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Abstract 

It is widely acknowledged that robust and accessible ecological evidence is required to 

underpin solutions to the current global biodiversity crisis. Reliable data are vital to inform 

conservation action, but can be challenging to obtain for some taxa, particularly those that 

are nocturnal, crepuscular, or cryptic. In the United Kingdom, one quarter of the mammal 

species found nationally are perceived to be at risk of extirpation, yet many species lack 

sufficient data to enable robust assessment of their distributions and the status of their 

populations.  

 

This thesis examined passive acoustic monitoring frameworks for surveying and monitoring 

bat species in the United Kingdom, considering their ability to collect reliable data and to 

provide insights into species ecology, and evaluated their application to ecological research 

and practice.  

 

Passive acoustic bat surveys were found to be most optimal when conducted for full nights, 

and in the absence of moonlight and/or heavy rain. Moreover, they were found to be more 

effective in recording comprehensive species assemblages, when compared to active 

acoustic surveys. Empirical testing of different detectors used in Passive Acoustic Monitoring 

(PAM) frameworks for bats, found that lower cost, open-source devices can serve as a viable 

alternative for commercial equipment in certain scenarios (dependent on target species and 

habitat), and when enough devices are deployed for a sufficient duration. The analysis of 

large PAM datasets was also examined, finding pairwise disagreement between popular 

automated bat classifiers, and supporting the recommendation that analysis should not, at 

present, be fully automated. 

 

These findings contribute to the development of best practice and demonstrate the key 

advantages of PAM approaches, primarily in their potential to aid the up-scaling of both 

local, and national bat monitoring schemes.    
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1.CHAPTER ONE: Introduction 
 
 
 

 

 
Post passive acoustic monitoring equipment set up for bats at Croome Park 

August 2022 
 
 
 
 
This chapter introduces the threats currently faced by biodiversity globally, and how the 
requirements for species surveying and monitoring form a key component of international 
targets and national legislation to address ongoing biodiversity loss. The state of nature in 
the United Kingdom is introduced, with particular regard to its bats and wider mammalian 
fauna. The broad methods used in surveying and monitoring of mammals in the region are 
outlined, including both traditional and novel techniques, and those relating primarily to 
bats are discussed in detail. Finally, the overall research aims of this thesis are defined, along 
with the thesis structure and the scope of each chapter.  
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1.1 Evidence-led biodiversity conservation 

Halting the current rate of biodiversity decline is one of the foremost existential challenges 

faced by humanity across the world. The planet is in the midst of a biodiversity crisis, with 

notable reductions in species abundances and spatial distribution, and increases in human-

accelerated species extinctions (Cowie et al., 2022). It is generally accepted that the planet 

is undergoing its sixth mass extinction event (Barnosky et al., 2011; Ceballos and Ehrlich, 

2023), with the observed extinction rates estimated to be 100-1,000 times greater than the 

natural background rate of 0.1-1 E/MSY (extinctions per million species per year) (Lamkin 

and Miller, 2016). The International Union for Conservation of Nature’s (IUCN) Red List 

states that upwards of 45,300 (28%) of the species assessed are currently threatened with 

extinction (IUCN, 2024). The drivers behind the elevated extinction rates are considered to 

be predominantly anthropogenic in origin (Ceballos et al., 2015; Jaureguiberry et al., 2022). 

Species are primarily threatened by climate change, habitat loss and non-native species 

introductions, as well as habitat fragmentation, the impact of pollution and eutrophication, 

agricultural intensification, and unsustainable harvesting or poaching (Mittermeier et al., 

2011; Dudley and Alexander, 2017; Groh et al., 2022; Hald-Moretensen, 2023). The process 

of land use change has resulted in increasingly few areas escaping direct anthropogenic 

modification (IPBES, 2019; Jaureguiberry et al., 2022). Indeed, Theobald et al. (2020), 

estimated that 14.6% of the Earth’s land had been subjected to direct anthropogenic 

modification as of 2017. This is further compounded by the indirect effects of global or 

ultra-widescale pressures of climate change, atmospheric pollution, and ocean warming and 

acidification. Anthropogenic threats have implications not only on the intrinsic value of 

species and habitats within the biosphere, but also for humanity as a result of impacts on 

the range of ecosystem services upon which humanity depends (Ceballos et al., 2015).  
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The concept of ecosystem services, used to describe the links between ecological and 

economic systems, was formally explored in the Millennium Ecosystem Assessment (2005) 

and the TEEB project (2007) (Braat and de Groot, 2012). The former defines ecosystem 

services as “the benefits people obtain from ecosystems”. The assessment divided these 

services into four categories: regulating, supporting, provisioning, and cultural. It has been 

argued that those in the former two categories essentially act as mechanisms to obtain the 

services listed in the latter two categories (Wallace, 2007). Regulating and supporting 

services include processes driven by mobile organisms that forage at a landscape scale and 

distribute seeds (Lundberg and Moberg, 2003), as well as pollination by organisms including 

insects (Allsopp et al., 2008), bats (Kunz et al., 2011) and birds (Paton and Ford, 1977), all of 

which are vital to both natural and agricultural systems (Kremen et al., 2007). Essential 

regulating and supporting ecosystem services are also provided by sessile organisms, 

especially plant species that regulate hydrogeological cycles, remediate contaminated 

water, and facilitate soil formation and retention (Asbjornsen et al., 2013). The resulting 

provisioning and cultural ecosystem services include food, fresh water, recreation and 

aesthetic value (Wallace, 2007). The provision of these vital services is becoming 

increasingly under threat as ecosystems are subjected to perturbations from land use 

change (Hasan et al., 2020), climate change (Weiskopf et al., 2020), and biodiversity loss 

(Bullock et al., 2011, Le Provost et al., 2023). 

 

1.1.1 International efforts to conserve biodiversity 
 
The significance of preserving biodiversity is recognised in the majority of countries globally. 

This is the first step along a complex pathway towards slowing the rapid rate of species loss 

and preserving natural processes (Rands et al., 2010). The key to achieving the end goal lies 
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in producing evidence that leads to the detection, measurement and monitoring of change 

(Field et al., 2005), an understanding of the impacts of different anthropogenic actions 

(Mihoub et al., 2017), support for the development of conservation action and practice, and 

allows the identification of priorities (Pullin et al., 2004). An international approach to 

tackling biodiversity loss was first initiated in the late 1980s, with the formation of the 

United Nations Environment Programme (UNEP) working group, whose aim was to compile 

evidence to establish the requirement for an international convention relating to conserving 

biodiversity. At the historic Earth Summit in Rio de Janeiro in 1992, 168 nations signed the 

first Convention on Biological Diversity (CBD) thereby recognising the need, and obligation, 

to conserve global biodiversity in international policy for the first time (CBD, 2024).  

 

In response to the Rio Summit, many countries opted to devise Biodiversity Action Plans 

(BAPs) (e.g. United Kingdom, New Zealand, Australia) or Species Recovery Programmes (e.g. 

United States) to focus conservation efforts on priority species and habitats (Goodenough 

and Hart, 2017). Commitments were reaffirmed in 2002 at the Johannesburg summit, and 

190 countries committed to achieving a significant reduction in biodiversity loss at global, 

regional and national scales by 2010 (Balmford et al., 2005). 

 

The next significant renewals of agreements were made at the 2010 Convention on Global 

Biodiversity in Nagoya, Japan, where the Strategic Plan for Biodiversity was adopted for the 

forthcoming decade, ending in 2020 (McCarthy et al., 2012). This ten-year plan included five 

strategic goals, supported by twenty targets for global biodiversity that were originally 

known as the Aichi targets (Figure 1.1). However, a mid-term analysis undertaken by 

Tittensor et al. (2014) indicated that although there had been a marked upward trend in the 
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prioritisation of biodiversity in policy and implementation of conservation action, it would 

likely be insufficient to meet the targets by 2020. Furthermore, the initial publication of the 

official report for the CBD, Global Biodiversity Outlook 5, released in June 2020, predicted 

that despite the action taken by the signatories, the majority of the agreed targets would be 

missed at a global scale (Secretariat of the Convention on Global Biodiversity, 2024).  

 

 

The current, post-2020 Global Biodiversity Framework (GBF), was adopted at CBD COP15 

(Montreal, Canada) in December 2022, and sets out global biodiversity goals for the decade 

up to 2030 (CBD, 2022). The framework aims to put forward measurable and verifiable 

objectives, with a tangible target of first achieving no net loss of biodiversity, before striving 

for net gain by the end of the decade (Milner-Gulland et al., 2021). 

 

 

Figure 1.1: The 20 Aichi targets (Sumalia et al., 2017). 
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1.1.2 Surveying and monitoring 
 

Within ecology, the terms “surveying” and “monitoring” tend to be used interchangeably, 

however, there are marked differences. Surveys are generally used to collect primary data 

and ascertain the ecological conditions at a given place and time. For example, this might 

include determining species presence (or likely absence) and estimating species richness. 

This differs from a census, whereby the species/taxa identified in a survey are counted to 

assess population size. Surveillance and monitoring, on the other hand, involve repeated 

survey effort over an extended time period and, if appropriate, a wider geographical range 

(Goodenough and Hart, 2017). Ecological monitoring usually aims to answer a specific 

scientific question (Spellerberg, 2005), whereas surveillance typically involves long-term 

data collection, which may cover multiple species and locations. The aim of ecological 

surveillance is to detect and measure change from the baseline conditions, for example, in 

identifying the introduction of an invasive species (Jarrad et al., 2011) or disease (Walton et 

al., 2016).  

 

Long-term conservation and effective species management depends on robust data from 

rigorous surveying and monitoring (Roberts, 2011). The monitoring of both species and 

habitats is essential in providing the data required to establish baseline ecological 

conditions, initiate and inform conservation action, and evaluate and compare the long-

term efficacy of such action in attaining the desired outcome (Nichols and Williams, 2006; 

Burns et al., 2018). Monitoring data to map species distributions and densities are also vital 

in designating priority areas for conservation (Jenkins et al., 2013). This could be in the form 

of protected areas or nature reserves, where targeted management can be undertaken 

(Gaston et al., 2006). Moreover, long-term monitoring and surveillance programmes aim to 



Chapter One: Introduction 

 7 

identify trends from the outset, whether they be positive or negative. Where negative, this 

enables the appropriate action to be taken to understand and address the cause, before the 

impacts become severe and potentially irreversible. In addition to directly informing 

conservation efforts, surveying and monitoring also form a key component of ecological 

research (Goodenough and Hart, 2017). Furthermore, ecological surveys frequently play a 

key role in legislation compliance and informing Ecological Impact Assessments (EcIAs) 

within the planning and development sector (Sutherland, 2008). The data from such surveys 

ensure that relevant environmental and wildlife law, such as that concerning protected 

species and habitats, is adhered to (Drayson et al., 2015). Additionally, surveys inform 

mitigation/compensation strategies which strive to prevent development and land use 

change from resulting in biodiversity losses (Treweek, 2009). 

 
 
Ecological surveying and monitoring can focus on species, habitats, or parameters within 

wider ecosystems or landscapes. Species specific monitoring tends to be question-driven 

and uses rigorous methodology to gain valuable insights into the population dynamics of the 

species concerned. Habitat monitoring is generally broader in approach, using spatial 

techniques to map and monitor habitat distribution and quality (Lengyel et al., 2008). 

Monitoring of habitat processes and wider ecosystems frequently focuses on selected 

indicator species; for example studying plant communities to study ecological succession 

(Goodenough and Hart, 2017). Additionally, data relating to environmental parameters, 

such as water quality and soil chemistry, are used to build robust assessments and monitor 

temporal changes in the quality of the environment (Spellerberg, 2005). 
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1.1.2.1 Resourcing ecological surveying and monitoring 
 
Ecological surveying and monitoring often requires substantial resources, both in terms of 

the economic cost and the time and effort required by surveyors (Spellerberg, 2005). The 

drivers behind funding and conducting ecological surveying and monitoring, therefore, can 

generally be divided into two categories: those that support conservation and habitat 

management, including national schemes, and those that exist to ensure legislative 

compliance, concerning protected species and habitats, and requirements for biodiversity 

net gain. Under the CBD, all countries have an international obligation to conserve 

biodiversity, with those who are able making funds available for conservation action and the 

ecological monitoring schemes which underpin such actions (Coad et al., 2019). Effective 

management of key habitats and species requires the use of well-established baseline 

information, which can only be obtained by ecological surveying. Furthermore, 

perturbations, whether natural or anthropogenic, are generally long-term and/or 

cumulative and synergistic. Being able to detect and manage the impact of such 

perturbations effectively, therefore, requires ecological monitoring over extended time 

periods (Lindenmayer and Likens, 2010). In the case of legislation compliance, the local 

authority or developer has a legal obligation to fund ecological surveys, as appropriate, to 

ensure laws regarding protected species and habitats are upheld. This involves both the 

collection of baseline data prior to any development/land-use change and longer-term 

monitoring to confirm that the proposed mitigation and/or compensation is sufficient in 

preventing ecological harm (Treweek, 2009). 
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1.1.2.2 Designing effective ecological monitoring schemes 
 
Despite the need for ecological surveying and monitoring at local, national and international 

scales, surveying and monitoring efforts vary widely in extent and effectiveness. A review 

undertaken by Lindenmayer and Likens (2010), concluded that successful monitoring actions 

share a number of characteristics, including clear questions, a conceptual understanding of 

the species population or ecosystem concerned, and seamless collaboration between 

scientists, managers and policy makers. However, ecological monitoring has often faced 

criticism. For example, surveys undertaken for localised EcIAs, were found to be deficient in 

recommendations for, or evidence of, repeated survey effort to serve as follow up 

monitoring in order to document the ecological response to development (Drayson et al., 

2017). Moreover, national scale monitoring schemes have faced particular criticism from 

within the scientific community. In this instance, the main failing is considered to be a lack 

of focus or development of specific scientific questions within their design. This lack of focus 

can lead to those species that are less abundant, and often most in need of conservation 

action, going undetected (Nichols and Williams, 2006). Furthermore, Yoccoz et al. (2001) 

also agree that schemes can lack the effective collaboration between scientists and 

managers, which is essential in designing monitoring schemes that are effective both in 

terms of scale and cost.   

 

Question-driven monitoring, such as that carried out for research purposes, is often able to 

give valuable insights into the population dynamics of the target species, and most often has 

sufficient rigour to identify emergent trends and potential drivers. However, this approach 

can be difficult to apply across the geographic scales required by the mandated monitoring, 

initiated for legislation compliance (e.g. national and international biodiversity targets). 
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Monitoring schemes that cover wider landscape or that are national or international in 

scope, have seen some success in detecting temporal changes within populations but are 

largely too broad to identify the drivers behind the observed trends (Lindenmayer and 

Likens, 2010). Therefore, the key challenges in undertaking effective ecological monitoring 

are: (1) adopting a focused approach with defined questions and objectives, (2) utilising the 

appropriate methods for both the target species and the spatiotemporal scale required, and 

(3) ensuring that the necessary support is in place, from scientists and policy makers, to 

confirm that the monitoring is suitably targeted to meet the relevant objectives (Stout, 

1993). 

 

1.1.3 The state of nature in the United Kingdom 
 
Following the Rio Convention in 1992, the United Kingdom (UK) became the first country to 

develop and implement a series of nationwide BAPs (Ruddock et al., 2007) for what 

ultimately became 1,150 priority species and 65 priority habitats (Joint Nature Conservation 

Committee (JNCC), 2024). Despite such efforts towards conserving biodiversity in the UK, 

the most recent State of Nature Report (State of Nature Partnership, 2023), revealed that, 

overall, the abundance of 753 terrestrial and freshwater species has decreased by an 

average of 19% since 1970, and that 16.1% of the taxa for which sufficient data are available 

(10,008), are currently threatened with extirpation (Figure 1.2). 
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Habitat loss and degradation, pollution, and insufficient policy are considered to be among 

the primary drivers behind the observed declines in the UK (Burns et al. 2016). Further 

pressures include agriculture, which has intensified significantly since the middle of the 20th 

Century (Matson et al., 1997; Firbank et al., 2008; McKay et al., 2019), with mechanisation 

and increasing demand for food production leading to habitat loss and dramatic 

modification of the landscape (Boatman et al., 2007). Global climate change is also being 

seen to have additional and synergistic impacts on national level species abundance, 

distribution, ecology and life history parameters, with average temperatures rising by 

approximately 1.1°C since the late 19th Century (Intergovernmental Panel on Climate 

Change (IPCC), 2023).     

 

Figure 1.2: Great Britain Red List Assessment by taxonomic group. *Only 17% of insect species, 
10% of crustaceans and <1% of fungi have been assessed (State of Nature Partnership, 2023). 
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The UK’s sixth National Report to the CBD, published in May 2019, predicted that the 

country was on track to meet only a quarter of the twenty Aichi targets by 2020 (JNCC, 

2019a). Policy and funding are now focused on renewed global commitments to halting 

biodiversity declines by 2030 (State of Nature Partnership, 2023). This has included actions 

such as committing to the 30 by 30 target to conserve a minimum of 30% of land and sea for 

biodiversity by 2030 (Natural England, 2023). Moreover, national Agri-Environment 

Schemes (AES) were reformed after the UK departed the European Union (Baldock and Cam, 

2024). The introduction of the new Environmental Land Management scheme (ELMs) offers 

financial incentives to promote sustainable farming practices, and to encourage 

conservation activities on farmland (Hurley et al., 2022). Additional government funding has 

included the UK Nature for Climate Fund, which pledged £640 M for habitat restoration 

(Seddon et al., 2020). Furthermore, the legal protections afforded to many species under 

former European legislation were upheld in national law under the Conservation of Habitats 

and Species Regulations (2017). This ensured a continuation of the protections for European 

Protected Species (EPS) found in the UK after Brexit, along with the financial and custodial 

penalties incurred for committing an offence.  

 

1.1.4  Monitoring approaches and obligations in the United Kingdom 
 
The UK has an obligation to undertake species monitoring under agreements and legislation 

made at both international and national levels. However, despite agreed targets, many 

species populations in the UK are vulnerable, with challenges in carrying out effective 

monitoring, resulting in data on many species being scarce (Battersby and Greenwood, 

2004; Burns et al., 2018; Coomber et al., 2021). These pitfalls in the country’s monitoring 

schemes are not due to a lack of surveyor effort. The 2019 State of Nature report estimated 
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that 18,700 professional and volunteer naturalists were involved in formalised species 

monitoring schemes, reflecting a long-standing interest in natural history and wildlife 

recording (State of Nature Partnership, 2019). This report also revealed that the 

commitment to nature within the country was continuing to grow, with both the amount of 

time invested by volunteers and non-governmental organisation (NGO) spending increasing 

over the past decade. These figures were not updated in the recent 2023 report (State of 

Nature Partnership, 2023). 

 

A significant proportion of the monitoring undertaken nationally, therefore, relies on 

valuable input from volunteers. Volunteer records broadly fall into two categories: 

structured and unstructured. Structured records are obtained through rigorously designed, 

co-ordinated, and repeated surveys, involving standardised methodology. This produces 

high quality datasets, which are statistically analysed to study population trends over time. 

The data obtained through these schemes are frequently utilised within scientific research. 

Examples include the British Trust for Ornithology’s Breeding Bird Survey (Greenwood, 

2003) and the Bat Conservation Trust’s (BCT’s) National Bat Monitoring Programme (NBMP) 

(Barlow et al., 2015). Unstructured records, on the other hand, include records submitted to 

the Biological Records Centre (BRC) or Local Environmental Records Centres (LERCs), which 

are usually acquired independently of any formal monitoring activities. The principal caveat 

associated with such records, is the potential for bias, stemming from inconsistencies in 

survey methods and locations. However, these records span a wide range of taxa and the 

ability to account for bias in statistical analysis, makes such records invaluable. They are 

currently collated by the BRC, along with data from formalised monitoring schemes. When 
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both types of records are combined, biological recording is estimated to involve 70,000 

surveyors annually (Pocock et al., 2015). 

 

 
1.2 Mammals in the United Kingdom 

 
The anthropogenic alteration of the landscape in the UK has profound implications for the 

country’s mammalian fauna. Fragmentation of the landscape into smaller, more isolated 

habitat patches restricts population sizes, prevents genetic exchange, and inhibits dispersal 

to other patches of suitable habitat (Scopes et al., 2024). Where populations already exist at 

low densities, or have a limited ability for dispersal, habitat fragmentation increases the 

likelihood of local extirpation (Bright, 1993). The Mammal Society lists 59 volant and von-

volant terrestrial mammal species as present in the UK across six taxonomic orders: 

Eulipotyphla, Lagomorpha, Rodentia, Carnivora, Artiodactyla, and Chiroptera. Of these, 48 

species are considered native. More than 50% of the country’s native mammals are afforded 

at least basic protection under the Wildlife and Countryside Act (1981), with those that are 

rarer, declining, disturbance sensitive, or where the UK holds a substantial proportion of the 

global population being afforded additional protection, both under the Wildlife and 

Countryside Act (1981) and/or the Conservation of Habitats and Species Regulations (2017). 

Despite such provisions, the most recent national red list issued by the Mammal Society 

(2020), which assessed 47 native or formally native species, indicated that one quarter of 

the country’s mammal species are at risk of extirpation. This included six species in the 

order Chiroptera. 
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The Mammal Society has been instrumental in coordinating national mammal recording 

efforts since the 1950s, with a number of targeted schemes yielding valuable insights and 

leading to successful conservation action (Flowerdew, 2004). This included identifying the 

loss of hazel dormice (Muscardinus avellanarius) at the northern extent of their range 

(Bright et al., 1996) and determining the abiotic factors affecting the distribution of yellow-

necked mice (Apodemus flavicollis) (Marsh et al., 2001). The Mammal Society were also the 

primary NGO coordinating national bat monitoring efforts, prior to the formation of the BCT 

in 1990 (Flowerdew, 2004). However, many of the country’s mammal species have 

historically lacked sufficient data, either spatially or temporally, to determine the status of 

populations (Battersby and Greenwood, 2004). As a result, assessing changes in populations 

and distributions to inform national Biodiversity Framework actions cannot be made with 

reasonable confidence for the majority of bat species and some terrestrial mammals, such 

as harvest mice (Micromys minutus) (Mathews et al., 2018). This highlights the importance 

of well-designed and robust monitoring schemes, both to establish a clear baseline for data 

deficient species and monitor trends throughout the course of any ensuing management 

action, in order to safeguard against further losses. 

 

Developing effective monitoring schemes to study the UK’s mammal fauna is of prime 

importance. Owing to its early separation from continental Europe, the UK supports a 

relatively limited number of mammal species compared to mainland Europe. Additionally, 

limited prey and the impacts of numerous non-native and invasive species has resulted in 

populations of several native mammals becoming extremely fragile, and thus at risk from 

even minor perturbations and stochastic processes. Appropriate conservation therefore 
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relies heavily on targeted management action, informed by rigorous monitoring data (Harris 

and Yalden, 2004).  

 

Mammal conservation and monitoring in the UK face a number of challenges, particularly 

when compared to other taxa. Bird monitoring has a history of being rigorous and highly co-

ordinated, largely as a result of a large pool of volunteer surveyors (Greenwood, 2007). 

Mammal monitoring, however, tends to attract fewer volunteer surveyors, principally owing 

to the specialist skills and field equipment required to survey a large number of mammal 

species. In comparison to birds, small mammals in particular are difficult to observe and 

survey techniques are difficult to standardise, with specific methods required to effectively 

survey for individual species (Battersby and Greenwood, 2004).  

 

As technology has become more accessible in terms of economic cost and capability, 

researchers have successfully piloted the use of technology-based techniques, such as 

bioacoustics and camera traps, in surveying and monitoring increasing numbers of species. 

This includes smaller or otherwise elusive mammals, including bats and hazel dormice, for 

which monitoring data are often lacking. Technology therefore has the potential to establish 

rapid and non-invasive methods to monitor some of Britain’s most vulnerable mammals 

(Mills et al., 2016). Moreover, such methods support recent calls to move monitoring 

techniques from invasive to non-invasive through the 3Rs principals for animal research: 

Replace, Reduce and Refine (Zemanova, 2020). 
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1.2.1 Methods of surveying and monitoring mammals 
 
Mammal surveys can take a number of forms, depending on the target species, the question 

posed, and the primary data required. For example, surveys may be used to establish 

mammalian species richness, or a census may be used to quantify population sizes of one or 

more specific species (Sutherland, 1996). Alternatively, survey data can be used to map 

species distributions or to infer abiotic parameters using biological indicator species 

(Goodenough and Hart, 2017). Data can be obtained directly or indirectly, observationally or 

invasively and may also be collected across a range of spatial scales, from site level to 

landscape level or even national scale.  

 

Mammal surveys are carried out by a wide variety of surveyors, from licenced professionals 

to citizen scientists and volunteers. Many species require specialist knowledge and skills for 

surveyors to legally be permitted to be in close proximity to, or handle individuals. This 

primarily relates to species protected by some form of national legislation, such as hazel 

dormice, where a licence is required to complete nest box checks (Bright et al., 2006). In 

these instances, only suitably qualified persons will be able to conduct surveys, although 

unlicenced individuals are often able to observe, or work under the supervision of the 

licenced surveyor (Natural England, 2025). Where surveys can be undertaken less invasively, 

either without the need to handle the species directly or where specialist licences are not 

required, a wider range of surveyors can become involved. This includes students, early 

career researchers or volunteers undertaking surveys under direct or indirect guidance of 

experienced individuals. A key example is the National Harvest Mouse Survey, which 

engages a wide range of volunteers to conduct surveys looking for distinctive harvest mouse 

nests (Clifton, 2024). Moreover, surveys that gather data exclusively using distanced 
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observation or field signs can be carried out by almost anyone, with little or no supervision, 

but after appropriate training. This approach is frequently employed by large-scale citizen 

science projects, involving a variety of surveyors, often distributed across a wide geographic 

range (Dickinson et al., 2010).  

 

The techniques used to survey and monitor mammals across the country can be grouped 

into four broad categories: observational, interventional, indirect and remote. Observational 

surveys include walked transects, with surveyors recording individuals seen/heard along a 

particular route (Smart et al., 2003). Interventional surveys include live trapping, usually 

with the intention of marking individuals for capture, mark, recapture studies (Sutherland, 

1996). Indirect surveys include footprint tunnels (Bullion and Looser, 2019) and hair tubes 

(Gurnell et al., 2009), whereby surveyor efforts are focused on deploying and maintaining 

equipment to gather evidence of species presence, as opposed to direct observation. 

Finally, remote surveys, such as camera trapping (Kilshaw et al., 2014) and remote 

ultrasonic recording (Gibb et al., 2019), require little surveyor input once deployed, and 

automatically gather data over extended time periods.  

 

Indirect and remote survey techniques have the potential to fill the gaps in surveying and 

monitoring efforts using observational or interventional methods (Mills et al., 2016). 

Mammals can be particularly challenging and labour intensive to study (Battersby and 

Greenwood, 2004), especially through observational and interventional techniques, with 

protected species licences often required. Consequently, population monitoring data are 

severely lacking for many species (Flowerdew, 2004). There is, therefore, rapidly growing 
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interest in the use of novel indirect survey techniques and the application of increasingly 

accessible technological approaches, in mammal surveying. Technological approaches can 

offer the potential to gather data on a fully- or semi-automated basis, often over extended 

time periods and with reduced levels of surveyor effort (Silveira et al., 2003). However, 

many such techniques are yet to be widely used in the UK and methods regarding their use 

remain unstandardised, or with guidance for their use in the early stages of development. 

The following sections briefly outline the broad categories of mammal survey techniques 

commonly undertaken to survey and monitor mammals in the region; these are then 

summarised in Table 1.1. 

1.2.1.1 Observational surveys 
 
Observational surveys are those which involve direct observation by the surveyor, whether 

it be sight or sound. Direct observational survey methods for mammals fall into three broad 

categories: transect sampling, point sampling and mapping (Goodenough and Hart, 2017). 

Although transects and point counts are commonly used to survey other taxa, for example, 

birds (Newson et al., 2005), for mammals, their use tends to be restricted to larger and 

readily observable mammals (Sutherland, 1996; Smart et al., 2003). However, when 

supplemented with technology e.g., thermal imaging equipment and/or ultrasonic detection 

equipment, they can have wider application, primarily in surveying bats (Collins, 2023) 

(section 1.3). Such methods are also used within wider mapping surveys, such as mapping 

distributions and abundance of species using Geographic Information Systems (GIS).  

 

Perhaps the most novel observational mammal surveying technique currently being used in 

the United Kingdom is that of employing specially trained Conservation Detection Dogs 
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(CDDs). This methodology employs the dog’s olfactory senses (Bennett et al., 2019), and has 

grown principally from using the technique to locate missing persons and in law 

enforcement and military applications (Beebe et al., 2016). This technique has since been 

proved successful in detecting both live mammals (Bearman-Brown et al., 2020) and bat 

carcasses (Mathews at al., 2013). Moreover, numerous studies to date have found CDDs to 

be more effective in species detection, when directly compared to alternative methods 

(Beebe et al., 2016), for example in detecting hedgehogs (Erinaceus europaeus) (Bearman-

Brown et al., 2020).  

 
1.2.1.2 Interventional surveys 
 
When individuals cannot be directly observed, or where additional data are needed, 

interventional trapping surveys may be necessary. These surveys usually involve some form 

of temporary trapping and restraint of the survey species. A key example of mammal 

trapping surveys undertaken in the UK is the use of Longworth traps for small terrestrial 

mammals (mice, voles, shrews) (Flowerdew et al., 2004; Gurnell and Flowerdew, 2006). 

Longworth traps are typically deployed along mammal runs (Sutherland, 1996), and are 

particularly effective for capture-mark-recapture (CMR) studies to determine species 

distributions and abundance (Sutherland, 1996; Goodenough and Hart, 2017; Jung et al., 

2020). The ability to take individuals into the hand enables biometric data (weight, sex, age) 

to be collected in order to assess population structure and health (Flowerdew et al., 2004). 

Moreover, trapping surveys are also essential in studying species movements and home 

ranges (Bontadina et al., 2001) whereby tracking devices, such as PIT tags, need to be fitted 

(Marsh et al., 2022).  

 



Chapter One: Introduction 

 21 

 

1.2.1.3 Indirect surveys 
 
Some mammal survey methods are entirely indirect and do not require any direct 

observation of the target species, instead relying on the documentation of evidence 

pertaining to species presence indirectly. These could be indicators of a species’ physical 

presence in the survey area such as hair and skeletal remains, evidence of their behaviour 

such as footprints and refuges, or evidence of a species’ physiological processes, including 

feeding remains and faeces (Goodenough and Hart, 2017). These techniques are of 

particular value in establishing the presence of small, nocturnal or otherwise elusive species. 

Indirect methods often involve the use of equipment to “harvest” indirect evidence. 

Examples include the use of footprint tunnels to study hedgehogs (Yarnell et al., 2014) and 

arboreal mammals (Bright, 2006; Mills et al., 2016), or hair tubes to establish the presence 

of red squirrels (Sciurus vulgaris) (Mortelliti and Boitani, 2008). Hair samples are analysed 

under the microscope to identify species with the aid of a reference collection or key 

(Teerink, 2003). Moreover, if the root of the hair is present, hairs can further be used for 

DNA analysis, allowing the identification of individuals in some cases (Sheehy et al., 2018). 

