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Malware injection attacks are among the most sophisticated and elusive threats in cybersecurity, characterised
by their capacity for privilege escalation, obfuscation, and the ability to deceive antivirus software. This paper
introduces a multi-layer architecture, featuring innovative deep neural networks, fast Fourier convolution, and
association rule mining strategies, designed for the early detection and defusal of malware injection attacks. We
then propose a proactive Al-enabled malware detection platform, DeepRadar, as a novel real-world defence
mechanism. This early warning functionality capable of anticipating the attack a few cycles before occurrence
represents a novel idea and unique approach to detecting malware injection attacks. The experimental results
validate DeepRadar’s superior performance compared to not only previous related studies but also a standard
benchmark of well-reputed antivirus applications under various scenarios and accredited datasets, including
heavily obfuscated emerging malware variants and adversarial samples. It demonstrates higher Accuracy, F-
score, ROC, and AUC metrics in early detection and classification of malware injection attacks while DeepRadar
consumes significantly fewer system resources, including processor and memory during long-term scalable
operation. The proposed early warning system succeeded in repelling up to 97.2% of attacks before malware
could complete their malicious sequence. Lastly, the evaluation results were substantiated by formal statistical
analysis using Friedman and Wilcoxon tests. The findings of this research and DeepRadar’s runtime scanner
provide vital early warnings against stealthy malware and injection attacks, offering robust protection for sen-
sitive systems and critical infrastructure.

1. Introduction

Modern cyber-attacks are complex, stealthy, and in some cases
backed by well-resourced organisations with expert teams and sub-
stantial budgets. Such advanced threats often evade detection and
neutralisation, even with state-of-the-art defensive strategies and tools
[1], particularly those that rely on predefined signatures or static be-
haviours, such as firewalls, intrusion detection systems (IDS), and
antivirus (AV) programs [2]. A 2025 study [3] reported that cyber in-
cidents impact roughly one-third, 32%, of companies across all sectors,
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underscoring the pervasive threat landscape. Consequently, cybercrime
has evolved into a complex ecosystem, with attackers moving from
isolated activities to sophisticated, coordinated operations. A significant
portion of recent cyber-attacks involves various types of malware, which
are responsible for about 90% of system failures [4]. According to the
data released by AV-Atlas,' more than 1.2 billion malware pieces were
detected as of the end of 2024 and the growth rate of malware for
Windows was 29 times faster than Android and 134 times faster than
Mac. This dramatic increase is attributed to the widespread availability
of obfuscation and metamorphic engines [5]. The severity of attacks is
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further complicated by the increasing sophistication, intelligence,
evasion, and target-specific nature of these malware programs [6,7].

One of the most prevalent techniques for concealing malware ac-
tivity involves injecting its code and libraries, including dynamic link
library (DLL) and System (Sys) files, into the executable memory of other
active programs. This approach allows the injected code to exploit the
privileges and signatures of the programs it infects. Moreover, sophis-
ticated new malware types use injection to deceive monitoring tools,
especially antivirus software, by distributing their destructive actions
across different running processes [8]. Injection attacks, including code
and library injection, query injection, and script injection [9], were
listed on the top ten cyber-attacks worldwide between 2017 and 2021,
according to OWASP.? For example, code injection, data injection, and
fault injection [10] have been widely disseminated in various systems,
such as wireless sensor networks, cyber-physical systems [11], smart
grids, and modern power plant systems [12].

Therefore, this research answers the following research questions:
What are the steps of a malware injection attack and how to formally
model the behaviour of injection attacks? How to accurately predict an
or multiple imminent injection attacks carried out by today’s extremely
obfuscated malware programs, before the attack steps are completed?
How to halt and defuse an early detected attack and protect the system
resources and processes against running attacks?

This paper introduces a novel cyber-defence system, DeepRadar,
designed for early and precise detection of malware injection attacks,
particularly targeting code injection and library injection. The key
contributions and novelties of this work are: (a) a novel trained model
for detecting injection attacks using deep neural networks that benefit
from fast Fourier convolution with a dedicated architecture, (b) incor-
porating a generative adversarial network to bridge the scarcity of the
number of rare malware, (c) an early warning system based on a trained
association rules mining algorithm to anticipate the injection attack a
few cycle before taking place, (d) a dynamic scanner that intervenes to
halt injection attacks that may have evaded initial detection and begun
their operation. This scanner acts as a final line of defence, ensuring
comprehensive protection. To the best of our knowledge, our proactive
early warning system is the first approach for accurate anticipation and
neutralisation of injection attacks in the literature, repelling up to 96%
of code and DLL injection attacks before they are completed.

This paper is organised as follows. Section 2 reviews the literature,
providing background on malware injection attacks and examining
related mitigation studies. Section 3 presents the proposed approach for
anticipating and early detecting such attacks. This includes training
various deep learning models, implementing rule mining, and intro-
ducing a novel neural network architecture, with all these components
integrated into DeepRadar, a runtime scanner. Section 4 rigorously
evaluates DeepRadar’s efficacy, performance, and efficiency under
various scenarios, comparing it from various perspectives to several
well-known solutions and real-world tools. Finally, Section 5 concludes
the paper and outlines future research directions.

2. Background and related work

Obfuscation techniques are widely used to manipulate control flow
and deceive anti-malware tools, including both static- and dynamic-
based malware detection methods [13]. In static detection, behaviour
analysis is performed without executing binary files stored on hard
drives. However, a dynamic analysis involves running malware binary
files or scanning memory-resident codes that are already running [14].
One of the most effective methods in obfuscation is distributing all or
part of the malicious code into the body of other benign programs and
then executing that malicious code under the cover of trusted programs.
This technique can deceive malware detection strategies by exploiting

2 Available on https://owasp.org/www-project-top-ten/
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the signatures and privileges of other programs, i.e., privilege escalation.
In such scenarios, each program may seem harmless in isolation, yet
collectively, they create a pattern indicative of malicious intent. This
form of malware is referred to as distributed malware [15]. This injec-
tion method is prevalent among advanced persistent threats (APTs) as it
allows the malware to remain anonymous for a long course of time [16,
17]. An APT attack is a long-term, covert intrusion targeting enterprises,
national infrastructure, or government departments, often leveraging
advanced techniques, hacker organisations, and state-sponsored re-
sources - areas where traditional defences face clear limitations. The
evolving nature of such attacks necessitates innovative approaches to
detection and attribution, with cyber threat intelligence (CTI) sharing
playing a crucial role in harnessing expert knowledge, enhancing in-
telligence, strengthening detection, and resisting network threats [18].
The attackers typically hold a time and resource advantage, placing
defenders in a passive position. Due to this information asymmetry,
defenders often lack visibility into the attacker before an APT attack,
while attackers can prepare by gathering intelligence on their targets
[19]. To bridge this gap, proactive deception defence mechanisms, such
as lightweight Honeypoint [20], can expose covert threats and APT
behaviours, underscoring the importance of integrating deception stra-
tegies into long-term cybersecurity defence.

A significant gap in related literature is the lack of detailed discussion
on the interception and analysis of distributed interactions among
running processes in cases involving this type of malware. Another way
to perpetuate a destructive system attack is by injecting a fake library
into the memory of a victim program at runtime. The primary objective
of library injection is to alter a program’s behaviour by redirecting and
obstructing system calls, thus hijacking its control flow [21]. The chal-
lenge becomes even more formidable when attackers employ obfusca-
tion strategies such as dead-code insertion, code encryption, packing,
polymorphism/metamorphism, and anti-debugging/sandboxing tech-
niques [22].

In a library injection attack, the first step is to inject a library con-
taining fake routines of system APIs into the memory of the victim
program. The injection process is performed using an injector tool. A
redirector stub then redirects the victim’s requests - created for access-
ing system APIs - to fake functions that are already loaded into the
victim’s process memory. The redirector stub completes the hooking
process by changing the addresses stored in the Import Address
Table (IAT). The IAT is a table in which the labels for system API calls,
references to memory locations, and the names of the modules that own
those functions are stored. A Linker program can call OS APIs by reading
their addresses from the IAT. Using this information, malware can
replace the original addresses with new ones that point to its own
functions already loaded into the memory of the victim program by the
injected library. Therefore, the victim program calls injected malicious
functions instead of the original OS functions. This is the process
through which a malware program can take over the execution of an
application and force it to execute a malicious code [23]. Infectors and
Binders are types of malware that use this strategy to distribute mali-
cious code among trusted processes [24,25].

2.1. Deep learning techniques in malware detection

Deep learning models, including, such as RNNs, CNNs, and GNNs,
stands as a core in malware detection, offering sophisticated methods for
both detection and analysing today’s extremely obfuscated malware
programs. DL models lie in the ability to automatically learn intricate
behavioural features and patterns from large-size and multi-dimensional
datasets of malware, going far beyond traditional signature-based
methods that struggle with evolving threats and are ineffective against
ever-increasing number of malware attacks nowadays. This capability to
adapt and recognise indicators of malicious behaviour provides a strong
foundation for malware detection using deep learning and artificial
neural networks. The field has been witnessing a surge in research and
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development, with plenty studies showcasing the effectiveness of deep
learning models in accurately detection and classification even previ-
ously unseen and zero-day malware [26]. A recent comprehensive sur-
vey by Song et al. [27] on the application of deep learning in malware
detection highlights the pressing need for advanced tools capable of
early detection of malware and its variants through behavioural pattern
analysis in large-scale malicious data, with deep learning offering sub-
stantial research potential in this domain. This survey categorises deep
learning models for malware detection into three main groups: (a) deep
learning algorithms, with CNNs leading the list followed by RNNs and
GANSs; (b) data augmentation techniques, such as the Synthetic Minority
Over-sampling Technique (SMOTE) and the Bat Algorithm-based
approach; and (c) imaging methods, including Image Vectorisation,
Mean Normalisation, and Hamming Distance, drawing on studies pub-
lished between 2018 and 2025.

However, despite this rapid progress and the substantial body of
research, significant challenges and open problems still remain. Mal-
ware programs, in particular stealth classes, continues to swiftly evolve,
employing increasingly sophisticated techniques like polymorphism and
metamorphism to evade detection [28]. A particularly pressing issue is
the rise of malware injection attacks, where malicious code is seamlessly
inserted into legitimate applications or processes. These attacks are
notoriously difficult to detect as they leverage trusted software to mask
their true nature. Addressing these evolving threats requires ongoing
research into more robust and adaptable machine learning and
Al-enabled models, capable of not only identifying known malware, but
also recognising the subtle anomalies indicative of injection attacks and
precisely predict them before they take place [29]. Another significant
challenge with deep learning models is their reliance on large datasets, a
limitation that becomes critical in the case of zero-day malware or rare
classes where only a few samples are available. This scarcity makes DL
models particularly vulnerable to such threats. To address this, Chai
et al. [30] introduced the concept of Few-Shot Learning (FSL), which
aims to learn effectively from limited examples in malware detection.
Inspired by the human ability to generalise new knowledge from only a
few experiences, the authors formalised malware detection as an FSL
problem, offering a novel perspective for tackling data scarcity. Never-
theless, FSL still faces two major challenges, including (a) catastrophic
forgetting, where newly acquired knowledge erodes previously learned
knowledge; and (b) decision boundary confusion, where repeated in-
cremental sessions weaken the model’s discriminative power. To
address these limitations, MalFSCIL [31] was later introduced as a novel
Few-Shot Class Incremental Learning framework. It combines a decou-
pled training strategy with a variational autoencoder to mitigate cata-
strophic forgetting and employs a class-prototype-based dynamic
boundary method to improve the accuracy of incremental decision
boundaries.

