
This is a peer-reviewed, final published version of the following document:

Rukh, Mah ORCID logoORCID: https://orcid.org/0000-0001-
7660-1150, Hassan, Azza and Arsalaan, Ameer Shakayb
(2025) IoTShield: Defending IoT Systems Against Prevalent
Attacks Using Programmable Networks. IEEE Access, 13. pp.
136446-136457. doi:10.1109/ACCESS.2025.3594580

Official URL: https://doi.org/10.1109/ACCESS.2025.3594580
DOI: http://dx.doi.org/10.1109/ACCESS.2025.3594580
EPrint URI: https://eprints.glos.ac.uk/id/eprint/15195

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Received 30 June 2025, accepted 27 July 2025, date of publication 31 July 2025, date of current version 7 August 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3594580

IoTShield: Defending IoT Systems Against
Prevalent Attacks Using Programmable Networks
MAH-RUKH FIDA 1,*, AZZA H. AHMED 2,*, AND
AMEER SHAKAYB ARSALAAN 3, (Member, IEEE)
1School of Business, Computing and Social Sciences, University of Gloucestershire, GL50 2RH Cheltenham, U.K.
2Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway
3Department of Computer Science, University of Swabi, Swabi, KP 23340, Pakistan

Corresponding author: Azza H. Ahmed (azza@simula.no)

This work is supported by QR funding provided by the University of Gloucestershire, UK.

Mah-Rukh Fida and Azza H. Ahmed contributed equally to this work.

ABSTRACT The growing proliferation of Internet of Things (IoT) devices in smart homes, smart agriculture,
and smart energy grids has greatly improved their functionality, efficiency, and responsiveness — but it
has also widened the attack surface of these networks. The inherent security vulnerabilities of IoT devices,
have rendered them susceptible to a variety of flow-based attacks such as Distributed Denial of Service
(DDoS), scanning, spoofing, data exfiltration and web-based attacks, thereby diminishing their potential
benefits. This paper presents IoTShield, a Software Defined Network (SDN) based dual-stage defensive
framework, designed to mitigate different flow-based attacks targeting IoT systems. Leveraging recent
advancements in programmable networks, our defensive framework enables each programmable switch
within the connectivity layer of the network to be responsible of identifying a single attack category
among prevalent attacks. Furthermore, to effectively mitigate the spread of these attacks, detected attacks
are classified at the network controller, facilitating timely updates to the data plane defensive rules. As a
proof of concept, using CICIoT2023 dataset, we first illustrate that deploying separate detectors for DDoS
and Web-based attack categories on programmable data planes reduces false alarms by 58% and 97%,
respectively. Furthermore, a single DDoS attacks detector based on lightweight Decision Tree (DT) model
in the data plane, achieves 80-99% of accuracy in detecting different types of attack flows, with fine-grained
classification offloaded to the control planewhere a Convolutional Neural Network (CNN) classifier achieves
99% accuracy. Besides, IoTShield significantly reduces the latency and load on controller to perform the
attack detection; with only 0.14 milliseconds of additional median queuing delay.

INDEX TERMS Software defined network, programmable networks, DDoS attacks, IoT, in-network
machine learning.

I. INTRODUCTION
The Internet of Things (IoT) has emerged as a significant
network that encompasses a vast array of devices intercon-
nected to streamline various societal activities such as home,
healthcare, transportation, education, aviation, and industries.
These devices range from minuscule sensors to sizable
gadgets like actuators, mobile phones, televisions, light bulbs,
thermostats, medical equipment, smartwatches, software, and
more. The global count of IoT devices is projected to nearly
double, surging from 15.1 billion in 2020 to over 29 billion

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

by 2030, offering convenience, efficiency, and connectivity
across various sectors [1]. However, despite the potential
benefits, challenges such as interoperability issues among
diverse devices and protocols, along with limited security
capabilities, pose significant hurdles to safeguarding IoT
networks. These challenges create opportunities for attackers
to exploit vulnerabilities within the system.

The growing diversity of attacks complicates the privacy
and security of IoT devices and their networks. Attacks
such as DDoS [2], Web-based attacks [3], Bruteforce
and Scanning attacks [4], Spoofing, Replay, and Man-
In-The-Middle attacks are increasingly targeting IoT
networks. These attacks exhibit varying patterns, making

136446

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

a one-size-fits-all solution ineffective. To address the
challenges posed by the increasing number of heterogeneous
IoT devices and the large volume of generated traffic, network
vendors are transitioning to Software Defined Networking
(SDN) [5], [6]. SDN facilitates the virtualization of networks
and services, enabling swift and automated reconfiguration
of network devices, traffic rerouting, implementation of new
access rules, and more efficient management of overloaded
networks. This paper, therefore, introduces an SDN based
framework, under the control of a single service provider,
to address diverse attacks within an IoT network.

We present a dual-stage distributed defensive system for
attack detection and classification, which in turn paves the
way for its mitigation. The data plane of the SDN system
is composed of programmable switches, some of which
are designated for attack detection. Each switch among the
designated switches is responsible for triggering flows that
fall under same attack category. Tailoring a switch pipeline,
to track similar attacks patterns not only reduces monitoring
overhead but also enhances detection accuracy of an attack
category. To ensure a lightweight defensive mechanism, each
switch sends samples from the anticipated malicious flows
to the controller in the SDN, to classify the type of attack
within the attack category and update rules on the switch(s),
so that to block the propagation of similar flows in the
network. Our contributions in this study are therefore, as
follows:

• We present IoTShield; a dual-stage framework to
mitigate the propagation of prevalent attack flows within
IoT network. Administered by same SDN, a set of data
plane switches are designated as attack detectors, with
each responsible for triggering malicious flows with
similar pattern.

