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A B S T R A C T

Malware injection attacks are among the most sophisticated and elusive threats in cybersecurity, characterised 
by their capacity for privilege escalation, obfuscation, and the ability to deceive antivirus software. This paper 
introduces a multi-layer architecture, featuring innovative deep neural networks, fast Fourier convolution, and 
association rule mining strategies, designed for the early detection and defusal of malware injection attacks. We 
then propose a proactive AI-enabled malware detection platform, DeepRadar, as a novel real-world defence 
mechanism. This early warning functionality capable of anticipating the attack a few cycles before occurrence 
represents a novel idea and unique approach to detecting malware injection attacks. The experimental results 
validate DeepRadar’s superior performance compared to not only previous related studies but also a standard 
benchmark of well-reputed antivirus applications under various scenarios and accredited datasets, including 
heavily obfuscated emerging malware variants and adversarial samples. It demonstrates higher Accuracy, F- 
score, ROC, and AUC metrics in early detection and classification of malware injection attacks while DeepRadar 
consumes significantly fewer system resources, including processor and memory during long-term scalable 
operation. The proposed early warning system succeeded in repelling up to 97.2% of attacks before malware 
could complete their malicious sequence. Lastly, the evaluation results were substantiated by formal statistical 
analysis using Friedman and Wilcoxon tests. The findings of this research and DeepRadar’s runtime scanner 
provide vital early warnings against stealthy malware and injection attacks, offering robust protection for sen
sitive systems and critical infrastructure.

1. Introduction

Modern cyber-attacks are complex, stealthy, and in some cases 
backed by well-resourced organisations with expert teams and sub
stantial budgets. Such advanced threats often evade detection and 
neutralisation, even with state-of-the-art defensive strategies and tools 
[1], particularly those that rely on predefined signatures or static be
haviours, such as firewalls, intrusion detection systems (IDS), and 
antivirus (AV) programs [2]. A 2025 study [3] reported that cyber in
cidents impact roughly one-third, 32%, of companies across all sectors, 

underscoring the pervasive threat landscape. Consequently, cybercrime 
has evolved into a complex ecosystem, with attackers moving from 
isolated activities to sophisticated, coordinated operations. A significant 
portion of recent cyber-attacks involves various types of malware, which 
are responsible for about 90% of system failures [4]. According to the 
data released by AV-Atlas,1 more than 1.2 billion malware pieces were 
detected as of the end of 2024 and the growth rate of malware for 
Windows was 29 times faster than Android and 134 times faster than 
Mac. This dramatic increase is attributed to the widespread availability 
of obfuscation and metamorphic engines [5]. The severity of attacks is 
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further complicated by the increasing sophistication, intelligence, 
evasion, and target-specific nature of these malware programs [6,7].

One of the most prevalent techniques for concealing malware ac
tivity involves injecting its code and libraries, including dynamic link 
library (DLL) and System (Sys) files, into the executable memory of other 
active programs. This approach allows the injected code to exploit the 
privileges and signatures of the programs it infects. Moreover, sophis
ticated new malware types use injection to deceive monitoring tools, 
especially antivirus software, by distributing their destructive actions 
across different running processes [8]. Injection attacks, including code 
and library injection, query injection, and script injection [9], were 
listed on the top ten cyber-attacks worldwide between 2017 and 2021, 
according to OWASP.2 For example, code injection, data injection, and 
fault injection [10] have been widely disseminated in various systems, 
such as wireless sensor networks, cyber-physical systems [11], smart 
grids, and modern power plant systems [12].

Therefore, this research answers the following research questions: 
What are the steps of a malware injection attack and how to formally 
model the behaviour of injection attacks? How to accurately predict an 
or multiple imminent injection attacks carried out by today’s extremely 
obfuscated malware programs, before the attack steps are completed? 
How to halt and defuse an early detected attack and protect the system 
resources and processes against running attacks?

This paper introduces a novel cyber-defence system, DeepRadar, 
designed for early and precise detection of malware injection attacks, 
particularly targeting code injection and library injection. The key 
contributions and novelties of this work are: (a) a novel trained model 
for detecting injection attacks using deep neural networks that benefit 
from fast Fourier convolution with a dedicated architecture, (b) incor
porating a generative adversarial network to bridge the scarcity of the 
number of rare malware, (c) an early warning system based on a trained 
association rules mining algorithm to anticipate the injection attack a 
few cycle before taking place, (d) a dynamic scanner that intervenes to 
halt injection attacks that may have evaded initial detection and begun 
their operation. This scanner acts as a final line of defence, ensuring 
comprehensive protection. To the best of our knowledge, our proactive 
early warning system is the first approach for accurate anticipation and 
neutralisation of injection attacks in the literature, repelling up to 96% 
of code and DLL injection attacks before they are completed.

This paper is organised as follows. Section 2 reviews the literature, 
providing background on malware injection attacks and examining 
related mitigation studies. Section 3 presents the proposed approach for 
anticipating and early detecting such attacks. This includes training 
various deep learning models, implementing rule mining, and intro
ducing a novel neural network architecture, with all these components 
integrated into DeepRadar, a runtime scanner. Section 4 rigorously 
evaluates DeepRadar’s efficacy, performance, and efficiency under 
various scenarios, comparing it from various perspectives to several 
well-known solutions and real-world tools. Finally, Section 5 concludes 
the paper and outlines future research directions.

2. Background and related work

Obfuscation techniques are widely used to manipulate control flow 
and deceive anti-malware tools, including both static- and dynamic- 
based malware detection methods [13]. In static detection, behaviour 
analysis is performed without executing binary files stored on hard 
drives. However, a dynamic analysis involves running malware binary 
files or scanning memory-resident codes that are already running [14]. 
One of the most effective methods in obfuscation is distributing all or 
part of the malicious code into the body of other benign programs and 
then executing that malicious code under the cover of trusted programs. 
This technique can deceive malware detection strategies by exploiting 

the signatures and privileges of other programs, i.e., privilege escalation. 
In such scenarios, each program may seem harmless in isolation, yet 
collectively, they create a pattern indicative of malicious intent. This 
form of malware is referred to as distributed malware [15]. This injec
tion method is prevalent among advanced persistent threats (APTs) as it 
allows the malware to remain anonymous for a long course of time [16,
17]. An APT attack is a long-term, covert intrusion targeting enterprises, 
national infrastructure, or government departments, often leveraging 
advanced techniques, hacker organisations, and state-sponsored re
sources - areas where traditional defences face clear limitations. The 
evolving nature of such attacks necessitates innovative approaches to 
detection and attribution, with cyber threat intelligence (CTI) sharing 
playing a crucial role in harnessing expert knowledge, enhancing in
telligence, strengthening detection, and resisting network threats [18]. 
The attackers typically hold a time and resource advantage, placing 
defenders in a passive position. Due to this information asymmetry, 
defenders often lack visibility into the attacker before an APT attack, 
while attackers can prepare by gathering intelligence on their targets 
[19]. To bridge this gap, proactive deception defence mechanisms, such 
as lightweight Honeypoint [20], can expose covert threats and APT 
behaviours, underscoring the importance of integrating deception stra
tegies into long-term cybersecurity defence.

A significant gap in related literature is the lack of detailed discussion 
on the interception and analysis of distributed interactions among 
running processes in cases involving this type of malware. Another way 
to perpetuate a destructive system attack is by injecting a fake library 
into the memory of a victim program at runtime. The primary objective 
of library injection is to alter a program’s behaviour by redirecting and 
obstructing system calls, thus hijacking its control flow [21]. The chal
lenge becomes even more formidable when attackers employ obfusca
tion strategies such as dead-code insertion, code encryption, packing, 
polymorphism/metamorphism, and anti-debugging/sandboxing tech
niques [22].

In a library injection attack, the first step is to inject a library con
taining fake routines of system APIs into the memory of the victim 
program. The injection process is performed using an injector tool. A 
redirector stub then redirects the victim’s requests - created for access
ing system APIs - to fake functions that are already loaded into the 
victim’s process memory. The redirector stub completes the hooking 
process by changing the addresses stored in the Import Address 
Table (IAT). The IAT is a table in which the labels for system API calls, 
references to memory locations, and the names of the modules that own 
those functions are stored. A Linker program can call OS APIs by reading 
their addresses from the IAT. Using this information, malware can 
replace the original addresses with new ones that point to its own 
functions already loaded into the memory of the victim program by the 
injected library. Therefore, the victim program calls injected malicious 
functions instead of the original OS functions. This is the process 
through which a malware program can take over the execution of an 
application and force it to execute a malicious code [23]. Infectors and 
Binders are types of malware that use this strategy to distribute mali
cious code among trusted processes [24,25].

2.1. Deep learning techniques in malware detection

Deep learning models, including, such as RNNs, CNNs, and GNNs, 
stands as a core in malware detection, offering sophisticated methods for 
both detection and analysing today’s extremely obfuscated malware 
programs. DL models lie in the ability to automatically learn intricate 
behavioural features and patterns from large-size and multi-dimensional 
datasets of malware, going far beyond traditional signature-based 
methods that struggle with evolving threats and are ineffective against 
ever-increasing number of malware attacks nowadays. This capability to 
adapt and recognise indicators of malicious behaviour provides a strong 
foundation for malware detection using deep learning and artificial 
neural networks. The field has been witnessing a surge in research and 2 Available on https://owasp.org/www-project-top-ten/
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development, with plenty studies showcasing the effectiveness of deep 
learning models in accurately detection and classification even previ
ously unseen and zero-day malware [26]. A recent comprehensive sur
vey by Song et al. [27] on the application of deep learning in malware 
detection highlights the pressing need for advanced tools capable of 
early detection of malware and its variants through behavioural pattern 
analysis in large-scale malicious data, with deep learning offering sub
stantial research potential in this domain. This survey categorises deep 
learning models for malware detection into three main groups: (a) deep 
learning algorithms, with CNNs leading the list followed by RNNs and 
GANs; (b) data augmentation techniques, such as the Synthetic Minority 
Over-sampling Technique (SMOTE) and the Bat Algorithm–based 
approach; and (c) imaging methods, including Image Vectorisation, 
Mean Normalisation, and Hamming Distance, drawing on studies pub
lished between 2018 and 2025.

However, despite this rapid progress and the substantial body of 
research, significant challenges and open problems still remain. Mal
ware programs, in particular stealth classes, continues to swiftly evolve, 
employing increasingly sophisticated techniques like polymorphism and 
metamorphism to evade detection [28]. A particularly pressing issue is 
the rise of malware injection attacks, where malicious code is seamlessly 
inserted into legitimate applications or processes. These attacks are 
notoriously difficult to detect as they leverage trusted software to mask 
their true nature. Addressing these evolving threats requires ongoing 
research into more robust and adaptable machine learning and 
AI-enabled models, capable of not only identifying known malware, but 
also recognising the subtle anomalies indicative of injection attacks and 
precisely predict them before they take place [29]. Another significant 
challenge with deep learning models is their reliance on large datasets, a 
limitation that becomes critical in the case of zero-day malware or rare 
classes where only a few samples are available. This scarcity makes DL 
models particularly vulnerable to such threats. To address this, Chai 
et al. [30] introduced the concept of Few-Shot Learning (FSL), which 
aims to learn effectively from limited examples in malware detection. 
Inspired by the human ability to generalise new knowledge from only a 
few experiences, the authors formalised malware detection as an FSL 
problem, offering a novel perspective for tackling data scarcity. Never
theless, FSL still faces two major challenges, including (a) catastrophic 
forgetting, where newly acquired knowledge erodes previously learned 
knowledge; and (b) decision boundary confusion, where repeated in
cremental sessions weaken the model’s discriminative power. To 
address these limitations, MalFSCIL [31] was later introduced as a novel 
Few-Shot Class Incremental Learning framework. It combines a decou
pled training strategy with a variational autoencoder to mitigate cata
strophic forgetting and employs a class-prototype-based dynamic 
boundary method to improve the accuracy of incremental decision 
boundaries.