Furthermore, the computational cost, including memory and pro-
cessor utilisation, of training and deploying deep learning models in
real-world scenarios must be carefully considered and addressed.

2.2. Prior work

This section investigates and reflects on the strengths and limitations
of related studies, including those directly focused on the detection of
injection attacks and those that have developed malware detection ap-
proaches capable of identifying malware classes that include injection
attacks.

Korczynski and Yin introduced a unified automated approach using a
malware analysis environment called Tartarus [32]. The goal was to
trace and detect malware propagation and execution through OS and
inside the memory of benign processes by abstracting the execution
trace. This study intended to detect malware programs that used novel
code injection methods, code-reuse attacks, and dynamic code genera-
tion techniques. The results of experiments with real-world malware
samples showed improvements in the accuracy of detecting malware
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execution traces. They also claimed that their method was able to catch
intrinsic features in modern code injection attacks. However, this
approach only considers malware propagation within a single system,
meaning it is ineffective against malware that can spread through
networks—a behaviour commonly observed in modern ransomware
attacks. Additionally, since this method is based on QEMU virtualisation
technology, it is vulnerable to malware classes that can detect the
presence of QEMU, allowing them to conceal their malicious actions or
self-destruct.

Wei and Zhu presented an in-depth defensive framework they called
KQguard to address queue injection attacks at the OS kernel level [33].
Within this framework, kernel callback queues (KQs) are targeted by
malware for performing kernel queue injection (KQI) attacks. KQs are
used as a solution for event handling in recent OS kernels. The proposed
method utilised a hybrid static and dynamic analysis of device drivers at
the kernel space to learn the specifications of legitimate event handlers.
Their proposed strategy declined unknown KQ requests that could not
be verified at runtime. This strategy was effective for both Windows and
Linux kernels with low false positive (FP) and low false negative (FN)
rates when running about 1500 real-world kernel-level malware sam-
ples. However, KQguard provides protection against injection attacks
only on 32-bit operating systems, meaning it cannot be installed on the
more dominant 64-bit operating systems used today. Furthermore, the
system has been trained and tested on a limited sample of malware and
small datasets, making it unsuitable for scaling to handle today’s large,
multi-dimensional malware datasets.

Spoto et al. presented a method for recognising five different types of
injection attacks against Java applications and Android OS [34]. The
authors used abstract interpretation, a form of static analysis, as their
primary approach to detect and analyse the malicious code responsible
for injection behaviour. The detection accuracy was reported between
87% and 92%. One of the main limitations of this method is that it can
only detect injection attacks in programs developed in Java, making it
ineffective against malware samples written in other programming
languages.

Dai et al. proposed a novel detection method using a combination of
I/0 Request Packet (IRP) sequence features and local alignment algo-
rithms for recognising distributed malware [35]. In the first step, main
IRP requests were filtered and extracted from the OS. A comparison
between these requests and the malware’s IRP sequences was the pivotal
process for detecting the hidden pieces of distributed malware. Real
malware samples were used in this study, and the results demonstrated
that this approach was able to identify distributed malware with an
accuracy ranging from 86% to 93%, surpassing previously proposed
methods up to that point. However, since this method relies solely on
IRPs as features for behavioural modelling, it tends to produce a high
number of false positive errors, particularly when dealing with poly-
morphic malware that mimics the behaviour of benign applications.

Tyng Ling et al. proposed an ML-based method for identifying
metamorphic malware. Their algorithm relied on structural analysis of
statistical metrics and information-theoretic measures [36]. In this
study, several features such as Jaccard coefficient, entropy, compression
ratio, nonnegative matrix factorisation, and Chi-square tests were used
to represent the byte information of malware pieces. The experiments
indicated that the Jaccard coefficient could detect a metamorphic class
of malware, capable of injection attacks, designed for Windows OS with
an accuracy of 99.7% and an F-score of 99.5%. However, these figures
were obtained through evaluation on a dataset with a small number of
malware samples, and the scalability of this method has not been
demonstrated to show whether it is effective against today’s large and
multi-dimensional malware datasets.

Panker and Nissim in [37], designed a framework for detecting un-
seen malware and malware evasion techniques, including injection, in
Linux VM cloud environments. The authors collected volatile memory
dumps from the inspected VM by securely querying the hypervisor to
extract several behavioural features from over 218,000 samples across 9
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malware classes. Using machine learning (ML) and deep learning (DL)
classifiers, including LR, SVM, KNN, RF, and DNN, their proposed
framework successfully detected unseen malware with evasion capa-
bilities, achieving high true positive rates and low false positive rates.
However, since this work focuses on feature extraction at the hypervisor
level, it can only be deployed in virtualised environments. Additionally,
the volatile memory acquisition process requires briefly freezing the
VM, which may cause delays in client services. Another limitation is the
passive-based learning approach, which lacks real-time malware scan-
ning and detection; in contrast, recent malware detection methods are
increasingly incorporating active learning-based solutions.

Lie et al. [38] introduced a dynamic graph-based learning approach
to automatically capture evolving malware and detect six key categories
of malware attacks, including injection attacks. Their proposed system,
MallRL, features a dynamic heterogeneous graph representation
learning method that enhances detection accuracy by learning state
representations of different attack stages and forensically analysing the
malware execution event stream. In experiments with three real-world
datasets, the model achieved accuracy ranging from 91% to 98%
across various malware classes. Although this model improves accuracy,
it imposes significant computational overhead due to ineffective
exploration paths in inverse reinforcement graph learning and the need
for exploring transfer learning techniques. Additionally, the approach
lacks real-time responsiveness in network security defence, which is
crucial for addressing today’s ever-evolving malware threats.

Among the studies perused in this paper, approaches based on static
code analysis for malware detection are not effective for dealing with
obfuscated and packed malware classes and file-less [6] malware. There
are also limitations to many of the related studies. Studies that used
manual analysis for feature extraction were not scalable to handle the
massive amount of malware produced daily and the large number of
cyber-attacks that usually take place in a short timeframe. Further, using
a small number of samples in model training does not enable the crea-
tion of a scalable model able to detect a wide range of malware classes
with different behaviour patterns. Some related studies were limited to
detecting injection attacks in specific programming languages [34] or
only on 32-bit versions of operating systems [33]. In contrast, our pro-
posed architecture overcomes these limitations by detecting injection
attacks regardless of the programming language used to develop the
malware and supporting both 32-bit and 64-bit OS versions.

The distributed nature of injection attacks is a major challenge that
complicates the process of feature extraction for accurate and reliable
modelling [8]. The adoption of obfuscation and evasion tactics, such as
dead-code insertion, packing and code encryption, runtime decom-
pression, polymorphism, and anti-debugging, exacerbates the challenge
and further hinders effective detection and analysis [22].

Our system offers an accurate dynamic solution for early detection of
injection attacks by creating reliable models using a new convolutional
neural network and association rule mining. A unique aspect of Deep-
Radar is its ability to facilitate early detection and defusal of attacks
before they are completed, a feature not discussed in the existing liter-
ature. This capability represents a significant contribution to the field.

3. The proposed approach

The objective of code and library injection is to hijack the victim’s
execution flow control. This level of control allows the malware to
indirectly execute any part of its malicious code. This makes it very
difficult for anti-malware programs to detect the responsible malicious
file and its processes. Early detection of code injection patterns is our
solution to this problem that facilitates tracing culprit processes. It is
critical that detecting such a pattern should happen before the stage in
which malware completes the injection process. This is because
discovering the source of the attack after this stage is impossible since
the connection between the malware program and the victim process
terminates. Moreover, the victim’s process might lose control over the
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execution flow. In this situation, restoring the control requires termi-
nating the process or sometimes restarting the OS, which are costly
decisions for many servers.

3.1. Modelling injection to binary files

The injection attack against binary files stored on a hard drive is
commenced by creating a handle on the target file using the CreateFile or
OpenFile system functions. Then, the address of the program’s entry
point is calculated. The entry point (EP) is an address from which the
executable code of a program starts to execute. It is calculated according
to Eq. (1).

EP = ImageBase + C (1)

where EP is the program’s entry point, ImageBase is the address in virtual
memory in which the executable code is loaded and set according to the
operating system, and C is a constant offset [39]. For the Windows OS
family (up to Windows NT 6.0), the value of ImageBase was fixed at 400,
000, so calculating EP was quite simple. Microsoft used Address Space
Layout Randomization (ASLR) in later versions of Windows OS to
resolve buffer and heap overflows. ASLR randomly changes the space
allocated to stack and heap at each execution. This guarantees that the
value of ImageBase changes at every execution. This strategy has been
widely used by other OS vendors, including Linux with 2.6+ kernel,
Android Version 4.0+, Solaris version 11.1+, and iOS Version 4.3+.
Although the use of ASLR significantly reduces code injection attacks,
coding shells, and buffer/heap overflows, it complicates the calculation
of EP and increases the entropy of the binary file.

After obtaining the EP of the executable file, a new section is added
to the Portable Executable (PE) file in which malicious code is written by
calling WriteFile system function. Next, the value of the Original Entry
Point (OEP) is set to the initial address of the new PE file section.
Therefore, at the beginning of each execution of the program, the ma-
licious code is also executed [8]. Fig. 1 demonstrates sections and flags
of the PE structure of an application targeted by an injection attack
before and after the injection process. This information was obtained
using the PEiD® tool. As shown in Fig. 1, by creating, renaming, and
changing the addresses of other sections, the malware executes its ma-
licious code at the beginning of the execution phase of the victim’s
program and distorts the behavioural features required for malware
detection.

3.2. Modelling injection to running processes

Code and library injection into a running process without causing
interruptions or failures in the process’s activities requires several key
countermeasures and considerations. A successful injection attack
against a running process ensures that the malware can run its code
immediately after the injection process is completed [40].

One way to accomplish an injection attack against a running process
is by hijacking the AppInit Dlls and SvcHost Dlls registry keys in Windows
OS family. A malware program can enrol the name and address of its
fake DLL into these registry keys. This puts the malware’s fake DLL into
the list of libraries loaded by the OS after reboot. This method is used by
many malware instances for injecting into OS modules [41]. With the
release of Windows NT version 6.0+, Microsoft introduced several
defensive mechanisms, including User Access Control (UAC) and Kernel
Path Protection (KPP), and Address Space Layout Randomisation (ASLR)
to prevent malware activities, in particular, unauthorised access to other
processes’ memory [16,42]. These new policies restricted the ability to
hijack these registry keys for running nefarious code [8]. However,
malware developers deployed new techniques for injection attacks.