Other indirect methods may involve simply noting indirect evidence based on observation 

alone (e.g., the presence of distinctly gnawed hazelnuts (Bright et al., 1996)). Alternatively, 

comparatively more novel techniques can be used to ascertain species presence, including 

Conservation Detection Dogs (CDDs) being used to detect scat and living quarters (e.g., 

roosts and dens) (McKeague et al., 2023), and sampling for environmental DNA (eDNA) in 

the soil and in waterbodies (Sales et al., 2020; Broadhurst et al., 2021).  
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1.2.1.4 Remote surveys 
 
Over the past few decades, digital technology, particularly in the form of devices that 

generate and store data, are becoming increasingly widely used in surveying and monitoring 

of many species worldwide (Besson et al., 2022). Such technological advances have enabled 

the development of a number of remote methods, whereby surveyors are able to gather 

data on their study species passively, often over extended time periods, without needing to 

be in the field directly (Rovero and Zimmermann, 2016). In the UK, several remote, 

technology-based techniques have been applied to mammals. Firstly, camera traps proved 

successful in studying medium and large terrestrial mammals, for example the Scottish 

Wildcat (Felis silvestris silvestris) (Kilshaw et al., 2015), with more recent advances enabling 

the study of smaller and even arboreal taxa, including hazel dormouse (Mills et al., 2016). 

Secondly, thermal imaging devices have proved valuable in surveying crepuscular and 

nocturnal mammals, for example elusive European hedgehogs (Bearman-Brown et al., 

2020). Finally, bioacoustic techniques, whereby recording devices are used to remotely 

capture mammal vocalisations, have been piloted for a range of terrestrial mammals from 

deer to shrews (Middleton et al., 2023).  

 

Although the initial cost of equipment required to undertake remote surveys can be 

substantial, they have the potential to provide much less labour intensive and cost-effective 

surveying while keeping ecological disturbance to a minimum and improving accuracy of 

data collected (Silveira et al., 2003). Moreover, technological survey methods are 

predominantly non-invasive and can be widely undertaken without the need for species 

specific survey licences (Rovero and Zimmermann, 2016). This could prove invaluable for 

vulnerable species, which are otherwise challenging to study. Efficient and reliable analysis 
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of the extensive datasets typically produced by remote methods remains a key area of 

research. Artificial Intelligence (AI) technologies continue to become more capable and 

accessible, unlocking the potential for automated identification of species present in camera 

trap (Falzon et al., 2019) and thermal imaging (Keery, 2024) footage/images, and within 

acoustic recordings (Linhart et al., 2022). The use of remote techniques to study bats 

specifically, is discussed in greater depth in section 1.3
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Table 1.1: A summary of mammal surveying and monitoring techniques undertaken within the field of applied ecology. 

Survey Type Examples Advantages Disadvantages 
OBSERVATIONAL Point counts, transects, 

mapping 
• Rapid form of faunal assessment 
• Uses sight/sound/smell – no need for 

trapping 
• Minimal ethical/legal considerations 

• Individuals/species can easily be missed 
• Frequently underestimate population 

sizes 

INTERVENTIONAL Capture-mark-recapture, 
Longworth trapping, mist 
nets, harp traps 

• Accurate species identification 
• Can provide a more in-depth assessment 

of population structure/health 
• Provides an opportunity to fit equipment 

for further remote surveys 

• May require specialist licences/skills 
• Time consuming 
• Individuals may be trap-happy or trap-

shy, impacting population estimates 

INDIRECT Hair tubes, footprint 
tunnels, feeding remains, 
scat, eDNA 

• Enables data to be obtained for hard to 
observe species e.g. 
nocturnal/crepuscular 

• Effective in establishing species presence 

• Limited ability to calculate species 
abundance – no live individuals seen. 

• Individual species can be difficult to 
decipher e.g. multiple footprints on 
footprint trap 

REMOTE  Camera trapping, passive 
acoustic monitoring 

• Non-destructive and non-invasive.  
• Time efficient – little surveyor input 

needed whilst the survey is underway 
• Ability to obtain records undetectable by 

direct observation or verify indirect 
evidence 

• Potential to study species 
presence/abundance over extended 
time periods/larger areas  

• Inclusion of night vision/infra-red 
thermography to study nocturnal species 

• High equipment costs 
• Potential for technical errors/equipment 

failure  
• Camera resolution may limit which 

species can be detected with sufficient 
detail to be identified. 

• Considerable time investment needed to 
process footage and extract data  
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1.3 Bats in the United Kingdom 

With >1,000 species globally, bats (Chiroptera) form the second largest order of mammals, 

accounting for approximately one fifth of all mammal species (Simmons, 2005). The 

Chiroptera are divided into two sub-orders: Megachiroptera (megabats), and 

Microchiroptera (microbats). Apart from Antarctica, Microchiroptera are found on every 

continent on Earth, with eighteen species present in the UK.  

 

Bats are extremely sensitive to disturbance and land use change, and are thus considered to 

be particularly susceptible to the pressures faced by nature across the country, as outlined 

in section 1.1.3. Bats are afforded full legal protection under the Wildlife and Countryside 

Act (1981), and additional, more specific, protection under the Conservation of Habitats and 

Species Regulations (2017). However, six species are considered to be at risk from 

extirpation from the region according to the national red list issued by the Mammal Society 

(2020), with a further three species listed as data deficient. The species present in the UK, 

along with their conservation status and legal protections, are summarised in Table 1.2. 
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Table 1.2: Bat species resident in the UK (conservation status: N/A=not assessed, DD=Data Deficient, 
LC=Least Concern, NT=Near Threatened, VU=Vulnerable, EN=Endangered, CR=Critically Endangered), 
(legal protection: WCA5=Wildlife and Countryside Act (1981) – Schedule 5, WCA6=schedule 6, 
CHSR=The Conservation of Habitats and Species Regulations (2017) – Schedule 2). 

Common name Scientific name Global Red List 
status (IUCN) 

National Red List 
status (GB) 

Native Legal 
protection 

Greater 
horseshoe bat 

Rhinolophus 
ferrumequinum 

LC LC P WCA5, WCA6, 
CHSR 

Lesser horseshoe 
bat 

Rhinolophus 
hipposideros 

LC LC P WCA5, WCA6, 
CHSR 

Alcathoe bat Myotis alcathoe DD DD P WCA5, WCA6, 
CHSR 

Whiskered bat Myotis mystacinus LC DD P WCA5, WCA6, 
CHSR 

Brandt’s bat Myotis brandtii 
 

LC DD P WCA5, WCA6, 
CHSR 

Bechstein’s bat Myotis bechsteinii NT LC P WCA5, WCA6, 
CHSR 

Daubenton’s bat Myotis daubentonii LC LC P WCA5, WCA6, 
CHSR 

Greater mouse-
eared bat 

Myotis myotis 
 

LC CR P WCA5, WCA6, 
CHSR 

Natterer’s bat Myotis nattereri LC LC P WCA5, WCA6, 
CHSR 

Serotine bat Eptesicus serotinus LC VU P WCA5, WCA6, 
CHSR 

Leisler’s bat Nyctalus leisleri 
 

LC NT P WCA5, WCA6, 
CHSR 

Noctule bat Nyctalus noctula LC LC P WCA5, WCA6, 
CHSR 

Common 
pipistrelle bat 

Pipistrellus 
pipistrellus 

LC LC P WCA5, WCA6, 
CHSR 

Soprano 
pipistrelle bat 

Pipistrellus 
pygmaeus 

LC LC P WCA5, WCA6, 
CHSR 

Nathusius’ 
pipistrelle bat 

Pipistrellus nathusii LC NT P WCA5, WCA6, 
CHSR 

Barbastelle bat Barbastella 
barbastellus 

NT VU P WCA5, WCA6, 
CHSR 

Brown long-eared 
bat 

Plecotus auritus LC LC P WCA5, WCA6, 
CHSR 

Grey long-eared 
bat 

Plecotus austriacus LC EN P WCA5, WCA6, 
CHSR 
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1.3.1 Non-acoustic bat survey methods 
 
Microbats such as those present in the UK, are notoriously challenging to study (Barlow et 

al., 2015), being small, volant, and nocturnal. The use of acoustic techniques to detect and 

record echolocation calls is often imperative. However, interventional trapping techniques, 

indirect signs, and Night Vision Aids (NVAs) can yield valuable insights, and are frequently 

used to supplement acoustic surveys. The principal non-acoustic bat survey techniques used 

in the UK, are discussed in more detail in the following sections. 

 
1.3.1.1 Observational: Roost counts 

Although low light levels hinder direct observational techniques, observation is important 

within roost surveys to establish presence of bats, and perform direct counts with the aid of 

artificial light, low-light videography, or Light Detection and Ranging (LIDAR) laser scanners 

(Azmy et al., 2021), or to observe/count emerging and swarming bats at dusk and dawn 

(Warren and Witter, 2002; Collins, 2023). As disturbance to roosting bats is normally illegal, 

counts of individuals undertaken within roosts using torches and endoscopes must be 

carried out by licensed surveyors (Froidevaux et al., 2020).  

 

Bats can also be observed and counted directly on emerging from the roost at dusk, or when 

swarming prior to returning to the roost at dawn. Here, light levels are often sufficient for 

direct observation of earlier-emerging species, however, such surveys are typically 

supplemented by acoustic detectors (Collins, 2023). Unlike counts within the roost, these 

counts are not a licensed activity and can therefore be undertaken by a wider range of 

surveyors. Such counts form a key part of the methods undertaken largely by volunteers for 
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the National Bat Monitoring Programme (NBMP), which contributes valuable monitoring 

data (Barlow et al., 2015).   

 

1.3.1.2 Interventional: Live trapping 

Live trapping for bats was traditionally undertaken using mist nets, similar to those used to 

capture birds. However, since the invention of the harp trap in the 1950s, this has become 

the preferred choice for bats, as such traps are more efficient (Berry et al., 2004) and limit 

any stress experienced by captured animals (Kunz and Kuta, 1988). Trapping bats and 

examining them in the hand, enables definitive species identification that cannot always be 

ascertained through bioacoustics (section 1.3.2) alone (Collins, 2023). Some species, such as 

those in the genus Myotis are inseparable when conducting visual roost counts (Barlow et 

al., 2015), or using acoustics, therefore, trapping may be necessary where rarer species 

within the genus are suspected to be present. Furthermore, as with terrestrial mammals, 

live trapping bats allows for the collection of biometric data (Walters et al., 2013) or tissue 

samples for genetic studies (Rossiter et al., 2002). Trapping of bats, however, is a licenced 

activity, and can only be carried out by trained surveyors.  

 

 
1.3.1.3 Indirect: Scat and DNA 
 
In addition to non-volant mammals (outlined in section 1.2.1.3 above), indirect surveys are 

also valuable in surveying bats. The presence of scat/droppings is an effective means of 

establishing the presence of roosting bats, and are frequently encountered during 

Preliminary Roost Assessments (PRAs) of buildings and potential roosting structures 

(Froidevaux et al., 2020). Moreover, bat droppings can be sent for DNA analysis in order to 
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determine the species present, which can be advantageous for species such as those in the 

genus Myotis, which are challenging to identify to species level in acoustic surveys (Collins, 

2023). 

 
 
1.3.1.4 Remote: Night Vision Aids and camera traps 
 
Night Vision Aids (NVAs), based on either thermal imaging (mid and long wavelengths) or 

infrared thermography (IRT) (short wavelength) technology, take precise measurements of 

infrared radiation to determine surface temperature (Mccafferty, 2007). NVAs display the 

observed variations in temperature into a digital signal. Data output is in the form of a 

thermogram, generated by either the device itself or a computer from the signal, to give a 

visual representation of the observed radiation (Fawcett-Williams, 2019). The application of 

NVAs in the fields of ecology and zoology, has enabled valuable insights into the activity and 

health of both bats (Hristov et al., 2008), and an array of other mammal taxa, including 

burrowing species (Boonstra et al., 1994), terrestrial mammals (Dunn et al., 2002) and large 

sea mammals (Perryman et al., 1999). Cameras can be used terrestrially, both at close range 

and from a distance, with larger mammals successfully detected from a distance upwards of 

1000m (McCafferty, 2007) and aerially, with even early aerial studies being able to count 

groups of large mammals from altitudes of 300m in uncluttered environments (Graves et al., 

1972). Furthermore, NVAs can either be used in live view, to take user defined photographs 

(Goodenough et al., 2018), or record video footage for post hoc analysis (Hristov et al., 

2008). 

 

NVAs have huge potential to assist in both active and remote monitoring of mammal 

species, with a key advantage being able to observe diurnal and nocturnal species, including 
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bats, that are otherwise challenging to observe (Cilulko et al., 2013). Standard methods to 

study such animals are susceptible to visibility bias, arising from reduced detection ability as 

levels of visible light decline (Havens and Sharp, 2016). However, the costs involved in 

purchasing or hiring equipment, and the level of skill and knowledge required to successfully 

carry out surveys, remain significant barriers to the widespread use of the technology within 

ecology. Despite the large initial costs when used as a standalone method, thermal imaging 

cameras can effectively replace one or more surveyors, reducing the amount of night-time 

working required to carry out surveys (Fawcett-Williams, 2019).  

 

Although not previously widely used, the ecological application of thermal imaging in the UK 

is growing, primarily owing to its ability to aid in surveying and studying bats (Figure 1.3), 

both in activity surveys, and when locating roosts in trees and buildings (Fawcett-Williams, 

2019).  

 

Figure 1.3: Bats in flight, observed through a thermal imaging camera (Fawcett-Williams, 2019) 
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Ensuring accurate species identification from NVA footage remains an ongoing challenge, 

both in the case of large mammals, especially when counted from a distance (Goodenough 

et al., 2018) and smaller mammals, including bats (Darras et al., 2022). In the case of bat 

surveys, NVAs can be used in tandem with acoustic bat detectors, and bioacoustics can be 

used to verify the species of bats present within the thermal imaging footage (Collins, 2023). 

The Bat Conservation Trust has recently integrated protocols for the use of NVAs into their 

bat survey guidelines (Collins, 2023), with further guidelines for a broader range of species 

in development (Inside Ecology, 2018). 

 

Although standard ‘trail camera’ style camera traps are not typically suited to capturing 

images of fast-moving bats, Rydell and Russo (2015) successfully piloted a custom, remote-

triggered camera set up to capture high quality images of bats drinking. The species richness 

recorded was comparable to that of mist netting, and highlighted the value of such 

techniques in recording species that are typically infrequently recorded in acoustic surveys 

as a result of minimal echolocation. 

 
 
1.3.2 Acoustic bat survey methods 

Bioacoustic monitoring is a rapidly developing field, offering the potential to non-invasively 

gain insights into the ecology of rare and cryptic species (Teixeira et al., 2019), in addition to 

devising cost effective and reliable monitoring schemes to study species populations and 

communities at scale (Gibb et al., 2019). Analysis of animal sound has been applied to 

biological studies since as early as the 18th Century, with the earliest research focusing on 

identifying birdsong (Rose et al., 2022). The use of mammal sound in scientific research soon 
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followed, with ultrasound having been used in the study of bats since the 1930s, following 

the work of Galambos and Griffin (1942) examining echolocation. At present, a range of 

weatherproof bioacoustic sensors are used, including sound recorders, ultrasonic detectors, 

and hydrophones, often on an automated basis, to gather sound data from animals and 

their environment (Gibb et al., 2019). In addition to bats (Sugai et al., 2019), this technique 

has been successfully applied to the study of birds (Pérez-Granados, 2021), amphibians 

(Desjonquères, 2020), Orthoptera (Newson et al., 2017), and both marine (Mellinger et al., 

2007) and terrestrial mammals (Enari et al., 2019). In the UK, bioacoustic monitoring is 

frequently used in the surveying of bats (Collins, 2023), but has additionally been piloted for 

birds (Abrahams, 2018), and small terrestrial mammals (Newson et al., 2020). 

 

As a taxonomic group that is otherwise incredibly difficult to observe, acoustic monitoring of 

ultrasonic bat calls has revolutionised bat ecology. Initially, ultrasonic bat calls could only be 

captured by heterodyne bat detectors. This technology was first tested in the 1950s, with 

the first commercial detectors becoming available in 1963 (Zamora-Gutierrez et al., 2021). 

These detectors require manual tuning to the desired frequency, and detected sound is 

converted into lower frequency within human hearing range, with an output in the form of 

audible clicks. The ability to listen to bat echolocation calls provided valuable insights into 

species identification, ecology, and their spatiotemporal distribution (Russ, 2012). The 

technology developed to enable bat calls to be recorded, initially onto cassette tape, for 

further post hoc analysis. Handheld units continued to advance, with modern units offering 

full spectrum recording capabilities, inclusive of visual spectrograms, directly onto memory 

cards. The technology to enable Passive Acoustic Monitoring (PAM) of bats is a more recent 

development, starting with memory efficient zero crossing and frequency division detectors 
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in the 1980s (Corben, 2004). Full spectrum, passive bat detectors were introduced to the 

market even more recently, with their first use documented in 2009 (Zamora-Gutierrez et 

al., 2021). Passive detectors enabled bat surveys to be conducted over full nights and over 

several consecutive nights, increasing the temporal sampling range compared to transect 

surveys, carried out by surveyors with handheld detectors, during a set time period, on a 

given night (Goodenough et al., 2015). 

 

Bioacoustics shares many of the same key advantages as other remote methods (e.g., 

camera trapping), in that it can be used to monitor populations at scale, whilst being non-

invasive and automated (with the exception of transect bat surveys). However, whilst 

identifying individual species from camera trap images/videos relies on animals entering the 

camera’s field of view, microphones are typically omnidirectional and can capture sounds 

that carry across the landscape (Larsen et al., 2022).  

 

Species classification of sound recordings remains a key challenge facing wider application 

of bioacoustics, as post-hoc analysis of sound recordings can be time consuming and fraught 

with inaccuracies (Barré et al., 2019). Advances in machine learning and AI have begun to 

offer algorithms for automating analysis as the pool of training data available widens 

(Stowell, 2022), but at present much uncertainty surrounds their reliability (Mac Aodha et 

al., 2018; Barré et al., 2019). Moreover, financial costs incurred in the purchase of both 

hardware and analysis software still represent a barrier to the accessibility and scalability of 

bioacoustic methods. Despite falling costs, commercial acoustic detectors remain 

substantially more expensive than equivalent camera traps (Gibb et al., 2019). However, the 
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recent development of open-source acoustic loggers, has provided opportunities to access 

bioacoustic monitoring at a much lower price point (Hill et al., 2017) (Figure 1.4). 

 
 

 

1.4 Research Outline 

The research contained in this thesis investigates the effectiveness of passive acoustic 

techniques to survey and monitor British bats in field conditions. Although protocols for 

open-source acoustic loggers have been piloted by researchers and some are now becoming 

more widely used, many have yet to be empirically tested. Research questions remain 

regarding their performance when tested against commercial detectors, variation between 

different habitats, and how the quality of the data impacts analysis. Moreover, regardless of 

the devices used, there remain gaps in knowledge around the impacts of abiotic factors on 

Figure 1.4: A commercial (bottom) and open source (top) acoustic detector deployed in the field, 
targeting bats. 



Chapter One: Introduction 

 35 

acoustic bat surveys, and how best to optimise the methodology based on the aims of the 

survey. 

 

The research focuses on PAM for bats, considering the influence of abiotic variables on data 

collection, comparing data from different methods (walked transects versus automated 

fixed-point) and detector types (cost; data compression), and the analysis of acoustic data 

including use of automatic classifiers.  Overall, therefore, this research will empirically test, 

critique and evaluate the relative benefits and caveats of methods used in the field for 

collecting optimal monitoring data, how they contribute to furthering knowledge of species 

ecology and behaviour, and how they can be effectively applied in ecological research and 

conservation practice. The importance and originality of this research centres on 

developing, testing, refining and improving survey techniques to enable the collection of 

robust data in quantity and as cost-effectively as possible.   

 

This thesis is modular, with each data chapter concerning each specific research aim. These 

are set out in section 1.4.1 with section 1.4.2 introducing the research sites and data types 

used throughout the research and section 1.4.3 detailing publications arising from this work 

completed during PhD study. 

 
1.4.1 Thesis structure 

This research comprises several linked studies on different focal mammal species and/or 

guilds, with technological approaches to ecological surveying being the linking theme. The 

thesis is divided into seven chapters. This chapter (Chapter One) has introduced the 

scientific and legislative requirements for biological surveying and monitoring, both globally 
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and in the UK. It has also summarised the methods used for surveying and monitoring, both 

generally and with emphasis on those used widely for mammals in the UK, along with their 

strengths and caveats. Chapters Two to Five focus on the use of bioacoustics technology to 

survey and monitor bats. Chapter Two tests the influence of spatiotemporal and abiotic 

factors on bat activity recorded using passive acoustic monitoring and examines the benefits 

and caveats of this methodology in practice. Chapter Three evaluates the benefits and 

caveats associated with two widely used acoustic bat survey techniques; passive fixed-point 

monitoring and walked transect surveys. Chapter Four focuses on addressing some of the 

knowledge gaps associated with designing and financing passive bat surveys in relation to 

the type of detectors used and the number deployed (and how this differs according to 

habitat). The final data chapter, Chapter Five examines the analysis of the data collected in 

Chapter Four, comparing the performance of a suite of automated classifiers on data 

collected using different detectors. Chapter Six summarizes the key findings of the 

preceding data chapters, considers their implications for applied ecological practice, and 

suggests potential avenues for future research. 

 

1.4.2 Thesis research sites and data types 

The research is primarily based on primary data collected from sites in Gloucestershire and 

Worcestershire including parkland at Croome managed by the National Trust (52°05ʹ48ʺN , 

002°10ʹ13ʺW) and private farms/estates. Additional secondary data were used in two data 

chapters (Chapters Two and Three). These data were collected from sites across the south 

of England as being representative of sites typically encountered in ecological consultancy 

settings. The author, who at the time was a seasonal fieldworker for an ecological 

consultancy company, was involved in equipment set-up and carrying out surveys at the 
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majority of these sites, and undertook all acoustic data analysis before commencing PhD 

studies. These data, which were essentially secondary data in the context of the PhD despite 

having been collected by the author, were used with consent from the owner, and all field 

sites were accessed with full permission from the landowner/manager. The locations of all 

field sites are shown in Figure 1.5. The acoustic data collected and used throughout this 

research were collected exclusively under field conditions. Axiomatically, therefore, 

classifications, whether manual or determined by automated classifiers, could not be 

verified and are thus subject to error despite careful use of industry standard methods. Lack 

of ‘ground truthing’ bioacoustic data is a challenge faced by all practitioners undertaking bat 

surveys, especially where data are collected passively, and thus the level of uncertainty 

inherent in the data used in this PhD is representative of real-world data. This is 

acknowledged openly throughout this research, with acoustic data analysis workflows 

incorporating automated classification forming the focus of Chapter Five. For consistency, 

throughout this research the term ‘pass’ is used to denote an acoustic recording containing 

bat vocalisations, and ‘call’ to denote an individual bat vocalisation.  
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 Figure 1.5: Locations of the field sites within the south of the UK used for data collection according to thesis chapter.  The secondary data were 

collected in a development context and exact locations are not appropriate to disclose, therefore, the locations shown are approximated. 
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1.4.3 Publications arising from this PhD  

Chapters Two and Three have been published in peer-reviewed journals during PhD study in 

2020 and 2021, respectively. The material has been reformatted for inclusion in this thesis 

to provide consistency across the chapters and align with the University of Gloucestershire’s 

thesis requirements, and additional summaries have been written at the start and end of 

each chapter to set the chapters within the thesis context, but have not otherwise been 

amended. Chapter Four was presented in-progress as a poster at the British Ecological 

Society Annual Meeting in 2023. Content from Chapters Four and Five is intended to be 

published in peer-reviewed journals in due course. 
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2.CHAPTER TWO: The influence of abiotic and spatiotemporal 
factors on the detectability of bats in passive acoustic 
surveys 
 
 

 
Full moon over Bredon Hill – July 2021 

 
Bat activity surveys are essential in the contexts of scientific research, conservation, 
assessment of ecosystem health, monitoring progress towards sustainable development 
goals, and legislative compliance in development and infrastructure construction. However, 
environmental conditions have the potential to influence bat activity and, in turn, their 
detectability in acoustic surveys. Here, 3,242 hours of acoustic survey data from 323 nights 
of bat monitoring at 14 sites over a 4-year period, are used to explore the influence of 
spatiotemporal factors, lunar phase, and weather conditions on bat activity.  
 
 
 
Publications arising from this chapter: 
 
Perks, S. J. and Goodenough A.E. (2020) ‘Abiotic and spatiotemporal factors affect activity of 
European bat species and have implications for detectability of acoustic surveys’. Wildlife 
Biology, 2020(2), pp.1-8. 
 
The material has been reformatted for inclusion in this thesis to provide consistency across 
the chapters and align with the University of Gloucestershire’s thesis requirements, with 
summaries at the start and end of each chapter to set the chapters within the thesis 
context, but have not otherwise been amended. The data used for this chapter are 
explained in relation to the PhD process in Section 1.4.2. 
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2.1 Introduction 

Bats (Chiroptera) are the second largest mammalian order with 1,100 species worldwide 

(Kunz and Lumsden, 2003; Simmons et al., 2008). They have diversified over the past 52 

million years to inhabit numerous habitats and utilise a range of food sources and foraging 

techniques (Patterson et al., 2003). Insectivorous species, such as those found in Europe, 

are nocturnal and typically use echolocation to catch prey by aerial hawking (e.g. 

Pipistrellus) or from the surface of water (e.g. Myotis), as well as for navigation.  

 

Although the broad-scale biogeographical ranges of most species are widely documented, 

and habitat requirements are reasonably well understood, at least for roost sites, there 

remain considerable gaps in knowledge regarding the factors that influence local-scale 

foraging activity both spatially and temporally (Barclay, 1991; Walsh and Harris, 1996a; 

1996b; Erickson and West, 2002; Ciechanowski et al., 2007). Given that acoustic bat surveys 

depend on detecting echolocation during foraging (and when bats are commuting between 

roost and feeding grounds), understanding the spatiotemporal and abiotic factors that 

influence detection is key to obtaining robust survey data (Hayes, 1997). This is of particular 

importance given the use of bat surveys in conservation contexts (Barlow et al., 2015) and 

to quantify ecosystem health (Jones et al., 2009), as well as when surveys of legally-

protected species are a statutory obligation in infrastructure and development planning 

(Collins, 2016). In Europe, bats are protected under the European Protected Species 

licensing framework to ensure compliance with the EC Habitats Directive (92/43/EEC), with 

countries implementing this via their own national legislation (e.g. Wildlife and Countryside 

Act 1981 and Conservation of Habitats and Species Regulations 2010 in the UK).  
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Bats are not spatially uniform in occurrence. Habitat suitability for foraging is largely 

determined by insect prevalence and foraging opportunities. High-quality foraging habitat 

includes broadleaf woodland, water and linear vegetation corridors (Walsh and Harris, 

1996a) whereas arable land and improved grassland are generally less favoured (Walsh and 

Harris, 1996b). Some species have particular habitat requirements for foraging. For 

example, Daubenton’s bats (Myotis daubentonii) forage over water (Rydell et al., 1999, 

Russ, 2012), greater horseshoe bats (Rhinolophus ferrumequinum) are often associated with 

cattle (Ransome, 1996), while brown long-eared bats (Plecotus auritus) depend on areas 

where there is suitable vegetation for gleaning (Rydell, 1989a, Anderson and Racey, 1991). 

Distribution of foraging sites also fundamentally depends on the location of roost sites and 

the distance individuals commute to their feeding grounds. For British bats, commuting 

distance can range from as little as <1km (e.g. Bechstein’s bat Myotis bechsteinii) to up to 

14km (e.g. Leisler’s bat Nyctalus leisleri) (Hundt, 2012). 

 

Temporal factors can also affect bat foraging and feeding behaviour, and thus their 

detection on bat surveys. Seasonality affects the presence of foraging temperate bats as 

they typically hibernate overwinter or migrate to other areas. Females are most active in 

early summer due to the high energy demands of pregnancy and lactation (Racey and 

Speakman, 1987, Ciechanowski et al., 2007). Late in the summer, young bats increase the 

size of the population foraging (Erickson and West, 2002). This, together with the fact that 

adults often spend more time away from the roost after weaning, typically increases 

observed activity levels from late July to September (Maier, 1992). Different bat species also 

have different circadian rhythms and emerge at different times post-sunset (Jones and 

Rydell, 1994) both relative to one another and potentially also in response to night duration.  



Chapter 2: Acoustic bat surveys – abiotic factors 

 43 

 

Abiotic factors also have the potential to affect bat activity and thus detectability in acoustic 

surveys. Light levels, including moonlight duration and intensity, could be especially 

important. A global meta-analysis by Saldaña-Vazquez and Munguia-Rosas (2013) combined 

results of multiple studies to research the effects of moonlight on bats. Their analyses found 

a significant negative relationship between moonlight intensity and levels of bat activity, 

indicating that some species were lunar phobic. The strongest effect was found in tropical 

frugivorous species, for example Neotropical fruit bats (Artibeus) (Morrison, 1978), and in 

Neotropical species that forage over water, such as the greater bulldog bat (Noctilio 

leporinus) (Börk, 2006). The limited research on the effect of moonlight on insectivorous 

bats in at higher latitudes is less conclusive. Negraeff and Brigham (1995) found no 

indication of lunar phobic behaviour based on work in Canada. This is possibly because bats 

at higher latitudes have lower nocturnal predation risk than those in the tropics (Karlsson et 

al., 2002). However, even if predation pressures in temperate bats are low, there remains 

the potential for impacts on emergence times and bat activity patterns, both spatially and 

temporally (Lima and O’Keefe, 2013). In the Pacific northwest, Erickson and West (2002) 

suggested that variation in insectivorous bat activity might relate to moonlight intensity but 

did not explicitly test this hypothesis. The phenomenon has not been extensively studied for 

European species. Weather conditions can also influence bat activity. As small, endothermic 

mammals, bats use a large proportion of their energy to thermoregulate (Lewis, 1993). 

Lower air temperatures and rainfall require the bats to utilise more energy to maintain 

suitable body temperature, such that foraging in these conditions may be unfavourable. 

Insect prey may also be less abundant in poor weather (Racey and Speakman, 1987). 

Although weather conditions can cause bat activity to differ substantially on consecutive 
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nights (Hayes, 1997), it does not account for all within- or between-night variation. 

Moreover, a study by Erickson and West (2002) showed that rain and temperatures 

accounted for 37% of the variation in insectivorous bat activity. 

 

Here we explore the influence of spatiotemporal and abiotic variables on bat activity using 

data from automated monitoring from 14 sites over a four-year period (3,242 survey hours 

over 323 nights). This encompassed both overall bat activity, as well as species- and genus-

specific trends in relation to site, nocturnal emergence patterns, duration of moonlight, and 

weather variables. Understanding the effect of these multifaceted and interlinked factors on 

the activity of different bat species is a vital step in ultimately developing maximally 

effective survey protocols, which, in turn, will improve the reliability of conservation and 

planning decisions made using survey data. 

 
 
2.2 Methods 

2.2.1 Data collection 

Data were collected between 2014 and 2017 across 14 sites in the south of England. The 

sites represented a range of habitat types. Most of the sites (n = 9) comprised agricultural 

land with dividing hedgerows. The remaining sites were rural sites with heterogeneous 

habitat including well established treelines, woodland, and/or watercourses (n = 3), or were 

green spaces within urban areas (n = 2). An Anabat Express bat detector unit (Titley 

Scientific, Ballina, Australia) was deployed at the study sites in rotation to record data across 

the sites for a total of 323 nights between sunset and sunrise. Deployment and positioning 

was carried out in a consistent manner at all sites with units mounted about 1.75 m above 
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the ground adjacent to a suitable hedgerow or treeline to ensure detection of commuting 

and foraging activity along linear features. The units recorded data directly onto an SD card.  

Post fieldwork, all data from the bat detectors were downloaded for sonogram analysis. The 

analysis was performed in AnalookW software (Titley Scientific, Ballina, Australia) developed 

specifically for Anabat detectors. Initially recordings were processed on a night-by-night 

basis and then data were subdivided into hourly units relative to sunset. This gave a total of 

3,424 hours of survey data over 323 nights, with each night of data being from a single site 

(i.e. sites were sampled independently not concurrently).  Survey effort (number of survey 

nights per month and per site) is given in Table S1. Species identification was carried out by 

assessment of the range and peak frequency, together with shape of each sonogram in 

terms of pitch and amplitude over time (Russ, 2012).  