• As a proof of concept, we deploy a programmable soft-
ware switch within a Mininet environment. Initially, this
setup is used to demonstrate that a single programmable
switch should ideally handle only one attack category.
To validate this, we compare the performance of two
separate tree-based detector models—each dedicated to
detecting either DDoS or web-based attacks—against
a single, combined tree-based detector. The results
show that using separate detectors for similar attack
patterns yields significantly better accuracy and reduces
processing load. Building on this, we proceed to the
next phase, where a single detector deployed on the
programmable switch is tasked with identifying four
different types of DDoS attacks.

• For the detection of DDoS attack category, we leverage
a lightweight Decision Tree with depth of 10, accurately
flagging 80-99% of DDoS flows. On the other hand, its
false flag reporting is less than 3%.

• Selective packets of marked malicious flows, with
payloads being truncated, are sent to the SDN controller
that uses Convolution Neural Network (CNN) model
to classify the type of the attack. For DDoS, the
classification achieves 99% accuracy. This is done to

update the defensive rules in the network switches so that
to halt the propagation of the attack flows at the earliest
opportunity.

• Delving deeper into the overhead and efficiency brought
by IoTShield, we find that with 0.14 ms increase in
median queuing delay, 4% increase on CPU load and up
to 14% increase in memory utilization of the software
switches, the dual-stage defensive framework reduces
the link load by up to 99.8%.

The paper comprises seven additional sections. Following
the description of the study’s motivation in section II,
section III presents the IoTShield framework for attack
detection and classification. Section IV provides a compre-
hensive overview of the data plane detector module, control
plane attack classifier module, and the experimental setup.
In section V, a thorough analysis of the attack detection
and classification process within the dual-stage framework
is presented, alongside an assessment of the performance
enhancements and limitiations of IoTShield in section VI.
Subsequently, a review of related literature is provided
in section VII before concluding the paper with insights into
future research directions in section VIII.

II. MOTIVATION
The rapid expansion of the IoT has transformed industries
by interconnecting billions of devices. However, this pro-
liferation has brought significant security challenges. A.
Petrosyan [7] reports a sharp increase in IoT cyberattacks,
rising from 32 million in 2018 to 112 million in 2022.
A Zscaler report from November 2024 highlights a 400%
surge in IoT-targeted attacks in recent years. Similarly, the
2024 IoT security report by NetGear/Bitdefense notes that
smart home devices now endure up to 10 attacks per day [8].
This increase is not only in volume but also in the diversity
of attack vectors [9], [10], placing greater demands on the
scalability and robustness of security infrastructure.

Traditional network security mechanisms—such as fire-
walls and signature-based Intrusion Detection System
(IDS)—rely on static rules and are often ineffective against
the dynamic and flow-based nature of IoT threats. These
legacy solutions typically lack stateful inspection capabilities
and fail to detect emerging or polymorphic threats. Moreover,
they struggle with scalability and are unable to adapt to the
heterogeneous and ever-changing IoT landscape.

Compounding the problem, many IoT devices are
resource-constrained and lack native security features. This
leaves the broader network vulnerable to attacks such as
DDoS, spoofing, and data interception. Additionally, IoT
deployments often span across multiple domains (e.g., smart
homes, healthcare, industrial systems), where fragmented
security enforcement and lack of centralized visibility hinder
efficient threat detection and real-time response.

SDN offers a promising solution to these challenges
by decoupling the control and data planes, allowing
for centralized and programmable network management.

VOLUME 13, 2025 136447

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

SDN enhances network visibility, enables dynamic policy
enforcement, and supports the integration of intelligent
threat detection systems using Machine Learning (ML)
for anomaly detection and automated mitigation. SDN has
also been advocated as a scalable framework to manage
communication among IoT gateways, cloud servers, and a
multitude of sensors and devices [11]. In an SDN-enabled IoT
environment, the network architecture typically comprises
four layers [12] (see Figure 1):

• Device Layer : This foundational layer includes various
endpoint devices such as RFID tags, smartphones,
smart vehicles, thermostats, cameras, and other sensing
devices along with actuators.

• Connectivity Layer: Devices connect to the network
through wireless access points, base stations, and
gateways, that inter-turn connect directly or via switches
and routers forming a link to the broadband backbone.
In SDN-IoT architecture, these nodes serve primarily as
data transmission points, deferring control decisions to
the centralized SDN controller.

• Control Layer : Serving as the intermediary between the
application and connectivity layer, this layer is where
the SDN controller resides. It facilitates programmable
management through south-bound Application Pro-
gramming Interfaces (APIs), allowing developers to
enforce policies and allocate hardware resources across
different services.

• Application Layer : This top layer delivers essential
services to the IoT network, including mobility manage-
ment, security, networkmonitoring, and IoT application-
specific functionalities. Through northbound APIs,
it interfaces with the control layer, facilitating real-time
optimization and management of IoT applications.

FIGURE 1. Layers of an SDN-based IoT network.

As a southbound API, OpenFlow [13] is a widely deployed
protocol. It is responsible for the communication between
forwarding devices and the software-based controller in
the SDN’s architecture. With respect to security services,

OpenFlow-based switches collect samples of data packets
and transmit it to the SDN controller for traffic analysis. This
not only puts additional overhead on the controller, impacting
its performance as well as scalability, it is difficult to achieve
fine identification and comprehensive defense with sampling
instead of packet-by-packet inspection.

With programmable switch ASICs and SmartNIC, the
forwarding data plane has more freedom to take adaptive
decisions and act accordingly. These programmable devices
employ glsp4, a hardware-independent programmable
language with line-speed processing capabilities of up to
hundreds of gigabytes. The programmable data plane has
evidenced a break-through in handling not only quality
of services, traffic engineering, load balancing [14], [15],
[16] but also network security issues [17]. With the
support of customized packet processing, Programming
Protocol-independent Packet Processor (P4) can provide
defenses against different flow-based attacks such as Address
Resolution Protocol (ARP) attacks, DDoS attacks, Web-
based attacks, Eavesdropping [18], Replay attacks and
Spoofing attacks.