3 https://github.com/wolfram77web/app-peid
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Lo
Name V. Offset V. Size R. Offset R, Size Flags
Malware Jtext 00001000 000ES876 00001000 OOOES000 60000020
.rdata 000EAQO0 0002A062 000EAQ00 00028000 40000040
1 .data 00115000 00020848 00115000 0000EO00 C0000040
JISIC 00136000 0007FD1C 00123000 00080000 40000040
Close
2 Victim’s file before attack
Name V. Offset V. Size R. Offset R. Size Flags
ajybjabi 00001000 00001000 00000600 00000600 60000020
qrbzijqq 00002000 00008000 00000C00 00007E00 C0000040
rrzziibi 0000A000 00001000 00008A00 00000200 C0000040
igrajyb 00008000 00001000 00008C00 00000800 50000040
Close

Victim’s file after attack

Fig. 1. The PE structure of a victim file before and after a code injection attack.

We meticulously analysed thousands of malware instances with the
capability of code and library injection collected from Adminus [43],
VirusShare [44], and VirusSign [45] malware datasets between 2015
and 2024. Our analysis revealed that creating a handle on a running
victim process using CreateProcess or OpenProcess system functions is a
common alternative injection strategy. The process is followed by a
request to access the allocated memory of the running victim process by
calling the ReadProcessMemory system function. The malware then re-
quests to add a certain amount of free space to the allocated memory of
the victim process using the VirtualAllocEX system function. This space is
equal to the size of the code or library that will be injected. Using
WriteProcessMemory system function, the malicious code is then injected
into the reserved memory space.

Library injection attack occurs through a sequence of 6 steps: (1) To
stop the main thread, the malware injects the assembly equivalent of the
SuspendThread system function - along with the address of the fake li-
brary - into the victim’s process. This occurs through code injection,
which was described previously. (2) The assembly equivalent of the
LoadLibrary function with the address of the desired fake library is
injected. (3) The assembly equivalent of the CreateRemoteThread system
function is injected to create a remote thread in the victim’s process
memory. (4) The injected codes reset the EIP flag and PC register so that
the address of the victim’s process points to the address of the injected
library. (5) The malware uses the WaitForSignalObject system function to
detect when the OS completes loading the fake library into the victim’s
process. (6) Finally, the malware calls ResumeThread system function to
resume the originally interrupted process.

To mitigate the possibility of abusing the CreateRemoteThread system
function through malicious code injection, Microsoft has enforced
checks to curtail malicious use of this critical function in recent versions
of the Windows OS - from Windows 7 onwards. Calling this function is
restricted so that remote threads between two applications with
different access levels or owners (for example, one application with user-
level privilege and the other application with administrator-level priv-
ilege) cannot be created. Although the restrictions imposed proved
effective in preventing the abuse of this system function, there are still
methods that can be adapted to bypass these arrangements to create
remote threads. For example, instead of CreateRemoteThread, malware
developers use a combination of the GetThreadContext and Set-
ThreadContext system functions. These functions change the context of

the victim’s process in a way that mimics the functionality of the Cre-
ateRemoteThread function. Therefore, a remote thread is created without
directly invoking the CreateRemoteThread function. Further, the OS re-
strictions on calling the CreateRemoteThread function do not cover the
kernel space. Therefore, malware classes designed to run within the
kernel space can pursue their aims regardless of this restriction.

3.3. Detection and classification of injection attacks

The high-level architecture and workflow of our proposed approach
is illustrated in Fig. 2. Four credible malware datasets between 2018 and
2025, including Adminus [43], VirusShare [44], VirusSign [45], and
MaleVis [46], were used for feature extraction, including IRPs, APIs
along with their call parameters and frequency as APIs are still the
standard and core work of the most widely adopted malware detection
methods [47,48] besides kernel-level IRPs required for self-defence and
malware removal. The features were extracted in a hybrid manner
consisting of both static (without execution) and dynamic (with execu-
tion in a Sandbox) methods, aiming to take advantage of the swift
scanning process offered by static methods as well as the high analysis
depth of dynamic approach required for dealing with malware evasion
and obfuscation techniques. Static features are used to train a Logistic
Regression model while the dynamic features are fed to the APRIORI
model for generating early warning signals and to a Fast Fourier Con-
volutional Neural Network after being converted to RGB images, aiming
to leverage the high accuracy of deep neural networks in classification.

3.3.1. Logistic regression (LR)

This mechanism involves a swift static analysis of the portable
executable (PE) file to detect malicious behaviour corresponding to code
injection attacks. To accomplish this, the LR scanner module searches
for the names of functions corresponding to the pattern created by code
injection attacks and uses them to detect malicious behaviour. Deep-
Radar scans the PE header and extracts the name and address of APIs
registered in the IAT table to determine if any artefacts (footprints)
related to injection attacks exist.

Using an LR classifier, the pattern of the attack is modelled as a
sequence of system APIs. The LR classifier also examines the parameters
of each API. The main factors used for modelling injection attacks in the
proposed LR module are (1) the order of system calls, (2) parameters
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Fig. 2. The architecture of the proposed approach for training injection attacks detector models.

used for system calls, and (3) the frequency of the calls. In our LR model,
malicious behaviour M, which represents code injection, is defined using
Eq. (1).

M =AxX,+B x Xg +C x Xc+... (€D)]

where A, B, C are system calls, Xa, Xg, Xc are their repetition frequency
and M; is a sequence of chronically ordered function calls. This LR
model creates a signature indicating the pattern of injection attacks,
such that if a process shows such a chain through its system calls, the LR
model immediately recognises it as malicious code with the aim of in-
jection. Considering d as the number of features, the time (computa-
tional) complexity of this task can be computed as O(n xd) ~ O(n) since
d is constant.

Fig. 3 presents the sequence of APIs used for detecting malicious code
and library injection attacks into running processes. The injection chain
consists of eleven steps, including code injection (API calls from 1 to 8,
inclusively), as well as library injection (API calls from 1 to 11) into a
running process. The first eight steps indicate malicious code injection,
while the total eleven steps together indicate library (DLL) injection.
Certain malware programs use CreateProcess system function instead of
OpenProcess to create a handle for a running process or LdrLoadDIl
instead of LoadLibrary to load a library into the system memory. These
functions are considered equivalent. Fig. 4 shows the IAT for a sample
malware with the capability of code injection. This figure was generated
using the DIE" analysis tool.

Although the LR model is fast and effective for recognising malicious
chains of injection attacks, a more robust detection model is required to
deal with packed instances of malware as well as those that are capable
of evasion techniques like PSP-Mal [49]. Packer and obfuscation tools, e.
g. ASPack, NSPack, UPX, Themida, PETite, UPack, and ExeStealth,
modify the body of malware programs, smash or encrypt the IAT and PE
header in so that neither structural nor behavioural signatures can be
reliably detected, thereby thwarting static analysis [50]. To deal with
this threat, dynamic behaviour analysis modules based on a new con-
volutional neural network and APRIORI rule mining were also utilised in
DeepRadar.

3.3.2. APRIORI association rule mining

One of the main contributions of our proposed system is the early
detection of injection attacks. Previous methods were not equipped with
early detection mechanisms. The early detection strategy makes it
possible to defuse the attack and prevent subsequent damage to the OS

* https://horsicq.github.io/
5 https://docs.remnux.org/install-distro/get-virtual-appliance.

and targeted programs. It also ensures that the execution flow of the
targeted program is still maintained. If the process of attacking and
loading the forged library is completed, the executive control of the
program would be lost as a result of hooking APIs performed by the
malware.

Our proposed method uses APRIORI rule mining as a bottom-up
learning approach based on association rules [51]. As a major tech-
nique in data mining, association rules attempt to find frequent patterns
or subsets among sets of objects in information repositories [52]. As-
sociation rule algorithms evaluate Support and Confidence of the itemsets
as key measures for rule creation [53]. Using this algorithm, a model
was trained for the early detection of attacks, which could be used to
generate early warning signals. Algorithm 1 indicates the pseudo-code
of the procedure executed on a dataset of kernel-based malware APIs
to generate itemsets.

Rule generation is the next step performed after creating itemsets.
Algorithm 2 shows how the rule generation phase was developed.

API chains are considered as itemsets in this algorithm, where M in-
dicates malware sequence calls considering the threshold of ¢ and length
of Y, while A and B are labels for APIs. In these algorithms, Q, is the
candidate subset of APIs for the level of Y. The algorithm tries to find
frequent itemsets between candidates of APIs used in injection attacks
until no more extensions are discovered. Having itemsets and APIs fre-
quencies, an early warning system can predict injection attacks before
the malicious chain of API calls is completed. By calculating the confi-
dence and lift criteria for the chain presented in Fig. 3, the 6th and 7th
steps of the sequence can be predicted. This triggers a warning signal
before the full injection of the library occurs in the 5th step. Confidence
and lift criteria are calculated based on Eq. (2) and Eq. (3) [51].

Confidence (A=8) = SHS%A(:)B) @
Lift (A>B) — %@;B) .

in which A and B are system call labels according to the chain presented
in Fig. 3. The confidence criterion indicates the degree of interdepen-
dence between calls, which shows the probability of calling Steps 8 to 11
- provided that the first seven steps were completed. The support crite-
rion indicates the ratio of the number of calls involving both A and B
function calls. The lift criterion indicates the degree of independence
between calls. Rule mining in this study was conducted through Weka®
version 3.8.5. This model provides the capability of accurately

6 https://www.cs.waikato.ac.nz/ml/weka/
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Algorithm 1
Itemset generation.

1. APRIORI_Itemset_Gen (M, €)

2. X, « {large 1 — itemsets}

3, Y2

4. While Xy-1 # (0]

5.

6. for transactions t€ T

7. D« {QlQeqQyrQct}
8. for candidates Q € D,

9. count[Q] « count[Q] + 1
10. end for

11. end for

12. Xy < {QlqQe Qy A count[Q] = €}
13. Y<Y+1

14.

return U Xy
y

Qy—{AU{B}|A€EX, 1 ABeA}—{Q[{SISSQAISI=Y-1}& X, 4}

predicting injection attacks at step 7 of the API sequence - four steps
before the point attacks can be considered successful and complete.

Efficiency and speed are critical factors in generating early warning
signals at runtime. Equally important is the scalability of the system
when handling large-scale malware datasets. To demonstrate the scal-
ability and efficiency of the proposed EWS system, we have measured its
computational (time) complexity. The complexity of the APRIORI al-
gorithm depends on the number of items (malware APIs), the number of
transactions (malicious chains), and the size of itemsets. The computa-
tional or time complexity (TC) of our early warning system arises from
the complexity of Algorithm 1 plus the complexity of Algorithm 2. This
combined complexity can be calculated through Eq. (4).

4
According to the procedure for support counting in APRIORI algo-

TC = O(Itemset generation) + O(Rule generation)

()

k
Hence, Eq. (4) can be extended to Eq. (5) for the time complexity of our
early warning system:

rithm, each transaction of length w produces ( ) itemsets of size k [54].