Furthermore, the computational cost, including memory and pro
cessor utilisation, of training and deploying deep learning models in 
real-world scenarios must be carefully considered and addressed.

2.2. Prior work

This section investigates and reflects on the strengths and limitations 
of related studies, including those directly focused on the detection of 
injection attacks and those that have developed malware detection ap
proaches capable of identifying malware classes that include injection 
attacks.

Korczynski and Yin introduced a unified automated approach using a 
malware analysis environment called Tartarus [32]. The goal was to 
trace and detect malware propagation and execution through OS and 
inside the memory of benign processes by abstracting the execution 
trace. This study intended to detect malware programs that used novel 
code injection methods, code-reuse attacks, and dynamic code genera
tion techniques. The results of experiments with real-world malware 
samples showed improvements in the accuracy of detecting malware 

execution traces. They also claimed that their method was able to catch 
intrinsic features in modern code injection attacks. However, this 
approach only considers malware propagation within a single system, 
meaning it is ineffective against malware that can spread through 
networks—a behaviour commonly observed in modern ransomware 
attacks. Additionally, since this method is based on QEMU virtualisation 
technology, it is vulnerable to malware classes that can detect the 
presence of QEMU, allowing them to conceal their malicious actions or 
self-destruct.

Wei and Zhu presented an in-depth defensive framework they called 
KQguard to address queue injection attacks at the OS kernel level [33]. 
Within this framework, kernel callback queues (KQs) are targeted by 
malware for performing kernel queue injection (KQI) attacks. KQs are 
used as a solution for event handling in recent OS kernels. The proposed 
method utilised a hybrid static and dynamic analysis of device drivers at 
the kernel space to learn the specifications of legitimate event handlers. 
Their proposed strategy declined unknown KQ requests that could not 
be verified at runtime. This strategy was effective for both Windows and 
Linux kernels with low false positive (FP) and low false negative (FN) 
rates when running about 1500 real-world kernel-level malware sam
ples. However, KQguard provides protection against injection attacks 
only on 32-bit operating systems, meaning it cannot be installed on the 
more dominant 64-bit operating systems used today. Furthermore, the 
system has been trained and tested on a limited sample of malware and 
small datasets, making it unsuitable for scaling to handle today’s large, 
multi-dimensional malware datasets.

Spoto et al. presented a method for recognising five different types of 
injection attacks against Java applications and Android OS [34]. The 
authors used abstract interpretation, a form of static analysis, as their 
primary approach to detect and analyse the malicious code responsible 
for injection behaviour. The detection accuracy was reported between 
87% and 92%. One of the main limitations of this method is that it can 
only detect injection attacks in programs developed in Java, making it 
ineffective against malware samples written in other programming 
languages.

Dai et al. proposed a novel detection method using a combination of 
I/O Request Packet (IRP) sequence features and local alignment algo
rithms for recognising distributed malware [35]. In the first step, main 
IRP requests were filtered and extracted from the OS. A comparison 
between these requests and the malware’s IRP sequences was the pivotal 
process for detecting the hidden pieces of distributed malware. Real 
malware samples were used in this study, and the results demonstrated 
that this approach was able to identify distributed malware with an 
accuracy ranging from 86% to 93%, surpassing previously proposed 
methods up to that point. However, since this method relies solely on 
IRPs as features for behavioural modelling, it tends to produce a high 
number of false positive errors, particularly when dealing with poly
morphic malware that mimics the behaviour of benign applications.

Tyng Ling et al. proposed an ML-based method for identifying 
metamorphic malware. Their algorithm relied on structural analysis of 
statistical metrics and information-theoretic measures [36]. In this 
study, several features such as Jaccard coefficient, entropy, compression 
ratio, nonnegative matrix factorisation, and Chi-square tests were used 
to represent the byte information of malware pieces. The experiments 
indicated that the Jaccard coefficient could detect a metamorphic class 
of malware, capable of injection attacks, designed for Windows OS with 
an accuracy of 99.7% and an F-score of 99.5%. However, these figures 
were obtained through evaluation on a dataset with a small number of 
malware samples, and the scalability of this method has not been 
demonstrated to show whether it is effective against today’s large and 
multi-dimensional malware datasets.

Panker and Nissim in [37], designed a framework for detecting un
seen malware and malware evasion techniques, including injection, in 
Linux VM cloud environments. The authors collected volatile memory 
dumps from the inspected VM by securely querying the hypervisor to 
extract several behavioural features from over 218,000 samples across 9 
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malware classes. Using machine learning (ML) and deep learning (DL) 
classifiers, including LR, SVM, KNN, RF, and DNN, their proposed 
framework successfully detected unseen malware with evasion capa
bilities, achieving high true positive rates and low false positive rates. 
However, since this work focuses on feature extraction at the hypervisor 
level, it can only be deployed in virtualised environments. Additionally, 
the volatile memory acquisition process requires briefly freezing the 
VM, which may cause delays in client services. Another limitation is the 
passive-based learning approach, which lacks real-time malware scan
ning and detection; in contrast, recent malware detection methods are 
increasingly incorporating active learning-based solutions.

Lie et al. [38] introduced a dynamic graph-based learning approach 
to automatically capture evolving malware and detect six key categories 
of malware attacks, including injection attacks. Their proposed system, 
MalIRL, features a dynamic heterogeneous graph representation 
learning method that enhances detection accuracy by learning state 
representations of different attack stages and forensically analysing the 
malware execution event stream. In experiments with three real-world 
datasets, the model achieved accuracy ranging from 91% to 98% 
across various malware classes. Although this model improves accuracy, 
it imposes significant computational overhead due to ineffective 
exploration paths in inverse reinforcement graph learning and the need 
for exploring transfer learning techniques. Additionally, the approach 
lacks real-time responsiveness in network security defence, which is 
crucial for addressing today’s ever-evolving malware threats.

Among the studies perused in this paper, approaches based on static 
code analysis for malware detection are not effective for dealing with 
obfuscated and packed malware classes and file-less [6] malware. There 
are also limitations to many of the related studies. Studies that used 
manual analysis for feature extraction were not scalable to handle the 
massive amount of malware produced daily and the large number of 
cyber-attacks that usually take place in a short timeframe. Further, using 
a small number of samples in model training does not enable the crea
tion of a scalable model able to detect a wide range of malware classes 
with different behaviour patterns. Some related studies were limited to 
detecting injection attacks in specific programming languages [34] or 
only on 32-bit versions of operating systems [33]. In contrast, our pro
posed architecture overcomes these limitations by detecting injection 
attacks regardless of the programming language used to develop the 
malware and supporting both 32-bit and 64-bit OS versions.

The distributed nature of injection attacks is a major challenge that 
complicates the process of feature extraction for accurate and reliable 
modelling [8]. The adoption of obfuscation and evasion tactics, such as 
dead-code insertion, packing and code encryption, runtime decom
pression, polymorphism, and anti-debugging, exacerbates the challenge 
and further hinders effective detection and analysis [22].

Our system offers an accurate dynamic solution for early detection of 
injection attacks by creating reliable models using a new convolutional 
neural network and association rule mining. A unique aspect of Deep
Radar is its ability to facilitate early detection and defusal of attacks 
before they are completed, a feature not discussed in the existing liter
ature. This capability represents a significant contribution to the field.

3. The proposed approach

The objective of code and library injection is to hijack the victim’s 
execution flow control. This level of control allows the malware to 
indirectly execute any part of its malicious code. This makes it very 
difficult for anti-malware programs to detect the responsible malicious 
file and its processes. Early detection of code injection patterns is our 
solution to this problem that facilitates tracing culprit processes. It is 
critical that detecting such a pattern should happen before the stage in 
which malware completes the injection process. This is because 
discovering the source of the attack after this stage is impossible since 
the connection between the malware program and the victim process 
terminates. Moreover, the victim’s process might lose control over the 

execution flow. In this situation, restoring the control requires termi
nating the process or sometimes restarting the OS, which are costly 
decisions for many servers.

3.1. Modelling injection to binary files

The injection attack against binary files stored on a hard drive is 
commenced by creating a handle on the target file using the CreateFile or 
OpenFile system functions. Then, the address of the program’s entry 
point is calculated. The entry point (EP) is an address from which the 
executable code of a program starts to execute. It is calculated according 
to Eq. (1). 

EP = ImageBase + C (1)

where EP is the program’s entry point, ImageBase is the address in virtual 
memory in which the executable code is loaded and set according to the 
operating system, and C is a constant offset [39]. For the Windows OS 
family (up to Windows NT 6.0), the value of ImageBase was fixed at 400, 
000, so calculating EP was quite simple. Microsoft used Address Space 
Layout Randomization (ASLR) in later versions of Windows OS to 
resolve buffer and heap overflows. ASLR randomly changes the space 
allocated to stack and heap at each execution. This guarantees that the 
value of ImageBase changes at every execution. This strategy has been 
widely used by other OS vendors, including Linux with 2.6+ kernel, 
Android Version 4.0+, Solaris version 11.1+, and iOS Version 4.3+. 
Although the use of ASLR significantly reduces code injection attacks, 
coding shells, and buffer/heap overflows, it complicates the calculation 
of EP and increases the entropy of the binary file.

After obtaining the EP of the executable file, a new section is added 
to the Portable Executable (PE) file in which malicious code is written by 
calling WriteFile system function. Next, the value of the Original Entry 
Point (OEP) is set to the initial address of the new PE file section. 
Therefore, at the beginning of each execution of the program, the ma
licious code is also executed [8]. Fig. 1 demonstrates sections and flags 
of the PE structure of an application targeted by an injection attack 
before and after the injection process. This information was obtained 
using the PEiD3 tool. As shown in Fig. 1, by creating, renaming, and 
changing the addresses of other sections, the malware executes its ma
licious code at the beginning of the execution phase of the victim’s 
program and distorts the behavioural features required for malware 
detection.

3.2. Modelling injection to running processes

Code and library injection into a running process without causing 
interruptions or failures in the process’s activities requires several key 
countermeasures and considerations. A successful injection attack 
against a running process ensures that the malware can run its code 
immediately after the injection process is completed [40].