There are three key challenges when employing in-network
attack mitigation mechanisms. First, programmable data
planes have limited on-chip memory, such as TCAM and
SRAM, which restricts their capacity to support complex
processing tasks. Second, due to limitations of programmable
devices, the programming language P4 does not support
floating-point operations, which prevents it from performing
calculations involving division. exponential, or logarithmic
functions. Third, the flow characteristics of different types
of network attacks vary significantly, making it impractical
to implement a unified attack mitigation model on a single
switch—especially when stateful, flow-level features are
required. Prior research shows that even within a single
attack category like DDoS, programmable data plane-based
detection and mitigation can only address specific subtypes
at a time. For example, C.M. Iurian [19] developed a P4-
based detector for SYN flooding attacks alone, while S.Z.
Yang [20] proposed separate detectors for SYN and UDP
flooding attacks, respectively. In summary:

• A single programmable switch cannot support holistic
detection of diverse flow-based attacks due to resource
constraints. For instance, the memory capacity of a
typical switch is only around 50MB [21], and deploying
multiple match-action pipelines significantly degrades
the throughput of benign traffic.

• Existing literature does not provide a systematic
approach for attack-type classification, which is essen-
tial for effective mitigation. For instance, to counter
a SYN flood, detection logic must identify when the
number of SYN packets in a TCP flow exceeds a certain
threshold T compared to ACK packets, as proposed by
Poseidon [22], and then enforce drop rules accordingly.
Similarly, TCP flood attacks can be mitigated via rate-
limiting rules. Such compact, targeted rule sets bypass

136448 VOLUME 13, 2025

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

lengthy detection pipelines, reducing propagation of
malicious traffic within the network.

• Since it is rare for multiple types of attacks to occur
simultaneously, mitigation logic should be dynamically
updated based on real-time classification. This enables
efficient defense with minimal processing overhead at
the switch level.

To address these challenges, this paper presents a dis-
tributed two-stage framework for detecting and attributing
various attack types. While IoTShield is particularly
well-suited for IoT networks—due to their limited com-
putational capacity, reliance on default credentials, and
infrequent updates that heighten their vulnerability—it is
equally applicable to data centers and other networks with
centralized control and visibility through SDN controllers.
In IoT settings, attacks can be effectively mitigated closer to
the device layer by enabling early detection and suppression
at edge switches, thereby enhancing response time and
reducing impact.

Although Figure 1 illustrates a single SDN domain, the
architecture supports collaborative intelligence across multi-
ple SDNdomains. Inferencemodels can be trained in a decen-
tralized manner—similar to Federated Learning—allowing
the exchange of threat intelligence and model updates via
east-west interfaces without centralizing sensitive data.

III. IoTSHIELD SYSTEM ARCHITECTURE
To address the detection and attribution of various attacks
on an IoT network, we start by outlining the essential
requirements of the defensive architecture in the subsequent
subsection. Following this, we delve into the components of
the system and illustrate their functionality.

FIGURE 2. IoTShield Architecture: with programmable data-plane
responsible for Attack Detection and control-plane for Attributing the
type of the malicious flows.

A. KEY REQUIREMENTS
A high performance defensive architecture has several
requirements:

1) High accuracy: The architecture must demonstrate high
performance in terms of accuracy. The system should
achieve high detection rates for IoT attacks while
minimizing false alarms.

2) Line-rate processing: Programmable switches are typ-
ically compact devices with significant constraints
in both memory and processing power [23]. Since
their primary role is packet forwarding and routing,
security functions are considered auxiliary and must
not interfere with line-rate performance. To maintain
this high-speed processing, any offloaded ML model
must be lightweight, with inference times kept minimal
to ensure timely detection of malicious flows without
degrading throughput.

3) Restricted computational capabilities: In addition to
constraints such as limited memory and a small
number of processing stages, programmable network
devices also lack floating-point support. This limitation
means that P4 does not support advanced mathematical
operations such as trigonometric functions, exponenti-
ation, or complex control structures beyondif-else
statements. It is primarily limited to basic operations
like integer addition/subtraction and bit shifts, and does
not facilitate floating-point arithmetic. Additionally,
it does not support loops, recursions and dynamic
memory allocation. These constraints pose challenges
for deploying complex models like deep learning
neural networks, as any offloaded model must operate
within the confines of these limitations.

B. TWO-LEVEL INFERENCE
To fulfill the outlined requirements, we introduce
IoTShield, a defensive architecture illustrated in Figure 2.
In essence, IoTShield executes two primary functions:
detecting IoT attacks through a distributed data plane and then
attributing their nature via the control plane. The subsequent
sections delve into the description of each component.

1) DETECTION AT DATA PLANE
Our objective here is to optimize the performance of ML
inference while ensuring the model remains compatible with
the ingress pipeline of the P4 switch. Although the realm
of ML offers numerous supervised learning techniques, not
all are suitable for our specific task. In addition to standard
ML model requirements like accuracy, our focus lies on
developing a model that is both fast and lightweight in terms
of memory usage. To achieve this, within our framework,
we’ve opted for a tree-based model. This choice is driven
by our aim to strike a balance between speed and memory
efficiency. While tree-based models excel at handling non-
linear problems, they might not be as powerful as more
complex methods, such as neural networks with multiple
hidden layers. Despite this, a tree-based model can achieve
acceptable accuracy levels and often work faster than neural
networks.