TC=O<Nzk:(;Z)ak>+O<:Z§{(i) szllf(d]‘.k)b 5)

where ay is the cost of updating the support count of a candidate k-
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Rule generation.
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1 APRIORI_Rule_Gen (fy, Hp,)

2 for each frequent k_itemset F),, K > 2 do

3 Hy={i|i € fi} {1 - item consequents of the rule}
4. k = |fi] {size of frequent itemset}

5. m = |[Hy,| {size of rule consequent}

6 if (K> m + 1) then

7 Hpsq = APRIORI_gen(H,)

8. for each h,,; € Hy,q do

9. Conf= o (fy) /o fix —hp

10. if Conf > minconf then

11. output the rule (fy —hy1) = hpyq
12. else

13. delete hy, 4 from Hp, 4

14. end if

15. end for

16. call APRIORI_Gen_Rule (fi, Hypy1)

17. end if

18. end for

itemset in the hash tree [55], d is the number of attributes, and N in-
dicates the number of transactions in the malware dataset. Since the
number of iterations is constant, the TC of the early warning system
would be equal to Eq. (6).

TC= O(Nxdx2)+0(3!- 2% +1) (6)

Eventually, after simplification, the TC for early malware detection
in our proposed method is O(N x d). In the worst case, it would be
O(N?), where n indicates the number of unique APIs in the malware
dataset. However, in our proposed method, the time complexity is O(N)
since d is constant. This analysis confirms that the proposed EWS system
remains computationally feasible and scalable for large-scale malware
datasets, unlike the traditional APRIORI algorithm whose complexity
may become prohibitive as both N and d grow. Furthermore, we eval-
uated the system’s performance in real-world scenarios over a 21-day
operation to substantiate the durability of DeepRadar, as reported in
Section 4.6.

3.3.3. Fast Fourier Convolutional Neural Network (FFCNN)

Dimensionality reduction, weight sharing, and local connectivity are
among the features that have made CNN a popular DL method in
different domains [56]. Gibert et al. in [57] have demonstrated the ef-
ficacy and robustness of convolutional neural networks (CNN) in the
detection of novel malware classes. Furthermore, CNNs have also ach-
ieved significant performance in detecting various types of today’s so-
phisticated cyber-attacks, including at least 15 attack classes in Mobile
Ad Hoc Networks [58] and 9 types of modern DoS attacks in the In-
dustrial Internet of Things [59,60].

In our work, due to the advantages of fast Fourier convolution intro-
duced in [61], we decided to use it for training a model for the Detection
Subsystem of DeepRadar. FFC can process large-size images faster than
standard CNN, which is a key factor in dealing with malware injection
attacks. It has also demonstrated superior performance in object
recognition [62]. To align the extracted malware behaviour with the
input of the FFCNN module, the assembly (ASM) file of each malware
was converted into a 3-channel RGB 300 x 300 image based on the
method described in [63] due to its higher accuracy compared to other
available methods. The ASM file for each malware was obtained by
reversing its binary code using IDA Pro’ v 7.40 disassembler.

We selected RGB image conversion over grayscale or raw byte

7 https://hex-rays.com/ida-pro/

sequences for the following reasons. (a) RGB channels capture three
dimensions of information for each pixel, enabling the network to learn
richer feature representations and spatial patterns in malware binaries
than would be possible with grayscale or raw byte inputs [64]. (b) Most
CNN architectures are designed and optimised for three-channel image
inputs, so using RGB makes it easier to take advantage of existing,
high-performing and - and in some cases pre-trained - vision models
[65]. (¢) Previous studies such in [63,66] have also shown that
RGB-based ASM image representations achieve higher accuracy than
grayscale or raw byte approaches. (d) Finally, although RGB introduces
some processing overhead, today’s GPUs and processors handle this
efficiently, ensuring that the method remains scalable even for large
malware datasets.

After conversion from assembly language to RGB images, we used
Python with PyTorch and Keras libraries to implement our neural
network model. A major challenge to training this network was the lack
of sufficient samples for certain malware classes, called rare malware
[16]. To bridge this gap, we included a generative adversarial neural
network (GAN) in the proposed system to generate additional image
instances from the few samples available in these minority classes. The
GAN in DeepRadar has partially borrowed its architecture from MIGAN,
detailed in [67]. MIGAN produces images based on the Malimg8 dataset
but with a higher Inception Score compared to the original malware
images. We adopted MIGAN because it has proved its remarkable effi-
cacy by successfully synthesising 50 K malware images for training a
ResNet50v2 network. We then trained the model on ml.c5.2xlarge
instance type in H20-3 version 3.32.

For the FFCNN network hyper-parameters, including step size
(learning rate), were manually adjusted between 0.80 to 0.85, with 45
iterations, a maximum depth of {5, 10, 15, 20}, the batch size of 64, and
momentum in ranges of 0.99 down to 0.80, with steady weight decay. In
our experiments, the best accuracy was achieved at a depth of 9 to 10 for
the neural network, while 10-fold cross-validation was employed to
validate the proposed model. Softmax [68] was used as an activator
function within our deep learning network, according to Eq. (7).

e
Tk
i Zj:l %

Softmax o (7*) @

. LT o . .
in which Z; values indicate elements of the input vector, and k in-

8 https://www.kaggle.com/datasets/manmandes/malimg
9 https://github.com/h20ai/h20-3
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dicates the number of classes. In this equation, e* is the standard
exponential function that is applied to input vector elements, and
finally, Z}‘Zl e% is the normalisation term. Other hyper-parameters,
including multiplications matrix dimensions, the number of neurons,
and epochs, were set and tuned by H20-3 using a grid search and
Gradient Descent optimisation approaches. With a new architecture, as
shown in Fig. 5, this is the first time FFCNN has been leveraged for
malware recognition.

3.4. The runtime scanner

The architecture of DeepRadar’s runtime canner consists of three
main subsystems: Validation, Detection, and Confronting subsystems, as
shown in Fig. 6. Each subsystem and its workflow are elaborated on in
the following sections, respectively.

3.4.1. Validation subsystem

As shown in Fig. 6, the input of the scanner system is the address of a
binary file or a running process ID (PID). The address is delivered to the
Whilelist Check module in the Validation Subsystem. This module tasks to
distinguish the legitimate use of code injection by Windows modules for
backward capability as well as debugger applications for debugging a
faulty program. It stores the SHA-1 signature of Windows modules and
provides an actual user with the capability of including any benign
application in its whitelist. Then, the Accessibility Check module per-
forms the task of checking the accessibility of input files or processes. If a
file or process is inaccessible, the file path or PID is given to the File
System Filter Driver or Process Filter Driver to make it accessible. This
strategy enables the scanner to function beyond malware patch guards
that might have been installed in the kernel space of the OS. The file is
then delivered to the PE Validation Check module to verify that the input
is a valid PE32 or PE32+ (64) in .exe, .dll, or .sys formats. Therefore, the
scanner can scan input files so that non-PE files are excluded.

Files with valid PE32 and PE32+ structures are delivered to the
Packing Status Check module, which determines whether or not a file is
packed and, as a result, obfuscated. The first test is performed by
calculating the entropy of the code section inside the PE file [16]. When
entropy-based detection is insufficient, the module can also recognise
the signatures of a wide range of packing tools, such as ASPack, NSPack,
UPack, Themida, and UPX, using N-gram signature according to method
described in [69]. If the input file is not packed, it is forwarded to the
first layer of the Detection Subsystem. Otherwise, it is passed to the Packer
Detector module to identify the type and name of the packing tool used.

If the Packer Detector successfully identifies the packer, the file is
returned to the Static Unpacking module, where a suitable unpacking
algorithm is applied to normalise the file. The unpacked file then re-
enters the scanning process at the first layer of the Detection Subsystem.
If, however, the packing tool cannot be identified or static unpacking
fails, the file is delivered to the Dynamic Unpacking module. In this
module, the file is executed in a controlled environment (in our exper-
iments, Cuckoo Sandbox'® and a VM under VirtualBox, where its
memory is dumped and a report of malware API calls is generated in
JSON format, as described in the following section. The extracted in-
formation is rewritten into a new PE file, producing an unpacked version
of the original. This file is then passed to the Detection Subsystem for a
hybrid scan.

3.4.2. Dynamic unpacking and de-obfuscation

The main difficulty in detecting novel malware, particularly through
static analysis, arises from the obfuscation techniques employed by
packers. This is the most common method used to evade both manual
and automated analysis, protecting malicious code from detection by

10 https://github.com/cuckoosandbox
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AV, IDS, and EDR systems. Packers typically apply reversible algorithms
to compress, modify, or encrypt binary code, rendering it unintelligible
to analysts [70]. Fig. 7 illustrates how the header of a PE structure has
been fully obfuscated by NSPack v3.7. We used the PeID v0.95 and DIE
v3.02 tools for this and subsequent experiments. As shown in Fig. 7,
standard PE sections generated by compilers, such as .code, .text, and .
data, are replaced with unknown sections. This prevents the extraction
of essential features for behavioural modelling, including the names,
numbers, sizes, and offsets of sections [41].

Another common obfuscation technique is the encryption of the IAT
and EAT tables, where DLL and API names are stored. This disrupts
many malware detection methods, which rely on intercepting API and
system calls to infer the behaviour of a binary. By encrypting these ta-
bles, malware conceals its system API calls, preventing the disclosure of
its malicious behaviour and intent. Fig. 8 shows a malware sample that
applies IAT encryption to hide its APIs. Control-flow graph (CFG)
obfuscation is another widely used technique. It commonly involves the
insertion of junk or dead code, false conditions, NOPs, and fake jumps.
These modifications aim to hinder reverse engineering of the binary,
particularly its disassembly into assembly code, therefore hinder many
malware detection methods [71,72].

DeepRadar is capable of dynamic unpacking via memory dumping.
Packers must eventually unpack an application into memory at runtime
in order for execution to proceed. This necessity provides an opportunity
for analysis: by capturing the allocated memory of a process at carefully
chosen moments, it is possible to reconstruct an unpacked version of the
executable and recover structural features that are otherwise hidden by
obfuscation. Our method therefore employs a dynamic memory dump-
ing strategy to normalise the behaviour of packed malware and enable
subsequent static and hybrid analysis.

In particular, our approach targets four critical points in the malware
execution timeline: (1) immediately after CreateProcess is called and
before the malware reaches its Original Entry Point (OEP), when the .
idata section is unpacked and the IAT/EAT tables are accessible; (2)
during calls to AdjustTokenPrivilege, when the packer unpacks executable
instructions into the code section, making it possible to capture them;
(3) just after VirtualAllocEx is invoked, when additional memory is
allocated for the expansion of compressed code; and (4) immediately
before TerminateProcess, when some malware attempts self-destruction
or repacking, allowing the recovery of otherwise lost sections. Fig. 9
shows the timeline of the four stages of memory dumping in our dy-
namic unpacking method.

