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Abstract
1.	 Passive acoustic monitoring (PAM) is an important survey method used to collect 

data on bat distribution and activity that are needed to underpin conservation 
and management. The introduction of open-source acoustic recorders at price 
points considerably lower than those for commercial detectors means PAM is 
becoming increasingly accessible to practitioners. However, uncertainty regard-
ing recording quality, especially at higher frequencies, makes understanding the 
comparative performance of commercial and open-source devices imperative.

2.	 Here, two types of commercial bat detectors: full spectrum (Anabat Swift) and 
zero-crossing (Anabat Express), and open-source AudioMoth acoustic record-
ers (configured to use 250 kHz (hereafter low) or (384 kHz hereafter high) sam-
pling rates) are compared in each of four different habitats: riparian, woodland, 
wood pasture and arable. In each habitat, comparisons are made using detectors 
that were spatially co-located and recording on the same nights, such that they 
had identical opportunity to record the same data. Species accumulation curves 
were additionally created for each detector type to quantify the combined ef-
fects of using multiple detectors, multiple locations per site and multiple temporal 
replicates.

3.	 When directly compared, full spectrum commercial detectors outperformed 
open-source devices (regardless of sampling rate) for many metrics, including 
for species richness (i.e. the number of species recorded) in all habitats tested. 
However, the low frequency open-source device performed similarly to the zero-
crossing commercial device in quantifying overall bat activity and activity of in-
dividual taxa in most habitats. The low frequency open-source unit consistently 
outperformed the high frequency open-source unit.

4.	 Commercial detectors accumulated species more quickly, and one detector at 
one location per site was typically sufficient to record the full species inventory. 
However, use of multiple open-source devices over a longer period recorded the 
same species inventory in three of the four habitats.
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1  |  INTRODUC TION

Despite representing nearly 20% of global mammalian diversity and 
providing vital ecosystem services, bats, especially nocturnal echo-
locating microbats, can be difficult to study. The evidence upon 
which to base conservation and management strategies can thus 
be limited, which is concerning given that >80% of bat species that 
have been assessed by the International Union for Conservation of 
Nature (IUCN) are threatened, declining or listed as data deficient 
(Festa et al., 2023). As the number and magnitude of the environ-
mental threats facing bat species increase, there is an urgent need 
to test, evaluate and develop technologies and protocols for the col-
lection of bat data.

Use of passive acoustic monitoring (PAM) to survey bats began 
in the late 1980s, with full spectrum detectors capable of stor-
ing recordings on built-in memory cards for software-supported 
analysis emerging onto the market in the early 2000s (Zamora-
Gutierrez et al., 2021). This expanded detection capability in re-
lation to surveyor-based activity surveys, as PAM approaches had 
the potential to be scalable, standardisable and cost-efficient, 
while also being less labour-intensive than direct survey methods 
(Browning et al., 2017; Gibb et al., 2018). However, recording ultra-
sonically at high sampling rates captures entire frequency ranges 
(i.e. full spectrum) and produces large waveform audio (.wav) files. 
The storage of these files, even temporarily within detectors, was 
initially often prohibitive (Frick, 2013). To address the needs of 
practitioners, frequency division and zero-crossing (zc) devices 
were developed in the 1990s. This provided an interim solution 
to data storage limitations by reducing the amount of call infor-
mation that was stored (Agranat, 2013; Corben,  2004), thereby 
allowing multi-night data collection. More recently, developments 
in memory cards and recording compression mean that many 
commercial detectors have reverted to allowing full spectrum re-
cording, either exclusively or as a user-selected option. However, 
many researchers and practitioners continue to use legacy zero-
crossing technology. Commercial units typically use a built-in trig-
ger whereby audio is only recorded if it meets specific ultrasonic 
parameters consistent with bat echolocation frequencies (Adams 
et al., 2012; Browning et al., 2017). However, whilst performance, 
data storage and battery life have evolved as the technology has 
advanced (Merchant et al., 2015), costs remain a limiting factor for 
many practitioners, which has hindered the use and scalability of 

PAM (Gibb et al., 2018). The introduction of open-source acous-
tic loggers, such as the AudioMoth (Hill et al., 2017) has created 
exciting opportunities for researchers and practitioners to access 
PAM at costs more realistic for conservation organisations (typi-
cally costing <10% of commercial detectors and sometimes as lit-
tle as 1%). Despite the advantages of lower costs, however, several 
challenges remain. In particular, many researchers have expressed 
concern that technical limitations with the on-board micro-
electromechanical systems (MEMS) microphones could cause de-
tection issues at higher frequencies, thereby impacting recording 
quality and fidelity in comparison with commercial units (Brinkløv 
et al., 2023; Gibb et al., 2018; Kunberger & Long, 2023). Poor re-
cording quality can have important implications for data analy-
sis and bat identification, especially for species that echolocate 
at high frequencies (e.g. horseshoe bats; Rhinolophus species) or 
that produce low energy calls (e.g. long-eared bats; Plecotus spe-
cies; Barré et al., 2019). Initially, AudioMoths could only be con-
figured to record continuously or to use a pre-configured sleep: 
wake cycle, unless practitioners had the skills necessary to amend 
underlying coding (Bota et  al.,  2023; Kunberger & Long,  2023; 
López-Bosch et  al.,  2022; Revilla-Martín et  al.,  2021; Starbuck 
et  al.,  2024). A user-friendly frequency trigger for AudioMoth 
units was developed and released in the configuration application 
in May 2022 but was initially largely untested.