 

Data relating to temporal and abiotic factors were collected for use as explanatory factors in 

statistical modelling. The variables are explained in Table 1. Sunset, sunrise and lunar data 

were taken from Time and Date AS (www.timeanddate.com). Weather data were obtained 

via BBC (www.bbc.co.uk/weather) for the nearest town or using Time and Date AS using the 

nearest available weather station. 

 

 
2.2.2 Statistical analysis 

To examine whether there were significant deviations from a uniform distribution of bat 

passes throughout the night, Kolmogorov-Smirnov two-sample tests were used as per Milne 

et al. (2005) for Australian bat species.  
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To explore the influence of spatiotemporal and abiotic factors on bat activity, Generalised 

Linear Mixed Models (GLMMs) were constructed. Models were developed for overall bat 

activity (total number of bat passes per hour regardless of species: n = 3424) and also the 

activity of each of the four most prevalent species/genus groups; common pipistrelle 

(Pipistrellus pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), Myotis spp. and 

Nyctalus spp. (specific bat passes per hour: n = 3424). In all cases, a full model was 

constructed whereby the factors listed in Table 2.1 were entered as continuous fixed factors 

(hour post sunset, temperature, wind speed) or categorical fixed factors (illumination, 

rainfall). Two random factors were also entered: site (coded 1-14 with no underlying 

rationale for the order and thus entered as a categorical random factor) and month (April to 

October). Because the dependent variable of bat activity (total or species-specific) used 

count data (number of bat passes per hour), a Poisson distribution was used with a log link 

function: this gave the lowest Akaike’s Information Criterion (AIC) value (Akaike, 1971) 

relative to other options for count data of Poisson with identity link, negative binomial with 

log link, and negative binomial with identity link. For the random factors, a scaled identity 

covariance type was specified as this covariance structure was associated with the lowest 

AIC score. To ascertain the effect of the fixed factors in explaining bat activity, marginal r2 

was calculated. To ascertain the effect of both fixed and random factors, conditional r2 was 

calculated. The relative importance of the random factors can be inferred from the 

difference between conditional and marginal r2. 
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Table 2.1: Temporal and abiotic data collected for use in statistical analyses. All data were hourly (n 
= 3,242) 

Name Details Data type 
Time post 
sunset 

Bat survey hour relative to sunset, whereby 1 was the first hour post sunset, 2 
was the second hour post sunset etc. The number of full survey hours varied 
between 8 and 14 depending on the length of night, with a modal duration of 10 hrs.  
 

Continuous 

Illumination Illumination based on moon presence taking into account moonrise and moonset 
times, as well as cloud cover. Note that depending on the lunar phase, on some 
nights moonrise was at/before sunset (such that potential moonlight was at the 
start of the night) but that on other nights moonrise was after sunset (such that 
there was no potential moonlight for the first part of the night). The moon was 
potentially present for part of the night on all survey nights. Lunar timing 
information was combined with hourly cloud cover to give a ranking scale 
whereby: 0 = no illumination (no moon present for any part of the survey hour 
and/or overcast skies; 56.9% of cases); 0.5 = partial illumination (moon present 
for part of the hour only and/or patchy cloud; 30.3% of cases); and 1 = full 
illumination (moon present for full survey hour and clear skies; 12.8% of cases). 
None of the 14 survey sites was subject to artificial illumination.  
 

Categorical 

Temperature Measured in degrees Celsius (°C). 
Min = 1°C; max = 27°C; mean = 13.2°C 
 

Continuous 

Wind speed Average miles per hour (mph). 
Min = 0 mph, max = 30 mph; mean = 7 mph. 
 

Continuous 

Rainfall Ranking scale of: 1 = none (63.4% of cases), 2 = intermittent and/or light (18.6% of 
cases) , 3 = persistent and/or heavy (18.0% of cases). 

Categorical 

 

 

Once full models had been computed for bat activity, reduced models were tested by 

dropping different combinations of fixed factors to establish whether the full model was 

optimal or whether a simpler model might better balance explanatory power and 

parsimony. Competing models were compared using delta (D) AIC on the basis that models 

with DAIC £ 2 had essentially have the same support and models with DAIC of 3-4 had 

strong support; models with AIC ≥ 5 were considered to have substantially less support and 

were discounted (Burnham and Anderson, 2002).  In all cases the full model was optimal 

and hence only full models are reported. All statistical analysis was carried out in IBM SPSS 

Statistics (version 24). 
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2.3 Results 

In total, 52,628 bat passes were recorded over 3,242 survey hours between sunset and 

sunrise across 323 nights. The majority of passes were: common pipistrelle = 29,657, 

soprano pipistrelle = 13,034, Myotis spp. = 7,146 and Nyctalus spp. = 831. The remaining 

1,960 passes were split between serotine (Eptesicus serotinus), brown long-eared (Plecotus 

auritus), greater horseshoe (Rhinolophus ferrumequinum), lesser horseshoe (Rhinolophus 

hipposideros), barbastelle (Barbastella barbastellus) bats: these species were encountered 

too infrequently for meaningful statistical analysis. As common pipistrelle or soprano 

pipistrelle overlap in call frequency, there were also some Pipistrellus calls between 50 and 

51 kHz that could not be definitively identified. As per Russ (2012), we classified Pipistrellus 

calls with a maximum energy (peak) frequency <50.2 kHz as common pipistrelle and 

Pipistrellus calls with a maximum energy (peak) frequency >50.6 kHz as soprano pipistrelle, 

while those between 50.2 and 50.6 were discounted from analysis unless they were part of 

a series of calls that had already been identified definitively to species level. The mean 

number of bat passes per hour for total activity and the four specific taxa are given in Table 

S2.1 on a per month, per site basis. 

 

2.3.1 Temporal distribution 

Two sample Kolmogorov-Smirnov tests demonstrated that passes of all species/genera 

differed significantly from a uniform distribution (P ≤ 0.046 in all cases). The majority of bat 

passes, regardless of species, occurred in the first hour post sunset and then decreased as 

the night progressed, with a small increase in activity towards dawn that made the overall 

activity distribution slightly bimodal (Figure 2.1a).  Both pipistrelle species also showed 

higher activity in the hours immediately following sunset (Figure 2.1b-c), however, soprano 
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pipistrelle alone showed an additional peak in activity towards dawn (Figure 2.1c). The 

temporal distribution of Nyctalus passes (Figure 2.1d) was the most sporadic, with higher 

peaks in activity occurring haphazardly throughout the night. However, this species was 

recorded much less frequently than pipistrelle species or Myotis spp. and thus the variability 

in passes, as shown by the standard error bars, was considerably higher. Myotis passes were 

relatively infrequent in the first hour post sunset (Figure 2.1e), but increased thereafter, 

peaking in the third hour post sunset and then decreasing, with a small peak in activity prior 

to dawn.  
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Figure 2.1: Mean number of passes in each hour post sunset for total bats and within 
species/genus. Error bars show SEM (±1se). 
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2.3.2 Spatiotemporal and abiotic influences on bat activity 

Hour post sunset, temperature, wind speed, illumination and rainfall all had a significant 

effect on overall bat activity (bat passes per hour regardless of species) and the activity of 

the four focal taxa; the single exception was temperature for soprano pipistrelle, which was 

not significant (Table 2.2).  

 

Hour post sunset was significantly negatively related to overall bat activity: bat passes per 

hour decreased by 0.147 per hour (± 0.002 SEM) as the night progressed. Similar negative 

relationships were seen for activity in all four specific taxa, with gradients varying between -

0.051 ± 0.017 (Nyctalus) and -0.176 ± 0.004 (common pipistrelle). These relationships 

largely reflect the temporal pattern of bat activity decreasing throughout the night (Figure 

2.1), with the shallower gradients being for species with a notable pre-dawn peak in activity 

(soprano pipistrelle) or species whose activity was sporadic throughout the night (Nyctalus).   

 

The relationship between temperature and overall bat activity was weakly positive, with bat 

activity increasing by 0.015 bat passes per hour (± 0.002 SEM) for each °C increase in 

temperature. A similar pattern was seen for common pipistrelle (0.022 ± 0.003), with a 

stronger positive relationship being found for Nyctalus (0.383 ± 0.017). A weak negative 

relationship was observed between temperature and Myotis (-0.029 ± 0.006). There was a 

significant positive relationship between bat activity and wind speed for overall bat activity 

and for activity of common pipistrelle, soprano pipistrelle and Myotis: all relationships were 

comparatively similar with bat passes per hour increasing by ~0.067 (± ~0.002 SEM) for each 
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additional mile per hour in wind speed. The exception was Nyctalus where bat passes 

decreased by 0.111 (± 0.011 SEM) for each additional mph in wind speed. 
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Table 2.2: Generalized linear mixed models exploring the influence of temporal and abiotic factors on overall bat activity (bat passes per hour) and activity for four specific 
taxa (n = 3,242 survey hours across a total of 323 nights and 14 sites). The models used a Poisson distribution with a log link function. For the three continuous fixed factors – 
hour post sunset, temperature, and wind speed – the gradient of any significant relationship with bat activity is given with the standard error below in parentheses. For the 
two fixed factors – illumination and rainfall – the estimated marginal mean (EMM) is given with the standard error below in parentheses. In all models, site (n = 14) and 
month (n = 7) were included as random factors. The importance of the fixed factors in explaining bat activity can be assessed using the marginal r squared value (r2m), while 
the additional importance of the random factors can be assessed using the difference between r2m and the conditional r squared value (r2c). For more details of the variables, 
including the categories for illumination and rainfall, please see Table 2.1.  

 

  Overall model Hour post sunset Temperature Wind speed Illumination Rainfall 

  
r2m r2c F P Gradient F P Gradient F P Gradient F P 

EMM 
None 

EMM 
Partial 

EMM 
Full F P 

EMM 
None 

EMM 
Light 

EMM 
Heavy 

Total  0.369 0.474 6798 <0.001 -0.147 61 <0.001 0.015 2822 <0.001 0.067 208 <0.001 4.838 4.002 2.934 393 <0.001 5.668 5.114 2.628 
Activity 

    
(0.002) 

  
(0.002) 

  
(0.001) 

  
(0.054) (0.044) (0.044) 

  
(0.063) (0.057) (0.029)  

Common  0.286 0.347 2986 <0.001 -0.176 78 <0.001 0.022 2402 <0.001 0.071 18 <0.001 2.390 2.222 2.203 71 <0.001 2.791 2.614 1.606 
Pipistrelle 

    
(0.002) 

  
(0.003) 

  
(0.002) 

  
(0.030) (0.032) (0.032) 

  
(0.040) (0.038) (0.023) 

Soprano  0.423 0.478 2406 <0.001 -0.133 1 0.592 N/A 589 <0.001 0.065 128 <0.001 0.214 0.163 0.127 314 <0.001 0.280 0.257 0.062 
Pipistrelle 

    
(0.004) 

     
(0.003) 

  
(0.006) (0.005) (0.004) 

  
(0.009) (0.009) (0.002) 

Myotis    0.282 0.513 962 <0.001 -0.133 20 <0.001 -0.029 322 <0.001 0.067 57 <0.001 0.131 0.096 0.120 29 <0.001 0.139 0.109 0.100 
spp. 

    
(0.005) 

  
(0.006) 

  
(0.004) 

  
(0.005) (0.003) (0.004) 

  
(0.005) (0.004) (0.004) 

Nyctalus  0.354 0.357 11 0 -0.051 518 <0.001 0.383 111 <0.001 -0.111 4 0.020 0.055 0.068 0.053 13 <0.001 0.117 0.043 0.040 
 spp.         (0.015)     (0.017)     (0.011)     (0.002) (0.003) (0.002)     (0.005) (0.002) (0.002) 
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Bat activity, both overall and for each of the four focal taxa, was significantly lower in heavy 

rain. In the case of overall activity, bat passes per hour were fairly consistent in dry conditions 

and in light rain (5.668 and 5.114 bat passes per hour, respectively), but decreased 

substantially in heavy rain (2.628 bat passes per hour). This notable decrease in activity in 

heavy rain also occurred for both pipistrelle species. In contrast, Myotis declined linearly as 

rain intensified, while Nyctalus activity dropped substantially between dry conditions and 

light rain with activity levels in light and heavy rain being approximately equal.   

 

The impact of moon illumination on bat activity was more varied between taxa. Overall bat 

activity was significantly lower in instances of full illumination (2.934 bat passes per hour), 

than in partial or no illumination (4.002 and 4.838, respectively). The effect of moonlight on 

activity of both common and soprano pipistrelle was more gradual but remained negative. 

The effect of moonlight on Nyctalus and Myotis bats was less clear: partial illumination was 

associated with peak activity of Nyctalus and lowest activity of Myotis.   

 

The random factors of site and month increased the amount of variance in total bat activity 

explained by the GLMM (r2
m = 0.369 versus r2

c = 0.474; a difference of 0.105). This 

demonstrates the importance of site-specific factors and seasonality on overall bat activity. 

For specific taxa, site and month varied in how much they influenced bat activity, with the 

difference between conditional and marginal r2 values being negligible for Nyctalus (0.003) 

and low for soprano and common pipistrelle (0.055 and 0.061, respectively), but substantially 

higher for Myotis (0.231). It is important to note that the fixed factors (hour post sunset, 

temperature, wind speed, illumination and rainfall) together accounted for substantially more 

variation in bat activity than did the random factors of site and month in all cases.  
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 2.4 Discussion 

2.4.1 Spatiotemporal factors 

Bat populations differ across time and space suggesting that resource partitioning is 

important in facilitating the co-existence of multiple species (Arlettaz, 1999). Within the 

United Kingdom, such partitioning has been observed previously between Pipistrelle 

species, which differ in foraging locations and feeding times (Nicholls and Racey, 2006). 

Here, we found that random factors of site and month typically accounted for 12-22% of the 

variation in bat activity but were particularly important for Myotis, where they accounted 

for 45% of the variation explained by the GLMM model. This is likely driven by Daubenton’s 

bats (Myotis daubentonii), which are associated with water as they glean insect prey from 

the surface of lakes and ponds (Jones and Rayner, 1988; Russ, 2012) and were thus present 

in large numbers at some sites and absent from others. Seasonality (accounted for here by 

adding month as a random factor) is also likely to impact observed levels of activity. 

Temperate bats in the United Kingdom are most active during the summer months, foraging 

regularly to prepare for, or to recover from, the high energy demands of raising young 

(Racey and Speakman, 1987; Ciechanowski et al., 2007). All bats remain active for the 

remainder of the summer and into early autumn to ensure they have sufficient energy 

reserves for winter hibernation (Speakman and Racey, 1989). The time at which bats enter 

and emerge from hibernation is primarily dependent on temperature. They enter torpor 

when energy demands are higher than can be met by decreasing insect densities (Speakman 

and Racey, 1989). Depending on ambient temperature, bats typically become active in April 

and seek out hibernation sites in late September as temperatures drop.  
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Bat activity was not uniform throughout the night, as shown by the clear patterns in the 

temporal distribution of activity across the night and reinforced by hour post sunset being 

significant in each GLMM. Bats emerge at different times (Russ, 2012) and also commute 

different distances, at different speeds, between roosts and foraging areas. Some bats 

return to their roost part way through the night and then re-emerge for a pre-dawn feed 

and this likely explains the increase in bat activity shown towards sunrise shown here for 

soprano pipistrelle and Myotis. This has been seen to vary between nights and seasons 

(Anthony et al., 1981) and may be influenced by peaks in insect densities at dusk and, to a 

lesser extent, at dawn (Rydell et al., 1996). Ultimately different temporal patterns in activity 

levels between species, as demonstrated here, plays an important role in niche partitioning 

in multi-species assemblages of insectivorous bats (Milne et al., 2005; Ciechanowski, et al., 

2007).  

 

2.4.2 Weather 

Temperature was weakly positively correlated with bat activity both overall and for 

common pipistrelle (i.e. more passes in warmer conditions). This was expected given that 

bat activity tends to peak in the summer months, when temperatures are usually highest. 

The weak negative relationship between temperature and bat activity for Myotis and 

Nyctalus was more surprising. However, as surveys were undertaken between April and 

early October, when it is typically warm enough for bats and their insect prey to be active, 

one explanation is that temperature is important as a threshold, rather being linearly 

related to activity levels (Rydell, 1989b). The notable pre-dawn peak for Myotis, when 

nightly temperatures are usually at their coldest, might also be a partial driver for this 

finding (and may also provide an explanation as to why there was no significant relationship 
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between temperature and activity of soprano pipistrelle; the other species with a pre-dawn 

peak in activity). Rainfall was negatively correlated with bat activity in all cases (i.e. more 

passes in dry conditions). This is consistent with previous findings that rain imposes an 

additional energetic cost and decreased prey abundance (Erickson and West, 2002; Downs 

and Racey, 2007). Wind speed was positively correlated with bat activity in all cases with the 

exception of Nyctalus. This finding is surprising given the potential for additional energetic 

costs posed by flight in strong winds (Norberg, 1990). However, insectivorous bats, and 

specifically pipistrelles, are known to utilise linear features such as treelines and hedgerows 

to provide shelter when foraging in windy conditions (Verboom and Spoelstra, 1999; Russ et 

al., 2003). This spatial shift in foraging activity might account for the increase in detected 

echolocation calls as the detectors used in this study were predominantly placed along 

linear features as is common in automated surveys (Collins, 2016).  In this way, automated 

survey results might be affected by the three-way relationship between the presence of 

linear features, detector placement, and wind conditions.  

 

2.4.3 Moon illumination 

Previous studies on the effects of moonlight on bats have shown mixed effects. For 

example, Lang et al. (2006) found that activity of some insectivorous bats such as the white-

throated round-eared bat (Lophostoma silvicolum) in Panama to be lower on moonlit nights, 

while Appel et al. (2017) found bat activity was positively correlated with moonlight for 

Parnell's mustached bat (Pteronotus parnellii) and lesser sac-winged bat (Saccopteryx 

leptura) in Brazil. Here, we found that moon illumination was negatively related to bat 

activity. This agrees with work by Adams et al. (1994) on the Virginia big-eared bat 

(Corynorhinus townsendii virginianus) in the US but contrasts with previous work on non-
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British Myotis species, which did not find a link between activity and moonlight (Negraeff 

and Brigham, 1995; Hecker and Brigham, 1999) - although it is notable that neither of these 

studies included the modifying effect of cloud cover on illumination.  

Although it has been suggested previously that bats at higher latitudes are exempt from the 

predation pressures that impact tropical species (Karlsson et al., 2002), predation risk on 

bright nights could still be an important modifier of activity in temperate species (Lima and 

O’Keefe, 2013). It has also been suggested that temperate insectivorous bats may seek 

more enclosed (shaded) habitats when foraging in bright moonlight (Reith, 1982; Erickson 

and West, 2002), such that an apparent decrease in activity in open areas nights might 

actually be a repositioning of foraging activity spatially.  We therefore suggest that the bats 

in our study might be avoiding bright moonlight conditions because of an increased risk of 

predation, either real or perceived. Moreover, it is notable that Myotis and Rhinolophus 

bats in Europe have previously been found to have an aversion to artificial illumination 

(Rydell, 1992; Stone et al., 2009), which again was provisionally attributed to predation risk.  

 

2.4.4 Implications and recommendations 

Bats comprise an important, and legally-protected, part of mammal fauna in the UK. 

Surveying and monitoring is important in the contexts of scientific research, conservation, 

assessment of ecosystem health, monitoring progress towards sustainable development 

goals, and in compliance with legislation on development planning and infrastructure 

construction (Jones et al., 2009; Barlow et al., 2015; Collins, 2016). It is thus vital that the 

factors which underpin bat activity, and thus detectability in acoustic surveys, are clearly 

understood. Bat surveys are notoriously difficult to standardise in terms of timing and the 
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abiotic conditions under which they are conducted and only with robust understanding of 

optimal foraging conditions is it possible for this to be achieved.  

 

We recommend that automated fixed-point surveys are undertaken throughout the night 

where possible (where this is not possible, they should be conducted for 4 hours post-

sunset and 2 hours pre-sunrise to ensure peak activity times for all species are covered). As 

long as bats are active, temperature is largely immaterial but nights with heavy rainfall 

should certainly be avoided. Wind speed should also be taken into account, as linear 

features might be preferred habitat when shelter is sought from the wind, potentially 

increasing estimates of activity if detectors are placed close to such features. Surveying 

during high summer gives the simultaneous advantages of higher activity and greater 

concentration of activity as nights are shortest. We recommend that given increasing 

urbanization, the effect of light on bats should be further investigated, and that such 

research take cognisance of cloud cover as well as lunar phase (Stone et al., 2009; Russo et 

al., 2017). Given that the findings of this research indicate that overall bat activity decreases 

when the moon is unobscured by cloud, there remains potential for light from artificial 

sources to also impact bat activity. Passive monitoring of light levels in the field during 

surveys might be particularly helpful in such research.  

 
 
2.5 Chapter summary 
 

1. Within-night bat activity was not uniform, with peaks in overall activity found in the 

3-4 hours post sunset, and again shortly before dawn for particular taxonomic groups 

(soprano pipistrelle, Myotis spp.). 
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2. Further spatiotemporal factors of site and month were found to driving 45% of the 

observed variation in activity for Myotis spp. 

3. Rainfall was negatively correlated with bat activity in all cases. 

4. Moonlight was also negatively correlated with bat activity, suggesting “lunar 

phobia” or a spatial shift in activity on moonlit nights. 

5. Results from this chapter inform the methods used for primary data collection in 

Chapters Four and Five by ensuring data collection occurred throughout the night in 

suitable weather conditions and sites being surveyed in rotation to mitigate the 

influence of seasonal patterns. 
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2.6 Supplementary material 
 
 Table S2.1: Number of survey nights at each site (1-14) within each month (April-October). The mean number of bat passes per hour are given for total bat activity and for 
four specific taxa, both per month, per site and overall. 
 

 Mean bat passes per hour 

Site Month Nights Surveyed Total Activity Common Pipistrelle Soprano Pipistrelle Myotis spp. Nyctalus spp. 

1 April 3 17.63 9.99 4.29 2.38 0.28 
 May 9 17.58 9.96 4.27 2.73 0.28 
 June - - - - - - 
 July - - - - - - 
 August - - - - - - 
 September 23 15.67 8.63 3.86 2.29 0.22 

 
 October 15 15.49 8.49 3.83 2.28 0.22 

2 April - - - - - - 
 May 17 17.15 9.65 4.21 2.32 0.28 
 June - - - - - - 
 July - - - - - - 
 August - - - - - - 
 September 16 15.59 8.59 3.83 2.28 0.22 

 
 October - - - - - - 

3 April - - - - - - 
 May 7 18.81 9.55 3.95 2.33 0.28 
 June - - - - - - 
 July - - - - - - 
 August - - - - - - 
 September - - - - - - 
 October - - - - - - 

 
4 April - - - - - - 
 May - - - - - - 
 June 3 18.44 10.48 4.33 2.56 0.31 
 July - - - - - - 
 August - - - - - - 
 September - - - - - - 
 October 

 
- - - - - - 
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5 April - - - - - - 
 May - - - - - - 
 June - - - - - - 
 July - - - - - - 
 August - - - - - - 
 September 2 15.66 8.88 3.72 2.16 0.25 
 October - - - - - - 

 
6 April - - - - - - 
 May 6 18.39 10.45 4.33 2.56 0.31 
 June 10 18.19 10.28 4.30 2.56 0.31 
 July 20 17.95 10.11 4.26 2.54 0.30 
 August - - - - - - 
 September - - - - - - 
 October 

 
- - - - - - 

7 April - - - - - - 
 May - - - - - - 
 June - - - - - - 
 July 13 17.91 10.05 4.27 2.54 0.30 
 August - - - - - - 
 September - - - - - - 
 October 

 
- - - - - - 

8 April - - - - - - 
 May - - - - - - 
 June 5 19.78 10.95 4.82 2.85 0.32 
 July - - - - - - 
 August - - - - - - 
 September 6 16.00 9.03 3.77 2.25 0.26 
 October 

 
- - - - - - 

9 April - - - - - - 
 May - - - - - - 
 June - - - - - - 
 July - - - - - - 
 August - - - - - - 
 September 12 15.98 9.04 3.76 2.25 0.26 
 October 

 
 
 
 

- - - - - - 
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10 April - - - - - - 
 May - - - - - - 
 June - - - - - - 
 July - - - - - - 
 August 9 16.64 9.43 3.91 2.34 0.27 
 September - - - - - - 
 October 

 
- - - - - - 

11 April - - - - - - 
 May - - - - - - 
 June 1 17.96 10.11 4.29 2.56 0.27 
 July - - - - - - 
 August 7 16.75 9.38 3.92 2.34 0.25 
 September 8 15.98 9.02 3.79 2.26 0.24 
 October 

 
- - - - - - 

12 April 16 13.33 11.74 0.58 0.34 0.08 
 May 18 2.06 1.06 0.28 0.22 0.20 
 June 23 3.71 2.47 0.19 0.42 0.21 
 July 22 11.30 9.32 1.68 0.11 0.06 
 August - - - - - - 
 September 18 6.14 3.23 0.16 1.48 0.23 
 October 

 
11 3.08 1.77 0.14 0.74 0.10 

13 April - - - - - - 
 May - - - - - - 
 June - - - - - - 
 July - - - - - - 
 August 1 15.71 8.69 3.81 2.29 0.22 
 September 7 15.68 8.68 3.80 2.29 0.22 
 October 

 
- - - - - - 

14 April - - - - - - 
 May - - - - - - 
 June - - - - - - 
 July - - - - - - 
 August 15 50.00 40.27 1.11 0.17 0.01 
 September - - - - - - 
 October 

 
- - - - - - 

Total  323 16.27 9.15 4.02 2.20 0.26 
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3.CHAPTER THREE: Comparing acoustic data from transect 
and automated bat surveys 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Hand-held detector on a transect survey versus passive detector on an automated survey  
 
Chapter Two investigated the effect of spatiotemporal and abiotic factors on the bat activity 
(recorded in automated fixed-point bat surveys via passive acoustic monitoring). However, 
acoustic bat surveys can also be conducted via activity surveys using walked or driven 
transects. Transect surveys are typically performed for two hours commencing around 
sunset, where automated, fixed-point, surveys record continually between sunset and 
sunrise, often over multiple consecutive nights. Here, a subset of the fixed-point data used in 
Chapter Two are supplemented by transect data collected at the same sites totalling 2,349 
survey hours over a 3-year period (some of the earlier data used in the previous chapter did 
not correspond with a transect survey). These data are used to investigate the relative 
effectiveness of walked activity transects and automated fixed-point methods for 12 species 
of European bats. 
 
 

 
Publications arising from this chapter: 
 
Perks, S. J. and Goodenough, A. E. (2021) ‘Comparing acoustic survey data for European 
bats: do walked transects or automated fixed-point surveys provide more robust data?’. 
Wildlife Research, 49(4), pp.314-323. 
 
The material has been reformatted for inclusion in this thesis to provide consistency across 
the chapters and align with the University of Gloucestershire’s thesis requirements, with 
summaries at the start and end of each chapter to set the chapters within the thesis 
context, but have not otherwise been amended. The data used for this chapter are 
explained in relation to the PhD process in Section 1.4.2. 
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3.1 Introduction 

There are approximately 1400 species of bats globally (Bat Conservation International, 

2021), many of which are declining due to natural and/or anthropogenic processes (Hutson 

et al., 2001; O’Shea et al., 2016). Direct causes of mortality include disease and extreme 

weather events, which often differ spatially: for example, White Nose Syndrome is a major 

cause of mortality in North America while extreme heat is a major cause of mortality in 

Australia (O’Shea et al., 2016). Indirect threats are often more varied and affect bats 

through loss of, or disturbance to, roosts or feeding grounds (Walsh and Harris, 1996b; 

Hutson et al., 2001). For example, bats are extremely sensitive to habitat change and 

fragmentation, agricultural intensification, and deforestation or sub-optimal forest 

management (Walsh and Harris, 1996a; 1996b; Willig et al., 2007; Lintott et al., 2016; 

O’Shea et al., 2016; Alder et al., 2020). Climate change is likely to become an increasing 

threat worldwide (Jones et al., 2009), while pesticides and pollutants can also pose 

substantial threats to regional or national populations (O’Shea and Johnston, 2009).  

 

Bat data are important in establishing species’ distribution, quantifying population metrics, 

and understanding ecological relationships, as well as assessing temporal trends in relation 

to environmental change and conservation initiatives (Hutson et al., 2001; Walsh et al., 

2004; Barlow et al., 2015). Because of the ecological importance of bats and the ecosystem 

services they provide, as well as their vulnerability to anthropogenic processes, bats can be 

a useful bioindicator of habitat quality and climate change (Jones et al., 2009; Russo and 

Jones, 2015). Population change is thus often used as an indicator of ecosystem health (e.g. 

in the USA: Treanor et al., 2019; throughout Europe under EUROBATS scheme) and to 

monitor progress towards sustainable development (e.g. UK: JNCC, 2019b).  
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In addition to monitoring bats spatially and temporally through national-level initiatives, 

such as the North American Bat Monitoring Programme and EUROBATS, site-level bat 

surveying is often undertaken in research contexts and, in parts of the world where bats are 

legally protected, site-level survey data are often required to allow planning authorities to 

make informed decisions on infrastructure development (Drayson et al., 2015; Goodenough 

and Hart, 2017). For example, in Europe, a considerable amount of bat survey effort is 

driven by the need for compliance with the EC Habitats Directive (92/43/EEC) and European 

Protected Species licensing framework, as well as national legislation through which these 

are implemented (Goodenough et al., 2015). Site-based bat surveys are thus often 

undertaken within mandatory Ecological Impact Assessments (EcIAs) to quantify bat 

presence and abundance, assess potential development impacts, and devise suitable 

mitigation and compensation measures (Treweek, 2009; CIEEM, 2018), as well as to support 

license applications to permit work around bat roosts that would otherwise be illegal 

(Mitchell-Jones, 2004). 

 

Bat surveys can involve counting bats visually (roost counts: Barlow et al., 2015; Warren and 

Witter, 2002) or trapping bats in flight (harp traps or mist netting: Law et al., 1998; O’Farrell 

and Gannon, 1999). However, non-invasive acoustic surveys are commonly undertaken 

whereby ultrasonic devices are used to detect echolocation calls. Acoustic surveys typically 

involve either: (1) automated fixed-point ultrasonic detectors to record bats continually 

between sunset and sunrise or (2) transect surveys using ultrasonic detectors in real-time 

(Collins, 2016). Automated fixed-point surveys are used worldwide, including throughout 

Europe, North America and Oceania, but also increasingly in Asia and Africa (Sedlock et al., 

2014; Weier et al., 2020). In contrast, transect acoustic survey methodologies vary between 
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countries. Where activity is typically monitored across large geographic scales, such as in the 

USA and Canada, ultrasonic detectors may be fitted to vehicles to enable transects to be 

driven (Braun de Torrez et al., 2017a; D’Acunto et al., 2018). However, throughout Europe, 

walked transects with handheld detectors are more commonly used (Russo and Jones, 

2003; Ciechanowski et al., 2007; Stahlschmidt and Bruhl, 2012; Henkens et al., 2014; 

Goodenough et al., 2015; Collins, 2016). Outside of Europe, walked transects are used in 

Oceania (O’Donnell, 2000; O’Donnell and Sedgeley, 2001; Scanlon and Petit, 2009; Lavery et 

al., 2020), Africa (Bambini et al., 2006; Taylor et al., 2013; Musila et al., 2019), and Asia 

(Pottie et al., 2005; Lee et al., 2017; Mullin et al., 2020). In addition to use in formal surveys 

for research, legislative complacence, and long-term monitoring, walked transects are 

increasingly being used in citizen science or volunteer-led bat surveys, for example in the 

Bat Walks Programme by Bat Conservation International and the National Bat Monitoring 

Programme in the UK. Better insight into how such survey data compare to data derived 

from more formal automated fixed-point surveys would thus be beneficial.  

