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A B S T R A C T

Oil palm cultivation is vital to global food security and economically important to farmers. However, the rapid 
expansion of oil palm plantations has caused large-scale deforestation in the tropics and, consequently, biodi
versity loss and changes in ecosystem functioning. Oil palm is primarily cultivated in Southeast Asia, where the 
ecological impacts of production have been studied extensively. It is also grown in West Africa, using traditional 
and industrial methods of cultivation. However, in comparison to Southeast Asia, relatively little research on the 
impacts of oil palm cultivation in West Africa has occurred. Working in the framework of the Sustainable Oil 
Palm in West Africa (SOPWA) Project (Sinoe County, Liberia), we investigated differences in the biodiversity of 
ground-dwelling arthropods across rainforest (the regional natural habitat) and oil palm systems cultivated 
under traditional (called “country palm”) and industrial management. We sampled arthropods with pitfall traps 
(160 retrieved) across 54 monitoring plots in rainforest, country palm, and industrial oil palm. We found no 
differences in total arthropod abundance across systems, but we did find changes in arthropod order-level 
community composition, driven by differences in the relative abundance of Araneae, Collembola, Dermaptera, 
and Diptera. We conducted focused morphospecies-level analyses on spiders, owing to their key roles as pred
ators within tropical agricultural systems, and to determine if our order-level findings held true at increased 
taxonomic resolution. Our spider analyses indicated that country palm supported the greatest number of spider 
individuals and species, and that all systems supported distinct spider assemblages. Our findings have implica
tions for both arthropod conservation and oil palm productivity, owing to the important ecosystem functions (e. 
g., pest control) that many arthropods provide. Future research should investigate whether changes in on-farm 
management practices influence arthropod communities – and the ecosystem functions they support – in West 
Africa.
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1. Introduction

Palm oil, the most traded vegetable oil globally, is made from the 
fruits of the oil palm (Elaeis guineensis Jacq). Global palm oil production 
is increasing rapidly. For instance, from 2000 to 2020, production more 
than tripled (22.23 Mt to 75.88 Mt), and oil palm plantation area 
doubled (10.40 Mha to 21 Mha) (Descals et al., 2021; Ritchie and Roser, 
2021). Oil palm agriculture is vital to global food and fuel security, and 
can benefit the income and livelihoods of small-scale farmers and local 
communities (Chrisendo et al., 2022; Khatun et al., 2020; Nurfatriani 
et al., 2022). For instance, a study in Indonesia found that cultivating oil 
palm was associated with improved nutrition, education, living condi
tions, and human capital formation in smallholder farm households 
(Chrisendo et al., 2022). However, oil palm agriculture has also 
dramatically affected tropical ecosystems (Barnes et al., 2014; Koh and 
Wilcove, 2008; Vijay et al., 2016), as increases in production have 
occurred mainly at the expense of tropical rainforest habitats and, to a 
lesser extent, savanna and peatlands (Fleiss et al., 2022; Gibbs et al., 
2010; Vijay et al., 2016; Warren-Thomas et al., 2022). Conversion of 
natural habitat to oil palm reduces vegetation structural complexity and 
diversity, and alters microclimate (Hardwick et al., 2015; Luskin and 
Potts, 2011; Pashkevich et al., 2024a; Williamson et al., 2021), resulting 
in lower levels of biodiversity across taxonomic groups (e.g., mammals 
(Bernard et al., 2016; Sodhi et al., 2009; Yue et al., 2015), birds (Azhar 
et al., 2011; Hamer et al., 2021; Nájera and Simonetti, 2010), and ar
thropods (Alonso-Rodríguez et al., 2017; Mumme et al., 2015; Turner 
and Foster, 2009)) and changing levels of ecosystem functioning (Barnes 
et al., 2014; Dislich et al., 2017).

The majority of oil palm is grown in Southeast Asia, where the 
ecological impacts of cultivation have been studied extensively (Popkin 
et al., 2022; Reiss-Woolever et al., 2021). However, oil palm agriculture 
is also expanding in other producing regions, yet relatively little 
research has focused on the potential societal and ecological impacts of 
associated land use changes (Pashkevich et al., 2024a; Reiss-Woolever 
et al., 2021). For instance, in West Africa (oil palm’s native home), oil 
palm cultivation is increasing in many countries, but studies on the 
environmental impacts of cultivation in this region are relatively rare 
(Pashkevich et al., 2024a; Reiss-Woolever et al., 2021). The impacts of 
industrial cultivation in West Africa may vary from those observed in 
Asia and South America, since oil palm is native to West Africa and 
therefore has co-evolved with other species (in other regions, it has been 
introduced, and its cultivation may therefore have greater ecological 
impacts). Further, many West African people practice locally unique 
cultivation practices, including harvesting of wild-growing palms, 
which grow naturally in areas of low-lying rainforest. These palms are 
often retained when new smallholder farms are established, in which 
other crops such as cassava, banana, cucumber, okra, and pepper are 
grown for subsistence purposes (Pashkevich et al., 2024a). This 
small-scale production is in stark contrast to industrial expansion, which 
is also increasing in some parts of West Africa, and involves vast areas of 
rainforest being converted to oil palm monocultures (Descals et al., 
2021; Paterson, 2021). These large-scale plantations are often estab
lished by foreign corporations and managed following strategies 
developed in Southeast Asia, including high application of inorganic 
fertilisers and herbicides (Davis et al., 2020; Pashkevich et al., 2024a).