From a research and practitioner perspective, it is not only the 
choice of detector that influences data. Survey effort (e.g. number 
of detectors, number of locations per site, number of temporal rep-
licates) is typically determined by surveyor assessment of habitat 
suitability. A minimum monitoring period of five nights in suitable 
weather conditions is often recommended (e.g. Collins, 2023), with 
more spatial or temporal replicates suggested where habitat quality 
is adjudged to be high (e.g. riparian habitats and woodland habitats). 
The number of locations surveyed within a site and the number of 
temporal replicates remain subjective decisions that require practi-
tioners to balance data needs against available resources (O'Connell 
et al., 2024). Ongoing development of PAM technology has resulted 
in a wide range of survey options, with many of these not empirically 
tested and best practice not always being clear. Any suggested best 
practice protocols must also allow for the fact that ‘optimisation’ of 
PAM frameworks is not only driven by theoretical considerations 
but is also cost dependent (Froidevaux et al., 2014). Decisions are 
thus multifaceted, encompassing detector decisions (type, settings 

5.	 Practical implication: Although commercial devices remain the gold standard for 
recording quality, this study shows that less expensive open-source acoustic re-
corders sampling at low frequency are viable for PAM where the cost of commer-
cial devices is prohibitive. However, it should be noted that longer survey periods 
or use of multiple units are often required to obtain comparable data.

K E Y W O R D S
Anabat, AudioMoth, automated detection, bats, bioacoustics, PAM, survey protocol
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    |  3 of 20PERKS et al.

and number) and deployment decisions (duration and replicates) 
(Figure 1).

There has been some previous comparison work on detector 
types, including between full spectrum and zero-crossing commer-
cial units in America (Adams et al., 2012; Kaiser & O'Keefe, 2015); 
the former finding full spectrum to outperform zero-crossing and the 
latter cautioning that the microphone of each detector type could be 
even more important than the reporting format per se. There have 
been few commercial versus open-source detector comparisons; 
however, a recent study conducted by Starbuck et al. (2024) in the 
United States for a North American bat guild (seven locations at one 
site, avoiding bat activity hotspots by selecting low quality sites) 
concluded that there was a trade-off between data quality and cost 
of data acquisition.

In this study, we empirically compare, for the first time, three 
types of bat detector: (i) full spectrum commercial units, (ii) zero-
crossing (zc) commercial units and (iii) open-source units config-
ured with different sampling rates across a range of temperate 
lowland habitats that differ in their assessment of quality for bats. 
We investigate the comparative performance of these detectors 

and how the use of multiple detectors at the same site (deployed 
simultaneously at different parts of the site and/or as successive 
temporal replicates) affects the data collected. The main bat met-
rics are species richness (number of species recorded) and bat 
activity based on the number of bat passes (a bat pass being a 
sequence of three of more pulses emitted by a bat as it flies past 
a detector captured within a single recording, as per Starbuck 
et  al.  (2024)). Our specific hypotheses are that: (1) the number 
of bat passes recorded (overall and for specific taxa) will be high-
est using full spectrum commercial units, intermediate for zero-
crossing commercial units and lowest for open-source units; (2) 
open-source units sampling at higher frequencies will record more 
bat passes than open-source units sampling at lower frequencies; 
(3) although bat activity levels and the specific species recorded 
might vary according to habitat, relative detector performance 
will remain spatially consistent; (4) species accumulation curves 
will be detector- and habitat-specific, but by increasing sampling 
effort for open-source detectors (number of units, duration of sur-
vey period), the inherent limitations of open-source units can be 
overcome. These findings have substantial utility and relevance 

F I G U R E  1 Elements of passive acoustic bat survey design that need to be considered when optimising field protocols and sampling 
schemes using commercial and/or open-source detectors.
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for both the research and practitioner communities by supporting 
the development of enhanced field protocols.

2  |  MATERIAL S AND METHODS

We recorded bat activity at four sites in Worcestershire, UK, across 
a 16-week (112 night) period between mid-June and mid-October 
2022. All fieldwork was conducted passively with full permission 
from the respective landowners or managers. Each site supported 
a different habitat type, ranging from high quality (riparian habi-
tat; woodland habitat) to moderate quality (wood pasture habitat) 
and low quality (arable habitat). To provide an element of semi-
independent spatial replication, each site was split into two geo-
graphically separated sub-sites. We surveyed the sites in rotation 
over successive weeks, whereby data were collected at the first 
sub-site of each site over survey weeks 1–4, followed by the second 
sub-site of each site over survey weeks 5–8. To provide temporal 
replicates, the first sub-site at each site was resurveyed in weeks 
9–12, followed by the second sub-site at each site in survey weeks 
13–16. In all cases, data were recorded for seven consecutive nights 
to mitigate the risks of poor weather or equipment failure, but only 
five nights of data (usually nights 1–5) were carried forward for anal-
ysis as per the guidelines in Collins (2023).

2.1  |  Detector types and configuration

Detectors from the three main functional types were used: (1) full 
spectrum commercial units (Anabat Swift, manufactured by Titley 
Scientific, n = 2); (2) zero-crossing (zc) commercial units (Anabat 
Express, Titley Scientific, n = 2); (3) open-source units (AudioMoth, 
Open Acoustic Devices; n = 4). We programmed all detectors to 
switch on 30 min prior to sunset and switch off 30 min after sun-
rise. The Anabat devices were newly acquired specifically for the 
study, having been factory-calibrated prior to receipt; we config-
ured these to use their standard sampling rate of 500 kHz with the 
on-board trigger activated, such that only sounds that met the pre-
programmed criteria based on known parameters for bat calls were 
recorded. Data were recorded onto San Disk Ultra SD cards (Anabat 
Swift = 64 GB + 32 GB, Anabat Express = 32 GB). The 32 GB second-
ary SD card in the Anabat Swift devices (where data were recorded 
in full spectrum) was often required but was always sufficient. In the 
Anabat Express (where data were recorded in zero-crossing format) 
a single 32 GB SD card was sufficient.