 

For any form of monitoring to be effective, underpinning data must be collected in a 

consistent and rigorous manner appropriate to the aim of the survey (Collins, 2016). Survey 

methods need to be logistically-feasible, robust, and comparable (Balmford et al., 2003; 

Collins, 2016) and account for the influence of spatiotemporal and abiotic factors (Perks and 

Goodenough, 2020; Chapter Two). This is particularly important in applied settings when 

legally-protected species are affected by resulting actions, either through conservation 

interventions (Barlow et al., 2015) or development decisions (Mitchell-Jones, 2004). In fixed-

point detection, spatial coverage is limited to a (very) few points per site, but temporal 

coverage is extensive with detectors usually recording sunset to sunrise for 5-21 consecutive 
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nights. This allows the entire nocturnal period to be sampled over multiple nights as per the 

recommendations of Law et al. (1998) and Hayes (1997). In the case of transects (walked or 

driven), coverage is restricted temporally – often to a two-hour period commencing at or 

near sunset (O’Donnell, 2000; Goodenough et al., 2015; Braun de Torrez et al., 2017a) – but 

a much wider spatial area is covered.  

 

Although the need to monitor bat populations is recognised (Barlow et al., 2015), and there 

are commonly-used acoustic techniques to achieve this, there have been few attempts to 

either compare the efficacy of different acoustic surveys or determine whether data from 

different survey types are directly comparable. This is important because although both 

transect and fixed-point methods are commonly used and industry-standard techniques, it 

is common for just one method to be used to survey bats at a specific site. Published 

evidence that has focused on comparing automated fixed detection with transects surveys 

is limited to Tonos et al. (2014) in Indiana, USA, and Braun de Torrez et al. (2017a) in Florida, 

USA. Work to date, therefore, has compared automated detection and driven transects on 

American Chiropteran guilds. In this study, we empirically compare automated fixed-point 

acoustic surveys with walked transect acoustic surveys for a European Chiropteran guild.  

 

We examine overall bat activity as well as species-specific activity for 12 European bat 

species and two wider genera (Myotis sp. and Nyctalus sp.) at the same sites to determine: 

(1) differences between the survey methods over exactly the same time period (i.e. walked 

transect acoustic surveys starting two hours post sunset with automated fixed-point 

acoustic surveys over the same two hour window) and (2) differences between the survey 

methods over a longer timeframe (i.e. one two-hour walked transect acoustic survey that 
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commenced at sunset compared with whole-night automated fixed-point acoustic surveys 

for multiple nights within a 21 night window). Undertaking both comparisons enables full 

exploration of the ability to passively monitor bats whole and consecutive nights, as 

opposed to the traditional survey window of two hours post sunset. We also use the 

automated data to quantify hourly bat activity patterns, to explore how peak levels of 

activity varies throughout the night and how this related to the two-hour walked survey 

transect period. Our conclusions and recommendations are necessarily related primarily to 

European bat species, but we also make tentative broader comments relating to walked bat 

transects in other geographical regions, and for other species, with appropriate caveats.  

 
3.2 Methods 

3.2.1 Data collection 

We used a paired survey design whereby data were collected from 14 sites across the south 

of England, encompassing a range of habitat types. Most of the sites (n = 9) comprised 

agricultural land with dividing hedgerows, but other sites included high quality rural habitat 

or lakeside (n = 3) and green spaces within more urbanised areas (n = 2). At each site, the 

bat community was surveyed in two ways: (1) walked transect acoustic surveys, and (2) 

automated fixed-point acoustic surveys.  

 

Walked transect acoustic surveys were conducted in accordance with the Bat Conservation 

Trust Guidelines (Collins, 2016) using Anabat SD1 detectors (Titley Scientific, Ballina, 

Australia). These two-hour surveys commenced at sunset and were carried out by two 

surveyors; either walking in opposite directions around a single perimeter transect (n = 7 

sites), or walking separate transects on larger sites (n = 7 sites). Automated fixed-point 

acoustic surveys were conducted using Anabat Express Units (Titley Scientific, Ballina, 
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Australia). Deployment and positioning of these units was carried out in a consistent 

manner at all sites with units mounted about 1.75m above the ground adjacent to a suitable 

hedgerow or treeline to ensure detection of commuting and foraging activity along linear 

features. The SD1 detectors enabled audio allowing fieldworkers to identify the bats present 

in situ, whereas the Express units were weatherproof and had long battery life and 

facilitated extended periods of automated recording of sound files to a memory card where 

sound output was unnecessary. In both cases, the default or recommended settings were 

used (data division ratio = 8 on both SD1 and Express; sensitivity = 6 on SD1 and 8 on 

Express): both units had identical frequency ranges. 

 

In total, 24 walked transect acoustic surveys were carried out across the 14 sites. These 

surveys were matched with data from automated fixed-point acoustic surveys from multiple 

(minimum of 3) nights within a 21-night window. The 21-night window was set to ensure 

that seasonality did not confound method comparison analyses. This gave 24 cases where 

walked transect data (for two hours post sunset on a single night) were matched to 

automated fixed-point data (encompassing the entire period between sunset and sunrise 

over several nights) at the same site at the same time of year. This is henceforth referred to 

as the multi-night dataset. A subset of 14 transects coincided exactly with automated fixed-

point surveys so that there were data from the same two-hour window, on the same night, 

at the same site, from the two different methods. This gave 14 cases of directly-matched 

data, which are henceforth referred to as the concurrent dataset.  

 

Post fieldwork, all data, which were in zero crossing format, were downloaded from internal 

SD cards in the bat detectors for sonogram analysis. Sonogram analysis was performed 
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using AnalookW software version 4.1z (Titley Scientific, Ballina, Australia) developed 

specifically for Anabat detectors. Initially recordings were processed on a night-by-night 

basis and then data were subdivided into hourly units relative to sunset. Species 

identification was carried out by assessment of the frequency range and peak frequency, 

together with shape of each sonogram in terms of pitch and amplitude over time using 

information in Russ (2012). As is typical for acoustic surveys (Russ 2012), Myotis bats were 

challenging to identify to species level. Where possible, Daubenton’s (Myotis daubentonii) 

and Natterer’s (Myotis nattereri) bats were identified as separate species. Brandt’s bat 

(Myotis brandtii) and whiskered bat (Myotis mystacinus) were generally distinguishable 

from other Myotis bats but not from one another and were grouped accordingly. 

Indistinguishable Myotis bats were grouped at genus level. In most cases, noctule (Nyctalus 

noctula) bats could be distinguished to species level but some calls could not be 

differentiated from Leisler’s (Nyctalus leisleri) and were thus grouped at genus level.   

 
 
3.2.2 Statistical analysis 

To compare overall species richness recorded in exactly the same two-hour window at the 

same site via the two different survey methods (i.e. the concurrent data), paired sample t-

tests were used for the comparison of mean values between matched samples. This 

approach was also used to compare total activity of bats (regardless of species) and species-

specific or genus-specific activity when there was sufficient data and for species that were 

recorded in both survey types. To undertake these analyses, walked transect survey data 

and automated fixed-point survey data were converted to mean bat passes per hour and 

then log transformed (ln+1). Parametric assumptions were met for these transformed data 

(i.e. the difference between the mean bat passes per hour for the two survey types – the 
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difference scores – were normally distributed in all cases). To compare species richness, 

total activity, and species-specific activity of bats recorded via the walked transect surveys 

compared to multi-night data from automated fixed-point surveys, the same paired-sample 

approach was used. This was adopted on the basis that although the data were not exactly 

matched in time, they were still exactly matched in space and very similar in time. Again, 

data were converted to mean bat passes per hour and then log transformed (ln+1) to meet 

parametric assumptions.  

 

To explore nightly activity patterns, trends in bat activity across the night were examined for 

each species using the automated fixed-point data from the multi-night dataset. Data were 

grouped on an hourly basis and graphed. Significant deviations from a uniform distribution 

throughout the night were tested using Kolmogorov-Smirnov two-sample tests. This allowed 

better understanding of possible differences between walked transect data (which were 

temporally restricted) and automated fixed-point data (which spanned the entire night). All 

statistical analysis was carried out in IBM SPSS version 24.  

 

3.3 Results 

Data were collected on 223 nights of automated fixed-point acoustic recording and 24 

walked transect acoustic surveys giving a combined sample size of 2,349 hrs of bat recording 

data summarising 47,915 individual bat passes.  

 
3.3.1 Species richness 

Over the entire study, more species were detected using automated fixed-point surveys (n = 

11 species plus Myotis sp. and Nyctalus sp.) than using walked activity surveys (n = 8 species 
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plus Myotis sp. and Nyctalus sp.). However, mean species richness per hour was significantly 

higher in the walked transect acoustic surveys compared to the automated fixed-point 

acoustic surveys when considering both the concurrent data (2.89 ± 0.29 SEM versus 1.96 ± 

0.31 species per hour, respectively: paired samples t-test t= 3.501, n= 14 pairs, P = 0.004) 

and the multi-night data (2.92 ± 0.22 SEM versus 1.32 ± 0.12 SEM species per hour, 

respectively: paired samples t-test t= 9.338, n= 24 pairs, P <0.001). 

 
3.3.2 Species prevalence 

In the concurrent dataset, lesser horseshoe bats (Rhinolophus hipposideros) were only 

detected in automated fixed-point acoustic surveys. Common pipistrelle (Pipistrellus 

pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), noctule (Nyctalus noctula), serotine 

(Eptesicus serotinus), brown long-eared (Plecotus auritus) and Natterer’s bats, in addition to 

bats identified at Myotis and Nyctalus genus level only, occurred on both survey types but 

were more prevalent in the walked transect acoustic surveys (Figure 3.1a). Conversely, 

Brandt’s/whiskered (Myotis spp.) and barbastelle (Barbastella barbastellus) occurred on 

both survey types but were more prevalent in the fixed-point acoustic surveys (Figure 3.1a). 

Greater horseshoe (Rhinolophus ferrumequinum) and Daubenton’s bats (Myotis 

daubentonii) were absent in both survey types.  

 

In the multi-night dataset, common pipistrelle, soprano pipistrelle, noctule, serotine, brown 

long-eared, Brandt’s/whiskered, barbastelle and Natterer’s bats, in addition to bats 

identified as Myotis and Nyctalus genus level occurred in both survey types, but were more 

prevalent in walked transect acoustic surveys (Figure 3.1b). Two species that were not 

detected in the concurrent data (greater horseshoe, Daubenton’s) were detected in the 

multi-night dataset in the automated fixed-point surveys only. Lesser horseshoe, which was 
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detected at very low levels in the automated fixed-point surveys in the concurrent dataset, 

increased in prevalence marginally (<1%) in the multi-night dataset. The three species that 

only occurred in the automated fixed-point surveys (greater and lesser horseshoe and 

Daubenton’s) were present in <10% of the total recording hours. 

 

Figure 3.1: Prevalence of each species/genus in acoustic automated fixed-point and acoustic walked 
transect surveys (a) within the same two-hour window post-sunset whereby data are directly paired; 
and (b) using fixed-point data from multiple (minimum of 3) nights 
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3.3.3 Species activity 

Within the concurrent data, there was no significant difference in overall bat activity 

between automated fixed-point surveys and walked transect surveys (19.86 ± 5.65 SEM and 

24.18 ± 7.91 SEM, respectively; paired samples t-test: t= 0.870, n= 14 pairs, P= 0.400). 

However, there was a significant difference between these survey types over multiple 

nights, with walked transect surveys recording higher overall mean activity (17.53 ± 5.93 

SEM, 24.09 ± 5.66 SEM; paired samples t-test: t= 2.610, n = 24 pairs, P= 0.016).  

Moreover, there were significant species-specific differences between survey methods. 

Within the concurrent data, the mean number of brown long-eared bat passes per hour was 

significantly higher in the walked transect surveys (paired samples t-test: t = 2.235, n = 14 

pairs, P = 0.044; Figure 3.2a). In the multi-night dataset, the mean number of brown long-

eared bat passes per hour was also significantly higher during the walked transect surveys 

than fixed-point surveys (paired samples t-test t = 2.275, n = 24 pairs, P = 0.033: Figure 

3.2b). For common pipistrelle, there was no significant difference between survey methods 

within the concurrent data, however, within the multi-night data, the mean number of 

passes per hour was significantly higher during the walked transect surveys, than was 

recorded in the fixed-point surveys (paired samples t-test: t = 2.777, n = 24 pairs, P = 0.011). 

For soprano pipistrelle, walked transect surveys recorded a significantly higher number of 

passes per hour in both the concurrent and multi-night data (t = 2.228, n = 14 pairs, P = 

0.044; t = 2.159, n = 24 pairs, P = 0.042, respectively). 
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Figure 3.2: Mean number of bat passes per hour from acoustic automated fixed-point and acoustic walked transect surveys (a) within the 
same two-hour window post-sunset whereby data are concurrent (significance values from paired samples t-tests undertaken on log-
transformed data); and (b) using fixed-point data from multiple (minimum of 3) nights within a 21-night window using the multi- night 
dataset (significance values from paired samples t-tests undertaken on log-transformed data). Error bars show SEM (±1se).  
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3.3.4 Temporal distribution 

Analysis of the temporal distributions of each species/genus in relation to hour post sunset 

is shown in Figure 3.3. Two sample Kolmogorov-Smirnov tests demonstrated that the 

activity of all species/genera differed significantly from a uniform distribution (P ≤ 0.046 in 

all cases). Most species were detected throughout the night, including within the walked 

transect survey window (the first two hours post sunset). The exception was the greater 

horseshoe bats, which were detected in low numbers from 4 hours post sunset onwards. 

Moreover, although Daubenton’s and lesser horseshoe bats were detected in the initial two 

hours post-sunset they were recorded as frequently (lesser horseshoe) or more frequently 

(Daubenton’s) later in the night. Both pipistrelle species showed a tendency towards being 

more active in the earlier period of the night, however, the distribution for soprano 

pipistrelle showed a slight increase in the hours before dawn, making the distribution 

slightly bimodal. 
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Figure 3.3: Temporal distribution of each bat species/genus based on mean passes per hour post 
sunset using automated fixed-point survey data. Number of sites at which species were encountered 
shown in brackets, the normal transect survey window (two hours post sunset) is shown by the 
dashed lines. Error bars show SEM (±1se). 
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3.4 Discussion 

This study found that, for a European bat guild, although more species were recorded via 

automated fixed-point acoustic surveys than walked transect acoustic surveys in the entire 

dataset, species richness per hour was substantially and significantly higher in transect 

surveys. This finding was significant in both the paired dataset (2 hr post sunset) and the 

multi-night dataset (which fully exploited the recording abilities of the automated method) 

where per-hour species richness found using walked transects was almost double that 

found using automated fixed-point acoustic surveys.  

 

Three species - greater horseshoe, lesser horseshoe and Daubenton’s - were not detected 

on the walked transect surveys, which reduced the species community detected using this 

method relative to the automated fixed-point surveys. This means that while the walked 

transects often detect more bat passes, both overall and for some specific species, fixed-

point surveys provide a more comprehensive overview of the bat community. Interestingly, 

the three species not detected on the walked surveys occurred as often (lesser horseshoe), 

more often (Daubenton’s) or exclusively (greater horseshoe) after the two hours post-

sunset window when walked transects took place. Greater horseshoes typically emerge late 

relative to sunset (Collins, 2016) and can travel up to 8 km to reach favourable foraging 

habitat (Billington, 2003a; 2003b; Billington, 2004), both of which might mean detection is 

unlikely during the standard two-hour survey window post sunset as the likelihood of 

detecting the species on transects will depend largely on roost proximity. This highlights the 

importance of secondary data in identification of known roost locations, particularly to 

target on-ground surveys for legislative compliance in development contexts. Bat mitigation 

guidelines recommend extending the duration of walked transect acoustic surveys to 3 
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hours, on sites within commutable distance (4 km) to greater horseshoe roosts (Mitchell-

Jones, 2004). This aims to account for bat commuting time and minimizes the potential risk 

of the species being wrongly assumed as absent. However, in this study, greater horseshoes 

were only detected >4 hrs post sunset, which suggests that this species could still be missed 

especially if the site constitutes a rich feeding ground that could attract bats from up to 8 

km away. Lesser horseshoe bats were detected throughout the night, including within the 

two-hour transect survey window, but only in the automated fixed-point acoustic surveys. 

They were always recorded in low densities, probably because they tend to forage within 

closer proximity to their roosts (Bontadina et al., 2002) and can move easily between roost 

and foraging grounds throughout the hours of darkness. Given this nocturnal pattern and 

the comparative rarity of lesser horseshoes, automated fixed-point surveys covering the 

entire night would be more likely to detect this species. Daubenton’s bats were also 

recorded throughout the night, although they were much more abundant after the end of 

the transect survey window. Daubenton’s roost predominantly in close proximity to the 

waterways on which they forage (Dietz et al., 2006) and are a later emerging species 

(Collins, 2016), which likely explains their absence from the walked transect acoustic 

surveys. The decline of activity in both common and soprano pipistrelle throughout the 

night is also likely responsible for the higher activity of these species in walked transect data 

compared to fixed-point acoustic data.  

 

The absence of key species from walked transect data emphasises the key advantage of 

recording for the entire nocturnal period, and over several nights, when surveying bat 

communities at specific sites: it increases the likelihood of encountering locally rare species 

or species that emerge (or arrive at foraging grounds) after the widely-used transect survey 
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window two hours post sunset. This is much easier to achieve using fixed-point (passive) 

surveying, where a fieldworker need not be present, rather than transects. It is not 

surprising to find different temporal patterns in different bats as multi-species assemblages 

of insectivorous bats frequently use niche partitioning by selecting different prey, different 

habitats, or different activity times (Rydell et al., 1996; Milne et al., 2005; Ciechanowski et 

al., 2007). A similar result was found for US bats whereby three rare species were detected 

on whole-night automated surveys in Florida, but not on two-hour driven transects that 

commenced 30 minutes after sunset (Braun de Torrez et al., 2017a). Tonos et al. (2014) also 

found a higher overall species richness on fixed-point surveys relative to driven transects in 

Indiana. This suggests that although our study has focused on European species and walked 

transects, this finding is potentially relevant in other bat guilds and for other types of 

transect including driven and even boat transects (Weier et al., 2020).  

 

Walked transect data and automated fixed-point data were also notably different for the 

brown long-eared bat. This species was not particularly abundant in either of the acoustic 

survey methods, despite being fairly common in the UK (Russ, 2012), but was detected 

significantly more often in the walked transect data. This finding was consistent regardless 

of whether paired data or multi-night data were analysed. Brown long-eared bats are 

principally gleaners rather than aerial hawkers and thus usually take moth and beetle prey 

directly from plants (Swift and Racey, 1983; Russ, 2012). Foraging is often undertaken 

visually or using sound directly (Anderson and Racey, 1991; Eklöf and Jones, 2003) as 

echolocation is not always useful in close proximity to vegetation when hunting (Simmons et 

al., 1979). Any echolocation sounds they do produce, therefore, are short and quiet (Russ,  

2012) and have historically been almost impossible to pick up using an ultrasonic detector 
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(Anderson and Racey, 1991). Although technological advances have now made it possible to 

detect echolocation from a distance of around 5m (Russ, 2012), brown long-eared bats 

would still have to echolocate very close to the detector to be recorded, which is potentially 

less likely to occur if the detector is fixed. Moreover, an advantage of walked transect 

surveys is that light levels at the start of the survey often permit brown long-eared bats to 

be identified visually (Russ, 2012); the surveyor can also manually orient the detector to 

obtain a clear recording for sonogram analysis, which can significantly improve detection 

rates as shown by Milne et al. (2004) for Australian bats. Failure to undertake walked 

surveys might lead to this species being under-represented in data (Russo and Voigt, 2016).  

 
3.4.1 Conclusions and recommendations 

Compared to walked transect surveys, automated fixed-point surveys are sometimes 

considered to be a more effective acoustic survey method (Stahlschmidt and Bruhl, 2012), 

primarily because walked transect surveys are difficult to standardise and can miss activity 

patterns even in homogenous landscapes. However, our study indicates that the survey 

types have different strengths and different weaknesses, certainly for European bats and 

potentially for other bat guilds too. This highlights the value of using a combination of the 

two methods to collect bat activity data, either for specific sites (e.g. for research, legislative 

complacence, or conservation) and for national monitoring programmes. While this study 

has focused on comparing data from paired surveys, examining whether multi-year walked 

transect and automated fixed-point surveys show the same temporal trends in bat activity 

would be a useful avenue for future research.   
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Walked surveys that occur in the standard window of two hours post sunset are likely to 

under-record rare species, especially those that emerge from roosts late and/or travel a 

considerable distance to foraging grounds. In Europe, if relying on walked activity surveys, 

especially in legislative compliance contexts, the survey window for at least one site visit 

should be extended to 4 hours post sunset by conducting two back-to-back transects to 

maximise the chances of encountering greater and lesser horseshoe bats, especially if the 

site is within 8 km of a known horseshoe roost.  

 

In terms of specific recommendations for European bat surveys, we suggest: 

• Walked transect acoustic surveys should be used if the aim is to obtain initial 

baseline data on bats at a specific site, since these are effective in recording high 

levels of activity, and species richness, in a very time-effective way. Gauging differing 

activity levels across the whole site also aids in determining its ecological value to 

bat populations spatially, particularly in heterogenous landscapes. 

• Automated fixed-point acoustic surveys should be used if the aim is to catalogue the 

complete bat species assemblage at a site. As this approach provides data over a 

longer time period, both throughout the night and over several consecutive nights, 

issues of temporal niche partitioning and different nocturnal activity patterns 

between species are negated. This method also allows for differences in activity due 

to different environmental conditions on different nights.  

• Fixed-point surveys are likely to under-record brown long-eared bats, probably 

because of infrequent and quiet echolocation as a result of their highly-specific 

foraging strategy. In Europe, walked activity surveys should be conducted where this 

species is the target (research contexts) or where habitat is favourable and 
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determining presence conclusively is important for legislation compliance or 

informing conservation decisions. Pending specific research in other geographical 

areas, it is suggested that where species are known to undertake infrequent or quiet 

echolocation, or for species known to glean as their main foraging strategy rather 

than being primarily aerial insectivores (e.g. Gould’s long-eared (Nyctophilus gouldi) 

and Lesser long-eared (Nyctophilus geoffroyi) bats in Australia (Grant 1991); African 

yellow-winged bat (Lavia frons) in sub-Saharan Africa (Vaughan and Vaughan 1986)), 

transect surveys are undertaken to complement any fixed-point surveying.    

• Walked activity and automated fixed-point acoustic surveys are combined where 

possible for site assessments, and certainly for national monitoring programmes to 

ensure that data, and any decisions made on those data including in bioindicator 

metrics or sustainable development indicators, to be comprehensive, valid and robust.    

 

3.5 Chapter summary 

1. The fixed-point surveys recorded the highest species richness overall, however, the 

walked transects recorded a higher mean species richness per hour. 

2. Three species: greater horseshoe, lesser horseshoe and Daubenton’s bat, were only 

recorded in the fixed-point surveys, possibly because the survey window 

encompassed the entire night rather than the period immediately after sunset. 

3. The number of brown long-eared bat detections was significantly higher in the 

walked transect surveys, suggesting that this method of surveying is optimal for such 

species which glean prey, thus emitting infrequent or quiet echolocation calls. 

4. The strengths of automated surveys, as highlighted in this chapter, and the 

subsequent expansion in their use, informed the decision to evaluate automated 
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fixed-point detectors in a Passive Acoustic Monitoring (PAM) framework in Chapters 

Four and Five. 
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4.CHAPTER FOUR: Evaluating Passive Acoustic Monitoring 
(PAM) protocols for bats in lowland habitats in the UK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Field sites used for PAM data collection: riparian, woodland, arable, wood pasture (clockwise) 
 

 
As discussed in Chapters Two and Three, acoustic bat surveys are vital methods of collecting 

data to inform bat research, conservation, and mitigation. Chapter Three (published as 

Perks and Goodenough, 2021) investigated the relative effectiveness of using fixed-point 

detectors in a passive acoustic monitoring (PAM) framework and found these to be superior 

overall and for all species except brown long-eared relative to using handheld detectors on 

walked activity transect surveys at dusk, although the results of Chapter Two demonstrated 

the need to allow for abiotic factors and seasonality when collecting data in this way. This 

chapter builds on this work by exploring differences in PAM devices and settings on the bat 

data collected. 

 
 
Publications arising from this chapter: 
 
Perks, S. J., Goodenough, A. E. and O’Connell, M. Evaluating Passive Acoustic Monitoring 
(PAM) protocols for bats in lowland habitats in the United Kingdom. British Ecological 
Society Annual Meeting, Belfast, 12th-15th December 2023 [POSTER] 
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4.1 Introduction 

Passive Acoustic Monitoring (PAM) is becoming increasingly widely used in site-level species 

and community surveys, as well as in longer-term monitoring schemes at regional and 

national levels. PAM methods have the potential to be scalable, standardisable, and financially 

viable, while also being substantially less labour intensive than traditional methods (Gibb et 

al., 2019), especially if workflows can harness Artificial Intelligence (AI). The PAM approach 

is developing rapidly as it is adapted and piloted for a wide range of taxa, including 

terrestrial mammals (Enari et al., 2019), birds (Pérez-Granados, 2021), amphibians 

(Desjonquères, 2020), and insects (Newson et al., 2017); hydrophones also enable the 

technology to be used within marine environments, particularly for cetaceans (Mellinger et 

al., 2007). However, despite wide taxonomic potential, bats are the primary species group 

to which PAM is applied in the terrestrial environment (Sugai et al., 2019). Unlike surveying 

bats using traditional walked transect surveys, which are labour intensive and temporally 

restricted (Collins, 2023; Perks and Goodenough, 2021; Chapter Three), collecting bat data 

using passive detectors requires little to no surveyor input once deployed. Detectors also 

automatically record bat activity for whole nights, and for several consecutive nights, vastly 

improving the temporal sampling range when compared to transect surveys (Gibb et al., 

2019). This increased temporal sampling range increases the likelihood of detecting both 

later emerging bats, as well as species that are locally less prevalent (Perks and 

Goodenough, 2021; Chapter Three).  

 

Bat detectors used in PAM frameworks were first developed in the late 1980s. Initially they 

were simple units, adapted from heterodyne detectors used for walked transects, that 

recorded bat calls onto cassette tape. Purpose-built detectors emerged onto the market in 
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the early 2000s, expanding the capability of acoustic surveys considerably (Browning et al., 

2017). Such detectors comprise a fully waterproof housing, similar in design to a camera 

trap, typically with an omnidirectional microphone fitted either directly to the detector, or 

indirectly via an extension cable. However, storing the quantity of data generated over 

extended survey periods presented an initial challenge. Recording ultrasound at the high 

sampling rates needed to study bats in full spectrum produces large waveform audio (.wav) 

files, the storage of which, even temporarily within the units, needs considerable memory 

(Frick, 2013). 

 

The design of passive bat detectors has evolved as the technology has advanced. Among the 

key attributes that continue to improve are unit size (becoming smaller) together with data 

storage capacity (larger) and battery life (longer) (Merchant et al., 2015). Detectors are now 

manufactured by multiple companies, with the specifications of models available, often 

varying substantially (Adams et al., 2012). Frequency division and zero crossing (zc) devices, 

such as those within the Anabat range (Titley Scientific, Australia) launched in the 1990s, 

were the first to offer a solution to prohibitive data storage limitations by reducing the 

amount of call information written, initially to cassette tape, and later on to a memory card 

(Corben, 2004). This allowed multiple nights of data to be stored on a single memory card. 

The Anabat Express system, launched in 2014, then provided a second breakthrough in 

device power by prolonging battery life for approximately two weeks (Titley Scientific, 

2023). Further developments in storage capacity of memory cards have recently made 

recording in full spectrum for extended periods possible. This means that most passive 

detectors currently available record in full spectrum, either exclusively or with the surveyor 

having the choice between full spectrum and zc formats. However, hardware costs remain a 
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limiting factor in many applied ecology contexts as commercial PAM devices remain 

substantially more expensive than camera traps. This has thus far hindered the scalability of 

PAM, towards the use of multi-device networks at large spatial scales (Gibb et al., 2019). At 

the time of writing, passive bat detectors available to purchase in the UK range from 

approximately 700 GBP for the Batlogger S2 (Elekon, Switzerland) to >7000 GBP for the 

Batmode 2S+ system (bioacoustic technology, Germany) for remotely monitoring bat 

activity at wind turbines (Wildcare, 2024). Comparatively, camera traps typically range from 

55 GBP up to 600 GBP per unit (NHBS, 2024).   

 

The introduction of open-source acoustic loggers, such as the AudioMoth (Hill et al., 2019), 

has created opportunities for researchers and practitioners to access PAM at a much lower 

price point. AudioMoths are currently available to purchase at approx. 75 GBP per unit 

(LabMaker, 2025). Despite this, however, they do not represent a ‘silver bullet’ to the high 

financial costs associated with PAM. The microelectromechanical systems (MEMS) 

microphones used are not as efficient as those used in commercial ultrasonic detectors, and 

data quality, therefore, is not as high (Gibb et al., 2019). Very recent developments have led 

to the release of configurable amplitude and frequency triggers for AudioMoth, however, 

their reliability and how they compare to the sophisticated built-in triggering ability of 

commercial units has yet to be rigorously tested. In the absence of a trigger, AudioMoth 

users configure the devices to either record continuously (Revilla-Martin et al., 2020; López-

Bosch et al., 2022), which is demanding in terms of battery life and data storage, or using 

sleep and wake on a pre-configured cycle (e.g. Bota et al., 2023; Kunberger and Long, 2023; 

Starbuck et al., 2024). The latter allows more nights of data collection without the need for 

surveyor intervention but decreases the amount of data recorded per night, which risks 
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missing species. The former provides more data overall, but the surveyor time associated 

with frequent maintenance visits to download data or replace memory cards and batteries 

contributes to survey costs in ways that are not always considered when simply comparing 

per unit price (Gibb et al., 2019). Finally, there is still uncertainty regarding the recording 

quality (Kunberger and Long, 2023) and detection capability of ultrasonic sound (Brinkløv et 

al., 2023) compared to commercial units. Poor recording quality could have implications for 

data analysis and accurate identification of species, especially those that echolocate at 

higher frequencies (e.g. Rhinolophus spp.) or with low energy calls (e.g. Plecotus spp.). This 

could be a substantial issue, especially when data processing is undertaken using automated 

classifiers (Barré et al., 2019).  

 

There is a longstanding need to both optimise and standardise passive acoustic sampling 

schemes for bats in relation to habitat and target species, as well as available funds and 

resources (Froidevaux et al., 2014). In the UK, the Bat Conservation Trust (BCT) bat survey 

guidelines (Collins, 2023) set out specific recommendations in relation to conducting passive 

bat surveys, typically for commercial applications, such as impact assessments. The level of 

survey effort (number of detectors, number/duration of surveys) recommended is 

determined by surveyor assessment of habitat suitability for bats. A minimum monitoring 

period of five days in suitable weather conditions is specified, regardless of habitat type, 

with the number of replicates required dependent on adjudged habitat quality. This ranges 

from three seasonal replicates (spring, summer, and autumn) for sites with habitat assessed 

as low quality, to seven replicates (monthly between April to October) for sites with habitat 

assessed as medium or high quality. Additionally, habitat suitability for bats was originally 

used to subjectively determine the number of locations within each site that should be 
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sampled. In the previous edition of the guidelines (Collins, 2016), this ranged from one 

location for low quality up to three locations for high quality. In the latest edition (Collins, 

2023), this was updated to state that detector locations should instead provide a 

representative sample of the habitats present within the site. This remains somewhat 

subjective, and does not specifically consider the overall size of individual sites, or differing 

requirements for the habitats found in heterogeneous sites, and how this might impact the 

efficacy of passive surveys. Moreover, as PAM technology available continues to become 

both more accessible and capable, a wider range of protocols for surveying and monitoring 

are becoming feasible for practitioners, many of which are yet to be empirically tested and 

compared to established protocols. It should also be noted that any updated 

recommendations should allow for the fact that “optimisation” of PAM frameworks is 

multifaceted as it involves considerations around detectors (type, settings, and number) and 

deployment (duration and replicates) that affect both the amount and quality of data, and 

survey costs (Figure 4.1). 
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Figure 4.1: Elements of passive acoustic bat survey design that need to be considered when 
optimising sampling schemes. 

