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Abstract
Cyber-attack detectionwithin Industrial Internet of Things (IIoT) environments presents unique challenges due to the complex,
resource-constrained, and real-time nature of these networks. Traditional detection techniques often struggle to adapt to the
dynamic environment of IIoT. For instance, many existing methods rely on signature-based detection, which fails to identify
evolving threats. Other approaches, such as anomaly-based detection, can generate a high rate of False Positives, leading
to inefficiencies in threat management. To address these challenges, we propose a novel detection and classification model
specifically tailored for IIoT environments. The proposed model integrates Genetic Algorithms (GA) and Deep Learning
(DL) to enhance cyber-attack detection within IIoT environments. The GA component optimises feature selection from
raw network data, ensuring the extraction of meaningful and relevant features. Leveraging these selected features, the DL
component constructs a robust model capable of accurately detecting and classifying various cyber-attack patterns across
IIoT devices. Through experimentation on real-world IIoT network traffic (UNSW-NB 15 dataset), the proposed approach
demonstrates its efficacy in improving attack detection accuracy and adaptability. The integration of GA and DL offers a
synergistic solution that addresses the complexities of IIoT cybersecurity, contributing to a more secure and resilient IIoT
ecosystem. The integrated GA–DL classification model developed in this work achieved 98% precision, 96% accuracy, 94%
recall, and 12% losses with only less than 50% of the features of the UNSW-NB 15 dataset. The reduction in features required
for the identification and classification of cyber-attacks reduces the processing time by 50%.

Keywords IIoT · Genetic Algorithm · Deep Learning · Cyber-security · Cyber-attacks · Artificial intelligence · Prediction ·
Classification · Features selection

1 Introduction

The Industrial Internet of Things (IIoT) stands as a trans-
formative force in the contemporary industrial landscape.
Unlike the conventional IoT systems tailored primarily for
consumer-oriented applications such as wearables, smart
homes, and connected vehicles, IIoT focuses explicitly on
industrial processes [1]. The core promise of IIoT lies in
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its capacity to drive unprecedented operational efficiencies,
productivity enhancements, and revenue opportunities across
various sectors. IIoT utilises interconnected sensors, instru-
ments, and other devices networked togetherwith computers’
industrial applications. This networked ensemble facilitates
the collection, exchange, and analysis of data, fostering
intelligent decision-making in real time [2]. By embedding
technology into physical assets, IIoT offers manufacturers a
more detailed view of their plant operations and the lifecycle
of their products.

Several industries are rapidly acknowledging the transfor-
mative potential of IIoT. For instance, in the manufacturing
sector, IIoT promises smart factories where machinery and
equipment can improve processes through self-optimisation
and autonomously adapt to new production requirements [3].
The oil and gas industry can leverage IIoT for predictive
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maintenance of pipelines and to monitor real-time condi-
tions of reservoirs [4]. Agriculture, too, hasn’t remained
untouched, with IIoT enabling precision farming, ensuring
efficient use of resources, and maximising yield [5]. The
rise of IIoT is in tandem with the global push for Industry
4.0—the next phase in the digitisation of the manufactur-
ing sector. Industry 4.0 emphasises the importance of smart
machines that keep getting smarter as they access more data
[6]. Consequently, the advent of IIoT is ushering in an era
where industries can achieve more with less, driven by data-
led insights.

However, with its explosive growth, IIoT also brings forth
challenges, especially in the areas of cybersecurity, data
privacy, and integration with legacy systems. Addressing
these concerns is paramount to realise the full potential of
IIoT across industries. IIoT exposes critical infrastructures
to heightened risks of cyber-attacks. According to a report
by CyberX, 53% of industrial sites surveyed were found to
run outdated Windows systems, leaving them highly suscep-
tible to ransomware attacks and other forms of malware [7].
Kaspersky Labs’ research further reveals that at least 40%
of IIoT systems were affected by cyber-attacks in the last
half of 2019 alone [8]. The types of attacks can vary sig-
nificantly from data breaches and information theft to more
sophisticated forms like Denial of Service (DoS) attacks and
AdvancedPersistentThreats (APT), posing a threat not just to
data integrity but also to physical safety and operational con-
tinuity [9]. A case in point is the 2015 Ukrainian power grid
attack, which demonstrated that cyber-attacks on IIoT could
have dire real-world consequences [10]. Hence, fortifying
cybersecurity measures in IIoT environments has become a
subject of paramount importance for both sustaining business
competitiveness and ensuring national security.

In this work, an AI-based detection and classification
model has been developed to detect and classify nine dif-
ferent cyber-attacks on IIoT devices. This paper reported the
use of GA and DL to develop the detection and classification
model. The major scientific contributions of this work are as
follows:

• Development of a novel detection model The study pro-
poses a Deep Learning-based detection and classification
model specifically tailored for IIoT environments. The
model is designed to operate efficientlywithin the resource
constraints typical of IIoT networks, without compromis-
ing on accuracy.

• Advanced feature selection and hyperparameter tuning
The study introduces a sophisticated feature selection
process and hyperparameter tuningmethodology that opti-
mises the model’s performance. This approach enhances
the model’s precision in identifying malicious activities
while reducing False Positives.

• Comprehensive evaluation using real-world data The pro-
posed model is rigorously evaluated using real-world IIoT
network traffic, encompassing a variety of attack types
and network conditions. This evaluation demonstrates
the model’s adaptability and robustness in diverse and
dynamic environments.

• Contribution to the understanding of feature importance
The work provides detailed insights into the importance of
specific features within the IIoT context and their role in
improving detection accuracy. These insights contribute to
the broader understanding of feature significance in cyber-
security models.

• Demonstration of model adaptability The research high-
lights the model’s ability to adapt to different types of
cyber-attacks, showcasing its potential for deployment in
real-world IIoT systems where adaptability is crucial.

The remainder of this paper is structured as follows: Sect.
2 (Related Work) provides a comprehensive review of the
related work, highlighting existing methods and their limita-
tions in the context of IIoT cyber-attack detection. Section 3
(Methodology) details the methodology employed in this
study, including the design of the detectionmodel, the feature
selection process, and the hyperparameter tuning approach.
In Sect. 4 (Results), the experimental setup and results were
presented. This section includes a thorough analysis of the
model’s performance across various metrics, with a focus on
accuracy, precision, and adaptability. Section 5 (Work Scope
and Limitations) explores the implications of the findings,
comparing the proposed model to existing approaches and
considering potential applications in real-world IIoT envi-
ronments. Finally, Sect. 6 (Conclusion and Future Work)
concludes the paper by summarising the key contributions
and findings, and it outlines directions for future research to
further enhance the model’s capabilities.

2 RelatedWork

2.1 Features Selection

In contemporary contexts, the management of Big Data for
machine learning applications has become increasingly vital
across multiple sectors, including cybersecurity. The bur-
geoning data within the cybersecurity domain necessitate
both effective and efficient management strategies. For deal-
ing with high-dimensional datasets, both data mining (DM)
and machine learning (ML) techniques are geared towards
feature reduction to extract valuable insights. One significant
challenge to implementing these DM and ML methodolo-
gies is the so-called “curse of dimensionality”, which alludes
to the complications arising when data are dispersed in
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a high-dimensional space, thereby affecting learning algo-
rithms initially designed for lower-dimensional spaces [11].
Another pressing concern is the phenomenon of overfitting,
which negatively impacts the accuracy of machine learn-
ing models, particularly when the datasets are feature rich.
Excessive features also result in increased computational
costs and memory requirements. A prevailing solution to
the high-dimensionality challenge involves dimensionality
reduction, which can be effectively achieved through fea-
ture selection techniques [12–15]. This strategy transforms
a high-dimensional feature space into a lower-dimensional
space by selecting a subset of the most relevant features.
In real-world datasets, noise often introduces redundant and
irrelevant features. The removal of such noise can sub-
stantially improve both the learning rate and the detection
accuracy of classifiers, simultaneously reducing False Posi-
tives (FPs) and False Negatives (FNs) [16].

Feature selection methodologies can be broadly cate-
gorised into supervised and unsupervised techniques, includ-
ingfiltermethods,wrappermethods, and embeddedmethods.
Filter methods, such as information gain and Chi-square,
are computationally efficient and easy to implement but
may overlook feature interactions. Wrapper methods, like
recursive feature elimination (RFE), offer higher accuracy
by evaluating feature subsets using a learning algorithm,
though they are computationally intensive. Embedded meth-
ods combine feature selectionwithmodel training, balancing
between efficiency and accuracy by integrating selection
directly into the learning process. The primary objective of
these approaches is to pick a subset of features from the origi-
nal feature set based on their capability to distinguish among
different data classes or to make estimations in regression
analysis. Conversely, unsupervised feature selection mech-
anisms are primarily employed for clustering tasks. Unlike
supervised approaches, where the relevance of features is
determined based on their correlation with class labels, unsu-
pervised techniques utilise alternative criteria to ascertain
feature relevance [16].