The dumps collected at these points are rewritten into valid PE file
format using PROCEXEDUMP and PROCMEMDUMP commands of
Volatility 2.5'" and merged into a single PE file using IDA Pro v7.40.
Although dynamic unpacking is slower than static methods and requires
a controlled environment, e.g. sandbox or virtual machine, it avoids the
need for packer-specific algorithms and decryption key and is therefore
more generic. Our experiments demonstrate that the method is effective
against a wide range of packer and protector tools, including customised
and previously unseen (zero-day) variants. By capturing and preserving
unpacked states throughout execution, this approach significantly im-
proves the ability to analyse highly obfuscated malware samples.

3.4.3. Detection subsystem

The proposed detection modules were integrated into a three-layer
Detection Subsystem in DeepRadar’s architecture for early detection
and defusing of injection attacks: N-gram Search (L1), Static Scan (L2),
and Dynamic Scan (L3). The Detection Subsystem starts the first scan-
ning layer (L1) by running a swift 4-gram search to find unique sub-
sequences of already known injector stubs, making the detection
possible without deep examination of the input. If any malicious injec-
tion stub is detected, its path will be delivered to the Confronting

11 https://github.com/volatilityfoundation/volatility
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Fig. 6. The main architecture of DeepRadar’s runtime scanning system.

Subsystem. Otherwise, the file is delivered to the second scanning layer
(L2), which is the Static Scan. In this layer, the LR classifier is responsible
for malware detection, which performs merely by examining the prop-
erties of the PE’s structure without executing the file. During this pro-
cess, the API names are extracted from the IAT of the PE header, and if
malicious chains are found, the file path will be delivered to the Con-
fronting Subsystem to forcefully stop the malware activity and eliminate
its processes and source files. L1 and L2 layers have been tailored for
rapid and efficient malware detection capable of injection attacks,
aiming to save time and resources. However, they are vulnerable to

obfuscation and evasion techniques, particularly IAT Encryption, Poly-
morphism, Control Flow Graph (CFG) smashing, Code-reuse attacks, and
Runtime Code Generation [32]. To tackle this obstacle, the third layer
(L3), Dynamic Scan, tracks IRPs and API calls at runtime (dynamic
analysis) using kernel-level filter drivers and detects injection attacks by
APRIORI and FFCNN models. Even the extremely obfuscated malware
samples are unlikely to evade this layer as they must reveal their
behaviour at runtime.

The input L3 layer can be either a process resulting from the acces-
sibility check performed in the Validation Subsystem or a file from the

10
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Fig. 7. Sample PE header of an obfuscated and packed malware binary, ana-
lysed with DIE on REMnux.
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Fig. 8. IAT table of an obfuscated malware sample with encrypted API names,
analysed with DIE on REMnux.
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Fig. 9. Timeline of memory dumping in the proposed approach, where IP in-
dicates the instruction pointer.

L2 layer. If the input is a file, it is executed in an isolated and controlled
sandbox - or a virtual machine equipped with filter drivers. Filter Drivers
install kernel-level hooks to intercept IRPs and APIs alongside their
relevant invocation parameters. This essentially makes use of the fea-
tures of the APRIORI classifier to predict or detect malicious chains of
injection attacks. The settings of these filter drivers, such as Group Order
and Altitude, were adjusted to 36,000 towards the base of the I/0 stack.
DeepRadar employs kernel-level hooks due to the high analysis depth
and transparency [69], which allows for the analysis of active malware
in both user and kernel spaces. If L3 does not detect any malicious
chains, the system will regard the input as benign; however, if classifiers
detect malicious behaviour, the file or process will be immediately re-
ported to the Confronting Subsystem to defuse the attack. At this stage,
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Inter-Process Communications (IPC), including shared memory, file
mapping, message queue, and pipelines, are also tracked. This enables
DeepRadar to work independently from the programming language used
for developing the malware.

3.4.4. Confronting subsystem

The Confronting Subsystem takes advantage of four kernel-level filter
drivers, i.e., Process Filter Driver, File System Filter Driver, Network Filter
Driver, and Pipe Service Filer Driver to track various malware activities
and remove different pieces of malware from the system, as demon-
strated in Fig. 6. The confronting action starts with Process Filter Driver
module tracking the malware’s process to obtain the path of the mal-
ware’s source file. Then, the Process Filter Driver uses ZwTerminateProcess
kernel routine to forcefully terminate the malware’s process(es). At the
same time, PID is received by a Network Filter Driver created by the
Windows Filtering Platform (WFP) facility. This filter driver traces and
interrupts all network connections established by the malware. After the
Process Filter Driver completes its task, a signal is sent to the File System
Filter Driver. This filter driver is responsible for eliminating malware files
from hard disks by sending direct IRP_MJ Close and IRP_MJ CLEANUP
requests to the I/O Manager. These IRPs close any open handles asso-
ciated with the malware file. Next, the filter driver sends IRP MJ SE-
T INFORMATION request with the FileDispositionInformation parameter
to eliminate files associated with the detected malware. Lastly, Pipe
Service Filer Driver uninstalls all pipelines and services created by the
malware. Since IRPs have the highest privilege level to eliminate files in
the OS, malware defensive path guards cannot stop sending IRPs except
in the case of hypervisor-level and hardware-level malware programs.
We have provided the list of system functions intercepted by DeepRadar
along with their details from [73,74] in Table A-1 in Appendix.

3.5. Defusing the attacks and self-defence

Defusing or blocking injection attacks is another important innova-
tion of our proposed method, making DeepScan robust. Self-defence was
not meticulously explored in the literature. There are some related
works [75,76] that rely on the discrepancy between the number of li-
braries loaded in the allocated space of a program at runtime and that of
required libraries (already placed in the PE header by the compiler). In
such cases, if the number of libraries loaded in the process memory
exceeds the required number, it can then be concluded that a library
injection attack has been attempted. Defusing such attacks requires
flushing the injected codes and unloading fake libraries from memory
dedicated to the victim process without causing interruptions.

Our approach can discover the victim process immediately after in-
jection is commenced (before completion) and locate the fake library in
the memory allocated to the victim process by interpreting the param-
eters of APIs used by the malware. To this aim, DeepRadar restricts some
system functions that can be abused by malware programs. Function
restrictions are administered by installing a Pre-Callback kernel-level
hook on the CreateRemoteThread function. This type of hook makes it
possible for a Callback function to be called before calling the primary
function. In this way, the scanner is given the opportunity to prevent
calling CreateRemoteThread if any attacks are detected. However, it is
also possible that malware targets the proposed scanner program for
code and library injection to hijack the program’s execution control.
Therefore, the proposed system should be able to deal with active
malware and defend itself against injection attacks so that it operates
correctly in an infected environment. To protect DeepRadar’s running
process and files against injection attacks, we coded a Pre-Callback
function to check the first parameter of the function (i.e., HANDLE
hProcess of the CreateRemoteThread) to find out if a handle to the scan-
ner’s process exists. If so, the attack could be halted by prohibiting
incoming IRPs from calling CreateRemoteThread. Therefore, the attacker
would never be able to create a remote thread in the scanner’s process,
and therefore, the injection chain of Fig. 3 will be halted at step 7.
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4. Evaluation and comparison

In this section, we evaluate DeepRadar from multiple perspectives
and across various real-world scenarios, focusing on its accuracy and
robustness, early detection and self-defence capabilities, as well as
resource efficiency. All experiments were conducted on an x64 Intel
Xeon E5-2620 2.4 GHz machine with 12 logical cores, 2 GeForce GTX
1080 Ti GPU, 32 GB of RAM DDRS5 1866 MHz, and 1 TB of SDD memory.
Windows 10 x 64 was the host OS. Eight VMs were run on a VM-Ware
virtualisation hypervisor for conducting experimental experiments.
Each VM had 4 cores of CPU and 4 GB of RAM. DeepRadar and its
relevant modules were implemented in C++/C# programming lan-
guage, C++ for kernel-level modules and C# for the user interface. The
full list of tools used in this research with details and access links can be
found in Table A-2 in Appendix A.

4.1. Dataset composition and characteristics

We created a dataset comprising 41,331 instances in total, including
31,531 malware samples across seven classes and 9800 benign files.
Malware samples with the capability of code or library injection were
collected from 2018 to 2025, inclusively from Adminus [43], VirusShare
[44], VirusSign [45], and MaleVis [46] datasets. These included diverse
classes such as infectors, evaders, spyware, rootkits, and banking tro-
jans. All malware samples from these sources were heavily obfuscated:
100% were packed with common packers such as UPX, Themida,
PECompact, FSG, MPRESS, and UPack as well as customised and un-
known packers. These packers employed a wide range of obfuscation
and evasion techniques, such as polymorphism, junk/dead code injec-
tion, control-flow obfuscation, and IAT encryption. As a result, Deep-
Radar’s unpacking module was engaged in the analysis of every malware
sample.

The benign batch was formed from software applications from
Softpedia'? and SourceForge'® repositories. To make the test more
rigorous, 50% of the benign files were randomly packed to ensure that
DeepRadar could correctly distinguish legitimate commercial applica-
tions that use packers to prevent reverse engineering or to preserve
copyright of their intellectual property. Accordingly, the output layer in
our FFCNN model consisted of seven neurons to detect and classify six
malware classes and a benign class. Table 1 presents the distribution of
classes and details of dataset diversity, including the number and per-
centage of each malware class as well as their packing status.

To further assess the generalisation ability of DeepRadar, we analysed
the subset of injection-capable emerging malware variants within our
dataset. This subset comprised 2530 samples - 8% of the malware
category - collected between 2023 and 2025, representing novel or less-
studied families that approximate zero-day conditions. It was isolated
during evaluation to test the robustness of DeepRadar against previously
unseen injection-based variants.

To evaluate the robustness of DeepRadar against adversarial mal-
ware, we generated adversarial injection samples using the Metasploit
Framework v6.4 under Kali'* and Parrot'® Linux distributions. We
employed payloads supporting injection attacks for both x64 and x86
architectures, meterpreter/reverse_tcp, reverse_http, reverse_https, shell re-
verse_tcp, combined with common encoders such as Shikata-ga-nai, xor,
countdown, call4 dword xor, applied for 1-5 rounds across a grid of 20
base payload combinations x 9 encoder settings x 3 templates. To
further simulate evasion, these samples were additionally packed with
packers including UPX, Themida, ASPack, NsPack, PECompact, FSG. For
each case, the packer was randomly selected from a repository of 300

12 https://win.softpedia.com/

13 https://sourceforge.net/

14 https://www.kali.org/get-kali/#kali-platforms
15 https://parrotsec.org/download/
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packers available to us.

All adversarial binaries were processed through the same disas-
sembly - ASM — RGB pipeline as the clean injection samples. In
addition, to better approximate real-world adversarial conditions, we
applied small-budget perturbations with a magnitude of ¢ < 4/255 -
equivalent to at most 1.6% of the pixel value range - to the RGB image
representations of malware samples using both the Fast Gradient Sign
Method (FGSM) and Projected Gradient Descent (PGD) attacks. FGSM
serves as a fast, single-step baseline attack, whereas PGD is a stronger,
iterative approach that poses a more challenging adversarial scenario.