Liberia is the third most-forested country in Africa and the most- 
forested (by percentage of land area) country in West Africa (Forest 
Carbon Partnership, 2019; Index Mundi, 2019). Liberia’s tropical moist 
to hyperwet broadleaf forests comprise the majority of the remaining 
Upper Guinean Rainforest (Environmental Protection Agency Liberia, 
2019; UNEP/GRID-Geneva, 2023), a Critical Region for Conservation, 
owing to the many endemic and threatened species that it contains 
(Marshall et al., 2016, 2022; Olson and Dinerstein, 2002; 
UNEP/GRID-Geneva, 2023; United States Agency for International 
Development, 2018). The rainforests are also important to the liveli
hoods of local people. For instance, people in Liberia use plants from the 

rainforest as sources of housing materials and medicines for treating 
malaria and other common diseases (Marshall and Hawthorne, 2012, 
2013; Marshall et al., 2024). In comparison to surrounding countries, 
Liberia’s rainforests are relatively undisturbed due to Liberia’s histori
cally small population and two civil wars (1989 – 1997, 1999 – 2003) 
and an Ebola outbreak (2013 – 2016) that halted large-scale land 
development for decades (Okoli et al., 2019; United Nations Develop
ment Programme, 2014). However, in recent years, large-scale land 
development (including for oil palm cultivation) in Liberia has occurred. 
This development has the potential to support local income, livelihoods 
and food security, but research is needed urgently to identify the 
ecological and socioeconomic impacts of this expansion, and to develop 
methods to cultivate oil palm more sustainably in this region 
(Pashkevich et al., 2024a).

Arthropods (here meaning insects, arachnids, and myriapods) are 
highly abundant and functionally important in most terrestrial habitats, 
including oil palm plantations (Cheong et al., 2010; Pashkevich et al., 
2021). In oil palm landscapes, they provide vital ecosystem services that 
support yields. For example, ants predate on pests (Exélis et al., 2022; 
Offenberg, 2015), springtails and termites are decomposers that benefit 
soil fertility (Gray et al., 2014; Mumme et al., 2015), and a single species 
of beetle (Elaeidobius kamerunicus Faust, Coleoptera: Curculionidae) 
underpins pollination in industrial farmlands (Gintoron et al., 2023; Li 
et al., 2022). However, some arthropods can provide ecosystem disser
vices, such as bagworms (family: Psychidae) and slug moth caterpillars 
(family: Limacodidae; Parasa spp.), which damage palm fronds and 
reduce yields (Corley and Tinker, 2016). Arthropods are also prey for 
other fauna such as mammals, birds, reptiles, and amphibians, thus 
playing an important role in energy transfer from the lower to upper 
trophic levels (Deblauwe and Janssens, 2008; Mizsei et al., 2019; 
Rytkönen et al., 2019). Therefore, conservation of arthropods is vital for 
sustaining tropical biodiversity and oil palm productivity (Dislich et al., 
2017; Turner and Hinsch, 2018). Despite this, in comparison to South
east Asia, there have been relatively few studies on the impacts of oil 
palm expansion on arthropods in West Africa. Studies from Southeast 
Asia show that converting natural habitat to oil palm plantations 
negatively impacts arthropods (Ashton-Butt et al., 2019; Gray et al., 
2016; Mumme et al., 2015; Nurdiansyah et al., 2016; Rizali, Karindah, 
et al., 2019; Turner and Foster, 2009). For instance, Lucey and Hill 
(2012) found that, compared to natural rainforest, the species richness 
of butterflies and ants decreased by 54 % and 25 % respectively in oil 
palm plantations in Sabah, Malaysia. These impacts are likely due to 
several factors, such as reductions in understory vegetation and hotter 
and drier conditions, that result when natural habitats are converted to 
oil palm plantations (Mumme et al., 2015; Turner and Foster, 2009).

In this study, we worked within the framework of the Sustainable Oil 
Palm in West Africa (SOPWA) Project (Pashkevich et al., 2024a) – a 
large-scale collaborative study focused on the socioecological benefits 
and consequences of oil palm cultivation in Sinoe County, Liberia – to 
study differences in ground-dwelling arthropod biodiversity across 
rainforest and oil palm systems being managed traditionally (called 
“country palm”) and industrially. We had two main aims. First, 
considering all ground-dwelling arthropods at the order-level, we 
investigated whether oil palm systems support fewer arthropod in
dividuals and different arthropod assemblages in comparison to rain
forest. Second, considering spiders only, we investigated whether oil 
palm systems support fewer spider individuals, species, and different 
spider communities in comparison to rainforest. We conducted these 
focused spider analyses to investigate whether order-level findings were 
consistent at increased taxonomic resolution. We chose spiders specif
ically for three reasons. Firstly, they are predators of pests within trop
ical agricultural landscapes, including oil palm systems, and are 
therefore key for maintaining oil palm health and productivity 
(Pashkevich et al., 2022; Rosa et al., 2018; Spear et al., 2018). Second, 
studies have shown spiders to be an indicator taxon of the effects of 
converting rainforest to oil palm systems (Junggebauer et al., 2021; 
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Potapov et al., 2020; Ramos et al., 2022). Third, a previous study 
(Pashkevich et al., 2024b) investigated the response of spiders in un
derstory vegetation to oil palm expansion in Liberia. As our current 
study focused on ground-dwelling spiders, it allows insights into how oil 
palm expansion may differently affect biodiversity across microhabitats. 
We did not identify all arthropods to species-level, owing to difficulties 
with the high diversity and poor taxonomic knowledge of West African 
arthropods. We hypothesised that: (1) Rainforests support more abun
dant and compositionally distinct arthropod communities than oil palm 
systems, and (2) Rainforests support more abundant, species rich, and 
compositionally distinct spider communities than oil palm systems. This 
research extends understanding of arthropod biodiversity in both rain
forest and oil palm systems in West Africa, benefitting ongoing conser
vation efforts and providing important baseline data on arthropod 
biodiversity in an incredibly understudied tropical country. Our study is 
also a helpful comparison to similar studies in Southeast Asia (Mumme 
et al., 2015; Turner and Foster, 2009). The impacts of oil palm culti
vation on arthropods are relevant to both conservation and food security 
goals, as many arthropod species support important ecosystem services – 
such as pest control and pollination – that support oil palm yield (Gérard 
et al., 2017; Li et al., 2019; Luke et al., 2020).

2. Materials and methods

2.1. Site

This study was conducted in Sinoe County, Liberia (5.135195 N, 
9.078423 W; Fig. 1) in the framework of the Sustainable Oil Palm in 

West Africa (SOPWA) Project. The SOPWA Project is investigating the 
socioecological impacts of traditional and industrial approaches to oil 
palm production, using rainforest as a reference system (Pashkevich 
et al., 2024a). The industrial oil palm plantations are owned by Golden 
Veroleum Liberia (GVL), the largest oil palm producer in Liberia and a 
subsidiary company of Singapore-based Golden Agri-Resources (GAR). 
Sinoe Country has an average annual rainfall of 3600 mm and an annual 
average temperature of 25.7 ◦C (ranging from 20 – 31 ◦C) (Climate 
change Knowledge Portal, 2020; Climate-Data, 2023). The soil type is 
mainly latosol, a red soil which contains high iron and aluminium oxide 
content (Todd, 2016; United Nations Development Programme, 1970).