One way to accomplish an injection attack against a running process 
is by hijacking the AppInit_Dlls and SvcHost_Dlls registry keys in Windows 
OS family. A malware program can enrol the name and address of its 
fake DLL into these registry keys. This puts the malware’s fake DLL into 
the list of libraries loaded by the OS after reboot. This method is used by 
many malware instances for injecting into OS modules [41]. With the 
release of Windows NT version 6.0+, Microsoft introduced several 
defensive mechanisms, including User Access Control (UAC) and Kernel 
Path Protection (KPP), and Address Space Layout Randomisation (ASLR) 
to prevent malware activities, in particular, unauthorised access to other 
processes’ memory [16,42]. These new policies restricted the ability to 
hijack these registry keys for running nefarious code [8]. However, 
malware developers deployed new techniques for injection attacks.

3 https://github.com/wolfram77web/app-peid
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We meticulously analysed thousands of malware instances with the 
capability of code and library injection collected from Adminus [43], 
VirusShare [44], and VirusSign [45] malware datasets between 2015 
and 2024. Our analysis revealed that creating a handle on a running 
victim process using CreateProcess or OpenProcess system functions is a 
common alternative injection strategy. The process is followed by a 
request to access the allocated memory of the running victim process by 
calling the ReadProcessMemory system function. The malware then re
quests to add a certain amount of free space to the allocated memory of 
the victim process using the VirtualAllocEX system function. This space is 
equal to the size of the code or library that will be injected. Using 
WriteProcessMemory system function, the malicious code is then injected 
into the reserved memory space.

Library injection attack occurs through a sequence of 6 steps: (1) To 
stop the main thread, the malware injects the assembly equivalent of the 
SuspendThread system function - along with the address of the fake li
brary - into the victim’s process. This occurs through code injection, 
which was described previously. (2) The assembly equivalent of the 
LoadLibrary function with the address of the desired fake library is 
injected. (3) The assembly equivalent of the CreateRemoteThread system 
function is injected to create a remote thread in the victim’s process 
memory. (4) The injected codes reset the EIP flag and PC register so that 
the address of the victim’s process points to the address of the injected 
library. (5) The malware uses the WaitForSignalObject system function to 
detect when the OS completes loading the fake library into the victim’s 
process. (6) Finally, the malware calls ResumeThread system function to 
resume the originally interrupted process.

To mitigate the possibility of abusing the CreateRemoteThread system 
function through malicious code injection, Microsoft has enforced 
checks to curtail malicious use of this critical function in recent versions 
of the Windows OS - from Windows 7 onwards. Calling this function is 
restricted so that remote threads between two applications with 
different access levels or owners (for example, one application with user- 
level privilege and the other application with administrator-level priv
ilege) cannot be created. Although the restrictions imposed proved 
effective in preventing the abuse of this system function, there are still 
methods that can be adapted to bypass these arrangements to create 
remote threads. For example, instead of CreateRemoteThread, malware 
developers use a combination of the GetThreadContext and Set
ThreadContext system functions. These functions change the context of 

the victim’s process in a way that mimics the functionality of the Cre
ateRemoteThread function. Therefore, a remote thread is created without 
directly invoking the CreateRemoteThread function. Further, the OS re
strictions on calling the CreateRemoteThread function do not cover the 
kernel space. Therefore, malware classes designed to run within the 
kernel space can pursue their aims regardless of this restriction.

3.3. Detection and classification of injection attacks

The high-level architecture and workflow of our proposed approach 
is illustrated in Fig. 2. Four credible malware datasets between 2018 and 
2025, including Adminus [43], VirusShare [44], VirusSign [45], and 
MaleVis [46], were used for feature extraction, including IRPs, APIs 
along with their call parameters and frequency as APIs are still the 
standard and core work of the most widely adopted malware detection 
methods [47,48] besides kernel-level IRPs required for self-defence and 
malware removal. The features were extracted in a hybrid manner 
consisting of both static (without execution) and dynamic (with execu
tion in a Sandbox) methods, aiming to take advantage of the swift 
scanning process offered by static methods as well as the high analysis 
depth of dynamic approach required for dealing with malware evasion 
and obfuscation techniques. Static features are used to train a Logistic 
Regression model while the dynamic features are fed to the APRIORI 
model for generating early warning signals and to a Fast Fourier Con
volutional Neural Network after being converted to RGB images, aiming 
to leverage the high accuracy of deep neural networks in classification.

3.3.1. Logistic regression (LR)
This mechanism involves a swift static analysis of the portable 

executable (PE) file to detect malicious behaviour corresponding to code 
injection attacks. To accomplish this, the LR scanner module searches 
for the names of functions corresponding to the pattern created by code 
injection attacks and uses them to detect malicious behaviour. Deep
Radar scans the PE header and extracts the name and address of APIs 
registered in the IAT table to determine if any artefacts (footprints) 
related to injection attacks exist.

Using an LR classifier, the pattern of the attack is modelled as a 
sequence of system APIs. The LR classifier also examines the parameters 
of each API. The main factors used for modelling injection attacks in the 
proposed LR module are (1) the order of system calls, (2) parameters 

Fig. 1. The PE structure of a victim file before and after a code injection attack.
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used for system calls, and (3) the frequency of the calls. In our LR model, 
malicious behaviour M, which represents code injection, is defined using 
Eq. (1). 

M1 = A × XA + B × XB + C × XC + … (1) 

where A, B, C are system calls, XA, XB,XC are their repetition frequency 
and M1 is a sequence of chronically ordered function calls. This LR 
model creates a signature indicating the pattern of injection attacks, 
such that if a process shows such a chain through its system calls, the LR 
model immediately recognises it as malicious code with the aim of in
jection. Considering d as the number of features, the time (computa
tional) complexity of this task can be computed as O(n×d) ≃ O(n) since 
d is constant.

Fig. 3 presents the sequence of APIs used for detecting malicious code 
and library injection attacks into running processes. The injection chain 
consists of eleven steps, including code injection (API calls from 1 to 8, 
inclusively), as well as library injection (API calls from 1 to 11) into a 
running process. The first eight steps indicate malicious code injection, 
while the total eleven steps together indicate library (DLL) injection. 
Certain malware programs use CreateProcess system function instead of 
OpenProcess to create a handle for a running process or LdrLoadDll 
instead of LoadLibrary to load a library into the system memory. These 
functions are considered equivalent. Fig. 4 shows the IAT for a sample 
malware with the capability of code injection. This figure was generated 
using the DIE4 analysis tool.

Although the LR model is fast and effective for recognising malicious 
chains of injection attacks, a more robust detection model is required to 
deal with packed instances of malware as well as those that are capable 
of evasion techniques like PSP-Mal [49]. Packer and obfuscation tools, e. 
g. ASPack, NSPack, UPX, Themida, PETite, UPack, and ExeStealth, 
modify the body of malware programs, smash or encrypt the IAT and PE 
header in so that neither structural nor behavioural signatures can be 
reliably detected, thereby thwarting static analysis [50]. To deal with 
this threat, dynamic behaviour analysis modules based on a new con
volutional neural network and APRIORI rule mining were also utilised in 
DeepRadar.

3.3.2. APRIORI association rule mining
One of the main contributions of our proposed system is the early 

detection of injection attacks. Previous methods were not equipped with 
early detection mechanisms. The early detection strategy makes it 
possible to defuse the attack and prevent subsequent damage to the OS 

and targeted programs. It also ensures that the execution flow of the 
targeted program is still maintained. If the process of attacking and 
loading the forged library is completed, the executive control of the 
program would be lost as a result of hooking APIs performed by the 
malware.

Our proposed method uses APRIORI rule mining as a bottom-up 
learning approach based on association rules [51]. As a major tech
nique in data mining, association rules attempt to find frequent patterns 
or subsets among sets of objects in information repositories [52]. As
sociation rule algorithms evaluate Support and Confidence of the itemsets 
as key measures for rule creation [53]. Using this algorithm, a model 
was trained for the early detection of attacks, which could be used to 
generate early warning signals. Algorithm 1 indicates the pseudo-code 
of the procedure executed on a dataset of kernel-based malware APIs 
to generate itemsets.

Rule generation is the next step performed after creating itemsets. 
Algorithm 2 shows how the rule generation phase was developed.

API chains are considered as itemsets in this algorithm, where M in
dicates malware sequence calls considering the threshold of ϵ and length 
of Y, while A and B are labels for APIs. In these algorithms, Qy is the 
candidate subset of APIs for the level of Y. The algorithm tries to find 
frequent itemsets between candidates of APIs used in injection attacks 
until no more extensions are discovered. Having itemsets and APIs fre
quencies, an early warning system can predict injection attacks before 
the malicious chain of API calls is completed. By calculating the confi
dence and lift criteria for the chain presented in Fig. 3, the 6th and 7th 
steps of the sequence can be predicted. This triggers a warning signal 
before the full injection of the library occurs in the 5th step. Confidence 
and lift criteria are calculated based on Eq. (2) and Eq. (3) [51]. 

Confidence (A→B) =
Sup (A ∪ B)

Sup (A)
(2) 

Lift (A→B) =
Conf (A→B)

Sup (B)
(3) 

in which A and B are system call labels according to the chain presented 
in Fig. 3. The confidence criterion indicates the degree of interdepen
dence between calls, which shows the probability of calling Steps 8 to 11 
- provided that the first seven steps were completed. The support crite
rion indicates the ratio of the number of calls involving both A and B 
function calls. The lift criterion indicates the degree of independence 
between calls. Rule mining in this study was conducted through Weka6

version 3.8.5. This model provides the capability of accurately 

Fig. 2. The architecture of the proposed approach for training injection attacks detector models.

4 https://horsicq.github.io/
5 https://docs.remnux.org/install-distro/get-virtual-appliance. 6 https://www.cs.waikato.ac.nz/ml/weka/
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predicting injection attacks at step 7 of the API sequence - four steps 
before the point attacks can be considered successful and complete.

Efficiency and speed are critical factors in generating early warning 
signals at runtime. Equally important is the scalability of the system 
when handling large-scale malware datasets. To demonstrate the scal
ability and efficiency of the proposed EWS system, we have measured its 
computational (time) complexity. The complexity of the APRIORI al
gorithm depends on the number of items (malware APIs), the number of 
transactions (malicious chains), and the size of itemsets. The computa
tional or time complexity (TC) of our early warning system arises from 
the complexity of Algorithm 1 plus the complexity of Algorithm 2. This 
combined complexity can be calculated through Eq. (4). 

TC = O(Itemset generation) + O(Rule generation) (4) 

According to the procedure for support counting in APRIORI algo

rithm, each transaction of length ω produces 
(

ω
k

)

itemsets of size k [54]. 

Hence, Eq. (4) can be extended to Eq. (5) for the time complexity of our 
early warning system: 

TC = O

(

N
∑

k

(
ω
k

)

αk

)

+ O

(
∑d− 1

k=1

[(
d
k

)

x
∑d− k

j=1

(
d − k

j

)])

(5) 

where αk is the cost of updating the support count of a candidate k- 

Fig. 3. The chain of APIs for dynamic detection of code and also DLL injection in the proposed method.

Fig. 4. Functions in the IAT of a malware sample with injection capability, obtained using DIE under REMnux.5.

Algorithm 1 
Itemset generation.
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itemset in the hash tree [55], d is the number of attributes, and N in
dicates the number of transactions in the malware dataset. Since the 
number of iterations is constant, the TC of the early warning system 
would be equal to Eq. (6). 