These degradations (encoder + packer chains and gradient-based
perturbations) enable us to assess the robustness of our model in real-
world scenarios where DeepRadar faces with zero-day injection at-
tacks, adversarial samples as well as noises and perturbation at the
feature-representation level.

4.2. Benchmark pool

Several AVs were selected to create a standard benchmark group for
comparison. It is important to note that we were unable to access the
source code or executable version of the related works discussed in
Section 2, and as a result, we could not include them in the benchmark
group for the subsequent real-world test scenarios. However, we have
conducted several comparisons with the related works in Section 4.5.
Table 2 lists the names and the dates of the latest updates of the AVs used
in our benchmark. These tools were chosen based on the scores reported
by AV-Test'® for 2024.

4.3. Performance measures

The accuracy of detecting code and library attacks was the primary
aim that reflects how DeepRadar successfully protects against malware
programs capable of code and library injection. To evaluate the accuracy
of our proposed system, a 70-15-15 train-validation-test split of the
mixed dataset was used. Then, each of DeepRadar’s detection modules (i.
e., LR and FFCNN) and the benchmark group were tested on the same
test dataset and condition for generating performance figures. The
detection accuracy of each tool (Accuracy) and the misclassification rate
(Error) were then computed using Eq. (8) [77].

~ TP+1IN

- T )
TP + TN + FP + FN ®)

Accuracy
in which TP (true positive) indicates the number of malware samples
that have been accurately detected as malware, TN (true negative) in-
dicates the number of benign samples that have been accurately iden-
tified as benign. FP (false positive) indicates the number of benign files
that have been misdetected as malware, and FN (false negative) in-
dicates the number of malware samples that have been misdetected as
benign. F-score (F1l-score) was also reported to study the harmonic
average of the Precision and Recall since the dataset is imbalanced [36]
due to the existence of certain rare classes of malware. Eq. (9) refers to
the calculation of F-score.

Recall x Precision
Recall + Precision

)]

F —score =2 x

where Precision and Recall - also known as true positive rate (TPR) - are
calculated using Eq. (10) and Eq. (11), respectively.

TP
Precision = 10
TeCsIon = Tp P a0
TP
= 11
Recall = 75 +FN an

16 https://www.av-test.org
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Table 1
Distribution of classes in the mixed dataset used for the experiments.
# Category Class # Samples # Category Packing status % Category % All
1 Malware Spyware 10,059 31,531 Packed (100%) 31.9% 24.3%
2 Banking trojan 8187 Packed (100%) 26.0% 19.8%
3 Binder 3624 Packed (100%) 11.5% 8.8%
4 Evader 2914 Packed (100%) 9.2% 7.1%
5 Rootkit 2517 Packed (100%) 8.0% 6.1%
6 Metasploit 1700 Packed (100%) 5.4% 4.1%
7 Emerging injection variants (2023-2025) 2530 Packed (100%) 8.0% 6.1%
8 Benign System binaries 3800 9800 Packed (50%) 38.8% 9.2%
9 Application binaries 6000 Packed (50%) 61.2% 14.5%
Table 2 by putting LR and FFCNN classifiers to test and comparing their per-
able X X X . formance with the benchmark group. As mentioned before, the LR
The benchmark group used for comparison in the experimental scenarios. -
model was developed as a light scanner to detect unpacked malware
# Index Anti-malware program Update instances. The FFCNN model deals with more complicated classes of
1 FFCNN DeepRadar - FFCNN module 2025-Q3 obfuscated and packed malware and activates if malware passes the LR
2 LR DeepRadar - LR module 2025-Q3 test.
3 AVl Kaspersky 2025-Q3 We ran LR, FFCNN, and other benchmark tools. The percentage of
4 AV2 McAfee 2025-Q3 d ; d del I
5 AV3 Eset Node 32 2025-03 Accuracy, F-score, AUC, and Error for LR and FFCNN models, Aas well as
6 AV4 ClamAV 2025-Q3 the benchmark group for every malware class, were presented in Fig. 10.
7 AV5 Panda 2025-Q3 To provide a detailed comparison, numeric values were presented in
8 AV6 Sophos 2025-Q3 Table 3.
9 AvV7 Dr. Web 2025-Q3

We also explored receiver operating characteristic (ROC) curves and
AUC values for the conducted experiments. An ROC plots TPR against
FPR for a certain range. ROC curves assist in studying the trade-off be-
tween true positive rate (TPR) and false positive rate (FPR). Each ROC
has a corresponding numeric value of the area under the curve (AUC)
and can be computed using Eq. (12). AUC is used to evaluate and indi-
cate the stability of created models [78,79].

1
TP FpP

AUCZ/TP—i—FN TN + FP
0

(12)

To evaluate the proposed early warning system, we used success rate
(SR), indicating the ratio of the defused attacks by this module. SR was
calculated according to Eq. (13).

_ Number of Defused Attacks

Total Number of Attacks a3

Lastly, the averaged value for Accuracy, and other metrics such as F-
score, AUC, and Error were calculated using Eq. (14).

N
> iLoAccuracy;

Avg Accuracy = N

a4
where N indicates the total number of classes and Accuracy is replaced
for computing the average values for other metrics.

4.4. Experimental design and results

The performance and efficacy of DeepRadar in detecting and blocking
injection attacks were put to the test through two experimental sce-
narios. Scenario 1 covers the performance of trained models, i.e., LR and
FFCNN modules. This scenario does not study active attacks that have
already been started; therefore, the performance of the early warning
system is outside the scope of Scenario 1. Scenario 2 was dedicated to
the evaluation of DeepRadar’s early warning system. This scenario re-
veals how many active attacks were detected and defused (blocked)
before completing their mission.

4.4.1. Scenario 1: performance evaluation of detection models
This scenario focuses on the classification performance of DeepRadar
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As shown in Table 3, the proposed FFCNN model consistently out-
performed all methods in detecting diverse classes of malware capable of
injection attacks, including emerging variants as well as adversarial
samples generated with Metasploit. While AV1 obtained competitive
results in Accuracy, F-score, and AUC for families such as Spyware,
Binder, Banking, Evader, and Emerging variants, and AV2 showed
relative strength on Rootkit, Metasploit, and benign detection, neither
matched the overall robustness of our approach.

In particular, our FFCNN achieved an Accuracy of 95.1% and an F-
score of 95.7% on emerging injection-capable malware samples, com-
parable to its performance on well-represented families. On adversarial
Metasploit samples, the model reached 92.8% Accuracy and an F-score
of 93.9%, maintaining resilience despite deliberate evasion and obfus-
cation. These results confirm that the proposed method sustains strong
detection capability even under zero-day scenarios, underscoring its
generalisation ability.

Moreover, the findings demonstrate that DeepRadar preserves robust
performance against adversarial injection attacks combined with
packer-based obfuscation, reinforcing its reliability as a practical mal-
ware early-warning system. Taken together, these results show that
under heavy obfuscation - 100% of malware packed; 50% of benign
packed - and explicit adversarial stress - Metasploit encoders and
packers, FFCNN provides the most reliable detection across injection-
oriented malware, with consistent gains over LR and all AV baselines
in Accuracy, F-score, and AUC. For a holistic comparison, Fig. 11 pre-
sents the average Accuracy, F-score, and AUC results from this
experiment.

The ROC curves and corresponding AUC values are presented in
Fig. 12 for our proposed models and the benchmark group. Analysis
shows that FFCNN and AV1 achieved the highest performance, with
AUC values of 0.925 and 0.921, respectively. Although the margin be-
tween them is small, FFCNN ranked first overall. In contrast, AV6 and
AV7 recorded the lowest AUC values among all models, highlighting
their weaker discrimination ability.

From the ROC curves in Fig. 12, Evader and Rootkit appear as the
most challenging classes in ROC space, with FFCNN AUC values of 0.876
and 0.889, respectively. Nevertheless, their F-scores remained high,
with Evader reaching 0.968 and Rootkit 0.943, reflecting a strong
precision-recall balance despite more difficult threshold behaviour.

For a formal verification, we statistically tested the significance of
difference between the resulting figures presented in Table 3. Initially,
we conducted the Friedman test to study the significance of difference
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Fig. 10. Comparison of results between DeepRadar and the benchmark group.

between averaged values for different detection strategies [80]. Fried-
man test rejected the null hypotheses for Accuracy, F-score, and AUC
considering the significance level of 0.05. It indicates that there is a
significant difference among these measures for different models used in
this scenario. Wilcoxon signed-rank test (for a significance level of 0.05)
was then used as post hoc analysis to statistically explore the results in
detail [81]. According to test results, FFCNN performs significantly

14

better than LR, AV2, AV3, AV4, AV5, AV6, and AV7. The test rejected
the significance of difference between FFCNN and AV1 in terms of Ac-
curacy. Similarly, although LR has better mean Accuracy compared to
AV2, the test rejected the significance of difference in this case too. LR
significantly resulted in a higher Accuracy compared to AV4, AV6, and
AV7; while it was significantly less accurate than FFCNN and AV1. The
interpretation of the test results for the Error is the same as Accuracy.
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Table 3
The Accuracy, F-score, AUC, and Error values resulted from the experiment.
Metric Class FFCNN LR AVl AV2 AV3 AV4 AV5 AV6 AV7
Accuracy Spyware 0.984 0.965 0.982 0.959 0.937 0.946 0.919 0.894 0.903
Binder 0.963 0.942 0.951 0.918 0.944 0.910 0.889 0.898 0.872
Banking 0.943 0.900 0.941 0.902 0.918 0.889 0.846 0.823 0.833
Rootkit 0.930 0.947 0.943 0.932 0.908 0.891 0.902 0.878 0.891
Evader 0.946 0.939 0.928 0.907 0.931 0.892 0.922 0.903 0.909
Metasploit 0.928 0.915 0.934 0.897 0.922 0.884 0.873 0.858 0.866
Emerg var 0.951 0.927 0.946 0.919 0.935 0.904 0.896 0.879 0.887
Benign 0.993 0.994 0.992 0.982 0.990 0.955 0.974 0.948 0.961
Average 0.955 0.941 0.952 0.927 0.936 0.909 0.903 0.885 0.890
F-score Spyware 0.989 0.973 0.984 0.966 0.941 0.954 0.932 0.903 0.909
Binder 0.973 0.935 0.948 0.914 0.942 0.886 0.874 0.892 0.861
Banking 0.966 0.925 0.961 0.933 0.934 0.897 0.852 0.843 0.862
Rootkit 0.943 0.944 0.939 0.928 0.902 0.889 0.899 0.858 0.886
Evader 0.968 0.942 0.957 0.934 0.948 0.902 0.936 0.929 0.911
Metasploit 0.939 0.912 0.931 0.902 0.921 0.879 0.861 0.849 0.867
Emerg var 0.957 0.931 0.949 0.924 0.938 0.906 0.891 0.872 0.884
Benign 0.995 0.994 0.996 0.985 0.992 0.956 0.978 0.953 0.958
Average 0.966 0.944 0.958 0.936 0.940 0.909 0.903 0.887 0.892
AUC Spyware 0.963 0.950 0.961 0.943 0.919 0.931 0.882 0.868 0.833
Binder 0.956 0.912 0.933 0.928 0.879 0.884 0.874 0.850 0.833
Banking 0.924 0.889 0.908 0.908 0.830 0.852 0.838 0.782 0.746
Rootkit 0.889 0.873 0.901 0.895 0.772 0.770 0.791 0.760 0.741
Evader 0.876 0.864 0.882 0.844 0.724 0.711 0.759 0.711 0.720
Metasploit 0.891 0.872 0.888 0.859 0.741 0.732 0.770 0.739 0.726
Emerg var 0.912 0.890 0.916 0.894 0.801 0.816 0.832 0.794 0.777
Benign 0.987 0.968 0.981 0.963 0.953 0.944 0.914 0.892 0.885
Average 0.925 0.902 0.921 0.904 0.827 0.830 0.832 0.800 0.783
Error Spyware 0.017 0.040 0.015 0.034 0.062 0.053 0.080 0.105 0.096
Binder 0.036 0.057 0.048 0.081 0.055 0.089 0.110 0.101 0.127
Banking 0.057 0.089 0.058 0.097 0.081 0.110 0.153 0.176 0.166
Rootkit 0.069 0.052 0.056 0.067 0.091 0.108 0.097 0.121 0.108
Evader 0.053 0.060 0.071 0.092 0.068 0.107 0.077 0.096 0.090
Metasploit 0.072 0.085 0.066 0.103 0.078 0.116 0.127 0.142 0.134
Emerg var 0.049 0.073 0.054 0.081 0.065 0.096 0.104 0.121 0.113
Benign 0.006 0.005 0.007 0.017 0.009 0.044 0.025 0.051 0.038
Average 0.045 0.058 0.047 0.072 0.064 0.09 0.097 0.114 0.109
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Fig. 11. Comparison between the proposed models and the benchmark group in terms of averaged Accuracy, averaged F-score, and averaged AUC.