The SOPWA study design features study plots (50 ×50 m) in three 
different systems:

2.1.1. Forest
These plots are in GVL-owned old-growth lowland rainforest areas, 

which form part of the Upper Guinean Rainforest. There is no record of 
large-scale disturbance within these areas, but local people use them for 
cultural purposes, hunting bushmeat, and harvesting of non-timber 
forest products (NTFPs). As Sinoe County has the highest per-county 
forest cover in Liberia (about 90 % of Sinoe County is forest; Forest 
Carbon Partnership, 2019), forest is the ideal pre-oil palm reference 
habitat for this study.

2.1.2. Country palm
These plots are in traditional smallholder farms owned by local 

people who live in nearby villages. At the time of sampling, each plot 
had been farmed at least 2 years before the study began (range: 2 – 30 

Fig. 1. Map of the SOPWA Project study design in Sinoe County, Liberia. The SOPWA Project features 54 study plots (50 ×50 m; 18 per system). Square colour 
indicates study system (purple = Forest, orange = Country palm, red = Industrial oil palm (‘Industrial OP’ in legend)). Plots are clustered around six industrial oil 
palm farms (owned by Golden Veroleum Liberia), which are shown in blocks of colour. Greenville (pink hexagon), the capital city of Sinoe County, is shown for 
reference. Blue and brown lines indicate major rivers and roads, respectively. This figure is reproduced from Pashkevich et al. (2024a).
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years), and was being restored passively towards secondary forest 
(called ‘low bush’ by local communities). When they were actively 
managed, the farms were small-scale (all were < 5 ha) and local people 
prepared them using slash-and-burn practices. All farms had natural 
growing oil palms present, which are fire-resistant and therefore survive 
the burning. Local people use palm fruits of wild-growing palms to 
produce cooking oil, and the heart of the palms (the central growing tip) 
to make palm wine. When these areas were actively farmed, other crops 
were also grown including cassava, rice, banana, pumpkin, cucumber, 
pepper, and bitterball (Pashkevich et al., 2024a). The farmers did not 
apply any chemical fertilisers, pesticides, or herbicides.

2.1.3. Industrial oil palm
These plots are in industrial oil palm farms owned and managed by 

GVL. GVL has six oil palm farms in Sinoe County: Kabada, Tartweh, 
Kpayan, Butaw, Tarjuowon-South, and Tarjuowon-North (Fig. 1). These 
farms are certified by the Earthworm Foundation (https://www.earth 
worm.org) and follow standard management procedures, in line with 
recommendations provided by Sinar Mas Agro Resources and Technol
ogy Research Institute (Kaybee, 2019). At the time of our study, oil 
palms were aged 5–11 years (Table S3). The farms are monocultures, 
arranged in 300 x 1000 m blocks, with individual palms planted ~ 8 m 
apart. Palms are harvested manually on a 10 – 15 day cycle using a 
chisel or harvesting sickles on telescopic poles, depending on palm 
height. GVL applies fertilisers and herbicides regularly, and pesticides 
selectively (when outbreaks of insect pests occur) (Pashkevich et al., 
2024a).

SOPWA features 18 plots in each system (N = 54), with plots 
grouped into six clusters (and each cluster having three plots in each 
system), based around each of the Sinoe County GVL oil palm farms 
(Fig. 1). Plots of the same system were > 400 m apart (mean distance 
between plots was 1.85 km). We established forest and industrial oil 
palm plots > 200 m from habitat edges, and country palm plots > 200 m 
from industrial oil palm plantations (a sufficient distance to prevent 
edge effects from plantations; Lucey and Hill 2012). For full details of 
study plots and the overall SOPWA design, see Pashkevich et al. (2024a).

2.2. Data collection

2.2.1. Ground-dwelling arthropod sampling
To assess differences in ground-dwelling arthropod biodiversity 

across rainforest and oil palm systems, we surveyed ground-dwelling 
arthropods in all SOPWA plots during January – February 2023 (cor
responding to Liberia’s dry season). We collected arthropods by setting 
three pitfall traps in each plot, arranged in a triangular fashion such that 
each trap was 5 m from the plot centre at bearings 0◦, 135◦, and 225◦

(and traps spaced 10 m apart from each other). In total, we deployed 
162 traps. Our traps were made from the lower half of disposable plastic 
water bottles (measuring 6.3 cm in diameter at the mouth, and 11.8 cm 
deep), and covered with a plastic plate (raised by wooden skewers) to 
prevent dilution or flooding from rainfall. We filled the traps with a 
solution of 20 % ethanol and 80 % water, and added three drops of dish 
soap to break the surface tension. We retrieved the traps after 72 h. 
During collection, we poured the trap contents into a fine sieve (53 µm 
mesh), using a spoon and forceps to retrieve any remaining contents 
within the sieve.

We stored the arthropods in 70 % isopropyl alcohol, and exported 
the samples to the Museum of Zoology at the University of Cambridge, 
United Kingdom (export permit number MD/031/2023/-3). Arthropods 
were identified to order-level using stereomicroscopes, aside from Dip
lopoda which were identified to class, Formicidae to family, and Isoptera 
to infraorder due to their unique ecology and easy identification, and to 
provide complementarity with previous related studies (e.g., Ashton-
Butt et al., 2019; Pashkevich et al., 2021). We identified caterpillars as 
Lepidoptera, since they go through complete metamorphosis and owing 
to their distinguishable appearance, but we categorised all other larvae 

to their own group. Hereafter, we refer to all arthropod groups as orders. 
We identified spiders (important providers of pest control services in oil 
palm farmlands (Pashkevich et al., 2021)), to morphospecies using ste
reoscopes typically (AmScope ZM- 4 T), with occasional use of com
pound scopes (Olympus BX61) for genitalia examination. Adults and 
juveniles were separated, and juveniles were identified to family where 
possible. Keys to spider families were utilised (e.g. Jocqué and 
Dippenaar-Schoeman, 2006) alongside more up-to-date information on 
the majority of spider families from the World Spider Catalog (2024). 
Specimens are preserved in the Museum of Zoology, University of 
Cambridge, and we are in conversations with the Government of Liberia 
to return a complete morphoseries to Liberia over time.