VOLUME 13, 2025 136449

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

It is important to highlight that the detection accuracy of
tree-based models typically improves with an increase in
the number and depth of trees, albeit at the cost of longer
computational time. Consequently, our approach focuses on
minimizing both the number of trees and their depth while
still achieving a satisfactory level of accuracy.

2) ATTRIBUTION AT CONTROL PLANE
The SDN controller plays several critical roles within
the IoTShield architecture. Firstly, it is responsible for
training and deploying the attack detection model onto the
data plane. Training an ML model is resource-intensive in
terms of both CPU and memory usage. The training process
involves the controller polling the edge switches for recent
flow statistics at an adaptive rate, as detailed in [24]. Using
Deep Packet Inspection (DPI), if a flow pattern changes—
regardless of whether it is benign or represents a new type
of malicious traffic—the detection module(s) are updated
accordingly.

Additionally, we capitalize on the higher computational
capabilities of the SDN controller by deploying an efficient
and advanced attacks classifier to attribute the nature of
the malicious flow/type of attacks once detected by the
data plane. We opt for a CNN model for this task, given
its successful application across various domains and its
high performance in extracting features from network traffic
data [25].
Lastly, with global visibility of the control plane,

we assume it is aware of flow paths and the locations
of programmable switches within the network domain.
It distributes and assigns different detectors to various
switches so that traffic is analyzed for prevalent attacks
throughout its flow duration, thereby reducing the likelihood
of any traffic flow going unnoticed.

Following the assessment of the attack type inflicted by the
flow, intrusion mitigation rules are updated on the data plane
accordingly.

C. DISTRIBUTED DETECTION AT DATA PLANE
With inherent challenges of the IoT devices, a variety of
attacks are launched that fall in broader categories of e.g.,
DDoS attacks, Reconnaissance attacks, Web-based attacks
and Spoofing attacks, to name a few. To ensure security and
integrity of the IoT network, a holistic defense mechanism is
desirable. With the assumption that multiple programmable
switches fall within the end-to-end path of IoT data traffic,
deploying a complex ML model on a single switch i.e.,
ingress switch can burden both the limited processing and
memory resources of a switch. Additionally, it increases
false alarms and misses attacks due to differences among the
patterns of the flows belonging to different attack categories.

To illustrate this, we take four different attack types within
DDoS category and three different types of attacks falling
with Web-based attack category, along with a benign dataset
drawn from CICIoT2023 [26], the size and details of which

FIGURE 3. False alarm and false negatives, with a DT detector trained for
both DDoS and Web-based attacks, compared to separate detectors for
each attack category.

are given in Table 1. Figure 3 (a), depicts that when an attack
detector based-on a DT model is employed in a P4 software
switch, to differentiate benign flows from the attack flows
comprising DDoS andWeb-based attacks, 37% of the benign
packets are wrongly triggered as attack. On the other hand,
training separate detectors for the two attack categories, the
false alarms drop by 58% and 97%, respectively. It is further
observed, in Figure 3 (b), that compared to a separate DDoS
detector, the accuracy of combined detector drops. Although
the poor accuracy of the combined detector partly seems to
be due to Web-based attack patterns, that seem to be similar
in some way to the benign pattern as is indicated by higher
number of misses by the separateWeb-based attacks detector.
It is worth noting that rather than using separate switches
for detecting different categories of attack, these can be
better used for sub-categories that follow similar flow pattern.
Such clustering however, needs in-depth investigation of the
prevalent attack types on a network.

In essence, Figure 2illustrates a two-level inference and
distributed detection framework. The first level operates at
the data plane, where switches within the IoT network are
assigned to detect specific categories of attacks. Each switch
is equipped with a dedicated inference module tailored to
a particular threat type (e.g., DDoS, spoofing), enabling
decentralized, near-source detection as traffic flows through
the network. When a threat is flagged, the SDN controller
performs second-level inference by attributing the attack
more precisely, updating mitigation rules on the relevant
switch, and conducting proactive DPI-assisted analysis
using features periodically collected from the network.
By combining this proactive analysis with a global view, the
controller strategically places detection modules—deploying
them at edge switches for frequent threats to enable early
containment, and deeper in the network for less common
or more complex attacks—thus ensuring efficient, context-
aware protection across the IoT environment.

IV. IMPLEMENTATION
In this section we develop a prototype of the proposed
architecture. We describe the implementation details of the
essential elements of IoTShield, including the P4 data
plane module, the control plane, the ML models, and the IoT
attacks dataset.

136450 VOLUME 13, 2025

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

TABLE 1. Types of attacks considered in two different attack category.

A. P4 DATA PLANE MODULE
In the data plane, we employ the P4 language to execute the
feature extractor and online detection module on a BMv2
software switch. To implement the detection module we use
the if-else programming construct that fits well for a
look-up of conditions on features specified, at the nodes
of a tree-based model, akin to the methodology utilized in
pForest [27] and SwithcTree [28].

Tree-based Inference using P4. A tree-based model e.g.,
a Random Forest (RF) model may comprise multiple DTs,
each providing a label for a given packet sample. Within an
RF a single DT can be conceptually linked to a match-action
pipeline in P4. At each stage of the pipeline, conditions are
applied to the features, directing the flow through different
branches of the tree. The number of stages in the pipeline
corresponds to the number of extracted features. The final
stage categorizes packet types as either benign or malicious.
In our study, we focus on an RF attack detector with a
minimal number of trees and tree-depth, while still achieving
reasonable accuracy.

B. CONTROL PLANE MODULE
The controller within the SDN framework acts as a training
environment for the ML model deployed in the data plane.
Through Python, we not only train the ML-based detector
models, but also utilize them to translate the RF tree(s) into
P4 match-action pipelines. Furthermore, the computational
capabilities of the controller are harnessed for training
and attributing the malicious flows detected by the data
plane.