For the AudioMoths, we configured 3 units (v.1.0.0) to use a sam-
pling rate of 250 kHz (hereafter Low Frequency AudioMoth; LFAM). 
These were housed in proprietary cases from the manufacturer and 
were operational throughout the 16-week survey period. Unlike 
the Anabat devices, the AudioMoth microphone is recessed within 
the proprietary case, which may impact its effective directionality. 
However, all detectors used here were housed in their respective 
proprietary cases to reflect standard practice. We configured an 

additional AudioMoth (v.1.2.0) to use a sampling rate of 384 kHz 
(hereafter High Frequency AudioMoth; HFAM), which was op-
erational for the second temporal replicate only. All AudioMoths 
were running firmware version 1.7.0. Data were stored on San Disk 
Ultra microSD cards with card size dependent on sampling rate 
(LFAM = 32 GB, HFAM = 64 GB). At the time of this study, although 
a frequency trigger had just been launched, this was untested. As 
the purpose of this research was to compare device performance 
rather than test the triggers, the units were configured to record all 
sounds within a pre-determined sleep: wake cycle. To facilitate stor-
ing seven nights of data, as would be typically needed within practi-
tioner contexts, we configured the LFAMs to record on a 5-s wake, 
15-s sleep cycle, for the first replicate at all sites. For the second rep-
licates, when nights were longer later in the season, we configured 
the LFAMs on a 5-s wake, 25-s sleep cycle. The HFAM added for 
the second replicate was configured on a 5-s wake, 20-s sleep cycle.

2.2  |  Detector deployment

To enable a direct comparison between detectors, we installed a 
central ‘detector cluster’ near the centre of each of the eight sub-
sites. This was chosen subjectively based on site geography and to 
maximise the likelihood of recording bats (for example, in a clearing 
at woodland sub-sites, along a hedge line at the arable sub-sites). 
The detector cluster comprised one of each detector type (replicate 
one = Anabat Swift, Anabat Express, LFAM; replicate two = Anabat 
Swift, Anabat Express, LFAM, HFAM). In non-linear habitats (wood-
land, wood pasture, arable), four additional locations were randomly 
selected relative to the central detector cluster, each of which was 
randomly allocated a single additional detector from the remaining 
pool: one Anabat Swift, one Anabat Express and two LFAMs. These 
additional locations were randomised in terms of direction and dis-
tance from the detector cluster, while ensuring that the minimum 
inter-detector distance was 200 m to avoid spatial pseudoreplica-
tion. This distance was adopted based on advice that the commercial 
detectors used in this study may detect lower frequency bat calls 
from a distance of up to 100 m (Titley Scientific, 2025). A similar 
process was used in the linear riparian sub-sites, whereby the ad-
ditional locations were situated either upstream or downstream of 
the central detector cluster, with distances (but not bearings) ran-
domly determined as for non-linear habitats (Figure 2). Regardless 
of location or detector type, we affixed all units to suitable features, 
usually trees, shrubs or fence posts, typically 2 m above the ground 
(exceptionally at a minimum height of 1 m where they overlooked 
lower-lying ground), and with the microphone oriented towards 
open space.

2.3  |  Data processing

To remove recordings that were clearly out of bat call range, we 
used the broad frequency filter ‘all bats’ in Anabat Insight to delete 
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    |  5 of 20PERKS et al.

recordings <4 kHz or > 300 kHz. This was especially necessary for 
AudioMoth recordings as lack of an on-board trigger on these units 
meant that all sounds were recorded during wake periods. We used 
the Bats of Europe auto-ID classifier in Kaleidoscope Pro (v. 5.4.0) 
to classify each recording. Because this classifier was only able to 
identify a single species per recording, each recording (minimum 
duration for Anabat devices = 2 s, uniform duration for AudioMoth 
devices = 5 s) became synonymous with a bat pass, such that the 
number of recordings per detector per night was a measure of bat 
activity as recorded by that detector at that location. To minimise 
false positives during the identification process, we followed the 
recommendation of Barré et al. (2019) that only classifications with a 
match ratio of ≥0.5 (often treated as analogous to a confidence score 
of ≥50%: Braun de Torrez et al., 2017; Springall et al., 2019; Smith 
et al., 2021; Taillie et al., 2021) should be retained; manual auditing 
of a random subset of recordings was also undertaken as part of data 
cleaning, as described below.

Once we had classified recordings to species, and any record-
ings with a match ratio <0.5 had been removed, some additional 

data cleaning was undertaken. First, taxa challenging to differ-
entiate acoustically to species level were grouped: Brandt's bat 
(Myotis brandtii) and whiskered bat (Myotis mystacinus) were com-
bined; grey long-eared bat (Plecotus austriacus), which is scarce 
and largely confined to regions outside the study area (Crawley 
et  al.,  2020), was reclassified as brown long-eared bat (Plecotus 
auritus). Second, the automated classifications of a random sub-
set of recordings from each species/group were manually audited 
to verify species identifications. All 56 recordings classified as 
greater horseshoe bat (Rhinolophus ferrumequinum) were removed 
because none of the audited files had been auto-classified cor-
rectly (in all cases, non-bat pulses of the correct frequency had 
been misclassified). Adopting a cautious approach also meant that 
all recordings classified as Alcathoe bat (Myotis alcathoe) (n = 2), 
Bechstein's bat (Myotis bechsteinii) (n = 146) and Nathusius' pipis-
trelle (Pipistrellus nathusii) (n = 322) were deleted. The rationale 
for this was insufficient confidence that these species had been 
classified correctly, especially given their distribution in relation to 
the study area and/or because there were too few recordings for 

F I G U R E  2 Detector deployment within each sub-site for (a) non-linear habitats (woodland, wood pasture, arable) and (b) the linear 
habitat (riparian).
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meaningful statistical analysis once the distribution of recordings 
relative to detector type, habitat, sub-site and temporal replicate 
was considered. No substantive concerns in the auto-ID classifi-
cations of any other species were raised, and no auto-IDs were 
subjectively changed.