2.3. Statistical analyses

We conducted all statistical analyses using R version 4.3.2 (R Core 
Team, 2023) within RStudio version 2023.03.1 + 446 (Rstudio team, 
2023). We used packages readxl (Wickham and Bryan, 2023), tidyverse 
(Wickham et al., 2019), plyr (Wickham, 2011), dplyr (Wickham et al., 
2023), ggsignif (Ahlmann-Eltze and Patil, 2021), vegan (Oksanen et al., 
2022), BiodiversityR (Kindt, 2022), and lemon (Edwards, 2022) for data 
wrangling, exploration, and visualisation. We used glmmTMB (Brooks 
et al., 2017) for fitting generalised linear mixed effects models (GLMMs) 
and mvabund (Wang et al., 2022) for fitting multivariate generalised 
linear models (mGLMs).

Prior to analysis, we pooled pitfall traps from the same plot. During 
transportation, we lost two pitfall samples. To account for this when 
pooling samples, we standardised data from these plots by calculating 
the mean abundance per remaining traps, multiplying by three (the 
number of traps set), and rounding the value to the nearest integer to 
meet model assumptions.

2.3.1. Differences in ground-dwelling arthropod abundance and order-level 
community composition across systems

To assess the relative proportion of arthropod orders in each system, 
we calculated evenness values as the Pielou index (J), which is derived 
from the Shannon index. The J values range from 1.0 to 0.0, where 1.0 is 
a community with completely equal relative abundances, and 0.0 is an 
entirely unequal community. We visualised order-level evenness by 
plotting rank abundance curves.

We used a GLMM to assess differences in arthropod abundance 
across forest, country palm, and industrial oil palm systems. We fitted 
the model to a negative binomial distribution (as the poisson-distributed 
model was overdispersed) with System (a factor, with levels: forest, 
country palm, and industrial oil palm) as a fixed effect. We incorporated 
Farm (levels: Kabada, Tartweh, Kpayan, Butaw, Tarjuowon-South, 
Tarjuowon-North) as a random intercept effect to account for spatio
temporal dependencies arising from the clustered arrangement of the 
SOPWA plots and our sampling schedule. Therefore, our model took the 
form: Abundance ~ System + (1|Farm). We validated our model by 
checking for overdispersion and plotting Pearson residuals against fitted 
values and covariate System to check that no patterns of homoscedas
ticity or non-linearity were present. We also simulated 10,000 datasets 
from each model, calculated the dispersion statistics for each dataset, 
and checked that the dispersion statistic for each model was within the 
range of the simulation (Zuur and Ieno, 2016). Our validation procedure 
indicated that there were no problems with our modelling. We deter
mined the significance of System by comparing our GLMMs to null 
models using likelihood ratio tests (LRTs). Our null models took the 
form: Abundance ~ 1 + (1|Farm). If System was significant (P < 0.05), 
we conducted pairwise post-hoc tests (Tukey all-pair comparison tests 
owing to multiple comparisons) to determine which systems differed. 
Six plots contained > 1000 ants, likely owing to individual traps being in 
the middle of disturbed ant nests or ant highways during deployment. To 
test the influence of these samples on our findings, we conducted a 
sensitivity analysis wherein we removed these plots from our dataset 
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and re-ran our arthropod abundance model.
We used a mGLM to assess differences in order-level community 

composition of arthropods across forest, country palm, and industrial oil 
palm systems. Prior to analysis, we removed Neuroptera, Pseudo
scorpiones, and Schizomida as they were represented by only a few in
dividuals across the study (total abundance across all sites < 5 for all) 
and caused model convergence issues. We fitted our model to a negative 
binomial distribution (due to a poisson-distributed model being over
dispersed) with System as a fixed effect. We used Farm as a blocking 
variable to account for non-independence of plots within the same 
cluster. Our model therefore took the form: Arthropod order-level 
community composition ~ System + (1|Farm). We validated our 
mGLM by plotting Dunn-Smyth residuals against fitted values and co
variate System and ensuring no relationships were present. We deter
mined the effect of System on arthropod order-level community 
composition using a LRT and by bootstrapping probability integral 
transform (PIT) residuals with 10,000 resampling iterations (Warton 
et al., 2017). If System was significant (P < 0.05), we ran univariate 
analyses to determine which orders differed significantly in abundance 
across the three study systems, therefore driving changes in community 
composition. We used a step-down resampling algorithm to adjust uni
variate P-values for multiple testing (Wang et al., 2012). We visualised 

our order-level arthropod community composition findings using 
stacked bar charts, and an ordination plotted from the posterior medians 
of a Bayesian generalised linear latent variable model (GLLVM) using 
the boral package (Hui, 2021). We fitted a pure (i.e., no covariates 
included) GLLVM but fitted Farm as a random row effect to account for 
spatiotemporal dependences in our dataset, as described above. As with 
our mGLM, we removed Neuroptera, Pseudoscorpiones, and Schizomida 
from the dataset before fitting our GLLVM.

2.3.2. Differences in ground-dwelling spider abundance, species richness 
and species-level community composition across systems

To assess our sampling completeness, we calculated interpolated and 
extrapolated species accumulation curves for adult spiders only in each 
system (package iNEXT; Hsieh et al., 2022). We extrapolated to double 
the number of individuals found in each system.