2.2 Genetic Algorithm

GA is a search heuristic inspired by natural selection and
genetics principles, widely utilised for optimisation and
search problems. In IIoT security, GA is particularly effective
for feature selection in Intrusion Detection Systems (IDS).
High dimensionality in IIoT network data often complicates
the efficacy of IDS. Feature selection via GA can system-
atically reduce this dimensionality by selecting the most
relevant attributes, thereby improving the classification accu-
racy of cyber-threats. This makes GA an invaluable tool for
enhancing the security posture of IIoT systems by fine-tuning
the capabilities of IDS.

In the research conducted by Stein et al. [17], a GA-based
feature selection mechanism is introduced, wherein Deci-
sion Trees (DTs) are employed in conjunction with GA. The
authors utilise the KDD dataset, implementing GA for fea-
ture selection and DTs for classification of the test data. An
initial population is generated randomly and subjected to
ranked-based selection and two-point crossover to yield a
new population. Bit-level mutation is executed on the off-
spring, with the two elite parents retained and the remaining
population replaced. The fitness of individual chromosomes
is assessed using the sum of the validation error rates as
the fitness function. The study identifies 32 optimum fea-
tures from the 41 attributes available in the KDD dataset
(22% reduction in features). Conversely, Ho endeavours to
create an anomaly-based Intrusion Detection System (IDS)
that employs an unsupervised learning approach, leverag-
ing a bio-inspired stochastic clustering model known as the
Ant Colony Clustering Model (ACCM) [16]. In the realm of
supervised learning, amulti-objective genetic fuzzy intrusion
detection mechanism is proposed. This technique serves as
a genetic feature selection wrapper, searching for an optimal
subset of features that encapsulate the majority of relevant
information. The study evaluates detection accuracy based on
27 optimal features out of the 41 in the KDD dataset (34%
reduction in features) and reports an accuracy rate of 99%
for network traffic data.

In the study conducted byAhmadet al. [18], amultifaceted
feature selection methodology is introduced, incorporating
GA, principal component analysis (PCA), and multilayer
perceptron (MLP) for intrusion detection tasks. The primary
objective of this research is to improve classifier detec-
tion rates in the context of intrusion detection. The authors
benchmark their GA-based approach against a straightfor-
ward PCA implementation. Their GA application focuses
on identifying the principal feature space that interacts opti-
mally with the classifier. Their model’s efficacy is assessed
through three separate experiments, featuring subsets of 12,
20, and 27 features. The highest accuracy achieved was 99%,
utilising a 12-feature subset. GAs are employed solely for
feature selection in the research by Sindhu et al. [19]. The
optimisation process commences with the generation of a
random initial population. Subsequently, the fitness of each
chromosome is calculated to produce the next generation of
the population. The employed fitness function incorporates
feature count, sensitivity, and specificity to evaluate the mer-
its of the feature subset. When contrasted with alternative
feature selection approaches, their methodology achieves an
accuracy of 98% using a subset of 16 features, extracted from
the 41 original attributes present in the KDD dataset.

In the research byKuang et al. [20], a novel SupportVector
Machine (SVM)model incorporating Kernel Principal Com-
ponentAnalysis (KPCA) andGA is introduced. Thismodel is
designed for the identification of both normal and malicious
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network traffic and is evaluated using the KDD Cup dataset.
Within this framework, the GA is utilised to optimise the
parameters of both the SVM andKPCA, effectively reducing
the feature space’s dimensionality. By employing 12 opti-
mal features, they achieve a detection accuracy of 94% and
observe rapid convergence alongside superior generalisation
capabilities.Aslahi-Shahri et al. [21] assess the efficacy of the
SVM classifier in intrusion detection tasks. The authors con-
tend that SVMs,whenoperating in isolation, donot yield high
accuracy rates. This limitation arises because SVMs require
datasets exhibiting specific patterns and necessitate the selec-
tion of optimal,minimally redundant features. To address this
issue, a GA is implemented to search for the optimal feature
set to enhance the SVM’s performance in intrusion detection
tasks. Similarly, Das et al. [22] propose an ensemble fea-
ture selection methodology utilising a bi-objective Genetic
Algorithm. This algorithm aims to resolve the challenges
associated with optimal feature selection in data mining.
The authors integrate two core principles: boundary region
analysis based on rough set theory and multivariate mutual
information. The effectiveness of theirmethodology is evalu-
ated across several well-established datasets. Notably, when
applied to the spambase dataset for email classification tasks,
their method attains an impressive accuracy rate of 92%.

In the study byGharaee andHosseinvand [23], the authors
put forth an IDS that employs GA for feature selection,
complemented by a novel fitness function. Their method-
ology yields high predictive accuracy while maintaining a
low False Positive rate. The effectiveness of their approach
is validated using both the KDD and UNSW-NB 15 datasets,
and they provide detailed accuracy metrics for each class.
In addition, they create individual datasets for each class to
apply their technique and report their findings accordingly.
Yousefi-Azar et al. [24] propose the incorporation of autoen-
coders as generative models for feature learning. The authors
elucidate the autoencoder’s capability to grasp the latent fea-
tures and semantic associations amongdataset features. Their
methodology is examined for both intrusion detection and
malware classification tasks, utilising the KDD Cup dataset
and the Microsoft Malware Classification Challenge (BIG
2015) dataset. In the context of intrusion detection, their
approach, when combined with a Gaussian naïve Bayes clas-
sifier, reports an accuracy rate of 83.3%.

The work presented by Tsang Chi Ho [16] focuses on
improving Intrusion Detection Systems using an Ant Colony
Clustering Model (ACCM) and a genetic–fuzzy approach.
ACCM addresses clustering challenges in network traffic,
showing a detection rate of up to 99.24% on the KDD-
Cup99 dataset. The genetic–fuzzy method automates intru-
sion signature development.Despite their effectiveness, these
approaches face challenges like computational complexity
and the need for balance between accuracy and interpretabil-
ity. The study by Iftikhar Ahmad et al. [18] on intrusion

detection using MLP and feature subset selection reports
an enhanced detection rate with a reduced feature set. The
research, using the KDD-cup99 dataset, shows that using
just 12 features as opposed to the full set, an accuracy of
99% was achieved. However, the limitation of this work is
that it did not fully represent all types of network intrusions,
potentially affecting the generalisability of the findings. The
authors in [25] explored the development of a lightweight
Intrusion Detection System (IDS) for networks. The focus
is on three aspects: data preprocessing, feature selection
using a wrapper-based algorithm, and classification through
a neural network ensemble Decision Tree. The IDS opti-
mises specificity and sensitivity, emphasising soft computing
techniques for fault tolerance and adaptability. However,
their work has some limitations that include potential bias
in the training process due to the prevalence of redundant
records and the challenges of continually adapting to chang-
ing network environments. The study in [26] presented a
hybrid Intrusion Detection System combining Kernel Prin-
cipal ComponentAnalysis (KPCA), SupportVectorMachine
(SVM), and Genetic Algorithms (GA). The model leverages
KPCA for feature extraction, improving SVM’s performance
in classifying network intrusions. EnhancedwithN-RBFker-
nel function, the SVM classifier is optimised using GA for its
parameters, leading to reduced training time and improved
detection accuracy. The study highlights the effectiveness
of combining KPCA, SVM, and GA in intrusion detection,
promising better generalisation and reduced training time.
However, it acknowledges the need for further algorithm
development for online intrusion detection and optimisation
methods.