TC = O
(
N× d×2d)+ O

(
3d − 2d+1 +1

)
(6) 

Eventually, after simplification, the TC for early malware detection 
in our proposed method is O(N × d). In the worst case, it would be 
O
(
N2
)
, where n indicates the number of unique APIs in the malware 

dataset. However, in our proposed method, the time complexity is O(N)

since d is constant. This analysis confirms that the proposed EWS system 
remains computationally feasible and scalable for large-scale malware 
datasets, unlike the traditional APRIORI algorithm whose complexity 
may become prohibitive as both N and d grow. Furthermore, we eval
uated the system’s performance in real-world scenarios over a 21-day 
operation to substantiate the durability of DeepRadar, as reported in 
Section 4.6.

3.3.3. Fast Fourier Convolutional Neural Network (FFCNN)
Dimensionality reduction, weight sharing, and local connectivity are 

among the features that have made CNN a popular DL method in 
different domains [56]. Gibert et al. in [57] have demonstrated the ef
ficacy and robustness of convolutional neural networks (CNN) in the 
detection of novel malware classes. Furthermore, CNNs have also ach
ieved significant performance in detecting various types of today’s so
phisticated cyber-attacks, including at least 15 attack classes in Mobile 
Ad Hoc Networks [58] and 9 types of modern DoS attacks in the In
dustrial Internet of Things [59,60].

In our work, due to the advantages of fast Fourier convolution intro
duced in [61], we decided to use it for training a model for the Detection 
Subsystem of DeepRadar. FFC can process large-size images faster than 
standard CNN, which is a key factor in dealing with malware injection 
attacks. It has also demonstrated superior performance in object 
recognition [62]. To align the extracted malware behaviour with the 
input of the FFCNN module, the assembly (ASM) file of each malware 
was converted into a 3-channel RGB 300 × 300 image based on the 
method described in [63] due to its higher accuracy compared to other 
available methods. The ASM file for each malware was obtained by 
reversing its binary code using IDA Pro7 v 7.40 disassembler.

We selected RGB image conversion over grayscale or raw byte 

sequences for the following reasons. (a) RGB channels capture three 
dimensions of information for each pixel, enabling the network to learn 
richer feature representations and spatial patterns in malware binaries 
than would be possible with grayscale or raw byte inputs [64]. (b) Most 
CNN architectures are designed and optimised for three-channel image 
inputs, so using RGB makes it easier to take advantage of existing, 
high-performing and - and in some cases pre-trained - vision models 
[65]. (c) Previous studies such in [63,66] have also shown that 
RGB-based ASM image representations achieve higher accuracy than 
grayscale or raw byte approaches. (d) Finally, although RGB introduces 
some processing overhead, today’s GPUs and processors handle this 
efficiently, ensuring that the method remains scalable even for large 
malware datasets.

After conversion from assembly language to RGB images, we used 
Python with PyTorch and Keras libraries to implement our neural 
network model. A major challenge to training this network was the lack 
of sufficient samples for certain malware classes, called rare malware 
[16]. To bridge this gap, we included a generative adversarial neural 
network (GAN) in the proposed system to generate additional image 
instances from the few samples available in these minority classes. The 
GAN in DeepRadar has partially borrowed its architecture from MIGAN, 
detailed in [67]. MIGAN produces images based on the Malimg8 dataset 
but with a higher Inception Score compared to the original malware 
images. We adopted MIGAN because it has proved its remarkable effi
cacy by successfully synthesising 50 K malware images for training a 
ResNet50v2 network. We then trained the model on ml.c5.2xlarge 
instance type in H2O-39 version 3.32.

For the FFCNN network hyper-parameters, including step size 
(learning rate), were manually adjusted between 0.80 to 0.85, with 45 
iterations, a maximum depth of {5, 10, 15, 20}, the batch size of 64, and 
momentum in ranges of 0.99 down to 0.80, with steady weight decay. In 
our experiments, the best accuracy was achieved at a depth of 9 to 10 for 
the neural network, while 10-fold cross-validation was employed to 
validate the proposed model. Softmax [68] was used as an activator 
function within our deep learning network, according to Eq. (7). 

Softmax σ
(

Z→→
)

i
=

ezi

∑k
j=1ezj

(7) 

in which Z→→
i values indicate elements of the input vector, and k in

Algorithm 2 
Rule generation.

7 https://hex-rays.com/ida-pro/

8 https://www.kaggle.com/datasets/manmandes/malimg
9 https://github.com/h2oai/h2o-3
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dicates the number of classes. In this equation, ezi is the standard 
exponential function that is applied to input vector elements, and 
finally, 

∑k
j=1 ezj is the normalisation term. Other hyper-parameters, 

including multiplications matrix dimensions, the number of neurons, 
and epochs, were set and tuned by H2O-3 using a grid search and 
Gradient Descent optimisation approaches. With a new architecture, as 
shown in Fig. 5, this is the first time FFCNN has been leveraged for 
malware recognition.

3.4. The runtime scanner

The architecture of DeepRadar’s runtime canner consists of three 
main subsystems: Validation, Detection, and Confronting subsystems, as 
shown in Fig. 6. Each subsystem and its workflow are elaborated on in 
the following sections, respectively.

3.4.1. Validation subsystem
As shown in Fig. 6, the input of the scanner system is the address of a 

binary file or a running process ID (PID). The address is delivered to the 
Whilelist Check module in the Validation Subsystem. This module tasks to 
distinguish the legitimate use of code injection by Windows modules for 
backward capability as well as debugger applications for debugging a 
faulty program. It stores the SHA-1 signature of Windows modules and 
provides an actual user with the capability of including any benign 
application in its whitelist. Then, the Accessibility Check module per
forms the task of checking the accessibility of input files or processes. If a 
file or process is inaccessible, the file path or PID is given to the File 
System Filter Driver or Process Filter Driver to make it accessible. This 
strategy enables the scanner to function beyond malware patch guards 
that might have been installed in the kernel space of the OS. The file is 
then delivered to the PE Validation Check module to verify that the input 
is a valid PE32 or PE32+ (64) in .exe, .dll, or .sys formats. Therefore, the 
scanner can scan input files so that non-PE files are excluded.

Files with valid PE32 and PE32+ structures are delivered to the 
Packing Status Check module, which determines whether or not a file is 
packed and, as a result, obfuscated. The first test is performed by 
calculating the entropy of the code section inside the PE file [16]. When 
entropy-based detection is insufficient, the module can also recognise 
the signatures of a wide range of packing tools, such as ASPack, NSPack, 
UPack, Themida, and UPX, using N-gram signature according to method 
described in [69]. If the input file is not packed, it is forwarded to the 
first layer of the Detection Subsystem. Otherwise, it is passed to the Packer 
Detector module to identify the type and name of the packing tool used.

If the Packer Detector successfully identifies the packer, the file is 
returned to the Static Unpacking module, where a suitable unpacking 
algorithm is applied to normalise the file. The unpacked file then re- 
enters the scanning process at the first layer of the Detection Subsystem. 
If, however, the packing tool cannot be identified or static unpacking 
fails, the file is delivered to the Dynamic Unpacking module. In this 
module, the file is executed in a controlled environment (in our exper
iments, Cuckoo Sandbox10 and a VM under VirtualBox, where its 
memory is dumped and a report of malware API calls is generated in 
JSON format, as described in the following section. The extracted in
formation is rewritten into a new PE file, producing an unpacked version 
of the original. This file is then passed to the Detection Subsystem for a 
hybrid scan.

3.4.2. Dynamic unpacking and de-obfuscation
The main difficulty in detecting novel malware, particularly through 

static analysis, arises from the obfuscation techniques employed by 
packers. This is the most common method used to evade both manual 
and automated analysis, protecting malicious code from detection by 

AV, IDS, and EDR systems. Packers typically apply reversible algorithms 
to compress, modify, or encrypt binary code, rendering it unintelligible 
to analysts [70]. Fig. 7 illustrates how the header of a PE structure has 
been fully obfuscated by NSPack v3.7. We used the PeID v0.95 and DIE 
v3.02 tools for this and subsequent experiments. As shown in Fig. 7, 
standard PE sections generated by compilers, such as .code, .text, and . 
data, are replaced with unknown sections. This prevents the extraction 
of essential features for behavioural modelling, including the names, 
numbers, sizes, and offsets of sections [41].

Another common obfuscation technique is the encryption of the IAT 
and EAT tables, where DLL and API names are stored. This disrupts 
many malware detection methods, which rely on intercepting API and 
system calls to infer the behaviour of a binary. By encrypting these ta
bles, malware conceals its system API calls, preventing the disclosure of 
its malicious behaviour and intent. Fig. 8 shows a malware sample that 
applies IAT encryption to hide its APIs. Control-flow graph (CFG) 
obfuscation is another widely used technique. It commonly involves the 
insertion of junk or dead code, false conditions, NOPs, and fake jumps. 
These modifications aim to hinder reverse engineering of the binary, 
particularly its disassembly into assembly code, therefore hinder many 
malware detection methods [71,72].

DeepRadar is capable of dynamic unpacking via memory dumping. 
Packers must eventually unpack an application into memory at runtime 
in order for execution to proceed. This necessity provides an opportunity 
for analysis: by capturing the allocated memory of a process at carefully 
chosen moments, it is possible to reconstruct an unpacked version of the 
executable and recover structural features that are otherwise hidden by 
obfuscation. Our method therefore employs a dynamic memory dump
ing strategy to normalise the behaviour of packed malware and enable 
subsequent static and hybrid analysis.

In particular, our approach targets four critical points in the malware 
execution timeline: (1) immediately after CreateProcess is called and 
before the malware reaches its Original Entry Point (OEP), when the . 
idata section is unpacked and the IAT/EAT tables are accessible; (2) 
during calls to AdjustTokenPrivilege, when the packer unpacks executable 
instructions into the code section, making it possible to capture them; 
(3) just after VirtualAllocEx is invoked, when additional memory is 
allocated for the expansion of compressed code; and (4) immediately 
before TerminateProcess, when some malware attempts self-destruction 
or repacking, allowing the recovery of otherwise lost sections. Fig. 9
shows the timeline of the four stages of memory dumping in our dy
namic unpacking method.

The dumps collected at these points are rewritten into valid PE file 
format using PROCEXEDUMP and PROCMEMDUMP commands of 
Volatility 2.511 and merged into a single PE file using IDA Pro v7.40. 
Although dynamic unpacking is slower than static methods and requires 
a controlled environment, e.g. sandbox or virtual machine, it avoids the 
need for packer-specific algorithms and decryption key and is therefore 
more generic. Our experiments demonstrate that the method is effective 
against a wide range of packer and protector tools, including customised 
and previously unseen (zero-day) variants. By capturing and preserving 
unpacked states throughout execution, this approach significantly im
proves the ability to analyse highly obfuscated malware samples.