2.4  |  Statistical analysis

All analyses were carried out in R 4.2.2 (R Core Team, 2022). 
To test whether the different detector types in the spatially co-
located central cluster differed in performance, we used Friedman 
tests to compare richness (number of species recorded), overall 
activity (regardless of taxonomy) and activity of specific taxa. For 
each bat variable (richness or activity), separate tests were per-
formed for each of the four sites/habitats (with data from both 
temporal replicates and both sub-sites being pooled at site/habi-
tat level). This allowed for the potential influence of habitat medi-
ating inter-detector differences. The rationale for using Friedman 
tests was that there was one unit per detector type mounted im-
mediately adjacent on the same single support (tree or fence post) 
on the same nights, such that they had identical opportunity to re-
cord the same bat data. The data thus fitted a repeated-measures 
framework as they were not independent. Friedman tests were 
more appropriate than repeated-measures ANOVAs because 
the data were counts (number of species; number of bat passes) 
rather than being ratio. We followed each Friedman test with a 
series of paired Wilcoxon tests for post hoc analysis; these were 
Bonferroni-corrected to allow for family-wise error. To conduct 
meaningful statistical analysis on specific taxa with comparatively 
few records, we grouped all classifications in the genus Myotis into 
a single taxonomic group at genus level and are henceforth re-
ferred to as Myotis species. We also took this approach by combin-
ing classifications from the genus Nyctalus with those of Serotine 
(Eptesicus serotinus) to form a single taxonomic group henceforth 
referred to as Nyctalus/Eptesicus species.

In addition to analysis on the full dataset, we also undertook 
analysis on two subsets of these data (henceforth temporally re-
stricted datasets). Subset one included only those data recorded by 
the two Anabat units at times when the LFAM was awake/recording 
(20 nights of intermittent data per habitat using both sub-sites and 
both temporal replicates). Subset two included only those data re-
corded by the Anabats at times when the HFAM was awake/record-
ing (10 nights of intermittent data per habitat using both sub-sites 
but only the second temporal replicate). Analysis of these subsets 
was necessary to specifically test to what extent any differences be-
tween the AudioMoths and the Anabat devices in the full dataset 
might be driven by the latter having the ability to record whenever 
triggered, versus the former only having the ability to record during 
their wake periods. The requirement for two subsets was driven by 
the LFAM and HFAM being configured on different sleep: wake cy-
cles, and also the HFAM only being operational for the second tem-
poral replicate.

To consider the effects of detector deployment decisions (use of 
multiple sub-sites, multiple detectors per sub-site or multiple tem-
poral replicates) on the species richness recorded in different hab-
itats, and how quickly the full species assemblage was reached, we 
constructed species accumulation curves using the function specac-
cum in R package vegan (Oksanen et al., 2013). This used raw species 
data rather than species groups used for the Friedman/Wilcoxon 
tests, and used data from all detectors rather than only the central 
detector cluster. For the Anabat Swifts and Anabat Expresses, we 
generated two accumulation curves per habitat using cumulative 
species richness over successive nights, first using the combined 
data from two detectors (to simulate a situation when two detec-
tors were deployed at a field site) and second using the mean of the 
data from two detectors (to simulate a situation when one detector 
was deployed at a field site). In both cases, data were added cumula-
tively over successive nights, such that all data from the first sub-site 
represented nights 1–10, and data from the second sub-site repre-
sented nights 11–20. As such, the second replicates at each sub-site 
commenced on nights 6 and 16, respectively, thus allowing both the 
effect of a second replicate and a second sub-site to be visualised. 
The same approach was used for LFAM but using three accumula-
tion curves (one detector, two detectors, three detectors). This ap-
proach was not used for the HFAM as only one unit was deployed, 
which was only operational for the second temporal replicate.

3  |  RESULTS

A total of 463,270 recordings made by all the detectors throughout 
the duration of the study passed the initial ‘all bats’ filter in Anabat 
Insight to be carried forward for classification by Kaleidoscope Pro. 
Of these, 94,306 were classified with a match ratio of ≥0.5 (≥50% 
classifier reported confidence) and were carried forward for statisti-
cal analysis. The majority of the classified bat passes were common 
pipistrelle (Pipistrellus pipistrellus) or soprano pipistrelle (Pipistrellus 
pygmaeus) (n = 43,494 and 29,501, respectively), followed by 
Nyctalus/Eptesicus species (n = 12,132).

3.1  |  Direct detector comparison using the central 
detector cluster

The detectors that formed at the central detector cluster at each 
sub-site recorded a total of 46,428 bat passes: riparian = 17,650 
(38.0%), woodland = 9041 (19.5%), wood pasture = 16,537 (35.6%) 
and arable = 3200 (6.9%).

3.1.1  |  Full dataset

Analysis of the full dataset using Freidman and Wilcoxon Tests 
showed significant differences in the species richness and bat activ-
ity (both overall and for specific taxonomic groups) among detector 
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types in all four habitats studied (Tables 1 and 2). Across all habitats, 
there were relatively few differences between the full spectrum 
commercial Anabat Swift and the zero-crossing commercial Anabat 
Express (where there were statistically significant differences for 
specific bat metrics in specific habitats, full spectrum always out-
performed zero-crossing: 8.33% of comparisons). The full spectrum 
Anabat Swift usually performed better than LFAM (63.88% of com-
parisons) and often better than the HFAM (77.77% of comparisons). 
The zero-crossing Anabat Express was often better than the HFAM 
(61.11% of comparisons). When comparing the zero-crossing Anabat 
Express to the LFAM, performance did not differ in 52.78% of com-
parisons, with the Express outperforming the LFAM in 47.22% of 
comparisons. The LFAM often performed better than the HFAM 
(38.88% of comparisons). The magnitude of the differences in detec-
tion for each of the nine bat metrics across each of the four habitats 
is shown in Figures S1–S5.