We employ a CNN for attribution purposes. Our model
comprises three convolutional layers responsible for feature
extraction from the input data. The output of each con-
volutional layer is passed through a Rectified Linear Unit
(ReLU) activation function. Following each convolutional
layer, a pooling layer, typically employing max pooling,
is applied to reduce the spatial dimensions of the feature maps
while preserving essential information. Ultimately, a softmax
classifier is employed on the output of the last fully connected
layer to determine the probabilities of the input belonging to
each class in the classification task. During themodel training
process, a loss function is defined based on cross-entropy and
run for 50 epochs.

C. IoT ATTACKS DATASET
To develop and assess our system, we employed the
CICIoT2023 [26] dataset. This dataset comprises PCAP files
and their corresponding CSV versions capturing 33 distinct
attacks conducted within an IoT environment consisting of
105 devices. These devices encompass various types such as
smart home devices, cameras, sensors, and microcontrollers.
The attacks are categorized into seven types: DDoS (12 sub-
types), DoS (4 sub-types), Recon (5 sub-types),Web-based (6
sub-types), Brute force (1 sub-types), Spoofing (2 sub-types),
and Mirai (3 sub-types)

As part of our proof of concept, we investigate multiple
subtypes within two primary categories: DDoS and web-
based attacks. The dataset comprises approximately 289,000
records, including 54,200 benign entries. Each attack type’s
CSV file is generated from PCAP files of at least 5MB in
size. The distribution of records across different attack types
is summarized in Table 1.

Within these categories, we evaluate the performance of
both combined and separate detection models, as illustrated
in Figure 3. Furthermore, we implement a P4-based detector
and a controller-based attributor specifically designed for
the DDoS category. Given the prevalence and complexity of
DDoS attacks [31], our focus is directed toward this category,
particularly on the following four attack types.

1) A fragmented ACK flood attack uses a relatively small
number of packets of maximum size (e.g., 1500 bytes)
to fill bandwidth. In most cases, fragmented ACK
packets easily pass through routers, access control lists
(ACLs), firewalls, and intrusion prevention systems
because these devices do not reassemble fragmented
packets at the network level. Such packets typically
contain random data. As the attacker aims to fill
the entire bandwidth of the victim’s external network
channels, this type of flood attack degrades the
performance of all servers in the targeted network.

2) During a RST or FIN flood, the victim server receives
spoofed RST or FIN packets at high speed that are
unrelated to any of the sessions in the server database.
The victim server is forced to allocate a significant
amount of system resources to match incoming packets
with current connections, resulting in degraded server
performance and partial inaccessibility.

3) TCP flood establishes a large number of connections
without transferring data, or slowly transferring data for
the purpose of exhausting the resources of the victim’s
TCP stack.

4) SYN flood is based on the TCP three-way handshake
algorithm. The malicious entity rapidly sends server
connection requests containing a spoofed source IP
address. SYN flood is gradually taking up all memory
of the connection table.

D. FEATURES EXTRACTION & ENGINEERING
As detailed in Section III, our decision to deploy a RF
as a lightweight detector prioritizes minimizing the number

VOLUME 13, 2025 136451

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

of features. Unlike the approach in [26], we refrain from
incorporating features that might cause model failure when
new attack flows, not closely related in time, emerge within
the network. For instance, [26] utilizes flow ID, comprising
<source IP, destination IP, source port, destination port
number, transport layer protocol>, and packet generation
timestamps from the PCAP files. Due to the argument that
similar attack types can occur for any other <source IP,
destination IP> pair at any time, we exclude these features.
Additionally, we avoid including features that are currently
non-computable by P4 version 16, such as those representing
the variance and standard deviation of feature values for the
flows.

For simplicity, we restrict P4 parsing to Ethernet, IPv4, and
TCP/UDP headers. We then follow traditional procedures for
feature selection by initially training an RF model with all
available features and obtaining a feature ranking based on
the Mean Decrease in Impurity (MDI).

Subsequently, we train additional models by sequentially
adding features to determine the smallest subset capable of
achieving performance comparable to or better than that of
the full model. The considered features along with their
importance based on MDI are listed in Table 2.

To train the CNN model for attributing the detected DDoS
attack, we use features shaded in Table 2 alongside TCP
header flags, namely, fin_flag_number, syn_flag_
number, psh_flag_number, ack_flag_number,
urg_flag_number, ece_flag_number, and cwr_
flag_number. These features track the count of specific
type of flag seen till a packet per flow. We also include
srcport and dstport which show improvement in the
model accuracy.

E. EXPERIMENTAL SETUP
To illustrate the proposed concept, we utilize aMininet-based
network setup shown in Figure 4. Although the simulated
topology is deliberately simplified, the evaluation is grounded
in realistic traffic traces from CICIoT2023, allowing us to
assess the trade-off between detection accuracy and system
load under varied traffic conditions. The primary objective
is to demonstrate the feasibility and effectiveness of the
two-level attack attribution framework.

All three switches in Figure 4 operate as P4 BMv2 switches
using the V1Model architecture. A Python script is used
to send PCAP packets from the sending host to Switch 1,
which runs a P4 16 program implementing match-action
rules derived from the previously discussed tree-basedmodel.
The internal workflow of Switch 1 is illustrated in Figure 5.
Upon receiving a packet, Switch 1 parses its headers and
extracts packet-level features such as source and destination
IP addresses, SYN flag status, and more. If the mitigation
rules match at the ingress pipeline, appropriate actions (e.g.,
drop, rate-limit) are applied. Otherwise, the packet proceeds
to the next phase, where flow-level features are extracted and
evaluated by a local inference model.

FIGURE 4. A simplistic topology in Mininet for proof of concept.

FIGURE 5. Working of the switch dedicated for inference of malicious
flows.