FFCNN significantly overtook LR, AV2, AV3, AV4, AV5, AV6, and AV7,
considering the F-score measure. The test showed that F-score values for
FFCNN, AV1, LR, and AV2 are not significantly different. The perfor-
mance of the FFCNN injection detection model was not significantly
challenged by other benchmark models, and therefore, FFCNN, AV1, LR,
and AV2, could be considered high-performing models for detecting
injection attacks. The Wilcoxon signed-rank test shows that the FFCNN
model significantly results in higher AUC values compared with all other
models except AV1. Therefore, in this experiment, FFCNN and AV1 are
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the top models with significantly better AUC. However, the performance
of other AVs and LR model for AUC values is significantly lower than
FFCNN and AV1. The difference in AUC for LR and AV2 is not signifi-
cant, and LR performs significantly better than AV3, AV4, AV5, AV6,
and AV7. Table 4 presents Wilcoxon signed-rank test results for FFCNN
and LR models considering Accuracy, F-Score, and AUC measures,
respectively.
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Table 4
Wilcoxon Signed Ranks Test of Accuracy, F-score, and AUC for FFCNN and LR models.
FFCNN LR AV1 AV2 AV3 AV4 AV5 AV6 AV7
Accuracy FFCNN z - —2.201° —0.631" —0.734° -1.782° —2.207° —-2.201° —2.201° —2.201°
Asymp. Sig. (2-tailed) - 0.028 0.528 0.463 0.075 0.027 0.028 0.028 0.028
LR Z —2.201° - —~1.992° -1.572° -0.210° —-2.201" -1.782" —2.201" -1.992"
Asymp. Sig. (2-tailed) 0.028 - 0.046 0.116 0.833 0.028 0.075 0.028 0.046
F-score FFCNN z - —-2.207" 0.000¢ -1.782° -2.201° —2.201° -2.201° —2.201" —2.201°
Asymp. Sig. (2-tailed) - 0.027 1.000 0.075 0.028 0.028 0.028 0.028 0.028
LR A —2.207" - —2.023" —~1.472° -0.105" —2.201¢ —1.992¢ —2.201°¢ —2.201¢
Asymp. Sig. (2-tailed) 0.027 - 0.043 0.141 0.917 0.028 0.046 0.027 0.028
AUC FFCNN Z - -2.201° —0.841"° -1.992° -2.201° —2.207" -2.201° —-2.207" -2.201°
Asymp. Sig. (2-tailed) - 0.028 0.400 0.046 0.028 0.027 0.028 0.027 0.028
LR Z —2.201° - —2.201° -1.572° —0.524° —2.201¢ —2.201°¢ —2.201°¢ —2.201¢
Asymp. Sig. (2-tailed) 0.028 - 0.028 0.600 0.028 0.028 0.028 0.028 0.028

2 . Based on positive ranks.
b . Based on negative ranks.

“

indicates a not applicable test.

4.4.2. Scenario 2: generating early warning signals

This experiment put DeepRadar’s early warning mechanism to the
test and measures its robustness against malware evasion techniques in
realistic conditions. It focuses on the detection of incomplete injection
chains and the capability of blocking and defusing attacks prior to
completion. As mentioned earlier, SR was used as the performance
measure. To conduct this scenario, a pool of malware samples with the
capability of code and/or library injection was created using a wide
range of injector tools. Some of these tools and malware programs were
able to target and inject into the body of PE binaries stored on the hard
drive (these victim files were selected randomly from the system drive),
while others were able to inject into the memory of running processes.
The results are presented in Table 5 in terms of the number of attacks,
the number of defused attacks, and the success rate (SR) for both pro-
cesses and files across the attack vector.

As shown in Table 5, DeepRadar’s dynamic scanner was able to
protect processes and files against the majority of injection attempts
(code/library). For processes, it achieved a 100% success rate against
the API Mon x64, EasyHook and Binder classes of malware, followed
closely by the Banking Trojan class at 99%. API Hijack represented the
lowest process-based detection rate at 93%. In the case of file-based
attacks, Marshal SDK injection samples were fully detected, 100%,
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while NtCore and Rootkit were the most challenging, with detection
rates of 82% and 85% respectively.

The evaluation was also extended to include the Metasploit and
Emerg Variant classes, which represent more sophisticated and diverse
injection strategies. DeepRadar maintained high levels of resilience
against these newer categories, achieving detection rates above 95% for
both process- and file-level attacks. This outcome suggests that the
system is capable of adapting effectively to fresh and evolving threats,
underscoring its robustness for real-world deployment.

In total, DeepRadar early detected and neutralised 1384 of 1424
process-targeted attacks, giving a weighted average SR of 97.2%, and
blocked 577 of 615 file-targeted attacks, corresponding to an SR of
93.8%. Across all attack classes combined, the system successfully
defused 1961 out of 2039 attempts, representing an overall SR of 96.2%.

4.5. Comparison to related work

In this section, we provide a comprehensive comparison between the
studies reviewed in Section 2 and our proposed system, DeepRadar. The
comparison covers several key aspects, including the platform, classifier
algorithm, depth of analysis, features used for behavioural modelling,
datasets and sample sizes, early detection and self-defence capabilities,
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Table 5
Evaluation of DeepRadar’s early warning system in terms of success rate for
defusing code/library injection attacks.

Attack vector Attack Target (Process) Attack Target (File)

# # SR # # SR
Attacks Defused Attacks Defused
API Hijack 88 82 0.932 - - -
API Mon x86'7 34 32 0.941 - - -
API Mon x64'° 28 28 1.000 - - -
Marshal SDK - - - 48 48 1.000
Graphics-Hook - - - 78 75 0.962
SDK
NtCore'® - - - 90 74 0.822
EasyHook 85 85 1.000 67 62 0.925
Binder 108 108 1.000 110 107 0.973
(Infector)
Evader 154 149 0.968 - - -
Spyware 320 315 0.984 - - -
Banking 205 204 0.995 - - -
Trojan
Rootkit 118 112 0.949 39 33 0.846
Metasploit 124 117 0.944 85 82 0.965
Emerg var 160 152 0.950 98 96 0.980
Average SR 1424 1384 0.972 615 577 0.938

“ indicates that a given type of attack is not the corresponding tool.
17 http://www.rohitab.com/apimonitor.
18 http://www.ntcore.com/files/inject2exe.htm.

and overall accuracy. The detailed comparison is presented in Table 6.

It is worth mentioning that we could not include some related studies
on real-time dynamic scanning and resource consumption measurement
due to limitations in accessing their source code and executables, pre-
venting us from running them under the same environment and condi-
tions to make a fair comparison.

As shown in Table 6, DeepRadar is the only system that offers early
detection and self-defence capabilities. Although [36] reports higher
accuracy, this is based on a small dataset and employs only traditional
shallow learning models. In contrast, cutting-edge deep learning models
offer both higher accuracy and greater stability. Additionally, training
models on a small number of samples fails to create a scalable solution
capable of detecting a wide variety of malware with differing behaviour
patterns. Some related studies were limited to detecting injection attacks
in specific programming languages, such as [25], or only on 32-bit
operating system versions, as in [24]. DeepRadar overcomes these
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limitations by detecting injection attacks regardless of the programming
language used and supporting both 32-bit and 64-bit OS versions. While
[37] reports high accuracy, it lacks a standard, publicly available
dataset, so we cannot make a fair comparison to its reported accuracy, as
the experimental dataset is unavailable to us. Moreover, this work fo-
cuses solely on the Linux operating system, whereas our primary focus is
on Windows, as the majority of malware programs are designed to target
Windows. Alongside [38], we have incorporated the largest set of mal-
ware samples to train and test our detection models. Compared to [38],
our system captures both IRPs and APIs as features for behavioural
modelling and, by employing both static and dynamic analysis, offers a
hybrid approach that balances accuracy, real-time scan speed, and
resource consumption. Additionally, the lower bound of our accuracy is
much higher, demonstrating the robustness of our model. The other
models produce accuracy of 93% or lower, making them insufficient for
comparison.

4.6. Resource efficiency and long-term durability

Our early warning mechanism operates as a real-time defensive
system; therefore, resource usage is a critical measure for verifying
scalability and usability. CPU utilisation and memory usage of Deep-
Radar were logged continuously over a 21-day period of real-time
scanning, detecting, and confronting injection attacks, and the results
are plotted in Fig. 13. In this figure, the vertical axis represents system
resource usage, with CPU in blue and memory in orange, while the
horizontal axis indicates the scanning time, where each unit corresponds
to a 6-hour window (504 h in total). To obtain accurate measurements of
resource utilisation, we monitored all threads, including child threads,
associated with our early warning scanner. Over the 21-day run without
any crash or malfunction, the average CPU utilisation was 20.1%, while
memory consumption averaged 7.8%. The experiment was then
repeated in parallel, on a separate cloned VM, for each detection model/
tool in the benchmark group under identical conditions. Each detection
tool was executed in CLI scanning interface mode, with GUI modules
excluded, ensuring that CPU and memory consumption reflected only
the scanner modules. The average results are presented in Fig. 14.