3.1.2  |  Temporally restricted datasets

Analysis of the two temporally restricted datasets (LFAM subset 
and HFAM subset) also found significant differences between the 
bats detected by the different detectors (Table 3). However, in the 
temporally restricted datasets, although significant differences were 
found extensively in the HFAM subset, there were comparatively 
few differences in the LFAM subset. It is also notable that there 
were fewer significant differences in these subsets than occurred in 
the analysis of the full dataset (Table 1), both overall and especially 
for LFAM. The best performing detectors for each of the species/
taxonomic groups at each habitat for each subset are summarised in 
Table 4 and the magnitude of the differences is shown in Figures S1–
S5. Of note was the significantly lower species richness recorded 
by the HFAM in the HFAM subset, which was lower than that re-
corded by either of the commercial detectors. However, in the LFAM 
subset, few significant differences were found between the LFAM 
and the commercial detectors, with the former regularly recording 

significantly more bat passes than the Anabat Express in the riparian 
habitat (Tables 3 and 4).

3.2  |  Species accumulation at site level

From the seven detectors that were deployed for the full 20 
nights at each site: Anabat Swift (n = 2), Anabat Express (n = 2) and 
AudioMoth (LFAM) (n = 3), Kaleidoscope Pro classified 11 different 
species in the recordings from these detectors over the duration 
of the study.

3.2.1  |  Riparian

In the riparian habitat, the combination of two Anabat Swifts had 
recorded the maximum richness within the first five-night record-
ing period (i.e. first temporal replicate), reaching maximum species 
richness on night three. A single Anabat Swift took six nights to re-
cord the maximum species richness, running into the second tem-
poral replicate at the first sub-site (Figure 3a). Nothing was gained 
by recording at a second sub-site in either case. Using either one 
or two Anabat Express detectors recorded the maximum richness 
of 11 species within the first temporal replicate at the first sub-site 
(Figure 3b). The three AudioMoths combined required both tempo-
ral replicates at the first sub-site to record a lower maximum richness 
of 10 species, and expanding to a second sub-site did not further 
improve performance. However, using fewer detectors (1 or 2 units 
rather than 3) required not only both temporal replicates at the first 
sub-site, but also both temporal replicates at the second sub-site, 
and in both cases the maximum recorded species richness was lower 
than using three AudioMoths. The use of two AudioMoths on av-
erage took until night 18 to reach maximum richness, with a mean 
species richness of 9.66 (± 0.33 SEM). The use of a single AudioMoth 
also took on average until night 18 to record a mean maximum rich-
ness of 8.33 (± 1.20 SEM) (Figure 3c).

TA B L E  1 Friedman test results comparing species richness or bat passes detected by the four detectors (Anabat Swift, Anabat Express, 
low frequency AudioMoth, high frequency AudioMoth) at the central detector cluster, conducted on the full dataset (df = 3 in all cases).

Riparian Woodland Wood pasture Arable

χ2 p χ2 p χ2 p χ2 p

Species richness 18.832 <0.001 29.234 <0.001 25.863 <0.001 24.469 <0.001

All bats 20.758 <0.001 30.000 <0.001 28.080 <0.001 25.948 <0.001

Common pipistrelle 19.653 0.001 26.196 <0.001 24.589 <0.001 18.582 0.002

Soprano pipistrelle 19.320 0.001 29.277 <0.001 25.024 <0.001 19.709 0.001

Brown long-eared bat 23.761 <0.001 23.543 <0.001 24.584 <0.001 19.800 0.001

Nyctalus/Eptesicus species 19.129 0.003 27.092 <0.001 22.055 <0.001 13.026 0.032

Myotis species 23.761 0.002 23.761 <0.001 25.710 <0.001 23.062 <0.001

Lesser horseshoe bat 23.548 <0.001 27.710 <0.001 18.31 0.003 12.536 0.040

Barbastelle 2.000 1.000 27.903 <0.001 19.571 0.002 5.667 0.903
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3.2.2  | Woodland

In woodland habitat, the combination of two Anabat Swifts took both 
temporal replicates at the first sub-site to reach the maximum species 
richness, recording all 11 species by night seven. Reaching maximum 

richness was slower for a single Anabat Swift, taking on average 12 
nights (and, therefore, monitoring of the second sub-site) to record the 
same maximum richness as the two detectors combined (Figure 4a). 
The temporal efficiency of two detectors versus one was also seen 
for Anabat Express (Figure 4b). Regardless of the number of detectors 

F I G U R E  3 Species accumulation curves within riparian habitat for: (a) full spectrum commercial (Anabat Swift), (b) zero-crossing 
commercial (Anabat Express) and (c) open-source (AudioMoth using 250 kHz sampling rate).
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used, the AudioMoths required deployment at both sub-sites to reach 
maximum richness. The three AudioMoths combined recorded the 
maximum 11 species by night 11. When using two detectors, it took 

19 nights to reach the same species total of 11. Using one detector 
also took an average of 19 nights for the number of species to peak, 
but this peak was lower (mean richness = 9.66 ± 1.33 SEM; Figure 4c).

F I G U R E  4 Species accumulation curves within woodland habitat for: (a) full spectrum commercial (Anabat Swift), (b) zero-crossing 
commercial (Anabat Express) and (c) open-source (AudioMoth using 250 kHz sampling rate).
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3.2.3  | Wood pasture

In the wood pasture habitat, the use of either one or two Anabat 
Swift detectors needed both temporal replicates at the first sub-
site to reach the maximum richness of 11 species (Figure 5a): noth-
ing was gained by recording at the second sub-site. On the other 
hand, the combination of two Anabat Express units recorded the 
same maximum richness more quickly, with the number of species 
recorded peaking on night three. In this case, though, using a single 
Anabat Express necessitated both temporal replicates at the first 
sub-site, with peak richness reached, on average, on night seven 
(Figure 5b): again, nothing was gained by recording at the second 
sub-site. The difference between using two or three AudioMoths 
was negligible, with the maximum richness of 11 species being 
reached on nights eight and six, respectively, both within the sec-
ond temporal replicate at the first sub-site (Figure 5c). The use of 
a single AudioMoth, however, recorded a lower mean maximum 
richness of 10 species (±0.58 SEM), which was reached on night 
12 using data from both sub-sites.