FIGURE 6. A code snippet in P4 detector script, sending telemetry
information in an IPOption header of a malicious packet to the controller.

If a packet is classified as benign, it is forwarded to
the receiving host via the port connected to Switch 2.
If identified as malicious, it is mirrored to the SDN controller
through Switch 3 for mitigation, while the switch continues
forwarding the flow until it either completes or is terminated
by updated rules received from the controller.

Switches 2 and 3 function solely as forwarders without
additional match-action rules. To simplify and enhance
robustness, every nth (i.e., 3rd) packet within a flow identified
as malicious triggers transmission to the controller. The
payloads of these packets are dropped, and their headers are
updated before being sent to the controller. For improved
attack flow detection accuracy, an IPOption header is added
to these packets’ headers. This header stores the count
of packets recognized as malicious within a flow, using
attack_packet field as well as spkts and dpkts, as is

136452 VOLUME 13, 2025

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

TABLE 2. Features used to train an attack detection model in IoTShield.

shown in Figure 6. Total number of received packets for the
flow are computed by suming up spkts and dpkts.
The CNN attributor, in the SDN controller, runs when it

receives multiple triggers of malicious packets. The attributor
takes into account only themost recent packet received from a
flow. It computes the ratio of attack_packet and the total
number of packets, received in the flow by the P4 switch up to
that point. The ratio is rounded to the nearest integer and if it
equals 1, the flow is consideredmalicious and a candidate for
attribution. Subsequently, after attribution, the switch rules
are updated to mitigate similar attack flows in the future.

V. EVALUATION
A. DETECTION OF MALICIOUS FLOWS
Increasing the depth and number of trees in a RF model typi-
cally enhances its accuracy. To explore this, we assessed three
RF models, all with a depth of 10. These models consisted
of one, three, and five trees, respectively. The Figure 7 (a)
presents the percentage of detected flows for each model
type. Despite variations across different flows, the maximum
accuracy improvement observed was only up to 2% when
transitioning from a single-tree model to its corresponding
model with five trees. Given this insignificant accuracy
enhancement, we opted to maintain the less complex RF
model with a single tree i.e. a DT.

Furthermore, we examined the influence of depth while
keeping the number of trees constant at one. We tested
RF models with depths of 5, 10, 15, and 20. In Figure 7
(b), it is illustrated that false flags are minimal at a depth
of 10, while the detection of malicious activity improves
with increasing depth. To strike a suitable balance between
distinguishing benign and malicious flows and maintaining
lower complexity, we settled on a tree depth of 10. At this

depth, the accuracy of detecting malicious flows is only 2%
lower than the best available results.

To evaluate the accuracy of the DT model on the P4
switch, we replay PCAP files of 1MB each, for benign
traffic, as well as the four attack types listed in Table 1.
Using a single tree (i.e., a DT) and a depth of 10, we assess
the performance of the detector with the metrics presented
in Table 3. We achieve Detection Rates of 94%, 80%,
99.9%, and 98.8% for TCP Flood, ACK Fragmentation,
RSTFIN, and SYNfloods respectively, in terms of identifying
malicious flows. However, the False Positive Rate remains
around 2%.

FIGURE 7. (a) Percentage of flows detected as malicious with different
number of RF trees (b) The accuracy of RF model with single tree under
different depths.

B. ATTRIBUTION OF FLOWS MARKED AS MALICIOUS
To reduce bandwidth overhead from switch to controller,
every 3rd packet in a flow, detected as an malicious,
is mirrored towards SDN controller via switch 3. To enhance
certainty, of whether the received packet depicts a malicious
flow, only the latest packet from a flow is used in attribution
process. The telemetry information in IPOption header

VOLUME 13, 2025 136453

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

TABLE 3. Performance metrics.

TABLE 4. Results for DDoS attacks classification.

(see Figure 6), of the transmitted packet, is then extracted
to compute the fraction of packets in the flow, that were
triggered as anomalous by the P4 switch, if the ratio rounds
to 1, the flow is assumed to be an malicious flow and it is
attributed, otherwise ignored.

For the attribution, IoTShield efficiently classifies
different DDoS attacks within the controller, achieving an
accuracy of 99% for all attacks. Specifically, the CNN
model excels in identifying TCP Flood and SYN Flood
attacks, maintaining an impressive F1 score of 100%. Its
performance slightly declines to F1 score of 97% and 91%
when detecting RSTFIN Flood and ACK-Fragmentation
attacks, respectively.

C. IMPACT ON NETWORK PERFORMANCE
To measure the time a packet spends on a switch that detects
malicious flows, we utilize the parameter deq_timedelta
from the standard metadata structure1 of the V1Model archi-
tecture. This parameter records the time, in microseconds,
that the packet remains in the queue between the ingress and
egress pipeline. We observe this parameter when running an
attack detector model on a switch and compare it to running a
basic switch that simply forwards packets between different
network segments.

Based on our minimal Mininet simulator, we find that
the detector switch increases the queuing delay by a median
of 0.14 milliseconds (see Figure 8 (a)). According to [32],
end-to-end delay starts to become noticeable for highly
demanding interactive applications when it exceeds 20 ms,
or according to [33], when it surpasses 50 ms. With a median
queuing delay of 0.2ms, in-network attack detection can lead
to a 20 ms end-to-end delay only when there are at least
100 switches along the end-to-end path, and each switch
functions as an attack detector.

If attack detection is not performed at the switch level,
an alternative approach involves utilizing the network con-
troller or a designated entity as an IDS. In this scenario, let us
assume the responsibility falls on the SDN controller. In this
setup, switches will primarily focus on forwarding, while

1https://github.com/P4lang/behavioral-model/blob/main/docs/simple_
switch.md

FIGURE 8. (a) Processing time in switch with and without the attack
detector model and (b) Percentage drop in data transfer, to the controller,
with the switch-based attack detector.

packets will be mirrored to the controller for detection and
attribution.