We assessed differences in total spider abundance (including adults 
and juveniles) and species richness (adults only) using poisson- 
distributed GLMMs. We fitted and validated our models as described 
for all arthropods above. When analysing differences in spider species 
richness, our model validation procedure indicated that model as
sumptions were not being met, and therefore we re-analysed these data 
with a Kruskal-Wallis test using stats (R Core Team, 2023), and 

Fig. 2. Differences in order rank abundance (a), total abundance (b), and order-level community composition (c-d) of arthropods across forest, country palm, and 
industrial oil palm systems. For (b) and (c), the effect of System on each response (determined using LRTs) is shown above in text, and when this was significant 
(P < 0.05), results of pairwise post-hoc analyses are indicated by the horizontal lines above each plot: * **P < 0.001, * *P < 0.01, *P < 0.05. For (b), boxplots show 
median (horizontal crossbar) and interquartile ranges, and the circular datapoints show the per-plot values. In (c), the nine most abundant arthropod orders across all 
samples are plotted in order of the legend and error bars show the standard error of the mean. (d) visualises the differences in arthropod order-level community 
composition in multi-dimensional space. Points indicate the posterior medians of the GLLVM and, to help visualisation, we drew hulls around points of the 
same system.
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conducted post-hoc analyses using the Dunn’s Test for multiple com
parisons (package dunn.test; Dinno, 2017), adjusting our P-values using 
the Bonferroni correction. We assessed differences in spider species-level 
composition (adults only) using a poisson-distributed mGLM and 
GLLVM. Otherwise, our mGLM and GLLVM were fitted and validated, 
and findings visualised, as described above.

3. Results

3.1. Differences in ground-dwelling arthropod abundance and order-level 
community composition across systems

We collected 28,077 arthropods representing 21 orders. This 
included 8661 arthropods in forest, 7844 arthropods in country palm, 
and 11,572 arthropods in industrial oil palm. Formicidae (n = 3194), 
Collembola (n = 2820), and Coleoptera (n = 636) were dominant in 
forest; Formicidae (n = 4508), Collembola (n = 1105), and Coleoptera 
(n = 420) were dominant in country palm; and Formicidae (n = 9590), 
Collembola (n = 539), and Orthoptera (n = 255) were dominant in in
dustrial oil palm (Fig. 2a). Pielou indices indicated that order evenness 
was higher in forest (J = 0.590) and country palm (J = 0.524) than in 
industrial oil palm (0.288) (Fig. 2a).

We found no significant differences in per-plot arthropod abundance 
across forest (mean (x‾) per plot ± standard error (SE) = 481 ± 82), 
country palm (x‾ ± SE = 438 ± 176), and industrial oil palm (x‾ ± SE =
643 ± 229) systems (LRT = 1.720, P = 0.423; Fig. 2b; all model sum
maries in Tables S1 and S2). Our sensitivity analysis, wherein we 
removed plots with > 1000 ants, indicated significant differences in 
arthropod abundance across our study systems (LRT = 11.59, P = 0.003; 
Fig. S2). Post-hoc analyses indicated that arthropod abundance in forest 
(x‾ ± SE = 372 ± 36.6) was over 1.4 and 1.6 times higher than in 
country palm (x‾ ± SE = 262 ± 30.5) and industrial oil palm (x‾ ± SE =
229 ± 23.7), respectively (post-hoc comparisons: forest – country palm: 
P = 0.029; forest – industrial oil palm: 0.002). We found no significant 
differences in arthropod abundance between country palm and indus
trial oil palm (P > 0.05).

Arthropod order-level community composition differed significantly 
across systems (LRT = 202.4, P < 0.001; Fig. 2c-d). Post-hoc analyses 
showed significant differences between all systems (P ≤ 0.001 for all). 
Univariate analyses indicated that compositional changes were driven 
by differences in the relative abundance of Araneae (P = 0.025), Col
lembola (P < 0.001), Dermaptera (P = 0.024), and Diptera (P = 0.046) 
(Fig. 2c). Mean Araneae abundance was highest in country palm (x‾ 
± SE = 19.6 ± 2.49); it was over 2.1 and 2.4 times higher, respectively, 

Fig. 3. The number of species (a), and species accumulation curves (b), and species rank abundance curves (c) of ground-dwelling spiders found in forest, country 
palm, and industrial oil palm systems. We note that only adult spiders were considered in these analyses, as the juvenile spiders were not identified to morphospecies- 
level. For (a), numbers indicate the total number of spider species found in each system and the number of species shared between systems. For (b), we plotted both 
interpolated (solid line) and extrapolated (dashed line) curves. For (c), we included the names of the most abundant species in each system, and axes are consistent 
across subplots to facilitate comparisons across systems. We extrapolated to double the number of individuals found in each system.
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than in forest (x‾ ± SE = 9.11 ± 1.35) and industrial oil palm (x‾ ± SE 
= 8.17 ± 1.38) (Fig. S2). Mean Collembola abundance in forest (x‾ ± SE 
= 157 ± 22.8) was over 2.5 and 5.2 times greater than country palm (x‾ 
± SE = 61.4 ± 8.60) and industrial oil palm (x‾ ± SE = 29.9 ± 3.52), 
respectively. Mean Dermaptera abundance in country palm (x‾ ± SE =
5.78 ± 3.15) was over 1.4 and 5.7 times higher than forest (x‾ ± SE =
4.00 ± 1.73) and industrial oil palm (x‾ ± SE = 0.00 ± 0.00), respec
tively, whilst mean Diptera abundance in forest (x‾ ± SE = 31.8 ± 5.88) 
was over 2.1 and 2.8 times greater than country palm (x‾ ± SE = 14.9 
± 1.97) and industrial oil palm (x‾ ± SE = 11.2 ± 2.28), respectively 
(Fig. S2).

3.2. Differences in ground-dwelling spider abundance, species richness 
and species-level community composition across systems

We collected 663 spiders representing 76 species. This included 164 
spiders in forest (nadults = 54, nspecies = 31), 352 spiders in country palm 
(nadults = 163, nspecies = 38), and 147 spiders in industrial oil palm 
(nadults = 65, nspecies = 33) (Fig. 3a). Species accumulation curves were 
still increasing in all systems, indicating an imperfect sampling 
completeness, particularly in industrial oil palm (Fig. 3b). Five species 
from five families accounted for 28 % of spiders in forest (Crinopseudoa 
sp.2, Gnaphosidae sp.5, Mallinella sp.3, Oonopidae sp.6, Pochytoides 
sp.1; n = 3 for all). A singular species of Lycosidae (Lycosidae sp.5, 
n = 112) accounted for 69 % of spiders in country palm. Four species 