3.2.4  |  Arable

In the arable habitat, use of either one or two Anabat Swift detec-
tors recorded the maximum richness of 11 species within the first 
temporal replicate of the first sub-site (Figure  6a): nothing was 
gained by recording at the second sub-site. The Anabat Expresses 
took comparatively longer; using two detectors reached the same 
maximum richness on night nine, towards the end of the second 
temporal replicate at the first sub-site. Recording with one Anabat 
Express took longer again, with the maximum richness being 
reached by night 11, on average, requiring recording at both sub-
sites (Figure 6b). Only using all three AudioMoths was sufficient 
to reach the same maximum richness as the Anabat devices, with 
all 11 species having been recorded by night eight. When using 
one or two AudioMoth devices, peak species richness was not 
reached until the second temporal replicate at the second sub-
site. Moreover, the mean maximum species richness recorded was 
lower: 10.66 ± 0.33 SEM by night 16 (2 units) and 8.66 ± 1.22 SEM 
(one unit) (Figure 6c).

4  |  DISCUSSION

The commercial Anabat detectors (Swift and Express) generally out-
performed the open-source AudioMoths (LFAM and HFAM), both 
in terms of the number of species detected (species richness) and 
overall bat activity regardless of taxa; although the performance of 
the zero-crossing commercial detector (Anabat Express) was no dif-
ferent to the LFAM in 53% of the bat / habitat combinations tested. 
This number increased further, to 82%, when analysis was restricted 
to the time periods in which the AudioMoths were recording. 
Analysing both the full dataset and restricted subsets was important 

to understand the differences in the detectors in both field con-
ditions, as they are likely to be used by practitioners (full data-
set) and scientifically under the same conditions (time restricted). 
Interestingly, the use of AudioMoths did result in the same number 
of species being detected in woodland and wood pasture habitats 
as using commercial detectors, but this required the use of multiple 
detectors and longer sampling periods. In the riparian habitat, the 
overall species richness recorded was lower using AudioMoths, but 
the magnitude of the performance difference was reduced when 
multiple detectors and longer sampling periods were used.

4.1  |  Comparative detector performance in relation 
to habitat

In the analysis of the full dataset, where there were significant dif-
ferences between detectors (Tables  1 and 2), the Anabat detectors 
always outperformed the AudioMoths, recording greater species 
richness and/or higher activity regardless of habitat type. This find-
ing highlights the major disadvantage in configuring the AudioMoths 
to record on a sleep: wake cycle, as bat activity is inevitably missed 
when the units are asleep. Across all habitats, this pattern was espe-
cially evident for Myotis species and brown long-eared bats, which 
can be classed as short-range echolocators (SRE) (Frey-Ehrenbold 
et al., 2013; Froidevaux et al., 2014), as detector differences for these 
species were particularly pronounced (Table 2; Figures S2–S5). In con-
trast, for Pipistrellus species, the zero-crossing commercial Anabat 
Express and the LFAM were more equally matched in performance, 
with no significant differences in riparian, woodland or wood pasture 
habitats (Table  2; Figures  S2–S5); in the arable habitat, the Anabat 
Express significantly outperformed LFAM (Table 2; Figures S2–S5). In 
the analysis of the temporally restricted subsets, fewer significant dif-
ferences between the detectors were seen, particularly when compar-
ing the LFAM with the Anabat detectors (Tables 3 and 4), suggesting 
that at least part of the difference in detection rates was driven by 
the amount of time the detector could be active rather than inherent 
technological differences. On some occasions, the LFAM recorded 
significantly more passes than the zero-crossing Anabat Express in 
the temporally restricted subset (Table 4). This occurred primarily in 
riparian habitat (which was the highest quality habitat for bats and had 
most recordings), but also for Nyctalus/Eptesicus species in woodland 
and wood pasture habitats. Neither of the AudioMoths significantly 
outperformed the full spectrum Anabat Swift in the subset analysis 
for any habitat (Table 4). This perhaps emphasises the superior ability 
of full spectrum detectors (even if open-source) to detect bats relative 
to zero-crossing detectors (even if commercial), alluded to in the analy-
sis of the full dataset. The general tendency for full spectrum units to 
outperform zero-crossing units (where data are essentially condensed 
to a series of time versus frequency dots; Agranat, 2013) agrees with 
Adams et al. (2012) who tested commercial units in America, report-
ing that the zero-crossing device typically recorded fewer bats than 
the full spectrum device. When comparing full spectrum devices in our 
study (Swift vs. LFAM), the higher quality microphone in the Swift is 
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14 of 20  |     PERKS et al.

likely to be the principal driver behind its performance advantage; in-
deed, microphones have been previously shown to be more important 
than whether a detector records in full spectrum or zero-crossing for-
mat (Kaiser & O'Keefe, 2015). Indeed, our findings are also consistent 

with those of a recent commercial versus open-source detector com-
parison conducted by Starbuck et al.  (2024) in the USA for a North 
American bat guild, suggesting that this pattern might be generalisable 
geographically, at least in temperate northern hemisphere ecosystems. 

F I G U R E  5 Species accumulation curves within wood pasture habitat for: (a) full spectrum commercial (Anabat Swift), (b) zero-crossing 
commercial (Anabat Express) and (c) open-source (AudioMoth using 250 kHz sampling rate).
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    |  15 of 20PERKS et al.

Where our study adds new information is in the wider range of detec-
tor types tested and indicating that the patterns hold across multiple 
habitat types.

