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ABSTRACT
Phishing attacks pose a significant security threat, particularly through deceptive emails designed to trick users into clicking
on malicious links, with phishing URLs often serving as the primary indicator of such attacks. This paper presents a machine
learning approach for detecting phishing email attacks by analyzing the URLs embedded within these emails, using Random
Forest, eXtreme Gradient Boosting, and Light Gradient Boosting Machine models. Secondary datasets are used to evaluate model
behavior and examine the applicability of model features across different samples. The models are assessed using metrics such as
accuracy, precision, and recall to demonstrate their effectiveness in distinguishing between benign and malicious email URLs. The
SHapley Additive exPlanations (SHAP) framework is employed to interpret the models’ decision-making processes and reinforce
the relevance and reliability of key features. Our results show that across four test sets, the three models achieve an average
classification error ≈4.03% and an average accuracy > 94%, indicating strong generalization capability across diverse datasets
using the same set of features.

1 | Introduction

With the advent of the internet, email has become one of the most
widely used digital communication tools in both work and daily
life. However, the rise of phishing email attacks poses significant
threats to network security, as attackers use social engineering
techniques to deceive victims, leading to financial losses and pri-
vacy breaches for individuals and organizations alike. Phishers
exploit identity theft to trick unsuspecting users into revealing
sensitive information, such as account numbers and passwords
[1]. Basit et al. [2] reported that phishing attacks alone cost orga-
nizations worldwide up to $9 billion. In a Kaspersky Lab’s report,
phishing email threats accounted for 55.97% of total traffic in
2019 [3]. In addition, phishing URL is the primary measure of
reported phishing across the globe and about 1 million cases were
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reported in the first quarter of 2024 according to nAnti-Phishing
Working Group (APWG) [4].

In recent years, Artificial Intelligence (AI), particularly machine
learning and deep learning applications, has gained significant
attention in the field of cybersecurity and is expected to play
a key role in enhancing it. Machine learning can automati-
cally perform specific intrusion detection tasks [5]. With the
rise of phishing attacks and their evolving variants, traditional
signature-based phishing defense techniques struggle to handle
the diversity of these attacks [6–9]. AI’s strength lies in its ability
to incorporate multiscale complexity analysis, enhancing adap-
tive learning, reducing false positives, strengthening real-time
detection, and uncovering hidden patterns in cyber threats, mak-
ing it more effective against evolving and stealthy attacks [10, 11].
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AI technology can significantly enhance the speed and accuracy
of monitoring in email security, particularly in identifying and
preventing spam and phishing emails, highlighting its potential
in countering complex cyber threats [2].

Phishing detection using text-based models (e.g., BERT and deep
learning) primarily focuses on analyzing email content rather
than structured URL features, making these approaches com-
putationally expensive, less interpretable, and impractical for
real-time detection [12–14]. Due to the high computational
resources required for inference, these models are less suited
for large-scale, low-latency applications, especially when analyz-
ing structured data like URLs, which are more efficiently han-
dled by traditional machine learning models. Detecting phishing
using structured URL-based features such as length, special char-
acter distribution, and domain attributes, leveraging tree-based
models (e.g., RF and XGBoost), are efficient, interpretable, and
well-suited for tabular data [15, 16]. In addition, studies have
shown that high detection accuracy in AI does not always trans-
late to good model generalization [17–19]. Most of the existing
works use only a primary dataset for training and testing, without
employing any secondary dataset for further model evaluation,
and provide limited feature interpretation [20–25].

Hence, our approach evaluates machine learning models for
phishing email detection with a focus on strong generalization
and high accuracy on previously unseen URL datasets. Eval-
uation across diverse datasets ensures robust performance in
varying contexts, mitigates overfitting to any single dataset, and
demonstrates applicability suitable for real-world deployment.
Accordingly, we present a phishing email detection system aug-
mented with explainable AI techniques to interpret model deci-
sions across heterogeneous datasets. The main contributions of
this paper are:

• Development and experimental evaluation of Random For-
est (RF), eXtreme Gradient Boosting (XGBoost), and Light
Gradient Boosting Machine (LightGBM) models for phish-
ing attack detection from email URLs

• Performance evaluation of the models shows that attacks
can be detected with precision, recall, and accuracy (P/R/A)
≈96%/97%/97% for RF, 93%/96%/94% for XGBoost, and
95%/98%/96% for LightGBM, demonstrating the effective-
ness of our models.

• Models’ performance benchmarking on the secondary test
sets shows that RF generalizes best overall, with the lowest
average misclassification rate (≈2.90%) across all test sets,
followed by XGBoost (≈4.57%) and LightGBM (≈5.42%). The
average detection accuracy of all three models on all datasets
is≈96%, suggesting that the models effectively learn from the
features and exhibit strong generalization capability.

• Explanation of model behavior using SHAP to interpret
the impact of top features. Results show that features such
as google_index and page_rank are consistently influential
across models, reinforcing their reliability and the models’
suitability for real-world deployment.

• Design and deployment of models on the web using the Flask
framework, which provides an easy-to-use user interface for
phishing email detection.

1.1 | Research Questions

Our research focuses on evaluating the balance between model
accuracy and generalization, particularly when applied to new,
unseen datasets. The following research questions guide our
investigation:

• RQ1. Can we obtain significant performance scores for
phishing URL detection across multiple datasets?

• RQ2. What is the impact of the key features used by the
models?

The remainder of this paper is organized as follows: Section 2 dis-
cusses related work on email phishing and compares our work to
recent research; Section 3 describes the design and implemen-
tation strategies employed in this paper; Section 4 presents the
evaluation results and their discussion; and Section 5 provides a
summary of this paper.

