are typically configured to record sound continuously
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or on a pre-programmed sleep:wake cycle. As discussed in Chapter Four, however, very
recent developments have involved the launch of amplitude and frequency filters that are
customisable in the configuration application and that function as triggers in a similar way to
those used on commercial devices (Open Acoustic Devices, 2022b). However, the efficiency
of these on-board filters is still very much in beta mode and needs to be empirically, and
robustly, tested (Brinklgv et al., 2023). Until this happens, many users are still opting for
continuous recording (Revilla-Martin et al., 2020; Lopez-Bosch et al., 2022) or use of
sleep:wake cycles (e.g. Bota et al., 2023; Kunberger and Long, 2023; Starbuck et al., 2024),
rather than using largely untested triggered configurations, despite the very large amounts

of data these approaches generate.

Regardless of how recordings are collected in the field, manual processing and analysis of
these large datasets can be incredibly time consuming. Moreover, even when processing is
carried out by skilled technicians, it remains a subjective process, with the opportunity for
user error that is challenging to quantify (Gibb et al., 2019). Artificial Intelligence (Al) has the
potential to revolutionise ecological monitoring for a range of taxa through automated
analysis of large datasets produced by sensors, cameras and acoustic recorders in the field
(Goodwin et al., 2022). These approaches have been applied widely in the marine
environment for cetaceans (Blount et al., 2022), and have the potential to improve both the
efficiency and reliability of automatically identifying animal vocalisation from within audio
recordings, including ultrasonic bat calls (Stowell, 2022). Automated bat classification was
first seen in the 1990s, with early exploration of decision trees and Artificial Neural
Networks (ANNs), with continual development into random forest and deep learning based

approaches (Zamora-Gutierrez et al., 2021). Automated bat classifiers are a key component
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in analysing acoustic data from current national bat monitoring efforts in the UK, including a
pilot study conducted by Forestry England and the Bat Conservation Trust (BCT) (Forestry
England, 2024), and the BCT’s national British Bat Survey (BBatS) (Bat Conservation Trust,

2024).

Bat classifiers typically utilise call parameter thresholds (e.g. amplitude, frequency) and
reference sonograms to assess each sound file. The first stage of this process, often known
as filtering, involves identifying and classifying the relevant sounds based on pre-defined
criteria typically associated with bat calls (Mac Aodha et al., 2018). Where a detector with
an on-board threshold trigger is used, filtering is primarily done in the field, as sounds
clearly outside the specified parameters are not recorded. However, all sounds within range
will be retained, including some ultrasonic sounds not produced by bats, along with false
triggers. Therefore, additional non-bat files may still need to be filtered out and excluded,
either prior to, or during, automated analysis (Brinklgv et al., 2023). Where a detector
without an on-board threshold trigger is used, basic filtering is sometimes undertaken as
part of initial data cleaning to streamline the dataset, before automated analysis
commences. Once any filtering is complete, all remaining calls are identified by algorithms
based on known call parameters for individual species or genus groups and/or using a pre-

verified call library (Gibb et al., 2019).

A number of auto-ID tools are becoming available to process and classify acoustic data.
These are either integrated into analysis software (e.g. Kaleidoscope Pro, BatClassify) or are
standalone pipelines (e.g. BTO Acoustic Pipeline). Some tools are free to access but are

specific to the type of device used to collect the data, for example, BatClassify is available in
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the freeware version of Anabat Insight for files recorded on Anabat devices. Other tools,
such as Kaleidoscope and the BTO Acoustic Pipeline, allow limited amounts of data to be
processed for free regardless of the device used to collect the data, but require the
purchase of a software licence or “credits” for long term access or to process large volumes
of data. However, even where a financial cost is incurred (e.g. approx. 310 GBP for
Kaleidoscope Pro, 435 GBP for the full version of Anabat Insight; January 2024 costings),
auto-ID might still be more financially viable than the technician hours required for manual
analysis of large datasets (Adams et al., 2010). Moreover, auto-ID might also aid the
accessibility and scalability of PAM for bats, especially in resource-limited settings such as in
conservation organisations and for citizen science initiatives such as the BbatS (Bat

Conservation Trust, 2024).

Despite the obvious theoretical benefits of automated analysis, reliable use of this approach
still faces numerous challenges. Although there has been continual development of the
technology and the expansion of the call libraries used as training data, significant
uncertainties remain regarding variation and error rates across different auto-ID classifiers,
and how these are impacted by recording quality. Sound files that contain multiple species
calling simultaneously, or that are complicated by environmental noise (or internal noise
from the detector itself), can make it difficult for auto-ID algorithms to reliably make
classifications (Gibb et al., 2019; Brinklgv et al., 2023). The algorithms can also struggle to
recognise variations in calls of individual bat species, attributed to factors such as habitat
structure, weather conditions, and bat-specific characteristics, including age and sex (Lépez-
Baucells et al., 2019). Taken together, these factors mean that risk of inaccurate

classifications can be high, even if this risk remains unknown (Mac Aodha et al., 2018; Barré
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et al., 2019). Although previous studies have compared classifier performance, these have
largely been undertaken using recordings from North American bat guilds (e.g. Lemen et al.,
2015; Nocera et al. 2019; Goodwin and Gillam, 2021). Rydell et al. (2017) compared the
performance of three classifiers: SonoChiro, Kaleidoscope and BatClassify, on a European
bat guild in Sweden. However, such comparisons are yet to be conducted on British bat
calls, or to test contemporary classification tools, such as the BTO Acoustic Pipeline or
recordings from open-source acoustic recorders, such as AudioMoth. Without a robust
understanding of the error associated with automated workflows, a degree of manual
auditing is still typically considered best practice when applying them to PAM data analysis,

in order to validate the results (Barré et al., 2019; Lopez-Baucells et al., 2019; Collins, 2023).

In this chapter, three automated classifiers are compared for the full spectrum bat data
reported in Chapter Four, which were collected across a range of lowland habitats in the UK
using Anabat Swift detectors and AudioMoth acoustic recorders (some recording at high
frequency and some recording at low frequency). Data from both detector types were
processed through the Bats of Europe auto-ID classifier in Kaleidoscope Pro. For
comparison, auto-ID classifications were also obtained for the AudioMoth data from the
BTO Acoustic Pipeline, and from BatClassify built-in to the freeware version of Anabat
Insight for the Anabat Swift data. Variability in classifier-reported confidence or match ratio
is assessed as a measure of self-reported classifier performance, both overall and then
accounting for possible differences in performance between habitat types. The level of
pairwise consensus in bat ID between classifiers is then assessed to understand when and

how species are being confused, factoring in both taxonomy and habitat.
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5.2 Methods

5.2.1 Acoustic data

The acoustic data used in this study were obtained from a 16-week period of passive
acoustic bat monitoring, carried out across four sites, situated within a 20 km radius in the
south Worcestershire/north Gloucestershire region of the United Kingdom in summer and
autumn 2022 (Chapter Four). The four sites represented different habitat types: riparian,
woodland, wood pasture, and arable. The data at each site were recorded by two types of
full spectrum passive acoustic detectors: Anabat Swift (Titley Scientific, Australia) detectors

and AudioMoth acoustic recorders (Open Acoustic Devices, UK).

