

This is a peer-reviewed, final published version of the following document, This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. and is licensed under Creative Commons: Attribution 4.0 license:

Adams, Zoe H. ORCID logoORCID: https://orcid.org/0000-0003-0187-0123, Berbrier, Danielle E. ORCID logoORCID: https://orcid.org/0000-0003-3413-7446, Schwende, Brittany K., Huckins, Will ORCID logoORCID: https://orcid.org/0009-0004-0779-3231, Richards, Cory T ORCID logoORCID: https://orcid.org/0000-0003-3605-7044, Rees, D. Aled, Usselman, Charlotte W. and Lord, Rachel N. ORCID logoORCID: https://orcid.org/0000-0002-5385-7548 (2025) The impact of androgens on cardiovascular control mechanisms in polycystic ovary syndrome: Recent advances and translational approaches. The Journal of Physiology, 603 (10). pp. 2937-2957. doi:10.1113/JP287288

Official URL: https://doi.org/10.1113/JP287288 DOI: http://dx.doi.org/10.1113/JP287288

EPrint URI: https://eprints.glos.ac.uk/id/eprint/15538

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in the material deposited and as to their right to deposit such material.

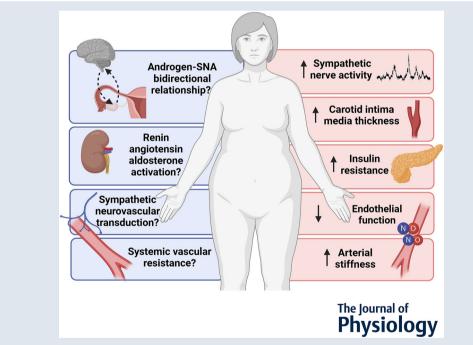
The University of Gloucestershire makes no representation or warranties of commercial utility, title, or fitness for a particular purpose or any other warranty, express or implied in respect of any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual property rights in any material deposited but will remove such material from public view pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Check for updates


TOPICAL REVIEW

The impact of androgens on cardiovascular control mechanisms in polycystic ovary syndrome: Recent advances and translational approaches

Zoe H. Adams^{1,#} D, Danielle E. Berbrier^{2,#} D, Brittany K. Schwende², Will Huckins² D, Cory T. Richards¹ D, D. Aled Rees^{3,4}, Charlotte W. Usselman² and Rachel N. Lord¹ D

Handling Editors: Laura Bennet & Christopher Lear

The peer review history is available in the Supporting Information section of this article (https://doi.org/10.1113/JP287288#support-information-section).

Abstract figure legend The cardiovascular control mechanisms that may be altered in individuals with polycystic ovary syndrome (PCOS). Pink boxes indicate mechanisms for which there is evidence in individuals with PCOS; blue boxes indicate putative mechanisms with no current data available in human PCOS cohorts. SNA, sympathetic nerve activity; NO; nitric oxide.

¹Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK

²Department of Kinesiology and Physical Education, McGill University, Montreal, Canada

³Cardiff and Vale University Health Board, Cardiff, UK

 $^{^4}$ Neuroscience and Mental Health Institute, School of Medicine, Cardiff University, Cardiff, UK

^{*}Denotes joint first authorship.

Abstract Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in premenopausal females. The condition is associated with an increased prevalence of cardiovascular risk factors, including hypertension. Observational studies report that some blood pressure control mechanisms are altered in PCOS compared to controls (sympathetic nervous system activity, endothelial and vasodilator function, renin angiotensin aldosterone system activation), and that these impairments correlate with androgen hormone levels, which are chronically elevated in the condition. As such, hyperandrogenism is the proposed locus of origin for the link between PCOS and cardiovascular dysfunction, yet the underlying mechanisms remain poorly understood. Preclinical work has provided some insight into how androgens modulate blood pressure control in PCOS. However there are marked discrepancies between the effects of androgens in cellular and tissue studies versus in vivo animal and human PCOS studies. This may be related to the heterogeneity of the preclinical models and samples used in this research and whether preclinical work is modelling hyperandrogenism in physiologically relevant terms for PCOS. This review collates preclinical and clinical evidence to summarise what is known and what remains unknown about cardiovascular control mechanisms in PCOS. We examine aspects of blood pressure regulation that are altered in other hypertensive cohorts, presenting current evidence for a mechanistic role of androgens on these systems, while acknowledging the diverse experimental models and participant cohorts from which the results are derived.

(Received 19 November 2024; accepted after revision 24 March 2025; first published online 27 April 2025)

Corresponding author Z. Adams: Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK. Email: zadams@cardiffmet.ac.uk

Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-aged females, with a prevalence between 6% and 20% (Chiaffarino et al., 2022; Deswal et al., 2020; Teede et al., 2023). The most commonly cited diagnostic criteria for PCOS are the 2003 Rotterdam criteria (Rotterdam, 2004), which define PCOS based on the presence of at least two of three characteristics: clinical (i.e. hirsutism, acne, alopecia) and/or biochemical (i.e. elevated serum androgens) hyperandrogenism, oligo- or anovulation and morphological polycystic ovaries on ultrasound, although some guidelines now recommend elevated anti-Mullerian hormone as an alternative marker of polycystic ovaries (Teede et al., 2023). The hyperandrogenic PCOS phenotype is present in 65%-90% of all PCOS cases (Chiaffarino et al., 2022; Kanbour & Dobs, 2022) and is characterised by elevated androstenedione (occurs in 88% of cases), total testosterone (65%) and/or dehydroepiandrosterone sulphate (DHEAS; 30%) (Kanbour & Dobs, 2022), alongside reduced sex hormone binding globulin (SHBG) (Deswal et al., 2018). Importantly PCOS is associated with an elevated risk of cardiovascular disease (Berni et al., 2021; Holte et al., 1996; Vine et al., 2024). This risk is attributed to higher prevalence of cardiovascular risk factors in PCOS, including elevated blood pressure (Holte et al., 1996; Joham et al., 2015), sympathetic nerve activity (Sverrisdóttir et al., 2008), endothelial dysfunction (Berbrier et al., 2023; Sprung et al., 2013), atherosclerosis (Talbott et al., 2000), obesity (Orio et al., 2016), insulin resistance (Carmina et al., 2005) and dyslipidaemia (Wild et al., 2011). Crucially, cardiovascular risk factors and cardiovascular disease in PCOS have both been linked to hyperandrogenism, even when body mass index (BMI) is accounted for (Berbrier et al., 2023; Hirschberg, 2023; Sverrisdóttir et al., 2008).

Zoe Adams (left) is a postdoctoral researcher at Cardiff Metropolitan University School of Sport and Health Sciences, working with Dr Rachel Lord and Prof Aled Rees. She is interested in the integrative mechanisms driving the development of hypertension in females, especially the interaction of sex hormones and autonomic blood pressure control. **Danielle Berbrier** (right) is a PhD candidate in the Department of Kinesiology and Physical Education at McGill University, under the supervision of Dr. Charlotte Usselman. Danielle's current research focuses on investigating skeletal muscle circulation as a site of cardiovascular dysfunction in females with polycystic ovary syndrome.

14697793, 2025, 10, Downloaded from https://physoconlinelibrary.wiley.com/oi/10.113/P287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/netms-and-conditions) on Wiley Online Library for rules of use; OA arctices are governed by the applicable Century on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/netms-and-conditions) on Wiley Online Library for rules of use; OA arctices are governed by the applicable Century on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/netms-and-conditions) on Wiley Online Library for rules of use of use

The relative risk of hypertension in PCOS is almost two-fold greater than that of controls (Amiri et al., 2020). This increased risk in PCOS is particularly notable given that prevalence of hypertension in premenopausal females is generally low compared to age-matched males and only increases substantially with age after menopause (Benjamin et al., 2017; Burt et al., 1995; Gu et al., 2002). Given that PCOS is associated with elevated blood pressure well before menopause (Mellembakken et al., 2021; Wekker et al., 2020), blood pressure regulation may be altered in individuals with PCOS.

To understand the mechanisms by which androgens influence blood pressure regulation in PCOS, researchers have drawn upon the substantial body of preclinical research investigating the vascular actions of androgens. This work suggests that androgens have numerous vascular effects (Lorigo et al., 2020; Lucas-Herald & Touyz, 2022; Reckelhoff, 2019) via both genomic and non-genomic pathways (Lucas-Herald et al., 2017). However there are still significant gaps in our understanding of how hyperandrogenism may alter blood pressure regulation in PCOS. For instance, there exist some marked discrepancies between the effects of androgens in cellular and tissue studies versus in vivo animal studies versus human PCOS research. The animal models, tissue samples and cell cultures used in this preclinical research vary in terms of sex and androgen exposure (i.e. duration, concentration, exogenous versus endogenous). Importantly caution is warranted when extrapolating findings from male disease models and testosterone concentrations that are supraphysiological or physiological for males, as there is evidence that androgens exert sex-specific effects on metabolic risk (Ruth et al., 2020), meaning that these data may not directly translate to the pathophysiology of PCOS. Additionally, animal models of PCOS exhibit significant heterogeneity in the characteristics of the condition that they display, which may depend on the mechanism of androgen exposure (i.e. prenatal versus postnatal, which androgen used) (see Padmanabhan & Veiga-Lopez, 2013a; Shi & Vine, 2012; Walters et al., 2018 for reviews). As such, it may be that some preclinical studies are more physiologically relevant to human PCOS than others. Therefore, this review aims to summarise the available evidence for a mechanistic role of androgens in cardiovascular regulation in PCOS, while highlighting the participant cohorts and preclinical models from which the data are derived (Table 2). We discuss the cardiovascular control mechanisms that contribute to hypertension in other patient groups (Fig. 1; Table 1) and present available clinical and preclinical evidence for the action of androgens at each of these levels. We have prioritised data from individuals with PCOS or female models of chronic androgen exposure, where available. When discussing human studies, we have used gender-inclusive language by referring to participants diagnosed with the condition as individuals with PCOS.

Androgens and blood pressure in PCOS

Clinical populations. A moderate amount of evidence now suggests that individuals with PCOS have elevated blood pressure and a higher prevalence of hypertension. That is, multiple cross-sectional studies have reported that blood pressure is elevated in individuals with PCOS relative to controls (Fu et al., 2023; Holte et al., 1996; Luque-Ramírez et al., 2014; Mellembakken et al., 2021). Furthermore, several studies have reported an increased hypertension prevalence in individuals with PCOS (5.5%–11.8%) versus control participants (\leq 2%) (Joham et al., 2015; Mellembakken et al., 2021), whereas two independent meta-analyses have concluded that PCOS is associated with a \sim 1.7-fold increased relative risk of hypertension versus controls (Amiri et al., 2020; Wekker et al., 2020). Although group average blood pressure values do not typically reach hypertensive levels (i.e. European guidelines of >140/90 mmHg (McEvoy et al., 2024)) in these studies, high-normal blood pressures still represent a risk factor for further cardiovascular disease in PCOS, given that cardiovascular risk increases with increasing systolic blood pressure above 115 mmHg (Lewington et al., 2002). Furthermore, recent work has shown that blood pressure is associated with cardiovascular risk at lower thresholds (10-20 mmHg lower) in females than in males (Ji et al., 2021; Wang et al., 2022). As such high-normal blood pressure and increased hypertension prevalence are likely contributors to the higher cardiovascular risk in PCOS.

Whether the elevated hypertension risk is attributed to hyperandrogenism or to other cardiovascular risk factors in PCOS (e.g. insulin resistance, obesity) remains debated. In a large cohort study (n = 151) of PCOS patients, Chen and colleagues (2007) demonstrated that both the free androgen index and total testosterone predicted resting blood pressure independently of age and BMI (Chen et al., 2007). However, another study of similar sample size (n = 153) reported that ambulatory blood pressure was similar between individuals with hyperandrogenic and non-hyperandrogenic PCOS (Franik et al., 2021). Interestingly, a smaller study (n = 60) observed that blood pressure was higher in obese individuals with PCOS than in BMI-matched controls, but lower in lean individuals with PCOS than in lean controls, which suggests that obesity drives hypertension in PCOS (Perusquía et al., 2023). However this finding is by no means ubiquitous, as elevated blood pressures and hypertension have been reported in lean individuals with PCOS (Mellembakken et al., 2021), and a recent meta-analysis demonstrated similar blood pressures between lean and

n risk facto	
os between	
elationshi	
highlighting	
thy controls (CTRL), highlighting relationsh	
o healthy c	
e (PCOS) compared to healthy c	
e (PCOS)	
y syndrom	
cystic ovar	.e.
irs in polycyst	n resistan
r risk facto	and insuli
diovascula	androgens
of the car	lex (BMI), a
Summary	ly mass inc
Table 1.	and boo