2 | Related Work

There are many studies that show machine learning can be used
for email phishing detection. This section presents a summary
of those relevant to our research, highlighting how they differ
from the approach taken in this paper. Sundararaj and Kul [20]
reported that the use of Support Vector Machine (SVM), Logistic
Regression (LR), and Decision Tree (DT) models in their study,
which were trained and tested on a dataset of 525 754 samples.
The results show that these models achieved precision and
accuracy rates > 80%, with a recall rate > 60%. Our paper is
distinct in that it focuses on URL data, rather than text data, by
optimizing URL characteristics to address phishing detection.
Fette et al. [26] paper is based on the comparison of training
and testing of multiple machine learning models on a highly
unbalanced 7810 sample dataset. Their results showed that the
random forest model had the highest accuracy, reaching 99.5%.
However, the high accuracy achieved by Fette et al. [26] is on
the same dataset, but the accuracy obtained in our paper is
from validation performed over multiple datasets to demonstrate
our models consistency. Fang et al. [27] used an email dataset
containing 8780 samples to evaluate the performance of the
thymocyte-expressed molecule involved in selection (THEMIS),
Long Short-Term Memory (LSTM), and convolutional neural
networks (CNN) models for email classification tasks. THEMIS
achieved 99.664% precision, 99% recall, and 99.848% accuracy,
LSTM achieved 93.258% precision, 83% recall, and 97.38%
accuracy, and CNN had 85.473% precision, 84.333% recall, and
96.583% accuracy. Our paper is different in that we experimented
with a larger number of datasets, and our total training and
evaluation dataset contains 46 351 samples. Gualberto et al. [28]
utilized email text of 6429 samples and using feature sets of vari-
ous sizes while applying them to support vector classifier (SVC),
Naive Bayes (NB), LR, k-Nearest Neighbors (KNN), DT, RF,
XGBoost, and Multilayer Perceptron (MLP) models. Four feature
selection methods were used: Principal Component Analysis
(PCA), Latent Semantic Analysis (LSA), mutual information,
and Chi-square test. RF achieved 100% precision, accuracy, and
recall with the Chi-square test on 100 features, while XGBoost
achieved 100% precision, accuracy, and recall across LSA-feature
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set with 25 features. Unlike this paper, our experiment focuses
on the features of URLs within emails. Akinyelu et al. [29]
developed a phishing detection model based on 2000 text email
samples. Using RF, the model achieved 99.75% accuracy, 99.47%
precision, and 97.50% recall. However, the results obtained is
based on a small training and testing dataset. In our paper, train-
ing is conducted on 11 430 samples and testing is performed on a
total of 37 207 samples from different sources. Abu-Nimeh et al.
[30] compared the performance of six models: LR, Classification
And Regression Tree (CART), Bayesian Additive Regression
Tree (BART), SVM, RF, and Neural Networks (NN) in predicting
phishing emails. Using a dataset of 2889 samples, the study
evaluated these models through 10 cross-validations, with LR
achieved 95.11% precision and 82.96% recall. This paper is also
distinct because the experiment is performed on a total dataset
of 2889 samples, with the evaluation limited to a subset of this
sample. Zhan et al. [21] used Naive Bayes model to train and
test machine learning models on 1000 data samples. Feature
extraction is performed using Semantic Latent Word Embed-
dings (SLWE) and maximum likelihood estimation (MLE). The
results showed that the recall for Naive Bayes combined with
SLWE was 98.9%, compared to 98.7% for Naive Bayes based on
MLE. This paper also has a more limited evaluation compared
to our work. While text-based analysis is useful for detecting
social engineering attacks, it requires significant computational
resources due to the large size of annotated email corpora and
the complexity of text processing models, making them com-
putationally expensive [31], URL-based detection is often more
effective for phishing detection in large-scale automated defenses
and real-time threat prevention [23] (Table 1). Additionally, URL
detection is language-independent, enabling it to effectively
identify phishing attempts across different languages and attack
vectors, whereas text-based approaches can struggle with mul-
tilingual detection [40]. However, this does not guarantee that
the URL-based approach will always outperform the text-based

approach in terms of detection accuracy. Table 2 presents some
detection performance results of text-based approaches.

On the use of explainable AI (XAI) in phishing detection, Shafin
[47] discussed the application of XAI methods SHapley Addi-
tive exPlanations (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME) in phishing detection, focusing on generat-
ing feature explanations for the RF classifier to identify key pre-
dictors. SHAP offers global feature importance by revealing the
overall impact of each feature on model predictions, while LIME
provides additional local explanations for individual instances.
Together, SHAP and LIME enhance the robustness of feature
selection and improve model interpretability. Hernandes et al.
[48] also reiterated LIME’s ability to generate local explanations
by creating perturbed samples near the input data, thus reveal-
ing the basis of predictions in black-box models (e.g., Random
Forest and Support Vector Machine) for specific cases. LIME
uses color distinctions to illustrate the varying impacts of fea-
tures on legitimate URLs versus phishing URLs. Additionally,
explainable boosting machine (EBM), a transparent white-box
model, employs an additive framework to generate predictions,
offering both global feature importance and local explanations
for individual cases. This high level of transparency makes EBM
suitable for phishing detection applications that prioritize inter-
pretability, though sometimes at the expense of performance.
Puri et al. [49] emphasized the use of the Tree SHAP method
to interpret feature contributions within the CatBoost model for
phishing detection, emphasizing the influence of critical features
(such as URL_of_Anchor and SSLfinal_State) on prediction out-
comes. This approach provides both global and local explana-
tions, enhancing comprehension of the model’s decision-making
process. Greco et al. [50] also explored the application of XAI
with SHAP analysis to reveal the nonlinear effects of behavioral
habits (e.g., checkhttps and clickwocheck) on phishing suscep-
tibility. By combining deep neural networks with SHAP values,

TABLE 1 | Comparison of our work to other URL classifiers.