 
 

This chapter empirically tests three types of passive acoustic detectors in surveying bats: full 

spectrum commercial detectors (Anabat Swift, approx. £1000), zc commercial detectors 

(Anabat Express, approx. £700), and open-source acoustic loggers (AudioMoth) to 

investigate: (1) their comparative performance in different habitats when deployed 

simultaneously at the same location, (2) variation in detections made by co-located 

AudioMoths using different sampling rates to further explore the trade-off between data 

storage and data quality, and (3) how the use of multiple detectors at the same site 

(simultaneously deployed, multiple temporal replicates, or surveying being undertaken in 

different parts of the site) affects the data collected.   
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4.2 Methods 

Bat activity was recorded for a total of 112 nights between mid-June and mid-October 2022, 

across four sites, each representing a different habitat type (riparian, woodland, wood 

pasture and arable). To provide an element of (semi-independent) spatial replication, each 

site was split into two geographically-separated sub-sites. Monitoring was undertaken over 

a seven-day period in rotation thus: the first sub-site of each of four sites was monitored 

over data collection weeks 1-4, followed by the second sub-sites over weeks 5-8. To provide 

an element of temporal replication, a compete second survey of all habitats and sub-sites 

was then undertaken from weeks 9-12 and 13-16 (Table 4.1). A seven-night recording period 

was undertaken to mitigate any nights of poor weather unsuitable for bats within the survey 

period. Only five nights of data were carried forward for analysis for any replicate of any 

sub-site as per the current bat survey guidelines in the UK (Collins, 2023).  

 
 
Table 4.1: Monitoring schedule for each site and sub-site across the 16-week study period 
(1=riparian, 2=woodland, 3=wood pasture, 4=arable) 

Week Date Site Sub-site Replicate 
1 16/06/22 – 23/06/22 Riparian 1 1 
2 24/06/22 – 01/07/22 Woodland 1 1 
3 01/07/22 – 08/07/22 Wood pasture 1 1 
4 08/07/22 – 15/07/22 Arable 1 1 
5 15/07/22 – 22/07/22 Riparian 2 1 
6 22/07/22 – 29/07/22 Woodland 2 1 
7 29/07/22 – 05/08/22 Wood pasture 2 1 
8 05/08/22 – 12/08/22 Arable 2 1 
9 12/08/22 – 19/08/22 Riparian 1 2 
10 19/08/22 – 26/08/22 Woodland 1 2 
11 26/08/22 – 02/09/22 Wood pasture 1 2 
12 02/09/22 – 09/09/22 Arable 1 2 
13 12/09/22 – 19/09/22 Riparian 2 2 
14 19/09/22 – 26/09/22 Woodland 2 2 
15 26/09/22 – 03/10/22 Wood pasture 2 2 
16 03/10/22 – 10/10/22 Arable 2 2 
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4.2.1 Detector types 

Three types of ultrasonic bat detectors were used to record bat echolocation call 

sequences: Titley Scientific (Australia) automated bat detectors (n=4) and Open Acoustic 

Devices (United Kingdom) AudioMoth full-spectrum acoustic loggers (n=10). The Titley 

Scientific devices comprised Anabat Swift full-spectrum bat detectors (n=2) and Anabat 

Express zero-crossing (zc) bat detectors (n=2). Both Anabat models were housed in 

weatherproof cases, designed for extended periods of deployment, and were deployed in 

lock boxes or fixed into position with cable ties. The AudioMoth devices were not 

weatherproof. Only three proprietary AudioMoth waterproof cases were available from the 

stockist at the time of the study, so deployment used a combination of these and seven 

modified electrical junction boxes (Figure 4.2).  

 

 
 

Figure 4.2: Passive acoustic bat detectors: Anabat Swift (highlighted in yellow), Anabat Express 
(highlighted in white), AudioMoth in proprietary case (highlighted in blue), and AudioMoth in 
junction box case (highlighted in red). 
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Manufacturing delays impacted the ability to acquire the necessary number of AudioMoths. 

Therefore, three AudioMoths were used in the first replicate at each sub-site (weeks 1-8), 

with an additional seven detectors arriving in time to be integrated into the study design for 

the second replicates (weeks 9-16) to enable testing of two different sampling rates: 250 

kHz (low) and 384 kHz (high). AudioMoths configured with a 250 kHz sampling rate are 

hereby referred to as Low Frequency AudioMoth (LFAM), and those configured with a 384 

kHz sampling rate as High Frequency AudioMoth (HFAM). 

 

All the detectors were powered by AA batteries, renewed at the end of each recording 

period to prevent any battery failures. Detectors recorded data onto either SD cards 

(Anabat Swift = 64GB + 32 GB, Anabat Express = 32 GB) or microSD cards (LFAM = 32GB, 

HFAM = 64GB)). All data were downloaded, and the cards erased, before redeployment.  

 

4.2.2 Detector configuration 

The Titley Scientific detectors were configured to use their standard on-board trigger, so 

that only sounds that met the pre-programmed criteria based on known parameters for bat 

calls, were recorded. They were configured to record all night at their standard sampling 

rate of 500 kHz, and to automatically switch on 30 minutes prior to sunset and switch off 30 

minutes after sunrise, with these times determined via a GPS fix for the deployment 

location. At the time of this study, the AudioMoth did not feature a reliable trigger 

specifically for bats, so these detectors were configured to record all sound based on a pre-

determined sleep:wake cycle. The times at which the detectors were to switch on and off 

were configured at set-up: starting recording 30 minutes before sunset and stopping 30 

minutes after sunrise, according to the sun times for the longest night of the each seven-day 
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recording period. To facilitate storing seven nights of data onto each 32GB microSD card 

supplied with the detectors, the LFAMs were configured to record on a five-second record, 

15-second sleep cycle, for the first replicates. For the second replicates, the LFAMs were 

configured on a five-second record, 25-second sleep cycle (the longer sleep period relative 

to LFAM settings in replicate one was necessary to facilitate data collection throughout the 

longer nights later in the survey season), and the HFAMs, configured on a five-second 

record, 20-second sleep cycle. The HFAMs utilised larger 64GB microSD cards, which were 

supported by the more recent AudioMoth units.   

 

4.2.3 Detector location        

For each recording replicate at each sub-site, the detectors were deployed at five locations. 

To enable a direct comparison of detectors, there was one single “cluster” that comprised 

one of each detector type (Anabat Swift, Anabat Express and LFAM for replicate one; 

Anabat Swift, Anabat Express, LFAM, and HFAM for replicate two). The location for the 

cluster within each sub-site was chosen subjectively, both to maximize the likelihood of 

recording bats (as would typically happen within ecological consultancy) and to act as a 

centralised location for the deployment of the four additional detectors (replicate one) or 

10 additional detectors (replicate two). In non-linear habitats (woodland, wood pasture, 

arable) the four additional detector locations were situated around the central cluster based 

on three levels of random allocation. Firstly, the eight cardinal and sub-cardinal bearings 

radiating from the central cluster were allocated a number (1-8), and four bearings selected 

using a random number generator. If a bearing wasn’t accessible within the area of the sub-

site, or had already been used, random numbers continued to be generated until four 

feasible bearings had been selected. Secondly, the position of the detector along the 
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bearing was also randomised after allowing for appropriate inter-detector distances. Titley 

Scientific specifies that lower frequency calling bats (e.g. noctule) can be detected by their 

Swift and Express devices from a distance of up to 100m (Titley Scientific, 2024). Although 

the detection distances for the AudioMoth are still largely unresearched, it was concluded 

these were unlikely to exceed that of the Swift and Express units, especially considering the 

lower quality of the MEMS microphone. Thus, to ensure that detections made by each of 

the devices outside the cluster were truly independent both in relation to one another and 

to the cluster, a minimum distance of 200m between all locations was used. Successive 

numbered “zones”, each 20 m in length were laid out along each bearing starting at 200 m 

from the cluster to a maximum of 360 m (based on logistical constraints). The location at 

which the detector would be located along the bearing was determined randomly. The third 

and final step was a random allocation of the specific detector type to each location. A 

similar process was used in linear (riparian) habitats, whereby the additional locations were 

located one side (upstream or downstream) of the main cluster, with distances (but not 

bearings) and detector allocation per location randomly determined as for non-linear 

habitats.  In all cases, minor adjustments were made in the field as necessary based on 

location of trees or fence posts upon which to mount the detectors.  

 

Detectors were deployed at least 1 m above the ground using suitable features, most 

commonly trees, shrubs, and fences, with microphones orientated towards open space to 

increase the likelihood of ultrasonic sound reaching the microphone. Where appropriate, 

the microphone extension cable was used to facilitate the placement of the Titley Scientific 

detectors, either where vegetation was not substantial enough to secure the detector at a 
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suitable height from the ground, or at sites with a high public presence, for better 

concealment.  

 

The number of detectors (but not the number of locations in which detectors were placed) 

differed between replicates. During the first replicates, one of each detector type; Anabat 

Swift (full-spectrum), Anabat Express (zero-crossing) and AudioMoth (full-spectrum) were 

deployed together at the cluster location to conduct a direct comparison between detector 

types. The remaining four detectors; Anabat Swift (n=1), Anabat Express (n=1) and 

AudioMoth (n=2) were deployed individually at the remaining four locations to increase 

spatial coverage. During the second replicates, the Anabat detectors remained at the same 

locations as in the first, but two AudioMoths (LFAM and HFAM) were deployed at each of 

the five locations. This is summarised in Figure 4.3, which also illustrates the spatial 

arrangement of detector locations described above.   
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Figure 4.3: Determination of monitoring locations in relation to the “cluster” location and detector 
allocation in (a) non-linear and (b) linear habitats. Gold text details detectors added for the second 
replicates. 
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4.2.4 Site-specific setup  

The four field sites were situated within a 20 km radius in the south Worcestershire/north 

Gloucestershire region of the UK. All sites were split to encompass two adjacent sub-sites. 

Figure 4.4 below illustrates the broad areas within each site determined as being suitable 

for detector deployment, for each of the sub sites. The individual monitoring locations 

within each, and the detectors allocated, were then determined following the methods set 

out in section 4.2.3. 
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Figure 4.4: Locations of the four study sites within the Worcestershire/Gloucestershire area of the UK. Anti-clockwise from top left: riparian, 
woodland, wood pasture, arable farmland. Overlay indicates broad areas suitable for detector deployment, for each sub-site. 
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4.2.1.1 Riparian 

The riparian site was situated within the estate at Croome Court, south Worcestershire, 

5.6km west of Pershore, centred on 52°05ʹ51ʺN, 002°10ʹ08ʺW. The estate occupies 

approximately 270 ha and has been managed by the National Trust since 2007. The Croome 

River, a 1.7 km long artificial watercourse inclusive of a lake at its northern extent, transects 

the parkland. The southern end of the Croome River was used as the first sub-site, and the 

northern end, including the lake, as the second (Figure 4.5), with the cluster locations 

situated at each extent. The randomised distances between each monitoring location, 

necessitated a slight overlap between sub-sites, at the centre of the watercourse, but these 

were never monitored at the same time such that the sub-sites were semi-independent 

rather than fully independent but that, crucially, there was no pseudoreplication within 

each sub-site replicate. 
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4.2.1.2 Woodland and wood pasture 

The woodland and wood pasture sites were situated within the Dumbleton Estate in north 

Gloucestershire, approximately 12 km east of Tewkesbury. The estate is managed under 

middle tier Countryside Stewardship (CS), with all woodland areas subject to woodland 

management plans. Woodland to the north of the estate was selected to represent 

woodland habitat (Figure 4.6). The two parcels of woodland on the northern edge of the 

estate, Oxhill Wood to the west and the woodland on Dumbleton Hill to the east, were used 

as the two sub-sites, with each cluster location positioned on opposite sides of the open 

valley between the two. Similarly to the riparian site, the randomised distances and bearings 

Figure 4.5: Monitoring locations within the two sub-sites, within the riparian site (detectors 
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around 
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered 
by each detector. 
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resulted in a slight overlap between sub-sites, but these were monitored at different time 

periods. 

 

 

More open areas of sheep-grazed pasture and parkland, with areas of young woodland and 

scrub to the south of the estate, were used to sample high quality wood pasture habitat 

(Figure 4.7). The first sub-site was situated within and around the deep valley enclosed by 

Bullman Bank to the south. The valley leading up to Dyers Hill to the north, was adopted as 

the second sub-site. 

Figure 4.6: Monitoring locations within the two sub-sites, within the woodland site (detectors 
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around 
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered 
by each detector. 
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4.2.1.3 Arable  

The arable farmland site was situated in Hinton-on-the-Green, South Worcestershire, 

approximately 4 km south of Evesham. The site comprises arable farmland, situated 

between the A46 trunk road to the east, and the river Isbourne to the west. At the time of 

the study the land was planted with either wheat, or a meadow grassland mix for hay, and 

was not managed under any CS options. The farm was broadly divided in two, with fields in 

the southern half forming the first sub-site, and fields to the north, forming the second sub-

site (Figure 4.8).  

Figure 4.7: Monitoring locations within the two sub-sites, within the wood pasture site (detectors 
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around 
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered 
by the detectors 
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4.2.4 Acoustic data processing 

At the end of each 7-day monitoring period all data recorded were transferred onto a 

central hard drive and the memory cards erased ready for the next monitoring period. 

To assist data storage, particularly with the AudioMoth detectors that recorded continually 

when “awake”, a broad frequency filter (“All bats” in Anabat Insight) was used initially to 

necessitate only storing those recordings likely to contain bat calls. Recordings which did not 

contain sound with a characteristic frequency within a generous range for bats (4-300 kHz) 

were not retained for further processing. Next, the weather conditions for each recording 

period were assessed. The first five nights of data for each recording period were carried 

Figure 4.8: Monitoring locations within the two sub-sites, within the arable farmland site (detectors 
highlighted in yellow added for the second replicate). Sub-site overlay shows a 100m buffer around 
the monitoring locations within each sub-site, as an indication of the maximum spatial extent covered 
by the detectors. 
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forward, except in the event of poor weather or equipment failure, whereby the affected 

night or nights were substituted for more optimal consecutive nights later in the recording 

period.  

 

Five nights of acoustic bat data for each monitoring period was processed through 

Kaleidoscope Pro’s bats of Europe (v. 5.4.0) auto-ID classifier, to remove recordings of noise 

and obtain species classifications. Kaleidoscope’s auto-ID classifier analysed each call within 

a recorded sequence and compared them to an extensive reference library for the region, 

before making a single species classification for the sequence and reporting the match ratio. 

To minimise false positives, Barré et al. (2019) recommend only retaining classifications with 

a reported confidence score greater than or equal to 0.5 (50%). The match ratio reported by 

Kaleidoscope Pro is often used as a measure of self-reported classifier confidence (Braun de 

Torrez et al., 2017b; Springall et al., 2019; Smith et al., 2021; Taille et al., 2021). Therefore, 

only those recordings with a match ratio greater than or equal to 0.5 (50%), were carried 

forward for statistical analysis. Once the automated classifications were obtained, 

classifications for species challenging to differentiate acoustically were grouped: Brandt’s 

bat (Myotis brandti) and whiskered bat (Myotis mystacinus) were grouped, and grey long-

eared bat (Plecotus austriacus) classifications were grouped with those of brown long-eared 

bat (Plecotus auritus) to form a single Plecotus group. Records for grey long-eared are 

scarce, but cannot be distinguished from the much more widespread brown long-eared bat 

on acoustics alone (Crawley et al., 2020).   

 

A random sub-set of recordings from each classification species/group were manually 

audited to verify classification plausibility and verify species presence. After manual 
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auditing, recordings classified as Alcathoe bat (Myotis alcathoe) and Bechstein’s bat (Myotis 

bechsteinii), were not carried forward for statistical analysis. Both species are relatively 

sparsely distributed and challenging to discern from other Myotis species acoustically. 

Recordings classified as greater horseshoe bat (Rhinolophus ferrumequinum) were also 

discounted as none of the audited files were found to contain greater horseshoe calls. 

Finally, recordings classified as Nathusius’ pipistrelle (Pipistrellus nathusii) were discounted 

from statistical analysis. Although geographically widespread, few colonies have been 

identified nationally, calling into question the reliability of the classifications. All remaining 

species classifications were carried forward following manual auditing of a subset of 

recordings. A summary of the workflow adopted to process these raw acoustic data is 

shown in Figure 4.9. 
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Broad frequency filter
All recordings processed through an “All Bats” filter in Anabat 
Insight (Titley Scientific, Australia). Files containing calls with a 
characteristic frequency between 4-300 kHz progressed to the 

next stage of analysis.

Selection of optimal nights
Weather conditions and any equipment failures assessed, to 

select five optimal recording nights. Files from the five optimal 
nights progressed to the next stage of analysis.

Automatic identification software
Retained files processed through the “UK and Europe” bat 

auto-ID classifier in Kaleidoscope Pro (Wildlife Acoustics, USA).

Auto-ID match ratio
Files with an auto-ID species classification with a match ratio 

greater than or equal to 0.5 (50%) were retained for statistical 
analysis.

Manual auditing
Files with auto-ID classifications of nationally or locally rare 
species, or those outside of their known distribution were 

manually audited by a technician prior to statistical analysis.

Figure 4.9: Workflow adopted to store and process acoustic data. 
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4.2.5 Statistical analysis 

All statistical analyses were carried out in R 4.2.2 (R Core Team, 2022). To test how co-

located passive bat detectors differed in performance in different habitats, multiple 

Friedman tests were used to explore variations in total bat activity and individual 

species/taxon activity from 20 (Swift, Express, LFAM) or 10 (HFAM) nights of recording per 

habitat using data from the central cluster where all detector types were co-located. It is 

recognised that bat activity is difficult to determine by passive acoustic techniques alone 

because sequences recorded by a particular species may be the result of a single bat 

remaining in close proximity to the microphone, or a larger number of individuals passing 

the detector. For consistency with Chapters Two and Three, in this study, bat “passes” were 

adopted as a metric of activity levels with a “pass” defined as a call sequence file as defined 

by the detector.  

 

Analyses were conducted firstly on all data recorded by the four detectors each night, and 

secondly on two subsets of these data. Subset one included only those data recorded by the 

Express and the Swift when time-matched to the wake periods of the LFAM; subset two 

included only those data recorded by the Express and the Swift when time-matched to the 

wake periods of the HFAM. Analysis of these subsets was necessary to avoid the potential 

that differences between the AudioMoths and the Anabat devices might be driven by the 

latter having the ability to record all bats at any point throughout the night, whereas the 

AudioMoths were only able to record bats during their regular wake periods (two such 

subsets of the data were necessary, due to the LFAM and HFAM being configured on 

different recording cycles). Friedman tests, with paired Wilcoxon tests for post-hoc analysis, 

were firstly conducted on the overall species richness and total bat passes for each habitat, 
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before conducting taxon specific analyses. To conduct meaningful statistical analysis all 

classifications in the genus Myotis were grouped into a single taxonomic group at genus 

level (Myotis). This approach was also taken to combine classifications from the genus 

Nyctalus with those of serotine, to form a single taxonomic group (Nyctalus/Eptesicus). The 

same analytical approach (Friedman tests with pairwise Wilcoxon undertaken as a form of 

post-hoc analysis) was used for these taxon-specific analyses. As seven species/taxonomic 

groups were analysed at each habitat, the significance values produced by these tests were 

Bonferroni adjusted to avoid family-wise error.  

 

To test how co-located AudioMoths (one LFAM, one HFAM) recording at different sampling 

rates differed in performance in different habitats, Wilcoxon matched-pairs tests were used 

to explore variations in total bat activity, individual species/taxon activity and overall 

species/taxon richness, from ten nights of recording at each habitat. As multiple 

species/taxonomic groups were again analysed at each habitat, the results of the taxon-

specific tests were Bonferroni adjusted. 

 

To explore how having multiple units of each detector type, multiple sub-sites and multiple 

temporal replicates, affected the species richness recorded in different habitats, species 

accumulation curves were constructed using the function specaccum in R package vegan 

(Oksanen et al., 2022). Data for detectors that were deployed for 20 nights at each site were 

used in the analysis (AudioMoth n=3, Swift n=2, Express n=2). Firstly, for the Anabat Swifts 

and Anabat Expresses, two accumulation curves were generated using cumulative species 

richness over successive nights for each habitat, the first using the combined data from two 

detectors (to simulate a situation when two detectors were deployed at a field site) and the 
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second using the mean of the data from two detectors (to simulate a situation when one 

detector was deployed at a field site). Nightly data were added such that all data from the 

first sub-site represented nights 1-10, and data from the second-sub-site represented nights 

11-20. As such, the second replicates at each sub-site commenced on nights six and 16 

respectively, thus allowing both the effect of a second replicate, and a second sub-site, to be 

visualised. This approach was further applied to species richness data from 20-day 

monitoring periods at each habitat to examine the effects of multiple detectors, replicates 

and sub-sites on species richness for the AudioMoths, by plotting three accumulation curves 

(one detector, two detectors, three detectors).  

 

4.3 Results 

A total of 571,380 recordings made by all the detectors deployed across the dura�on of the 

fieldwork, passed the ini�al bat filter, and were carried forward for classifica�on by 

Kaleidoscope Pro. Of these recordings, 108,228 were classified as bat passes by 

Kaleidoscope Pro, using a match ra�o of ³ 50%, with the split between the detector types 

shown in Table 4.2. 

 
Table 4.2: Percentages of recordings classified as bats by Kaleidoscope Pro, using a match ratio of ³ 
50%, for each detector type (LFAM = Low Frequency AudioMoth, HFAM = High Frequency 
AudioMoth). 

Detector type Total no. recordings No. bat passes (³ 50% match raJo) % 

Anabat Swi� 211,145 40,367 19.12 

Anabat Express 101,491 28,161 27.75 

LFAM (250 kHz) 177,655 29,700 16.72 

HFAM (384 kHz) 81,089 10,000 12.33 
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A breakdown of the number of classifica�ons made for each individual species is shown in 

Table 4.3. The majority of the classified bat passes were common pipistrelle (n=51,201) or 

soprano pipistrelle (n=33,519), followed by Nyctalus and sero�ne (n=14,201). A�er manual 

audi�ng, 538 bat passes were not carried forward for sta�s�cal analysis, being classified as 

Alcathoe bat (n=2), Bechstein’s bat (n=46), Nathusius’ pipistrelle (n=329), or greater 

horseshoe (n=61). See Methods for more detail. 

 
Table 4.3: Number of recordings for each species, carried forward for statistical analysis. 

Common name Scientific name No. recordings 
Common pipistrelle Pipistrellus pipistrellus 51,201 
Soprano pipistrelle Pipistrellus pygmaeus 33,519 
Noctule Nyctalus noctula 11,981 
Daubenton’s  Myotis daubentonii 3,780 
Leisler’s  Nyctalus leisleri 1,930 
Brown long-eared/Grey long-eared Plecotus auritus/Plecotus austriacus 1,578 
Lesser horseshoe Rhinolophus hipposideros 1,262 
Barbastelle Barbastellus barbastellus 929 
Brandt’s/Whiskered  Myotis brandtii/Myotis mystacinus 785 
Natterer’s  Myotis nattereri 435 
Serotine Eptesicus serotinus 290 
Total  107,690 

 

4.3.1 Co-located detectors 

The detectors situated at the cluster loca�on within each of the four sites recorded 46,428 

bat passes in total: riparian = 17,650 (38.0%), woodland = 9,041 (19.5%), wood pasture = 

16,537 (35.6%) and arable = 3,200 (6.9%). 

 

4.3.1.1 Full dataset 

Analysis of the full dataset found significant differences in the species richness and bat 

passes overall and per taxonomic group that were detected by the different detector types 
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in all habitats (Table 4.4). Details of rela�ve detector performance in the different habitats is 

given below, however, the general findings are: (1) there were few differences between the 

Anabat Swi� and Anabat Express, (2) both Anabat detectors frequently performed be�er 

than either of the AudioMoths, and (3) the LFAM AudioMoth performed be�er than the 

HFAM. 

 
Table 4.4: Friedman test results comparing species richness or bat passes detected by the four 
detectors, conducted on the full dataset (df = 3 in all cases). 

 Riparian  Woodland   Wood pasture   Arable  
 c2  p  c2  p  c2  p  c2  P 
Species 
richness 
 

18.832  <0.001  29.234  <0.001  25.863  <0.001  24.469  <0.001 

All bats 
 

20.758  <0.001  30.000  <0.001  28.080  <0.001  25.948  <0.001 

Common 
pipistrelle 
 

19.653  0.001  26.196  <0.001  24.589  <0.001  18.582  0.002 

Soprano 
pipistrelle 
 

19.320  0.001  29.277  <0.001  25.024  <0.001  19.709  0.001 

Plecotus 
 

23.761  <0.001  23.543  <0.001  24.584  <0.001  19.800  0.001 

Nyctalus/ 
Eptesicus 
 

19.129  0.003  27.092  <0.001  22.055  <0.001  13.026  0.032 

Myo[s 
 
 

23.761  0.002  23.761  <0.001  25.710  <0.001  23.062  <0.001 

Lesser 
horseshoe 
 

23.548  <0.001  27.710  <0.001  18.31  0.003  12.536  0.040 

Barbastelle 
 

2.000  1.000  27.903  <0.001  19.571  0.002  5.667  0.903 

 

 

The best performing detectors for each of the species/taxonomic groups, at each habitat, 

are summarised below (Table 4.5) and are discussed in more detail below with reference to 

the supplementary figures at the end of the chapter.  
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Table 4.5: Summary of best detector performance in analysis of the full dataset. Colour coding (key in 
column headings) indicates the superior detector type (where statistically significant, grey=no 
significant difference). Habitat codes: RI=Riparian, WL=Woodland WP=Wood Pasture, AR=Arable). 
See Figures S4.2-4.5 for details of values. 

 Express vs 
Swi\ 

Express vs 
LFAM 

Express vs 
HFAM 

Swi\ vs 
LFAM 

Swi\ vs 
HFAM 

LFAM vs 
HFAM 

Species richness 
 
 
 

AR: Swim 
RI: Express 

WL: Express 
AR: Express 

ALL HABS: 
Express 

ALL HABS: 
Swi\ 

 

ALL HABS: 
Swi\ 

 

RI: LFAM 
WL: LFAM 
WP: LFAM 

All bats 
 
 
 

 AR: Express 
RI: Express 

WL: Express 
AR: Express 

RI: Swim 
WL: Swim 
AR: Swim 

ALL HABS: 
Swi\ 

 

RI: LFAM 
WL: LFAM 

Common 
pipistrelle 
 
 

 AR: Express WL: Express 
AR: Express 

RI: Swim 
AR: Swim 

RI: Swim 
WL: Swim 
AR: Swim 

WL: LFAM 

Soprano 
pipistrelle 
 
 

 AR: Express RI: Express 
AR: Express AR: Swim RI: Swim 

AR: Swim RI: LFAM 

Plecotus 
 
 

AR: Swim 
RI: Express 

WL: Express 
WP: Express 

RI: Express 
WL: Express 
WP: Express 

WL: Swim 
WP: Swim 
AR: Swim 

ALL HABS: 
Swi\ 

RI: LFAM 
WL: LFAM 
WP: LFAM 

Nyctalus/ 
Eptesicus  
 
 

AR: Swim  AR: Express AR: Swim AR: Swim RI: LFAM 

Myo[s 
 
 
 

 ALL HABS: 
Express 

ALL HABS: 
Express 

RI: Swim 
WP: Swim 
AR: Swim 

ALL HABS: 
Swi\ 

RI: LFAM 
WL: LFAM 
WP: LFAM 

Lesser horseshoe 
 
 
 

 
RI: Express 

WL: Express 
 

WL: Express 
 

RI: Swim 
WL: Swim 
AR: Swim 

ALL HABS: 
Swi\ 

 
 

Barbastelle 
 
 
 

 
RI: Express 

WL: Express 
 

WL: Express 
WP: Express 

 

WL: Swim 
WP: Swim 
AR: Swim 

WL: Swim 
WP: Swim 

 
 

 

 

Post-hoc tes�ng (plots are included as supplementary material at the end of this chapter) of 

species richness across the four habitats, emphasised the higher performance of the Anabat 

detectors which each having detected significantly higher mean number of species per night 

than either of the AudioMoths (LFAM or HFAM) in all habitats (Figure S4.1). However, the 
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different Anabat units did not differ significantly from one another, in the riparian, 

woodland, and wood pasture habitats (Figure S4.1 a,d,g) in terms of species richness. Both 

Anabat detectors outperformed the AudioMoths within the arable habitat, however, the 

Swi� detected significantly more species than the Express (Figure S4.1 j) in this instance.  

 
 
In the riparian habitat (Figure S4.2), the Swi� was the strongest of the four detectors, 

recording significantly more bat passes per night than the HFAM both overall and for all 

individual taxonomic groups except Nyctalus/Eptesicus. In this single excep�on, the only 

significant difference was that of the LFAM recording significantly more passes per night 

than the HFAM. 

 
 
In the woodland habitat (Figure S4.3), post-hoc tes�ng again highlighted the strengths of the 

commercial Swi� and Express detectors. When considering passes recorded by all bat 

species, the Swi� recorded significantly more bat passes per night than both the LFAM and 

the HFAM (Figure S4.3 a). The Express recorded significantly more bats than the HFAM, but 

no significant difference was found in the numbers detected when compared to the LFAM. 

The two commercial Anabat detectors did not differ significantly from one another. 

Moreover, the commercial detectors were each found to have recorded significantly more 

bat passes than either of the AudioMoths, for Plecotus (Figure S4.3 j), lesser horseshoe 

(Figure S4.3 s) and barbastelle (Figure S4.3 v). In contrast, and despite significant Friedman 

tests, no significant pairwise post-hoc comparisons were iden�fied for soprano pipistrelle 

(Figure S4.3 g) or the Nyctalus/Eptesicus group (Figure S4.3 m).  
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In the wood pasture habitat (Figure S4.4), the Swi� recorded significantly more bat passes 

per night than either of the AudioMoths for Plecotus (Figure S4.4 j), Myo]s (Figure S4.4 p), 

and barbastelle (Figure S4.4 v). The Express also performed significantly be�er than either of 

the AudioMoths for these groups, except for Barbastelle. Addi�onally, the Swi� recorded 

significantly more passes per night than the HFAM, for both all bats (Figure S4.4 a) and the 

lesser horseshoe group (Figure S4.4 s).  

 

Finally, in the arable habitat (Figure S4.5), significantly higher numbers of bat passes were 

recorded by the Swi�, which detected significantly more passes than both AudioMoths for 

all bats, and all taxonomic groups. Addi�onally, it detected significantly more passes than 

the Express in the brown long-eared (Figure S4.5 j) and Nyctalus/Eptesicus groups (Figure 

S4.5 m).  

 

 
4.3.1.2 Temporally restricted datasets 

Analysis of the two temporally restricted datasets (LFAM subset and HFAM subset), also 

found significant differences between the bats detected by the different detector types 

(Table 4.6). Significant differences were found extensively in the HFAM subset, but much 

less often in the LFAM subset, where the significant differences between detectors in both 

the species richness, and numbers of bat passes detected, were predominantly found in 

woodland.
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Table 4.6: Friedman test results comparing species richness or bat passes detected by the three detectors, for each of the AudioMoth (LFAM and HFAM) 
subsets (df = 2 in all cases). 