All detectors were configured to commence recording 30 minutes prior to sunset and cease
recording 30 minutes after sunrise. The on-board trigger on the Anabat Swift detectors was
used to automatically activate the detector to record bats when detected. At the time of
this fieldwork, the AudioMoth lacked a reliable on-board trigger for bats, therefore, these
detectors were pre-configured to record all sound on a sleep:wake cycle throughout the
night. The detectors were always awake for five seconds at a time; however, the frequency
of these periods was determined by night lengths and memory card capacity. A total of 80

nights of acoustic data was recorded, classified and used for analysis (20 nights * 4 sites).

5.2.2 Bat species classification
Prior to any automated classification, all recordings were initially passed through a broad
frequency filter (“All bats” in Anabat Insight) to assist data storage. This filtered out any

recordings that did not contain sound within the range of 4-300 kHz and that were not
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consistent with bat calls. This removed proportionally fewer recordings for the Anabat Swift
dataset (where the on-board bat trigger had been used) compared with the AudioMoth
dataset (where a sleep:wake cycle was used) such that only recordings with a high feasibility
of containing bat calls remained for onward automated classification. After all filter steps
had been completed, all data recorded by each type of detector were processed through

two automatic classifiers (Table 5.1)

Table 5.1: Automatic classifiers used to process datasets from the two detector models

Detector model Automatic Classifiers
Anabat Swift e BatClassify

e Kaleidoscope Pro

AudioMoth e BTO Acoustic Pipeline
e Kaleidoscope Pro

5.2.2.1 Kaleidoscope Pro

The Bats of Europe classifier (version 5.4.0) in Kaleidoscope Pro (version 5.4.8) was applied
to the acoustic data from both detector models; this is the regional reference call library
appropriate to the location. The classifier gave a single species classification for each sound
file or ‘call sequence’, along with a match ratio (range 0-1; higher = better), calculated from
the number of calls in the sequence that match to those in the reference library for the
assigned species. As per Table 5.1, all recordings were processed using Kaleidoscope Pro,

regardless of the detector type by which they were recorded.
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5.2.2.2 BTO Acoustic Pipeline

The AudioMoth recordings were additionally processed through the BTO Acoustic Pipeline.
The pipeline’s reference library has expanded rapidly since its launch in 2021 and, at the
time of this study, contained high volumes of verified reference calls recorded on
AudioMoth devices (Pers. Comm. Stewart Newson, Developer - BTO Acoustic Pipeline). The
pipeline claimed to feature significant advantages over other classifiers, including the ability
to identify social calls, and unlike the classifier in Kaleidoscope Pro, also featured the ability
to identify multiple species within a single recording, including those from quieter species
with weaker signals. Each classification was assigned a probability value (range 0-1; higher =

better).

5.2.2.3 BatClassify

The Anabat Swift recordings were additionally processed through BatClassify, a classifier
developed by Scott and Altringham (2004), specifically for UK bats in woodland habitats. The
classifier was integrated into the Anabat Insight call analysis software, and accessible in the
freeware version of the software for full spectrum files recorded on Titley Scientific devices.
BatClassify can also identify multiple species of bat calling within a single recording where
applicable (Pers. Comm. Chris Scott, Developer — BatClassify). Moreover, as with the other
classifiers, each classification was assigned a confidence value (range 0-100%; higher =

better).
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5.2.3 Recording selection

All potential bat call recordings were subjected to a screening process prior to any statistical
analysis. Firstly, only those calls with a match ratio (Kaleidoscope Pro), probability (BTO
Acoustic Pipeline), or confidence value (BatClassify) > 0.5 or 50%, were carried forward,
consistent with current recommendations on the analysis of classifier-assisted analysis of
acoustic datasets (Barré et al., 2019; British Trust for Ornithology, 2024). Henceforth,
“confidence” reported as a percentage is used throughout for consistency. Secondly, the
datasets were screened for recordings with multiple classifications. Whilst both BatClassify
and the BTO Acoustic Pipeline can recognise calls from multiple species within a recording,
Kaleidoscope Pro assigns a single overall classification. Therefore, to avoid systematic bias
confounding statistical analysis, any recordings classified as containing calls from multiple
species using BatClassify and the BTO Acoustic Pipeline were removed prior to analysis;
these same files were also removed from the matched Kaleidoscope Pro dataset to ensure
that the datasets remained balanced and symmetrical — and thus directly comparable.
Finally, all recordings with a single species classification from each of the classifiers were
combined and paired recordings were identified (i.e. instances where the same recording
was classified > 50% by both classifiers). These paired recordings (henceforth termed
matched data) were eligible for statistical modelling. The workflow to identify recordings
from the Anabat Swift and AudioMoth datasets is shown in Figure 5.1, illustrated by flow
diagrams adapted from Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) (Page et al., 2021).
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Figure 5.1: PRISMA workflow adapted to illustrate the identification of recordings for statistical analysis, from the two datasets
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5.2.4 Statistical analysis

Statistical analyses were carried out in R 4.2.2 (R Core Team, 2022). Initial analysis explored
the percentages of recordings classified with > 50% confidence, firstly for each of the four
detector/classifier combinations overall and secondly when subdivided into the four habitat
types. The variation in classification confidence for individual species, above the 50%

threshold, was also calculated.

To explore the effects of taxonomic group and habitat on the strength of the matches
between the two classifiers, Cumulative Link Models (CLMs) with logit link functions were
fitted using the matched data. Two CLMs were used, one for each of the two detector types
(Anabat Swift and AudioMoth). The former was calculated on the 13,582 recordings
classified by both Kaleidoscope Pro and BatClassify with > 50% confidence; the latter was
calculated on the 30,574 recordings classified by both Kaleidoscope Pro and BTO Acoustic
Pipeline with > 50% confidence (Figure 5.1). In both cases, models were developed with an
ordinal dependent variable whereby the matched recordings were allocated a value 1-6
determined by match strength (Table 5.2), and two predictors habitat (1=riparian,
2=woodland, 3=wood pasture, 4=arable) and one of six taxonomic groups. The taxonomic
groups were: (1) Pipistrellus comprising Nathusius’ pipistrelle (Pipistrellus nathusii),
common pipistrelle (Pipistrellus pipistrellus) and soprano pipistrelle (Pipistrellus pygmaeus);
(2) Nyctalus/Eptesicus comprising Serotine (Eptesicus seotinus), Leisler’s (Nyctalus leisleri)
and Noctule (Nyctalus noctula) (3) Plecotus comprising brown long-eared (Plecotus auritus)
and grey long-eared (Plecotus austriacus); (4) Myotis comprising Alcathoe (Myotis alcathoe),
Brandt’s (Myotis brantdii), Bechstein’s (Myotis bechsteinii), Daubenton’s (Myotis

daubentonii), whiskered (Myotis mystacinus), and Natterer’s (Myotis nattereri); (5)
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Rhinolophus comprising greater horseshoe (Rhinolophus ferrumequinum) and lesser
horseshoe (Rhinolophus hipposideros); and (6) Barbastella comprising barbastelle
(Barbastella barbastellus). These groups were determined by genus, with the exception of
the combined Nyctalus/Eptesicus grouping. This was partially necessitated because
BatClassify does not attempt to separate the three species, owing to similar call types. The
CLM models were used to calculate predicted probability values for recordings falling within
each of the six categories after allowing for habitat and taxonomic group. Finally,
occurrences of lack of consensus between classifiers were explored to identify the

combinations of species classifications most commonly encountered.