Recent advancements in the detection and classification
of malicious activities within IIoT systems have increasingly
usedDeep Learning techniques due to their ability tomanage
the complexity and scale of industrial networks. Ibor et al.
[25] introduced the AdacDeep model, which integrates an
enhanced Genetic Algorithm with Deep Learning to predict
cyber-attacks. Their approach is to anticipate potential threats
before they manifest. The study claims applicability across
various domains, but it does not provide sufficient empir-
ical evidence to support this generalisation. The model’s
effectiveness may vary significantly across different envi-
ronments, especially those with distinct data characteristics
or operational constraints. Without extensive cross-domain
validation, the model’s generalisability remains question-
able. Furthermore, Srivastava et al. proposed a hybrid model
that combines Artificial Neural Networks with Genetic
Algorithms (ANN-GA) for detecting cyber-attacks in IoT
environments [26]. Their model focuses on optimising the
hyperparameters of the ANN using Genetic Algorithms,
thereby improving the detection accuracy, particularly in
identifying Distributed Denial of Service (DDoS). Although
the model shows high accuracy in detecting DDoS attacks,
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Table 1 Comparison of current work with the literature

Ref Dataset Method No. of features Classifier Measures (%)

[16] KDD CPU GA 72 Genetic Fuzzy Rule Accuracy: 99.24
Precision: 81.91
Recall: 83.30

[18] KDD CPU GA + PCA 12 MLP Accuracy: 99
Precision: -
Recall: -

[27] KDD CPU GA 16 Decision Tree Accuracy: 98.38
Precision: 96
Recall: 91.1

[28] KDD CPU GA 12 Multilayer SVM Accuracy: 94.22
Precision: -
Recall: -

[29] KDD CPU GA + SVM 10 SVM Accuracy: 97
Precision: 94.1
Recall: 93.1

[30] Spambase GA – Decision Tree Accuracy: 92.6
Precision: -
Recall: 91

[31] KDD CPU Auto-Encoder 5 – Accuracy: 96.3
Precision: -
Recall: 91

This work UNSW-NB 15 Integrated GA with Deep Learning (DL) 18 DL Model Accuracy: 97
Precision: 98
Recall: 94

it may not perform as effectively against other types of
cyber-threats that are prevalent in IoT environments, such as
ransomware, data exfiltration, or insider threats. The study
does not sufficiently explore the versatility of the ANN-
GA model in identifying a wider range of attack vectors,
which limits the comprehensiveness of its contribution to
IoT security. Table 1 summarises the important aspects of
these previous works in comparison with this work.

In the research conducted by Tahir et al. [32], a feature
selection methodology predicated on GA is advanced, aug-
mented by the integration of chaotic maps. This strategy is
rigorously evaluated using data sourced from the fields of
affective computing [33] and healthcare systems. Specifi-
cally, chaoticmaps are utilised to enrich the initial population
of theGA,which subsequently undergoes reproduction oper-
ations to yield an optimum feature set. The method’s efficacy
is assessed, particularly in the context of a seven-class emo-
tion identification challenge.

Concurrently, the work of Viharos et al. [34] concentrates
on the amalgamation ofmultiple feature selection techniques
with the objective of achieving an optimal attribute iden-
tification strategy. Their proposal essentially embodies a
synthesis of diverse feature selection paradigms aimed at
generating a more generalised solution. To substantiate their
approach, experiments are performed using datasets from the
UCI repository as well as other real-world datasets. Nouri-
Moghaddam et al. [35] propose a wrapper feature selection

algorithm predicated on a multi-objective forest optimisa-
tion scheme, termed as Multi-Objective Wrapper Method
based on Forest Optimisation (MOFOA). The Pareto front
within their optimisation framework is meticulously main-
tained through an archival, grid, and region-based selection
strategy. Their empirical evaluation is not only confined to
UCI repository data but also extends to two specific microar-
ray datasets [36].

Li et al. [37] introduce a feature selection technique tai-
lored for network intrusion identification, leveraging the
Krill Herd (KH) algorithm, a paradigm from the swarm
intelligence domain. Their solution employs linear nearest
neighbour lasso step optimisation to iteratively update the
position of the krill herd within the search space, thereby
facilitating the identification of a global optimal solution.
Lastly, Dwivedi et al. [38] also contribute to the field of Intru-
sion Detection Systems (IDS) through a swarm intelligence-
based approach. They incorporate the grasshopper algorithm,
another instance of swarm intelligence, and integrate it
with an ensemble feature selection method to bolster the
system’s performance. Sumaiya Thaseen et al. [39] delin-
eate an integrated Intrusion Detection System that exploits
a correlation-based attribute selection algorithm conjoined
with an Artificial Neural Network. This system embod-
ies a machine learning-based framework [40] tailored for
Intrusion Detection Systems (IDS). Their correlation-based
feature selection mechanism ranks attributes predicated on
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the degree of correlation between each attribute and the
ground truth. Lastly,Mahindru andSangal [41] offer a feature
selection technique designed for Androidmalware detection,
grounded in machine learning principles. Their computa-
tional module relies on the Least Square Support Vector
Machine (LSSVM), which is subsequently evaluated across
three distinct kernel functions: linear, radial basis function,
and polynomial. For empirical validation, the study utilises
a corpus of two million unique Android applications.

2.3 Deep Learning

The application of Deep Learning algorithms for detect-
ing and classifying cyber-attacks in Industrial Internet of
Things (IIoT) systems is an area of burgeoning research
interest, yet it remains fraught with challenges [42]. These
algorithms offer notable advantages such as high accuracy
rates and the ability to process complex and voluminous
datasets. However, there exists a critical debate surround-
ing their efficacy and adaptability in IIoT environments.
The computational overhead and latency involved in running
Deep Learning models might be infeasible in real-time IIoT
systems requiring immediate threat detection [43]. Addi-
tionally, these models are susceptible to adversarial attacks,
thereby undermining their reliability. Lakshmanna et al fur-
ther add to the scepticismby raising concerns about themodel
interpretability, an issue that can significantly impede trust
in such systems [44]. With regard to IIoT security, Deep
Learning offers significant advantages for the detection of
cyber-attacks. Leveraging intricate computational models,
Deep Learning algorithms are adept at discerning complex
patterns in high-dimensional data, thereby enhancing detec-
tion accuracy and reducing False Positives. This capability
is crucial for IIoT environments, where the identification of
cyber-threats is paramount for safeguarding critical industrial
processes.

Mudassir et al. explored the efficacy of multilayer Deep
Learning models in detecting botnet attacks within IIoT
systems [45]. Their research emphasises the use of Arti-
ficial Neural Networks (ANN), Long Short-Term Memory
(LSTM), and Gated Recurrent Units (GRU) to classify IIoT
malware. This study underscores the advantages of using
Deep Learning to capture temporal dependencies and com-
plex patterns in network traffic, which are often indicative
of malicious activities. The use of these models in real-time
detection scenarios demonstrates their potential in mitigat-
ing threats in critical industrial applications. Although the
study focuses on botnet detection in IIoT systems, it does
not sufficiently address the heterogeneity of IIoT networks.
Different industrial sectors may employ distinct communi-
cation protocols, data structures, and operational constraints,
which could significantly impact the performance of the pro-
posed models.

Traditional cyber-attack detection techniques, such as
signature-based detection, rely on predefined attack sig-
natures and offer fast detection speeds but struggle with
identifying novel threats. Anomaly-based detection can iden-
tify new types of attacks by flagging deviations from normal
behaviour, yet it often suffers fromhigherFalsePositive rates.
Deep Learning approaches, while offering higher accuracy
and the ability to process complex, high-dimensional data,
face challenges in IIoT environments due to their compu-
tational overhead and potential susceptibility to adversarial
attacks.

To sum up, in IIoT cybersecurity, the combination of
Genetic Algorithms (GA) and Deep Learning (DL) presents
a pivotal advancement. GAs, with their proficiency in effi-
ciently sifting through complex feature spaces, significantly
boost the accuracy of cyber-threat detection in IIoT envi-
ronments. This enhanced detection is achieved with reduced
computational power, as GAs facilitate the identification of
critical features, thus streamlining the process. Concurrently,
DL brings its advanced classification capabilities by dis-
cerning the nuanced characteristics of diverse cyber-threats.
This approach is crafted to address the dynamic and evolv-
ing security challenges of IIoT. It leads to a paradigm shift
towards AI-driven, robust cybersecurity frameworks, offer-
ing an industrially viable solution that navigates the varied
and complex nature of cyber-threats in IIoT settings. This
methodology is thus not only a response to current cyberse-
curity demands but also a proactive measure against future
threats in the IIoT domain.

3 Methodology

3.1 Problem Formulation

In IIoT, Intrusion Detection Systems (IDS) stand as vital
tools for recognising and counteracting cyber-vulnerabilities.
These systems are critically important for differentiating
the spectrum of cyber-threats that have the potential to dis-
rupt industrial functionalities. Both Deep Learning (DL) and
Genetic Algorithms (GA) have shown considerable promise
for bolstering IDS capabilities within IIoT contexts. How-
ever, the intrinsic high dimensionality of IIoT network data
can negatively influence the accuracy of machine learning
models, particularly those based on DL and GA, utilised for
these crucial classification tasks. A refined feature selection
strategy is thus imperative, aimed not solely at mitigating the
dimensionality but also at enhancing the classification of a
range of cyber-threats. This work focuses on this challenge
by proposing an advanced feature selection algorithm, which
synthesises both Genetic Algorithms (GA) and Deep Learn-
ing (DL). The aim of this work is to elevate classification
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performance, characterised by increased rates of True Posi-
tives (TP) and minimised instances of False Positives (FP),
thereby solidifying the security robustness of IIoT networks.