Table 1. Summary of the cardiovascular risk factors in polycys and body mass index (BMI), androgens and insulin resistance.	liovascular risk factors in p indrogens and insulin resis	Table 1. Summary of the cardiovascular risk factors in polycystic ovary syndrome (PCOS) compared to healthy controls (CTRL), highlighting relationships between risk factors and body mass index (BMI), androgens and insulin resistance.	healthy controls (CTRL), highlighting	g relationships between risk factors
Cardiovascular risk factor	Magnitude of difference in PCOS <i>vs.</i> CTRL	Relationship with BMI	Relationship with androgens	Relationship with insulin resistance markers
Hypertension prevalence	↑ ~ 1.7 × relative risk (Amiri et al., 2020; Wekker et al., 2020)			
Blood pressure	† 3-8 mmHg (Fu et al., 2023; Holte et al., 1996; Luque-Ramírez et al., 2014)	Lean: PCOS > CTRL (Mellembakken et al., 2021) PCOS < CTRL (Perusquía et al., 2023) Overweight/obese: PCOS > CTRL (Perusquía et al., 2023) Within PCOS: Lean < obese (Ketel et al., 2010; Perusquía et al., 2023)	All BMI: Positive correlation (Chen et al., 2007; Holte et al., 1996) Lean: Positive correlation (Mellembakken et al., 2021)	AII BMI: Positive correlation (Chen et al., 2007; Holte et al., 1996) Lean: Positive correlation (Mellembakken et al., 2021)
MSNA	† 8–15 bursts/100 HB 6–10 burst/min (Lambert et al., 2015; Shorakae et al., 2018; Sverrisdóttir et al., 2008)	Lean: PCOS > CTRL (Sverrisdóttir et al., 2008) Overweight/obese: PCOS > CTRL (Lambert et al., 2015; Shorakae et al., 2018)	Lean: Positive correlation (Sverrisdóttir et al., 2008) Overweight/obese: No correlation (Lambert et al., 2015)	Lean: No correlation (Sverrisdóttir et al., 2008) Overweight/obese: Positive correlation (Lambert et al., 2015)
Endothelial function (FMD)	↓ 3.4% (Sprung et al., 2013)	Lean: PCOS < CTRL (Berbrier et al., 2023; Cussons et al., 2009; Orio et al., 2004; Sorensen et al., 2006; Soyman et al., 2011; Tarkun et al., 2004) Overweight/obese: PCOS < CTRL (Cascella et al., 2008; Diamanti-Kandarakis et al., 2006; Kravariti et al., 2014) Within PCOS: Lean = Overweight/obese (Kravariti et al., 2005; Sprung et al., 2014)	Lean: Negative correlation (Berbrier et al., 2023; Carmina et al., 2005) Overweight: Negative correlation (Kravariti et al., 2005) Obese: Negative correlation (Meyer et al., 2005)	Lean: Negative correlation (Orio et al., 2004; Soyman et al., 2011; Tarkun et al., 2004) Overweight: Negative correlation (Kravariti et al., 2005)
				(Continued)

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/term/

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

14697793, 2025, 10, Downloaded from https://plysoc.onlinelibrary.wiley.com/doi/10.1113JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/netibrary.wiley.com/doi/10.1113JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/netibrary.w

Table 1. (Continued)				
Cardiovascular risk factor	Magnitude of difference in PCOS vs. CTRL	Relationship with BMI	Relationship with androgens	Relationship with insulin resistance markers
Arterial stiffness (e.g. PWV)	† 0.38–0.8 m/s (Kelly et al., 2002; Meyer et al., 2005; Sun et al., 2022)	Lean: PCOS > CTRL (Kilic et al., 2021; Soares et al., 2009) Overweight/obese: PCOS > CTRL (Kelly et al., 2002; Meyer et al., 2005)	Lean: Positive correlation (Kilic et al., 2021). Overweight/obese: Positive correlation (Burlá et al., 2019)	Lean: Positive correlation (Abacioglu et al., 2021; Sasaki et al., 2011) Overweight/obese: Positive correlation (Meyer et al., 2005)
Atherosclerosis (CIMT)	† 0.072 mm (Meyer et al., 2012)	Lean: PCOS > CTRL (Orio et al., 2004) Overweight/obese: PCOS > CTRL (Luque-Ramírez et al., 2007) Within PCOS: Lean = Overweight/obese (Ketel et al., 2010; Luque-Ramírez et al., 2007)	Lean: Positive correlation (Orio et al., 2004) Overweight/obese: Positive correlation (Luque-Ramírez et al., 2007)	Lean: Positive correlation (Carmina et al., 2005) Overweight/obese: Positive correlation (Luque-Ramírez et al., 2007)
Note: Studies finding no effec Abbreviations: CIMT, carotid i	ct of PCOS on these risk far ntima media thickness; FN	Note: Studies finding no effect of PCOS on these risk factors can be found in the main body of the text. Abbreviations: CIMT, carotid intima media thickness; FMD, flow-mediated dilatation; MSNA, muscle sympathetic nerve activity; PWV, pulse wave velocity.	ext. sympathetic nerve activity; PWV, pulse	wave velocity.

et al., 2009).

obese individuals with PCOS who had similar testosterone levels (Pan, 2023).

Preclinical models. Preclinical studies show that some, but not all, animal models of PCOS develop hypertension. Ovine models of PCOS (prenatal exposure to elevated testosterone) have blood pressure as adults that is ~10 mmHg higher than that of control animals (King et al., 2007), alongside most of the other metabolic characteristics of PCOS (Padmanabhan & Veiga-Lopez, 2013b). However data from rodent models are more equivocal, with the dihydrotestosterone (DHT)-treated models (Yanes et al., 2011), but not the dehydroepiandrosterone (DHEA)-treated (Oktanella et al., 2024) or testosterone propionate-treated (Utkan Korun et al., 2024) models developing elevated blood pressure versus controls. Interestingly, the DHEA-treated rodent model exhibited lower blood pressure versus control animals, which was unaffected by subsequent androgen receptor blockade (Perusquía et al., 2023). This highlights the heterogeneity of characteristics in rodent models of PCOS, in which metabolic, endocrine and ovarian features vary widely between models (Walters et al., 2012), whereas blood pressure appears to be elevated in individuals with PCOS and in large mammalian models. The following sections explore the mechanisms by which androgens could alter blood pressure regulation in PCOS.

Androgens and sympathetic nerve activity in PCOS. The sympathetic nervous system is a key determinant of blood pressure, modulating both vasoconstrictor tone and cardiac output (Dampney, 2016). Muscle sympathetic nerve activity (MSNA) correlates with resting blood pressure, both in hypertensive and normotensive individuals (Grassi et al., 2018), and chronically elevated MSNA is a hallmark of multiple cardiovascular diseases, including ischaemic heart disease and heart failure (Fisher

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms

for rules of use; OA articles are governed by the applicable Creative Commons License

Clinical populations. Direct measurements of sympathetic activity have revealed that MSNA is elevated in individuals with PCOS at rest (Lambert et al., 2015; Shorakae et al., 2018; Sverrisdóttir et al., 2008), with microneurographic recordings showing a 8–15 bursts/100 heartbeats or 6–10 bursts/min increase

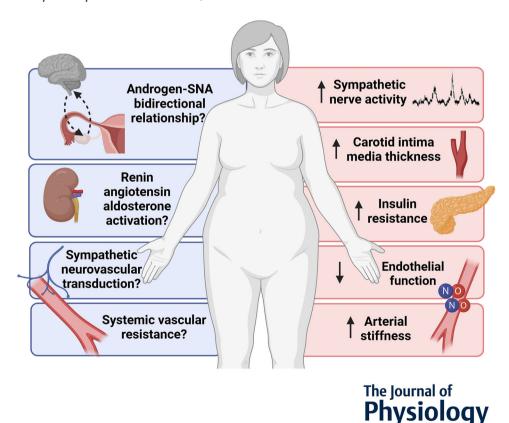


Figure 1. The cardiovascular control mechanisms that may be altered in individuals with polycystic ovary syndrome (PCOS)

Pink boxes indicate mechanisms for which there is evidence in individuals with PCOS; blue boxes indicate putative mechanisms with no current data available in human PCOS cohorts. SNA, sympathetic nerve activity; NO; nitric oxide.

14697793, 2025, 10, Downloaded from https://phtysoc.onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Mechanism	Cohort/model	Reference
	Pro-hypertensive	
Increased muscle sympathetic nerve activity	Humans with androgen excess PCOS	(Lambert et al., 2015; Lansdown et al., 2019; Shorakae et al., 2018; Sverrisdóttir et al., 2008; Usselman, Coovardia et al., 2019)
Increased MC4R expression in brainstem	Hyperandrogenic female rat (DHT model)	(Maranon et al., 2015)
Androgen receptor-mediated activation of RVLM C1 neurones	Female rats without hyperandrogenism	(Milner et al., 2007)
Increased noradrenaline and neuropeptide Y production	Male rats	(Kumai et al., 1995; Sahu et al., 1989)
Increased α -adrenergic receptor expression	Male spontaneously hypertensive rats	(McConnaughey & lams, 1993)
Reduced eNOS expression and activity	Hyperandrogenic pregnant female rat	(Chinnathambi et al., 2013)
Reduced endothelium-derived hyperpolarising factor activity	Hyperandrogenic female rat (DHT model)	(Mishra et al., 2017)
Increased endothelin-1 expression	Humans with androgen excess PCOS	(Diamanti-Kandarakis et al., 2001; Orio et al., 2004; Wenner et al., 2013)
Impaired endothelin-1 B receptor-mediated vasodilatation	Humans with androgen excess PCOS	(Usselman, Yarovinsky et al., 2019; Wenner et al., 2013).
Upregulation of MMP-9	Humans with androgen excess PCOS	(Lewandowski et al., 2006).
Downregulation of G protein-coupled oestrogen receptor	Hyperandrogenic female mouse (DHT model)	(Horton et al., 2024).
Increased expression of angiotensinogen, ACE and angiotensin II receptor type 1	Hyperandrogenic female rat (DHT model)	(Yanes et al., 2011)
Reduced expression of angiotensin II receptor type 2	Hyperandrogenic female rat (DHT model)	(Mishra et al., 2016)
	Anti-hypertensive	
Increased eNOS expression	Human endothelial cells	(Goglia et al., 2010; Yu et al., 2010)
Proliferation of endothelial cells	Human umbilical vein endothelial cells	(Converse & Thomas, 2021)
Activation of vascular K ⁺ channels	Human coronary artery endothelial cells	(Ruamyod et al., 2017)
Inactivation of vascular Ca ²⁺ channels	Human umbilical artery tissue	(Perusquía et al., 2007)

Abbreviations: DHT, dihydrotestosterone; eNOS, endothelial nitric oxide synthase; MC4R, melanocortin-4 receptor; MMP-9, matrix metalloproteinase-9; PCOS, polycystic ovary syndrome; RVLM, rostral ventrolateral medulla.

in MSNA in individuals with PCOS versus controls. Additionally, indirect measures of sympathetic activity, such as plasma adrenaline concentrations, have been found to be elevated in PCOS compared to controls (Hashim et al., 2015). However, others have reported that resting MSNA was similar between individuals with PCOS and control groups, but that individuals with PCOS showed exaggerated MSNA responses to sympathoexcitatory stimuli (Lansdown et al., 2019; Usselman, Coovardia et al., 2019). Meanwhile, one study reported that MSNA was lower in individuals with PCOS versus controls (Stone et al., 2023). Notably MSNA has been positively associated with total and free testosterone in both normal weight (Sverrisdóttir et al., 2008) and overweight/obese individuals with PCOS (Shorakae et al., 2018). However this association is inconsistent, as Lambert and colleagues (2015) report no correlation between androgens and MSNA in overweight/obese individuals with PCOS, despite observing elevated MSNA compared to controls (Lambert et al., 2015).

Preclinical models. Preclinical studies support the notion that increased blood pressure in PCOS is sympathetically mediated and have shed light on the possible underlying mechanisms. Although SNA has not been directly recorded in rodent models of PCOS, sympathetic inhibition (i.e. adrenergic blockade or renal denervation) prevents DHT-treated rats from developing the elevated blood pressure that normally occurs in this PCOS model (Maranon et al., 2015). Mechanistic data from the same study suggest that the melanocortin-4-receptor (MC4R), which activates sympathetic and inhibits parasympathetic preganglionic neurones in the brainstem (Girardet & Butler, 2014; Sohn et al., 2013), is important in modulating SNA and blood pressure in this PCOS model. That is, the expression of MC4R in the nucleus tractus solitarius was higher, and the depressor response to MC4R antagonism

was larger, in the hyperandrogenic rats versus controls (Maranon et al., 2015). Additionally MC4R-null rats did not develop DHT-induced increases in blood pressure (Maranon et al., 2015), suggesting that MC4R plays a key role in mediating the elevated blood pressure observed in this model of PCOS. In further support, clinical studies have shown that MC4R mediates the development of hypertension in overweight adults, as individuals with a loss-of-function mutation to MC4R had lower blood pressure, reduced hypertension prevalence and lower urinary noradrenaline metabolites than BMI- and insulin resistance-matched control participants (Greenfield et al., 2009). As such both preclinical evidence and clinical evidence indicate that MC4R may be important in mediating sympathetic activity in PCOS, although this has yet to be evaluated in individuals with PCOS.

Androgen receptors expressed in brain regions involved in baroreflex central processing could offer another mechanism by which androgens modulate sympathetic activity. That is, androgen receptors have been identified in the rostral ventrolateral medulla (RVLM) of adult male and female Sprague-Dawley rats on afferent fibres and glial cells of C1 adrenergic neurones (Milner et al., 2007). Importantly RVLM C1 adrenergic neurons project directly to sympathetic preganglionic neurons, and excessive activation has been directly linked to increased SNA (Dampney et al., 1985; Reis et al., 1988) and blood pressure (Reis et al., 1988; Wenker et al., 2017). Excess androgens, as seen in PCOS, may enhance binding to androgen receptors on RVLM C1 neurons, potentially exacerbating SNA. However, to the best of our knowledge, no studies have assessed the effects of testosterone applications to the brainstem on SNA, as has been investigated for oestrogen (Saleh et al., 2000). Additionally we did not find evidence that adrenergic receptor expression has been measured in the brainstem of the hyperandrogenic rodent models of PCOS. As such the modulation of SNA in PCOS by activation of brainstem androgen receptors remains a putative mechanism and requires further study.