Author Model Sample size Precision Recall Accuracy Benchmark

This paper RF, LightGBM, and RF 11 430 94.7% 97.0% 95.6% Yes
Coyotes et al. [32] CNN, RNN, and MLP 18 778 NA NA 94.15% No
Hiransha et al. [33] CNN 19 778 NA NA 95.5% No
Jain et al. [34] RF 4056 98% 99% 99% No
Bagui et al. [35] LSTM and CNN 18 366 NA NA 96.07% No
Shalini et al. [36] RF and ANN 5574 NA NA 99.25% No
Unnithan et al. [37] DT, NB, AdaBoost, LR, K-NN,

SVM, and RF
14 866 88.95% 100% 88.08% No

Bhatti et al. [38] LSTM 42 533 NA NA 97%. No
Ra et al. [39] CNN, RNN, LSTM, and MLP 18 778 94.67% 89.33% 86.33% No
Dewis et al. [24] LSTM and MLP 20 324 96.5% NA 96.5% No
Chen and Chen [25] XGBoost, RF, SVM, LR, KNN,

and ELM
28 321 NA NA 97.6% No

Sahingoz et al. [23] DT, Adaboost, RF, and NB 73 575 94.55% 91.5% 96.02% No
Rao and Pais [22] J48, RF, SMO, LR, MLP, BN,

SVM, and AM1
3526 99.40% NA 99.24% No
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TABLE 2 | Comparison of text-based classifiers.

Author Model Sample size Precision Recall Accuracy Benchmark

Fette et al. [26] SVM 7810 NA NA 99% No
Sundararaj and Kul [20] SVM, RF, and LG 525 754 93% 70% 90% No
Gualber et al. [28] SVM, NB, LR, KNN, DT, RF,

XGBoost, and MLP
6429 99% 99% 99% No

Akinyelu and Adewumi [29] RF 2000 99.47% 97.5% NA No
Abu-Nimeh et al. [30] RF 2889 93% 88.88% NA% No
Somesha and Pais [41] RF, DT, XGBoost, and LR 60 956 NA NA 99% No
Atawneh and Aljehani [42] CNN and LSTM 7810 98% 98% 98% No
Altwaijry et al. [43] CNN 6428 100% 99.32% 99.68%. No
Hiransha et al. [33] CNN 4583 NA NA 96% No
Fang et al. [27] LSTM and CNN 8780 89% NA 96.5% No
Yasin and Abuhasan [44] RF and J48 10 538 98.5% 98.5% 99% No
Butt et al. [45] SVM, NB, and LSTM 4000 97.7% 99% 98.2% No
Alotaibi et al. [46] CNN 6428 98.80% 99.54% 99.42% No

FIGURE 1 | Experimental workflow.

the study identifies key behavioral features and provides person-
alized anti-phishing recommendations. Partial dependence plots
and waterfall charts further detail individual phishing risks, sup-
porting targeted anti-phishing training and underscoring the sig-
nificance of behavioral factors in phishing vulnerability.

All of these studies used only the primary data set for training and
testing, and did not use any secondary dataset for further evalu-
ation of the model. Additionally, Table 1 shows the comparison
of our paper to similar URL based works. However, in our multi
datasets predictor, we employ the use of the SHAP framework
because it is one of the most popular XAI models, particularly for
its versatility and interpretability in machine learning [51].

3 | Design and Implementation

3.1 | Approach Overview

The complete workflow of our experiment, from the process-
ing of the raw URL dataset to the classification task is shown
in Figure 1. First, the data set is divided into a training set
and a test set, followed by data cleaning, label coding, and fea-
ture scaling pre-processing steps. The model is then trained and
hyperparameter-tuned to optimize model performance. After the
training is complete, the models’ performance is evaluated on the
test dataset to accurately distinguish between phishing and legiti-
mate URLs. Algorithm 1 summarizes the algorithmic steps taken

to complete the detection task and benchmark the models on
heterogeneous datasets, 𝛽1 . . . 𝛽3, and illustrates how we derived
the statistics for interpreting the impact of the features. The
description of how these are accomplished is provided in the fol-
lowing sections.

3.1.1 | Development and Deployment Environment

Development is carried out using the Python programming lan-
guage in the PyCharm IDE, which offers many developer-friendly
features such as code completion, project management, powerful
debugging tools, and extensive support for the Python ecosys-
tem. Also, Anaconda is used for managing the Python environ-
ment. After evaluation, the model with the best performance
is deployed and integrated into an API that runs on end users’
machines. Flask, a lightweight Python web framework, is used
for model deployment, making it easy to encapsulate trained
models into back-end services. Two API endpoints are devel-
oped using Flask: /predict, which processes prediction requests
for a single data point, and /predict-file, which accepts CSV files,
performs batch predictions, and returns prediction results for
datasets, thus accommodating data processing at different scales.
The front-end interface is built with HTML, CSS, and JavaScript,
providing a user-friendly, interactive interface for users to com-
municate with the back-end model’s APIs. Additionally, a desk-
top application is built using Python’s standard GUI library,
Tkinter.
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ALGORITHM 1 | Phishing URL detection and SHAP analysis.

3.2 | Data Collection

This paper uses datasets obtained from Kaggle, a public source
of machine learning datasets that has been used in previous
research. Our training dataset consists of 11 430 URL phishing
samples with 87 features, of which the legitimate and phish-
ing samples are 5715 each. The features in the dataset are
shown in Table 3. Datasets from Tiwari [52], Winson [53],
and Manish [54] are used to benchmark our models’ detection
performance. The benchmark data set provides our approach
with diverse samples to assess its generalization capability.
Table 4 summarizes the benchmark datasets, which have also
been used in other research papers for URL-based phishing
detection [55–57].

During the data preprocessing phase, several challenges were
encountered, particularly in handling missing values in datasets
from different sources and ensuring data consistency and

formatting across these datasets. To address these issues, two
main methods were adopted: the padding method and manual
review.