3.2 Dataset and Preprocessing

3.2.1 Dataset

The UNSW-NB15 dataset [46], generated within the Cyber
Range Lab of the Australian Centre for Cyber Security
(ACCS), employs the IXIA PerfectStorm tool to create a
blend of genuine contemporary regular activities and synthe-
sised modern attack patterns. Traffic capture, encompassing
100 GB of raw data (e.g. Pcap files), is facilitated by the
Tcpdump tool. The UNSW-NB15 dataset was specifically
designed to address the limitations of older datasets likeKDD
Cup. It includes a wider variety of attack types and more
realistic traffic data, making it better suited for evaluating
the effectiveness of Intrusion Detection Systems in current
network environments. The dataset includes up-to-date and
realistic traffic patterns and attack scenarios. The impact of
choosing UNSW-NB15 dataset on the results in this work is
as follows:

1. Accuracy and Precision
The choice of the UNSW-NB15 dataset has a significant
impact on the accuracy and precision of our detection
model. Given that this dataset includes more recent and
sophisticated attack patterns, the accuracy and precision
metrics obtained fromourmodel aremore reflective of its
performance in a real-world IIoT setting. The inclusion
of modern attack types like infiltration, backdoors, and
botnets,which are absent or underrepresented in theKDD
Cup dataset, ensures that our model is rigorously tested
against contemporary threats, leading to a more reliable
assessment of its detection capabilities.

2. Loss
The impact on the loss metric is also noteworthy. The
diversity and complexity of the attacks in the UNSW-
NB15 dataset result in a more challenging classification
task for the model. This challenge is reflected in the loss
values, which may be higher than those obtained with
older datasets due to the increased difficulty of correctly
classifying a broader spectrum of attack types. However,
this also means that the model’s performance metrics,
including loss, are more indicative of its robustness and
ability to handle real-world network traffic.

3. Generalisability
By using the UNSW-NB15 dataset, we enhance the gen-
eralisability of our results. The dataset’s modern and

comprehensive nature means that the findings from our
study are more likely to be applicable to current and
future network environments, particularly in IIoT con-
texts.

This dataset categorises attacks into nine distinct families:

(i) Fuzzers Characterised by protocol fuzzing, fuzzers
might act as proxies, modifying packets instanta-
neously and echoing them back. Often, fuzzers induce
crashes or Denial of Service (DoS), enabling attack-
ers to take control of IoT devices, irrespective of
encryption measures in place. Examples encompass
malformed packets and stack overflows.

(ii) Backdoors This refers to malicious software enabling
hackers unauthorised access to systems. Typically
installed via vulnerable network access points, like
outdated plugins, these stealthy attacks often remain
unnoticed.

(iii) Analysis Sometimes termed active surveillance, anal-
ysis attacks involve cybercriminals actively probing a
target to gather intelligence about potential vulnera-
bilities. Analogous to military reconnaissance, in the
cybersecurity realm, it often serves as a precursor to a
more targeted attack. Port scanning is a typicalmethod
employed to identify open and susceptible ports.

(iv) Denial of Service (DoS)Such attacks saturate network
resources, isolating IoT devices from their intended
users. Distributed DoS (DDoS) incidents in the IoT
context often involve numerous attackers targeting a
singular IoT device.

(v) Shellcode Contrary to its name suggesting a relation
to shell scripting, shellcode is a botnet attack vector
wherein attackers aim to document code executed by
a susceptible compiled program, subsequently initi-
ating a remote terminal session. Once achieved, this
remote access can further compromise the system.

(vi) Reconnaissance Attacks Regarded as broad infor-
mational gathering attacks, they can manifest either
virtually or physically. Tactics such as traffic analysis
and packet sniffing are typical of this category.

(vii) Worms Essentially, a computer worm is self-
replicating malicious software that spreads across
IoT devices autonomously. It can proliferate without
attaching to any host program. An illustrative analogy
would be an individual continually evading detection.

(viii) Generic Predominantly cipher-based, generic attacks
predominantly focus on deciphering cryptographic
secret keys. These attacks can often function inde-
pendently without specific implementation details.
Techniques such as linear and differential cryptanal-
ysis and correlation attacks typify this category.
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(ix) ExploitsRepresentingmalware variants that capitalise
on known vulnerabilities in application software or
operating systems, a classic example includes vulner-
abilities within Microsoft Office.

To extract 49 features (shown in Table 2), inclusive of the
class label, tools such as Argus and Bro-IDS are deployed
alongside twelve custom-developed algorithms. Cumula-
tively, the dataset comprises 2,540,044 records. To evaluate
the performance of our model, the UNSW-NB15 dataset,
which consists of 2,540,044 records, was randomly split
into a training set and a testing set. Specifically, 80% of the
dataset, comprising 2,032,035 entries, was used for training
the model, while the remaining 20%, consisting of 508,009
entries, was reserved for testing. These entries can be cate-
gorised into two primary classes: attack and benign.

Table 3 shows the number of instances of every attack in
the dataset.

3.2.2 Dataset Preprocessing

The dataset went through several data preprocessing steps
before using it for training and testing the attacks detec-
tion and classification model. The preprocessing steps are
explained below:

3.2.2.1 Preprocess Empty Cells In this step, a systematic
search through the data dataset was conducted to identify
entries that are either blank strings or solely composed of
space. These specific entries are then substituted with NaN
(Not a Number) values. Following this initial transformation,
the dataset might encompass NaN values. A function was
developed to locate all instances of these NaN values and
replace them with a numeric value, specifically 0.

3.2.2.2 Preprocess the Attacks Category Column This col-
umn represents the category of the cyber-attacks. However,
it is not well document in the original dataset. A special code
was developed to preprocess this column so that it is ready
for model development as follows:

• String trimming this step is used to remove any leading or
trailing white spaces from each entry within this column.
This step is imperative for ensuring data consistency and
mitigating any discrepancies arising from unintentional
spacing.

• Filling missing entries subsequent to the string trimming
operation, this column is scanned for any instances ofmiss-
ing values or NaN (Not a Number) entries. All discovered
instances are then replaced with the string ’Normal’.

Table 2 Dataset features

N Feature name Type Description

1 srcip Nominal Source IP address

2 sport Integer Source port number

3 dstip Nominal Destination IP address

4 dsport Integer Destination port
number

5 proto Nominal Transaction protocol

6 state Nominal Indicates to the state
and its dependent
protocol, e.g. ACC,
CLO, and (-) (if not
used)

7 dur Float Record total duration

8 sbytes Integer Source to transaction
bytes

9 dbytes Integer Destination to source
transaction bytes

10 sttl Integer Source to destination
time to live value

11 dttl Integer Destination to source
time to live value

12 sloss Integer Source packets
retransmitted or
dropped

13 dloss Integer Destination packets
retransmitted or
dropped

14 service Nominal http, ftp, smtp, ssh,
dns, ftp-data,irc and
(-) if not much used
service

15 Sload Float Source bits per second

16 Dload Float Destination bits per
second

17 Spkts Integer Source to destination
packet count

18 Dpkts Integer Destination to source
packet count

19 swin Integer Source TCP window
advertisement value

20 dwin Integer Destination TCP
window
advertisement value

21 stcpb Integer Source TCP base
sequence number

22 dtcpb Integer Destination TCP base
sequence number

23 smeansz Integer Mean of the packet
size transmitted by
the src
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Table 2 (continued)

N Feature name Type Description

24 dmeansz Integer Mean of the packet
size transmitted by
the dst

25 trans_depth Integer Represents the
pipelined depth into
the connection of
http request/response
transaction

26 res_bdy_len Integer Actual uncompressed
content size of the
data transferred from
the server’s http
service

27 Sjit Float Source jitter (mSec)

28 Djit Float Destination jitter
(mSec)

29 Stime Timestamp record start time

30 Ltime Timestamp record last time

31 Sintpkt Float Source interpacket
arrival time (mSec)

32 Dintpkt Float Destination
interpacket arrival
time (mSec)

33 tcprtt Float TCP connection setup
round-trip time, the
sum of’ synack’ and’
ackdat’

34 synack Float TCP connection setup
time, the time
between the SYN
and the SYN_ACK
packets

35 ackdat Float TCP connection setup
time, the time
between the
SYN_ACK and the
ACK packets

36 is_sm_ips_ports Binary If source (1) and
destination (3) IP
addresses equal and
port numbers (2)(4)
equal then this
variable takes value
1 else 0

37 ct_state_ttl Integer No. for each state (6)
according to specific
range of values for
source/destination
time to live

38 ct_flw_http_mthd Integer No. of flows that has
methods such as Get
and Post in http
service

Table 2 (continued)

N Feature name Type Description

39 is_ftp_login Binary If the ftp session is
accessed by user and
password 1 else 0