While this approach reduces the load on switch resources
and queuing delays for packets, it introduces overhead on
the links between switches and the controller. By measuring
link utilization in terms of transferred packets, both with and
without employing a detector at the switch, we observe a
potential of upto 100% decrease in link utilization with the
detector. Figure 8 (b) illustrates the percentage decrease in
link overhead across different types of flows. It is important
to note that in this scenario, we assume the detector mirrors
every nth = 3rd detected malicious packet of a flow to the
controller.

FIGURE 9. Resource utilization on a switch, with and without the attack
detector model.

Finally, we evaluate the resource consumption of a detector
on a P4 switch. To measure this, we employed the System
Activity Report (SAR)2 tool to monitor CPU load and
memory usage. As illustrated in Figure 9, the CPU load
increases from 0.5% to 4% on average when executing an
attack detector on a P4 switch. The memory utilization on the
detector escalates from 12% to 27%. This increase in load
is attributed to the utilization of multiple stateful elements,
particularly registers, within the P4 script.

VI. DISCUSSION AND LIMITATIONS
One might question whether employing a classification
model directly at a P4 switch, rather than utilizing dual-stage

2https://man7.org/linux/man-pages/man1/sar.1.html

136454 VOLUME 13, 2025

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

TABLE 5. Comparison of related work with IoTShield.

attack detection and classification, could be more efficient.
Integrating benign flows into the classification process on
a switch, however, often leads to significant inaccuracies.
In our experimentation, training a classifier on five distinct
classes, encompassing benign flows and the four types
of DDoS attacks, revealed significantly degraded results.
Notably, the classification accuracy plummeted to nearly
0% for two specific attack types: TCP Flood and ACK-
Fragmentation. Meanwhile, the false alarms for benign flows
surged to 33%.

While the dual-stage defensive framework ofIoTShield
exhibits commendable performance in our experiments, the
study is not without its limitations:

• Initially, IoTShield was tested on a software-based
prototype, implementing the RF model in the P4-data
plane using the V1Model architecture. As part of our
future endeavors, we aim to assess IoTShield on
hardware programmable switches.

• Secondly, various attack categories display distinct
patterns, necessitating separate training for their detec-
tion. Additionally, differences may exist in the optimal
predictor features for each category. For instance,
in subsection III-C, although the false flag rate of
the Web-based attack detector was 11%, considerably
lower than the combined DDoS and Web-based attack
detector, it remains relatively high. We attribute this to
the reuse of the feature set in Table 2 as predictors,
without thorough exploration for the Web-based attack
detector. In forthcoming research, we intend to explore
the creation of detectors for different prominent attack
categories, employing suitable predictor sets.

• Thirdly, as shown in subsection III-C, the false negatives
for the web-based attack detector are higher than those
of the combined model. This suggests that certain
features of web-based attacks may closely resemble
those of benign traffic, leading to misclassification.
We hypothesize that even attack types within the same
category can exhibit varying flow patterns. Therefore,
a more in-depth analysis is necessary before deciding
whether to train a single detector or multiple specialized
detectors for different attack types.

• Lastly, while this paper focuses on a tree-based model,
we acknowledge the potential of mapping different
machine learning algorithms to a match-action pipeline,
such as BNN. Furthermore, efforts are required to reduce
the load and packet queuing delay at the switches.

It is important to note that all these limitations and
considerations serve as focal points for our ongoing and
future work.

VII. RELATED WORK
There have been numerous applications of programmable
data planes, including congestion detection [34], in-
network telemetry [35], load balancing [36] and traffic
engineering [37], to name a few. In addition to these, there
is a growing trend in proposals for machine learning methods
to detect malicious activity within the data plane. In a
recent study, B. Coelho and A. S-Filho [38] introduced
BACKORDERS, which employs RF to identify DDoS
attacks in a programmable switch using the CICIDS2017
dataset [39]. Similarly, in [27], the authors presented pForest,
an in-network RF model for attack detection, utilizing both
the CICIDS2017 and UNIBS-20093 datasets. Furthermore,
in [28], J-H Lee and K. Singh proposed SwitchTree, which
also utilizes RF to detect DDoS attacks, this time using the
UNSW-NB15 dataset [40].

Q. Qin et al. [41] proposed the use of BNN and fed-
erated learning for Intrusion Detection (ID), utilizing the
CICIDS2017 and ISCX Botnet 2014 [42] datasets. Similarly,
G. Siracusano et. al [43] suggested employing BNN in the
SmartNIC of mainstream systems in data centers. Instead
of conducting feature extraction at the NIC data plane and
relaying traffic analysis and inference to the systems’ CPU,
the study applies BNN-based inference directly at the NIC.
They assessed their approach for IoT traffic classification,
security anomaly detection, and network tomography against
DT andRF, as well as traditional CPU-based inference. Given
the computational expense of the Neural Network model,
G. Xie et al. [44] introduced Mousikav2. In Mousikav2, the
authors deploy a BDT in the data plane to perform flow-type

3http://netweb.ing.unibs.it/ ntw/tools/traces/

VOLUME 13, 2025 136455

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

classification, application-type classification, and malware
detection independently. To address the weak accuracy of
BDT, they employ a teacher-student knowledge distillation
method, where a more sophisticated ML model (including
RF, GBDT, GRU, LSTM, and MLP) is trained on the corre-
sponding dataset outside the data plane on a high-processing
machine. Despite the aforementioned studies proposing the
detection of malicious flows, mostly focusing on a single
type of DDoS attack, none address the classification and
mitigation of various types of attacks that may affect a
network system.