• Manual review: Manual review is conducted to identify
and address inaccuracies, duplicates, or extraneous informa-
tion in the data. This process further improves data quality,
ensuring that the data used for training models is as accurate
as possible.

• Padding method: For missing URL headers, a simple and
effective approach is taken: automatically adding “http://”
or “https://” before the missing URL. This step ensures con-
sistency across all URL formats and reduces errors during
model processing. Additionally, for missing non-sequential
features, the padding method is used to fill missing values
with 0 or an empty string, ensuring the data’s integrity and
consistency.

Security and Privacy, 2026 5 of 19
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TABLE 3 | Features.

Data type Features

URL url, length_url, length_hostname, ip, nb_dots, nb_hyphens, nb_at, nb_qm, nb_and, nb_or, nb_eq,
nb_underscore, nb_tilde, nb_percent, nb_slash, nb_star, nb_colon, nb_comma, nb_semicolumn, nb_dollar,

nb_space, nb_www, nb_com, nb_dslash, http_in_path, https_token, ratio_digits_url, ratio_digits_host,
punycode, port, tld_in_path, tld_in_subdomain, abnormal_subdomain, nb_subdomains, prefix_suffix,

random_domain, shortening_service, path_extension, nb_redirection, nb_external_redirection,
length_words_raw, char_repeat, shortest_words_raw, shortest_word_host, shortest_word_path,

longest_words_raw, longest_word_host, longest_word_path, avg_words_raw, avg_word_host, avg_word_path,
phish_hints, domain_in_brand, brand_in_subdomain, brand_in_path, suspecious_tld, statistical_report,

nb_hyperlinks, ratio_intHyperlinks, ratio_extHyperlinks, ratio_nullHyperlinks, nb_extCSS,
ratio_intRedirection, ratio_extRedirection, ratio_intErrors, ratio_extErrors, login_form, external_favicon,
links_in_tags, submit_email, ratio_intMedia, ratio_extMedia, sfh, iframe, popup_window, safe_anchor,

onmouseover, right_clic, empty_title, domain_in_title, domain_with_copyright, whois_registered_domain,
domain_registration_length, domain_age, web_traffic, dns_record, google_index, page_rank

TABLE 4 | Benchmark datasets.

Dataset Source
Data
type Phishing Legitimate

Total
sample

Winson [53] Kaggle URL 9715 9716 19 431
Manish [54] Kaggle URL 5741 5740 11 481
Tiwari [52] Kaggle URL 4009 0 4009

3.3 | Evaluation Method

The performance of the developed models are evaluated using
key metrics such as accuracy, recall, F1 score, confusion matrix,
cross-validation, and Area Under the ROC Curve (AUC), which
not only reflect the predictive power of the model but also
provide transparency into the model’s decision-making process.
Equations (1–6) explain each metric. In these equations, a true
positive (TP) is when the model correctly identifies a phishing
email as phishing, representing a successful detection of a mali-
cious email. A true negative (TN) is when the model correctly
identifies a legitimate email as non-phishing, indicating an accu-
rate classification of a safe email. A false positive (FP) is when the
model incorrectly classifies a legitimate email as phishing, result-
ing in a harmless email being flagged as malicious. Finally, a false
negative (FN) is when the model incorrectly identifies a phishing
email as legitimate, meaning a malicious email goes undetected,
which poses a risk to users. Additionally, the SHAP XAI method
is used to explain the predictions of our machine learning models
using the formula in Equation (7).

3.3.1 | Accuracy

This is the percentage of emails correctly identified as either
phishing or legitimate out of the total emails analyzed. It reflects
the model’s ability to accurately differentiate between phishing
and non-phishing emails.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

3.3.2 | Precision

This is the percentage of emails identified as phishing that are
actually phishing. It measures the model’s ability to avoid falsely
labeling legitimate emails as phishing.

Precision = TP
TP + FP

(2)

3.3.3 | Recall

This is also known as the true positive rate (TPR); it is the percent-
age of actual phishing emails that are correctly identified by the
model. It reflects the model’s ability to catch as many phishing
emails as possible without missing them.

Recall = TP
TP + FN

(3)

3.3.4 | F1-Score

This is the harmonic mean of precision and recall. It provides a
balanced measure of the model’s ability to both accurately iden-
tify phishing emails and minimize missed detections, especially
when there is an imbalance between phishing and legitimate
emails.

F1 score = 2 × TP
2 × TP + FP + FN

(4)

3.3.5 | AUC

AUC measures the model’s ability to distinguish between phish-
ing and legitimate emails across various threshold settings (𝑥). A
higher AUC indicates better performance in separating phishing
emails from non-phishing ones, regardless of the decision thresh-
old. AUC is computed by plotting TPR against the false positive
rate (FPR)—the percentage of legitimate emails incorrectly clas-
sified as phishing out of all legitimate emails evaluated.

𝐹𝑃𝑅 = FP
FP + TN

(5)
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AUC = ∫
1

0
𝑇𝑃𝑅(𝑥)𝑑𝐹𝑃𝑅(𝑥) (6)

3.4 | SHAP

The SHAP values help to interpret how different features can
influence the classification. Higher positive SHAP values indicate
features that strongly contribute to classifying an email URL as
phishing, while negative values can indicate features that suggest
the email is legitimate.

𝜙𝑖 = 𝑓 (𝑋) − 𝑓 (𝑋∖{𝑖}) (7)

where 𝜙𝑖 is the SHAP value for feature 𝑖, 𝑓 (𝑋) is the model’s
predicted output when all features are included, 𝑓 (𝑋∖{𝑖}) is the
model’s predicted output when feature 𝑖 is excluded from the fea-
ture set 𝑋.

3.5 | Model Selection and Training

Following the no free lunch machine learning theorem [58],
seven algorithms are initially evaluated: Support Vector
Machines, XGBoost, Naive Bayes (NB), Random Forest (RF),
Logistic Regression (LR), Light Gradient Boosting (LightGBM),

TABLE 5 | Models selection.