Table 5.2: “Match strength” criteria used to score the degree of consensus for each recording using
any two classifiers for statistical analysis.

“Match

L Anabat Swift AudioMoth
strength”  Criteria

score data (n) data (n)

1 Species do not match 692 2,919

2 Species match, both classifiers 50-74% confident 70 114

3 Species match, one classifier 50-74% confident 1,702 2,941
and the other classifier 275% confident

4 Species match, both classifiers 75%-98% 3,784 5,624
confident

5 Species match, one classifier 75%-98% confident 6,588 12,640
and the other classifier 299% confident

6 Species match, both classifiers >99% confident 746 6,336
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5.3 Results

From a total of 211,145 Anabat Swift recordings, 40,367 (19.12%) were classified by
Kaleidoscope Pro, and 68,258 (32.33%) were classified by BatClassify as containing bat calls

with a confidence value > 50%. Habitat specific details are shown in Table 5.3.

Table 5.3: Numbers of Anabat Swift recordings and percentages of recordings classified with a >50%
match ratio/confidence value, by each of the classifiers, in each habitat.

Kaleidoscope Pro BatClassify
Total recordings > 50% confidence % > 50% confidence %
Riparian 63,083 20,402 32.34 26,060 41.31
Woodland 28,603 6,477 22.65 15,966 55.82
Wood Pasture 40,027 10,779 26.93 17,224 43.03
Arable 79,432 2,709 341 9,007 11.34

From a total of 258,731 AudioMoth recordings, 39,701 (15.35%) were classified by
Kaleidoscope Pro, and 84,357 (32.61%) were classified by the BTO Acoustic Pipeline as

containing bat calls, with confidence value > 50%. Habitat specific details are shown in Table

5.4.
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Table 5.4: Numbers of AudioMoth recordings and percentages of recordings classified with a >50%
match ratio/confidence value, by each of the classifiers, in each habitat.

Kaleidoscope Pro BTO Acoustic Pipeline

Total recordings > 50% confidence % > 50% confidence %
Riparian 94,438 24,759 26.22 50,142 53.10
Woodland 43,387 4,625 10.66 14,199 32.73
Wood Pasture 51,001 7,521 14.75 14,279 28.00
Arable 69,905 2,796  4.00 5737 8.21

At this initial screening stage it was evident that both the BTO Acoustic Pipeline and
BatClassify classified higher percentages of the recordings in their respective datasets with a
confidence value > 50%, than did Kaleidoscope Pro. This trend was evident across all

habitats.

5.3.1 Classifier identification confidence

The mean confidence values (> 50%) for each species/species group, for each classifier, are
plotted in Figure 5.2. Species in the genus Rhinolophus were the most confidently classified
species (lesser horseshoe for Kaleidoscope Pro and BatClassify, greater horseshoe for the
BTO Acoustic Pipeline). Conversely, species in the genus Myotis tended to be classified with
the least confidence, with the BTO Acoustic pipeline not classifying any recordings with >

50% confidence for Alcathoe bat and Bechstein’s bat.
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5.3.2 Consensus between classifiers

5.3.2.1 Anabat Swift

A total of 13,547 Anabat Swift recordings was classified as containing bat calls with a
confidence value > 50% by both classifiers (matched data). The percentages of recordings
that were classified with 250% confidence using Kaleidoscope Pro that were also classified
as a single species recording with 250% confidence using BatClassify, and vice versa are
shown in Table 5.5.

Table 5.5: The percentages of classifications made > 50% confidence by each classifier used on the
Anabat Swift data, that were present in the dataset for both classifiers

Total recordings No. recordings present %
(= 50% confidence) in both datasets
BatClassify 51,947 13,582 26.15
Kaleidoscope Pro 35,661 13,582 38.09

The optimal CLM (x2=6465.3, df=23, P<0.001) included both factors of habitat and
taxonomic group, and the interaction term between habitat and taxonomic group, all of
which were statistically significant (P<0.001 in all cases). The model was a substantially
better fit (AIC=64,513) than the null model (AIC=70,933) (Burnham and Anderson, 2002).
The mean predicted probabilities of match strength between the two classifiers, calculated
by the model for each habitat are shown in Figure 5.3, and for each taxonomic group in
Figure 5.4. The predicted probabilities calculated for each interaction between the factors

are shown in Figure 5.5.
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Figure 5.3: Mean probabilities predicted by the model of obtaining each match strength score
(with a higher score indicating a stronger match), within each habitat using the Anabat Swift
dataset (see Table 5.3 for definitions of match strength scores). Error bars show SEM (+1se).
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The significance of the factor of habitat (Figure 5.3), appeared to be driven by differences in
the match strength scores most likely to be obtained in the arable and riparian habitats, as
opposed to the wood pasture and woodland habitats. In the latter two habitats, a strong
match score of 5 was predicted to be most likely, with a mean probability in wood pasture
of 0.49 (+0.10 SEM), and a mean probability in woodland of 0.43 (+0.11 SEM). On the other
hand, in the arable and riparian habitats no single score was predicted to be most likely
obtained. Moreover, obtaining a score of 1, indicating disagreement between the classifiers
was predicated to be comparatively more likely than in the woodland and wood pasture

habitats, particularly in the riparian habitat (0.31 + 0.16 SEM).

The classifiers were much less likely to agree on recordings involving Myotis classifications,
compared to the other five taxonomic groups (Figure 5.4). A score of 1, indicating no match,
was predicted to be the most likely score obtained for Myotis classifications, with a mean
probability of 0.80 (+0.08 SEM). For the other taxonomic groups, with the exception of

Plecotus, a strong match score of 5 was predicted as being the most likely to be obtained.

When considering the interaction between the factors (Figure 5.5), the predicted probability
of obtaining the lowest match strength score of 1 (no agreement), was high for Myotis
recordings in all habitats (ranging from 0.61 in woodland to 0.96 in riparian). Conversely, the
highest match strength score of 6 was predicted to be most likely to occur between
classifiers on recordings involving classifications in the Rhinolophus taxonomic group in
arable habitat (0.32), with this interaction having highest probability of both classifiers

agreeing with 299% confidence.
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5.3.2.2 AudioMoth

A total of 30,574 AudioMoth recordings was classified as containing bat calls with a
confidence value > 50% by both of the classifiers (the matched data). The percentage of
recordings that were classified with >50% confidence using Kaleidoscope Pro that were also
classified as a single species recording with 250% confidence using the BTO Acoustic

Pipeline, and vice versa are shown in Table 5.7.