 LFAM HFAM 
 Riparian Woodland  Wood pasture  Arable  Riparian Woodland Wood pasture Arable 
 c2 p  c2 p  c2 p  c2 p c2 p  c2 p  c2 p  c2 p 
Species 
richness 
 

4.831 0.089  7.420 0.025  4.906 0.086  3.397 0.183 10.316 0.006  18.200 <0.001  15.842 <0.001  17.684 <0.001 

All bats 
 

29.200 <0.001  24.700 <0.001  25.139 <0.001  15.158 <0.001 14.600 <0.001  2.811 <0.001  14.368 <0.001  15.744 <0.001 

Common 
pipistrelle 
 

22.354 <0.001  15.474 0.003  14.889 0.004  12.329 0.011 9.556 0.042  11.806 1.000  11.706 0.020  8.222 0.082 

Soprano 
pipistrelle 
 

21.641 <0.001  10.839 0.031  20.848 <0.001  4.333 0.573 14.000 0.005  12.560 0.019  10.207 0.043  14.774 0.003 

Plecotus 
 

7.2766 0.158  0.031 1.000  2.711 1.000  INSUFFICIENT 
DATA 

13.000 0.008  7.189 0.013  8.539 0.098  INSUFFICIENT 
DATA 

Nyctalus/ 
Eptesicus 
 

34.816 <0.001  24.514 <0.001  26.000 <0.001  7.404 0.123 8.267 0.016  11.200 0.192  7.294 0.183  9.769 0.038 

Myoks 
 

7.614 0.133  14.358 <0.001  1.793 0.317  1.857 1.000 7.1538 0.028  12.562 0.026  13.862 0.006  7.760 0.103 

Lesser 
horseshoe 
 

5.429 0.398  10.511 0.037  9.188 0.071  6.938 0.156 INSUFFICIENT 
DATA 

 11.812 0.013  5.546 0.437  3.500 0.869 

Barbastelle 
 

INSUFFICIENT 
DATA 

 9.418 0.063  0.696 1.000  INSUFFICIENT 
DATA 

INSUFFICIENT 
DATA 

 18.200 0.019  5.765 0.392  INSUFFICIENT 
DATA 
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The best performing detectors for each of the species/taxonomic groups, at each habitat, for 

each subset, are summarised below (Table 4.7)  

 
 
Table 4.7: Summary of best detector performance in analysis of the LFAM and HFAM subsets. Colour 
coding (key in column headings) indicates the superior detector type (where statistically significant, 
grey=no significant difference). Habitat codes: RI=Riparian, WL=Woodland, WP=Wood Pasture, 
AR=Arable). 

 LFAM subset HFAM subset 

 Express vs 
Swi\ 

Express vs 
LFAM 

Swi\ vs 
LFAM 

Express vs 
Swi\ 

Express vs 
HFAM 

Swi\ vs 
HFAM 

Species richness 
 
 
 

    ALL HABS: 
Express 

 
ALL HABS: 

Swi\ 
 

All bats 
 
 
 

 RI: LFAM    WL: Swim 
AR: Swim 

Common 
pipistrelle 
 
 

 RI: LFAM     

Soprano 
pipistrelle 
 
 

 RI: LFAM    

 
RI: Swim 
AR: Swim 

 
Plecotus 
 
 

    
 

RI: Express 
 

WL: Swim 

Nyctalus/  
Eptesicus 
 
 

 
RI: LFAM 
AL: LFAM 
WP: LFAM 

   AR: Swim 

Myo[s 
 
 
 

   RI: Express 
RI: Express 

WL: Express 
WP: Express 

WL: Swim 
WP: Swim 

Lesser horseshoe 
 
 
 

  WL: Swim 
  WL: Express 

 
WL: Swim 

 

Barbastelle 
 
 
 

    WL: Express 
 

WL: Swim 
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Post-hoc tes�ng (plots are included as supplementary material at the end of this chapter) of 

species richness across the four habitats did not find any significant pairs between detectors 

in the LFAM subset, despite an overall significant Friedman test result for the woodland 

habitat. Within the HFAM subset, the overall significant differences found, were seen to be 

driven by the AudioMoth detec�ng significantly fewer species at all habitats, a trend that 

was par�cularly pronounced in woodland (Figure S4.1 f). Moreover, no significant 

differences in species richness were found between the Swi� and Express in analysis of the 

HFAM subset. 

 

In the riparian habitat (Figure S4.2), significant differences in the numbers of bat passes 

recorded between detectors were found for the majority of the species/taxonomic groups in 

both subsets. Where significant differences were seen in analysis of the LFAM subset (all 

bats, common pipistrelle, soprano pipistrelle, Nyctalus/Eptesicus), the LFAM recorded 

significantly more bat passes than the Express in all cases. Conversely, the differences 

reported in all groups in analysis of the HFAM subset, were seen to be driven by either the 

Swi� or the Express recording more bat passes than the HFAM, where significant pairs were 

found. 

 

In the woodland habitat (Figure S4.3), analysis of the LFAM subset found few significant 

pairs, even for groups (all bats, common pipistrelle, soprano pipistrelle, Myo]s) where the 

Friedman tests reported significant differences. In these cases, outlying nights with high 

numbers of passes appear to be driving these significant overall differences. Notably, the 

Swi� detected significantly more passes for lesser horseshoe than the LFAM (Figure S4.3 t). 

Conversely, however, the LFAM recorded significantly more Nyctalus/Eptesicus passes than 
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the Express (Figure S4.3 n). Post-hoc analysis of the HFAM dataset in woodland, found the 

Swi� to have consistently recorded significantly more passes per night than the HFAM, both 

for all bats (Figure S4.3 c) and for Plecotus (Figure S4.3 l), Myo]s (Figure S4.3 r), lesser 

horseshoe (Figure S4.3 u) and barbastelle (Figure S4.3 x). 

 

In the wood pasture habitat (Figure S4.4), only a single significant pair was found in the 

LFAM subset, with the LFAM performing be�er than the Express, recording significantly 

more Nyctalus/Eptesicus passes (Figure S4.4 n). Moreover, few significant differences were 

found in analysis of the HFAM subset. The only significant pairs found in this subset, were 

the Swi� and Express recording significantly more Myo]s passes per night than the HFAM 

(Figure S4.4 r) 

 

Finally, in arable habitat (Figure S4.5), no significant pairs were found in post-hoc tes�ng of 

the LFAM subset, even in instances where the Friedman tests found an overall significant 

difference. Within the HFAM subset, for groups where overall differences were found; all 

bats (Figure S4.5 c), soprano pipistrelle (Figure S4.5 i), and Nyctalus/Eptesicus (Figure S4.5 o), 

these differences were found to be driven by the Swi� detec�ng significantly more passes 

than the HFAM in all instances. 
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4.3.2 Co-located AudioMoths 

The five pairs of AudioMoths, located at each of the five monitoring stations within each of 

the four sites for the second replicates, recorded 27,347 classified bat passes in total: 

riparian = 20,361 (74.5%), woodland = 2,533 (9.3%), wood pasture = 2,959 (10.8%) and 

arable = 1,494 (5.4%). 

 

4.3.2.1 Species richness 

There were significant differences in the richness of species detected by the AudioMoth 

pairs, across all four habitats. Across the pairs, the AudioMoths configured with a 250 kHz 

sampling rate (LFAM) detected significantly more bat species each night than those 

configured with a 384 kHz sampling rate (HFAM). This finding was consistent at all habitats: 

riparian (V=405, P<0.001), woodland (V=849.5, P<0.001), wood pasture (V=683, P<0.001), 

and arable (V=726, P<0.001). The mean species detected per night by each AudioMoth 

configuration, at each habitat, is shown in Figure 4.10.  
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4.3.2.2 Total bat activity 

Significant differences were found between the mean number of bat recordings per night, 

with the LFAM having significantly more recordings found to contain bat calls, per night, 

compared to HFAM. This finding was again consistent for all four habitats: riparian (V=1144, 

P<0.001), woodland (V=811.5, P<0.001), wood pasture (V=958.5, P<0.001), and arable 

(V=925.5). The mean number of recordings containing bat calls, made by each of the 

AudioMoths, at each site, are shown in Figure 4.11. 

 

 

 

Figure 4.10: Mean species richness detected by the AudioMoth pairs in each habitat (error bars 
show SEM (±1se)). 
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4.3.2.3 Individual taxonomic groups 

Notable differences were recorded in the numbers of recordings of individual taxonomic 

groups made by the AudioMoths in each pair. Firstly, within the riparian habitat, the LFAM 

made significantly more recordings for soprano pipistrelle (V=1108, P<0.001), Plecotus 

(V=66, P=0.014), and Myotis (V=66, P=0.013). In the case of the latter two groups, no 

recordings were made by the HFAM over the duration of the study (Figure 4.12). 

Figure 4.11: Mean numbers of recordings containing bat calls made by the AudioMoth pairs in each 
habitat (error bars show SEM). 
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Figure 4.12: Mean numbers of recordings containing bat calls of individual taxonomic groups, 
made by the AudioMoth pairs within the riparian habitat (error bars show SEM (±1se)). 

 
 

 

Plecotus 
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In the woodland habitat, significant differences were again found for soprano pipistrelle 

(V=558, P<0.001) and Plecotus (V=300, P<0.001), with the LFAM making insignificantly more 

recordings than the HFAM (Figure 4.13). Additionally, this effect was seen in the 

Nyctalus/Eptesicus group (V=741, P<0.001).  
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Figure 4.13: Mean numbers of recordings containing bat calls of individual taxonomic groups, made 
by the AudioMoth pairs within the woodland habitat (error bars show SEM (±1se)). 
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Thirdly, in the wood pasture habitat, the LFAM made significantly more recordings per night 

than the HFAM, for all the species groups where analysis was meaningful, with the 

exception of lesser horseshoe (Figure 4.14). The paired Wilcoxon tests were significant for 

common pipistrelle (V=644, P=0.002), soprano pipistrelle (V=650.5, P<0.001), 

Nyctalus/Eptesicus (V=810.5, P<0.001), Plecotus (V=105, P=0.005) and Myotis (V=66, 

P=0.021). 
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Figure 4.14: Mean numbers of recordings containing bat calls of individual taxonomic groups, made 
by the AudioMoth pairs within the wood pasture habitat (error bars show SEM (±1se)). 
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Finally, in the arable habitat, the LFAM again made significantly more recordings per night 

for those species groups with sufficient numbers to make statistical analysis meaningful, 

with the exception of lesser horseshoe (Figure 4.15). These groups were common pipistrelle 

(V=664.5, P<0.001), soprano pipistrelle (V=580, P<0.001), Nyctalus/Eptesicus (V=297, 

P<0.001), and Myotis (V=63.5, P=0.036). 
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Figure 4.15: Mean numbers of recordings containing bat calls of individual taxonomic groups, made 
by the AudioMoth pairs within the arable habitat (error bars show SEM (±1se)). 

Nyctalus/Eptesicus 

Myotis 



Chapter 4: PAM protocols for bats 

 132 

4.3.3 Species accumulation  

Seven detectors were deployed for the full 20 nights at each site: Anabat Swift (n=2), Anabat 

Express (n=2), and AudioMoth (LFAM) (n=3). Recording nights were divided into 5-night 

recording periods, with nights 1-5 and 6-10 accounting for the first and second replicates at 

the first sub-site, and nights 11-15 and 16-20 accounting for the first and second replicates 

at the second sub-site, respectively. Kaleidoscope Pro classified 11 different species in the 

recordings from these detectors over the duration of the study.  

  

4.3.3.1 Riparian 

In the riparian habitat, the two Anabat Swifts combined had recorded the maximum 

richness within the first recording period, reaching maximum species richness on night 

three. However, the single Anabat Swift, on average, took six nights to record the maximum 

species richness, running into the second recording period at the first of the sub-sites 

(Figure 4.16a). The two Anabat Expresses combined also recorded the maximum richness of 

11 species within the first five-night recording period, at the first sub-site, and the 

performance of two units was not superior to the performance of a single unit (Figure 

4.16b). The three AudioMoths combined needed eight nights to record a lower maximum 

richness of ten species. However, using fewer detectors (one or two units rather than three) 

required not only two five-night recording periods at the first sub-site, but a further two 

five-night recording periods at the second sub-site to record the maximum richness. The use 

of two AudioMoths on average took until night 18 to reach maximum richness, with a mean 

species richness of 9.66 (± 0.33 SEM). The use of a single AudioMoth also took on average 

until night 18 to record a mean maximum richness of 8.33 (± 1.20 SEM) (Figure 4.16c).  
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Figure 4.16: Species accumulation curves within the riparian habitat for (a) Anabat Swift, (b) Anabat 
Express, and (c) AudioMoth (error bars show SEM (±1se)). 
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4.3.3.2 Woodland 

In woodland habitat, two Anabat Swifts combined took two five-day recording periods at 

the first sub-site to reach maximum richness, recording all 11 species by night seven. 

Reaching maximum richness was again slower for a single Anabat Swift, taking on average 

12 nights (and, therefore, monitoring of the second sub-site) to record the same maximum 

richness as the two detectors combined (Figure 4.17a). The superiority of two detectors 

versus one was also seen for Anabat Express, although two detectors combined had 

recorded the maximum richness of 11 species by the end on the first five-day monitoring 

period (Figure 4.17b). Regardless of the number of detectors used, the AudioMoths 

required monitoring of both sub-sites to reach maximum richness. The three AudioMoths 

combined, had recorded the maximum 11 species by night 11. When using two detectors, it 

took 19 nights to reach the same species total. Using one detector also took an average of 

19 nights for the number of species to peak, at a lower mean richness of 9.66 (± 1.33 SEM) 

(Figure 4.17c). 
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Figure 4.17: Species accumulation curves within the woodland habitat for (a) Anabat Swift, (b) Anabat 
Express, and (c) AudioMoth (error bars show SEM (±1se)). 
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4.3.3.3 Wood pasture 

In the wood pasture habitat, use of either one or two Anabat Swift detectors needed two 

monitoring periods to reach the maximum richness of 11 species at the first sub-site (Figure 

4.18a). On the other hand, the two Anabat Express units in combination recorded the same 

maximum richness more quickly, with the number of species recorded peaking on night 

three, but using a single Anabat Express necessitated a second recording period at the first 

sub-site, with peak richness reached, on average, on night seven (Figure 4.18b). The 

difference observed between using two or three AudioMoths was negligible, with the 

maximum richness of eleven species being reached on nights eight and six, respectively, 

both within the second recording period at the first sub-site (Figure 4.18c). The use of a 

single AudioMoth, however, recorded a lower mean maximum richness of 10 species (± 0.58 

SEM), which was reached on night 12, during monitoring of the second sub-site. 
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Figure 4.18: Species accumulation curves within the wood pasture habitat for (a) Anabat Swift, (b) 
Anabat Express, and (c) AudioMoth (error bars show SEM (±1se)). 



Chapter 4: PAM protocols for bats 

 138 

4.3.3.4 Arable 

In the arable habitat, the use of either one or two Anabat Swift detectors recorded the 

maximum richness of eleven species inside the first five-night recording period at the first 

sub-site (Figure 4.19a). The Anabat Expresses took comparatively longer; using two 

detectors didn’t reach the same maximum richness until night nine, towards the end of the 

second recording period at the first sub-site. Recording with one Anabat Express took longer 

again, with the maximum richness being reached by night 11 on average, requiring 

recording at both sub-sites (Figure 4.19b). Only monitoring the site with all three 

AudioMoths was sufficient to reach the same maximum richness as the Anabat devices, with 

all 11 species having been recorded by night eight. When using either one or two 

AudioMoth devices, the peak in species richness was not reached until the second recording 

period at the second sub-site. Moreover, the mean maximum species richness recorded was 

lower, with a mean species richness of 10.66 (± 0.33 SEM) being reached on night 16 for two 

AudioMoths, and 8.66 (± 1.22 SEM) for a single AudioMoth (Figure 4.19c). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4: PAM protocols for bats 

 139 

 

 
Figure 4.19: Species accumulation curves within the arable habitat for (a) Anabat Swift, (b) Anabat 
Express, and (c) AudioMoth (error bars show SEM (±1se)). 
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4.4 Discussion 

The commercial Anabat detectors generally outperformed the open-source AudioMoths 

(LFAM and HFAM), both in terms of numbers of bat passes detected, overall species 

richness, and detecting the same number (or more) species faster, with fewer detector 

units, fewer replicate recording periods and fewer recording locations/sub-sites being 

needed. Fewer significant differences in bat passes detected were found when restricting 

analysis to the time periods in which the AudioMoths were awake and recording, with the 

LFAM detecting similar numbers of bats as the Anabat devices overall, and even detecting 

more bat passes than the Anabat Express for some taxonomic groups in certain habitats. 

Analysing both the full dataset and the time matched subsets was important to understand 

the differences in the detectors in both field conditions, as they are likely to be used by 

practitioners (full dataset), and scientifically under the same conditions (time matched 

subsets). 

 

4.4.1 Comparative detector performance 

In analysis of the full dataset, where significant differences between detectors were found, 

the Anabat detectors recorded a higher species richness or a greater number of bat passes 

than either of the AudioMoths. This finding highlights the major disadvantage in configuring 

the AudioMoths to record on a sleep/wake cycle, as bat activity is inevitably missed when 

the units are asleep. However, this was seen to have a bigger impact for Myotis and Plecotus 

bats, which can be classed as short-range echolocators (SRE) (Frey-Ehrenbold et al., 2013; 

Froidevaux et al., 2014) – this was also seen for brown long-eared in Chapter Three where 

more passes were recorded on walked transects than using PAM, again likely due to the 

influence of SRE. For Pipistrellus species, the LFAM only recorded significantly fewer bat 
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passes than the Anabat Express in the arable habitat, even when only switching on to record 

periodically. Few previous studies have examined the difference in detections from different 

detector models, particularly to compare zero-crossing and full spectrum detectors. 

However, Adams et al. (2012) and Kaiser and O’Keefe (2015) both compared a zero-crossing 

detector (Anabat SD2) to at least one other full spectrum detector. The former study 

reported that although the Anabat devices performed similarly, in the majority of cases it 

recorded fewer bats than the full spectrum equivalents. Therefore, ability of the AudioMoth 

units to record in full spectrum may enable them to perform similarly to the Anabat Express 

for more abundant taxa, even when configured to sleep periodically. A firmware update 

introducing a frequency trigger for the AudioMoth was released in mid-2022 (Open Acoustic 

Devices, 2022a). It was not adopted here owing to the timing of the release and lack of 

empirical testing; however, future research should aim to assess if utilising triggered 

recording for AudioMoth yields more comparable results when compared to commercial 

equipment.  

 

In the analysis of the time matched subsets, fewer significant differences between the 

detectors were seen, particularly when comparing the LFAM with the Anabat detectors. This 

perhaps emphasises the superior ability of full spectrum detectors to detect bats, alluded to 

in the analysis of the full dataset. On some occasions, the LFAM was found to have recorded 

significantly more passes than the Anabat Express in the data subset. Neither of the 

AudioMoths significantly outperformed the Anabat Swift in the subset analysis. These 

findings are consistent with those of a recent detector comparison conducted by Starbuck et 

al. (2024). The higher quality microphone in the Swift, is likely to be the principal driver 

behind their superior performance. 
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4.4.2 Comparison of AudioMoth configurations 

Testing of the two AudioMoth sampling rate configurations yielded some perhaps 

unexpected findings with the lower sampling rate, 250kHz LFAM, frequently outperforming 

it’s co-located 384kHz HFAM partner in the analysis of the paired AudioMoths. Moreover, 

the LFAM was therefore found to be closer in terms of performance to the two commercial 

Anabat detectors. Analysis of the LFAM subset found it was only significantly outperformed 

by the Anabat Swift in recording lesser horseshoe bats in woodland habitat. Configuring the 

AudioMoth with the highest possible (384kHz) sample rate to record bats is recommended 

by Hill et al. (2019) and has frequently been adopted in previous work using AudioMoth to 

study bats (Katunzi et al., 2021; Lopez-Bosch et al., 2022; Carvalho et al., 2023). A recent 

detector comparison study in the USA used this configuration (Starbuck et al., 2024), 

however, they also reported reduced performance compared to commercial equipment. 

Configuring the AudioMoths to use the highest possible sampling rate, does potentially have 

disadvantages. Firstly, the use of a higher sampling rate can result in greater amounts of 

self-noise from more frequent SD card writes, which may reduce recording quality. 

AudioMoths require ultra-high speed microSD cards, however, U1 (10MB/s write speed) 

cards will generate more noise than U3 (30MB/s write speed) cards, especially where higher 

sampling rates are used (Pers. comm. Alex Rogers, Open Acoustic Devices). Increased noise 

can result in calls being overlooked or less confidently identified by a classifier (Brinkløv et 

al., 2023). In this study, only recordings classified with a match ratio of >0.5 were analysed, 

with the HFAM having the lowest percentage of recordings exceeding this threshold 

(12.33.%) of all the detector types. Secondly, in many cases the greater requirement in 

terms of memory for each recording at higher sampling rates (Browning et al., 2017; Gibb et 

al., 2019) may necessitate configuring the AudioMoth to record at less frequent 
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intervals/for a shorter duration, to fit recordings from the required monitoring period, on to 

the memory card. 

 

4.4.3 Species accumulation 

The Anabat detectors were found to have accumulated the full species inventory in all 

habitats. When two detectors were used, the maximum accumulation was always reached 

by the end of the second replicate at the first sub-site (10 nights). This could also typically be 

achieved by using a single detector. However, on occasion, the use of a single detector 

necessitated further monitoring of the second sub-site most notably within the woodland 

habitat for both the Swift and the Express. In cluttered environments such as woodland, 

calls may become obscured, and higher frequency calls produced by bats in clutter are more 

easily attenuated (O’Keefe et al., 2014). This finding highlights the need for sufficient spatial 

coverage in such habitats, even when using commercial detectors. Although the 

AudioMoths generally accumulated species more slowly, using multiple detectors was seen 

to have a positive impact. Using three AudioMoths enabled the full species inventory to be 

recorded within one sub-site at all of the habitats, except for in woodland. The lower 

purchase costs of the AudioMoths makes the necessity of using multiple detectors less of a 

limitation (Browning et al., 2017), and doing so was shown here to be capable of recording 

as many species as the Anabat detectors, over a similar monitoring period. 

 

4.4.4 Habitat effects 

The riparian site saw the highest levels of overall activity, with the watercourse and riparian 

corridor likely providing plentiful foraging opportunities for a range of species (Smith and 

Racey, 2008; Scott et al., 2010). Here, the AudioMoths were not able to record the same 
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species inventory as the commercial detectors, and even the use of three units required a 

second replicate of recording before no new species were recorded. This finding differs from 

the other three habitats, where the use of three AudioMoths was eventually sufficient to 

record the same species richness as the other detectors. More heterogeneous, species rich 

habitats with high levels of activity, may present more of a challenge for the AudioMoth’s 

lower quality microphone. The MEMS microphones are hypothesised to have a lower signal 

to noise ratio, therefore, environments with high levels of background noise and 

vocalisations from other species, may detract from the recording quality, and the 

subsequent ability for bat calls to be confidently identified (Gibb et al., 2019).  

 

The overall detected level of activity was lower at the woodland habitat compared to the 

riparian habitat. Bats produce quieter echolocation calls in cluttered environments (Russ, 

2012), which can result in fewer detections, and calls which are more challenging to identify. 

As such, acoustic methods alone are not always sufficient to produce a complete species 

inventory (Lintott et al., 2014). This was shown to impact the PAM protocols required to 

record the maximum species richness. A single Anabat Swift was still capable of recording 

the maximum observed species richness, however, unlike the other habitats, the use of the 

second sub-site was necessary to achieve this. Moreover, more significant differences 

between the detectors were found in woodland than any other habitat, with the Swift 

typically recording more bat passes. This emphasises that high quality detectors are best 

suited to robustly capturing bat activity and richness in these instances, and most efficiently.  
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4.4.5 Implications and recommendations 

The findings presented here show that the full spectrum, commercial detectors (Anabat 

Swift) performed the most efficiently in all four habitats, recording the highest mean species 

richness and mean numbers of bat passes each night. Moreover, they were seen to 

accumulate the full species inventory at each site more quickly, and often with the use of 

fewer units. However, consistent with the findings of Starbuck et al. (2024), the AudioMoths 

were seen to be sufficiently capable in certain scenarios, and may serve as a viable 

alternative in instances where the purchase of commercial equipment is financially 

prohibitive. With adequate replicates, multiple AudioMoths were shown to be able to 

accumulate the same species inventory as the Anabat Swift in all habitats except riparian. 

For complex habitats, or those where species richness is anticipated to be high, commercial 

PAM equipment should still be strongly considered.  

 

The reduced numbers of bat passes recorded by the AudioMoths does indeed suggest a 

trade-off between detector cost and recording quality (Gibb et al., 2019), which needs 

careful consideration, especially if the analysis is to be partially or fully automated. These 

findings suggest a 250kHz sampling rate better preserves recording quality by potentially 

reducing self-noise generated by memory card writes. However, although high frequency 

bats (lesser horseshoe) were still detected at the lower sampling rate, there may be some 

reduction in microphone sensitivity at higher frequencies. Fully understanding the noise 

generated by different memory cards and how this is impacted by recording at different 

sampling rates will be of vital importance. Moreover, empirical testing of the updated 

AudioMoth firmware with configurable frequency triggers will enhance understanding of 

how these lower cost units compare to the commercial alternatives.  
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Optimising efficient and reliable workflows for the analysis of the large datasets produced 

by PAM is also of paramount importance. Manual auditing of these datasets is incredibly 

time consuming and remains a subjective process. It is important to acknowledge that the 

workflow adopted for this chapter was largely automated, with the degree of manual 

auditing undertaken proportionate to the resources available. With multiple classifiers and 

pipelines now available to process acoustic data, gaining an understanding of the relative 

reliability of these algorithms, and how this is influenced by variation in the quality of 

recordings from different detectors (Chapter Five), will be key in ensuring that PAM 

produces accurate and reliable data (Browning et al., 2017; Gibb et al., 2019; Sugai et al., 

2019). 

 

Acoustic bat surveys are a vital component in the monitoring and assessment of bat 

populations and communities, for scientific research (Jones et al., 2013), informing 

conservation action (Barlow et al., 2015), and to ensure legal compliance under protected 

species legislation (Collins, 2023). With the ever-expanding availability of acoustic recorders 

capable of passively recording ultrasonic bat calls, it is of vital importance that the relative 

strengths and limitations of commercial and open-source recorders are fully understood. 

Ensuring that PAM protocols are empirically tested, will aid in allowing practitioners to make 

informed decisions when selecting the most suitable equipment and protocols for their 

specific research aims.  
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4.5 Chapter summary 

1. The Anabat Swift and Express typically detected a significantly higher species 

richness, and significantly more bat passes than the AudioMoths, over five-night PAM 

periods (non-temporally restricted). 

2. Analysis of the temporal periods in which all detectors were able to record, showed 

the AudioMoth to be capable of recording significantly more bat passes than the 

Anabat Express, for taxonomic groups which call at lower frequencies (Eptesicus, 

Nyctalus and Pipistrellus species). 

3. When comparing AudioMoth configurations, a 250kHz sampling rate was found to 

detect a significantly higher species richness than a 384kHz sampling rate, and 

always detected more bat passes for taxonomic groups where significant differences 

were found. 

4. Three AudioMoths were able to record the same number of species as one or two 

AnaBats in all habitats except riparian, however, species accumulation typically took 

longer, and a second sub-site was required in the woodland habitat. 

5. The analysis workflow used in this chapter incorporated an automated bat call 

classifier. Improving understanding of the reliability of the various classifiers and 

pipelines currently available is important to ensuring large PAM datasets can be 

analysed efficiently and accurately. The pairwise consensus between commonly used 

classifiers is investigated in Chapter Five. 
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4.6 Supplementary material 

Figure S4.1: Differences in species richness between detectors. Significant post-hoc pairwise Wilcoxon results displayed 
with codes <0.05(*), <0.01(**), <0.001(***). Plots with reduced satura`on indicate no significant overall difference. 
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Figure S4.2.1: Differences in bat passes between detectors. Significant post-hoc pairwise Wilcoxon results displayed with 
codes <0.05(*), <0.01(**), <0.001(***). Plots with reduced satura`on indicate no significant overall difference. 
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Figure S4.2.2: Con`nua`on of figure 4.10.1. Significance codes: <0.05(*), <0.01(**), <0.001(***). Plots with reduced 
satura`on indicate no significant overall difference. 
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Figure S4.3.1: Differences in bat passes between detectors. Significant post-hoc pairwise Wilcoxon results displayed with 
codes <0.05(*), <0.01(**), <0.001(***). Plots with reduced satura`on indicate no significant overall difference. 

PL
EC

O
TU

S 



Chapter 4: PAM protocols for bats 

 152 

 
 
Figure S4.3.2: Con`nua`on of figure 4.11.1. Significance codes: <0.05(*), <0.01(**), <0.001(***). Plots with reduced 
satura`on indicate no significant overall difference. 
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Figure S4.4.1: Differences in bat passes between detectors. Significant post-hoc pairwise Wilcoxon results displayed with 
codes <0.05(*), <0.01(**), <0.001(***). Plots with reduced satura`on indicate no significant overall difference. 
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Figure S4.4.2: Con`nua`on of figure 4.12.1. Significance codes: <0.05(*), <0.01(**), <0.001(***). Plots with reduced 
satura`on indicate no significant overall difference. 
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Figure S4.5.1: Differences in bat passes between detectors. Significant post-hoc pairwise Wilcoxon results displayed with 
codes <0.05(*), <0.01(**), <0.001(***). Plots with reduced satura`on indicate no significant overall difference. 
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Figure S4.5.2: Con`nua`on of figure 4.13.1. Significance codes: <0.05(*), <0.01(**), <0.001(***). Plots with reduced 
satura`on indicate no significant overall difference.
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5.CHAPTER FIVE: Comparing automated bat classifier 
agreement on Passive Acoustic Monitoring (PAM) datasets 
from Anabat Swift and AudioMoth 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A bat call recorded by an Anabat Swift, classified by BatClassify as Brandt’s/Whiskered bat 
with 61% confidence 

 
 

As discussed in Chapter Four, Passive Acoustic Monitoring (PAM) is becoming an increasingly 
popular means of conducting surveys and monitoring for bats for a range of applications, 
including scientific research, and commercial surveys for legislation compliance purposes. 
Although PAM protocols have the potential to be standardisable and scalable, they typically 
produce vast acoustic datasets, which require considerable resources to analyse manually. 
With the continually evolving capabilities of Artificial Intelligence (AI), multiple automated 
classifiers now exist to classify specific bat guilds, with the potential to streamline analysis 
workflows considerably. However, the reliability of such classifiers is poorly understood, 
particularly in how their outputs differ from one another, and how their performance is 
impacted by recordings of varying quality from different detectors. This chapter explores the 
level of agreement between pairs of commonly used classifiers on two PAM datasets; one 
produced using commercial bat detectors (Anabat Swift), and one produced by open-source 
acoustic recorders (AudioMoth) using a subset of the recordings collected for Chapter 4.  
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5.1 Introduction 

As discussed in Chapter Four, Passive Acoustic Monitoring (PAM) is developing rapidly as an 

increasingly important ecological method, with applications as diverse as surveying species 

presence and monitoring spatiotemporal change in ecological communities (Wrege et al., 

2017; López-Bosch et al., 2022), researching evolution and behaviour (Teixeira et al., 2019), 

and detecting anthropogenic threats (Tleimat et al., 2022). As the technology develops and 

acoustic detectors become more financially viable, PAM has the potential to become ever 

more widely utilised to detect any species that produces sound. Ensuring effective data 

management, and conducting robust and reliable analysis of the large datasets created, 

however, remain key challenges (Browning et al., 2017; Gibb et al., 2019; Sugai et al., 2019; 

Brinkløv et al., 2023).  