Model Accuracy

SVM 0.94
XGBoost 0.95
NB 0.67
RF 0.97
LR 0.94
LightGBM 0.96
CatBoost 0.95

Categorical Boosting (CatBoost), and Gradient Boosting
(GB). However, only three algorithms—RF, XGBoost, and
LightGBM—are selected for the remaining part of the experi-
ments in this paper. These algorithms are chosen because they
demonstrated relatively high accuracy and fit our datasets better.
RF and XGBoost excel due to ensemble learning. RF reduces
overfitting by averaging multiple decision trees, while XGBoost
improves accuracy by sequentially correcting errors using gra-
dient boosting. LightGBM, also a gradient boosting algorithm,
is optimized for speed and memory efficiency, making it partic-
ularly suitable for large-scale, high-dimensional data. All three
algorithms balance accuracy, performance, and scalability, which
makes them highly effective for phishing URL detection. In the
preliminary results shown in Table 5, only RF clearly stands out
among the seven models.

3.5.1 | Model Development

For model training, the pre-processed dataset is divided into
two parts: an 80% training set and a 20% test set. The K-fold
cross-validation method is used to optimize the model parameters
to ensure that the model has good generalization ability across
different data subsets. Model parameters are tuned using grid
search, adjusting and optimizing the parameter settings accord-
ing to the characteristics of different algorithms. We use Grid-
SearchCV from scikit-learn for hyperparameter optimization. The
optimal metrics for our models are shown in Table 6.

The key performance indicators required for evaluating the effi-
ciency and performance of the model training, such as accuracy,
recall, F1 score, and AUC, are recorded during the training pro-
cess. The training performance of our three best models with the
lowest FN is presented in Table 7 (Figure 2). RF has 1.04% FP
and 1.32% FN, XGBoost has 2.29% FP and 2.65% FN, and Light-
GBM has 0.19% FP and 0.23% FN. The confusion matrices (CM)
in Figures 3–5 show the mispredictions made by each model
during training where 1 represents phishing emails and 0 repre-
sents legitimate emails. The ROC curves for RF (AUC ≈ 0.997),
XGBoost (AUC ≈ 0.988), LightGBM (AUC ≈ 0.996), in Figure 2,

TABLE 6 | Hyperparameters from GridSearchCV.

Algorithm Hyperparameters Meanings
Optimal
values

XGBoost n estimators Number of trees 100
Maximum depth Maximum depth of tree 2

Learning rate Shrinkage coefficient of tree 0.1
RF n estimators Number of trees in forest 200

Maximum depth Maximum depth of a tree 9
Minimum split Minimum samples of split for nodes 2
Minimum leaf Minimum sample of nodes for leaf 1

LightGBM n estimators Number of trees 200
Maximum depth Maximum depth of tree 5

Learning rate Shrinkage coefficient of tree 0.1
Colsample_bytree Fraction of features randomly chosen per tree 0.6

Subsample Fraction of training data used per tree 0.6

Security and Privacy, 2026 7 of 19
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TABLE 7 | Models training performance.

Model Precision Recall Accuracy F1-Score AUC

RF 0.979 0.973 0.976 0.976 0.997
XGBoost 0.954 0.947 0.950 0.950 0.988
LightGBM 0.996 0.995 0.995 0.995 0.996

FIGURE 2 | ROC curve.

FIGURE 3 | RF confusion matrix.

reflect each model’s ability to balance TPR and FPR in detecting
phishing URLs. The high AUC values indicate that the models
are effective in distinguishing between legitimate and phishing
URLs, with very few false positives. Additionally, the ROC curves
remain far from the no-skill classifier (diagonal) line, demonstrat-
ing that both models make significantly better-than-random pre-
dictions. RF slightly outperforms XGBoost, suggesting it provides
a better trade-off between correctly identifying phishing URLs
and minimizing false alarms. This is very important because
accuracy and efficiency are crucial for maintaining system per-
formance while preventing phishing attacks.

4 | Discussion

This section is discussed based on our two research questions.

FIGURE 4 | XGBoost confusion matrix.

FIGURE 5 | LightGBM confusion matrix.

4.1 | RQ1: Can We Obtain Significant
Performance Scores for Phishing URL Detection
Across Multiple Datasets?

In this phase, the same preprocessing steps applied to the train-
ing dataset are also applied to the test dataset. The trained models
are then used to make predictions, while recording the evalua-
tion metrics. The evaluation datasets are denoted as B1 . . . B4,
where B1 represents the 20% test set (samples from the original
data), B2 and B3 represent the full datasets from Winson [53] and
Manish [54], and B4 is a subset of Tiwari [52]. The B1 . . . B3 eval-
uation datasets contain both legitimate and phishing samples,
whereas the B4 dataset consists of only one class (phishing). The
B4 dataset lacks class diversity and is not suitable for full compar-
ative evaluation across classification metrics. However, we use a
subset of 4009 samples to assess our models’ behavior on phish-
ing instances in isolation and to provide insights into the false
negative rate. Additionally, the subset is selected to ensure a man-
ageable and balanced evaluation scope, consistent with the size of
the other test sets. Using the full dataset can disproportionately
emphasized one class, potentially skewing the interpretation of
performance metrics.
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TABLE 8 | Performance of models on URL test dataset B1.

Model Precision Recall Accuracy F1-score

RF 0.974 0.970 0.972 0.972
XGBoost 0.962 0.953 0.958 0.957
LightGBM 0.969 0.966 0.968 0.968

FIGURE 6 | RF CM—B1.

The stage is divided into two phases, which are discussed in the
following sections.