Table 5.6: The percentages of classifications made > 50% confidence by each classifier used
on the AudioMoth data, that were present in the dataset for both classifiers

Total recordings No. recordings present %
(= 50% confidence) in both datasets
BTO Acoustic Pipeline 75,912 30,574 40.28
Kaleidoscope Pro 34,622 30,574 88.31

The optimal CLM (x2=3877.1, df=15, P<0.001) included both factors of habitat and
taxonomic group, and the interaction term between these two factors. Both factors and the
interaction term were statistically significant (P<0.001 in all cases). In this dataset,
recordings involving Barbastella or Plecotus classifications were found to occur too
infrequently for meaningful statistical analysis, so were therefore omitted. The model was a
better fit (AIC=175,626) than the null model (AIC=179,473) (Burnham and Anderson, 2002).
The mean predicted probabilities of match strength between the two classifiers calculated
by the model for each habitat are shown in Figure 5.6, and for each taxonomic group in
Figure 5.7. The predicted probabilities calculated for each interaction between the factors

are shown in Figure 5.8.
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In contrast to the Anabat Swift dataset, no single match strength score was predicted to be
considerably more likely to be obtained, in any of the habitats (Figure 5.6). However, a lack
of agreement (match strength score 1) was seen to be the most likely outcome in the
riparian (0.28 + 0.09 SEM) and woodland habitats (0.30 = 0.16 SEM), whereas in the arable
habitat a strong match, scoring 5 or 6, was predicted to be the most likely outcome (5 = 0.31

+0.05 SEM, 6 =0.26 £ 0.14 SEM).

Classifiers generally did not agree on recordings involving classifications in the Myotis
taxonomic group (Figure 5.7), where obtaining the lowest match strength score of 1 (species
do not match), was predicted to be the most likely outcome, with a mean probability of 0.49
(= 0.07 SEM). Conversely, the maximum match score of 6 (both classifiers agree with 299%
confidence), was seen to be the most likely outcome (0.45 + 0.16 SEM) where Rhinolophus

classifications were concerned.

Finally, when considering the interactions between factors (Figure 5.8), disagreement
between classifiers was predicted to be the most likely outcome for Myotis classifications,
particularly in woodland habitat (0.66). Classifier disagreement was also predicted to be the
most likely outcome for the Nyctalus/Eptesicus group in woodland (0.47), and for the
Rhinolophus group in the riparian habitat (0.42). In contrast, the maximum match strength
score of 6 was predicted to be the most likely outcome for recordings involving Rhinolophus

species in the arable (0.65) and woodland (0.75) habitats.
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5.3.3 Species confusion

5.3.3.1 Anabat Swift

Analysis of the lack of consensus between BatClassify and Kaleidoscope Pro found species in
the genus Myotis to be the most common cause of disagreement. Instances where
recordings were classified as Brandt’s/Whiskered bat by BatClassify, but as Daubenton’s bat

by Kaleidoscope Pro, accounted for 49.93% of all instances of confusion (Figure 5.5).
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Figure 5.9: Species classifications most commonly involved in a lack of consensus between classifiers in
analysing Anabat Swift recordings (origin of arrow = BatClassify classification, tip of arrow = Kaleidoscope Pro
classification).

5.3.3.2 AudioMoth

Analysis of species most commonly confused when a lack of consensus was observed
between classifiers was predominantly driven by instances where a recording was classified
as common pipistrelle by the BTO Acoustic Pipeline, but as a soprano pipistrelle by
Kaleidoscope Pro (53.1% of the recordings for which confusion was observed). Additionally,
there were cross-genus confusions, most prominently where recordings were classified as

either common or soprano pipistrelle by the BTO Acoustic Pipeline, but as noctule by
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Kaleidoscope Pro (12.09% and 16.86% of the recordings for which confusion was observed,
respectively). All other species confusions were minor (<5% of recordings for which

confusion was observed) (Figure 5.6).
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Figure 5.10: Species classifications most commonly involved in a lack of consensus between classifiers
in analysing AudioMoth recordings (origin of arrow = BTO Acoustic Pipeline classification, tip of
arrow = Kaleidoscope Pro classification).

5.4 Discussion

Notable differences were observed in the overall performance of the different classifiers. In
both datasets, Kaleidoscope Pro classified fewer recordings above the confidence threshold
than either BatClassify (Anabat Swift), or the BTO Acoustic Pipeline (AudioMoth). There
were similarities in the habitat and taxonomic group effects in both datasets, with a lack of
consensus predicted to be most likely to occur in riparian habitat, and for recordings
potentially containing calls from the genus Myotis. The classifications most frequently
confused when there was a lack of consensus were predominately species within the same

genus, for both the Anabat Swift (Myotis) and AudioMoth (Pipistrellus) datasets.
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5.4.1 Classifier confidence

In order to minimize false positives in automated classification workflows Barré et al. (2019)
recommend discarding any recordings that do not exceed a confidence threshold of > 50%.
This approach is adopted in the recommendations for auditing results from the BTO
Acoustic Pipeline (British Trust for Ornithology, 2024). However, in this study, the
proportion of recordings not meeting this threshold was seen to vary widely, depending on
the classifier used. Overall, Kaleidoscope Pro classified fewer of the recordings above the
threshold (19.12% in the Anabat Swift dataset, 15.35% in the AudioMoth dataset) than
either BatClassify (32.33%) or the BTO Acoustic Pipeline (32.60%). The metrics used to
define confidence varies between classifiers (Lemen et al., 2015). The value assigned by
Kaleidoscope Pro is calculated based on the number of calls (which Kaleidoscope terms
‘pulses’) within the recording that match the classification, and is thus technically a match
ratio. However, because a single species classification is assigned for each recording, the
match ratio has the potential to be impacted by the presence of calls from multiple species.
For example, all calls of the classified species may be considered a match for one specific
species, but these may account for <50% of the calls in the recording, such that the match

ratio would also be <50%.

The mean confidence values for each species classification made by Kaleidoscope Pro were
similar in both the AudioMoth and Anabat Swift datasets, with lesser horseshoe, barbastelle
and soprano pipistrelle classifications being associated with the highest mean confidence
values. On the AudioMoth dataset, the BTO Acoustic Pipeline was most confident on these
same species, as well as greater horseshoe. However, further manual auditing conducted in

Chapter Four found all greater horseshoe classifications to be false positives. The affected
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recordings typically contained noise around 80 kHz, within the peak frequency range of
greater horseshoe echolocation calls. Greater horseshoe classifications were made by all
classifiers, in both datasets, reaffirming the importance of a degree of manual auditing in
analysis workflows, irrespective of detector type, classifier type, or reported confidence
values. Species in the genus Myotis were among the least confidently classified in both
datasets by all classifiers, likely driven by similarities in call parameters, and peak frequency

overlaps with other genera, such as Pipistrellus (Gibb et al., 2019).

5.4.2 Habitat and taxonomic effects

Within the Anabat Swift dataset the significance of habitat in determining the resulting
predicted classifier match strength would appear to be driven by an increased chance of
strong agreement in woodland and wood pasture habitats compared to the arable and
riparian habitats. The principal drawback of conducting pairwise analysis on unverified field
recordings is that it is impossible to determine if one classifier is performing more accurately
than the other (Lemen et al., 2015). However, BatClassify was originally developed for UK
bats in woodland (Titley Scientific, 2024), and therefore may more confidently classify
recordings in these types of habitats, resulting in the higher probability of obtaining a

stronger classifier match score.