 

In the terrestrial environment, bats are the taxonomic group most frequently surveyed and 

monitored using PAM (Sugai et al., 2019) (Chapters Two, Three, and Four). The high 

sampling rate required for recording ultrasonic sound results in large audio files, which 

typically generates larger datasets in terms of memory than those for other taxa (Frick, 

2013). In order to reduce memory requirements when recording in the field (thus 

maximising survey duration) and facilitate post hoc data storage and analysis, passive bat 

detectors typically use a built-in trigger whereby audio is only recorded if it meets specific 

ultrasonic parameters consistent with bat echolocation frequencies (Browning et al., 2017; 

Chapter Four). This system is common on most major commercial bat detectors, such as the 

Anabat Swift (Titley Scientifics, Australia) and the SM4 (Wildlife Acoustics, MA, USA). 

Whereas commercial detectors record only when triggered by ultrasonic sound, open-

source devices, such as AudioMoths, are typically configured to record sound continuously 
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or on a pre-programmed sleep:wake cycle. As discussed in Chapter Four, however, very 

recent developments have involved the launch of amplitude and frequency filters that are 

customisable in the configuration application and that function as triggers in a similar way to 

those used on commercial devices (Open Acoustic Devices, 2022b). However, the efficiency 

of these on-board filters is still very much in beta mode and needs to be empirically, and 

robustly, tested (Brinkløv et al., 2023). Until this happens, many users are still opting for 

continuous recording (Revilla-Martin et al., 2020; López-Bosch et al., 2022) or use of 

sleep:wake cycles (e.g. Bota et al., 2023; Kunberger and Long, 2023; Starbuck et al., 2024), 

rather than using largely untested triggered configurations, despite the very large amounts 

of data these approaches generate.  

 

Regardless of how recordings are collected in the field, manual processing and analysis of 

these large datasets can be incredibly time consuming. Moreover, even when processing is 

carried out by skilled technicians, it remains a subjective process, with the opportunity for 

user error that is challenging to quantify (Gibb et al., 2019). Artificial Intelligence (AI) has the 

potential to revolutionise ecological monitoring for a range of taxa through automated 

analysis of large datasets produced by sensors, cameras and acoustic recorders in the field 

(Goodwin et al., 2022). These approaches have been applied widely in the marine 

environment for cetaceans (Blount et al., 2022), and have the potential to improve both the 

efficiency and reliability of automatically identifying animal vocalisation from within audio 

recordings, including ultrasonic bat calls (Stowell, 2022). Automated bat classification was 

first seen in the 1990s, with early exploration of decision trees and Artificial Neural 

Networks (ANNs), with continual development into random forest and deep learning based 

approaches (Zamora-Gutierrez et al., 2021). Automated bat classifiers are a key component 
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in analysing acoustic data from current national bat monitoring efforts in the UK, including a 

pilot study conducted by Forestry England and the Bat Conservation Trust (BCT) (Forestry 

England, 2024), and the BCT’s national British Bat Survey (BBatS) (Bat Conservation Trust, 

2024). 

 

Bat classifiers typically utilise call parameter thresholds (e.g. amplitude, frequency) and 

reference sonograms to assess each sound file. The first stage of this process, often known 

as filtering, involves identifying and classifying the relevant sounds based on pre-defined 

criteria typically associated with bat calls (Mac Aodha et al., 2018). Where a detector with 

an on-board threshold trigger is used, filtering is primarily done in the field, as sounds 

clearly outside the specified parameters are not recorded. However, all sounds within range 

will be retained, including some ultrasonic sounds not produced by bats, along with false 

triggers. Therefore, additional non-bat files may still need to be filtered out and excluded, 

either prior to, or during, automated analysis (Brinkløv et al., 2023). Where a detector 

without an on-board threshold trigger is used, basic filtering is sometimes undertaken as 

part of initial data cleaning to streamline the dataset, before automated analysis 

commences. Once any filtering is complete, all remaining calls are identified by algorithms 

based on known call parameters for individual species or genus groups and/or using a pre-

verified call library (Gibb et al., 2019).  

 

A number of auto-ID tools are becoming available to process and classify acoustic data. 

These are either integrated into analysis software (e.g. Kaleidoscope Pro, BatClassify) or are 

standalone pipelines (e.g. BTO Acoustic Pipeline). Some tools are free to access but are 

specific to the type of device used to collect the data, for example, BatClassify is available in 
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the freeware version of Anabat Insight for files recorded on Anabat devices. Other tools, 

such as Kaleidoscope and the BTO Acoustic Pipeline, allow limited amounts of data to be 

processed for free regardless of the device used to collect the data, but require the 

purchase of a software licence or “credits” for long term access or to process large volumes 

of data. However, even where a financial cost is incurred (e.g. approx. 310 GBP for 

Kaleidoscope Pro, 435 GBP for the full version of Anabat Insight; January 2024 costings), 

auto-ID might still be more financially viable than the technician hours required for manual 

analysis of large datasets (Adams et al., 2010). Moreover, auto-ID might also aid the 

accessibility and scalability of PAM for bats, especially in resource-limited settings such as in 

conservation organisations and for citizen science initiatives such as the BbatS (Bat 

Conservation Trust, 2024). 

 

Despite the obvious theoretical benefits of automated analysis, reliable use of this approach 

still faces numerous challenges. Although there has been continual development of the 

technology and the expansion of the call libraries used as training data, significant 

uncertainties remain regarding variation and error rates across different auto-ID classifiers, 

and how these are impacted by recording quality. Sound files that contain multiple species 

calling simultaneously, or that are complicated by environmental noise (or internal noise 

from the detector itself), can make it difficult for auto-ID algorithms to reliably make 

classifications (Gibb et al., 2019; Brinkløv et al., 2023). The algorithms can also struggle to 

recognise variations in calls of individual bat species, attributed to factors such as habitat 

structure, weather conditions, and bat-specific characteristics, including age and sex (López-

Baucells et al., 2019). Taken together, these factors mean that risk of inaccurate 

classifications can be high, even if this risk remains unknown (Mac Aodha et al., 2018; Barré 
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et al., 2019). Although previous studies have compared classifier performance, these have 

largely been undertaken using recordings from North American bat guilds (e.g. Lemen et al., 

2015; Nocera et al. 2019; Goodwin and Gillam, 2021). Rydell et al. (2017) compared the 

performance of three classifiers: SonoChiro, Kaleidoscope and BatClassify, on a European 

bat guild in Sweden. However, such comparisons are yet to be conducted on British bat 

calls, or to test contemporary classification tools, such as the BTO Acoustic Pipeline or 

recordings from open-source acoustic recorders, such as AudioMoth. Without a robust 

understanding of the error associated with automated workflows, a degree of manual 

auditing is still typically considered best practice when applying them to PAM data analysis, 

in order to validate the results (Barré et al., 2019; López-Baucells et al., 2019; Collins, 2023). 

 

In this chapter, three automated classifiers are compared for the full spectrum bat data 

reported in Chapter Four, which were collected across a range of lowland habitats in the UK 

using Anabat Swift detectors and AudioMoth acoustic recorders (some recording at high 

frequency and some recording at low frequency). Data from both detector types were 

processed through the Bats of Europe auto-ID classifier in Kaleidoscope Pro. For 

comparison, auto-ID classifications were also obtained for the AudioMoth data from the 

BTO Acoustic Pipeline, and from BatClassify built-in to the freeware version of Anabat 

Insight for the Anabat Swift data. Variability in classifier-reported confidence or match ratio 

is assessed as a measure of self-reported classifier performance, both overall and then 

accounting for possible differences in performance between habitat types. The level of 

pairwise consensus in bat ID between classifiers is then assessed to understand when and 

how species are being confused, factoring in both taxonomy and habitat. 
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5.2 Methods 

5.2.1 Acoustic data 

The acoustic data used in this study were obtained from a 16-week period of passive 

acoustic bat monitoring, carried out across four sites, situated within a 20 km radius in the 

south Worcestershire/north Gloucestershire region of the United Kingdom in summer and 

autumn 2022 (Chapter Four). The four sites represented different habitat types: riparian, 

woodland, wood pasture, and arable. The data at each site were recorded by two types of 

full spectrum passive acoustic detectors: Anabat Swift (Titley Scientific, Australia) detectors 

and AudioMoth acoustic recorders (Open Acoustic Devices, UK).  

 

All detectors were configured to commence recording 30 minutes prior to sunset and cease 

recording 30 minutes after sunrise. The on-board trigger on the Anabat Swift detectors was 

used to automatically activate the detector to record bats when detected. At the time of 

this fieldwork, the AudioMoth lacked a reliable on-board trigger for bats, therefore, these 

detectors were pre-configured to record all sound on a sleep:wake cycle throughout the 

night. The detectors were always awake for five seconds at a time; however, the frequency 

of these periods was determined by night lengths and memory card capacity. A total of 80 

nights of acoustic data was recorded, classified and used for analysis (20 nights * 4 sites).  

 

5.2.2 Bat species classification 

Prior to any automated classification, all recordings were initially passed through a broad 

frequency filter (“All bats” in Anabat Insight) to assist data storage. This filtered out any 

recordings that did not contain sound within the range of 4-300 kHz and that were not 
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consistent with bat calls. This removed proportionally fewer recordings for the Anabat Swift 

dataset (where the on-board bat trigger had been used) compared with the AudioMoth 

dataset (where a sleep:wake cycle was used) such that only recordings with a high feasibility 

of containing bat calls remained for onward automated classification. After all filter steps 

had been completed, all data recorded by each type of detector were processed through 

two automatic classifiers (Table 5.1) 

 

Table 5.1: Automatic classifiers used to process datasets from the two detector models 

Detector model Automatic Classifiers 
Anabat Swift 
 
 
 

• BatClassify 
• Kaleidoscope Pro 

AudioMoth • BTO Acoustic Pipeline 
• Kaleidoscope Pro 

 

 

5.2.2.1 Kaleidoscope Pro 

The Bats of Europe classifier (version 5.4.0) in Kaleidoscope Pro (version 5.4.8) was applied 

to the acoustic data from both detector models; this is the regional reference call library 

appropriate to the location. The classifier gave a single species classification for each sound 

file or ‘call sequence’, along with a match ratio (range 0-1; higher = better), calculated from 

the number of calls in the sequence that match to those in the reference library for the 

assigned species. As per Table 5.1, all recordings were processed using Kaleidoscope Pro, 

regardless of the detector type by which they were recorded.  
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5.2.2.2 BTO Acoustic Pipeline 

The AudioMoth recordings were additionally processed through the BTO Acoustic Pipeline. 

The pipeline’s reference library has expanded rapidly since its launch in 2021 and, at the 

time of this study, contained high volumes of verified reference calls recorded on 

AudioMoth devices (Pers. Comm. Stewart Newson, Developer - BTO Acoustic Pipeline). The 

pipeline claimed to feature significant advantages over other classifiers, including the ability 

to identify social calls, and unlike the classifier in Kaleidoscope Pro, also featured the ability 

to identify multiple species within a single recording, including those from quieter species 

with weaker signals. Each classification was assigned a probability value (range 0-1; higher = 

better). 

 

5.2.2.3 BatClassify 

The Anabat Swift recordings were additionally processed through BatClassify, a classifier 

developed by Scott and Altringham (2004), specifically for UK bats in woodland habitats. The 

classifier was integrated into the Anabat Insight call analysis software, and accessible in the 

freeware version of the software for full spectrum files recorded on Titley Scientific devices. 

BatClassify can also identify multiple species of bat calling within a single recording where 

applicable (Pers. Comm. Chris Scott, Developer – BatClassify). Moreover, as with the other 

classifiers, each classification was assigned a confidence value (range 0-100%; higher = 

better). 
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5.2.3 Recording selection 

All potential bat call recordings were subjected to a screening process prior to any statistical 

analysis. Firstly, only those calls with a match ratio (Kaleidoscope Pro), probability (BTO 

Acoustic Pipeline), or confidence value (BatClassify) ³ 0.5 or 50%, were carried forward, 

consistent with current recommendations on the analysis of classifier-assisted analysis of 

acoustic datasets (Barré et al., 2019; British Trust for Ornithology, 2024). Henceforth, 

“confidence” reported as a percentage is used throughout for consistency. Secondly, the 

datasets were screened for recordings with multiple classifications. Whilst both BatClassify 

and the BTO Acoustic Pipeline can recognise calls from multiple species within a recording, 

Kaleidoscope Pro assigns a single overall classification. Therefore, to avoid systematic bias 

confounding statistical analysis, any recordings classified as containing calls from multiple 

species using BatClassify and the BTO Acoustic Pipeline were removed prior to analysis; 

these same files were also removed from the matched Kaleidoscope Pro dataset to ensure 

that the datasets remained balanced and symmetrical – and thus directly comparable. 

Finally, all recordings with a single species classification from each of the classifiers were 

combined and paired recordings were identified (i.e. instances where the same recording 

was classified ³ 50% by both classifiers). These paired recordings (henceforth termed 

matched data) were eligible for statistical modelling. The workflow to identify recordings 

from the Anabat Swift and AudioMoth datasets is shown in Figure 5.1, illustrated by flow 

diagrams adapted from Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) (Page et al., 2021). 
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 (n = 211,145) 

Habitats: 
1-Arable (n = 79,432) 
2-Woodland (n = 28,603) 
3-Wood pasture (n = 40,027) 
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confidence: 
BatClassify (n = 68,257) 
Kaleidoscope Pro (n = 40,367) 

Recordings excluded: 
BatClassify (n = 142,888) 
Kaleidoscope Pro (n = 170,778) 

Retain recordings classified by 
BatClassify as containing a single 
species only (n = 51,947) and 
retain all recordings in the 
Kaleidoscope Pro dataset apart 
from those classified as containing 
multiple species by BatClassify (n 
= 35,661) 

Recordings excluded: 
BatClassify (n = 16,310) 
Kaleidoscope Pro (n = 4,706) 
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Classifications (n = 27,164) 
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Combine all single-species 
recordings (n = 87,608) 

Recordings excluded: 
BatClassify (n = 38,365) 
Kaleidoscope Pro (n = 22,079) 

Total recordings 
 (n = 258,731) 

Habitats: 
1-Arable (n = 69,905) 
2-Woodland (n = 43,387) 
3-Wood pasture (n = 51,001) 
4-Riparian (n = 94,438) 

Retain recordings ³ 50% 
confidence: 
BTO Acoustic Pipeline (n = 
84,357) 
Kaleidoscope Pro (n = 39,701) 

Recordings excluded: 
BTO Acoustic Pipeline (n = 
174,374) 
Kaleidoscope Pro (n = 219,030) 

Retain recordings classified by 
the BTO Acoustic pipeline as 
containing a single species only 
(n = 75,912) and retain all 
recordings in the Kaleidoscope 
Pro dataset apart from those 
classified as containing multiple 
species by the BTO Acoustic 
Pipeline (n = 34,622) 

Recordings excluded: 
BTO Acoustic Pipeline (n = 
8,445) 
Kaleidoscope Pro (n = 5,079) 

Identify paired recordings 
classified by BOTH classifiers ≥ 
50% to create matched dataset: 
Classifications (n = 61,148) 
Recordings (n = 30,574) 

Identification of matching AudioMoth recordings 

Combine all single-species 
recordings (n = 110,534) 

Recordings excluded: 
BTO Acoustic Pipeline (n = 
45,338) 
Kaleidoscope Pro (n = 4,048) 

Figure 5.1: PRISMA workflow adapted to illustrate the identification of recordings for statistical analysis, from the two datasets 
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5.2.4 Statistical analysis 

Statistical analyses were carried out in R 4.2.2 (R Core Team, 2022). Initial analysis explored 

the percentages of recordings classified with ³ 50% confidence, firstly for each of the four 

detector/classifier combinations overall and secondly when subdivided into the four habitat 

types. The variation in classification confidence for individual species, above the 50% 

threshold, was also calculated.  

 

To explore the effects of taxonomic group and habitat on the strength of the matches 

between the two classifiers, Cumulative Link Models (CLMs) with logit link functions were 

fitted using the matched data. Two CLMs were used, one for each of the two detector types 

(Anabat Swift and AudioMoth). The former was calculated on the 13,582 recordings 

classified by both Kaleidoscope Pro and BatClassify with ≥ 50% confidence; the latter was 

calculated on the 30,574 recordings classified by both Kaleidoscope Pro and BTO Acoustic 

Pipeline with ≥ 50% confidence (Figure 5.1). In both cases, models were developed with an 

ordinal dependent variable whereby the matched recordings were allocated a value 1-6 

determined by match strength (Table 5.2), and two predictors habitat (1=riparian, 

2=woodland, 3=wood pasture, 4=arable) and one of six taxonomic groups. The taxonomic 

groups were: (1) Pipistrellus comprising Nathusius’ pipistrelle (Pipistrellus nathusii), 

common pipistrelle (Pipistrellus pipistrellus) and soprano pipistrelle (Pipistrellus pygmaeus); 

(2) Nyctalus/Eptesicus comprising Serotine (Eptesicus seotinus), Leisler’s (Nyctalus leisleri) 

and Noctule (Nyctalus noctula) (3) Plecotus comprising brown long-eared (Plecotus auritus) 

and grey long-eared (Plecotus austriacus); (4) Myotis comprising Alcathoe (Myotis alcathoe), 

Brandt’s (Myotis brantdii), Bechstein’s (Myotis bechsteinii), Daubenton’s (Myotis 

daubentonii), whiskered (Myotis mystacinus), and Natterer’s (Myotis nattereri); (5) 
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Rhinolophus comprising greater horseshoe (Rhinolophus ferrumequinum) and lesser 

horseshoe (Rhinolophus hipposideros); and (6) Barbastella comprising barbastelle 

(Barbastella barbastellus). These groups were determined by genus, with the exception of 

the combined Nyctalus/Eptesicus grouping. This was partially necessitated because 

BatClassify does not attempt to separate the three species, owing to similar call types. The 

CLM models were used to calculate predicted probability values for recordings falling within 

each of the six categories after allowing for habitat and taxonomic group. Finally, 

occurrences of lack of consensus between classifiers were explored to identify the 

combinations of species classifications most commonly encountered. 

 
 
 
Table 5.2: “Match strength” criteria used to score the degree of consensus for each recording using 
any two classifiers for statistical analysis. 

“Match 
strength” 

score 
Criteria 

Anabat Swift 
data (n) 

AudioMoth 
data (n) 

1 Species do not match 
 

692 2,919 

2 Species match, both classifiers 50-74% confident 
 

70 114 

3 Species match, one classifier 50-74% confident 
and the other classifier ³75% confident 

1,702 2,941 

4 Species match, both classifiers 75%-98% 
confident 

3,784 5,624 

5 Species match, one classifier 75%-98% confident 
and the other classifier ³99% confident 

6,588 12,640 

6 Species match, both classifiers ³99% confident 
 

746 6,336 
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5.3 Results 

From a total of 211,145 Anabat Swift recordings, 40,367 (19.12%) were classified by 

Kaleidoscope Pro, and 68,258 (32.33%) were classified by BatClassify as containing bat calls 

with a confidence value ³ 50%. Habitat specific details are shown in Table 5.3. 

 

 
Table 5.3: Numbers of Anabat Swift recordings and percentages of recordings classified with a ³ 50% 
match ratio/confidence value, by each of the classifiers, in each habitat. 

  Kaleidoscope Pro BatClassify 

 Total recordings ³ 50% confidence % ³ 50% confidence % 

Riparian 63,083 20,402 32.34 26,060 41.31 

Woodland 28,603 6,477 22.65 15,966 55.82 

Wood Pasture 40,027 10,779 26.93 17,224 43.03 

Arable 79,432 2,709 3.41 9,007 11.34 

 

 

From a total of 258,731 AudioMoth recordings, 39,701 (15.35%) were classified by 

Kaleidoscope Pro, and 84,357 (32.61%) were classified by the BTO Acoustic Pipeline as 

containing bat calls, with confidence value ³ 50%. Habitat specific details are shown in Table 

5.4. 
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Table 5.4: Numbers of AudioMoth recordings and percentages of recordings classified with a ³ 50% 
match ratio/confidence value, by each of the classifiers, in each habitat. 

  Kaleidoscope Pro BTO Acoustic Pipeline 

 Total recordings ³ 50% confidence % ³ 50% confidence % 

Riparian 94,438 24,759 26.22 50,142 53.10 

Woodland 43,387 4,625 10.66 14,199 32.73 

Wood Pasture 51,001 7,521 14.75 14,279 28.00 

Arable 69,905 2,796 4.00 5,737 8.21 

 

 

At this initial screening stage it was evident that both the BTO Acoustic Pipeline and 

BatClassify classified higher percentages of the recordings in their respective datasets with a 

confidence value ³ 50%, than did Kaleidoscope Pro. This trend was evident across all 

habitats. 

 

5.3.1 Classifier identification confidence 

The mean confidence values (³ 50%) for each species/species group, for each classifier, are 

plotted in Figure 5.2. Species in the genus Rhinolophus were the most confidently classified 

species (lesser horseshoe for Kaleidoscope Pro and BatClassify, greater horseshoe for the 

BTO Acoustic Pipeline). Conversely, species in the genus Myotis tended to be classified with 

the least confidence, with the BTO Acoustic pipeline not classifying any recordings with ³ 

50% confidence for Alcathoe bat and Bechstein’s bat.
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Figure 5.2: Mean confidence values ³ 50% for each species/species group by each classifier, on each of the datasets. Error bars show SEM 
(±1se). 
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5.3.2 Consensus between classifiers 

5.3.2.1 Anabat Swift 

A total of 13,547 Anabat Swift recordings was classified as containing bat calls with a 

confidence value ³ 50% by both classifiers (matched data). The percentages of recordings 

that were classified with ≥50% confidence using Kaleidoscope Pro that were also classified 

as a single species recording with ≥50% confidence using BatClassify, and vice versa are 

shown in Table 5.5.  

 
Table 5.5: The percentages of classifications made ≥ 50% confidence by each classifier used on the 
Anabat Swift data, that were present in the dataset for both classifiers 

 
Total recordings  

(³ 50% confidence) 
No. recordings present 

in both datasets 
% 

BatClassify 51,947 13,582 26.15 

Kaleidoscope Pro 35,661 13,582 38.09 

 

The optimal CLM (c2=6465.3, df=23, P<0.001) included both factors of habitat and 

taxonomic group, and the interaction term between habitat and taxonomic group, all of 

which were statistically significant (P<0.001 in all cases). The model was a substantially 

better fit (AIC=64,513) than the null model (AIC=70,933) (Burnham and Anderson, 2002). 

The mean predicted probabilities of match strength between the two classifiers, calculated 

by the model for each habitat are shown in Figure 5.3, and for each taxonomic group in 

Figure 5.4. The predicted probabilities calculated for each interaction between the factors 

are shown in Figure 5.5. 
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Figure 5.3: Mean probabilities predicted by the model of obtaining each match strength score 
(with a higher score indicating a stronger match), within each habitat using the Anabat Swift 
dataset (see Table 5.3 for definitions of match strength scores). Error bars show SEM (±1se).
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 Figure 5.4: Mean probabilities predicted by the model of obtaining each match strength 
score (with a higher score indicating a stronger match), for each taxonomic group using the 
Anabat Swift dataset (see Table 5.3 for definitions of match strength scores). Error bars show 
SEM (±1se). 
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Figure 5.5: Probabilities predicted by the model of obtaining each match strength score (with a higher score indicating a stronger match), for each interaction 
between habitat and taxonomic group, using the Anabat Swift dataset (see Table 5.3 for definitions of match strength scores). 
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The significance of the factor of habitat (Figure 5.3), appeared to be driven by differences in 

the match strength scores most likely to be obtained in the arable and riparian habitats, as 

opposed to the wood pasture and woodland habitats. In the latter two habitats, a strong 

match score of 5 was predicted to be most likely, with a mean probability in wood pasture 

of 0.49 (±0.10 SEM), and a mean probability in woodland of 0.43 (±0.11 SEM). On the other 

hand, in the arable and riparian habitats no single score was predicted to be most likely 

obtained. Moreover, obtaining a score of 1, indicating disagreement between the classifiers 

was predicated to be comparatively more likely than in the woodland and wood pasture 

habitats, particularly in the riparian habitat (0.31 ± 0.16 SEM). 

 
 
The classifiers were much less likely to agree on recordings involving Myotis classifications, 

compared to the other five taxonomic groups (Figure 5.4). A score of 1, indicating no match, 

was predicted to be the most likely score obtained for Myotis classifications, with a mean 

probability of 0.80 (±0.08 SEM). For the other taxonomic groups, with the exception of 

Plecotus, a strong match score of 5 was predicted as being the most likely to be obtained. 

 

When considering the interaction between the factors (Figure 5.5), the predicted probability 

of obtaining the lowest match strength score of 1 (no agreement), was high for Myotis 

recordings in all habitats (ranging from 0.61 in woodland to 0.96 in riparian). Conversely, the 

highest match strength score of 6 was predicted to be most likely to occur between 

classifiers on recordings involving classifications in the Rhinolophus taxonomic group in 

arable habitat (0.32), with this interaction having highest probability of both classifiers 

agreeing with ≥99% confidence.  
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5.3.2.2 AudioMoth 

A total of 30,574 AudioMoth recordings was classified as containing bat calls with a 

confidence value ³ 50% by both of the classifiers (the matched data). The percentage of 

recordings that were classified with ≥50% confidence using Kaleidoscope Pro that were also 

classified as a single species recording with ≥50% confidence using the BTO Acoustic 

Pipeline, and vice versa are shown in Table 5.7.  

 

Table 5.6: The percentages of classifications made ³ 50% confidence by each classifier used 
on the AudioMoth data, that were present in the dataset for both classifiers 
 
 

Total recordings  
(³ 50% confidence) 

No. recordings present 
in both datasets 

% 

BTO Acoustic Pipeline 75,912 30,574 40.28 

Kaleidoscope Pro 34,622 30,574 88.31 

 

 
The optimal CLM (c2=3877.1, df=15, P<0.001) included both factors of habitat and 

taxonomic group, and the interaction term between these two factors. Both factors and the 

interaction term were statistically significant (P<0.001 in all cases). In this dataset, 

recordings involving Barbastella or Plecotus classifications were found to occur too 

infrequently for meaningful statistical analysis, so were therefore omitted. The model was a 

better fit (AIC=175,626) than the null model (AIC=179,473) (Burnham and Anderson, 2002). 

The mean predicted probabilities of match strength between the two classifiers calculated 

by the model for each habitat are shown in Figure 5.6, and for each taxonomic group in 

Figure 5.7. The predicted probabilities calculated for each interaction between the factors 

are shown in Figure 5.8. 
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Figure 5.6: Mean probabilities predicted by the model of obtaining each match strength score 
(with a higher score indicating a stronger match), within each habitat using the AudioMoth 
dataset (see Table 5.3 for definitions of match strength scores). Error bars show SEM (±1se). 
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Figure 5.7: Mean probabilities predicted by the model of obtaining each match strength score (with a 
higher score indicating a stronger match), for each taxonomic group, using the AudioMoth dataset 
(see Table 5.3 for definitions of match strength scores). Error bars show SEM (±1se). 
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 Figure 5.8: Probabilities predicted by the model of obtaining each match strength score (with a higher score indicating a stronger match), for each interaction between 
habitat and taxonomic group, using the AudioMoth dataset (see Table 5.3 for definitions of match strength scores). 
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In contrast to the Anabat Swift dataset, no single match strength score was predicted to be 

considerably more likely to be obtained, in any of the habitats (Figure 5.6). However, a lack 

of agreement (match strength score 1) was seen to be the most likely outcome in the 

riparian (0.28 ± 0.09 SEM) and woodland habitats (0.30 ± 0.16 SEM), whereas in the arable 

habitat a strong match, scoring 5 or 6, was predicted to be the most likely outcome (5 = 0.31 

± 0.05 SEM, 6 = 0.26 ± 0.14 SEM).  

 

Classifiers generally did not agree on recordings involving classifications in the Myotis 

taxonomic group (Figure 5.7), where obtaining the lowest match strength score of 1 (species 

do not match), was predicted to be the most likely outcome, with a mean probability of 0.49 

(± 0.07 SEM). Conversely, the maximum match score of 6 (both classifiers agree with ≥99% 

confidence), was seen to be the most likely outcome (0.45 ± 0.16 SEM) where Rhinolophus 

classifications were concerned. 

 

Finally, when considering the interactions between factors (Figure 5.8), disagreement 

between classifiers was predicted to be the most likely outcome for Myotis classifications, 

particularly in woodland habitat (0.66). Classifier disagreement was also predicted to be the 

most likely outcome for the Nyctalus/Eptesicus group in woodland (0.47), and for the 

Rhinolophus group in the riparian habitat (0.42). In contrast, the maximum match strength 

score of 6 was predicted to be the most likely outcome for recordings involving Rhinolophus 

species in the arable (0.65) and woodland (0.75) habitats.  
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5.3.3 Species confusion 

5.3.3.1 Anabat Swift 

Analysis of the lack of consensus between BatClassify and Kaleidoscope Pro found species in 

the genus Myotis to be the most common cause of disagreement. Instances where 

recordings were classified as Brandt’s/Whiskered bat by BatClassify, but as Daubenton’s bat 

by Kaleidoscope Pro, accounted for 49.93% of all instances of confusion (Figure 5.5).  

 

 

 

5.3.3.2 AudioMoth 

Analysis of species most commonly confused when a lack of consensus was observed 

between classifiers was predominantly driven by instances where a recording was classified 

as common pipistrelle by the BTO Acoustic Pipeline, but as a soprano pipistrelle by 

Kaleidoscope Pro (53.1% of the recordings for which confusion was observed). Additionally, 

there were cross-genus confusions, most prominently where recordings were classified as 

either common or soprano pipistrelle by the BTO Acoustic Pipeline, but as noctule by 

Figure 5.9: Species classifications most commonly involved in a lack of consensus between classifiers in 
analysing Anabat Swift recordings (origin of arrow = BatClassify classification, tip of arrow = Kaleidoscope Pro 
classification). 
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Kaleidoscope Pro (12.09% and 16.86% of the recordings for which confusion was observed, 

respectively). All other species confusions were minor (<5% of recordings for which 

confusion was observed) (Figure 5.6).  

 
 

 
 

Figure 5.10: Species classifications most commonly involved in a lack of consensus between classifiers 
in analysing AudioMoth recordings (origin of arrow = BTO Acoustic Pipeline classification, tip of 
arrow = Kaleidoscope Pro classification). 

 

5.4 Discussion 

Notable differences were observed in the overall performance of the different classifiers. In 

both datasets, Kaleidoscope Pro classified fewer recordings above the confidence threshold 

than either BatClassify (Anabat Swift), or the BTO Acoustic Pipeline (AudioMoth). There 

were similarities in the habitat and taxonomic group effects in both datasets, with a lack of 

consensus predicted to be most likely to occur in riparian habitat, and for recordings 

potentially containing calls from the genus Myotis. The classifications most frequently 

confused when there was a lack of consensus were predominately species within the same 

genus, for both the Anabat Swift (Myotis) and AudioMoth (Pipistrellus) datasets. 
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5.4.1 Classifier confidence 

In order to minimize false positives in automated classification workflows Barré et al. (2019) 

recommend discarding any recordings that do not exceed a confidence threshold of ³ 50%. 