Fig. 4. Differences in total spider abundance (a), species richness (b), and species-level community composition (c-d) across forest, country palm, and industrial oil 
palm systems. For plots (a-c), the effect of System on each response (determined using LRTs) is shown above in text, and results of pairwise post-hoc analyses are 
indicated by the horizontal lines above each plot: * **P < 0.001, * *P < 0.01, *P < 0.05. For (a) and (b), boxplots show median (horizontal crossbar) and inter
quartile ranges, and the circular datapoints show the per-plot values. In (c), the seven most abundant spider species in each system are plotted in order of the legend 
and error bars show the standard error of the mean. Plot (d) visualises the differences in spider species-level community composition. Points indicate the posterior 
medians of the GLLVM, and to help visualisation we drew hulls around points of the same system.
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from three families accounted for 49 % of spiders in industrial oil palm 
(Lycosidae sp. 5, n = 19; Cangoderces sp. 1, n = 5; Langelurillus nigritus, 
n = 4; Lycosidae sp.1; n = 4) (Fig. 3c). Pielou indices indicated that 
species evenness was highest in forest (J = 0.971) and industrial oil palm 
(J = 0.834), and lowest in country palm (0.472) (Fig. 3c).

We found significant differences in spider abundance across forest, 
country palm, and industrial oil palm systems (LRT = 20.18, P < 0.001; 
Fig. 4a). Post-hoc analyses indicated that spider abundance in country 
palm (x‾ ± SE = 19.6 ± 2.49) was over 2.1 and 2.3 times higher than in 
forest (x‾ ± SE = 9.11 ± 1.35) and industrial oil palm (x‾ ± SE = 8.17 
± 1.38), respectively (P < 0.001 for both). We found no significant 
differences in spider abundance between forest and industrial oil palm 
(P > 0.05).

Spider species richness differed significantly across forest, country 
palm, and industrial oil palm systems (x2 = 9.958, P = 0.01; Fig. 4b). 
Mean spider species richness in country palm (x‾ ± SE = 4.61 ± 0.519) 
was over 1.8 and 1.5 times higher than in forest (x‾ ± SE = 2.50 
± 0.271) and industrial oil palm (x‾ ± SE = 2.94 ± 0.400), respectively 
(post-hoc comparisons: forest – country palm: P = 0.004; forest – in
dustrial oil palm: P = 0.726; country palm – industrial oil palm: 
P = 0.031).

Spider species-level community composition differed significantly 
across forest, country palm, and industrial oil palm systems (LRT =
390.4, P < 0.001; Fig. 3c-d). Post-hoc analyses showed significant dif
ferences between all systems (forest – country palm: P < 0.001; forest – 
industrial oil palm: P = 0.001; country palm – industrial oil palm: 
P < 0.001). Univariate analyses indicated that compositional differ
ences were driven primarily by changes in the relative abundance of 
Lycosidae sp.5 (P < 0.001) (Fig. 3c). Mean Lycosidae sp.5 abundance in 
country palm (x‾ ± SE = 6.22 ± 1.30) was over 6.2 and 5.8 times higher 
than in forest (x‾ ± SE = 0.00 ± 0.00) and industrial oil palm (x‾ ± SE 
= 1.06 ± 0.551), respectively.

4. Discussion

In this study, we investigated differences in the biodiversity of 
ground-dwelling arthropods across forest, country palm, and industrial 
oil palm systems in Sinoe County, Liberia. Across our study systems, we 
found no differences in total arthropod abundance, although we did find 
significant differences in arthropod order-level community composition, 
and spider abundance, species richness, and species-level community 
composition.

4.1. Impacts of traditional and industrial approaches to oil palm 
cultivation on ground-dwelling arthropods

Arthropod abundance did not differ significantly across forest, 
country palm, and industrial oil palm systems. This is somewhat sur
prising, as rainforest conversion to country palm and industrial oil palm, 
and subsequent on-farm management, causes considerable changes in 
vegetation complexity, diversity, and microclimate (Pashkevich et al., 
2024a). In country palm, practices include burning smaller areas of 
rainforest to plant annual crops for subsistence, and allowing vegetation 
to grow back in the surrounding areas after one to two years. In indus
trial oil palm, practices include the conversion of large areas of rain
forest to oil palm monocultures, and regular application of inorganic 
fertilisers and herbicides. Previous work has shown that arthropods are 
sensitive to environmental changes resulting from farm establishment 
and management (Mumme et al., 2015; Turner and Foster, 2009). For 
instance, a study in Indonesia found that conversion of rainforest to oil 
palm plantations reduced the species richness and density of 
litter-dwelling invertebrates by 46 % and 48 %, respectively (Mumme 
et al., 2015). Overall, our arthropod abundance findings are encour
aging for conservation as they indicate that the total number of 
ground-dwelling arthropods is not reduced when converting native 
rainforest to oil palm systems in Liberia. However, our sensitivity 

analysis demonstrated that the lack of difference in arthropod abun
dance was conditional on including samples that had a high abundance 
of ants, owing to the presence of ant nests or highways in the vicinity of 
traps. When these traps were excluded from our analysis, we found that 
total arthropod abundance was highest in the forest plots. This indicates 
that ants may contribute a greater proportion of the total number of 
arthropods in country palm and industrial oil palm systems than in 
forest, and that the species that were in the highways/nests (and 
therefore had substantial influence on our initial model’s findings) were 
generalists that thrive in high-disturbance farming systems. This is 
supported by previous work in oil palm plantations, for instance, Hood 
et al. (2020) found that seven generalist species comprised 78 % of ant 
individuals in oil palm, despite finding 68 species across their study 
sites. While these outliers are real datapoints, they may suggest that 
arthropod abundance in oil palm systems is more variable than in forest, 
which may result in greater vulnerability to environmental stressors, 
such as climate change, over the long-term.