Androgens and sympathetic baroreflex control. Sympathetic baroreflex sensitivity, the ability to buffer changes in blood pressure via modulation of MSNA, is a marker of baroreflex function and may be impaired in hypertensive individuals (Grassi et al., 2014).

Clinical populations. To date, only one study has assessed the sympathetic baroreflex in individuals with PCOS. Stone and colleagues (2023) showed that sympathetic baroreflex gain (forearm vascular resistance during baroreceptor unloading with lower body negative pressure) was similar in individuals with PCOS compared to controls. Despite this lack of group difference, manipulation of testosterone levels (suppression by

gonadotropin-release hormone (GnRH) antagonism, followed by re-introduction of exogenous testosterone) affected sympathetic baroreflex gain in PCOS but not in controls. The PCOS group had greater baroreflex gain under GnRH antagonism, which returned to control levels with the addition of exogenous testosterone, whereas the same procedures did not affect sympathetic baroreflex gain in controls (Stone et al., 2023). Therefore, although baseline sympathetic baroreflex gain appears to be similar in PCOS and control populations, these data suggest that testosterone may play a role in modulating the sympathetic baroreflex in PCOS that is absent in controls.

Sympathetic-mediated androgen production. Interestingly, the sympathetic nervous system may play a unique role in PCOS compared to other conditions with higher cardiovascular risk, as SNA may promote the production of androgens, which in turn increase SNA.

Preclinical models. Cold stress in rats increases noradrenaline activity, enhancing the activation of ovarian sympathetic nerves (Jara et al., 2010). This activation increases plasma testosterone levels and results in rats with PCOS-like phenotypes, including irregular oestrous cycles and thickened follicles that develop into cysts (Bernuci et al., 2008; Bernuci et al., 2013). When these cysts are reduced by acetylcholine administration, testosterone levels return to normal (Riquelme et al., 2021).

14697793, 2025, 10, Downloaded from https://tpysoc.onlinelbriary.wiley.com/oi/01.1130P287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17111.2025]. See the Terms and Conditions (https://onlinelbriary.wiley.com/inelbria

Clinical populations. In agreement, clinical data demonstrate higher levels of noradrenaline and dopamine in the follicles of PCOS patients compared to non-PCOS patients undergoing *in vitro* fertilisation (Musalı et al., 2016). As such these preclinical and clinical data highlight a potential bidirectional relationship between sympathetic activation and androgens.

In summary evidence suggests that MSNA is moderately elevated in PCOS (Hashim et al., 2015; Lambert et al., 2015; Lansdown et al., 2019; Shorakae et al., 2018; Sverrisdóttir et al., 2008), which may both drive and be driven by hyperandrogenism. Testosterone may play a role in modulating the sympathetic baroreflex in PCOS, although baroreflex gain is similar in PCOS and controls. The effect of sympathetic activity on blood pressure, however, ultimately depends on the conversion of MSNA into vasoconstrictor tone.

Androgens and neurovascular transduction in PCOS. Sympathetic neurovascular transduction describes the conversion of MSNA into vasoconstrictor tone. This process encompasses the arrival of sympathetic action potentials at the synaptic bulb, the release of neurotransmitters, the binding of these to vascular receptors and the resultant cell signalling cascades inside vascular

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113/P287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

smooth muscle cells that initiate vasoconstriction (Young et al., 2021). In addition, the level of basal vasoconstrictor tone and any competing vasodilatory influences (e.g. nitric oxide (NO) levels, β_2 -adrenergic receptor activity) also contribute to the vasoconstrictor response evoked by a given level of MSNA (Hart et al., 2011). As such changes in any of these processes could modulate the level of neurovascular transduction and thus alter the relationship between MSNA and blood pressure.

Clinical populations. Given the increased hypertensive risk in premenopausal individuals with PCOS (Amiri et al., 2020) and the elevated blood pressure in PCOS versus controls (Fu et al., 2023; Mellembakken et al., 2021), it is possible that sympathetic transduction is elevated in this cohort. At present, resting sympathetic transduction has not been directly measured in PCOS. However, Lansdown and colleagues (2019) showed that individuals with PCOS had greater sympathetic responses to an isometric hand grip stimulus compared to controls, whereas the pressor responses were similar between groups (Lansdown et al., 2019). Given that a larger increase in MSNA was needed to achieve the same increase in blood pressure, this may indicate impaired neurovascular transduction within PCOS. However, assessment using a signal averaging technique (for a review, see Young et al. (2021)) is needed to properly quantify sympathetic neurovascular transduction in PCOS, both at rest and during sympathoexcitatory stimuli.

Androgens and vascular adrenergic signalling

Preclinical models. Preclinical work supports the notion that androgens impact various aspects of the sympathetic neurovascular transduction pathway, and thus could modulate transduction in PCOS, although there are currently little data from PCOS cohorts or preclinical models of PCOS. Several studies indicate that testosterone can modulate the production of the sympathetic neurotransmitters noradrenaline and neuropeptide Y (Kumai et al., 1995; Sahu et al., 1989). Specifically, castration of male spontaneously hypertensive rats reduced noradrenaline levels and adrenal expression of tyrosine hydroxylase, an effect that was reversed by testosterone replacement (Kumai et al., 1995). Similarly, testosterone replacement increased neuropeptide Y production in the hypothalamus of castrated male rats (Sahu et al., 1989). Meanwhile, other work has demonstrated that testosterone had no effect on electrically evoked noradrenaline release in male rodent mesenteric artery beds (Isidoro-Garcia et al., 2021). As such, testosterone appears to influence the production of sympathetic neurotransmitters but may not modulate neurotransmitter release at the synaptic bulb, at least in non-PCOS rodent models.

There is also evidence that androgens influence the expression and function of vascular adrenergic receptors. That is, testosterone exposure increased the expression of α -1B adrenergic receptors in cultured hamster smooth muscle cells (sex not specified) (Sakaue & Hoffman, 1991) and restored normal levels of α -adrenergic receptor expression in the tail arteries of castrated male rats (McConnaughey & Iams, 1993). In contrast, manipulation of testosterone levels by castration and testosterone replacement does not appear to alter vascular β -adrenergic receptor expression in male rats (Lopez-Canales et al., 2018; Riedel et al., 2019). However testosterone exposure at physiological levels (for male rats) reduced adenyl cyclase expression and levels of cyclic adenosine monophosphate in the rat aorta, indicating that testosterone could restrict β -adrenergic mediated vasodilatation, at least in males (Lopez-Canales et al., 2018). Overall, these preclinical data indicate that testosterone could enhance sympathetic neurovascular transduction via increases in sympathetic neurotransmitters and an upregulation of α -adrenergic activity. However, we cannot identify any similar data from PCOS cohorts or models of chronic androgen exposure in females; therefore it remains to be established whether these mechanisms also occur in PCOS.

Clinical populations. Importantly, the balance of α -and β -adrenergic receptor activity is thought to underlie the reduced sympathetic vascular transduction in healthy premenopausal females, given that systemic β -adrenergic blockade increases sympathetic vascular transduction (Briant et al., 2016; Hart et al., 2011). In this premenopausal female cohort, an oestrogen-related increase in basal NO production (Sudhir et al., 1996) is thought to increase β_2 -adrenergic receptor sensitivity to noradrenaline (Kneale et al., 2000), which counteracts the vasoconstrictor effect of α -adrenergic receptors (Hart et al., 2011). In PCOS, the balance between α - and β -adrenergic activity could be shifted by the changes in receptor expression and activity described above; however this remains to be established.

Androgens and vasoconstrictor tone

Preclinical models. There is preclinical evidence that androgens influence vasoconstrictor tone independent of sympathetic control. Many studies have examined the vasomotor response of resistance vessels ex vivo to acute testosterone exposure (see Lorigo et al. (2020)) for a comprehensive review). Although most studies have demonstrated a vasodilatory response to testosterone exposure (Crews & Khalil, 1999), some studies have demonstrated that testosterone facilitates the action of vasoconstrictors (Schrör et al., 1994). Acute vasodilatory responses to testosterone have also been observed in vivo in rodent (Perusquia et al., 2015) and porcine

models (Molinari et al., 2002). This acute vasodilatory response is observed even in the presence of aromatase inhibitors (Tep-areenan et al., 2002) and oestrogen receptor antagonists (Chou et al., 1996), indicating that vasodilatation is not mediated by the conversion of testosterone to oestrogen. The mechanisms underlying these acute vasodilatory responses to testosterone are discussed in detail elsewhere (Foradori et al., 2008; Lorigo et al., 2020; Lucas-Herald & Touyz, 2022; Lucas-Herald et al., 2017). In brief, these mechanisms appear to be both endothelium-dependent (Rowell et al., 2009), via an upregulation of NO (Yu et al., 2010), and endothelium-independent (Crews & Khalil, 1999; Tep-areenan et al., 2002), via the activation of K⁺ channels (e.g. large and small conductance Ca2+-activated K+ channels (BK_{Ca} and SK_{Ca}) (Ruamyod et al., 2017)) and the inactivation of voltage- and ligand-gated Ca2+ channels (Perusquía et al., 2007) in the membrane of vascular smooth muscle cells.

Clinical populations. The vasodilatory actions of testosterone have been replicated in humans, both ex vivo, using donated blood vessels (Rowell et al., 2009; Seyrek et al., 2007), and in vivo, for example in the coronary arteries of older males (Webb et al., 1999). Importantly, these vasodilatory responses are still observed when male physiological concentrations of testosterone are used (Rowell et al., 2009). However, whether chronic exposure to testosterone (akin to the chronic hyperandrogenism in PCOS) alters basal vasoconstrictor tone is less clear. In a study of postmenopausal females using hormone replacement therapy, 6 weeks of testosterone exposure improved endothelium-dependent and endothelium-independent vasodilatation but did not alter resting brachial artery diameter (Worboys et al., 2001). To the best of our knowledge, only one study has assessed the vasomotor responses of resistance vessels from individuals with PCOS ex vivo (Kelly et al., 2002). Kelly and colleagues (2002) demonstrated that vasodilator and vasoconstrictor responses to acetylcholine and noradrenaline, respectively, did not differ between individuals with PCOS and control participants, suggesting that the ability of the vasculature to dilate and constrict is not impaired in PCOS. However, this does not provide insight into the resting vasoconstrictor tone in PCOS. Given the elevated MSNA and blood pressure in PCOS, it is plausible that individuals with PCOS operate at a higher resting vasoconstrictor tone, but this needs to be confirmed.

Androgens and endothelial function in PCOS. The vascular endothelium contributes to blood pressure by regulating vascular tone (Gallo et al., 2021), and endothelial dysfunction is characterised by an increase in vasoconstrictors acting on the endothelial cells (i.e.

endothelin-1 (ET-1)) (Deanfield et al., 2005) and a reduction in the bioavailability of vasodilators (i.e. NO) (Brunner et al., 2005). The non-invasive flow-mediated dilatation (FMD) technique is commonly used to assess endothelial dysfunction in conduit vessels, correlates negatively with blood pressure in normotension and hypertension (Maruhashi et al., 2013) and predicts future cardiovascular events (Celermajer, 1997). Notably, there is compelling evidence for endothelial dysfunction, as assessed by FMD, in both lean (Berbrier et al., 2023; Cussons et al., 2009; Orio et al., 2004; Sorensen et al., 2006; Soyman et al., 2011; Tarkun et al., 2004) and overweight/obese individuals with PCOS (Cascella et al., 2008; Diamanti-Kandarakis et al., 2006; Kravariti et al., 2005; Meyer et al., 2005; Sprung et al., 2014) compared to controls. Although this is not a universal finding (Krentowska et al., 2021), a meta-analysis concluded that there was a 3.4% impairment in FMD in individuals with PCOS versus controls (Sprung et al., 2013). This likely represents a clinically meaningful change, given that a 1% reduction in FMD represents an 8%-12% increase in cardiovascular risk in a combined clinical and non-clinical population (Ras et al., 2013). One study demonstrated that endothelial function was negatively correlated with androgen levels in lean (but not in overweight/obese) individuals with PCOS (Berbrier et al., 2023), which suggests that hyperandrogenism may underlie endothelial dysfunction in lean individuals with PCOS.