3.4.3. Detection subsystem
The proposed detection modules were integrated into a three-layer 

Detection Subsystem in DeepRadar’s architecture for early detection 
and defusing of injection attacks: N-gram Search (L1), Static Scan (L2), 
and Dynamic Scan (L3). The Detection Subsystem starts the first scan
ning layer (L1) by running a swift 4-gram search to find unique sub- 
sequences of already known injector stubs, making the detection 
possible without deep examination of the input. If any malicious injec
tion stub is detected, its path will be delivered to the Confronting 

10 https://github.com/cuckoosandbox 11 https://github.com/volatilityfoundation/volatility
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Subsystem. Otherwise, the file is delivered to the second scanning layer 
(L2), which is the Static Scan. In this layer, the LR classifier is responsible 
for malware detection, which performs merely by examining the prop
erties of the PE’s structure without executing the file. During this pro
cess, the API names are extracted from the IAT of the PE header, and if 
malicious chains are found, the file path will be delivered to the Con
fronting Subsystem to forcefully stop the malware activity and eliminate 
its processes and source files. L1 and L2 layers have been tailored for 
rapid and efficient malware detection capable of injection attacks, 
aiming to save time and resources. However, they are vulnerable to 

obfuscation and evasion techniques, particularly IAT Encryption, Poly
morphism, Control Flow Graph (CFG) smashing, Code-reuse attacks, and 
Runtime Code Generation [32]. To tackle this obstacle, the third layer 
(L3), Dynamic Scan, tracks IRPs and API calls at runtime (dynamic 
analysis) using kernel-level filter drivers and detects injection attacks by 
APRIORI and FFCNN models. Even the extremely obfuscated malware 
samples are unlikely to evade this layer as they must reveal their 
behaviour at runtime.

The input L3 layer can be either a process resulting from the acces
sibility check performed in the Validation Subsystem or a file from the 

Fig. 5. The structure of the proposed neural networks to classify malware in DeepRadar.

Fig. 6. The main architecture of DeepRadar’s runtime scanning system.
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L2 layer. If the input is a file, it is executed in an isolated and controlled 
sandbox - or a virtual machine equipped with filter drivers. Filter Drivers 
install kernel-level hooks to intercept IRPs and APIs alongside their 
relevant invocation parameters. This essentially makes use of the fea
tures of the APRIORI classifier to predict or detect malicious chains of 
injection attacks. The settings of these filter drivers, such as Group Order 
and Altitude, were adjusted to 36,000 towards the base of the I/O stack. 
DeepRadar employs kernel-level hooks due to the high analysis depth 
and transparency [69], which allows for the analysis of active malware 
in both user and kernel spaces. If L3 does not detect any malicious 
chains, the system will regard the input as benign; however, if classifiers 
detect malicious behaviour, the file or process will be immediately re
ported to the Confronting Subsystem to defuse the attack. At this stage, 

Inter-Process Communications (IPC), including shared memory, file 
mapping, message queue, and pipelines, are also tracked. This enables 
DeepRadar to work independently from the programming language used 
for developing the malware.

3.4.4. Confronting subsystem
The Confronting Subsystem takes advantage of four kernel-level filter 

drivers, i.e., Process Filter Driver, File System Filter Driver, Network Filter 
Driver, and Pipe Service Filer Driver to track various malware activities 
and remove different pieces of malware from the system, as demon
strated in Fig. 6. The confronting action starts with Process Filter Driver 
module tracking the malware’s process to obtain the path of the mal
ware’s source file. Then, the Process Filter Driver uses ZwTerminateProcess 
kernel routine to forcefully terminate the malware’s process(es). At the 
same time, PID is received by a Network Filter Driver created by the 
Windows Filtering Platform (WFP) facility. This filter driver traces and 
interrupts all network connections established by the malware. After the 
Process Filter Driver completes its task, a signal is sent to the File System 
Filter Driver. This filter driver is responsible for eliminating malware files 
from hard disks by sending direct IRP_MJ_Close and IRP_MJ_CLEANUP 
requests to the I/O Manager. These IRPs close any open handles asso
ciated with the malware file. Next, the filter driver sends IRP_MJ_SE
T_INFORMATION request with the FileDispositionInformation parameter 
to eliminate files associated with the detected malware. Lastly, Pipe 
Service Filer Driver uninstalls all pipelines and services created by the 
malware. Since IRPs have the highest privilege level to eliminate files in 
the OS, malware defensive path guards cannot stop sending IRPs except 
in the case of hypervisor-level and hardware-level malware programs. 
We have provided the list of system functions intercepted by DeepRadar 
along with their details from [73,74] in Table A-1 in Appendix.

3.5. Defusing the attacks and self-defence

Defusing or blocking injection attacks is another important innova
tion of our proposed method, making DeepScan robust. Self-defence was 
not meticulously explored in the literature. There are some related 
works [75,76] that rely on the discrepancy between the number of li
braries loaded in the allocated space of a program at runtime and that of 
required libraries (already placed in the PE header by the compiler). In 
such cases, if the number of libraries loaded in the process memory 
exceeds the required number, it can then be concluded that a library 
injection attack has been attempted. Defusing such attacks requires 
flushing the injected codes and unloading fake libraries from memory 
dedicated to the victim process without causing interruptions.

Our approach can discover the victim process immediately after in
jection is commenced (before completion) and locate the fake library in 
the memory allocated to the victim process by interpreting the param
eters of APIs used by the malware. To this aim, DeepRadar restricts some 
system functions that can be abused by malware programs. Function 
restrictions are administered by installing a Pre-Callback kernel-level 
hook on the CreateRemoteThread function. This type of hook makes it 
possible for a Callback function to be called before calling the primary 
function. In this way, the scanner is given the opportunity to prevent 
calling CreateRemoteThread if any attacks are detected. However, it is 
also possible that malware targets the proposed scanner program for 
code and library injection to hijack the program’s execution control. 
Therefore, the proposed system should be able to deal with active 
malware and defend itself against injection attacks so that it operates 
correctly in an infected environment. To protect DeepRadar’s running 
process and files against injection attacks, we coded a Pre-Callback 
function to check the first parameter of the function (i.e., HANDLE 
hProcess of the CreateRemoteThread) to find out if a handle to the scan
ner’s process exists. If so, the attack could be halted by prohibiting 
incoming IRPs from calling CreateRemoteThread. Therefore, the attacker 
would never be able to create a remote thread in the scanner’s process, 
and therefore, the injection chain of Fig. 3 will be halted at step 7.

Fig. 7. Sample PE header of an obfuscated and packed malware binary, ana
lysed with DIE on REMnux.

Fig. 8. IAT table of an obfuscated malware sample with encrypted API names, 
analysed with DIE on REMnux.

Fig. 9. Timeline of memory dumping in the proposed approach, where IP in
dicates the instruction pointer.
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4. Evaluation and comparison

In this section, we evaluate DeepRadar from multiple perspectives 
and across various real-world scenarios, focusing on its accuracy and 
robustness, early detection and self-defence capabilities, as well as 
resource efficiency. All experiments were conducted on an x64 Intel 
Xeon E5–2620 2.4 GHz machine with 12 logical cores, 2 GeForce GTX 
1080 Ti GPU, 32 GB of RAM DDR5 1866 MHz, and 1 TB of SDD memory. 
Windows 10 × 64 was the host OS. Eight VMs were run on a VM-Ware 
virtualisation hypervisor for conducting experimental experiments. 
Each VM had 4 cores of CPU and 4 GB of RAM. DeepRadar and its 
relevant modules were implemented in C++/C# programming lan
guage, C++ for kernel-level modules and C# for the user interface. The 
full list of tools used in this research with details and access links can be 
found in Table A-2 in Appendix A.

4.1. Dataset composition and characteristics

We created a dataset comprising 41,331 instances in total, including 
31,531 malware samples across seven classes and 9800 benign files. 
Malware samples with the capability of code or library injection were 
collected from 2018 to 2025, inclusively from Adminus [43], VirusShare 
[44], VirusSign [45], and MaleVis [46] datasets. These included diverse 
classes such as infectors, evaders, spyware, rootkits, and banking tro
jans. All malware samples from these sources were heavily obfuscated: 
100% were packed with common packers such as UPX, Themida, 
PECompact, FSG, MPRESS, and UPack as well as customised and un
known packers. These packers employed a wide range of obfuscation 
and evasion techniques, such as polymorphism, junk/dead code injec
tion, control-flow obfuscation, and IAT encryption. As a result, Deep
Radar’s unpacking module was engaged in the analysis of every malware 
sample.

The benign batch was formed from software applications from 
Softpedia12 and SourceForge13 repositories. To make the test more 
rigorous, 50% of the benign files were randomly packed to ensure that 
DeepRadar could correctly distinguish legitimate commercial applica
tions that use packers to prevent reverse engineering or to preserve 
copyright of their intellectual property. Accordingly, the output layer in 
our FFCNN model consisted of seven neurons to detect and classify six 
malware classes and a benign class. Table 1 presents the distribution of 
classes and details of dataset diversity, including the number and per
centage of each malware class as well as their packing status.

To further assess the generalisation ability of DeepRadar, we analysed 
the subset of injection-capable emerging malware variants within our 
dataset. This subset comprised 2530 samples - 8% of the malware 
category - collected between 2023 and 2025, representing novel or less- 
studied families that approximate zero-day conditions. It was isolated 
during evaluation to test the robustness of DeepRadar against previously 
unseen injection-based variants.

To evaluate the robustness of DeepRadar against adversarial mal
ware, we generated adversarial injection samples using the Metasploit 
Framework v6.4 under Kali14 and Parrot15 Linux distributions. We 
employed payloads supporting injection attacks for both x64 and x86 
architectures, meterpreter/reverse_tcp, reverse_http, reverse_https, shell_re
verse_tcp, combined with common encoders such as Shikata-ga-nai, xor, 
countdown, call4_dword_xor, applied for 1–5 rounds across a grid of 20 
base payload combinations × 9 encoder settings × 3 templates. To 
further simulate evasion, these samples were additionally packed with 
packers including UPX, Themida, ASPack, NsPack, PECompact, FSG. For 
each case, the packer was randomly selected from a repository of 300 

packers available to us.
All adversarial binaries were processed through the same disas

sembly → ASM → RGB pipeline as the clean injection samples. In 
addition, to better approximate real-world adversarial conditions, we 
applied small-budget perturbations with a magnitude of ε ≤ 4/255 - 
equivalent to at most 1.6% of the pixel value range - to the RGB image 
representations of malware samples using both the Fast Gradient Sign 
Method (FGSM) and Projected Gradient Descent (PGD) attacks. FGSM 
serves as a fast, single-step baseline attack, whereas PGD is a stronger, 
iterative approach that poses a more challenging adversarial scenario.

These degradations (encoder + packer chains and gradient-based 
perturbations) enable us to assess the robustness of our model in real- 
world scenarios where DeepRadar faces with zero-day injection at
tacks, adversarial samples as well as noises and perturbation at the 
feature-representation level.

4.2. Benchmark pool

Several AVs were selected to create a standard benchmark group for 
comparison. It is important to note that we were unable to access the 
source code or executable version of the related works discussed in 
Section 2, and as a result, we could not include them in the benchmark 
group for the subsequent real-world test scenarios. However, we have 
conducted several comparisons with the related works in Section 4.5. 
Table 2 lists the names and the dates of the latest updates of the AVs used 
in our benchmark. These tools were chosen based on the scores reported 
by AV-Test16 for 2024.