Although there were no differences in total arthropod abundance 
across our study systems, we did find significant differences in the 
abundance of individual orders, therefore causing changes in arthropod 
community composition. In particular, we found differences in the 
abundance of Araneae, Collembola, Dermaptera, and Diptera. Our 
order-level findings were further magnified in our spider-specific ana
lyses, which showed that oil palm cultivation influences spider abun
dance, species richness, and species-level community composition. 
Collectively, these findings indicate that traditional and industrial ap
proaches to oil palm cultivation influence arthropod biodiversity, owing 
to group- and species-specific sensitivities to land use changes and 
management. We note that some arthropod orders and spider species 
benefitted from oil palm cultivation, whilst others did not, indicating 
that there are “winning” and “losing” species as rainforest is converted 
to oil palm systems. In particular, our findings indicate that Collembola 
and Diptera “lose” as forest is converted to oil palm, likely owing to the 
high sensitivity of Collembola and Diptera to changes in microclimatic 
conditions, litter mass, soil structure and pH, all of which occur as a 
result of oil palm cultivation practices (Mumme et al., 2015; Pramual 
and Kuvangkadilok, 2009; Sousa et al., 2006; Susanti et al., 2021). 
Indeed, Susanti et al. (2021) demonstrated that changes in soil water 
content and pH drove declines in the biodiversity of litter dwelling 
Collembola as rainforests were converted to oil palm plantations in 
Indonesia. On the other hand, country palm supported substantially 
higher Araneae and Dermaptera abundances than forest and industrial 
oil palm. Although we did not test the response of arthropods to envi
ronmental variables in this study, the high abundance of 
ground-dwelling Araneae and Dermaptera could be attributed to three 
possible effects. Firstly, country palm has intermediate levels of human 
activity, relative to industrial oil palm (higher human activity, owing to 
harvesting and management) and rainforest (lower human activity), 
which may allow both forest-dependant and generalist species to inhabit 
these systems (Bruggisser et al., 2010; Tajthi et al., 2017; Tsai et al., 
2006; Zheng et al., 2017). Secondly, in comparison to industrial oil 
palm, country palm is less intensely managed; no chemical fertilisers, 
pesticides, or herbicides are applied to boost crop growth, allowing thick 
vegetation (called ‘low bush’ by local people) to develop. This dense and 
complex understory and midstory vegetation provides a wide variety of 
microhabitats, more similar to rainforest (Pashkevich et al., 2024a), for 
different ground-dwelling species to hunt, reproduce, and take shelter 
in. Thirdly, the lack of on-farm management and thick understory 
vegetation in country palm may support more insects, plants (Marshall 
et al., 2024), and decaying matter on which Araneae and Dermaptera 
feed, increasing their resource availability and allowing their pop
ulations to flourish. This result is similar to other studies which have 
found that agricultural plantations with higher levels of understory 
vegetation (similar to country palm) support relatively more biodiverse 
spider communities (Pashkevich et al., 2021, 2022; Potapov et al., 
2020). For instance, a study in Indonesia found that jungle rubber 
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plantations (disturbed rainforest habitats planted with rubber trees) 
supported ground-dwelling spider communities that were more diverse 
and had greater biomass compared with oil palm monocultures 
(Potapov et al., 2020). However, it is noteworthy that a previous study 
in the SOPWA Project area found that country palm supported fewer 
web-building spiders in the understory, relative to rainforest and in
dustrial oil palm, likely because vegetation density in this system was so 
high that it limited space for spider web-building (Pashkevich et al., 
2024b). In comparison, most of the spiders in our current study were not 
web-builders but rather active hunters or stalkers that run on the 
ground. Collectively, the findings of this study and Pashkevich et al. 
(2024b) indicate the importance of studying multiple microhabitats 
when assessing how land use changes and management influence 
biodiversity, even within a single taxonomic group. We note a few fac
tors which may have influenced our arthropod order-level and spider 
species-level results. Firstly, the SOPWA study region has distinct wet 
and dry seasons, and we surveyed during the dry season only. It is 
possible that seasonal conditions, such as lower levels of cloud cover in 
comparison to the rainy season, could have amplified differences in 
microclimate and, as a result, arthropod biodiversity between systems 
(Pashkevich et al., 2024a). Second, our spider species accumulation 
curves were still increasing, particularly in industrial oil palm, and 
therefore spider biodiversity in each system may be higher than this 
study indicates. The extrapolated curves suggested that, despite having 
the highest alpha spider diversity (species richness per plot), country 
palm did not have the highest total number of species across all systems. 
Country palm is a system in flux; our plots were in abandoned farms that 
were being passively restored to secondary forest. Our findings may 
suggest that country palm supports abundant populations of both 
generalist and specialist spider species, but species turnover is high. 
Third, our spider abundance and species-level composition findings 
were driven primarily by a single species of Lycosidae in country palm, 
which was highly abundant in this system. Fourth, previous work has 
shown that arthropod biodiversity in industrial oil palm plantations 
changes over time (Pashkevich et al., 2021), likely owing to microcli
matic changes that occur as oil palm canopies close with age. Our in
dustrial oil palm sites had palms aged between 5 and 11 years 
(Table S3). While oil palms in all sites were fruiting (i.e., were sexually 
mature), canopies had not completely closed in the younger sites, and it 
is possible that levels of arthropod biodiversity in industrial oil palm will 
become more similar to those in rainforest and country palm over time.

Differences in Araneae, Collembola, Dermaptera, and Diptera 
abundance could affect levels of ecosystem functioning across systems. 
Araneae are natural predators of many insect species, including oil palm 
pests such as slug moth caterpillars (family: Limacodidae; Parasa spp.) 
and bag worms (family: Psychidae) that damage crop yields, but also 
pollinators such as the African oil palm weevil (Elaeidobius kamerunicus) 
that are vital for crop growth (Corley and Tinker, 2016; El-Nabawy 
et al., 2016; Michalko et al., 2019). Maintaining high abundances of 
Araneae within industrial oil palm plantations may lead to increased 
predation of pests, and potentially higher crop yields. Collembola and 
Dermaptera play a key role in decomposition and are prey for other 
arthropods, whilst Diptera are pollinators and decomposers (Coulibaly 
et al., 2019; Happe et al., 2018; Kocárek et al., 2005; Mawan et al., 2022; 
Skevington and Dang, 2002). Therefore, the differences in arthropod 
biodiversity that we found across forest, country palm, and industrial 
palm systems are not only important for conservation but also oil palm 
yields, owing to the vital ecosystem functions that many arthropod 
species provide.