14697793, 2025, 10, Downloaded from https://tpysoc.onlinelbriary.wiley.com/oi/01.1130P287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17111.2025]. See the Terms and Conditions (https://onlinelbriary.wiley.com/inelbria

Preclinical models. It has been suggested that hyperandrogenism impairs endothelial function by reducing or limiting NO production (Stanhewicz et al., 2018). In support of this, in a hyperandrogenic (pregnant) rat model, NO-mediated dilatation in mesenteric (Chinnathambi et al., 2013) and uterine arteries (Chinnathambi et al., 2014) was reduced. Moreover, elevated testosterone was associated with reduced plasma levels of NO metabolites, reduced endothelial NO synthase (eNOS) protein expression in the uterine arteries (Chinnathambi et al., 2014) and decreased eNOS activity in the mesenteric arteries (Chinnathambi et al., 2013). Furthermore, although arteries from the DHT rat model of PCOS showed impaired endothelium-dependent vasodilatation, this was reversed with exposure to the androgen receptor antagonist flutamide (Hurliman et al., 2015). As such, there is evidence for an androgen-mediated downregulation of NO production in PCOS. However this must be reconciled with the large evidence base suggesting that testosterone is vasodilatory (Lorigo et al., 2020; Lucas-Herald & Touyz, 2022), activates eNOS in human endothelium (Goglia et al., 2010; Yu et al., 2010) and increases human vascular endothelial cell proliferation (Converse & Thomas, 2021). This discrepancy could arise from differences in the durations of exposure to androgens

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https:

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Clinical populations. Given that two studies showed normal endothelium-dependent vasodilatation evoked by non-shear stimuli (acetylcholine/bradykinin) in PCOS (Kelly et al., 2002; Ketel et al., 2008), it is possible that impaired FMD is related to the shear stimulus. The only study to report shear rate found a borderline significant (p < 0.06) difference in this metric between PCOS and controls (Berbrier et al., 2023), but given the large impairment in FMD seen in PCOS, it is unlikely that this is fully explained by differences in shear, and it is unclear how androgens might impact the shear stimulus. Alternatively, endothelial vasodilators other than NO (such as endothelium-derived hyperpolarising factor (EDHF)) may be downregulated, given that in the DHT rat model of PCOS, endothelium-dependent vasodilatation was still reduced versus controls when the vasodilatory effect of EDHF was isolated from that of NO and prostaglandins (Mishra et al., 2017). On the contrary, the ability of the vascular smooth muscle to relax might be impaired. Indeed, two studies support a reduced endothelium-independent vasodilatation in individuals with PCOS versus controls (Dokras et al., 2006; Kravariti et al., 2005), although another study reported no difference (Sorensen et al., 2006). However, it is unclear how hyperandrogenism may impair vascular smooth muscle relaxation in PCOS, given that testosterone has a direct vasorelaxant effect via several mechanisms (for a review, see Lorigo et al. (2020)). Another possibility is that vasoconstricting factors limit the vasodilatory response to the FMD stimulus. Notably, individuals with androgen excess PCOS exhibit increased serum levels of ET-1 (Diamanti-Kandarakis et al., 2001; Diamanti-Kandarakis et al., 2006; Orio et al., 2004) compared to BMI-matched controls. ET-1 acts as a vasoconstrictor at vascular smooth muscle via the ETA and ETB receptors but also has vasodilatory actions when binding ET_B receptors at the vascular endothelium (Mazzuca & Khalil, 2012). In PCOS the vasodilatory action of ET-1 is impaired (Usselman, Yarovinsky et al., 2019; Wenner et al., 2013). Therefore, both increased ET-1 levels and impaired ET_B receptor-mediated vasodilatation appear to contribute to a vasoconstrictor effect of ET-1 in PCOS. This, together with the increased MSNA in PCOS, may act to limit the vasodilator capacity and therefore the FMD response in PCOS.

Insulin resistance and endothelial function. It is important to note that characteristics of PCOS other than hyperandrogenism may contribute to the impaired FMD response observed. For example, a negative correlation between insulin resistance and endothelial function has been observed in individuals with PCOS (Kravariti et al., 2005; Paradisi et al., 2001). The vasodilatory effects of insulin are well established (Baron, 1994) and involve the activation of eNOS via the PI3K/Akt signalling pathway following endothelial insulin receptor activation (Kim et al., 2006). In insulin resistance, it is proposed that the PI3K/Akt pathways are downregulated, reducing NO production (Kahn, 1985), whereas the mitogen-activated protein kinase insulin signal pathways, which regulate the secretion of ET-1, remain intact (Kim et al., 2006). Consequently, this leads to a reduction in available NO and a relative increase in ET-1, both of which contribute to endothelial dysfunction. Lastly, although insulin plays a critical role in endothelial function, its effects are often compounded by elevated androgens. Increased insulin level has been shown to mimic the actions of luteinizing hormone (i.e. stimulates ovarian theca cells to synthesise androstenedione and testosterone; Bienenfeld et al. (2019)), leading to increased ovarian androgen secretion (Nestler et al., 1998; Wu et al., 2014). Additionally the overactivity of the protein kinase B/Akt signalling pathways (associated with insulin resistance; Li et al. (2017)) may lead to increased theca cell stimulation and further increases androgen secretion in PCOS (Ye et al., 2021). This overproduction of androgens, in combination with insulin resistance, exacerbates the prevalence of endothelial dysfunction in individuals with PCOS, highlighting the complex interplay between metabolic and hormonal disturbances in this population.

and renin-angiotensin-aldosterone Androgens the system in **PCOS.** Given the role of (RAAS) renin-angiotensin-aldosterone system elevating blood pressure, it is possible that this system also contributes to the increased hypertension prevalence in PCOS. Data on whether RAAS is elevated in PCOS compared to controls are contradictory, with some studies reporting elevated plasma renin (Alphan et al., 2013; Hacihanefioglu et al., 2000; Jaatinen et al., 1995), angiotensin II (Arefi et al., 2013) or aldosterone (Cascella et al., 2006) versus controls, whereas others report no difference (Stone et al., 2023). Meanwhile, some studies report differences in some markers of RAAS activity but not others (e.g. elevated renin but not angiotensin II) (Alphan et al., 2013; Cascella et al., 2006). Whether any change in RAAS in PCOS is mediated by hyperandrogenism is also unclear. Although some studies report correlations between androgens and markers of RAAS (Jaatinen et al., 1995), others report no relationship

(Cascella et al., 2006). The effects of sex hormones on RAAS have been reviewed in detail previously (Medina et al., 2020; te Riet et al., 2015; White et al., 2019). Current evidence broadly suggests that oestrogen tends to promote the vasodilatory arm of the RAAS (mediated by angiotensin-converting enzyme (ACE)-2, angiotensin II receptor type 2 and Mas receptor) more than the vasoconstrictor arm (mediated by ACE and angiotensin II receptor type 1 (AT₁R)), whereas testosterone appears to do the opposite (Medina et al., 2020; te Riet et al., 2015). However, much of this evidence does not come from individuals with PCOS or preclinical models of PCOS. As such, the overall effect of sex hormones on RAAS in PCOS is difficult to assess.

Preclinical models. Several studies have tested whether androgens alter RAAS activity in preclinical models of PCOS. Female rats treated with DHT showed increased expression of angiotensinogen, ACE and angiotensin II receptor type 1 (Yanes et al., 2011) but reduced expression of angiotensin II receptor type 2 (Mishra et al., 2016), suggesting that testosterone excess in female animal models promotes the vasoconstrictor over the vasodilatory arm of RAAS. Additionally RAAS inhibition (ACE inhibitors) reduced blood pressure in the DHT rat model of PCOS (Torres Fernandez et al., 2018). Meanwhile, androgen receptor blockade by flutamide reduced blood pressure and plasma renin, compared to untreated controls, in a female transgenic rat model with high RAAS activity (Baltatu et al., 2003). As such, preclinical evidence supports the possibility that androgens could promote hypertension via RAAS activation.

Clinical populations. Experimental data on RAAS in individuals with hyperandrogenic PCOS are scarce. Stone and colleagues (2023) reported that the block of sex hormone production (GnRH antagonism) reduced aldosterone concentrations in PCOS but not in age-, BMI- and insulin-resistance-matched controls (Stone et al., 2023), suggesting a role of androgens in RAAS activation in PCOS. In contrast, another study also using GnRH antagonism showed that individuals with PCOS produced more aldosterone in response to exercise versus controls, even under blockade of sex hormone production (Stachenfeld et al., 2010), indicating that the responsiveness of RAAS was still elevated in PCOS when androgen production was inhibited. This discrepancy may be explained by the chronic effects of hyperandrogenism on RAAS (i.e. receptor expression) that may not have been removed by temporary GnRH treatment. However these limited studies, together with the preclinical evidence, suggest that the interaction between RAAS and androgens requires further study in PCOS. Of note, RAAS activation promotes some of the pro-hypertensive mechanisms discussed elsewhere in this review (e.g. vasoconstriction via AT₁R, increased sympathetic nerve activity) (Miller & Arnold, 2019) and could therefore contribute to elevated blood pressure in PCOS via several pathways.

Androgens and vascular structure in PCOS. Finally, PCOS has been associated with changes to arterial structure that could contribute to elevated blood pressure. Arterial stiffness is associated with cardiovascular disease risk (Laurent et al., 2006; Van Bortel et al., 2012; Vlachopoulos et al., 2010) and is thought to occur before the development of hypertension (Oh et al., 2017).

Clinical populations. Studies in lean (Abacioglu et al., 2021; Kilic et al., 2021; Sasaki et al., 2011; Soares et al., 2009) and overweight/obese (Kelly et al., 2002; Meyer et al., 2005) individuals with PCOS report that stiffness in various arteries (as measured by pulse wave velocity (PWV)) is elevated by between 0.36 and 0.81 m/s compared to BMI-matched controls. However several studies have also reported no change in arterial stiffness in PCOS (Burlá et al., 2019; Cussons et al., 2009; Ketel et al., 2010; Kim et al., 2019; Rees et al., 2014). Meanwhile, some echocardiographic studies report increased aortic stiffness and reduced aortic distensibility in individuals with PCOS versus controls (Gencer et al., 2014; Lakhani et al., 2006), whereas another study reports no difference (Kaya et al., 2010). As such, there are conflicting findings regarding arterial stiffness in PCOS. However, given that a 1 m/s increase in aortic PWV corresponds to a 15% increase in all-cause mortality in the general population (Vlachopoulos et al., 2010), an increase in aortic stiffness in PCOS of the magnitude reported by some studies could be clinically relevant. Furthermore, aortic stiffness is an independent predictor of hypertension in normotensive adults (Dernellis & Panaretou, 2005), and as such could contribute to the increased prevalence of hypertension in PCOS.

14697793, 2025, 10, Downloaded from https://tpysoc.onlinelbriary.wiley.com/oi/01.1130P287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17111.2025]. See the Terms and Conditions (https://onlinelbriary.wiley.com/inelbria

Preclinical models. Arterial stiffness is correlated with androgens in PCOS (Burlá et al., 2019; Kilic et al., 2021; Soares et al., 2009), and it is possible that androgens alter the cellular and extracellular composition of arteries. That is, increased androgen levels induced by administration of DHT in female mice were correlated with decreases in collagen (Horton et al., 2024), and the elastin/collagen ratio of human aortic smooth muscle cells (indicative of reduced vascular distensibility) exposed to testosterone was found to be 11 times lower than when exposed to oestradiol and progesterone (Natoli et al., 2005). Moreover, serum concentrations of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme that can degrade elastic components of the arterial wall and promotes arterial stiffening (Yasmin et al., 2005), were elevated in individuals with PCOS (Lewandowski et al., 2006). Additionally, DHT was shown to downregulate expression of G protein-coupled oestrogen receptor (GPER) (Horton et al., 2024), which has protective effects

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

against vascular stiffening, given that GPER knockout increased arterial stiffness in female mice (Ogola et al., 2021). As such, MMP-9 activity and GPER expression are potential mechanisms by which androgens could alter arterial stiffness in PCOS.

Carotid intima media thickening and PCOS. Other structural changes to arteries, such as increased carotid intima media thickness (CIMT), could also influence blood pressure in PCOS, given that blood pressure correlates positively with CIMT (Ferreira et al., 2016). A meta-analysis reported an increase of 0.072 mm in individuals with PCOS versus controls, which is comparable to 7 years of age-related increase in CIMT (Meyer et al., 2012). Intima media thickening at the carotid bulb has been linked to reduced cardiovagal baroreflex sensitivity (Gianaros et al., 2002), possibly due to changes in arterial distension and baroreceptor loading (Bonyhay et al., 1996; Lage et al., 1993). Therefore it is possible that increased CIMT influences blood pressure regulation in PCOS. In addition, CIMT was positively correlated with levels of several androgens in PCOS (Luque-Ramírez et al., 2007), suggesting that androgens may contribute to elevated CIMT in PCOS.

Conclusions

Elevated blood pressure is a key risk factor driving excess cardiovascular risk in PCOS. Case-control studies now show that individuals with PCOS exhibit some of the same changes in blood pressure regulation that occur in other cohorts at risk of hypertension, including endothelial dysfunction, sympathetic nervous system activation, RAAS activation and arterial stiffening. Meanwhile, other aspects of blood pressure control have not yet been adequately studied in PCOS (sympathetic neurovascular transduction and vasoconstrictor tone). The vascular actions of testosterone have been well studied in preclinical experiments, and this body of work is often drawn upon to explain the findings of clinical studies in individuals with PCOS. Sometimes preclinical studies support the clinical evidence, for example in the over-activation of the sympathetic nervous system in PCOS (Maranon et al., 2015; Sverrisdóttir et al., 2008). Yet in other cases preclinical work profoundly disagrees with the observations from clinical studies, for example the vasodilatory and NO-promoting effects of testosterone in cellular and tissue studies (Yu et al., 2010) but the observed impairment in endothelial function in individuals with PCOS (Sprung et al., 2013). These discrepancies highlight the need for a more nuanced understanding of the role of androgens in PCOS. In particular we believe there is a need for more detailed consideration of whether preclinical work is modelling hyperandrogenism in physiologically relevant terms for PCOS (i.e. a chronic, female exposure to androgens at the physiological concentrations that occur in PCOS (not at male levels)). Furthermore, as there is now evidence that high testosterone has different effects on metabolic disease risk in males and females (Ruth et al., 2020), researchers may need to be cautious when using data or samples from male participants to understand the actions of androgens on the vasculature in PCOS. As mechanistic (rather than observational) human studies of PCOS begin to emerge (Berbrier et al., 2023; Stone et al., 2023), a better understanding of the preclinical evidence on androgens and blood pressure will help to inform the design of clinical work. Given the early age at which individuals with PCOS are exposed to increased cardiovascular risk, understanding the pathophysiological mechanisms in this cohort is crucial in identifying strategies to mitigate this risk and improving outcomes for such a considerable proportion of the female population.