4.3. Performance measures

The accuracy of detecting code and library attacks was the primary 
aim that reflects how DeepRadar successfully protects against malware 
programs capable of code and library injection. To evaluate the accuracy 
of our proposed system, a 70–15–15 train-validation-test split of the 
mixed dataset was used. Then, each of DeepRadar’s detection modules (i. 
e., LR and FFCNN) and the benchmark group were tested on the same 
test dataset and condition for generating performance figures. The 
detection accuracy of each tool (Accuracy) and the misclassification rate 
(Error) were then computed using Eq. (8) [77]. 

Accuracy =
TP + TN

TP + TN + FP + FN
(8) 

in which TP (true positive) indicates the number of malware samples 
that have been accurately detected as malware, TN (true negative) in
dicates the number of benign samples that have been accurately iden
tified as benign. FP (false positive) indicates the number of benign files 
that have been misdetected as malware, and FN (false negative) in
dicates the number of malware samples that have been misdetected as 
benign. F-score (F1-score) was also reported to study the harmonic 
average of the Precision and Recall since the dataset is imbalanced [36] 
due to the existence of certain rare classes of malware. Eq. (9) refers to 
the calculation of F-score. 

F − score = 2 ×
Recall × Precision
Recall + Precision

(9) 

where Precision and Recall - also known as true positive rate (TPR) - are 
calculated using Eq. (10) and Eq. (11), respectively. 

Precision =
TP

TP + FP
(10) 

Recall =
TP

TP + FN
(11) 

12 https://win.softpedia.com/
13 https://sourceforge.net/
14 https://www.kali.org/get-kali/#kali-platforms
15 https://parrotsec.org/download/ 16 https://www.av-test.org
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We also explored receiver operating characteristic (ROC) curves and 
AUC values for the conducted experiments. An ROC plots TPR against 
FPR for a certain range. ROC curves assist in studying the trade-off be
tween true positive rate (TPR) and false positive rate (FPR). Each ROC 
has a corresponding numeric value of the area under the curve (AUC) 
and can be computed using Eq. (12). AUC is used to evaluate and indi
cate the stability of created models [78,79]. 

AUC =

∫1

0

TP
TP + FN

d
FP

TN + FP
(12) 

To evaluate the proposed early warning system, we used success rate 
(SR), indicating the ratio of the defused attacks by this module. SR was 
calculated according to Eq. (13). 

SR =
Number of Defused Attacks
Total Number of Attacks

(13) 

Lastly, the averaged value for Accuracy, and other metrics such as F- 
score, AUC, and Error were calculated using Eq. (14). 

Avg Accuracy =

∑N
i=0Accuracyi

N
(14) 

where N indicates the total number of classes and Accuracy is replaced 
for computing the average values for other metrics.

4.4. Experimental design and results

The performance and efficacy of DeepRadar in detecting and blocking 
injection attacks were put to the test through two experimental sce
narios. Scenario 1 covers the performance of trained models, i.e., LR and 
FFCNN modules. This scenario does not study active attacks that have 
already been started; therefore, the performance of the early warning 
system is outside the scope of Scenario 1. Scenario 2 was dedicated to 
the evaluation of DeepRadar’s early warning system. This scenario re
veals how many active attacks were detected and defused (blocked) 
before completing their mission.

4.4.1. Scenario 1: performance evaluation of detection models
This scenario focuses on the classification performance of DeepRadar 

by putting LR and FFCNN classifiers to test and comparing their per
formance with the benchmark group. As mentioned before, the LR 
model was developed as a light scanner to detect unpacked malware 
instances. The FFCNN model deals with more complicated classes of 
obfuscated and packed malware and activates if malware passes the LR 
test.

We ran LR, FFCNN, and other benchmark tools. The percentage of 
Accuracy, F-score, AUC, and Error for LR and FFCNN models, as well as 
the benchmark group for every malware class, were presented in Fig. 10. 
To provide a detailed comparison, numeric values were presented in 
Table 3.

As shown in Table 3, the proposed FFCNN model consistently out
performed all methods in detecting diverse classes of malware capable of 
injection attacks, including emerging variants as well as adversarial 
samples generated with Metasploit. While AV1 obtained competitive 
results in Accuracy, F-score, and AUC for families such as Spyware, 
Binder, Banking, Evader, and Emerging variants, and AV2 showed 
relative strength on Rootkit, Metasploit, and benign detection, neither 
matched the overall robustness of our approach.

In particular, our FFCNN achieved an Accuracy of 95.1% and an F- 
score of 95.7% on emerging injection-capable malware samples, com
parable to its performance on well-represented families. On adversarial 
Metasploit samples, the model reached 92.8% Accuracy and an F-score 
of 93.9%, maintaining resilience despite deliberate evasion and obfus
cation. These results confirm that the proposed method sustains strong 
detection capability even under zero-day scenarios, underscoring its 
generalisation ability.

Moreover, the findings demonstrate that DeepRadar preserves robust 
performance against adversarial injection attacks combined with 
packer-based obfuscation, reinforcing its reliability as a practical mal
ware early-warning system. Taken together, these results show that 
under heavy obfuscation - 100% of malware packed; 50% of benign 
packed - and explicit adversarial stress - Metasploit encoders and 
packers, FFCNN provides the most reliable detection across injection- 
oriented malware, with consistent gains over LR and all AV baselines 
in Accuracy, F-score, and AUC. For a holistic comparison, Fig. 11 pre
sents the average Accuracy, F-score, and AUC results from this 
experiment.

The ROC curves and corresponding AUC values are presented in 
Fig. 12 for our proposed models and the benchmark group. Analysis 
shows that FFCNN and AV1 achieved the highest performance, with 
AUC values of 0.925 and 0.921, respectively. Although the margin be
tween them is small, FFCNN ranked first overall. In contrast, AV6 and 
AV7 recorded the lowest AUC values among all models, highlighting 
their weaker discrimination ability.

From the ROC curves in Fig. 12, Evader and Rootkit appear as the 
most challenging classes in ROC space, with FFCNN AUC values of 0.876 
and 0.889, respectively. Nevertheless, their F-scores remained high, 
with Evader reaching 0.968 and Rootkit 0.943, reflecting a strong 
precision-recall balance despite more difficult threshold behaviour.

For a formal verification, we statistically tested the significance of 
difference between the resulting figures presented in Table 3. Initially, 
we conducted the Friedman test to study the significance of difference 

Table 1 
Distribution of classes in the mixed dataset used for the experiments.

# Category Class # Samples # Category Packing status % Category % All

1 Malware Spyware 10,059 31,531 Packed (100%) 31.9% 24.3%
2 Banking trojan 8187 Packed (100%) 26.0% 19.8%
3 Binder 3624 Packed (100%) 11.5% 8.8%
4 Evader 2914 Packed (100%) 9.2% 7.1%
5 Rootkit 2517 Packed (100%) 8.0% 6.1%
6 Metasploit 1700 Packed (100%) 5.4% 4.1%
7 Emerging injection variants (2023–2025) 2530 Packed (100%) 8.0% 6.1%
8 Benign System binaries 3800 9800 Packed (50%) 38.8% 9.2%
9 Application binaries 6000 Packed (50%) 61.2% 14.5%

Table 2 
The benchmark group used for comparison in the experimental scenarios.

# Index Anti-malware program Update

1 FFCNN DeepRadar - FFCNN module 2025-Q3
2 LR DeepRadar - LR module 2025-Q3
3 AV1 Kaspersky 2025-Q3
4 AV2 McAfee 2025-Q3
5 AV3 Eset Node 32 2025-Q3
6 AV4 ClamAV 2025-Q3
7 AV5 Panda 2025-Q3
8 AV6 Sophos 2025-Q3
9 AV7 Dr. Web 2025-Q3
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between averaged values for different detection strategies [80]. Fried
man test rejected the null hypotheses for Accuracy, F-score, and AUC 
considering the significance level of 0.05. It indicates that there is a 
significant difference among these measures for different models used in 
this scenario. Wilcoxon signed-rank test (for a significance level of 0.05) 
was then used as post hoc analysis to statistically explore the results in 
detail [81]. According to test results, FFCNN performs significantly 

better than LR, AV2, AV3, AV4, AV5, AV6, and AV7. The test rejected 
the significance of difference between FFCNN and AV1 in terms of Ac
curacy. Similarly, although LR has better mean Accuracy compared to 
AV2, the test rejected the significance of difference in this case too. LR 
significantly resulted in a higher Accuracy compared to AV4, AV6, and 
AV7; while it was significantly less accurate than FFCNN and AV1. The 
interpretation of the test results for the Error is the same as Accuracy. 

Fig. 10. Comparison of results between DeepRadar and the benchmark group.
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FFCNN significantly overtook LR, AV2, AV3, AV4, AV5, AV6, and AV7, 
considering the F-score measure. The test showed that F-score values for 
FFCNN, AV1, LR, and AV2 are not significantly different. The perfor
mance of the FFCNN injection detection model was not significantly 
challenged by other benchmark models, and therefore, FFCNN, AV1, LR, 
and AV2, could be considered high-performing models for detecting 
injection attacks. The Wilcoxon signed-rank test shows that the FFCNN 
model significantly results in higher AUC values compared with all other 
models except AV1. Therefore, in this experiment, FFCNN and AV1 are 

the top models with significantly better AUC. However, the performance 
of other AVs and LR model for AUC values is significantly lower than 
FFCNN and AV1. The difference in AUC for LR and AV2 is not signifi
cant, and LR performs significantly better than AV3, AV4, AV5, AV6, 
and AV7. Table 4 presents Wilcoxon signed-rank test results for FFCNN 
and LR models considering Accuracy, F-Score, and AUC measures, 
respectively.

Table 3 
The Accuracy, F-score, AUC, and Error values resulted from the experiment.