Interestingly, the HFAM was found to underperform in compari-
son to both commercial Anabat detectors and, in many cases, to the 

LFAM. Configuring AudioMoths to use the highest possible (384 kHz) 
sample rate to record bats is recommended by Hill et al.  (2019) and 
has frequently been adopted in previous work using AudioMoth 
to study bats (e.g. Carvalho et al., 2023; Katunzi et al., 2021; López-
Bosch et al., 2022) but is not supported here. The likely explanation 

F I G U R E  6 Species accumulation curves within arable habitat for: (a) full spectrum commercial (Anabat Swift), (b) zero-crossing 
commercial (Anabat Express) and (c) open-source (AudioMoth using 250 kHz sampling rate).
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is that whilst configuring AudioMoths to use the highest possible 
sampling rate can result in high-resolution recordings, particularly 
for high frequency calls, it additionally generates greater amounts of 
self-noise from the device's circuitry or components, which may re-
duce overall recording quality. Increased self-noise can result in calls 
being overlooked or less confidently identified by a classifier (Brinkløv 
et al., 2023). The fact that, in our study, the only habitat where there 
were no differences recorded between LFAM and HFAM was arable, 
the habitat with substantially less bat activity, provides additional, if 
tangential, evidence to support this suggestion. A firmware update 
(version 1.8.0) introducing a frequency trigger for the AudioMoth that 
could be configured in the user-friendly configuration application (i.e. 
without needing revision of code by practitioners) was released in May 
2022. It was not adopted here owing to the lack of empirical testing 
(our aim was to compare relative performance of devices in record-
ing bats, not triggers). However, future research should empirically 
test whether utilising this trigger for AudioMoth yields more compa-
rable results when compared to commercial equipment. If the trig-
ger is effective, the performance difference between (full spectrum) 
AudioMoths and zero-crossing commercial units is likely to become 
more pronounced.

To summarise these findings in relation to our initial hypotheses: 
the first hypothesis, that detector performance would be full spec-
trum commercial > zero-crossing commercial > open-source, was 
partly supported; but open-source units were no different to, and 
indeed sometimes outperformed, zero-crossing commercial units. 
The second hypothesis, that open-source units sampling at higher 
frequencies would record more bat passes than open-source units 
sampling at lower frequencies, was not supported (indeed, the data 
suggested completely the opposite). The third hypothesis, that rel-
ative detector performance would remain spatially consistent, was 
oversimplistic as, while there were some general patterns that held 
across all or most habitats, there were also some habitat-specific 
patterns.

4.2  |  Species accumulation

The Anabat detectors recorded all species known to be at each 
site (and thus for all four habitats studied). In consultancy practi-
tioner terms, therefore, the full species inventory was recorded. 
When two commercial detectors were used, the maximum ac-
cumulation was always reached by the end of the second repli-
cate at the first sub-site (10 nights). This could also typically be 
achieved by using a single detector; although, in the woodland 
habitat, the use of a single detector necessitated surveying of the 
second sub-site for both the Swift and the Express units. This is 
likely because, in cluttered environments such as woodland, calls 
are often obscured and higher frequency calls are more easily at-
tenuated (O'Keefe et al., 2014). This finding highlights the need 
for sufficient spatial coverage in such habitats, even when using 
commercial detectors.

Although the AudioMoths generally accumulated species more 
slowly, using multiple detectors had a positive impact. Using three 
AudioMoths enabled the full species inventory to be recorded within 
one sub-site, at the wood pasture and arable habitats, and with mon-
itoring of the additional sub-site at the woodland habitat. The lower 
purchase costs of the AudioMoths make using multiple detectors 
less of a limitation (Browning et al., 2017); although a slightly longer 
monitoring period was needed in some cases, overall performance, 
in terms of recording the presence of species known to be on site, 
was identical to commercial units for three of the four habitats. The 
exception was the riparian site, which had the highest levels of over-
all activity. This was unsurprising, as riparian corridors provide plen-
tiful foraging opportunities for multiple species (Scott et al., 2010; 
Smith & Racey, 2008). Here, the AudioMoths were not able to record 
the same species inventory as the commercial detectors, and even 
the use of 3 units required a second temporal replicate before the 
(lower) asymptote was reached. More heterogeneous, species-rich 
habitats with high levels of activity may thus present a challenge 
for the lower quality MEMS microphone on AudioMoth units. These 
microphones are hypothesised to have a lower signal-to-noise ratio 
(also known as noise floor); therefore, environments with high lev-
els of background noise and vocalisations from other species may 
reduce the ability for specific bat calls to be confidently identified 
(Gibb et al., 2018; Lapp, 2021). Interestingly, in the woodland habi-
tat, the overall detected level of activity was lower compared to the 
(theoretically lower quality) wood pasture site. This was shown to 
impact the effort required to record the maximum species richness, 
both for AudioMoths and commercial detectors. Bats produce qui-
eter echolocation calls in cluttered environments (Russ, 2012), which 
can result in fewer detections and give rise to recordings where calls 
are more challenging to identify. As such, acoustic methods alone 
are not always sufficient to produce complete species inventories 
(Lintott et al., 2014).

In summary, our fourth hypothesis: that species accumulation 
curves will be detector- and habitat-specific; but by increasing sam-
pling effort for open-source detectors (number of units, duration of 
survey period), the inherent limitations of open-source units can be 
overcome is largely supported. However, fewer commercial detec-
tors might still produce more comprehensive data than more open-
source detectors at busy sites.