References

- Abacioglu, O. O., Gulumsek, E., Sumbul, H., Kaplan, M., & Yavuz, F. (2021). Increased pulmonary arterial stiffness and impaired right ventricle-pulmonary artery coupling In PCOS. *Arquivos Brasileiros De Cardiologia*, **116**, 806–811.
- Alphan, Z., Berberoglu, Z., Gorar, S., Candan, Z., Aktas, A., Aral, Y., & Ademoglu, E. (2013). Increased total Renin levels but not angiotensin-converting enzyme activity in obese patients with polycystic ovary syndrome. *Medical Principles and Practice*, **22**, 475–479.
- Amiri, M., Ramezani Tehrani, F., Behboudi-Gandevani, S., Bidhendi-Yarandi, R., & Carmina, E. (2020). Risk of hypertension in women with polycystic ovary syndrome: A systematic review, meta-analysis and meta-regression. *Reproductive Biology and Endocrinology: RB&E*, **18**(1), 23.
- Arefi, S., Mottaghi, S., & Sharifi, A. M. (2013). Studying the correlation of renin-angiotensin-system (RAS) components and insulin resistance in polycystic ovary syndrome (PCOs). *Gynecological Endocrinology*, **29**(5), 470–473.
- Baltatu, O., Cayla, C., Iliescu, R., Andreev, D., & Bader, M. (2003). Abolition of end-organ damage by antiandrogen treatment in female hypertensive transgenic rats. *Hypertension*, 41(3), 830–833.
- Baron, A. D. (1994). Hemodynamic actions of insulin. *American Journal of Physiology*, **267**, E187-202.
- Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., De Ferranti, S. D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C. R., Jiménez, M. C., Jordan, L. C., Judd, S. E., Lackland, D., Lichtman, J. H., Lisabeth, L., Liu, S., Longenecker, C. T., ... American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2017). Heart Disease and Stroke statistics-2017 update A report from the American Heart Association. *Circulation*, 135(10), E146-E603.

- Berbrier, D. E., Leone, C. A., Adler, T. E., Bender, J. R., Taylor, H. S., Stachenfeld, N. S., & Usselman, C. W. (2023). Effects of androgen excess and body mass index on endothelial function in women with polycystic ovary syndrome. *Journal of Applied Physiology*, **134**(4), 868–878.
- Berni, T. R., Morgan, C. L., & Rees, D. A. (2021). Women with polycystic ovary syndrome have an increased risk of major cardiovascular events: A population study. *Journal of Clinical Endocrinology and Metabolism*, **106**(9), e3369-e3380.
- Bernuci, M. P., Leite, C. M., Barros, P., Kalil, B., Leoni, G. B., Del Bianco-Borges, B., Franci, C. R., Szawka, R. E., Lara, H. E., & Anselmo-Franci, J. A. (2013). Transitory activation of the central and ovarian norepinephrine systems during cold stress-induced polycystic ovary in rats. *Journal of Neuroendocrinology*, 25(1), 23–33.
- Bernuci, M. P., Szawka, R. E., Helena, C. V., Leite, C. M., Lara, H. E., & Anselmo-Franci, J. A. (2008). Locus coeruleus mediates cold stress-induced polycystic ovary in rats. *Endocrinology*, **149**(6), 2907–2916.
- Bienenfeld, A., Azarchi, S., Lo Sicco, K., Marchbein, S., Shapiro, J., & Nagler, A. R. (2019). Androgens in women: Androgen-mediated skin disease and patient evaluation. *Journal of the American Academy of Dermatology*, **80**(6), 1497–1506.
- Bonyhay, I., Jokkel, G., & Kollai, M. (1996). Relation between baroreflex sensitivity and carotid artery elasticity in healthy humans. *American Journal of Physiology*, **271**, H1139-1144.
- Briant, L. J., Burchell, A. E., Ratcliffe, L. E., Charkoudian, N., Nightingale, A. K., Paton, J. F., Joyner, M. J., & Hart, E. C. (2016). Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: Insights into sex, ageing and blood pressure control. *The Journal of Physiology*, **594**(17), 4753–4768.
- Brunner, H., Cockcroft, J. R., Deanfield, J., Donald, A., Ferrannini, E., Halcox, J., Kiowski, W., LuScher, T. F., Mancia, G., Natali, A., Oliver, J. J., Pessina, A. C., Rizzoni, D., Rossi, G. P., Salvetti, A., Spieker, L. E., Taddei, S., Webb, D. J., & Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension (2005). Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the working group on endothelins and endothelial factors of the European Society of Hypertension. *Journal of Hypertension*, 23(2), 233–246.
- Burlá, M., Cunha, A. R., Gismondi, R., Oigman, W., Neves, M. F., & Medeiros, F. (2019). Endothelial dysfunction and pulse wave reflection in women with polycystic ovarian syndrome. *International Journal of Cardiovascular Sciences*, 32, 3–9.
- Burt, V. L., Whelton, P., Roccella, E. J., Brown, C., Cutler, J. A., Higgins, M., Horan, M. J., & Labarthe, D. (1995). Prevalence of hypertension in the us adult-population results from the 3rd national-health and nutrition examination survey, 1988–1991. *Hypertension*, **25**(3), 305–313.
- Carmina, E., Chu, M. C., Longo, R. A., Rini, G. B., & Lobo, R. A. (2005). Phenotypic variation in hyperandrogenic women influences the findings of abnormal metabolic and cardio-vascular risk parameters. *Journal of Clinical Endocrinology and Metabolism*, 90(5), 2545–2549.

- Cascella, T., Palomba, S., De Sio, I., Manguso, F., Giallauria, F., De Simone, B., Tafuri, D., Lombardi, G., Colao, A., & Orio, F. (2008). Visceral fat is associated with cardiovascular risk in women with polycystic ovary syndrome. *Human Reproduction*, 23(1), 153–159.
- Cascella, T., Palomba, S., Tauchmanovà, L., Manguso, F., Di Biase, S., Labella, D., Giallauria, F., Vigorito, C., Colao, A., Lombardi, G., & Orio, F. (2006). Serum aldosterone concentration and cardiovascular risk in women with polycystic ovarian syndrome. *Journal of Clinical Endocrinology and Metabolism*, **91**(11), 4395–4400.
- Celermajer, D. S. (1997). Endothelial dysfunction: Does it matter? Is it reversible? *Journal of the American College of Cardiology*, **30**(2), 325–333.
- Chen, M. J., Yang, W. S., Yang, J. H., Chen, C. L., Ho, H. N., & Yang, Y. S. (2007). Relationship between androgen levels and blood pressure in young women with polycystic ovary syndrome. *Hypertension*, **49**(6), 1442–1447.

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. Se the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. Se the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. Se the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. Se the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025].

onditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- Chiaffarino, F., Cipriani, S., Dalmartello, M., Ricci, E., Esposito, G., Fedele, F., La Vecchia, C., Negri, E., & Parazzini, F. (2022). Prevalence of polycystic ovary syndrome in European countries and USA: A systematic review and meta-analysis. *European Journal of Obstetrics & Gynecology and Reproductive Biology*, **279**, 159–170.
- Chinnathambi, V., Balakrishnan, M., Ramadoss, J., Yallampalli, C., & Sathishkumar, K. (2013). Testosterone alters maternal vascular adaptations: Role of the endothelial NO system. *Hypertension*, **61**(3), 647–654.
- Chinnathambi, V., Blesson, C. S., Vincent, K. L., Saade, G. R., Hankins, G. D., Yallampalli, C., & Sathishkumar, K. (2014). Elevated testosterone levels during rat pregnancy cause hypersensitivity to angiotensin II and attenuation of endothelium-dependent vasodilation in uterine arteries. *Hypertension*, **64**(2), 405–414.
- Chou, T. M., Sudhir, K., Hutchison, S. J., Ko, E., Amidon, T. M., Collins, P., & Chatterjee, K. (1996). Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. *Circulation*, 94(10), 2614–2619.
- Converse, A., & Thomas, P. (2021). Androgens promote vascular endothelial cell proliferation through activation of a ZIP9-dependent inhibitory G protein/PI3K-Akt/Erk/cyclin D1 pathway. *Molecular and Cellular Endocrinology*, **538**, 111461.
- Crews, J. K., & Khalil, R. A. (1999). Antagonistic effects of 17 beta-estradiol, progesterone, and testosterone on Ca2+ entry mechanisms of coronary vasoconstriction. *Arteriosclerosis, Thrombosis, and Vascular Biology*, **19**(4), 1034–1040.
- Cussons, A. J., Watts, G. F., & Stuckey, B. G. (2009).

 Dissociation of endothelial function and arterial stiffness in nonobese women with polycystic ovary syndrome (PCOS).

 Clinical Endocrinology, 71(6), 808–814.
- Dampney, R. A., Goodchild, A. K., & Tan, E. (1985). Vasopressor neurons in the rostral ventrolateral medulla of the rabbit. *Journal of the Autonomic Nervous System*, **14**(3), 239–254.
- Dampney, R. A. L. (2016). Central neural control of the cardiovascular system: Current perspectives. *Advances in Physiology Education*, **40**(3), 283–296.

- Deanfield, J., Donald, A., Ferri, C., Giannattasio, C., Halcox, J., Halligan, S., Lerman, A., Mancia, G., Oliver, J. J., Pessina, A. C., Rizzoni, D., Rossi, G. P., Salvetti, A., Schiffrin, E. L., Taddei, S., Webb, D. J., & Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. (2005). Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: A statement by the working group on endothelin and endothelial factors of the European Society of Hypertension. *Journal of Hypertension*, **23**(1), 7–17.
- Dernellis, J., & Panaretou, M. (2005). Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. *Hypertension*, **45**(3), 426–431.
- Deswal, R., Narwal, V., Dang, A., & Pundir, C. S. (2020). The prevalence of polycystic Ovary Syndrome: A brief systematic review. *Journal of Human Reproductive Sciences*, 13, 261–271.
- Deswal, R., Yadav, A., & Dang, A. S. (2018). Sex hormone binding globulin an important biomarker for predicting PCOS risk: A systematic review and meta-analysis. *Systems Biology in Reproductive Medicine*, **64**(1), 12–24.
- Diamanti-Kandarakis, E., Alexandraki, K., Piperi, C., Protogerou, A., Katsikis, I., Paterakis, T., Lekakis, J., & Panidis, D. (2006). Inflammatory and endothelial markers in women with polycystic ovary syndrome. *European Journal of Clinical Investigation*, **36**(10), 691–697.
- Diamanti-Kandarakis, E., Spina, G., Kouli, C., & Migdalis, I. (2001). Increased endothelin-1 levels in women with polycystic ovary syndrome and the beneficial effect of metformin therapy. *Journal of Clinical Endocrinology and Metabolism*, **86**(10), 4666–4673.
- Dokras, A., Jagasia, D. H., Maifeld, M., Sinkey, C. A., VanVoorhis, B. J., & Haynes, W. G. (2006). Obesity and insulin resistance but not hyperandrogenism mediates vascular dysfunction in women with polycystic ovary syndrome. *Fertility and Sterility*, **86**(6), 1702–1709.
- Ferreira, J. P., Girerd, N., Bozec, E., Machu, J. L., Boivin, J. M., London, G. M., Zannad, F., & Rossignol, P. (2016). Intima-Media thickness is linearly and continuously associated with systolic blood pressure in a population-based cohort (STANISLAS Cohort Study). *Journal of the American Heart Association*, 5(6),
- Fisher, J. P., Young, C. N., & Fadel, P. J. (2009). Central sympathetic overactivity: Maladies and mechanisms. *Autonomic Neuroscience*, **148**(1–2), 5–15.
- Foradori, C. D., Weiser, M. J., & Handa, R. J. (2008). Non-genomic actions of androgens. *Frontiers in Neuro-endocrinology*, **29**(2), 169–181.
- Franik, G., Bizoń, A., Szynkaruk-Matusiak, M., Osowska, K., Dryś, A., Olszanecka-Glinianowicz, M., & Madej, P. (2021). The association between 24-hour ambulatory blood pressure measurement and selected biochemical and anthropometric parameters in women with polycystic ovary syndrome. *European Review for Medical and Pharmacological Sciences*, **25**, 3947–3954.
- Fu, L., Xie, N., Qu, F., Zhou, J., & Wang, F. (2023). The association between polycystic ovary syndrome and metabolic syndrome in adolescents: A systematic review and meta-analysis. *Reproductive Sciences*, **30**(1), 28–40.