4.1.1 | Phase 1—Using Test Set

Using the B1 test set which contains 2286 samples, Table 8 shows
the performance scores of our models. Figures 6–8 show the
number of mispredictions made by the models. We have FN of
≈2.32% (53 samples) and FP of ≈1.88% (43 samples) for RF; FN ≈
2.58% (59 samples) and FP ≈ 2.10% (48 samples) for XGBoost; FN
≈ 1.66% (38 samples) and FP ≈ 1.49% (34 samples) for LightGBM.
The average detection accuracy of the models is ≈97%, indicating
that they have strong classification capabilities.

4.1.2 | Phase 2—Using Benchmark Set

This phase tests the model’s generalization capability on the
benchmark datasets B2 . . . B4. The dataset B2 contained 19 431
samples, each with 86 features. There are two categories of data,
9716 legitimate and 9715 phishing. Table 9 and Figures 9–11 dis-
play the performance scores of the phishing email classification
made by the models on the URL dataset B2. The misclassification
rates (FN/FP) are 1.64%/2.86% for RF, 1.62%/6.25% for XGBoost,
and 0.55%/6.42% for LightGBM.

The dataset B3 has 11 481 items including 5741 legitimate
items and 5740 phishing items with 87 features. Table 10 and
Figures 12–14 display the performance scores of the phish-
ing email classification made by the three models on the URL

FIGURE 7 | XGBoost CM—B1.

FIGURE 8 | LightGBM CM—B1.

TABLE 9 | Performance of models on URL dataset B2.

Model Precision Recall Accuracy F1-score

RF 0.944 0.967 0.954 0.955
XGBoost 0.886 0.967 0.921 0.924
LightGBM 0.885 0.989 0.930 0.934

dataset B3. The misclassification rates (FN/FP) are 1.49%/1.25%
for RF, 2.54%/2.32% for XGBoost, and 0.46%/0.45% for LightGBM.

The URL dataset B4 consists entirely of phishing URLs and we
randomly selected 4009 samples. Table 11 and Figures 15–17 dis-
play the performance scores of the phishing email classification
made by the three models on the URL dataset B4. The model’s
misclassification rates in terms of FN is 0.18%, for RF, 0.85%, for
XGBoost and 11.35%, for LightGBM Figures 15–17 have zeros for
the actual negative class, as it does not exist in this dataset. There-
fore, the confusion matrices are included to maintain consistency

Security and Privacy, 2026 9 of 19
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FIGURE 9 | RF CM—B2.

FIGURE 10 | XGBoost CM—B2.

FIGURE 11 | LightGBM CM—B2.

TABLE 10 | Performance of models on URL dataset B3.

Model Precision Recall Accuracy F1-score

RF 0.974 0.970 0.972 0.972
XGBoost 0.953 0.949 0.951 0.951
LightGBM 0.990 0.990 0.990 0.990

FIGURE 12 | RF CM—B3.

FIGURE 13 | XGBoost CM—B3.

in our presentation. Nevertheless, our classification results show
TP detection rates of 99.83% for RF, 99.15% for XGBoost, and
88.65% for LightGBM.

RF generalizes best overall, as it has the lowest average misclas-
sification rate (≈2.90%) across all test sets, followed by XGBoost
(≈4.57%) and LightGBM (≈5.42%). The average detection accu-
racy of all three models on the benchmark datasets is ̃96.42%,
suggesting that the models effectively learn from the features and
exhibit strong generalization capability.

10 of 19 Security and Privacy, 2026
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FIGURE 14 | LightGBM CM—B3.

TABLE 11 | Performance of models on URL dataset B4.

Model Precision Recall Accuracy F1-score

RF 1.000 0.998 0.998 0.999
XGBoost 1.000 0.991 0.991 0.995
LightGBM 1.000 0.886 0.886 0.939

FIGURE 15 | RF CM—B4.

4.2 | RQ2: What Is the Impact of the Key
Features Used by the Models?

In this section, we focus only on the impact and interpretation
of the top features used by RF, XGBoost, and LightGBM. To
analyze the important features, we begin with the traditional
feature importance for RF, XGBoost, and LightGBM shown in
Figures 18–20, respectively. They show how much each feature
contributes to our models’ predictions.

FIGURE 16 | XGBoost CM—B4.

FIGURE 17 | LightGBM CM—B4.

In descending order of importance, the top five features identi-
fied by the RF model are google_index, page_rank, nb_hyperlinks,
web_traffic, and nb_www. These features highlight the model’s
emphasis on web reputation and structural characteristics.
google_index and page_rank capture the trust and authority of
a webpage based on its visibility and ranking in search engines.
nb_hyperlinks provides insight into the content richness or poten-
tial redirection behavior of a page. Meanwhile, web_traffic reflects
the site’s popularity, and nb_www helps in identifying anoma-
lies in domain structure often found in phishing URLs. Together,
these features enable effective detection of malicious websites.
This is the same for XGBoost but the descending order of impor-
tance is google_index, nb_hyperlinks, nb_www, page_rank, and
web_traffic.

For the LightGBM model, the top five features in descending
order of importance are domain_age, nb_hyperlinks, page_rank,
domain_registration_length, and length_hostname. These

Security and Privacy, 2026 11 of 19
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FIGURE 18 | RF feature importance.

FIGURE 19 | XGBoost feature importance.

FIGURE 20 | LightGBM feature importance.

12 of 19 Security and Privacy, 2026
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features reflect a strong emphasis on domain credibility and
structural properties. domain_age and domain_registration_
length assess the trustworthiness of a domain based on its lifes-
pan and registration period, common indicators of legitimacy.
nb_hyperlinks again captures page complexity and potential mali-
cious behavior through excessive linking. page_rank continues
to serve as a proxy for site authority, while length_hostname helps
detect obfuscated or deceptive domain structures. Together, these
features allow LightGBM to effectively capture both reputational
and syntactic patterns of malicious URLs.