The significant effect of habitat in both datasets was seen to be subtle, particularly for the
AudioMoth dataset. Here, no single match strength score was predicted to be much more
likely to be obtained, in any of the habitats. In woodland for example, a score of 1 indicating
no match, and a score of 6 indicating the strongest possible match, were equally likely

outcomes. However, the arable habitat was seen to be where strongest matches were most
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likely, and disagreement least likely. This habitat was the most homogeneous and open of
the four habitats surveyed. This lack of habitat complexity and clutter is likely to increase
detectability and improve the overall quality of the recordings produced by the AudioMoth
MEMS microphone (MacAodha et al., 2018), resulting in better classifier performance, and

an increased likelihood of consensus.

In terms of the effect of taxonomic group on predicted classifier match strength, there were
notable differences between the datasets and respective pairs of classifiers. Calls attributed
to the genus Myotis are notoriously challenging to classify to species level, even by skilled
practitioners (Vaughan et al., 1997; Russ, 2012). The findings presented indicate that this is
also the case for automated analysis, with the classifiers found to be highly likely to disagree
on recordings involving Myotis species classifications in both datasets. In the Anabat Swift
dataset this was largely driven by recordings classified as Brandt’s/Whiskered bat by
BatClassify being classified as Daubenton’s bat by Kaleidoscope Pro, likely as a result of
interspecific overlap in call parameters (Rydell et al., 2017). Moreover, Kaleidoscope Pro
classified some recordings in the dataset as Alcathoe bat, a nationally rare Myotis species,
which was not classified by BatClassify. Given that all study sites were well outside the
known distribution for this species in the UK, it is highly unlikely that Kaleidoscope Pro was
performing accurately in this instance. Recordings classified in the Rhinolophus and
Pipistrellus taxonomic groups were predicted to produce the strongest matches between
classifiers in both datasets. Rhinolophus calls have distinctive call shapes and high
frequencies, and were, therefore, largely agreed upon by the classifiers, despite being short
range and prone to attenuation. Pipistrellus calls are also distinctive and unlikely to overlap

with other taxonomic groups in terms of call parameters (Russ, 2012).
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5.4.3 Species involved in a lack of classifier consensus

Within both datasets the pairs of species involved most frequently in cases of disagreement,
were in the same genus. Within the Anabat Swift dataset, confusion between
Brandt’s/Whiskered bat and Daubenton’s bat, both in the genus Myotis, accounted for
almost half of the occurrences of confusion between BatClassify and Kaleidoscope Pro.
These findings are consistent with those of previous studies (Rydell et al., 2017; Thomas and
Davison, 2022) which found Kaleidoscope Pro and/or BatClassify were unreliable in
identifying Myotis calls to species level. Similarly, within the AudioMoth dataset, confusion
between common pipistrelle and soprano pipistrelle, both in the genus Pipistrellus,
accounted for over half (53.1%) of all occurrences of confusion. Although calls from the two
species are typically distinguished by differences in peak frequency, plasticity of Pipistrellus
calls can vary substantially, depending on environmental or behavioural factors (Montauban
et al., 2021). This can create considerable overlap in characteristic call frequencies for the

two species, which can lead to classifier confusion.

5.4.4 Implications and recommendations

These findings support the recommendations of previous work; automated classifiers
should still be used with caution, and if possible, in conjunction with manual auditing by
skilled technicians (Russo and Voigt, 2016; Rydell et al., 2017; Brabant et al., 2022; Solick et
al., 2024). Although adopting a confidence threshold into analysis workflows can aid in
reducing false positives, they will not be eliminated altogether. For applications intolerant to
error, manual auditing will still be required, for example in establishing the

presence/absence of particular species for impact assessments (Barré et al., 2019). Despite
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improvements in classifier accuracy in recent years with the expansion of reference call
libraries, the pairwise disagreement between widely used classifiers on the same recordings
shown here highlights that there remains the potential for misidentification. With the
increasingly wider use of open-source acoustic recorders such as AudioMoth, consideration
also needs to be given to the relative quality of recordings obtained by different devices.
The call libraries used to train classifiers typically contain example calls of known species,
and there may be a tendency to select high quality calls for inclusion in the library (Lemen et
al., 2015). These may not relate well to recordings from complex habitats or lower quality
microphones, resulting in misidentification. However, the BTO Acoustic Pipeline was seen
here to classify more recordings over the confidence threshold than Kaleidoscope Pro on
AudioMoth recordings, perhaps indicating how training data that relate well to the
recordings being classified can yield more reliable results. Moreover, with the capacity to
apply PAM techniques to a range of taxa, including terrestrial mammals, birds, and insects,
establishing comprehensive reference libraries for these taxonomic groups will be vital, as

PAM is largely focused on bats in temperate regions (Sugai et al., 2019).

As the technology available to conduct PAM for bats continues to evolve, producing
increasingly large datasets from extended periods of recording and multiple detector
networks, ensuring that the analysis of these acoustic data remains reliable is key. As
discussed in Chapter Four, the requirement to undertake PAM for bats is becoming
increasingly more extensive. For example, in the UK, the latest edition of the Bat
Conservation Trust’s Bat Survey Guidelines (Collins, 2023), increased the required level of
PAM effort considered sufficient to assess the baseline conditions for bats in ecological

impact assessments. Automated classification of bat calls has the potential to improve the
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efficiency of analysis workflows, saving substantial resources. However, standardising these
workflows remains a major challenge. Complexities include the continually expanding array
of classifiers that are available, and variation in the quality of the recordings produced by
different types of acoustic recorders (Brinklgv et al., 2023). Therefore, further work to
estimate classifier error rates across different detector/classifier combinations would be
beneficial, particularly for practitioners when deciding which classifiers to use, based on

their sites, target species, and PAM devices.

5.5 Chapter summary

1. Kaleidoscope Pro classified fewer recordings above the confidence threshold than
either BatClassify (in the Anabat Swift dataset) or the BTO Acoustic Pipeline (in the
AudioMoth dataset.

2. The effects of habitat and taxonomy on classifier consensus were similar for both
datasets, with the most disagreement between classifiers predicted to occur in
riparian habitats, and/or where recordings contain potential Myotis calls.

3. The species classifications involved in cases of classifier disagreement differed
between datasets but were most frequently between species belonging to the same

genus.
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CHAPTER SIX: Conclusions

At home on the family smallholding, Hinton-on-the-Green, Worcs. — an invaluable field site
for testing equipment and data collection

This chapter synthesises the common themes and summarises the scope of the research
from each of the preceding chapters. The key findings, original contributions to knowledge,
and implications for applied ecological practice are outlined and discussed, along with

potential avenues for future research.
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6.1 Summary of research

The research contained within this thesis aimed to evaluate the effectiveness of applying
digital technology to passive ecological surveying and monitoring techniques for bats. The
chapters have built upon one another conceptually. The introduction (Chapter One)
considered the requirements and needs for ecological surveying and monitoring, in light of
the threats currently faced by biodiversity globally, and in the United Kingdom, specifically.
Traditional and novel survey and monitoring techniques currently used in the region were
outlined, initially for mammals more generally, and for bats in additional detail. The current
gaps in knowledge regarding their efficacy were identified, to provide context for the thesis
aims and objectives. In the first data chapter, Chapter Two, the impact of spatiotemporal
and abiotic factors on PAM data was investigated. The strengths and caveats of PAM were
then investigated further, by comparing the effectiveness of PAM in relation to active
transect surveys (Chapter Three). These findings were built upon in Chapter Four to further
explore optimal survey protocols for PAM, using a large dataset analysed using a
predominantly automated workflow. Finally, the reliability of automated workflows to

analyse the large datasets produced by PAM, was investigated further (Chapter Five).