- Gallo, G., Volpe, M., & Savoia, C. (2021). Endothelial dysfunction in hypertension: Current concepts and clinical implications. *Frontiers of Medicine (Lausanne)*, **8**, 798958.
- Gencer, M., Gazi, E., Hacıvelioğlu, S., Binnetoğlu, E., Barutçu, A., Türkön, H., Temiz, A., Altun, B., Vural, A., Cevizci, S., Kumcular, T., & Coşar, E. (2014). The relationship between subclinical cardiovascular disease and lipocalin-2 levels in women with PCOS. *European Journal of Obstetrics*, *Gynecology, and Reproductive Biology*, **181**, 99–103.
- Gianaros, P. J., Jennings, J. R., Olafsson, G. B., Steptoe, A., Sutton-Tyrrell, K., Muldoon, M. F., & Manuck, S. B. (2002). Greater intima–media thickness in the carotid bulb is associated with reduced baroreflex sensitivity*. *American Journal of Hypertension*, **15**(6), 486–491.
- Girardet, C., & Butler, A. A. (2014). Neural melanocortin receptors in obesity and related metabolic disorders. *Biochimica et biophysica acta*, **1842**(3), 482–494.
- Goglia, L., Tosi, V., Sanchez, A. M., Flamini, M. I., Fu, X. D., Zullino, S., Genazzani, A. R., & Simoncini, T. (2010). Endothelial regulation of eNOS, PAI-1 and t-PA by testosterone and dihydrotestosterone in vitro and in vivo. *Molecular Human Reproduction*, 16(10), 761–769.
- Grassi, G., Pisano, A., Bolignano, D., Seravalle, G., D'arrigo, G., Quarti-Trevano, F., Mallamaci, F., Zoccali, C., & Mancia, G. (2018). Sympathetic nerve traffic activation in essential hypertension and its correlates: Systematic reviews and meta-analyses. *Hypertension*, 72(2), 483–491.
- Grassi, G., Seravalle, G., Brambilla, G., Pini, C., Alimento, M., Facchetti, R., Spaziani, D., Cuspidi, C., & Mancia, G. (2014). Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. *International Journal of Cardiology*, 177(3), 1020–1025.
- Greenfield, J. R., Miller, J. W., Keogh, J. M., Henning, E., Satterwhite, J. H., Cameron, G. S., Astruc, B., Mayer, J. P., Brage, S., See, T. C., Lomas, D. J., O'Rahilly, S., & Farooqi, I. S. (2009). Modulation of blood pressure by central melanocortinergic pathways. *New England Journal of Medicine*, **360**(1), 44–52.
- Gu, D., Reynolds, K., Wu, X., Chen, J., Duan, X., Muntner, P., Huang, G., Reynolds, R. F., Su, S., Whelton, P. K., & He, J. (2002). Prevalence, awareness, treatment, and control of hypertension in China. *Hypertension*, 40(6), 920–927.
- Hacıhanefioglu, B., Seyisoglu, H., Karsıdag, K., Elter, K., Aksu, F., Yılmaz, T., & Gurol, A. O. (2000). Influence of insulin resistance on total renin level in normotensive women with polycystic ovary syndrome. *Fertility and Sterility*, **73**(2), 261–265.
- Hart, E. C., Charkoudian, N., Wallin, B. G., Curry, T. B.,
 Eisenach, J., & Joyner, M. J. (2011). Sex and ageing
 differences in resting arterial pressure regulation:
 The role of the beta-adrenergic receptors. *Journal of Physiology-London*, 589(21), 5285–5297.
- Hashim, Z. H., Hamdan, F. B., & Al-Salihi, A. R. (2015). Autonomic dysfunction in women with polycystic ovary syndrome. *Iranian Journal of Reproductive Medicine*, **13**, 27–34.
- Hirschberg, A. L. (2023). Hyperandrogenism and cardiometabolic risk in pre- and postmenopausal women—What is the evidence? *The Journal of Clinical Endocrinology & Metabolism*, **109**, 1202–1213.

- Holte, J., Gennarelli, G., Berne, C., Bergh, T., & Lithell, H. (1996). Elevated ambulatory day-time blood pressure in women with polycystic ovary syndrome: A sign of a pre-hypertensive state? *Human Reproduction*, **11**(1), 23–28.
- Horton, A. C., Wilkinson, M. M., Kilanowski-Doroh, I., Dong, Z., Liu, J., Ogola, B. O., Visniauskas, B., & Lindsey, S. H. (2024). Dihydrotestosterone induces arterial stiffening in female mice. *Biology of Sex Differences*, **15**, 9.
- Hurliman, A., Keller Brown, J., Maille, N., Mandala, M., Casson, P., & Osol, G. (2015). Hyperandrogenism and insulin resistance, not changes in body weight, mediate the development of endothelial dysfunction in a female rat model of polycystic ovary syndrome (PCOS). *Endocrinology*, **156**(11), 4071–4080.
- Isidoro-García, L., Villalpando, D. M., & Ferrer, M. (2021). Vasomotor action of androgens in the mesenteric artery of hypertensive rats. Role of perivascular innervation. *PLoS ONE*, **16**(2), e0246254.
- Jaatinen, T. A., Matinlauri, I., Anttila, L., Koskinen, P., Erkkola, R., & Irjala, K. (1995). Serum total renin is elevated in women with polycystic ovarian syndrome. *Fertility and Sterility*, 63(5), 1000–1004.
- Jara, P., Rage, F., Dorfman, M., Grouselle, D., Barra, R., Arancibia, S., & Lara, H. E. (2010). Cold-induced glutamate release in vivo from the magnocellular region of the paraventricular nucleus is involved in ovarian sympathetic activation. *Journal of Neuroendocrinology*, 22(9), 979– 986.
- Ji, H., Niiranen, T. J., Rader, F., Henglin, M., Kim, A., Ebinger, J. E., Claggett, B., Merz, C. N. B., & Cheng, S. (2021). Sex differences in blood pressure associations with cardiovascular outcomes. *Circulation*, 143(7), 761–763.
- Joham, A. E., Boyle, J. A., Zoungas, S., & Teede, H. J. (2015). Hypertension in reproductive-aged women with polycystic ovary syndrome and association with obesity. *American Journal of Hypertension*, 28(7), 847–851.
- Kahn, C. R. (1985). The molecular mechanism of insulin action. *Annual Review of Medicine*, **36**(1), 429–451.
- Kanbour, S. A., & Dobs, A. S. (2022). Hyperandrogenism in women with polycystic Ovarian syndrome: Pathophysiology and controversies. *Androgens: Clinical Research and Therapeutics*, 3, 22–30.
- Kaya, M. G., Gunebakmaz, O., Zencir, C., Yilmazsoy, A.,
 Karadag, M., Topsakal, R., Ergin, A., & Kelestimur, F.
 (2010). An assessment of the elastic properties of the aorta in nonobese women with polycystic ovary syndrome.
 Fertility and Sterility, 94(6), 2402–2405.
- Kelly, C. J., Speirs, A., Gould, G. W., Petrie, J. R., Lyall, H., & Connell, J. M. (2002). Altered vascular function in young women with polycystic ovary syndrome. *Journal of Clinical Endocrinology and Metabolism*, 87(2), 742–746.
- Ketel, I. J., Stehouwer, C. D., Henry, R. M., Serné, E. H.,
 Hompes, P., Homburg, R., Smulders, Y. M., & Lambalk,
 C. B. (2010). Greater arterial stiffness in polycystic ovary syndrome (PCOS) is an obesity-but not a PCOS-associated phenomenon. *Journal of Clinical Endocrinology and Metabolism*, 95(10), 4566-4575.

- Ketel, I. J. G., Stehouwer, C. D. A., Serné, E. H., Korsen,
 T. J. M., Hompes, P. G. A., Smulders, Y. M., De Jongh,
 R. T., Homburg, R., & Lambalk, C. B. (2008). Obese
 but not normal-weight women with polycystic ovary
 syndrome are characterized by metabolic and microvascular
 insulin resistance. *Journal of Clinical Endocrinology and Metabolism*, 93(9), 3365–3372.
- Kilic, D., Kilic, I. D., Sevgican, C. I., Kilic, O., Alatas, E., Arslan, M., Avci, E., & Guler, T. (2021). Arterial stiffness measured by cardio-ankle vascular index is greater in non-obese young women with polycystic ovarian syndrome. *Journal of Obstetrics and Gynaecology Research*, 47(2), 521–528.
- Kim, J., Choi, S. Y., Park, B., Park, H. E., Lee, H., Kim, M. J., Kim, S. M., Hwang, K. R., & Choi, Y. M. (2019). Arterial stiffness measured by cardio-ankle vascular index in Korean women with polycystic ovary syndrome. *Journal of Obstetrics and Gynaecology*, **39**(5), 681–686.
- Kim, J. A., Montagnani, M., Koh, K. K., & Quon, M. J. (2006). Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. *Circulation*, 113(15), 1888–1904.

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Care Excellence on [17/11/2025]. See the Terms and Care Excellence on [17/11/2025]. See the Terms and Care Excellence on [17/11/2025]. See the Terms and Care Excellenc

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- King, A. J., Bari Olivier, N., Mohankumar, P. S., Lee, J. S., Padmanabhan, V., & Fink, G. D. (2007). Hypertension caused by prenatal testosterone excess in female sheep. American journal of physiology Endocrinology and metabolism, 292(6), E1837-E1841.
- Kneale, B. J., Chowienczyk, P. J., Brett, S. E., Coltart, D. J., & Ritter, J. M. (2000). Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. *Journal of the American College of Cardiology*, **36**(4), 1233–1238.
- Kravariti, M., Naka, K. K., Kalantaridou, S. N., Kazakos, N., Katsouras, C. S., Makrigiannakis, A., Paraskevaidis, E. A., Chrousos, G. P., Tsatsoulis, A., & Michalis, L. K. (2005). Predictors of endothelial dysfunction in young women with polycystic ovary syndrome. *Journal of Clinical End-ocrinology and Metabolism*, 90(9), 5088–5095.
- Krentowska, A., Łebkowska, A., Jacewicz-Święcka, M., Hryniewicka, J., Leśniewska, M., Adamska, A., & Kowalska, I. (2021). Metabolic syndrome and the risk of cardiovascular complications in young patients with different phenotypes of polycystic ovary syndrome. *Endocrine*, **72**(2), 400–410.
- Kumai, T., Tanaka, M., Watanabe, M., Nakura, H., & Kobayashi, S. (1995). Influence of androgen on tyrosine hydroxylase mRNA in adrenal medulla of spontaneously hypertensive rats. *Hypertension*, **26**(1), 208–212.
- Lage, S. G., Polak, J. F., O'Leary, D. H., & Creager, M. A. (1993). Relationship of arterial compliance to baroreflex function in hypertensive patients. *American Journal of Physiology*, 265, H232-237.
- Lakhani, K., Yang, W., Dooley, A., El-Mahdi, E., Sundaresan, M., McLellan, S., Bruckdorfer, R., Leonard, A., Seifalian, A., & Hardiman, P. (2006). Aortic function is compromised in a rat model of polycystic ovary syndrome. *Human Reproduction*, **21**(3), 651–656.

- Lambert, E. A., Teede, H., Sari, C. I., Jona, E., Shorakae, S.,
 Woodington, K., Hemmes, R., Eikelis, N., Straznicky,
 N. E., De Courten, B., Dixon, J. B., Schlaich, M. P., &
 Lambert, G. W. (2015). Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance. *Clinical Endocrinology*, 83(6), 812–819.
- Lansdown, A. J., Warnert, E. A. H., Sverrisdóttir, Y., Wise, R. G., & Rees, D. A. (2019). Regional cerebral activation accompanies sympathoexcitation in women with polycystic Ovary syndrome. *The Journal of Clinical Endocrinology & Metabolism*, **104**, 3614–3623.
- Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P.,
 Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos,
 C., Wilkinson, I., & Struijker-Boudier, H. (2006). Expert consensus document on arterial stiffness: Methodological issues and clinical applications. *European Heart Journal*, 27(21), 2588–2605.
- Lewandowski, K. C., Komorowski, J., O'Callaghan, C. J., Tan, B. K., Chen, J., Prelevic, G. M., & Randeva, H. S. (2006). Increased circulating levels of matrix metalloproteinase-2 and -9 in women with the polycystic Ovary Syndrome. *The Journal of Clinical Endocrinology & Metabolism*, **91**, 1173–1177.
- Lewington, S., Clarke, R., Qizilbash, N., Peto, R., & Collins, R. (2002). Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. *The Lancet*, 360, 1903–1913.
- Li, T., Mo, H., Chen, W., Li, L., Xiao, Y., Zhang, J., Li, X., & Lu, Y. (2017). Role of the PI3K-akt signaling pathway in the pathogenesis of polycystic Ovary syndrome. *Reproductive Sciences*, **24**(5), 646–655.
- López-Canales, O., Castillo-Hernández, M. D. C., Vargas-Robles, H., Rios, A., López-Canales, J., & Escalante, B. (2018). Androgens mediate beta-adrenergic vasorelaxation impairment using adenylyl cyclase. *Journal of Cardiovascular Pharmacology*, 71(3), 147–154.
- Lorigo, M., Mariana, M., Lemos, M. C., & Cairrao, E. (2020). Vascular mechanisms of testosterone: The non-genomic point of view. *The Journal of Steroid Biochemistry and Molecular Biology*, **196**, 105496.
- Lucas-Herald, A. K., Alves-Lopes, R., Montezano, A. C., Ahmed, S. F., & Touyz, R. M. (2017). Genomic and non-genomic effects of androgens in the cardiovascular system: Clinical implications. *Clinical Science*, **131**(13), 1405–1418.
- Lucas-Herald, A. K., & Touyz, R. M. (2022). Androgens and androgen receptors as determinants of vascular sex differences across the lifespan. *The Canadian Journal of Cardiology*, 38(12), 1854–1864.
- Luque-Ramírez, M., Martí, D., Fernández-Durán, E., Alpañés, M., Álvarez-Blasco, F., & Escobar-Morreale, H. F. (2014). Office blood pressure, ambulatory blood pressure monitoring, and echocardiographic abnormalities in women with polycystic ovary syndrome: Role of obesity and androgen excess. *Hypertension*, **63**(3), 624–629.