However, feature importance is usually model-specific and
depends on the internal mechanics of a particular algorithm, for
example, Gini importance (for RF) and gain-based or split-based
importance (for XGBoost and LightGBM). These methods can
sometimes be biased, particularly toward features with more cat-
egories or higher variance. Our SHAP analysis helps validate the
top features identified by traditional feature importance methods.
By comparing the top features from both approaches, we can con-
firm whether they align. If they do, it reinforces the reliability of
these features. If they do not, SHAP can help explore whether
certain features may have a hidden or nonlinear impact that tra-
ditional methods overlook.

Computing the SHAP values for each feature allows us to quan-
tify the contribution of individual features to the models’ predic-
tions. These values allow us to gain insights into which features
are driving the decision-making process of the classifiers. For
instance, a high SHAP value for a specific feature indicates its sig-
nificant impact on the prediction, while a negative value suggests
a counteractive influence.

4.2.1 | RF SHAP Analysis

The SHAP visualizations in Figure 21 and Figure 22 show the
beeswarm plots for RF for all the data and the waterfall plot for a
single data instance, respectively.

According to the SHAP beeswarm plot, the top five features iden-
tified through traditional feature importance—google_index,
page_rank, nb_hyperlinks, web_traffic, and nb_www—
demonstrate clear and interpretable influence on the model’s
output. For google_index, lower values (i.e., URLs not indexed by
Google) are associated with negative SHAP values, indicated by
blue points extending to the left, thus pushing predictions toward
the phishing class. Conversely, higher google_index values pro-
duce positive SHAP values (red points on the right), leading
to benign classifications. The impact is asymmetric, with high
google_index values exerting a stronger positive influence than
the negative effect of low values.

A similar pattern is observed for page_rank: lower-ranked pages
have higher positive SHAP values, increasing the likelihood of
phishing classification, while higher-ranked pages contribute less
strongly toward benign predictions. In the case of nb_hyperlinks,
lower values are linked to positive SHAP contributions (favor-
ing benign classification), while higher counts result in negative
SHAP values, suggesting that an excessive number of hyperlinks
may be indicative of phishing.

For web_traffic, only high values form a dense cluster with
negative SHAP contributions, whereas low values show more
positive SHAP values and a greater influence on phishing
predictions—highlighting the role of web popularity in model
decisions. Lastly, a higher nb_www count tends to produce nega-
tive SHAP values, indicating that URLs with more “www” tokens
are more likely to be classified as phishing, while lower values are
associated with benign predictions.

Overall, the SHAP analysis not only confirms the importance of
these features but also provides detailed insights into the direc-
tion and magnitude of their influence. Notably, page_rank and
web_traffic emerge as the most impactful features in driving
phishing predictions.

FIGURE 21 | RF beeswarm plot.
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FIGURE 22 | RF waterfall plot.

FIGURE 23 | XGBoost beeswarm plot.

The SHAP waterfall plot illustrates how individual features
influence a single prediction made by the RF model (local
interpretability). Beginning from the model’s expected output
(base value) of 0.501, the cumulative contributions of specific
features lower the final prediction to 0.125—indicating a high
confidence in the phishing class. Features such as google_index,
nb_hyperlinks, page_rank, and web_traffic contribute negatively,
each pushing the prediction toward phishing by indicating low
reputation or suspicious behavior. Conversely, nb_qm (number
of question marks) and nb_eq (number of equal signs) exert
upward influence, increasing the score slightly due to their
association with typical phishing URL patterns. However, their
positive effect is insufficient to counteract the strong negative
contributions from reputation-based and structural features.

This local explanation provides transparency into how these
features interact to shape the final model output.

The features consistently influential in both global (beeswarm)
and local (waterfall) SHAP interpretations are google_index,
page_rank, nb_hyperlinks, and web_traffic, highlighting their
central role in driving the model’s phishing predictions.

4.2.2 | XGBoost SHAP Analysis

For XGBoost, Figures 23 and 24 show the beeswarm plots for
all the data and the waterfall plot for a single data instance,
respectively. The SHAP beeswarm and waterfall plots for the
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FIGURE 24 | XGBoost waterfall plot.

XGBoost model reveal how the top-ranked features influence
both global and local predictions. The top five features by
traditional importance—google_index, nb_hyperlinks, nb_www,
page_rank, and web_traffic—show distinct behavior in the SHAP
beeswarm plot. For google_index, higher values (red points)
are associated with positive SHAP values, pushing predictions
toward the benign class, while lower values increase phishing
likelihood. Page_rank follows a similar pattern: lower values
(blue) yield strong positive SHAP values, suggesting they increase
the chance of phishing classification, while higher values push
toward benign. In contrast, web_traffic displays an unexpected
pattern—higher values (red) are mostly associated with negative
SHAP values, implying that even popular sites may be classi-
fied as phishing in this dataset. For nb_hyperlinks and nb_www,
higher values tend to have negative SHAP values, consistent
with common phishing URL patterns involving excessive links or
suspicious domain structures.

In the SHAP waterfall plot for a specific instance, the model
prediction shifts dramatically from the base value of 0.169
to a final log-odds score of −3.392, indicating a highly con-
fident phishing classification. This drop is driven by strong
negative contributions from several top features: page_rank
(−1.27), google_index (−1.00), nb_hyperlinks (−0.72), nb_www
(−0.66), and web_traffic (−0.26), among others like phish_hints,
safe_anchor, and longest_word_path. The only feature with a pos-
itive SHAP value is nb_qm (+0.75), which slightly offsets the neg-
ative shift but is insufficient to reverse the overall direction. This
local explanation confirms that the model’s phishing prediction
is driven by a combination of poor reputation scores and suspi-
cious structural patterns, aligning closely with the global SHAP
analysis.