40 ct_ftp_cmd Integer No. of flows that has a
command in ftp
session

41 ct_srv_src Integer No. of connections
that contain the same
service (14) and
source address (1) in
100 connections
according to the last
time (26)

42 ct_srv_dst Integer No. of connections
that contain the same
service (14) and
destination address
(3) in 100
connections
according to the last
time (26)

43 ct_dst_ltm Integer No. of connections of
the same destination
address in 100
connections
according to last
time

44 ct_src_ ltm Integer No. of connections of
the same source
address (1) in 100
connections
according to the last
time (26)

45 ct_src_dport_ltm Integer No. of connections of
the same source
address (1) and the
destination port (4)
in 100 connections
according to the last
time (26)

46 ct_dst_sport_ltm Integer No. of connections of
the same destination
address (3) and the
source port (2) in
100 connections
according to the last
time (26)

47 ct_dst_src_ltm Integer No of connections of
the same source (1)
and the destination
(3) address in 100
connections
according to the last
time (26)

48 attack_cat Nominal The name of each
attack category
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Table 2 (continued)

N Feature name Type Description

49 Label Binary 0 for normal and 1 for
attack records

Table 3 UNSW-NB-15 dataset

Attack type Number of records

Generic 61,878

Exploits 11,439

Fuzzers 5390

DoS 4907

Reconnaissance 3530

Analysis 670

Backdoor 666

Shellcode 378

Worms 44

3.2.2.3 Preprocess Hexadecimal Values In this step, a
function was developed to adeptly identify and transfig-
ure hexadecimal strings into their integer equivalents, while
leaving other input values unaffected. Such a function is
instrumental in this work where hexadecimal representations
might be interspersed amidst other data types, necessitating
uniformity for further analysis.

3.2.2.4 Encode Nominal Features Nominal features refer to
categorical data that lacks an intrinsic order. Encoding such
features is a crucial step in preparing data for various algo-
rithms which require numerical input values. All the nominal
features within the dataset have been efficiently converted
from their original categorical form into a numeric format.

3.2.2.5 Normalise Dataset Data normalisation is an essen-
tial preprocessing step in data analysis andmachine learning,
ensuring that numerical attributes have the same scale, thus
preventing features with larger scales from disproportion-
ately influencing the outcomes of certain algorithms. The
objective is to scale numerical attributes in the dataset to a
uniform range, typically between 0 and 1.

3.2.2.6 Split Dataset In this stage, two dataset splits have
been performed as follow:

• First, the dataset was split into two sets the features set,
which represents the input to the classification model, and
the label set which contains the types of the attacks.

• Second, the dataset is randomly split into 80% training set
and 20% testing set.

3.2.2.7 Encode Categorical Variables In the context of neu-
ral networks and Deep Learning models, the representation
of target variables is paramount to achieving optimal train-
ing and prediction performance. One widespread technique
is the utilisation of ’one-hot encoding’, which converts cat-
egorical target variables into a binary matrix format, where
each label is mapped to a unique binary vector. For instance,
given three distinct classes A, B, and C, class A might be
represented as [1, 0, 0], class B as [0, 1, 0], and class C as [0,
0, 1]. In essence, the conversion to one-hot encoding is piv-
otal, especially for multi-class classification tasks in neural
networks. It facilitates the network’s ability to distinctly clas-
sify instances into their respective classes, ensuring that each
class is treated as an independent entity. By transforming the
target variables in this manner, the neural network can be
trained more effectively, providing more granular feedback
during the backpropagation process and fostering improved
model accuracy.

3.3 Integrating Deep Learning and Genetic
Algorithm

This approach represents the integration of Genetic Algo-
rithm (GA) operations with a Deep Neural Network (DNN)
for the dual objectives of optimising feature selection and
enhancingmodel accuracy. Initially, aDNNmodel is defined.
The architecture of this model consists of several layers. The
input layer has neurons equivalent to the number of selected
features and utilises a Rectified Linear Unit (ReLU) acti-
vation function. This is followed by a number of hidden
layers containing neurons, also adopting a ReLU activa-
tion function. The output layer employs a softmax activation
function tailored to cater to multiple classes, ensuring the
resultant probabilities range between 0 and 1 and sum to
unity. The model is compiled using the categorical cross-
entropy loss function, which is particularly suitable for
multi-class classification, and the Adam optimiser, appre-
ciated for its computational efficiency. During the fitness
evaluation, each individual in the GA’s population represents
a binary-encoded feature selection. The function determines
the features denoted by ‘1’ in the individual and deploys the
DNN model on them. The resulting model accuracy, when
evaluated against a test dataset, serves as the fitness score.

The DEAP toolbox, a renowned framework in evolu-
tionary computation, facilitates the GA operations. Each
individual’s genome length corresponds to the total number
of features, and standard GA operations—such as two-
point crossover, bit-flipping mutation, and tournament selec-
tion—are employed to evolve the population over defined
generations. Upon algorithmic completion, the most optimal
individual—i.e. the feature set providing the highest vali-
dation accuracy when paired with the DNN—is identified.
This prime feature set, its cardinality, and the associated
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DNN accuracy are reported as the algorithm’s output. This
holistic approach marries the global search prowess of the
GA with the predictive strength of DNNs, thus paving the
way for more informative and concise feature subsets and
potentially enhanced classification outcomes. This integrated
model leverages the strength of GAs in optimising feature
selection and the prowess of DL in pattern recognition and
classification.

(A) Genetic Algorithm (GA) for Feature Selection.
(A-1) Population Initialisation.

• Let P(t) represent the population at generation t, where
each individual Ii ∈ P(t) is a binary vector of length N ,
representing the presence (1) or absence (0) of features in
the dataset.

(A-2) Fitness Function.

• The fitness function f (Ii) quantifies the effectiveness of
the feature subset represented by individual Ii using the
performance of the DL model.

• Mathematically, f (Ii) � Accuracy(DNN(XIi,Y )), where
XIi is the dataset restricted to features marked by ’1’ in
Ii, and Y is the set of labels.

(A-3) Genetic Operations.

• Crossover C(Ii,Ij) → Ik : A pair of parent individuals Ii,Ij
produce an offspring Ik via a crossover mechanism (e.g.
two-point crossover).

• Mutation M(Ii) → Im: An individual Ii undergoes muta-
tion to produce Im, typically through bit-flipping with a
predefined probability.

(A-4) Selection.
A selection mechanism S(P(t)) → P(t + 1) is employed

to choose individuals for the next generation, often based on
fitness values, such as tournament selection.

(B) Deep Learning (DL) Model for Classification.
(B-1) Model Architecture.

• The DL model is defined with an architecture suitable for
classification tasks:

• Input layer Receives input of dimension equal to the
number of features GA selects.

• Hidden layersMultiple layers with a predefined number
of neurons, using Rectified Linear Unit (ReLU) activa-
tion functions.

• Output layer Consists of neurons equal to the number
of classes, employing a softmax activation function.

(B-2) Model Training.

• The DLmodel is trained on a subset of features XIi, where
Ii is an individual from the GA population.

• Loss Function: The model uses categorical cross-entropy
loss

L(Y , Ŷ ) � −
M∑

c�1
Yo, c log

(
Ŷo, c

)
, where Y and Ŷ0, c rep-

resent actual and predicted labels, andM is the number of
classes.

• Optimiser: Adam optimiser is employed for its efficiency
in converging towards optimal weights.

(C) The Integrated Model: GA–DL Algorithm
(C-1) Initialisation:

• Step 1: Initialise GA population P(0) with binary vectors
of length N .

• Step 2: Define the DL model architecture DNN .

(C-2) Evolutionary Process:

• Step 3: For each generation t, perform:

• Step 3.1: For each individual Ii in P(t):
• Step 3.1.1: Construct dataset XIi based on selected
features in Ii.

• Step 3.1.2: Train DNN on XIi and evaluate perfor-
mance on a validation set.

• Step 3.1.3: Assign fitness score f (Ii) based on the
accuracy of DNN .

• Step 3.2: Apply crossover and mutation to generate new
individuals.

• Step 3.3: Perform selection to form P(t + 1).

(C-3) Termination:

• Step 4: Repeat the process for a predetermined number of
generations or until convergence criteria are met.

• Step 5: Identify the best individual Ibest from the final gen-
eration.

(C-4) Output:

• Step6:The feature subset representedby Ibest and the accu-
racy of the DL model trained on this subset are presented
as the output of the algorithm.

This integrated GA–DL model adeptly marries the global
search capability of GAs in navigating through the high-
dimensional feature space with the predictive strength of
DNNs. The result is a sophisticated tool capable of iden-
tifying salient features and achieving high classification
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accuracy, crucial for effective and reliable cyber-attack
detection in IIoT systems. This model exemplifies a signifi-
cant advancement in computational intelligence approaches
applied to cybersecurity.