This approach is adopted in the recommendations for auditing results from the BTO 

Acoustic Pipeline (British Trust for Ornithology, 2024). However, in this study, the 

proportion of recordings not meeting this threshold was seen to vary widely, depending on 

the classifier used. Overall, Kaleidoscope Pro classified fewer of the recordings above the 

threshold (19.12% in the Anabat Swift dataset, 15.35% in the AudioMoth dataset) than 

either BatClassify (32.33%) or the BTO Acoustic Pipeline (32.60%). The metrics used to 

define confidence varies between classifiers (Lemen et al., 2015). The value assigned by 

Kaleidoscope Pro is calculated based on the number of calls (which Kaleidoscope terms 

‘pulses’) within the recording that match the classification, and is thus technically a match 

ratio. However, because a single species classification is assigned for each recording, the 

match ratio has the potential to be impacted by the presence of calls from multiple species. 

For example, all calls of the classified species may be considered a match for one specific 

species, but these may account for <50% of the calls in the recording, such that the match 

ratio would also be <50%.  

 

The mean confidence values for each species classification made by Kaleidoscope Pro were 

similar in both the AudioMoth and Anabat Swift datasets, with lesser horseshoe, barbastelle 

and soprano pipistrelle classifications being associated with the highest mean confidence 

values. On the AudioMoth dataset, the BTO Acoustic Pipeline was most confident on these 

same species, as well as greater horseshoe. However, further manual auditing conducted in 

Chapter Four found all greater horseshoe classifications to be false positives. The affected 
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recordings typically contained noise around 80 kHz, within the peak frequency range of 

greater horseshoe echolocation calls. Greater horseshoe classifications were made by all 

classifiers, in both datasets, reaffirming the importance of a degree of manual auditing in 

analysis workflows, irrespective of detector type, classifier type, or reported confidence 

values. Species in the genus Myotis were among the least confidently classified in both 

datasets by all classifiers, likely driven by similarities in call parameters, and peak frequency 

overlaps with other genera, such as Pipistrellus (Gibb et al., 2019).  

 

5.4.2 Habitat and taxonomic effects 

Within the Anabat Swift dataset the significance of habitat in determining the resulting 

predicted classifier match strength would appear to be driven by an increased chance of 

strong agreement in woodland and wood pasture habitats compared to the arable and 

riparian habitats. The principal drawback of conducting pairwise analysis on unverified field 

recordings is that it is impossible to determine if one classifier is performing more accurately 

than the other (Lemen et al., 2015). However, BatClassify was originally developed for UK 

bats in woodland (Titley Scientific, 2024), and therefore may more confidently classify 

recordings in these types of habitats, resulting in the higher probability of obtaining a 

stronger classifier match score.   

 

The significant effect of habitat in both datasets was seen to be subtle, particularly for the 

AudioMoth dataset. Here, no single match strength score was predicted to be much more 

likely to be obtained, in any of the habitats. In woodland for example, a score of 1 indicating 

no match, and a score of 6 indicating the strongest possible match, were equally likely 

outcomes. However, the arable habitat was seen to be where strongest matches were most 
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likely, and disagreement least likely. This habitat was the most homogeneous and open of 

the four habitats surveyed. This lack of habitat complexity and clutter is likely to increase 

detectability and improve the overall quality of the recordings produced by the AudioMoth 

MEMS microphone (MacAodha et al., 2018), resulting in better classifier performance, and 

an increased likelihood of consensus.  

 

In terms of the effect of taxonomic group on predicted classifier match strength, there were 

notable differences between the datasets and respective pairs of classifiers. Calls attributed 

to the genus Myotis are notoriously challenging to classify to species level, even by skilled 

practitioners (Vaughan et al., 1997; Russ, 2012). The findings presented indicate that this is 

also the case for automated analysis, with the classifiers found to be highly likely to disagree 

on recordings involving Myotis species classifications in both datasets. In the Anabat Swift 

dataset this was largely driven by recordings classified as Brandt’s/Whiskered bat by 

BatClassify being classified as Daubenton’s bat by Kaleidoscope Pro, likely as a result of 

interspecific overlap in call parameters (Rydell et al., 2017). Moreover, Kaleidoscope Pro 

classified some recordings in the dataset as Alcathoe bat, a nationally rare Myotis species, 

which was not classified by BatClassify. Given that all study sites were well outside the 

known distribution for this species in the UK, it is highly unlikely that Kaleidoscope Pro was 

performing accurately in this instance. Recordings classified in the Rhinolophus and 

Pipistrellus taxonomic groups were predicted to produce the strongest matches between 

classifiers in both datasets. Rhinolophus calls have distinctive call shapes and high 

frequencies, and were, therefore, largely agreed upon by the classifiers, despite being short 

range and prone to attenuation. Pipistrellus calls are also distinctive and unlikely to overlap 

with other taxonomic groups in terms of call parameters (Russ, 2012). 



Chapter 5: Automated classification of bat calls 

 188 

 

5.4.3 Species involved in a lack of classifier consensus 

Within both datasets the pairs of species involved most frequently in cases of disagreement, 

were in the same genus. Within the Anabat Swift dataset, confusion between 

Brandt’s/Whiskered bat and Daubenton’s bat, both in the genus Myotis, accounted for 

almost half of the occurrences of confusion between BatClassify and Kaleidoscope Pro. 

These findings are consistent with those of previous studies (Rydell et al., 2017; Thomas and 

Davison, 2022) which found Kaleidoscope Pro and/or BatClassify were unreliable in 

identifying Myotis calls to species level. Similarly, within the AudioMoth dataset, confusion 

between common pipistrelle and soprano pipistrelle, both in the genus Pipistrellus, 

accounted for over half (53.1%) of all occurrences of confusion. Although calls from the two 

species are typically distinguished by differences in peak frequency, plasticity of Pipistrellus 

calls can vary substantially, depending on environmental or behavioural factors (Montauban 

et al., 2021). This can create considerable overlap in characteristic call frequencies for the 

two species, which can lead to classifier confusion.   

 

5.4.4 Implications and recommendations 

These findings support the recommendations of previous work; automated classifiers 

should still be used with caution, and if possible, in conjunction with manual auditing by 

skilled technicians (Russo and Voigt, 2016; Rydell et al., 2017; Brabant et al., 2022; Solick et 

al., 2024). Although adopting a confidence threshold into analysis workflows can aid in 

reducing false positives, they will not be eliminated altogether. For applications intolerant to 

error, manual auditing will still be required, for example in establishing the 

presence/absence of particular species for impact assessments (Barré et al., 2019). Despite 
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improvements in classifier accuracy in recent years with the expansion of reference call 

libraries, the pairwise disagreement between widely used classifiers on the same recordings 

shown here highlights that there remains the potential for misidentification. With the 

increasingly wider use of open-source acoustic recorders such as AudioMoth, consideration 

also needs to be given to the relative quality of recordings obtained by different devices. 

The call libraries used to train classifiers typically contain example calls of known species, 

and there may be a tendency to select high quality calls for inclusion in the library (Lemen et 

al., 2015). These may not relate well to recordings from complex habitats or lower quality 

microphones, resulting in misidentification. However, the BTO Acoustic Pipeline was seen 

here to classify more recordings over the confidence threshold than Kaleidoscope Pro on 

AudioMoth recordings, perhaps indicating how training data that relate well to the 

recordings being classified can yield more reliable results. Moreover, with the capacity to 

apply PAM techniques to a range of taxa, including terrestrial mammals, birds, and insects, 

establishing comprehensive reference libraries for these taxonomic groups will be vital, as 

PAM is largely focused on bats in temperate regions (Sugai et al., 2019). 

 

As the technology available to conduct PAM for bats continues to evolve, producing 

increasingly large datasets from extended periods of recording and multiple detector 

networks, ensuring that the analysis of these acoustic data remains reliable is key. As 

discussed in Chapter Four, the requirement to undertake PAM for bats is becoming 

increasingly more extensive. For example, in the UK, the latest edition of the Bat 

Conservation Trust’s Bat Survey Guidelines (Collins, 2023), increased the required level of 

PAM effort considered sufficient to assess the baseline conditions for bats in ecological 

impact assessments.  Automated classification of bat calls has the potential to improve the 
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efficiency of analysis workflows, saving substantial resources. However, standardising these 

workflows remains a major challenge. Complexities include the continually expanding array 

of classifiers that are available, and variation in the quality of the recordings produced by 

different types of acoustic recorders (Brinkløv et al., 2023). Therefore, further work to 

estimate classifier error rates across different detector/classifier combinations would be 

beneficial, particularly for practitioners when deciding which classifiers to use, based on 

their sites, target species, and PAM devices.  

 

5.5 Chapter summary 

1. Kaleidoscope Pro classified fewer recordings above the confidence threshold than 

either BatClassify (in the Anabat Swift dataset) or the BTO Acoustic Pipeline (in the 

AudioMoth dataset. 

2. The effects of habitat and taxonomy on classifier consensus were similar for both 

datasets, with the most disagreement between classifiers predicted to occur in 

riparian habitats, and/or where recordings contain potential Myotis calls. 

3. The species classifications involved in cases of classifier disagreement differed 

between datasets but were most frequently between species belonging to the same 

genus. 
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6.CHAPTER SIX: Conclusions 
 
 
 
 

At home on the family smallholding, Hinton-on-the-Green, Worcs. – an invaluable field site 
for testing equipment and data collection 

 
 

 
 
 
This chapter synthesises the common themes and summarises the scope of the research 
from each of the preceding chapters. The key findings, original contributions to knowledge, 
and implications for applied ecological practice are outlined and discussed, along with 
potential avenues for future research.  
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6.1 Summary of research 

The research contained within this thesis aimed to evaluate the effectiveness of applying 

digital technology to passive ecological surveying and monitoring techniques for bats. The 

chapters have built upon one another conceptually. The introduction (Chapter One) 

considered the requirements and needs for ecological surveying and monitoring, in light of 

the threats currently faced by biodiversity globally, and in the United Kingdom, specifically. 

Traditional and novel survey and monitoring techniques currently used in the region were 

outlined, initially for mammals more generally, and for bats in additional detail. The current 

gaps in knowledge regarding their efficacy were identified, to provide context for the thesis 

aims and objectives. In the first data chapter, Chapter Two, the impact of spatiotemporal 

and abiotic factors on PAM data was investigated. The strengths and caveats of PAM were 

then investigated further, by comparing the effectiveness of PAM in relation to active 

transect surveys (Chapter Three). These findings were built upon in Chapter Four to further 

explore optimal survey protocols for PAM, using a large dataset analysed using a 

predominantly automated workflow. Finally, the reliability of automated workflows to 

analyse the large datasets produced by PAM, was investigated further (Chapter Five).  

 

Chapters Two and Three primarily used secondary data, collected at 14 sites across southern 

England between 2015 and 2017. Chapter Two used 3,242 hours of Passive Acoustic 

Monitoring (PAM) data while Chapter Three used 2,349 hours of PAM data; in both cases 

these were supplemented by data from active walked transect surveys. Chapters Four and 

Five used primary PAM data, collected from four sites across south Worcestershire and 

north Gloucestershire over 112 nights between June and October 2022 (Figure 1.12).  
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6.2 Synopsis of research findings 

Continual advances in digital technology, and the development of devices to passively 

monitor wildlife, have rapidly expanded the range of techniques that can be used in 

ecological surveying and monitoring (Besson et al., 2022). For bats, these include an 

expanding selection of open-source and commercial PAM devices, which as their capabilities 

improve and costs reduce, are (1) accessible to a wider range of practitioners (Browning et 

al., 2017), (2) able to be used in greater numbers if required to maximise efficacy (Hill et al., 

2017), and (3) capable of being applied to an increasing range of taxa to record wider 

ecological soundscapes (Middleton et al., 2023). Consequently, understanding the strengths 

and caveats of novel PAM equipment and field protocols, and how they compare to more 

traditional and established means of surveying and monitoring, are priority research areas, 

particularly for cryptic, crepuscular, or nocturnal taxa such as bats.   

 

The overarching aims of the research contained in this thesis were to empirically test, 

critique and evaluate: (1) the relative benefits and caveats of methods used in the field for 

collecting optimal monitoring data; (2) how different survey methods can contribute to 

furthering knowledge of species ecology and behaviour; and (3) how survey methods can be 

effectively applied in ecological research and conservation practice. In the following 

sections, for each chapter, the background is outlined and the main findings presented 

diagrammatically to illustrate the associations between findings within each chapter and 

how these link to the next chapter where appropriate. The methodological considerations 

for each chapter are summarised, the key results are evaluated in relation to the research 

aims and, original contributions to knowledge are highlighted. 
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6.2.1 Chapter Two 

Chapter Two tested the effects of spatiotemporal and abiotic factors on the bat activity 

recorded by passive, fixed-point detectors. This chapter aimed to investigate knowledge 

gaps pertaining to factors which potentially influence local foraging and commuting activity. 

Temporal activity patterns for overall bat activity, and that of individual species and genera 

were examined, along with the effect of moonlight (Adams et al., 1994; Negraeff and 

Brigham, 1995), and the influence of other weather-related abiotic factors (Erickson and 

West, 2002). The key findings from this chapter are summarised in Figure 6.1. 
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Figure 6.6.1: A summary of the main results from Chapter Two 
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This chapter drew primarily on secondary data to examine how abiotic factors can influence 

the data collected. The findings from this chapter demonstrated a number of potential 

limitations of passive bat surveying, demonstrating how the spatiotemporal distribution of 

bat activity, and therefore detectability, can be influenced by light (in this case moonlight), 

rainfall, and windspeed. On the other hand, the temporal variation in activity, both overall 

and for individual genera, highlighted the benefit of being able to record activity on an 

automated basis for full, and consecutive nights. The original contributions from this 

chapter are outlined in Box 6.1. 

Box 6.1: Original contributions to knowledge - Chapter Two 
 
The activity levels of British bats are negatively impacted by moonlight when 
unobscured by cloud cover 
 
 
The publication arising from this chapter (Perks and Goodenough, 2020) has received 

19 citations as of August 2024. 

 

The phenomenon of “lunar phobia” in bats was largely considered to affect only 

frugivorous species in tropical regions (Saldana-Vazquez and Munguia-Rosas, 2013), 

however, it had additionally been observed in temperate bats in North America 

(Adams et al., 1994). Despite previous work on mainland Europe finding no evidence 

of aversion to moonlight by bats (Negraeff and Brigham, 1995; Hecker and Brigham, 

1999), moonlit nights were seen here, in the first study undertaken in the UK, to be 

associated with lower levels of bat activity. The extent of cloud cover was also seen to 

be a contributing factor, with activity levels being lowest when the moon was 

unobscured by cloud. 

 

 

ç 
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6.2.1.1 Methodological considerations 

Weather data sourced retrospectively from records: the weather data used in this study 

were sourced as hourly records from the nearest available weather station to each site, 

rather than being collected directly from each field site in real time. 

 

Call analysis conducted manually from zero crossing data: manual auditing and 

classification of bat calls remains a subjective process. At the time of publication, recording 

in zero crossing format was widely undertaken in practice, and remains a popular option, 

although higher quality full spectrum recordings arguably facilitate more robust analysis. 

 
 
6.2.2 Chapter Three 

Chapter Three built upon the findings of Chapter Two relating to the non-uniform 

occurrence of bats in time and space. The chapter compared the efficacy of two acoustic bat 

survey types: automated fixed-point surveys, which cover large temporal periods but are 

limited spatially, and walked transect surveys, which are more restricted temporally but 

cover a greater spatial extent. Two datasets were examined, one comprising concurrent 

data collected via the two methods within the same two-hour window at the same site, and 

one comprising these same data, and additional fixed-point data from an extended time 

period (akin to the survey frameworks and sample effort in many commercial bat surveys, 

for example at development sites). At the time of publication, previous published work 

comparing acoustic bat survey methods had focused on comparing automated fixed-point 

detection with driven transects in North America (Tonos et al., 2014; Braun de Torrez et al., 

2017a). The key findings from this chapter are summarised in Figure 6.2. 
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Figure 6.6.2: A summary of the main results from Chapter Three 

 

 
 
 
 
Chapter Three drew primarily on secondary data, to examine the spatiotemporal strengths 

and limitations of the two most extensively used acoustic bat survey methods undertaken in 

the UK and in other regions globally. The findings of the method comparison in this chapter 
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highlighted the strengths of automated fixed-point surveys, finding that some species 

(lesser horseshoe, Daubenton’s bat) would not have been recorded if only transect surveys 

were used. However, each of the methods tested had different strengths and caveats, with 

the results of the walked transect surveys demonstrating how much activity is missed per 

hour by only recording from a fixed location. This was seen to be particularly important for 

brown long-eared bats, which echolocate sparingly with low energy calls, and were seen to 

be recorded significantly more frequently in the transect surveys. Taken together, these 

findings reinforce the importance of using a combination of acoustic survey methods, to 

determine reliable baseline assessments for bats. The original contributions from this 

chapter are outlined in Box 6.2. 

 

 

Box 6.2: Original contributions to knowledge - Chapter Three 
 
Walked transect and automated fixed-point surveys should be used together to 
establish baseline ecological conditions for bats. 
 
At the time of publication, previous work comparing active and passive methods for 

conducting bat surveys was confined to North America and the comparison of driven 

transects over large areas, and passive surveys (Tonos et al., 2014; Braun de Torrez et 

al., 2017a). This chapter demonstrated that, for a European bat guild, a combination 

of active and passive surveys is optimal: although passive surveys record more species 

overall, active walked transect surveys record more species per hour, including some 

(e.g. brown long-eared) which were infrequently detected in the passive surveys. The 

publication arising from this chapter was cited in the latest edition of the Bat 

Conservation Trust’s Good Practice Guidelines (Collins, 2023) in support of continuing 

a requirement for active surveys in assessing baseline conditions for bats as part of 

ecological impact assessments. 
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6.2.2.1 Methodological considerations 

Length of walked transects not standardised: The transects walked at each site varied in 

length. They were always walked by two surveyors, but this could be each walking a 

separate transect within a larger site, or both walking the same transect in opposite 

directions.  This is typical of industry standard methodology (transects are not 

standardised), and these data were collected in this context. However, precision could have 

been improved by ensuring transects were as consistent as possible across the different 

sites. 

 

Call analysis conducted manually from zero crossing data: see section 6.2.1.1 above. 

 

6.2.3 Chapter Four 

Chapter Four extended the work on the efficacy of PAM techniques for bats, undertaken in 

Chapters Two and Three, by examining a range of PAM protocols in four distinct habitats. 

With the expanding range of PAM technology currently available, three types of devices 

were empirically compared: commercial full spectrum detectors (Anabat Swift), commercial 

zero crossing detectors (Anabat Express), and open-source acoustic loggers (AudioMoth). 

The development of open-source acoustic loggers, such as AudioMoth (Hill et al., 2017), in 

recent years, which are available to purchase at a fraction of the cost of commercial 

equipment, has created opportunities for a wider range of users to undertake PAM, along 

with making protocols which utilise multiple devices, more financially viable. However, 

knowledge gaps around usability, configuration, and recording quality compared to 

commercial equipment remain (Browning et al, 2017; Gibb et al., 2019). The key findings 

from this chapter are summarised in Figure 6.3. 
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Figure 6.6.3: A summary of the main results from Chapter Four 
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Chapter Four built on the preceding two chapters via the collection of new primary data, to 

look specifically at passive bat monitoring protocols in practice. The findings from this 

chapter demonstrated how equipment choice and protocol design can impact the data 

collected by PAM. Using commercial detectors with automatic bat triggers, particularly in 

full spectrum, was seen to have a number of benefits. They recorded more activity and 

accumulated species inventories efficiently, yet their principal caveat lies in their purchase 

price. However, the intriguing findings from with the AudioMoth recording periods, suggest 

that using an open-source full spectrum device, could perform as well, if not better than a 

commercial zero crossing detector, if they were configured to record continually or to 

trigger reliably. Similarly, where the aim of PAM is to establish species presence, using 

multiple AudioMoths across the area of interest, was seen here to be effective. Arguably, 

the most important drawback to all the protocols evaluated was the large amounts of data 

produced. Manually analysing such datasets can be impractical, particularly when PAM has 

been undertaken for extended time periods and often with multiple devices. In these 

instances, analysis is commonly conducted at least partially, with the use of a classifier 

(Chapter Five). The original contributions from this chapter are outlined in Box 6.3. 
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6.2.3.1 Methodological considerations 

Analysis of recordings was conducted using a workflow that incorporated an automated 

bat classifier: PAM using multiple detectors over extensive time periods, inherently 

produces large datasets. Here, a threshold of self-reported classifier confidence was set at 

Box 6.3: Original contributions to knowledge - Chapter Four 
 
AudioMoth acoustic recorders are capable of performing similarly or better than 
commercial zero crossing bat detectors for species that call at lower frequencies. 
 
It has been speculated that the lower quality micro-electromechanical systems 

(MEMS) microphones used in AudioMoth devices (Gibb et al., 2019) may result in 

fewer bat detections compared to commercial equipment. To the author’s knowledge, 

this was the first comparison of AudioMoth with both full spectrum and zero crossing 

Anabat detectors. When recording at the same time, few differences were found in 

the recorded activity between the AudioMoth and zero crossing detector. Moreover, 

the AudioMoth recorded significantly more bat passes per hour for all bats, and for 

common pipistrelle, soprano pipistrelle and Nyctalus/Eptesicus in riparian habitat. 

 

Using multiple AudioMoth devices can serve as a viable alternative for assembling 

species inventories in woodland, wood pasture and arable habitats 

 

The substantially lower purchase cost of AudioMoths over commercial equipment 

makes the use of multiple devices across a site a viable option for many practitioners 

(Hill et al., 2017). This research found that in doing so, even without continuous or 

triggered recording, multiple (3) AudioMoths were able to record the same species 

inventory as commercial equipment in three of the four habitats tested (the exception 

being riparian). 

 



Chapter 6: Conclusions 

 204 

50% to minimise false positives. Classifications of notable or less abundant species were 

manually audited, along with a random sample of recordings classified as more 

common/abundant species, to verify classification feasibility. Although classifiers should not 

be solely relied upon, manual auditing datasets of this size is typically impractical, and 

remains a subjective process. 

 

6.2.4 Chapter Five 

Chapter Five investigated the key methodological consideration raised in Chapter Four, 

regarding the reliability of PAM analysis workflows which include automated classification of 

bat calls. Gaps in knowledge concerning error rates of classifiers have previously resulted in 

calls for caution in their use (Russo and Voigt, 2016; Rydell et al., 2017). Despite expansions 

in call libraries and subsequent improvements in classifier accuracy, uncertainty remains, 

especially with the recent necessity to apply them to lower quality recordings from open-

source acoustic loggers, such as AudioMoth (Gibb et al., 2019; Brinkløv et al., 2023).  In this 

chapter, the two full spectrum datasets from Chapter Four, one recorded by Anabat Swifts, 

and the other by AudioMoths were used to test pairwise classifier agreement. All data had 

been classified by Kaleidoscope Pro for analysis in the previous chapter. Additionally, the 

Anabat Swift data were classified by BatClassify, the classifier included in the Anabat Insight 

analysis software. The AudioMoth data were additionally classified by the BTO Acoustic 

Pipeline, a contemporary classifier, with a proportion of its training data recorded on 

AudioMoth devices. The key findings from this chapter are summarised in Figure 6.4. 
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Chapter Five, built on the preceding chapter to consider the analysis of the large acoustic 

datasets generated in the field. This chapter found pairwise disagreement between 

commonly used classifiers, regardless of the device on which the recordings were produced. 

Therefore, although their use can potentially streamline analysis workflows, they still cannot 

be relied on exclusively. The original contributions from this chapter are outlined in Box 6.4. 

Figure 6.6.4: A summary of the main results from Chapter Five 
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6.2.4.1 Methodological considerations 

The true species identities of the recordings were not known: the recordings used in this 

chapter were collected passively in field conditions, therefore, the species of bat calling in 

each recording could not be known with complete certainty. The pairwise analysis between 

classifiers was useful in identifying instances where the classifiers were most likely to be 

inaccurate, however it remains possible that one classifier could have always performed 

perfectly, with the disagreement being caused by the other.  

 
 
6.4 Implications and recommendations for ecological research, policy and practice 

It has been widely acknowledged that solutions to the current biodiversity crisis need to be 

based on robust and accessible evidence (Pullin et al., 2004; Field et al., 2005; Mihoub et al., 

2017). The collection of field data to support Evidence-based Conservation (EBC) can be 

difficult for some taxa (e.g. nocturnal bats), as a result of their life history and behavioural 

Box 6.4: Original contributions to knowledge - Chapter Five 
 
Pairwise disagreement occurs between contemporary bat classifiers, but is largely 
restricted to classifications belonging to the same genus. 
 
 
Consistent with previous work (Lemen et al., 2015), pairwise disagreement was 

observed between commonly used classifiers, on recordings of European bats, 

produced by both commercial and open-source equipment. However, in both cases, 

the pairs of classifications most frequently involved in instances of disagreement were 

from within the same genus and had similar call types. 
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traits. As introduced in Chapter One, technological approaches to ecological surveying and 

monitoring have the potential to scale up mammal recording at local and national scales. 

The implications and recommendations for policy, practice and future research from the key 

findings of the research presented in this thesis, are set out in Table 6.1. 
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Table 6.1: Implications and recommendations for policy, practice, and future research. 

Thematic 
area 

Finding Implications for policy and practice Recommendations for policy and 
practice 

Future research 

Bat behaviour 
and 
detectability 

Bats are not spatially or 
temporally uniform in 
occurrence owing to 
niche partitioning 
between species, and 
avoidance of certain 
abiotic conditions, or 
spatial shifts in activity 
in response. 

Reiterated the importance of 
conducting whole night surveys to 
capture temporal variations in activity. 
Moreover, these findings 
demonstrated the importance of 
additionally conducting surveys over 
multiple nights, such that any nights 
with sub-optimal abiotic conditions, 
and therefore reduced activity, can be 
accounted for. 
 

Passive acoustic surveys should be 
undertaken across full nights where 
possible to ensure peak activity times 
for all species are covered (Perks and 
Goodenough, 2020; Chapter Two). 

Further investigate the effects of 
moonlight on temperate bat 
activity by concurrently recording 
light levels and bat activity in the 
field to build upon Chapter Two. 
The potential for spatial shifts in 
activity could also be explored by 
comparing recordings in sheltered 
and exposed areas. 
 

Acoustic bat 
survey 
techniques 

Automated surveys are 
an efficient means of 
recording species 
inventories but may 
miss spatial differences 
in activity. 

With the increasing capabilities of 
passive acoustic technology, some 
research has suggested that more 
labour-intensive, active transect 
surveys are now inferior (Teets et al., 
2019). However, spatial trends in 
activity may be missed by only 
recording activity at a fixed location 
(Perks and Goodenough, 2021; 
Chapter Three). 
 

A combination of passive and active 
acoustic surveys should continue to 
be used when establishing baseline 
conditions for bats in ecological 
impact assessment contexts, as 
detailed in the latest edition of the 
Bat Conservation Trust’s Good 
Practice Guidelines (Collins, 2023).  

See below recommendations for 
investigation into using 
AudioMoths as multi-detector 
networks to increase the spatial 
coverage of passive surveys. 

Passive 
Acoustic 
Monitoring 
(PAM) of bats 

Multiple AudioMoths 
can accumulate the 
same number of species 
as commercial 
equipment in certain 
habitats, but often 
require longer periods 
of deployment to do so. 

Although a viable alternative for 
certain applications, AudioMoth 
recording quality is inherently lower, 
meaning their use must be carefully 
considered. Commercial equipment is 
currently likely to be the most robust 
option where feasible, particularly in 
complex/species rich habitats. 

Commercial bat detectors should be 
used where possible for passive 
acoustic bat surveys in high quality 
habitat, or where less abundant 
species are the target of the survey 
(Chapter Four). This supports the 
findings of Kunberger and Long 
(2023) and Starbuck et al. (2024). 

Further consider the use of the 
latest configurable frequency 
triggers for AudioMoth, and build 
on Chapter Four to evaluate how 
using the devices in this way 
compares to commercial 
equipment.  
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Passive 
Acoustic 
Monitoring 
(PAM) of bats 

A full spectrum 
AudioMoth would be 
capable of recording as 
much or more activity 
than a zero-crossing 
detector, if able to 
record continually or 
trigger automatically.  

Increased capacity for more 
practitioners to undertake PAM, in the 
absence of prohibitive equipment 
costs. Additionally, lower costs 
increase the feasibility of deploying 
multiple devices within an area of 
interest, increasing spatial coverage 
(see above), and perhaps mitigating 
some of the drawbacks compared to 
active transect surveys. 

AudioMoths should be considered for 
applications where the cost of 
commercial equipment is prohibitive 
(Chapter Four). Current examples 
include the national British Bat Survey 
(BBatS) which was launched as a beta 
version in 2023. AudioMoth devices 
are loaned to volunteers to collect 
data in pursuit of monitoring long-
term population trends (Bat 
Conservation Trust, 2024). 
 

Passive 
Acoustic 
Monitoring 
(PAM) of bats 

The HFAM configuration 
missed activity or 
produced recordings 
that were not as 
confidently identified by 
the classifier. 

Configuring AudioMoth with the 
highest possible sampling rate of 384 
kHz (Hill et al., 2019) is not necessarily 
best practice, depending on the aims 
of the survey and the microSD cards 
(brand and speed) that are available. 

AudioMoths should be configured 
with a 250 kHz sampling rate when 
targeting bats, unless higher 
frequency bats (e.g. lesser horseshoe) 
are the specific target of the survey as 
this resulted in better data 
(potentially due to reducing self-noise 
generated by SD card writes) (Chapter 
Four). 
 

Further test the varying levels of 
self-noise generated by different 
microSD cards in AudioMoths 
using differing sampling rates, 
and how this impacts 
classification to extend Chapters 
Four and Five.  
 

Automated 
classification 
of bat calls 

Pairwise disagreement 
was found between the 
classifiers regardless of 
detector type, with both 
pairings most likely to 
disagree on potential 
Myotis calls. 

Pairwise disagreement highlights how 
no classifier is perfect. The findings 
from Chapter Five, support previous 
recommendations that analysis should 
still not yet be fully automated. 

Even contemporary classifiers should 
not be used as a stand-alone means 
of conducting bat call analysis 
(Chapter Five). Consistent with the 
earlier recommendations of Russo 
and Voigt (2016) and Rydell et al. 
(2017), an element of manual 
auditing of recordings by suitably 
experienced technicians, should still 
be integrated into analysis workflows. 
 
 

Additional work to further 
understanding of classifier error 
by testing classifiers on verified 
recordings, and whether different 
classifiers are better suited to 
analysing recordings from 
particular devices, species, or 
habitats to extend Chapter Five. 
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Taken together, the research presented in this thesis contributes to the development of 

best practice, through refining and evaluating the comparative effectiveness of PAM 

approaches to bat surveying and subsequent data analysis. As discussed, these approaches 

have a number of key advantages, in particular through enabling robust assessment, and 

the potential to increase capacity for bat monitoring nationally, which is of particular 

importance in the UK (as outlined in Chapter One).  

 

Techniques that can be undertaken passively, without the need for specialist training or 

handling licenses, and minimal surveyor input, vastly improves their usability, and 

subsequently the scalability of surveying and monitoring initiatives to which they are 

applied. Scalability is of particular importance to the national scale monitoring schemes, 

which provide data to assess and monitor the status of species populations. Such schemes 

have faced criticism from within the scientific community, primarily because they are 

considered to lack specific scientific research questions. However, monitoring schemes can 

be classified into three distinct categories: passive, question-driven, and mandated 

(Lindenmayer and Likens, 2010), with the majority of national schemes falling into the latter 

category, acting as surveillance, rather than providing sufficient data to address specific 

questions at site level. In the UK, national mandated monitoring data are essential in 

providing evidence of progress towards the current target of halting biodiversity decline by 

2030, and it is therefore imperative to address instances of data deficiency. Ultimately, 

reliable surveying and monitoring data are vital, both at local scales for legislation 

compliance and informing conservation action, and at national scale for surveillance of 

species populations and to monitor progress towards national and international biodiversity 

targets.  
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