Metric Class FFCNN LR AV1 AV2 AV3 AV4 AV5 AV6 AV7

Accuracy Spyware 0.984 0.965 0.982 0.959 0.937 0.946 0.919 0.894 0.903
Binder 0.963 0.942 0.951 0.918 0.944 0.910 0.889 0.898 0.872
Banking 0.943 0.900 0.941 0.902 0.918 0.889 0.846 0.823 0.833
Rootkit 0.930 0.947 0.943 0.932 0.908 0.891 0.902 0.878 0.891
Evader 0.946 0.939 0.928 0.907 0.931 0.892 0.922 0.903 0.909
Metasploit 0.928 0.915 0.934 0.897 0.922 0.884 0.873 0.858 0.866
Emerg var 0.951 0.927 0.946 0.919 0.935 0.904 0.896 0.879 0.887
Benign 0.993 0.994 0.992 0.982 0.990 0.955 0.974 0.948 0.961

Average ​ 0.955 0.941 0.952 0.927 0.936 0.909 0.903 0.885 0.890
F-score Spyware 0.989 0.973 0.984 0.966 0.941 0.954 0.932 0.903 0.909

Binder 0.973 0.935 0.948 0.914 0.942 0.886 0.874 0.892 0.861
Banking 0.966 0.925 0.961 0.933 0.934 0.897 0.852 0.843 0.862
Rootkit 0.943 0.944 0.939 0.928 0.902 0.889 0.899 0.858 0.886
Evader 0.968 0.942 0.957 0.934 0.948 0.902 0.936 0.929 0.911
Metasploit 0.939 0.912 0.931 0.902 0.921 0.879 0.861 0.849 0.867
Emerg var 0.957 0.931 0.949 0.924 0.938 0.906 0.891 0.872 0.884
Benign 0.995 0.994 0.996 0.985 0.992 0.956 0.978 0.953 0.958

Average ​ 0.966 0.944 0.958 0.936 0.940 0.909 0.903 0.887 0.892
AUC Spyware 0.963 0.950 0.961 0.943 0.919 0.931 0.882 0.868 0.833

Binder 0.956 0.912 0.933 0.928 0.879 0.884 0.874 0.850 0.833
Banking 0.924 0.889 0.908 0.908 0.830 0.852 0.838 0.782 0.746
Rootkit 0.889 0.873 0.901 0.895 0.772 0.770 0.791 0.760 0.741
Evader 0.876 0.864 0.882 0.844 0.724 0.711 0.759 0.711 0.720
Metasploit 0.891 0.872 0.888 0.859 0.741 0.732 0.770 0.739 0.726
Emerg var 0.912 0.890 0.916 0.894 0.801 0.816 0.832 0.794 0.777
Benign 0.987 0.968 0.981 0.963 0.953 0.944 0.914 0.892 0.885

Average ​ 0.925 0.902 0.921 0.904 0.827 0.830 0.832 0.800 0.783
Error Spyware 0.017 0.040 0.015 0.034 0.062 0.053 0.080 0.105 0.096

Binder 0.036 0.057 0.048 0.081 0.055 0.089 0.110 0.101 0.127
Banking 0.057 0.089 0.058 0.097 0.081 0.110 0.153 0.176 0.166
Rootkit 0.069 0.052 0.056 0.067 0.091 0.108 0.097 0.121 0.108
Evader 0.053 0.060 0.071 0.092 0.068 0.107 0.077 0.096 0.090
Metasploit 0.072 0.085 0.066 0.103 0.078 0.116 0.127 0.142 0.134
Emerg var 0.049 0.073 0.054 0.081 0.065 0.096 0.104 0.121 0.113
Benign 0.006 0.005 0.007 0.017 0.009 0.044 0.025 0.051 0.038

Average ​ 0.045 0.058 0.047 0.072 0.064 0.09 0.097 0.114 0.109

Fig. 11. Comparison between the proposed models and the benchmark group in terms of averaged Accuracy, averaged F-score, and averaged AUC.
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4.4.2. Scenario 2: generating early warning signals
This experiment put DeepRadar’s early warning mechanism to the 

test and measures its robustness against malware evasion techniques in 
realistic conditions. It focuses on the detection of incomplete injection 
chains and the capability of blocking and defusing attacks prior to 
completion. As mentioned earlier, SR was used as the performance 
measure. To conduct this scenario, a pool of malware samples with the 
capability of code and/or library injection was created using a wide 
range of injector tools. Some of these tools and malware programs were 
able to target and inject into the body of PE binaries stored on the hard 
drive (these victim files were selected randomly from the system drive), 
while others were able to inject into the memory of running processes. 
The results are presented in Table 5 in terms of the number of attacks, 
the number of defused attacks, and the success rate (SR) for both pro
cesses and files across the attack vector.

As shown in Table 5, DeepRadar’s dynamic scanner was able to 
protect processes and files against the majority of injection attempts 
(code/library). For processes, it achieved a 100% success rate against 
the API Mon x64, EasyHook and Binder classes of malware, followed 
closely by the Banking Trojan class at 99%. API Hijack represented the 
lowest process-based detection rate at 93%. In the case of file-based 
attacks, Marshal SDK injection samples were fully detected, 100%, 

while NtCore and Rootkit were the most challenging, with detection 
rates of 82% and 85% respectively.

The evaluation was also extended to include the Metasploit and 
Emerg Variant classes, which represent more sophisticated and diverse 
injection strategies. DeepRadar maintained high levels of resilience 
against these newer categories, achieving detection rates above 95% for 
both process- and file-level attacks. This outcome suggests that the 
system is capable of adapting effectively to fresh and evolving threats, 
underscoring its robustness for real-world deployment.

In total, DeepRadar early detected and neutralised 1384 of 1424 
process-targeted attacks, giving a weighted average SR of 97.2%, and 
blocked 577 of 615 file-targeted attacks, corresponding to an SR of 
93.8%. Across all attack classes combined, the system successfully 
defused 1961 out of 2039 attempts, representing an overall SR of 96.2%.

4.5. Comparison to related work

In this section, we provide a comprehensive comparison between the 
studies reviewed in Section 2 and our proposed system, DeepRadar. The 
comparison covers several key aspects, including the platform, classifier 
algorithm, depth of analysis, features used for behavioural modelling, 
datasets and sample sizes, early detection and self-defence capabilities, 

Fig. 12. ROC curves and AUC values for the proposed models and benchmark group.

Table 4 
Wilcoxon Signed Ranks Test of Accuracy, F-score, and AUC for FFCNN and LR models.

FFCNN LR AV1 AV2 AV3 AV4 AV5 AV6 AV7

Accuracy FFCNN Z - − 2.201a − 0.631b − 0.734a − 1.782a − 2.207a − 2.201a − 2.201a − 2.201a

Asymp. Sig. (2-tailed) - 0.028 0.528 0.463 0.075 0.027 0.028 0.028 0.028
LR Z − 2.201a - − 1.992a − 1.572a − 0.210a − 2.201b − 1.782b − 2.201b − 1.992b

Asymp. Sig. (2-tailed) 0.028 - 0.046 0.116 0.833 0.028 0.075 0.028 0.046
F-score FFCNN Z - − 2.207b 0.000c − 1.782b − 2.201b − 2.201b − 2.201b − 2.201b − 2.201b

Asymp. Sig. (2-tailed) - 0.027 1.000 0.075 0.028 0.028 0.028 0.028 0.028
LR Z − 2.207b - − 2.023b − 1.472b − 0.105b − 2.201c − 1.992c − 2.201c − 2.201c

Asymp. Sig. (2-tailed) 0.027 - 0.043 0.141 0.917 0.028 0.046 0.027 0.028
AUC FFCNN Z - − 2.201b − 0.841b − 1.992b − 2.201b − 2.207b − 2.201b − 2.207b − 2.201b

Asymp. Sig. (2-tailed) - 0.028 0.400 0.046 0.028 0.027 0.028 0.027 0.028
LR Z − 2.201b - − 2.201b − 1.572b − 0.524c − 2.201c − 2.201c − 2.201c − 2.201c

Asymp. Sig. (2-tailed) 0.028 - 0.028 0.600 0.028 0.028 0.028 0.028 0.028

a . Based on positive ranks.
b . Based on negative ranks. “-” indicates a not applicable test.

D. Javaheri et al.                                                                                                                                                                                                                                Knowledge-Based Systems 331 (2025) 114830 

16 



and overall accuracy. The detailed comparison is presented in Table 6.
It is worth mentioning that we could not include some related studies 

on real-time dynamic scanning and resource consumption measurement 
due to limitations in accessing their source code and executables, pre
venting us from running them under the same environment and condi
tions to make a fair comparison.

As shown in Table 6, DeepRadar is the only system that offers early 
detection and self-defence capabilities. Although [36] reports higher 
accuracy, this is based on a small dataset and employs only traditional 
shallow learning models. In contrast, cutting-edge deep learning models 
offer both higher accuracy and greater stability. Additionally, training 
models on a small number of samples fails to create a scalable solution 
capable of detecting a wide variety of malware with differing behaviour 
patterns. Some related studies were limited to detecting injection attacks 
in specific programming languages, such as [25], or only on 32-bit 
operating system versions, as in [24]. DeepRadar overcomes these 

limitations by detecting injection attacks regardless of the programming 
language used and supporting both 32-bit and 64-bit OS versions. While 
[37] reports high accuracy, it lacks a standard, publicly available 
dataset, so we cannot make a fair comparison to its reported accuracy, as 
the experimental dataset is unavailable to us. Moreover, this work fo
cuses solely on the Linux operating system, whereas our primary focus is 
on Windows, as the majority of malware programs are designed to target 
Windows. Alongside [38], we have incorporated the largest set of mal
ware samples to train and test our detection models. Compared to [38], 
our system captures both IRPs and APIs as features for behavioural 
modelling and, by employing both static and dynamic analysis, offers a 
hybrid approach that balances accuracy, real-time scan speed, and 
resource consumption. Additionally, the lower bound of our accuracy is 
much higher, demonstrating the robustness of our model. The other 
models produce accuracy of 93% or lower, making them insufficient for 
comparison.

4.6. Resource efficiency and long-term durability

Our early warning mechanism operates as a real-time defensive 
system; therefore, resource usage is a critical measure for verifying 
scalability and usability. CPU utilisation and memory usage of Deep
Radar were logged continuously over a 21-day period of real-time 
scanning, detecting, and confronting injection attacks, and the results 
are plotted in Fig. 13. In this figure, the vertical axis represents system 
resource usage, with CPU in blue and memory in orange, while the 
horizontal axis indicates the scanning time, where each unit corresponds 
to a 6-hour window (504 h in total). To obtain accurate measurements of 
resource utilisation, we monitored all threads, including child threads, 
associated with our early warning scanner. Over the 21-day run without 
any crash or malfunction, the average CPU utilisation was 20.1%, while 
memory consumption averaged 7.8%. The experiment was then 
repeated in parallel, on a separate cloned VM, for each detection model/ 
tool in the benchmark group under identical conditions. Each detection 
tool was executed in CLI scanning interface mode, with GUI modules 
excluded, ensuring that CPU and memory consumption reflected only 
the scanner modules. The average results are presented in Fig. 14.

As shown in Fig. 14, our proposed scanner, DeepRadar, achieved the 
best performance among the benchmark group, ranking first in both 
CPU and memory efficiency. Log analysis revealed that the majority of 
excessive resource utilisation was attributable to scanning IPC 

Table 5 
Evaluation of DeepRadar’s early warning system in terms of success rate for 
defusing code/library injection attacks.

Attack vector Attack Target (Process) Attack Target (File)

# 
Attacks

# 
Defused

SR # 
Attacks

# 
Defused

SR

API Hijack 88 82 0.932 - - -
API Mon x8617 34 32 0.941 - - -
API Mon x6410 28 28 1.000 - - -
Marshal SDK - - - 48 48 1.000
Graphics-Hook 

SDK
- - - 78 75 0.962

NtCore18 - - - 90 74 0.822
EasyHook 85 85 1.000 67 62 0.925
Binder 

(Infector)
108 108 1.000 110 107 0.973

Evader 154 149 0.968 - - -
Spyware 320 315 0.984 - - -
Banking 

Trojan
205 204 0.995 - - -

Rootkit 118 112 0.949 39 33 0.846
Metasploit 124 117 0.944 85 82 0.965
Emerg var 160 152 0.950 98 96 0.980
Average SR 1424 1384 0.972 615 577 0.938

“-” indicates that a given type of attack is not the corresponding tool.
17 http://www.rohitab.com/apimonitor.
18 http://www.ntcore.com/files/inject2exe.htm.