5. Management implications and conclusions

To our knowledge, this is the first study to evaluate the impacts of 
traditional and industrial oil palm cultivation on ground-dwelling ar
thropods in Liberian rainforest landscapes, building on our knowledge of 
environmental conditions (Pashkevich et al., 2024a), understory spiders 

(Pashkevich et al., 2024b) and plants (Marshall et al., 2024). Despite 
their essential roles in ecosystems, very little research has been con
ducted on arthropods in West Africa and especially in Liberia (Kass et al., 
2022; Miller and Rogo, 2001; van Klink et al., 2020). For example, in a 
global meta-analysis focused on long-term trends in insect populations 
over time (van Klink et al., 2020), datasets from West Africa were almost 
entirely absent. Our study therefore provides important baseline 
ecological data in an understudied region, indicating clearly that rain
forest and agricultural systems support different arthropod communities 
and highlighting the critical importance of conserving rainforest habi
tats in this region. Our study is also one of the first to assess, and quantify 
the ecological value of, Liberian country palm systems, which are one 
form of traditional local approaches to cultivating oil palm in West Af
rica. Country palm is highly important to communities in the region, as 
palm oil is a staple food and economically beneficial for farmers who sell 
it at local markets. Our results showed that country palm often supports 
ecological communities that are between those found in forest and in
dustrial oil palm systems. Although we found that country palm sup
ported different arthropod communities to forest, arthropod order-level 
community composition in country palm and forest was considerably 
more similar than that in forest and industrial oil palm. Our results 
therefore suggest that country palm has unique ecological value. How
ever, from an oil palm production perspective, the industrial oil palm 
plantations are likely to have far higher yields (owing to application of 
fertilisers and planted high-yielding varieties), leading to trade-offs be
tween biodiversity conservation and crop production over time. We 
recommend further research which quantifies the differences in yield 
between country palm and industrial oil palm systems in Liberia, to 
better understand yield-conservation trade-offs.

Importantly, our findings indicate that traditional and industrial oil 
palm cultivation systems can still support relatively biodiverse and 
abundant ground-dwelling arthropod communities. Efforts should be 
made within these systems to minimise negative impacts of oil palm 
cultivation on native arthropod assemblages, and to conserve arthropod 
biodiversity and enhance beneficial ecosystem services (e.g., pollination 
and pest control) that many species provide. While research in Southeast 
Asia has investigated the impacts of management practices on arthro
pods in oil palm systems, such studies are relatively rare in West Africa 
(Pashkevich et al., 2024a). We therefore review these practices here in 
light of our findings, and discuss how they are or could be implemented 
in Liberian oil palm plantations. We note that we have not tested these 
management methods in this study, and therefore the potential impacts 
of the following management methods in West Africa may differ from 
those observed in Southeast Asia. Firstly, conserving forest fragments 
within or near plantations can be beneficial for both arthropod biodi
versity and oil palm yields, owing to some spillover of pollinating and 
predatory arthropods (Lucey et al., 2014; Lucey and Hill, 2012). For 
instance, a study in Malaysia found that large forest fragments around 
oil palm plantations increased carnivorous ant biodiversity in the sur
rounding area, potentially assisting within-plantation pest control 
(Lucey et al., 2014). Secondly, promoting growth of understory vege
tation by reducing herbicide application within plantations has been 
shown to benefit arthropod biodiversity (Ashton-Butt et al., 2018), by 
allowing for higher vegetation diversity and coverage and therefore 
supporting more microhabitats within plantations (Luke, et al., 2019a). 
Ashton-Butt et al. (2018) studied the impact of different understory 
vegetation treatments and found that soil macrofauna abundance and 
order richness was higher in plots with enhanced understory vegetation. 
Thirdly, growing oil palm as a polyculture and establishing diverse tree 
islands has also been shown to benefit arthropod biodiversity in oil 
palm, owing to increases in vegetation complexity and diversity (Ashraf 
et al., 2018; Ghazali et al., 2016; Nasi, 2023; Zemp et al., 2023). For 
example, a study in Malaysia found that arthropod abundance and 
order- and family-level richness were significantly greater in 
alley-cropping oil palm farms compared with oil palm monocultures 
(Ghazali et al., 2016), whilst a study in Indonesia found that diverse tree 
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islands in oil palm landscapes increase the species richness and diversity 
of arthropods and soil fauna within plantations (Zemp et al., 2023). 
When considering whether to implement any of these strategies, 
trade-offs between arthropod conservation and palm oil yields must be 
considered, with the most desirable strategies being those that enhance 
biodiversity and benefit – or have no effect on - crop production. Aside 
from maintaining forest fragments, there was limited uptake of any of 
these strategies in the industrial oil palm plantations in which we 
sampled. The West African oil palm industry should be supported in 
testing and – only if they are found to successfully enhance biodiversity, 
ecosystem service delivery, and crop yields – incorporating strategies, 
such as those described above, into their farm management plans 
moving forward. Identifying such strategies is a key component to 
ensuring the long-term sustainability of the West African oil palm 
industry.
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Scheu, S., Drescher, J., 2022. Rainforest conversion to rubber and oil palm reduces 
abundance, biomass, and diversity of canopy spiders. PeerJ 10, e13898. https://doi. 
org/10.7717/peerj.13898.

Reiss-Woolever, V.J., Luke, S.H., Stone, J., Shackelford, G.E., Turner, E.C., 2021. 
Systematic mapping shows the need for increased socio-ecological research on oil 
palm. Environ. Res. Lett. 16 (6), 063002. https://doi.org/10.1088/1748-9326/ 
abfc77.

Ritchie, H., & Roser, M. (2021). Forests and Deforestation. 〈https://ourworldindata.or 
g/forests-and-deforestation〉 (Accessed 17 November 2022).

Rizali, A., Karindah, S., Himawan, T., Meiadi, M.L.T., Rahardjo, B.T., Nurindah, 
Sahari, B., 2019. Parasitoid wasp communities on oil palm plantation: effects of 
natural habitat existence are obscured by lepidopteran abundance. J. Asia Pac. 
Entomol. 22 (3), 903–907. https://doi.org/10.1016/j.aspen.2019.07.012.

Rosa, M.G. da, Santos, J.C.P., Brescovit, A.D., Mafra, Á.L., Baretta, D., 2018. Spiders 
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