4.2.3 | LightGBM SHAP Analysis

For XGBoost, Figures 25 and 26 show the beeswarm plots for
all the data and the waterfall plot for a single data instance,

respectively. The SHAP beeswarm and waterfall plots for
the LightGBM model reveal the most influential features in
both global and local prediction contexts. According to the
beeswarm plot, the top contributors to the model’s predictions
include google_index, page_rank, nb_www, nb_hyperlinks, and
web_traffic. In the beeswarm plot, higher values of google_index
(red points) are associated with positive SHAP values, contribut-
ing to benign predictions, while lower values increase phishing
risk. A reverse trend is observed for page_rank, where lower val-
ues (blue points) push the prediction toward phishing, while
higher values help indicate benign sites. web_traffic also shows
that low-traffic domains lean toward phishing predictions. Struc-
tural features like nb_hyperlinks and nb_www contribute nega-
tively when their values are high, consistent with known phish-
ing characteristics.

The SHAP waterfall plot illustrates how individual features con-
tribute to a specific prediction made by the LightGBM model.
Starting from a base value of 0.275 (the model’s expected output
in log-odds across the dataset), the prediction sharply decreases to
−9.023, indicating a highly confident classification of the instance
as phishing. This decline is driven by a series of strong negative
SHAP contributions. The largest impact comes from domain_age
(−2.49), followed by page_rank (−1.92) and google_index (−1.46),
suggesting that the domain is newly created, poorly ranked, and
not indexed—characteristics strongly associated with phishing
websites. Additional negative contributions from features such
as nb_hyperlinks (−0.66), domain_registration_length (−0.34),
and length_hostname (−0.15) further reinforce this classifica-
tion. In contrast, features like shortest_word_path (+0.29) and
nb_hyphens (+0.14) slightly pull the prediction toward benign,
but their impact is too small to counteract the dominant phishing
indicators. Overall, the plot demonstrates how LightGBM relies
heavily on domain credibility and structural URL signals to reach
a confident phishing decision in this instance.

The comparison of the SHAP result across all models, based on
the top 10 globally influential features, reveals both consistent
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FIGURE 25 | LightGBM beeswarm plot.

FIGURE 26 | LightGBM waterfall plot.

and distinctive patterns in global feature importance for phishing
URL detection. Notably, google_index and page_rank appear as
the top two most influential features across all three models, indi-
cating strong agreement that web credibility and indexing sta-
tus are highly predictive indicators of phishing activity. Further-
more, features such as nb_www, nb_hyperlinks, and phish_hints
are consistently ranked among the top contributors in all models,
suggesting that structural patterns and phishing-specific content
remain critical cues.

In terms of model-specific emphasis, the RF model gives
relatively higher weight to web_traffic and safe_anchor,

potentially reflecting its sensitivity to user engagement and
link behavior. XGBoost, on the other hand, uniquely high-
lights ratio_digits_host, nb_hyphens, and longest_word_path,
pointing to a greater focus on character-level anomalies within
URLs. LightGBM shares much of its top-ranked feature set
with XGBoost but also prioritizes nb_slash and brings back
domain_age, suggesting a nuanced balance between lexical
patterns and domain metadata.

Overall, while there is strong consistency in the core influential
features across all models, the variation in secondary features
reflects each model’s inherent learning bias and capacity to detect
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FIGURE 27 | Desktop interface.

FIGURE 28 | Web interface.

different types of phishing patterns. This diversity may offer com-
plementary strengths in ensemble or hybrid approaches.

4.3 | Flask Application Interface

The phishing detection tool is designed for both desktop
(Figure 27) and web (Figure 28) platforms. The web version
does not require installation. Users can either enter a single
URL directly in the browser or upload a CSV file for batch
detection. The system then predicts phishing attempts using a
machine learning model running on a Flask backend. Upon click-
ing the predict button, the system evaluates whether the entered
URL is phishing or legitimate. Using Flask has its advantages
as well as its limitations. Due to its lightweight core frame-
work, building complex systems often requires relying on a
large number of third-party libraries, which may increase code
maintenance costs. Also, Flask does not natively support asyn-
chronous processing, which can impact performance when han-
dling high-concurrency requests. Over the long term, the main-
tenance cost may also be relatively high. Flask is used here to
quickly verify the effectiveness of the application and visually
demonstrate the use of the model. If the system needs to be put
into mass production, further optimization of the architecture
will be necessary, and more robust and scalable technology stacks
should be adopted, such as Nginx for load balancing, Redis to
cache API results, FastAPI for asynchronous task processing, and
Kubernetes for automatic scaling. These measures will ensure
that the system can efficiently and stably handle large-scale traffic
(Figure 28).

5 | Conclusion

Implementing machine learning techniques for phishing email
detection using URLs demonstrates significant promise in

enhancing cybersecurity. This paper develops and evaluates three
machine learning models, RF, XGBoost, and LightGBM, to pre-
dict phishing emails from URL information. In addition to evalu-
ating our models performance across multiple datasets to assess
generalizability, this study incorporates SHAP-based explainabil-
ity to interpret model behavior at both global and local lev-
els. Among the models tested, RF demonstrates the best gen-
eralization overall, achieving the lowest average misclassifica-
tion rate (≈2.90%) across all test sets, followed by XGBoost
(≈4.57%) and LightGBM (≈5.42%). Despite these differences, all
our models achieve an average detection accuracy of approxi-
mately 96%, indicating strong learning and generalization from
the engineered features. The SHAP analysis further reinforced
these results by identifying key features–such as google_index
and page_rank–as consistently influential across models and
datasets. This alignment between performance metrics and inter-
pretability insights strengthens confidence in the robustness of
the models and supports their suitability for deployment in
real-world, security-critical phishing detection scenarios. Fur-
thermore, we develop a tool using the Flask framework to build
back-end services that handle requests from desktop and web
clients. The back-end service integrates the RF and XGBoost
models via Flask to support complex data processing needs. The
Flask server provides two main API endpoints: one for real-time
predictions of individual data points and another for batch pre-
dictions of uploaded CSV files.
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