Chapters Two and Three primarily used secondary data, collected at 14 sites across southern
England between 2015 and 2017. Chapter Two used 3,242 hours of Passive Acoustic
Monitoring (PAM) data while Chapter Three used 2,349 hours of PAM data; in both cases
these were supplemented by data from active walked transect surveys. Chapters Four and
Five used primary PAM data, collected from four sites across south Worcestershire and

north Gloucestershire over 112 nights between June and October 2022 (Figure 1.12).
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6.2 Synopsis of research findings

Continual advances in digital technology, and the development of devices to passively
monitor wildlife, have rapidly expanded the range of techniques that can be used in
ecological surveying and monitoring (Besson et al., 2022). For bats, these include an
expanding selection of open-source and commercial PAM devices, which as their capabilities
improve and costs reduce, are (1) accessible to a wider range of practitioners (Browning et
al., 2017), (2) able to be used in greater numbers if required to maximise efficacy (Hill et al.,
2017), and (3) capable of being applied to an increasing range of taxa to record wider
ecological soundscapes (Middleton et al., 2023). Consequently, understanding the strengths
and caveats of novel PAM equipment and field protocols, and how they compare to more
traditional and established means of surveying and monitoring, are priority research areas,

particularly for cryptic, crepuscular, or nocturnal taxa such as bats.

The overarching aims of the research contained in this thesis were to empirically test,
critique and evaluate: (1) the relative benefits and caveats of methods used in the field for
collecting optimal monitoring data; (2) how different survey methods can contribute to
furthering knowledge of species ecology and behaviour; and (3) how survey methods can be
effectively applied in ecological research and conservation practice. In the following
sections, for each chapter, the background is outlined and the main findings presented
diagrammatically to illustrate the associations between findings within each chapter and
how these link to the next chapter where appropriate. The methodological considerations
for each chapter are summarised, the key results are evaluated in relation to the research

aims and, original contributions to knowledge are highlighted.
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6.2.1 Chapter Two

Chapter Two tested the effects of spatiotemporal and abiotic factors on the bat activity
recorded by passive, fixed-point detectors. This chapter aimed to investigate knowledge
gaps pertaining to factors which potentially influence local foraging and commuting activity.
Temporal activity patterns for overall bat activity, and that of individual species and genera
were examined, along with the effect of moonlight (Adams et al., 1994; Negraeff and
Brigham, 1995), and the influence of other weather-related abiotic factors (Erickson and

West, 2002). The key findings from this chapter are summarised in Figure 6.1.
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This chapter drew primarily on secondary data to examine how abiotic factors can influence
the data collected. The findings from this chapter demonstrated a number of potential
limitations of passive bat surveying, demonstrating how the spatiotemporal distribution of
bat activity, and therefore detectability, can be influenced by light (in this case moonlight),
rainfall, and windspeed. On the other hand, the temporal variation in activity, both overall
and for individual genera, highlighted the benefit of being able to record activity on an
automated basis for full, and consecutive nights. The original contributions from this

chapter are outlined in Box 6.1.

Box 6.1: Original contributions to knowledge - Chapter Two

The activity levels of British bats are negatively impacted by moonlight when
unobscured by cloud cover

The publication arising from this chapter (Perks and Goodenough, 2020) has received

19 citations as of August 2024.

The phenomenon of “lunar phobia” in bats was largely considered to affect only
frugivorous species in tropical regions (Saldana-Vazquez and Munguia-Rosas, 2013),
however, it had additionally been observed in temperate bats in North America
(Adams et al., 1994). Despite previous work on mainland Europe finding no evidence
of aversion to moonlight by bats (Negraeff and Brigham, 1995; Hecker and Brigham,
1999), moonlit nights were seen here, in the first study undertaken in the UK, to be
associated with lower levels of bat activity. The extent of cloud cover was also seen to
be a contributing factor, with activity levels being lowest when the moon was

unobscured by cloud.
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6.2.1.1 Methodological considerations
Weather data sourced retrospectively from records: the weather data used in this study
were sourced as hourly records from the nearest available weather station to each site,

rather than being collected directly from each field site in real time.

Call analysis conducted manually from zero crossing data: manual auditing and
classification of bat calls remains a subjective process. At the time of publication, recording
in zero crossing format was widely undertaken in practice, and remains a popular option,

although higher quality full spectrum recordings arguably facilitate more robust analysis.

6.2.2 Chapter Three

Chapter Three built upon the findings of Chapter Two relating to the non-uniform
occurrence of bats in time and space. The chapter compared the efficacy of two acoustic bat
survey types: automated fixed-point surveys, which cover large temporal periods but are
limited spatially, and walked transect surveys, which are more restricted temporally but
cover a greater spatial extent. Two datasets were examined, one comprising concurrent
data collected via the two methods within the same two-hour window at the same site, and
one comprising these same data, and additional fixed-point data from an extended time
period (akin to the survey frameworks and sample effort in many commercial bat surveys,
for example at development sites). At the time of publication, previous published work
comparing acoustic bat survey methods had focused on comparing automated fixed-point
detection with driven transects in North America (Tonos et al., 2014; Braun de Torrez et al.,

2017a). The key findings from this chapter are summarised in Figure 6.2.
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Figure 6.6.2: A summary of the main results from Chapter Three

Chapter Three drew primarily on secondary data, to examine the spatiotemporal strengths
and limitations of the two most extensively used acoustic bat survey methods undertaken in

the UK and in other regions globally. The findings of the method comparison in this chapter
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highlighted the strengths of automated fixed-point surveys, finding that some species
(lesser horseshoe, Daubenton’s bat) would not have been recorded if only transect surveys
were used. However, each of the methods tested had different strengths and caveats, with
the results of the walked transect surveys demonstrating how much activity is missed per
hour by only recording from a fixed location. This was seen to be particularly important for
brown long-eared bats, which echolocate sparingly with low energy calls, and were seen to
be recorded significantly more frequently in the transect surveys. Taken together, these
findings reinforce the importance of using a combination of acoustic survey methods, to
determine reliable baseline assessments for bats. The original contributions from this

chapter are outlined in Box 6.2.

Box 6.2: Original contributions to knowledge - Chapter Three

Walked transect and automated fixed-point surveys should be used together to
establish baseline ecological conditions for bats.