As shown in Fig. 14, our proposed scanner, DeepRadar, achieved the
best performance among the benchmark group, ranking first in both
CPU and memory efficiency. Log analysis revealed that the majority of
excessive resource utilisation was attributable to scanning IPC

Table 6
A comparison of related works, eighter detecting injection attacks or malware classes capable of injection attacks, with DeepRadar from various perspectives.
Method Platform Classifier Analysis Type Feature(s) Datasets No. of Early Self- Accuracy
- Depth samples Detection defence
[32] Windows NR* Dynamic - ASM Code Experimental NR X x NR
Hypervisor
[33] Linux, NR Dynamic - Device Driver Objects FireEye: World’s Top 2K X X NR
Windows Kernel Malware,
Spamfighter, Damballa
[34] Android Abstract Static - NR Byte Codes, Data Flow NIST Juliet Suite, NR X X 84-90%
Interpretation OWASP,
Benchmark
[35] Windows GRU, N-grams-DBT Dynamic - IRP MalwareBenchmark, 27K X X 86-93%
Kernel theZoo
[36] Linux, RF, SVM, KNN, DT Dynamic - NR Jaccard, Entropy Kaggle, 12K X x 98-99%
Windows Experimental
[371 Linux LR, SVM, KNN, RF, Hybrid -Kernel Memory dumps, Experimental 21.8K X X 91-98%
DNN Application Binary
Interface
[38] Window GNN Dynamic - API ACT-KingKong, 37K X x 91-98%
Hypervisor API Call Sequences,
RANSOMWARE
DeepRadar ~ Windows LR, N-grams Hybrid - API + IRP Adminus, MaleVis, 41.3K v v 95-97%
APRIORI, FFCNN Kernel VirusSign

VirusShare, Metasploit

“ “NR” (Not Reported) indicates that the relevant information was not reported.
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Fig. 13. System resource utilisation of the runtime scanner during a period of 21 days.

30 27.28 257
23.77 24.16 . 24.63
= 215 22.12
_ 20.1
§ 20
s
15 2.54
2 0.85 104 211 BA1.74
31 .67
g 10 7.8
B
E
0
Deep AV1 AV2 AV3 AV4 AVS AV6 AV7
Radar
m Avg CPU Usage " Avg RAM Usage

Fig. 14. Comparison of resource usage between the proposed scanner and the benchmark group (values are averaged).

communications, which is inherently time-consuming. We evaluated
DeepRadar over an extended period of three weeks to demonstrate its
reliability in performing and completing tasks during long-term mis-
sions. This capability is of paramount importance for service providers
and businesses, where sustained performance and consistency are
critical.

4.7. Limitations and future work

We conducted a series of experiments across various scenarios and
real-world exercises to comprehensively assess DeepRadar, identifying
its strengths and weaknesses. A broad range of metrics, including ac-
curacy, F-score, misclassification error, ROC, AUC, and resource effi-
ciency, were evaluated. Comparisons were made not only with previous
related work but also against benchmarks set by leading AVs, with
validation through Friedman and Wilcoxon tests. The results showed
that DeepRadar outperformed both state-of-the-art studies and globally
recognised AVs in detecting malware injection attacks. Furthermore, to
the best of our knowledge, and based on our literature review, Deep-
Radar is the first cyber defence solution to implement the concept of
early detection of malware injection attacks.

In brief, the early detection and neutralisation of 1960 out of 2038
injection attacks brings about a success rate of 96.2%, which represents
a substantial achievement for a cyber-defence system addressing an
often overlooked yet highly sophisticated threat. It is widely recognised
within the cybersecurity community that the detection of cyberattacks
can never be guaranteed at 100%. Nevertheless, our experiments
demonstrated that DeepRadar consistently outperformed well-
established antivirus solutions, none of which were able to achieve
complete detection. These findings suggest that DeepRadar significantly
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narrows a critical gap in protection and offers an effective safeguard
against complex code and library injection attacks.

Although DeepRadar has proved itself to be a well-equipped inter-
ceptor capable of dealing with a broad spectrum of malware evasion
techniques, the root cause behind a small portion of successful attacks is
mainly the behavioural obfuscation and detection evasion techniques
that the novel malware classes are practising these days. Furthermore,
the difference in detection rate between various classes of malware
depends on the intrinsic nature and the technology that has been
leveraged to design and develop such malware programs. We are prac-
tising to further improve the detection accuracy of DeepRadar and its
capabilities to recognise a broader spectrum of malware evasion
techniques.

It is worth noting that DeepRadar has been purposefully designed to
detect injection attacks - i.e., malware families capable of code or library
injection. While many malware families employ injection techniques,
particularly heavily packed samples seeking obfuscation, privilege
escalation, or detection (AV) evasion, not all malware classes do. In
future work, we aim to extend DeepRadar to cover a broader spectrum of
malware types beyond injection-capable families.

DeepRadar has primarily been developed based on the Windows
operating system. In view of the growing prevalence of malware on
other platforms, particularly in Linux-based could environments, In-
dustrial IoT systems [82], and Android [26], we plan to extend future
iterations of DeepRadar to support these operating systems, thereby
broadening its applicability and strengthening its role as a
cross-platform cyber-defence solution.
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5. Conclusion

Injection attacks, a sophisticated technique used by contemporary
malware classes, aim to obfuscate malicious activities, evade AVs, and
bypass OS security by exploiting the privileges of trusted applications.
Our work addressed this crucial issue by introducing DeepRadar, a
robust multi-layer architecture capable of accurately anticipating code
and library injection attacks a few cycles before occurrence and neu-
tralising the attacks. DeepRadar incorporates several modules designed
to monitor kernel-level APIs, call parameters, and IRPs, utilising these as
behavioural features. To effectively detect and predict malware activ-
ities, we implemented logistic regression, deep neural networks
enhanced with fast Fourier convolution, and APRIORI association rule
mining for the training and validation of malware detection models, as
well as for the development of an early warning and self-defence system.
We evaluated the performance of DeepRadar against destructive mal-
ware families, including extremely obfuscated, emerging, and adversa-
rial samples, from credible sources and benchmarked against leading
antivirus tools. Our experiments demonstrated that DeepRadar consis-
tently outperformed the benchmark group and prior studies, achieving
higher Accuracy, F-score, AUC, and ROC results while demanding less
memory and processor. The success rate in preventing code and library
injection attacks and creating immunity against such attacks were also
measured. Our early warning system generated alarm signals and
blocked anticipated threats for 97.2% of process-level and 93.8% of file-
level attacks. Statistical analysis using Friedman and Wilcoxon tests
further substantiated these results. These findings underscore the sig-
nificance of DeepRadar’s capabilities, which provide a robust and scal-
able defence for sensitive systems and offer dynamic early-warning
signals that pre-emptively counter stealthy, obfuscated, zero-day, and

Appendix

Table A-1
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adversarial injection attacks.
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The name and details of system functions used in methods introduced in this research [73,74].

# Name of API Owner Module Function in the system

1 CloseHandle Kernel32.dll Eliminating an existing handle to an object

2 CreateFileA/W Kernel32.dll Creating or opening a file or I/0 device

3 CreateProcessA/W Kernel32.dll Creating a new process in the system

4 CreateRemoteThread Kernel32.dll Creating a new thread running in the memory of another process
5 CreateRemoteThreadEx Kernel32.dll Creating a new thread running in the memory of another process
6 CreateSection Kernel32.dll Creating a new section in the PE files

7 FindFirstFileA/W Kernel32.dll Searching a file in a specific patch

8 FindNextFileA/W Kernel32.dll Continuing searching a file

9 GetThreadContext Kernel32.dll Retrieving the context of a running thread

10 LdrLoadDll Ntdll.dll Loading a library into the system memory

11 LoadLibraryA Kernel32.dll Loading a library into the system memory

12 OpenFile Kernel32.dll Opening an existing file from the hard disk

13 OpenProcess Kernel32.dll Creating a handle to a running process

14 OpenThread Kernel32.dll Creating a handle to a running thread

15 Process32First Kernel32.dll Getting a snapshot of a running process

16 Process32Next Kernel32.dll Continuing getting a snapshot of a running process

17 ReadProcessMemory Kernel32.dll Getting access to the allocated memory of a process

18 ResumeThread Kernel32.dll Recovering the execution of a paused thread

19 SetFileAttributesA/W Kernel32.dll Defining attributes to a file on the hard disk

20 SetProcessInformation Kernel32.dll Setting information for a process in the system

21 SetThreadContext Kernel32.dll Setting a context for a specified thread

22 SuspendThread Kernel32.dll Pausing the execution of a thread in the system

23 VirtualAlloc Kernel32.dll Performing modifications in the virtual address space of a process
24 VirtualAllocEX Kernel32.dll Performing modifications in the virtual address space of a process
25 WaitForMultipleObjects Kernel32.dll Pausing until multiple signaled obj. complete their tasks

26 WaitForSignalObject Kernel32.dll Pausing until a signaled object completes its task

27 Wow64GetThreadContext Kernel32.dll Retrieving the context of a 64-bit thread

28 Wow64SetThreadContext Kernel32.dll Setting a context for a thread of a 64-bit process

29 WriteFile Kernel32.dll Writes data to a file or I/O device

30 WriteFileEx Kernel32.dll Writes data to a file or 1/0 device

31 WriteProcessMemory Kernel32.dll Writing data to the memory of a process

19
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Table A-2
The name and specifications of analysis tools used in this study.
# Name and Version Main Function Access Link
1 Cuckoo Sandbox Isolated environment for executing https://github.com/cuckoosandbox/cuckoo
malware
2 Device Tree Dynamic analysis of kernel drivers https://www.osronline.com/article.cfm%5Earticle=97.htm
3 DIE V3.02 Static analysis of PE file https://horsicq.github.io/
4 H20-3 vV3.34 Al-based model training https://github.com/h20ai/h20-3
5 IBM SPSS Statistics V28.0 Statistical analysis of results https://www.ibm.com/products/spss-statistics
6 IDA Pro V7.40 Binary to ASM disassembler https://hex-rays.com/ida-pro/
7 Kali Linux V2025.2 Penetration testing and ethical hacking https://www.kali.org/get-kali/#kali-platforms
8 Parrot Linux V6.4 Linux distro for ethical hacking https://parrotsec.org/download/
9 Olly dbg V1.10 Debugging user-level programs https://www.ollydbg.de/
10  PelD V0.95 Static analysis of PE file https://github.com/wolfram77web/app-peid
11  REMnux Malware analysis Linux distro https://docs.remnux.org/install-distro/get-virtual-appliance
12 VirusTotal Multi-AV scanner https://www.virustotal.com/
13 Volatility 2.5 Memory forensics tool https://github.com/volatilityfoundation/volatility
14  Weka V3.8.5 Al-based rule mining https://www.cs.waikato.ac.nz/ml/weka/
15  Win dbg V10.0 Debugging kernel-level programs https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-downl
oad-tools
16  WM-ware Workstation Virtualisation tool for running VMs https://www.vmware.com/

V14.1.1

Data availability

Data will be made available on request.
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