- Luque-Ramirez, M., Mendieta-Azcona, C., Alvarez-Blasco, F., & Escobar-Morreale, H. F. (2007). Androgen excess is associated with the increased carotid intima-media thickness observed in young women with polycystic ovary syndrome. *Human Reproduction*, **22**(12), 3197–3203.
- Maranon, R., Lima, R., Spradley, F. T., do Carmo, J. M., Zhang, H., Smith, A. D., Bui, E., Thomas, R. L., Moulana, M., Hall, J. E., Granger, J. P., & Reckelhoff, J. F. (2015). Roles for the sympathetic nervous system, renal nerves, and CNS melanocortin-4 receptor in the elevated blood pressure in hyperandrogenemic female rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 308(8), R708-R713.
- Maruhashi, T., Soga, J., Fujimura, N., Idei, N., Mikami, S., Iwamoto, Y., Kajikawa, M., Matsumoto, T., Hidaka, T., Kihara, Y., Chayama, K., Noma, K., Nakashima, A., Goto, C., Tomiyama, H., Takase, B., Yamashina, A., & Higashi, Y. (2013). Relationship between flow-mediated vasodilation and cardiovascular risk factors in a large community-based study. *Heart*, **99**(24), 1837–1842.
- Mazzuca, M. Q., & Khalil, R. A. (2012). Vascular endothelin receptor type B: Structure, function and dysregulation in vascular disease. *Biochemical Pharmacology*, **84**(2), 147–162.
- McConnaughey, M. M., & Iams, S. G. (1993). Sex hormones change adrenoceptors in blood vessels of the spontaneously hypertensive rat. *Clinical and Experimental Hypertension*, **15**(1), 153–170.
- McEvoy, J. W., McCarthy, C. P., Bruno, R. M., Brouwers, S., Canavan, M. D., Ceconi, C., Christodorescu, R. M., Daskalopoulou, S. S., Ferro, C. J., Gerdts, E., Hanssen, H., Harris, J., Lauder, L., McManus, R. J., Molloy, G. J., Rahimi, K., Regitz-Zagrosek, V., Rossi, G. P., Sandset, E. C., ... Group, E. S. D. (2024). 2024 ESC Guidelines for the management of elevated blood pressure and hypertension: Developed by the task force on the management of elevated blood pressure and hypertension of the European Society of Cardiology (ESC) and endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO). European Heart Journal, 45, 3912–4018.
- Medina, D., Mehay, D., & Arnold, A. C. (2020). Sex differences in cardiovascular actions of the renin-angiotensin system. *Clinical Autonomic Research*, **30**(5), 393–408.
- Mellembakken, J. R., Mahmoudan, A., Mørkrid, L., Sundström-Poromaa, I., Morin-Papunen, L., Tapanainen, J. S., Piltonen, T. T., Hirschberg, A. L., Stener-Victorin, E., Vanky, E., Ravn, P., Jensen, R. C., Andersen, M. S., & Glintborg, D. (2021). Higher blood pressure in normal weight women with PCOS compared to controls. *Endocrine Connections*, **10**(2), 154–163.
- Meyer, C., McGrath, B. P., & Teede, H. J. (2005). Overweight women with polycystic ovary syndrome have evidence of subclinical cardiovascular disease. *Journal of Clinical Endocrinology and Metabolism*, **90**(10), 5711–5716.
- Meyer, M. L., Malek, A. M., Wild, R. A., Korytkowski, M. T., & Talbott, E. O. (2012). Carotid artery intima-media thickness in polycystic ovary syndrome: A systematic review and meta-analysis. *Human Reproduction Update*, **18**(2), 112–126.

- Miller, A. J., & Arnold, A. C. (2019). The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. *Clinical Autonomic Research*, **29**(2), 231–243.
- Milner, T. A., Hernandez, F. J., Herrick, S. P., Pierce, J. P., Iadecola, C., & Drake, C. T. (2007). Cellular and subcellular localization of androgen receptor immunoreactivity relative to C1 adrenergic neurons in the rostral ventrolateral medulla of male and female rats. *Synapse*, **61**(5), 268–278.
- Mishra, J. S., Hankins, G. D., & Kumar, S. (2016). Testosterone downregulates angiotensin II type-2 receptor via androgen receptor-mediated ERK1/2 MAP kinase pathway in rat aorta. *Journal of the Renin-Angiotensin-Aldosterone System*, 17(4), 1470320316674875.
- Mishra, J. S., More, A. S., Hankins, G. D. V., & Kumar, S. (2017). Hyperandrogenemia reduces endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of female rats. *Biology of Reproduction*, **96**(6), 1221–1230.
- Molinari, C., Battaglia, A., Grossini, E., Mary, D. A., Vassanelli, C., & Vacca, G. (2002). The effect of testosterone on regional blood flow in prepubertal anaesthetized pigs. *The Journal of Physiology*, **543**(1), 365–372.
- Musalı, N., Özmen, B., Şükür, Y. E., Ergüder, B., Atabekoğlu, C. S., Sönmezer, M., Berker, B., & Aytaç, R. (2016).
 Follicular fluid norepinephrine and dopamine concentrations are higher in polycystic ovary syndrome.
 Gynecological Endocrinology, 32(6), 460–463.
- Natoli, A. K., Medley, T. L., Ahimastos, A. A., Drew, B. G., Thearle, D. J., Dilley, R. J., & Kingwell, B. A. (2005). Sex steroids modulate human aortic smooth muscle cell matrix protein deposition and matrix metalloproteinase expression. *Hypertension*, **46**(5), 1129–1134.
- Nestler, J. E., Jakubowicz, D. J., de Vargas, A. F., Brik, C., Quintero, N., & Medina, F. (1998). Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. *Journal of Clinical Endocrinology and Metabolism*, 83, 2001–2005.
- Ogola, B. O., Clark, G. L., Abshire, C. M., Harris, N. R., Gentry, K. L., Gunda, S. S., Kilanowski-Doroh, I., Wong, T. J., Visniauskas, B., Lawrence, D. J., Zimmerman, M. A., Bayer, C. L., Groban, L., Miller, K. S., & Lindsey, S. H. (2021). Sex and the G protein-coupled estrogen receptor impact vascular stiffness. *Hypertension*, **78**(1), e1-e14.
- Oh, Y. S., Berkowitz, D. E., Cohen, R. A., Figueroa, C. A., Harrison, D. G., Humphrey, J. D., Larson, D. F., Leopold, J. A., Mecham, R. P., Ruiz-Opazo, N., Santhanam, L., Seta, F., Shyy, J. Y. J., Sun, Z., Tsao, P. S., Wagenseil, J. E., & Galis, Z. S. (2017). A special report on the NHLBI initiative to study cellular and molecular mechanisms of arterial stiffness and its association with hypertension. *Circulation Research*, 121(11), 1216–1218.
- Oktanella, Y., Ismiawati, H., Zakaria, H., & Untari, H. (2024). Exploring blood pressure dynamics and oxidative stress markers in an animal model of polycystic ovary syndrome. *Open Veterinary Journal*, **14**(8), 1858.

- Orio, F., Jr., Palomba, S., Cascella, T., De Simone, B., Di Biase, S., Russo, T., Labella, D., Zullo, F., Lombardi, G., & Colao, A. (2004). Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome. *Journal of Clinical Endocrinology and Metabolism*, 89(9), 4588–4593.
- Orio, F., Muscogiuri, G., Nese, C., Palomba, S., Savastano, S., Tafuri, D., Colarieti, G., La Sala, G., Colao, A., & Yildiz, B. O. (2016). Obesity, type 2 diabetes mellitus and cardio-vascular disease risk: An uptodate in the management of polycystic ovary syndrome. *European Journal of Obstetrics, Gynecology, and Reproductive Biology,* **207**, 214–219.
- Padmanabhan, V., & Veiga-Lopez, A. (2013a). Animal models of the polycystic ovary syndrome phenotype. *Steroids*, **78**(8), 734–740.
- Padmanabhan, V., & Veiga-Lopez, A. (2013b). Sheep models of polycystic ovary syndrome phenotype. *Molecular and Cellular Endocrinology*, **373**(1–2), 8–20.

14697793, 2025, 10, Downloaded from https://physoconlinelibrary.wiley.com/doi/10.1113JP287288 by NICE, National Institute for Health and Care Excelence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.

nditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- Pan, X. (2023). Metabolic characteristics of obese patients with polycystic ovarian syndrome: A meta-analysis. *Gynecological Endocrinology*, **39**(1), 2239934.
- Paradisi, G., Steinberg, H. O., Hempfling, A., Cronin, J., Hook, G., Shepard, M. K., & Baron, A. D. (2001). Polycystic ovary syndrome is associated with endothelial dysfunction. *Circulation*, **103**(10), 1410–1415.
- Perusquía, M., Greenway, C. D., Perkins, L. M., & Stallone, J. N. (2015). Systemic hypotensive effects of testosterone are androgen structure-specific and neuronal nitric oxide synthase-dependent. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, **309**(2), R189-R195.
- Perusquía, M., Herrera, N., Jasso-Kamel, J., González, L., & Alejandre, N. (2023). Hyperandrogenism protects against high blood pressure by nongenomic mechanisms and obesity causes hypertension in females with polycystic ovary syndrome. *Endocrine Research*, **48**(4), 101–111.
- Perusquía, M., Navarrete, E., González, L., & Villalón, C. M. (2007). The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery. *Life Sciences*, **81**(12), 993–1002.
- Ras, R. T., Streppel, M. T., Draijer, R., & Zock, P. L. (2013).
 Flow-mediated dilation and cardiovascular risk prediction:
 A systematic review with meta-analysis. *International Journal of Cardiology*, 168(1), 344–351.
- Reckelhoff, J. F. (2019). Androgens and blood pressure control: Sex differences and mechanisms. *Mayo Clinic proceedings*, **94**, 536–543.
- Rees, E., Coulson, R., Dunstan, F., Evans, W. D., Blundell, H. L., Luzio, S. D., Dunseath, G., Halcox, J. P., Fraser, A. G., & Rees, D. A. (2014). Central arterial stiffness and diastolic dysfunction are associated with insulin resistance and abdominal obesity in young women but polycystic ovary syndrome does not confer additional risk. *Human Reproduction*, **29**(9), 2041–2049.
- Reis, D. J., Morrison, S., & Ruggiero, D. A. (1988). The C1 area of the brainstem in tonic and reflex control of blood pressure. State of the art lecture. *Hypertension*, **11**(2_pt_2), I8-13.

- Riedel, K., Deussen, A. J., Tolkmitt, J., Weber, S., Schlinkert, P., Zatschler, B., Friebel, C., Müller, B., El-Armouche, A., Morawietz, H., Matschke, K., & Kopaliani, I. (2019). Estrogen determines sex differences in adrenergic vessel tone by regulation of endothelial beta-adrenoceptor expression. *American Journal of Physiology-Heart and Circulatory Physiology*, **317**(2), H243-H254.
- Riquelme, R., Ruz, F., Mayerhofer, A., & Lara, H. E. (2021). Huperzine-A administration recovers rat ovary function after sympathetic stress. *Journal of Neuroendocrinology*, 33(1), e12914.
- Rotterdam. (2004). ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). *Human Reproduction*, **19**(1), 41–47.
- Rowell, K. O., Hall, J., Pugh, P. J., Jones, T. H., Channer, K. S., & Jones, R. D. (2009). Testosterone acts as an efficacious vasodilator in isolated human pulmonary arteries and veins: Evidence for a biphasic effect at physiological and supra-physiological concentrations. *Journal of Endocrinological Investigation*, **32**(9), 718–723.
- Ruamyod, K., Watanapa, W. B., & Shayakul, C. (2017). Testosterone rapidly increases Ca(2+)-activated K(+) currents causing hyperpolarization in human coronary artery endothelial cells. *The Journal of Steroid Biochemistry and Molecular Biology*, **168**, 118–126.
- Ruth, K. S., Day, F. R., Tyrrell, J., Thompson, D. J., Wood, A. R., Mahajan, A., Beaumont, R. N., Wittemans, L., Martin, S., Busch, A. S., Erzurumluoglu, A. M., Hollis, B., O'mara, T. A., Mccarthy, M. I., Langenberg, C., Easton, D. F., Wareham, N. J., Burgess, S., Murray, A., ... The Endometrial Cancer Association C. (2020). Using human genetics to understand the disease impacts of testosterone in men and women. *Nature Medicine*, **26**(2), 252–258.
- Sahu, A., Kalra, S. P., Crowley, W. R., & Kalra, P. S. (1989). Testosterone raises neuropeptide-Y concentration in selected hypothalamic sites and in vitro release from the medial basal hypothalamus of castrated male rats*. *Endocrinology*, **124**(1), 410–414.
- Sakaue, M., & Hoffman, B. B. (1991). Glucocorticoids induce transcription and expression of the alpha 1B adrenergic receptor gene in DTT1 MF-2 smooth muscle cells. *Journal of Clinical Investigation*, **88**(2), 385–389.
- Saleh, M. C., Connell, B. J., & Saleh, T. M. (2000). Autonomic and cardiovascular reflex responses to central estrogen injection in ovariectomized female rats. *Brain Research*, **879**(1–2), 105–114.
- Sasaki, A., Emi, Y., Matsuda, M., Sharula, Kamada, Y., Chekir, C., Hiramatsu, Y., & Nakatsuka, M. (2011). Increased arterial stiffness in mildly-hypertensive women with polycystic ovary syndrome. *Journal of Obstetrics and Gynaecology Research*, 37(5), 402–411.
- Schrör, K., Morinelli, T. A., Masuda, A., Matsuda, K., Mathur, R. S., & Halushka, P. V. (1994). Testosterone treatment enhances thromboxane A2 mimetic induced coronary artery vasoconstriction in guinea pigs. *European Journal of Clinical Investigation*, **24**(Suppl S1), 50–52.