Thepseudocodebelow represents the integrated approach:
FUNCTION CreateModel(input_dim: Integer)—>

Model:

• INITIALISE a Sequential Neural Network model.
• ADD an Input Layer to the model with ’input_dim’ neu-
rons and ReLU activation.

• ADD Hidden Layers to the model with X neurons and
ReLU activation.

• ADD an Output Layer to the model with the number of
output classes and Softmax activation.

• COMPILE the model with ’categorical_crossentropy’
loss, ’adam’ optimiser, and ’accuracy’ metric.

• RETURN the compiled model.

FUNCTION EvaluateIndividual(individual: List) ->
Tuple:

• INITIALISE selected_features as the subset of features
where the corresponding gene in individual is ’1’.

• INITIALISE a model using CreateModel with input_dim
equal to the length of selected_features.

• TRAIN the model on X_train[selected_features] and
y_train_one_hot for XX epochs.

• EVALUATE the model on X_test[selected_features] and
y_test_one_hot.

• RETURN the accuracy as the fitness score.

3.4 Hyperparameter Tuning Process

The final step in this methodology is the hyperparameter tun-
ing process which is implemented by using Keras Tuning
library. This is a crucial process to maximise the model per-
formance. This process includes the following.

1. Objective of Hyperparameter Tuning
The core objective of hyperparameter tuning in this con-
text was to calibrate the model parameters to optimise its
performance, specifically aiming to maximise the accu-
racy on the validation set. This is particularly crucial in
cybersecurity applications where the precision of predic-
tions can significantly impact the effectiveness of threat
detection and response.
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Table 4 Training and testing configurations

Parameter Value/setting

Dataset split 80% Training, 20% Testing

Learning rate Determined by the hyperparameter tuner
(within a range from 0.001 to 0.01)

Cross-validation Fivefold Cross-Validation

Number of epochs 100

Batch size 64

Optimiser Adam

Loss function Categorical Cross-Entropy

Activation functions ReLU, Tanh, ELU

Metrics Loss, Accuracy, Precision, Recall

Evaluation metrics Test Loss, Test Accuracy, Test Precision,
Test Recall

2. Keras Tuner Implementation
The tuning process was facilitated using Keras Tuner,
a specialised Python library offering a powerful and
flexible platform for hyperparameter optimisation. Keras
Tuner provides several tuning algorithms; in this
instance, a Random Search strategy was employed for its
efficiency and effectiveness in exploring a wide parame-
ter space.

3. Parameters Under Tuning

a. Neurons in dense layers The number of neurons in each
dense layer was varied to determine the optimal size of
the neural network. This impacts the model’s capacity to
learn complex patterns.

b. Activation functions Different activation functions
(‘relu’, ‘tanh’, and ‘elu’) were considered. The choice
of activation function affects how the model processes
input data and can impact the training dynamics.

c. Dropout rate Dropout rates were tuned to identify the
optimal level of regularisation, thus preventing overfit-
ting while maintaining sufficient model complexity.

d. L2 regularisation rate The extent of L2 regularisation
was also a subject of tuning, which helps in penalising
large weights to avoid overfitting.

4. Search Strategy
The random search method involved exploring ran-
dom combinations of hyperparameters within spec-
ified ranges. This approach, as opposed to a grid
search, offers a balance between comprehensiveness and
computational efficiency.

5. Trials and Executions
The tuner was set to conduct a set of trials, with each
trial executing the model training twice. This setup was
chosen to ensure a thorough exploration of the hyperpa-
rameter space while also accounting for the variability in
model performance due to stochastic elements in neural
network training.

6. The outcome of the Tuning Process
Post the tuningprocess, the best-performinghyperparam-
eter setwas extracted.This set represents the combination
of parameters that resulted in the highest accuracy on the
validation dataset during the trials.

7. Implications of Tuning
By systematically adjusting and evaluating different
hyperparameters, the tuning process endeavours to
enhance the model’s ability to detect and classify cyber-
threats accurately. It plays a pivotal role in tailoring
the model to the specific nuances and intricacies of
the dataset at hand, which is critical in cybersecurity’s
dynamic and often complex landscape. In essence, hyper-
parameter tuning stands as a cornerstone in the model
development process, especially in fields like cybersecu-
rity, where the stakes of model performance are high.
This careful calibration of parameters is instrumental
in striking the right balance between model complexity,
generalisation ability, and training efficiency.

The pseudocode below represents the hyperparamter tun-
ing process:
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To provide a clear understanding of the operational steps
involved in our proposed GA–DL (Genetic Algorithm–Deep
Learning) approach, we have included a flowchart that visu-
ally represents the entire process. This flowchart outlines
each stage of the methodology, starting from data prepro-
cessing to the final evaluation and selection of the optimised
model.

To ensure the reproducibility of our experiments and to
provide clarity on the specific settings used during the train-
ing and testing phases of the proposed GA–DL approach,
we have outlined the key configurations and parameters in
Table 4. These parameterswere carefully selected to optimise
the performance of the Deep Learning model and to ensure
that the Genetic Algorithm effectively selected the most rel-
evant features from the dataset. The table provides details on

the percentage of data allocated for training and testing, the

learning rate used duringmodel training, the cross-validation
method employed, and other relevant settings. These config-
urations were instrumental in achieving the high levels of
accuracy, precision, and recall reported in this study.

3.5 EvaluationMetrics

The evaluation of the results obtained in this work is con-
ducted by using the following standard metrics:

3.5.1 Accuracy

In the context of a Deep Learning classification model, accu-
racy can be more specifically defined with reference to four

123



Arabian Journal for Science and Engineering (2025) 50:12071–12095 12085

key concepts: True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN).

• True Positives (TP) These are the instances where the
model correctly predicts the positive class.

• True Negatives (TN) These are the instances where the
model correctly predicts the negative class.

• False Positives (FP) These are the instances where the
model incorrectly predicts the positive class.

• False Negatives (FN) These are the instances where the
model incorrectly predicts the negative class.

Given these definitions, the accuracy of a classification
model is the number of correct predictions (both positive and
negative) divided by the total number of predictions made.
This can be represented mathematically as:

Accuracy � (TP + TN)/(TP + TN + FP + FN)

This metric is commonly used in classification problems
to determine the proportion of the total number of predictions
that were correct.

3.5.2 Precision

Precision in the context of a Deep Learning classification
model is a measure of the correctness achieved in positive
prediction. It tells us out of all the positive classes we have
predicted, howmany are actually positive. Precision is a good
measure to determine when the costs of False Positives are
high. For example, in spam detection, it is rather good to
have some spammessages get through (FalseNegatives) than
have good emails categorised as spam (False Positives). The
precision is calculated as follows:

Precision � TP/(TP + FP)

A high precision score relates to the low False Positive
rate. Precision is particularly useful in a situation where
False Positives are more concerning than False Negatives.
It is important to note that precision alone is not a reliable
metric; it should be considered in tandem with recall (also
known as sensitivity) for a more comprehensive evaluation
of a classification model’s performance.

3.5.3 Recall

Recall, also known as sensitivity or the True Positive rate in
the context of a Deep Learning classification model, mea-
sures the proportion of actual positives that are correctly
identified by the model. It reflects the model’s ability to find
all the relevant cases within a dataset. The recall is calculated

as follows:

Recall � TP/(TP + FN)

A high recall score indicates that the model is capable
of capturing a large proportion of the positive cases, which
is particularly important in situations where failing to detect
positives can have severe consequences, like in cyber-attacks
detection in this work. However, a model with high recall can
also have a high number of False Positives. Therefore, recall
should not be used as the only performancemetric but should
be combinedwith othermeasures such as precision and accu-
racy to give a complete picture of the model’s performance.

These measures are utilised in assessment of the final
GA–DL classification model in this work.

4 Results

This section presents and discusses the conducted work
and achieved results. The detection and classification accu-
racy, precision, recall, and loss of the GA–DL classifier are
reported. The proposed solution is coded from scratch using
Python programming language with the following libraries
and editors:

• Jupyter (version: 1.0.0)
• Matplotlib (version: 3.3.2)
• Notebook (version: 6.0.3)
• Numpy (version: 1.18.1)
• Openpyxl version: 3.0.4)
• Pandas (version: 1.1.2)
• scikit-learn (version: 0.23.2)
• scipy (version: 1.4.1)
• seaborn (version: 0.11.0)

The machine used for simulations had Intel®Core TM i7
vPRO processor, Microsoft’s Windows 10 operating system
and RAM of 32.00 GB.