At the time of publication, previous work comparing active and passive methods for
conducting bat surveys was confined to North America and the comparison of driven
transects over large areas, and passive surveys (Tonos et al., 2014; Braun de Torrez et
al., 2017a). This chapter demonstrated that, for a European bat guild, a combination
of active and passive surveys is optimal: although passive surveys record more species
overall, active walked transect surveys record more species per hour, including some
(e.g. brown long-eared) which were infrequently detected in the passive surveys. The
publication arising from this chapter was cited in the latest edition of the Bat
Conservation Trust’s Good Practice Guidelines (Collins, 2023) in support of continuing
a requirement for active surveys in assessing baseline conditions for bats as part of

ecological impact assessments.
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6.2.2.1 Methodological considerations

Length of walked transects not standardised: The transects walked at each site varied in
length. They were always walked by two surveyors, but this could be each walking a
separate transect within a larger site, or both walking the same transect in opposite
directions. This is typical of industry standard methodology (transects are not
standardised), and these data were collected in this context. However, precision could have
been improved by ensuring transects were as consistent as possible across the different

sites.

Call analysis conducted manually from zero crossing data: see section 6.2.1.1 above.

6.2.3 Chapter Four

Chapter Four extended the work on the efficacy of PAM techniques for bats, undertaken in
Chapters Two and Three, by examining a range of PAM protocols in four distinct habitats.
With the expanding range of PAM technology currently available, three types of devices
were empirically compared: commercial full spectrum detectors (Anabat Swift), commercial
zero crossing detectors (Anabat Express), and open-source acoustic loggers (AudioMoth).
The development of open-source acoustic loggers, such as AudioMoth (Hill et al., 2017), in
recent years, which are available to purchase at a fraction of the cost of commercial
equipment, has created opportunities for a wider range of users to undertake PAM, along
with making protocols which utilise multiple devices, more financially viable. However,
knowledge gaps around usability, configuration, and recording quality compared to
commercial equipment remain (Browning et al, 2017; Gibb et al., 2019). The key findings

from this chapter are summarised in Figure 6.3.
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Figure 6.6.3: A summary of the main results from Chapter Four
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Chapter Four built on the preceding two chapters via the collection of new primary data, to
look specifically at passive bat monitoring protocols in practice. The findings from this
chapter demonstrated how equipment choice and protocol design can impact the data
collected by PAM. Using commercial detectors with automatic bat triggers, particularly in
full spectrum, was seen to have a number of benefits. They recorded more activity and
accumulated species inventories efficiently, yet their principal caveat lies in their purchase
price. However, the intriguing findings from with the AudioMoth recording periods, suggest
that using an open-source full spectrum device, could perform as well, if not better than a
commercial zero crossing detector, if they were configured to record continually or to
trigger reliably. Similarly, where the aim of PAM is to establish species presence, using
multiple AudioMoths across the area of interest, was seen here to be effective. Arguably,
the most important drawback to all the protocols evaluated was the large amounts of data
produced. Manually analysing such datasets can be impractical, particularly when PAM has
been undertaken for extended time periods and often with multiple devices. In these
instances, analysis is commonly conducted at least partially, with the use of a classifier

(Chapter Five). The original contributions from this chapter are outlined in Box 6.3.
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Box 6.3: Original contributions to knowledge - Chapter Four

AudioMoth acoustic recorders are capable of performing similarly or better than
commercial zero crossing bat detectors for species that call at lower frequencies.

It has been speculated that the lower quality micro-electromechanical systems
(MEMS) microphones used in AudioMoth devices (Gibb et al., 2019) may result in
fewer bat detections compared to commercial equipment. To the author’s knowledge,
this was the first comparison of AudioMoth with both full spectrum and zero crossing
Anabat detectors. When recording at the same time, few differences were found in
the recorded activity between the AudioMoth and zero crossing detector. Moreover,
the AudioMoth recorded significantly more bat passes per hour for all bats, and for

common pipistrelle, soprano pipistrelle and Nyctalus/Eptesicus in riparian habitat.

Using multiple AudioMoth devices can serve as a viable alternative for assembling

species inventories in woodland, wood pasture and arable habitats

The substantially lower purchase cost of AudioMoths over commercial equipment
makes the use of multiple devices across a site a viable option for many practitioners
(Hill et al., 2017). This research found that in doing so, even without continuous or
triggered recording, multiple (3) AudioMoths were able to record the same species
inventory as commercial equipment in three of the four habitats tested (the exception

being riparian).

6.2.3.1 Methodological considerations
Analysis of recordings was conducted using a workflow that incorporated an automated
bat classifier: PAM using multiple detectors over extensive time periods, inherently

produces large datasets. Here, a threshold of self-reported classifier confidence was set at
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50% to minimise false positives. Classifications of notable or less abundant species were
manually audited, along with a random sample of recordings classified as more
common/abundant species, to verify classification feasibility. Although classifiers should not
be solely relied upon, manual auditing datasets of this size is typically impractical, and

remains a subjective process.

6.2.4 Chapter Five

Chapter Five investigated the key methodological consideration raised in Chapter Four,
regarding the reliability of PAM analysis workflows which include automated classification of
bat calls. Gaps in knowledge concerning error rates of classifiers have previously resulted in
calls for caution in their use (Russo and Voigt, 2016; Rydell et al., 2017). Despite expansions
in call libraries and subsequent improvements in classifier accuracy, uncertainty remains,
especially with the recent necessity to apply them to lower quality recordings from open-
source acoustic loggers, such as AudioMoth (Gibb et al., 2019; Brinklgv et al., 2023). In this
chapter, the two full spectrum datasets from Chapter Four, one recorded by Anabat Swifts,
and the other by AudioMoths were used to test pairwise classifier agreement. All data had
been classified by Kaleidoscope Pro for analysis in the previous chapter. Additionally, the
Anabat Swift data were classified by BatClassify, the classifier included in the Anabat Insight
analysis software. The AudioMoth data were additionally classified by the BTO Acoustic
Pipeline, a contemporary classifier, with a proportion of its training data recorded on

AudioMoth devices. The key findings from this chapter are summarised in Figure 6.4.
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Figure 6.6.4: A summary of the main results from Chapter Five

Chapter Five, built on the preceding chapter to consider the analysis of the large acoustic
datasets generated in the field. This chapter found pairwise disagreement between
commonly used classifiers, regardless of the device on which the recordings were produced.
Therefore, although their use can potentially streamline analysis workflows, they still cannot

be relied on exclusively. The original contributions from this chapter are outlined in Box 6.4.
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Box 6.4: Original contributions to knowledge - Chapter Five

Pairwise disagreement occurs between contemporary bat classifiers, but is largely
restricted to classifications belonging to the same genus.

Consistent with previous work (Lemen et al., 2015), pairwise disagreement was
observed between commonly used classifiers, on recordings of European bats,
produced by both commercial and open-source equipment. However, in both cases,
the pairs of classifications most frequently involved in instances of disagreement were

from within the same genus and had similar call types.

6.2.4.1 Methodological considerations

The true species identities of the recordings were not known: the recordings used in this
chapter were collected passively in field conditions, therefore, the species of bat calling in
each recording could not be known with complete certainty. The pairwise analysis between
classifiers was useful in identifying instances where the classifiers were most likely to be
inaccurate, however it remains possible that one classifier could have always performed

perfectly, with the disagreement being caused by the other.