- Seyrek, M., Yildiz, O., Ulusoy, H. B., & Yildirim, V. (2007). Testosterone relaxes isolated human radial artery by potassium channel opening action. *Journal of Pharmacological Sciences*, **103**(3), 309–316.
- Shi, D., & Vine, D. F. (2012). Animal models of polycystic ovary syndrome: A focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk. *Fertility and Sterility*, **98**(1), 185–193.e2. e182.
- Shorakae, S., Ranasinha, S., Abell, S., Lambert, G., Lambert, E., de Courten, B., & Teede, H. (2018). Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. *Clinical Endocrinology*, **89**, 628–633.
- Soares, G. M., Vieira, C. S., Martins, W. P., Franceschini, S. A., Dos Reis, R. M., Silva de Sá, M. F., & Ferriani, R. A. (2009). Increased arterial stiffness in nonobese women with polycystic ovary syndrome (PCOS) without comorbidities: One more characteristic inherent to the syndrome?. *Clinical Endocrinology*, **71**(3), 406–411.
- Sohn, J. W., Harris, L. E., Berglund, E. D., Liu, T., Vong, L.,
 Lowell, B. B., Balthasar, N., Williams, K. W., & Elmquist, J.
 K. (2013). Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons.
 Cell, 152, 612–619.
- Sorensen, M. B., Franks, S., Robertson, C., Pennell, D. J., & Collins, P. (2006). Severe endothelial dysfunction in young women with polycystic ovary syndrome is only partially explained by known cardiovascular risk factors. *Clinical Endocrinology*, **65**, 655–659.
- Soyman, Z., Noyan, V., Tulmac, M., Yucel, A., Sagsoz, N., Bayrak, T., Bayrak, A., & Cakir, E. (2011). Serum paraoxonase 1 activity, asymmetric dimethylarginine levels, and brachial artery flow-mediated dilatation in women with polycystic ovary syndrome. *Fertility and Sterility*, **95**, 1067–1072.
- Sprung, V. S., Atkinson, G., Cuthbertson, D. J., Pugh, C. J., Aziz, N., Green, D. J., Cable, N. T., & Jones, H. (2013). Endothelial function measured using flow-mediated dilation in polycystic ovary syndrome: A meta-analysis of the observational studies. *Clinical Endocrinology*, 78, 438–446.
- Sprung, V. S., Jones, H., Pugh, C. J., Aziz, N. F., Daousi, C., Kemp, G. J., Green, D. J., Cable, N. T., & Cuthbertson, D. J. (2014). Endothelial dysfunction in hyperandrogenic polycystic ovary syndrome is not explained by either obesity or ectopic fat deposition. *Clinical Science*, 126, 67–74.
- Stachenfeld, N. S., Yeckel, C. W., & Taylor, H. S. (2010). Greater exercise sweating in obese women with polycystic ovary syndrome compared with obese controls. *Medicine and Science in Sports and Exercise*, **42**, 1660–1668.
- Stanhewicz, A. E., Wenner, M. M., & Stachenfeld, N. S. (2018). Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. *American Journal of Physiology-Heart and Circulatory Physiology*, **315**, H1569-H1588.
- Stone, T., Yanes Cardozo, L. L., Oluwatade, T. N., Leone, C. A., Burgos, M., Okifo, F., Pal, L., Reckelhoff, J. F., & Stachenfeld, N. S. (2023). Testosterone-associated blood pressure dysregulation in women with androgen excess polycystic ovary syndrome. *American Journal of Physiology-Heart and Circulatory Physiology*, 325, H232-h243.

- Sudhir, K., Jennings, G. L., Funder, J. W., & Komesaroff, P. A. (1996). Estrogen enhances basal nitric oxide release in the forearm vasculature in perimenopausal women. *Hypertension*, 28, 330–334.
- Sun, D., Wu, Y., Ding, M., & Zhu, F. (2022). Comprehensive meta-analysis of functional and structural markers of subclinical atherosclerosis in women with polycystic ovary Syndrome. *Angiology*, **73**, 622–634.
- Sverrisdóttir, Y. B., Mogren, T., Kataoka, J., Janson, P. O., & Stener-Victorin, E. (2008). Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? *American journal of Physiology Endocrinology and metabolism*, **294**, E576-581.
- Talbott, E. O., Guzick, D. S., Sutton-Tyrrell, K.,
 McHugh-Pemu, K. P., Zborowski, J. V., Remsberg, K.
 E., & Kuller, L. H. (2000). Evidence for association
 between polycystic ovary syndrome and premature carotid
 atherosclerosis in middle-aged women. *Arteriosclerosis*, *Thrombosis*, and Vascular Biology, 20, 2414–2421.
- Tarkun, I., Arslan, B. C., Canturk, Z., Turemen, E., Sahin, T., & Duman, C. (2004). Endothelial dysfunction in young women with polycystic ovary syndrome: Relationship with insulin resistance and low-grade chronic inflammation. *Journal of Clinical Endocrinology and Metabolism*, 89, 5592–5596.
- te Riet, L., van Esch, J. H. M., Roks, A. J. M., van den Meiracker, A. H., & Danser, A. H. J. (2015). Hypertension. *Circulation Research*, **116**, 960–975.
- Teede, H. J., Tay, C. T., Laven, J. J. E., Dokras, A., Moran,
 L. J., Piltonen, T. T., Costello, M. F., Boivin, J., Redman,
 L. M., Boyle, J. A., Norman, R. J., Mousa, A., & Joham,
 A. E. (2023). Recommendations from the 2023 International evidence-based Guideline for the assessment and management of polycystic Ovary syndrome. *Journal of Clinical Endocrinology and Metabolism*, 108, 2447–2469.
- Tep-areenan, P., Kendall, D. A., & Randall, M. D. (2002). Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. *British Journal of Pharmacology*, **135**, 735–740.
- Torres Fernandez, E. D., Adams, K. V., Syed, M., Maranon,
 R. O., Romero, D. G., & Yanes Cardozo, L. L. (2018).
 Long-lasting androgen-induced cardiometabolic effects in polycystic ovary syndrome. *Journal of the Endocrine Society*,
 2, 949–964.
- Usselman, C. W., Coovardia, Y., & Adler, T. E. (2019).
 Sympathetic reactivity in lean individuals with polycystic ovary syndrome. In *Canadian Society for Exercise Physiology 52nd Annual General Meeting*, pp. S112. Applied Physiology, Nutrition and Metabolism.
- Usselman, C. W., Yarovinsky, T. O., Steele, F. E., Leone, C. A., Taylor, H. S., Bender, J. R., & Stachenfeld, N. S. (2019). Androgens drive microvascular endothelial dysfunction in women with polycystic ovary syndrome: Role of the endothelin B receptor. *The Journal of Physiology*, 597, 2853–2865.
- Utkan Korun, Z. E., Gocmez, S. S., Furat Rencber, S., Kavram Sarıhan, K., Eraldemir, F. C., & Sahin, D. (2024). Etanercept ameliorates vascular, endocrine, and ovarian changes in a rat model of DHEA-induced polycystic ovary syndrome. *Reproductive Sciences*, **31**, 714–726.

- Van Bortel, L. M., Laurent, S., Boutouyrie, P., Chowienczyk, P., Cruickshank, J. K., De Backer, T., Filipovsky, J., Huybrechts, S., Mattace-Raso, F. U., Protogerou, A. D., Schillaci, G., Segers, P., Vermeersch, S., & Weber, T. (2012). Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. *Journal of Hypertension*, 30(3), 445–448.
- Vine, D., Ghosh, M., Wang, T., & Bakal, J. (2024). Increased prevalence of adverse health outcomes across the lifespan in those affected by polycystic ovary syndrome: A Canadian population cohort. *Canadian Journal of Cardiology Open*, **6**(2), 314–326.
- Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. *Journal of the American College of Cardiology*, 55(13), 1318–1327.
- Walters, K. A., Allan, C. M., & Handelsman, D. J. (2012). Rodent models for Human polycystic Ovary Syndrome1. *Biology of Reproduction*, **86**(149), 141-112.

14697793, 2025, 10, Davanloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113/P287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley

onditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- Walters, K. A., Bertoldo, M. J., & Handelsman, D. J. (2018). Evidence from animal models on the pathogenesis of PCOS. Best Practice & Research Clinical Endocrinology & Metabolism, 32, 271–281.
- Wang, X., Carcel, C., Woodward, M., & Schutte, A. E. (2022). Blood pressure and stroke: A review of sex- and ethnic/racial-specific attributes to the epidemiology, pathophysiology, and management of raised Blood pressure. *Stroke*; *A Journal of Cerebral Circulation*, **53**(4), 1114–1133.
- Webb, C. M., McNeill, J. G., Hayward, C. S., de Zeigler, D., & Collins, P. (1999). Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. *Circulation*, **100**(16), 1690–1696.
- Wekker, V., van Dammen, L., Koning, A., Heida, K. Y., Painter, R. C., Limpens, J., Laven, J. S. E., Roeters van Lennep, J. E., Roseboom, T. J., & Hoek, A. (2020). Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis. *Human Reproduction Update*, 26(6), 942–960.
- Wenker, I. C., Abe, C., Viar, K. E., Stornetta, D. S., Stornetta, R. L., & Guyenet, P. G. (2017). Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: Effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia. *Journal of Neuroscience*, 37(17), 4565–4583.
- Wenner, M. M., Taylor, H. S., & Stachenfeld, N. S. (2013). Androgens influence microvascular dilation in PCOS through ET-A and ET-B receptors. American journal of Physiology Endocrinology and Metabolism, 305(7), E818-E825.
- White, M. C., Fleeman, R., & Arnold, A. C. (2019). Sex differences in the metabolic effects of the renin-angiotensin system. *Biology of Sex Differences*, **10**(1), 31.
- Wild, R. A., Rizzo, M., Clifton, S., & Carmina, E. (2011). Lipid levels in polycystic ovary syndrome: Systematic review and meta-analysis. Fertility and Sterility, 95(3), 1073–1079.e11.
- Worboys, S., Kotsopoulos, D., Teede, H., McGrath, B., & Davis, S. R. (2001). Evidence that parenteral testosterone therapy may improve endothelium-dependent and -independent vasodilation in postmenopausal women already receiving estrogen. *Journal of Clinical Endocrinology and Metabolism*, **86**(1), 158–161.

14697793, 2025, 10, Downloaded from https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP287288 by NICE, National Institute for Health and Care Excellence, Wiley Online Library on [17/1/1/2025]. See the Terms and Conditions

Yasmin, Wallace, S., McEniery, C. M., Dakham, Z., Pusalkar, P., Maki-Petaja, K., Ashby, M. J., Cockcroft, J. R., & Wilkinson, I. B. (2005). Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. *Arteriosclerosis, Thrombosis, and Vascular Biology*, **25**(2), 372–378.

Ye, W., Xie, T., Song, Y., & Zhou, L. (2021). The role of androgen and its related signals in PCOS. *Journal of Cellular and Molecular Medicine*, **25**(4), 1825–1837.

Young, B. E., Greaney, J. L., Keller, D. M., & Fadel, P. J. (2021). Sympathetic transduction in humans: Recent advances and methodological considerations. *American Journal of Physiology-Heart and Circulatory Physiology*, **320**(3), H942-H953.

Yu, J., Akishita, M., Eto, M., Ogawa, S., Son, B. K., Kato, S., Ouchi, Y., & Okabe, T. (2010). Androgen receptor-dependent activation of endothelial nitric oxide synthase in vascular endothelial cells: Role of phosphatidylinositol 3-kinase/akt pathway. *Endocrinology*, **151**(4), 1822–1828.

Additional information

Competing interests

The authors declare no competing interests.

Author contributions

All authors were responsible for concept and design of the work. Z.A., D.B., B.S., W.H. and C.R. drafted the manuscript. All authors revised the manuscript critically for important intellectual content. All authors approve the final version and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Funding

Z.A. is supported by an Academy of Medical Sciences Springboard Grant (SBF007\100 185, PI R.L.). D.B. is supported by Fonds de recherche du Québec – Santé (FRQS). C.R. is supported by The Waterloo Foundation (grant no. 515 818). W.H is supported by Canadian Institute of Health Research (CIHR).

Keywords

androgen, blood pressure, female, neurovascular, polycystic ovary syndrome, sympathetic

Supporting information

Additional supporting information can be found online in the Supporting Information section at the end of the HTML view of the article. Supporting information files available:

Peer Review History