4.1 GA–DLModel Performance

4.1.1 Model PerformanceWithout Hyperparameter Tuning

The GA–DL model performance has been analysed. As dis-
cussed in the previous section, the model performance is
measured by calculating the accuracy, precision, recall, and
the loss. Figure 1 shows that the model accuracy increased
as the training was going. The model settled at about 97%
accuracy after 100 epochs with a chance of slightly more
than that accuracy if more epochs are introduced.

In IIoT systems and networks, maintaining high accu-
racy is vital because the cost of false predictions can be very
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Fig. 1 GA–DL Model Accuracy

Fig. 2 GA–DL Model Loss

high. A False Negative might mean an undetected attack that
could shut down critical infrastructure or even cause physi-
cal harm. Conversely, a high rate of False Positives can lead
to “alert fatigue” where operators begin to ignore security
alerts, potentially leading to a missed True Positive.

Figure 2 illustrates themodel losses during the training and
validation. In the context of a Deep Learning classification
model, particularly this model that is designed for detecting
and classifying cyber-attacks on IIoT systems, “loss” refers
to a quantification of the difference between the model’s
predicted outputs and the actual ground truth values. It is a
metric that summarises the model’s errors made during train-
ing and validation phases. This loss function, also known as a
cost function, is an essential component in training the Deep
Learning model. It measures the inconsistency between the
predicted values generated by the model and the actual val-
ues. In this work (IIoT cybersecurity), where the model’s
output can significantly impact the reliability and safety of
the systems, the loss function becomes critical. The choice
of a loss function depends on the nature of the problem,

Fig. 3 GA–DL Model Precision

in this case, which is a multi-class classification (categoris-
ing different types of cyber-attacks), the function categorical
cross-entropy is used.

In this specific case of IIoT, where the cyber-physical sys-
tems have various sensor readings and network traffic data as
inputs, the loss function would capture howwell the model is
learning to differentiate between normal operational data and
potential cyber-threats or anomalies. Since the cost of a False
Negative (i.e. missing a real attack) could be catastrophic in a
real-world industrial environment, theGA–DLmodel is opti-
mised to minimise such errors, possibly at the expense of a
higher False Positive rate (i.e. benign activities misclassified
as attacks). The ultimate goal is to train a model with the
lowest possible loss on unseen data, indicating it has a good
generalisation ability and is adept at detecting and classifying
cyber-threats accurately to ensure the security and integrity
of IIoT systems.

Figure 3 shows the performance of the GA–DL model
during the training and validation in terms of precision.
Within the context of deploying the model for the discern-
ment and classification of cyber-threats in IIoT networks,
precision is a pivotal metric that gauges the veracity of the
positive predictions made by the classifier. Precision is par-
ticularly imperative in scenarios where the cost of a False
Positive—an erroneous alarm—is high, as such events can
precipitate unnecessary and possibly disruptive responses.
Precision, therefore, serves as an indicator of a model’s reli-
ability in asserting an incident as a cyber-attack and its
adeptness in minimising false alarms. Given the intricate
interplay between precision and recall (in this case 94%),
it is paramount that precision is not evaluated in isolation.
In the pursuit of a resilient and efficient IIoT security appa-
ratus, achieving a balance between precision and recall is
essential, ensuring that the Deep Learning model remains
both trustworthy and comprehensive in its threat detection
capabilities.
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4.1.2 Model Performance with Hyperparameter Tuning

This model constructed using Keras, a high-level neural
networks API, represents a sophisticated blend of machine
learning techniques and hyperparameter tuning orchestrated
to refine its predictive accuracy.

4.1.2.1 Model Architectural Highlights Sequential Model:
The model is built using Keras’s Sequential API, allowing
for a linear stack of layers, which simplifies the architecture
and enhances the model’s interpretability.

• Layer configuration Each layer is carefully structured,
starting with a dense layer whose neurons range between
128 and 512. This is followed by a Batch Normalisation
layer, which standardises inputs to the next layer, thus
accelerating the training process and improving overall
model performance.

• Hyperparameter optimisation The model employs Keras
Tuner for hyperparameter tuning, an innovative approach
that systematically explores a range of configurations to
identify the most effective parameters. This includes the
number of neurons, the type of activation function (ReLU,
tanh, or ELU), and the degree of dropout and L2 regulari-
sation, crucial for preventing overfitting.

• Dropout regularisation The inclusion of dropout layers,
with rates varying between 0.3 and 0.5, is a strategic design
choice to reduce overfitting, ensuring the model remains
robust to unseen data.

4.1.2.2 Training and Evaluation Themodel undergoes a rig-
orous training regimen over 100 epochs with a batch size of
64, including a validation split of 20%. This comprehen-
sive training is designed to thoroughly equip the model with
the ability to discern intricate patterns indicative of vari-
ous cyber-threats. Upon completion of the training phase,
the model’s performance is evaluated against the test set,
with metrics such as loss, accuracy, precision, and recall
being meticulously computed. These metrics provide a mul-
tifaceted view of the model’s effectiveness, with accuracy
measuring overall performance, precision focusing on the
correctness of positive predictions, and recall highlighting
the model’s ability to identify all relevant instances.

4.1.2.3 Visualisation The model’s training process is visu-
ally represented through a series of plots, illustrating the
trajectory of accuracy, loss, and precision over successive
epochs. These plots are not merely illustrative but serve as
diagnostic tools, offering insights into the model’s learning
process and indicating areas for potential improvement.

4.1.2.4 Performance Comparison Performing the hyperpa-
rameter tuning approach (explained in section 0) resulted in

Fig. 4 Model Performance Comparison

enhancing the model performance in terms of the accuracy,
precision, recall, and the model losses as shown in Fig. 4.

The hyperparameter tuning resulted in:

• Increasing the model accuracy by 2% (from 95 to 97%)
• Increasing the model precision by 1% (from 97 to 98%)
• Increasing the model recall by 1% (from 93 to 94%)
• Reducing the model losses by 2% (from 14 to 12%)

Fine tuning the model and enhance its performance at
these levels (e.g. 98%) is challenging, but the hyperparameter
tuning is proven to be successful in enhancing the model
performance on multiple levels. Figure 5 shows the model
performance during the hyperparameter tuning process.

In Fig. 5, we observe that the plots related to hyperpa-
rameter tuning exhibit notable fluctuations, which are more
pronounced than those seen in the plots without hyper-
parameter tuning. These fluctuations are a result of the
complex interactions between various hyperparameters and
the stochastic nature of the training process. These hyperpa-
rameters significantly influence the model’s architecture and
its ability to generalise from the training data. The fluctua-
tions observed during hyperparameter tuning are indicative
of the model’s sensitivity to the hyperparameter settings. For
instance, varying the number of units in the dense layers or
changing the activation function (between relu, tanh, or elu)
can lead to significant differences in how the model learns
and generalises. Despite these fluctuations, the overall results
after hyperparameter tuning show improved performance in
terms of accuracy, precision, and recall, compared to the non-
tuned model.

To address thefluctuations,we ensured that thefinalmodel
was trained and evaluated multiple times to confirm the con-
sistency of the results. Cross-validation and multiple trials
help in averagingout the effects of randomvariability, provid-
ing a more reliable estimate of the model’s true performance.
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Fig. 5 Model Performance with Hyperparameter Tuning

4.2 Feature Importance and ConfusionMatrix

4.2.1 Confusion Matrix

The Confusion Matrix has been employed as a pivotal ana-
lytical tool to assess the performance of the developed
classification model, which is designed for detecting and
classifying cyber-attacks within the IIoT environment. This
matrix provides an intricate tableau, delineating not only the
overall accuracy of themodel but also its efficacy in correctly
identifying various categories of cyber-threats. It achieves
this by comparing the predicted outcomes against the actual
labels, thereby elucidating four key components: True Posi-
tives, True Negatives, False Positives, and False Negatives.

The utilisation of the ConfusionMatrix in our analysis has
been instrumental in revealing the nuanced performance of
the model across different attack types. This granular insight
is crucial, given the diverse nature of cyber-threats. Impor-
tantly, the matrix has highlighted areas where the model is
prone to misclassification, such as instances of false alarms
and missed detections, which are critical in the context of
cybersecurity. Furthermore, the ConfusionMatrix has served
as a guide in balancing themodel’s sensitivity and specificity,
a balancing act of paramount importance in IIoT contexts.
This balance is crucial to avoid operational disruptions due
to false alarms and to ensure that real threats are not over-
looked.

Two forms of confusion matrix have been produced: the
first one is the classical matrix, as shown in Fig. 6 and Fig. 7),
and the second one is the normalised which is primarily
driven by the need for a clear, comparative understanding
of the model’s performance across different classes, particu-
larly in scenarios where class imbalance is prevalent.