Table 6 
A comparison of related works, eighter detecting injection attacks or malware classes capable of injection attacks, with DeepRadar from various perspectives.

Method Platform Classifier Analysis Type 
- Depth

Feature(s) Datasets No. of 
samples

Early 
Detection

Self- 
defence

Accuracy

[32] Windows NR* Dynamic - 
Hypervisor

ASM Code Experimental NR × × NR

[33] Linux, 
Windows

NR Dynamic - 
Kernel

Device Driver Objects FireEye: World’s Top 
Malware, 
Spamfighter, Damballa

2K × × NR

[34] Android Abstract 
Interpretation

Static - NR Byte Codes, Data Flow NIST Juliet Suite, 
OWASP, 
Benchmark

NR × × 84–90%

[35] Windows GRU, N-grams-DBT Dynamic - 
Kernel

IRP MalwareBenchmark, 
theZoo

27K × × 86–93%

[36] Linux, 
Windows

RF, SVM, KNN, DT Dynamic - NR Jaccard, Entropy Kaggle, 
Experimental

12K × × 98–99%

[37] Linux LR, SVM, KNN, RF, 
DNN

Hybrid -Kernel Memory dumps, 
Application Binary 
Interface

Experimental 21.8K × × 91–98%

[38] Window GNN Dynamic - 
Hypervisor

API ACT-KingKong, 
API Call Sequences, 
RANSOMWARE

37K × × 91–98%

DeepRadar Windows LR, N-grams 
APRIORI, FFCNN

Hybrid - 
Kernel

API + IRP Adminus, MaleVis, 
VirusSign 
VirusShare, Metasploit

41.3K ✓ ✓ 95–97%

* “NR” (Not Reported) indicates that the relevant information was not reported.

D. Javaheri et al.                                                                                                                                                                                                                                Knowledge-Based Systems 331 (2025) 114830 

17 



communications, which is inherently time-consuming. We evaluated 
DeepRadar over an extended period of three weeks to demonstrate its 
reliability in performing and completing tasks during long-term mis
sions. This capability is of paramount importance for service providers 
and businesses, where sustained performance and consistency are 
critical.

4.7. Limitations and future work

We conducted a series of experiments across various scenarios and 
real-world exercises to comprehensively assess DeepRadar, identifying 
its strengths and weaknesses. A broad range of metrics, including ac
curacy, F-score, misclassification error, ROC, AUC, and resource effi
ciency, were evaluated. Comparisons were made not only with previous 
related work but also against benchmarks set by leading AVs, with 
validation through Friedman and Wilcoxon tests. The results showed 
that DeepRadar outperformed both state-of-the-art studies and globally 
recognised AVs in detecting malware injection attacks. Furthermore, to 
the best of our knowledge, and based on our literature review, Deep
Radar is the first cyber defence solution to implement the concept of 
early detection of malware injection attacks.

In brief, the early detection and neutralisation of 1960 out of 2038 
injection attacks brings about a success rate of 96.2%, which represents 
a substantial achievement for a cyber-defence system addressing an 
often overlooked yet highly sophisticated threat. It is widely recognised 
within the cybersecurity community that the detection of cyberattacks 
can never be guaranteed at 100%. Nevertheless, our experiments 
demonstrated that DeepRadar consistently outperformed well- 
established antivirus solutions, none of which were able to achieve 
complete detection. These findings suggest that DeepRadar significantly 

narrows a critical gap in protection and offers an effective safeguard 
against complex code and library injection attacks.

Although DeepRadar has proved itself to be a well-equipped inter
ceptor capable of dealing with a broad spectrum of malware evasion 
techniques, the root cause behind a small portion of successful attacks is 
mainly the behavioural obfuscation and detection evasion techniques 
that the novel malware classes are practising these days. Furthermore, 
the difference in detection rate between various classes of malware 
depends on the intrinsic nature and the technology that has been 
leveraged to design and develop such malware programs. We are prac
tising to further improve the detection accuracy of DeepRadar and its 
capabilities to recognise a broader spectrum of malware evasion 
techniques.

It is worth noting that DeepRadar has been purposefully designed to 
detect injection attacks - i.e., malware families capable of code or library 
injection. While many malware families employ injection techniques, 
particularly heavily packed samples seeking obfuscation, privilege 
escalation, or detection (AV) evasion, not all malware classes do. In 
future work, we aim to extend DeepRadar to cover a broader spectrum of 
malware types beyond injection-capable families.

DeepRadar has primarily been developed based on the Windows 
operating system. In view of the growing prevalence of malware on 
other platforms, particularly in Linux-based could environments, In
dustrial IoT systems [82], and Android [26], we plan to extend future 
iterations of DeepRadar to support these operating systems, thereby 
broadening its applicability and strengthening its role as a 
cross-platform cyber-defence solution.

Fig. 13. System resource utilisation of the runtime scanner during a period of 21 days.

Fig. 14. Comparison of resource usage between the proposed scanner and the benchmark group (values are averaged).
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5. Conclusion

Injection attacks, a sophisticated technique used by contemporary 
malware classes, aim to obfuscate malicious activities, evade AVs, and 
bypass OS security by exploiting the privileges of trusted applications. 
Our work addressed this crucial issue by introducing DeepRadar, a 
robust multi-layer architecture capable of accurately anticipating code 
and library injection attacks a few cycles before occurrence and neu
tralising the attacks. DeepRadar incorporates several modules designed 
to monitor kernel-level APIs, call parameters, and IRPs, utilising these as 
behavioural features. To effectively detect and predict malware activ
ities, we implemented logistic regression, deep neural networks 
enhanced with fast Fourier convolution, and APRIORI association rule 
mining for the training and validation of malware detection models, as 
well as for the development of an early warning and self-defence system. 
We evaluated the performance of DeepRadar against destructive mal
ware families, including extremely obfuscated, emerging, and adversa
rial samples, from credible sources and benchmarked against leading 
antivirus tools. Our experiments demonstrated that DeepRadar consis
tently outperformed the benchmark group and prior studies, achieving 
higher Accuracy, F-score, AUC, and ROC results while demanding less 
memory and processor. The success rate in preventing code and library 
injection attacks and creating immunity against such attacks were also 
measured. Our early warning system generated alarm signals and 
blocked anticipated threats for 97.2% of process-level and 93.8% of file- 
level attacks. Statistical analysis using Friedman and Wilcoxon tests 
further substantiated these results. These findings underscore the sig
nificance of DeepRadar’s capabilities, which provide a robust and scal
able defence for sensitive systems and offer dynamic early-warning 
signals that pre-emptively counter stealthy, obfuscated, zero-day, and 

adversarial injection attacks.
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Appendix

Table A-1 
The name and details of system functions used in methods introduced in this research [73,74].

# Name of API Owner Module Function in the system

1 CloseHandle Kernel32.dll Eliminating an existing handle to an object
2 CreateFileA/W Kernel32.dll Creating or opening a file or I/O device
3 CreateProcessA/W Kernel32.dll Creating a new process in the system
4 CreateRemoteThread Kernel32.dll Creating a new thread running in the memory of another process
5 CreateRemoteThreadEx Kernel32.dll Creating a new thread running in the memory of another process
6 CreateSection Kernel32.dll Creating a new section in the PE files
7 FindFirstFileA/W Kernel32.dll Searching a file in a specific patch
8 FindNextFileA/W Kernel32.dll Continuing searching a file
9 GetThreadContext Kernel32.dll Retrieving the context of a running thread
10 LdrLoadDll Ntdll.dll Loading a library into the system memory
11 LoadLibraryA Kernel32.dll Loading a library into the system memory
12 OpenFile Kernel32.dll Opening an existing file from the hard disk
13 OpenProcess Kernel32.dll Creating a handle to a running process
14 OpenThread Kernel32.dll Creating a handle to a running thread
15 Process32First Kernel32.dll Getting a snapshot of a running process
16 Process32Next Kernel32.dll Continuing getting a snapshot of a running process
17 ReadProcessMemory Kernel32.dll Getting access to the allocated memory of a process
18 ResumeThread Kernel32.dll Recovering the execution of a paused thread
19 SetFileAttributesA/W Kernel32.dll Defining attributes to a file on the hard disk
20 SetProcessInformation Kernel32.dll Setting information for a process in the system
21 SetThreadContext Kernel32.dll Setting a context for a specified thread
22 SuspendThread Kernel32.dll Pausing the execution of a thread in the system
23 VirtualAlloc Kernel32.dll Performing modifications in the virtual address space of a process
24 VirtualAllocEX Kernel32.dll Performing modifications in the virtual address space of a process
25 WaitForMultipleObjects Kernel32.dll Pausing until multiple signaled obj. complete their tasks
26 WaitForSignalObject Kernel32.dll Pausing until a signaled object completes its task
27 Wow64GetThreadContext Kernel32.dll Retrieving the context of a 64-bit thread
28 Wow64SetThreadContext Kernel32.dll Setting a context for a thread of a 64-bit process
29 WriteFile Kernel32.dll Writes data to a file or I/O device
30 WriteFileEx Kernel32.dll Writes data to a file or I/O device
31 WriteProcessMemory Kernel32.dll Writing data to the memory of a process

D. Javaheri et al.                                                                                                                                                                                                                                Knowledge-Based Systems 331 (2025) 114830 

19 



Table A-2 
The name and specifications of analysis tools used in this study.

# Name and Version Main Function Access Link

1 Cuckoo Sandbox Isolated environment for executing 
malware

https://github.com/cuckoosandbox/cuckoo

2 Device Tree Dynamic analysis of kernel drivers https://www.osronline.com/article.cfm%5Earticle=97.htm
3 DIE V3.02 Static analysis of PE file https://horsicq.github.io/
4 H2O-3 V3.34 AI-based model training https://github.com/h2oai/h2o-3
5 IBM SPSS Statistics V28.0 Statistical analysis of results https://www.ibm.com/products/spss-statistics
6 IDA Pro V7.40 Binary to ASM disassembler https://hex-rays.com/ida-pro/
7 Kali Linux V2025.2 Penetration testing and ethical hacking https://www.kali.org/get-kali/#kali-platforms
8 Parrot Linux V6.4 Linux distro for ethical hacking https://parrotsec.org/download/
9 Olly dbg V1.10 Debugging user-level programs https://www.ollydbg.de/
10 PeID V0.95 Static analysis of PE file https://github.com/wolfram77web/app-peid
11 REMnux Malware analysis Linux distro https://docs.remnux.org/install-distro/get-virtual-appliance
12 VirusTotal Multi-AV scanner https://www.virustotal.com/
13 Volatility 2.5 Memory forensics tool https://github.com/volatilityfoundation/volatility
14 Weka V3.8.5 AI-based rule mining https://www.cs.waikato.ac.nz/ml/weka/
15 Win dbg V10.0 Debugging kernel-level programs https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-downl 

oad-tools
16 WM-ware Workstation 

V14.1.1
Virtualisation tool for running VMs https://www.vmware.com/

Data availability

Data will be made available on request.
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