4.3  |  Implications and recommendations

The findings presented here show that the full spectrum commercial 
detectors (Anabat Swift) performed most optimally in all four habi-
tats, recording the highest mean species richness and mean num-
bers of bat passes each night in direct comparisons using the central 
detector clusters. Moreover, they were seen to accumulate the full 
species inventory at each site more quickly, and often with the use 
of fewer units. However, consistent with the findings of Starbuck 
et  al.  (2024), AudioMoths provided data of sufficient quality and 
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quantity to be a viable alternative to commercial units (especially 
zero-crossing commercial units such as the Anabat Express) where 
the purchase of commercial equipment is financially prohibitive. 
Especially with adequate spatial and temporal replicates, using mul-
tiple AudioMoths allowed the full species inventory to be recorded 
as the Anabat Swift in all habitats except riparian. For complex habi-
tats, or those where species richness is anticipated to be high, com-
mercial PAM equipment should still be strongly considered. There 
are many different contexts under which PAM for bats is under-
taken—geographically, environmentally, ecologically and in terms of 
the aim of the monitoring and the resources available. However, the 
following guiding principles might be helpful:

1.	 Where resources are not limiting, use of commercial full spec-
trum detectors is recommended, especially in high-quality bat 
habitat (e.g. riparian habitats) and cluttered sites (e.g. woodland 
habitats). Although outside of the scope of our study, the same 
is likely to apply to sites with substantive ambient noise (e.g. 
near roads).

2.	 Where bat data need to be collected at hard-to-access or remote 
sites, where visits to replace memory cards and/or batteries be-
come substantive logical considerations, zero-crossing (and, ergo 
commercial) detectors should be considered. This is because the 
surveyor time associated with frequent maintenance visits to 
download data or replace memory cards and batteries contrib-
utes to survey costs in ways that are not always considered when 
simply comparing per unit price (Gibb et al., 2018). The cost asso-
ciated with storing data is also reduced for data in zero-crossing 
format.

3.	 Where detector costs are a limiting factor, the use of open-source 
detectors is a viable alternative to full spectrum commercial units, 
especially when multiple units can be used and/or survey dura-
tions increased. More specifically, our findings show that using 
three open-source units provides comparative data on what spe-
cies are detected relative to one full spectrum commercial unit in 
most habitats; although in habitats with very high species rich-
ness, open-source units might not quite reach the full species 
inventory.

4.	 Where a single open-source unit is to be used, it should be appre-
ciated that the data will not be equivalent in quantity or quality to 
data from a single full spectrum commercial unit or multiple open-
source units. However, it is likely to be approximately equal in per-
formance to a single commercial zero-crossing device (our data 
show that, for some species/habitat combinations, performance 
is no different; where there are differences these are bidirec-
tional i.e. situations where open-source units outperform zero-
crossing commercial devices are balanced by situations where 
zero-crossing commercial devices outperform open-source units).

5.	 Our data strongly suggest that configuring open-source 
AudioMoths with a lower sampling rate better preserves re-
cording quality, potentially by reducing self-noise generated 

by device circuitry or components. This is contrary to the rec-
ommendation of Hill et  al.  (2019), which has frequently been 
adopted (e.g. Carvalho et al., 2023; Katunzi et al., 2021; López-
Bosch et al., 2022). Fully understanding the noise generated by 
different memory cards and how this is impacted by recording at 
different sampling rates will be of vital importance. In the mean-
time, we recommend using 250 kHz rather than 384 kHz and 
using the fastest memory card possible (class 3) as per the man-
ufacturer guidelines (Open Acoustic Devices, 2024). Empirical 
testing of the updated AudioMoth firmware with configurable 
frequency triggers is an important next step to enhance under-
standing of how these lower cost units compare to the commer-
cial alternatives.

6.	 As multiple classifiers and pipelines are now available to process 
acoustic data, we recommend that future work should focus upon 
gaining an understanding of the reliability of these algorithms 
and should encompass recordings from different detectors, in-
cluding open-source units, used in a range of field conditions. 
The choice of detectors available continues to expand, and thus 
the potential for variation in component quality, detector cases 
at ultimately recording quality. The development of open-source 
devices to synthesise ultrasonic bat calls creates the potential for 
controlled comparisons which minimise environmental variabil-
ity. Such approaches may form a valuable next step in ensuring 
that PAM ultimately produces accurate and reliable data in real-
world contexts (Browning et al., 2017; Gibb et al., 2018; Sugai 
et al., 2019).

Acoustic bat surveys are a vital component in the monitoring 
and assessment of bat populations and communities, for scientific 
research (Jones et al., 2013), informing conservation action (Barlow 
et al., 2015) and to ensure legal compliance under protected species 
legislation (Collins, 2023). With the expanding availability of acoustic 
recorders for PAM for bats and other taxa, including birds (Pérez-
Granados & Traba, 2021), land mammals (Enari et al., 2019), amphibi-
ans (Desjonquères et al., 2020) and insects (Newson et al., 2017), we 
hope that the findings presented here allow the relative strengths 
and limitations of commercial and open-source recorders to be bet-
ter understood.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Differences in species richness between detectors. 
Significant post hoc pairwise Wilcoxon results displayed with codes 
<0.05(*), <0.01(**), <0.001(***). Plots with reduced saturation 
indicate no significant overall difference.
Figure S2a. Differences in bat passes between detectors. Significant 
post hoc pairwise Wilcoxon results displayed with codes <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
Figure S2b. Continuation of Figure S2. Significance codes: <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
Figure S3a. Differences in bat passes between detectors. Significant 
post hoc pairwise Wilcoxon results displayed with codes <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
Figure S3b. Continuation of Figure S3. Significance codes: <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
Figure S4a. Differences in bat passes between detectors. Significant 
post hoc pairwise Wilcoxon results displayed with codes <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
Figure S4b. Continuation of Figure S4. Significance codes: <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
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Figure S5a. Differences in bat passes between detectors. Significant 
post hoc pairwise Wilcoxon results displayed with codes <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
Figure S5b. Continuation of Figure S5. Significance codes: <0.05(*), 
<0.01(**), <0.001(***). Plots with reduced saturation indicate no 
significant overall difference.
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