4.2.2 Features Importance

Following the performance evaluation of the detection and
classification model, the features importance is calculated

as well. The term ‘features performance’ refers to the effi-
cacy and relevance of the input variables, or features, used by
the classifier in making accurate predictions. Feature impor-
tance was assessed using a Random Forest algorithm, which
provides a robust mechanism for evaluating the contribution
of each feature to the model’s predictive power. The feature
importance scores were calculated using the Gini importance
metric, which measures the total decrease in node impurity
across all trees in the forest attributable to a given feature.
The process is as follows:

1. Calculation of Feature Importance
The Random Forest algorithmwas applied to the training
data, where it evaluated the contribution of each feature
by calculating the Gini importance. This metric reflects
the degree to which a feature reduces uncertainty (or
impurity)when used to split the data at a node in theDeci-
sion Trees. The important scores were then extracted and
sorted in descending order to identify themost influential
features.

2. Visualisation of Feature Importance
The feature importance scores were plotted using a bar
plot, where the x-axis represents the features, and the y-
axis shows their corresponding importance scores. The
features were labelled, and the bars were annotated with
the exact importance percentages to provide a clear and
detailed visual representation.

3. Interpretation of Results
The results indicated that “Source to transaction (sbytes)”
were the most important for detecting and classifying
malicious activity. These features significantly influ-
enced the model’s decision-making process, thereby
enhancing its ability to differentiate between benign and
malicious traffic. Understanding the importance of these
features allowed us to streamline the model by focusing
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Fig. 6 Confusion Matrix

on the most critical data points, reducing computational
complexity while maintaining or even improving detec-
tion accuracy. This is particularly beneficial for IIoT
environments, where computational resources are often
limited, and real-time processing is crucial.

4. Impact on the Proposed Solution
The identification of key features not only improved the
efficiency and accuracy of the model but also informed
the feature selection process during model develop-
ment. By concentrating on the most impactful features,
the model can operate more effectively in real-world
IIoT environments, providing timely and accurate threat
detection. Additionally, this insight allows for the poten-
tial reduction in feature dimensionality in future itera-
tions of the model, which can further enhance processing
speed without sacrificing performance.

Figure 8 shows the importance of each of the selected
features for the detection and classification model.

Our analysis in Fig. 8 identifies two features as particularly
relevant for the detection and classificationmodel: sbytes and
sttl.

1. sbytes (Source to Transaction Bytes)

The sbytes feature represents the number of bytes trans-
ferred from the source to the destination during a
transaction. This feature is crucial for detecting abnor-
mal patterns in data transfer, which are often indicative
of malicious activities. For example, an unusually high
or low number of bytes in a transaction may signal an
attempt to exfiltrate data or perform a Denial of Service
attack. The model leverages this feature to distinguish
between normal and suspicious data flows, making it a
key factor in the classification process.

2. sttl (Source to Destination Time to Live Value)
The sttl feature refers to the Time to Live (TTL) value
for packets travelling from the source to the destination.
TTL is a mechanism that limits the lifespan of a packet
in a network by decrementing its value each time the
packet passes through a router. The sttl feature can reveal
important information about the network path and the
behaviour of the source. Anomalies in TTL values, such
as unusually low or high values, may indicate spoofing
attacks, routing loops, or other network misconfigura-
tions that could be exploited by attackers. The model
uses sttl to detect these subtle but significant signs of
malicious activity.
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Fig. 7 Normalised Confusion
Matrix

Fig. 8 Feature Importance
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Both sbytes and sttl contribute significantly to the model’s
ability to detect and classify cyber-threats. The model’s high
reliance on these features underscores their effectiveness in
capturing key aspects of network behaviour that differentiate
between benign and malicious activities.

4.3 Novelty

The methodology presented embodies a novel integration
of a Genetic Algorithm (GA) with a Deep Neural Network
(DNN), a confluence that marks a significant stride in the
field of cybersecurity, particularly in the context of IIoT
environments. This innovative approach hinges on the syn-
ergy between the global search capability of the GA and the
robust predictive power of the DNN. The GA’s role in this
methodology is pivotal, as it undertakes the task of feature
selection, navigating through the high-dimensional feature
space to identify themost significant features that enhance the
model’s accuracy. This selective process is intricately linked
to the fitness evaluation of the GA, where each individual’s
fitness is determined by the accuracy of aDNNmodel trained
on the selected features.

The DNN architecture, tailored for multi-class classifica-
tion, is carefully designed with multiple layers employing
ReLU activation functions, and a softmax output layer.
The usage of categorical cross-entropy as the loss function
optimises the model for multi-class scenarios, a common
characteristic in cyber-attack datasets. The sophistication of
this methodology is further elevated through the application
of hyperparameter tuning, which fine-tunes the model to its
optimal performance. This step is crucial in a field where
precision and accuracy are paramount.

Overall, this methodology is not merely an incorporation
of two distinct techniques but a harmonised system where
each component complements the other, resulting in a model
that is both precise in its predictions and efficient in handling
the complex nature of cyber-threats in IIoT. The ingenuity
of this approach lies in its capacity to leverage the strengths
of both GA and DNN, thus paving the way for enhanced
detection and classification outcomes in cybersecurity.

5 Work Scope and Limitations

While the presented study on integrating Genetic Algorithms
(GA) and Deep Learning (DL) for cyber-attack detection
in IIoT environments is robust, it is essential to acknowl-
edge certain limitations. Firstly, the study’s dependence on
the dataset’s quality and representativeness is crucial. The
dataset’s limitations in capturing the full spectrum of poten-
tial cyber-threats can impact the model’s generalisability and
effectiveness in real-world scenarios. Secondly, the com-
putational intensity of GAs, combined with the inherent

complexity of DL models, may pose challenges in terms of
computational resources and time, particularly when scaling
to larger and more complex IIoT networks.

Additionally, the evolving nature of cyber-threats means
that themodelmay require continuous updates and retraining
to maintain its effectiveness against new and emerging attack
types. This retraining process can be resource-intensive and
may not always be feasible in dynamic IIoT environments.
Furthermore, the interpretability of DL models remains a
challenge. While the integration with GA enhances feature
selection, understanding the internal workings and decision
processes of the DL model can be complex, which might
pose challenges in terms of transparency and trustworthiness
in security-critical IIoT applications.

Lastly, the study’s scope is constrained by the current
state of technology and understanding of IIoT cybersecu-
rity threats. As the field rapidly evolves, future research may
uncover new aspects that were not considered in this study.
It’s vital for future research to address these limitations,
ensuring that the model remains effective and relevant in the
ever-changing landscape of IIoT cybersecurity.

6 Conclusion and FutureWork

This work presented an integrated approach that com-
bines Genetic Algorithms (GA) with Deep Learning (DL)
to enhance cyber-attack detection in Industrial Internet of
Things (IIoT) environments. The proposed GA–DL model
achieved a precision of 98%, accuracy of 96%, recall of 94%,
and loss of 14%, while requiring less than half of the features
from the UNSW-NB 15 dataset. This feature reduction not
only streamlined the detection process but also halved the
processing time, significantly improving system efficiency.
Comparative analysis with existing literature highlights the
superiority of the GA–DL approach, particularly in preci-
sion and feature reduction. The model’s adaptability across
diverse IIoT devices and cyber-attacks further underscores
its potential to contribute to a more secure IIoT ecosystem.

Implications: The findings suggest that the GA–DL
approach can significantly improve the efficiency and accu-
racy of cyber-attack detection in IIoT environments. By
reducing feature dependency and processing time, the model
can be more easily integrated into real-world IIoT systems,
enhancing their resilience against cyber-threats. The model’s
adaptability also indicates its potential for broad application
across various industrial settings.

Limitations: Despite the promising results, the study has
limitations that warrant further investigation. The model’s
performancewas evaluated using a specific dataset, andwhile
it showed adaptability, its scalability, and effectiveness across
larger, more diverse datasets need validation.
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Future Work: Future research will focus on testing the
scalability of the model against larger datasets and integrat-
ing it with real-time IIoT systems to assess performance in
dynamic environments. The incorporation of additional AI
techniques, such as reinforcement learning and federated
learning, will be explored to enhance predictive capabili-
ties and facilitate distributed, privacy-preserving detection.
Improving the model’s interpretability and resilience against
adversarial attacks will also be key areas of focus to ensure
its practical applicability and reliability in industrial settings.

In conclusion, the integrated GA–DL approach repre-
sents a significant advancement in IIoT security. The results
obtained pave the way for further research, with the goal of
establishing a new benchmark for cyber-attack detection in
Industry 4.0.

Appendix

The flowchart of the GA–DL (Genetic Algorithm–Deep
Learning) method is shown below:
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