6.4 Implications and recommendations for ecological research, policy and practice

It has been widely acknowledged that solutions to the current biodiversity crisis need to be
based on robust and accessible evidence (Pullin et al., 2004; Field et al., 2005; Mihoub et al.,
2017). The collection of field data to support Evidence-based Conservation (EBC) can be

difficult for some taxa (e.g. nocturnal bats), as a result of their life history and behavioural
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traits. As introduced in Chapter One, technological approaches to ecological surveying and
monitoring have the potential to scale up mammal recording at local and national scales.
The implications and recommendations for policy, practice and future research from the key

findings of the research presented in this thesis, are set out in Table 6.1.
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Table 6.1: Implications and recommendations for policy, practice, and future research.
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Thematic
area

Finding

Implications for policy and practice

Recommendations for policy and
practice

Future research

Bat behaviour
and
detectability

Bats are not spatially or
temporally uniformin
occurrence owing to
niche partitioning
between species, and
avoidance of certain
abiotic conditions, or
spatial shifts in activity
in response.

Reiterated the importance of
conducting whole night surveys to

capture temporal variations in activity.

Moreover, these findings
demonstrated the importance of
additionally conducting surveys over
multiple nights, such that any nights
with sub-optimal abiotic conditions,
and therefore reduced activity, can be
accounted for.

Passive acoustic surveys should be
undertaken across full nights where
possible to ensure peak activity times
for all species are covered (Perks and
Goodenough, 2020; Chapter Two).

Further investigate the effects of
moonlight on temperate bat
activity by concurrently recording
light levels and bat activity in the
field to build upon Chapter Two.
The potential for spatial shifts in
activity could also be explored by
comparing recordings in sheltered
and exposed areas.

Acoustic bat

Automated surveys are

With the increasing capabilities of

A combination of passive and active

See below recommendations for

survey an efficient means of passive acoustic technology, some acoustic surveys should continue to investigation into using
techniques recording species research has suggested that more be used when establishing baseline AudioMoths as multi-detector
inventories but may labour-intensive, active transect conditions for bats in ecological networks to increase the spatial
miss spatial differences  surveys are now inferior (Teets et al., impact assessment contexts, as coverage of passive surveys.
in activity. 2019). However, spatial trends in detailed in the latest edition of the
activity may be missed by only Bat Conservation Trust’s Good
recording activity at a fixed location Practice Guidelines (Collins, 2023).
(Perks and Goodenough, 2021;
Chapter Three).
Passive Multiple AudioMoths Although a viable alternative for Commercial bat detectors should be Further consider the use of the
Acoustic can accumulate the certain applications, AudioMoth used where possible for passive latest configurable frequency
Monitoring same number of species recording quality is inherently lower, acoustic bat surveys in high quality triggers for AudioMoth, and build

(PAM) of bats

as commercial
equipment in certain
habitats, but often
require longer periods
of deployment to do so.

meaning their use must be carefully
considered. Commercial equipment is
currently likely to be the most robust
option where feasible, particularly in
complex/species rich habitats.

habitat, or where less abundant
species are the target of the survey
(Chapter Four). This supports the
findings of Kunberger and Long
(2023) and Starbuck et al. (2024).

on Chapter Four to evaluate how
using the devices in this way
compares to commercial
equipment.
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Passive
Acoustic
Monitoring
(PAM) of bats

A full spectrum
AudioMoth would be
capable of recording as
much or more activity
than a zero-crossing
detector, if able to
record continually or
trigger automatically.

Increased capacity for more
practitioners to undertake PAM, in the
absence of prohibitive equipment
costs. Additionally, lower costs
increase the feasibility of deploying
multiple devices within an area of
interest, increasing spatial coverage
(see above), and perhaps mitigating
some of the drawbacks compared to
active transect surveys.

AudioMoths should be considered for
applications where the cost of
commercial equipment is prohibitive
(Chapter Four). Current examples
include the national British Bat Survey
(BBatS) which was launched as a beta
version in 2023. AudioMoth devices
are loaned to volunteers to collect
data in pursuit of monitoring long-
term population trends (Bat
Conservation Trust, 2024).
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Passive
Acoustic
Monitoring
(PAM) of bats

The HFAM configuration
missed activity or
produced recordings
that were not as
confidently identified by
the classifier.

Configuring AudioMoth with the
highest possible sampling rate of 384
kHz (Hill et al., 2019) is not necessarily
best practice, depending on the aims
of the survey and the microSD cards
(brand and speed) that are available.

AudioMoths should be configured
with a 250 kHz sampling rate when
targeting bats, unless higher
frequency bats (e.g. lesser horseshoe)
are the specific target of the survey as
this resulted in better data
(potentially due to reducing self-noise
generated by SD card writes) (Chapter
Four).

Further test the varying levels of
self-noise generated by different
microSD cards in AudioMoths
using differing sampling rates,
and how this impacts
classification to extend Chapters
Four and Five.

Automated
classification
of bat calls

Pairwise disagreement
was found between the
classifiers regardless of
detector type, with both
pairings most likely to
disagree on potential
Myotis calls.

Pairwise disagreement highlights how
no classifier is perfect. The findings
from Chapter Five, support previous
recommendations that analysis should
still not yet be fully automated.

Even contemporary classifiers should
not be used as a stand-alone means
of conducting bat call analysis
(Chapter Five). Consistent with the
earlier recommendations of Russo
and Voigt (2016) and Rydell et al.
(2017), an element of manual
auditing of recordings by suitably
experienced technicians, should still
be integrated into analysis workflows.

Additional work to further
understanding of classifier error
by testing classifiers on verified
recordings, and whether different
classifiers are better suited to
analysing recordings from
particular devices, species, or
habitats to extend Chapter Five.
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Taken together, the research presented in this thesis contributes to the development of
best practice, through refining and evaluating the comparative effectiveness of PAM
approaches to bat surveying and subsequent data analysis. As discussed, these approaches
have a number of key advantages, in particular through enabling robust assessment, and
the potential to increase capacity for bat monitoring nationally, which is of particular

importance in the UK (as outlined in Chapter One).

Techniques that can be undertaken passively, without the need for specialist training or
handling licenses, and minimal surveyor input, vastly improves their usability, and
subsequently the scalability of surveying and monitoring initiatives to which they are
applied. Scalability is of particular importance to the national scale monitoring schemes,
which provide data to assess and monitor the status of species populations. Such schemes
have faced criticism from within the scientific community, primarily because they are
considered to lack specific scientific research questions. However, monitoring schemes can
be classified into three distinct categories: passive, question-driven, and mandated
(Lindenmayer and Likens, 2010), with the majority of national schemes falling into the latter
category, acting as surveillance, rather than providing sufficient data to address specific
guestions at site level. In the UK, national mandated monitoring data are essential in
providing evidence of progress towards the current target of halting biodiversity decline by
2030, and it is therefore imperative to address instances of data deficiency. Ultimately,
reliable surveying and monitoring data are vital, both at local scales for legislation
compliance and informing conservation action, and at national scale for surveillance of
species populations and to monitor progress towards national and international biodiversity

targets.
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