The work closest to ours is Bungee-ML [45], which
leverages the fast processing speed of the data plane and the
high capacity and intelligence of the control plane to mitigate
DDoS attacks. Bungee-ML continuously monitors traffic
at the data plane to detect traffic anomalies and provides
machine learning models (running in the control plane) with
inputs to conduct in-depth traffic analysis. However, this
analysis is not aimed at classifying the attack type but rather
verifying whether an attack actually occurred on the network.

VIII. CONCLUSION
This paper presents IoTShield, a novel dual-stage frame-
work designed to protect IoT networks against a wide range
of malicious flows at line-rate performance. Built on an
SDN-based architecture, IoTShield leverages machine
learning-based detectors integrated into the programmable
data plane to identify prevalent attacks, while the control
plane oversees network management and security orches-
tration. With global network visibility, the controller intelli-
gently distributes detection responsibilities across switches,
ensuring malicious traffic is intercepted as close to its origin
as possible.
IoTShield utilizes a lightweight Decision Tree

model for real-time flow classification, translating its
logic into match-action rules compatible with P4-enabled
switches. In parallel, a CNN -based classifier in the
control plane performs fine-grained attack attribution,
enabling dynamic updates to switch rules for blocking
identified threats. Experimental results demonstrate that
IoTShield achieves high detection accuracy while
maintaining line-rate processing. Moreover, it significantly
reduces the burden of centralized detection on the controller,
enhancing the scalability and resilience of IoT network
security.

REFERENCES
[1] L. S. Vailshery, ‘‘Number of IoT connected devices worldwide 2019-2021,

with forecasts to 2030,’’ Retrieved September, vol. 8, p. 2021, Sep. 2022.
[2] R. Vishwakarma and A. K. Jain, ‘‘A survey of DDoS attacking techniques

and defence mechanisms in the IoT network,’’ Telecommun. Syst., vol. 73,
no. 1, pp. 3–25, Jan. 2020.

[3] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster, ‘‘Web-based
attacks to discover and control local IoT devices,’’ in Proc. Workshop IoT
Secur. Privacy, Aug. 2018, pp. 29–35.

[4] C. Faircloth, G. Hartzell, N. Callahan, and S. Bhunia, ‘‘A study on brute
force attack on T-mobile leading to SIM-hijacking and identity-theft,’’ in
Proc. IEEE World AI IoT Congr. (AIIoT), Jun. 2022, pp. 501–507.

[5] S. Badotra, D. Nagpal, S. N. Panda, S. Tanwar, and S. Bajaj, ‘‘IoT-enabled
healthcare network with SDN,’’ in Proc. 8th Int. Conf. Rel., INFO-
COM Technol. Optim. (Trends Future Directions) (ICRITO), Jun. 2020,
pp. 38–42.

[6] A. Dutt, V. P. Singh, H. B. Pasupuleti, and S. SD, ‘‘Adaptation of SDN
framework for a smart water distribution network in smart cities,’’ in Proc.
3rd Int. Conf. Mobile Netw. Wireless Commun. (ICMNWC), Dec. 2023,
pp. 1–6.

[7] A. Petrosyan. (2023). Global Annual Number of Iot Cyber
Attacks 2018–2022. Accessed: Mar. 2, 2024. [Online]. Available:
https://www.statista.com/

[8] T. Lacoma. (Apr. 2025). New Reports Say Smart Device Cyberattacks
More Than Doubled in 2024: Should You Worry. Accessed: Apr. 11, 2025.
[Online]. Available: https://www.cnet.com/home/security/smart-device-
cyberattacks-more-than-doubled-in-2024-should-you-worry/

[9] O. Abimbola and O. O. Idris, ‘‘A critical cybersecurity analysis and future
research directions for the Internet of Things: A comprehensive review,’’
Path Sci., vol. 11, no. 3, p. 4009, Mar. 2025.

[10] M. Zang, C. Zheng, L. Dittmann, and N. Zilberman, ‘‘Toward continuous
threat defense: In-network traffic analysis for IoT gateways,’’ IEEE
Internet Things J., vol. 11, no. 6, pp. 9244–9257, Mar. 2024.

[11] M. A. Ja’afreh, H. Adhami, A. E. Alchalabi, M. Hoda, and A. El Saddik,
‘‘Toward integrating software defined networkswith the Internet of Things:
A review,’’ Cluster Comput., vol. 25, no. 3, pp. 1–18, Jun. 2022.

[12] A. Abderrahmane, H. Drid, and A. Behaz, ‘‘A survey of controller
placement problem in SDN-IoT network,’’ Int. J. Networked Distrib.
Comput., vol. 12, no. 2, pp. 1–15, Dec. 2024.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[14] M. Saqib, H. Elbiaze, R. H. Glitho, and Y. Ghamri-Doudane, ‘‘An intel-
ligent and programmable data plane for QoS-aware packet processing,’’
IEEE Trans. Mach. Learn. Commun. Netw., vol. 2, pp. 1540–1557, 2024.

[15] D. Sanvito, ‘‘Traffic management in networks with programmable data
planes,’’ in Special Topics in Information Technology, Feb. 2021, ch. 2,
pp. 13–23.

[16] G. Grigoryan, Y. Liu, and M. Kwon, ‘‘ILoad: In-network load balancing
with programmable data plane,’’ in Proc. 15th Int. Conf. Emerg. Netw.
EXperiments Technol., Dec. 2019, pp. 17–19.

[17] Z. Zhao, F. Liu, Z. D. Meng, Q. Zhao, and X. Xie, ‘‘DTS: Dynamic traffic
scrubbing against link flooding attacks with programmable data plane,’’
Proc. SPIE, vol. 13447, pp. 507–513, Jan. 2025.

[18] G. Liu, W. Quan, N. Cheng, N. Lu, H. Zhang, and X. Shen, ‘‘P4NIS:
Improving network immunity against eavesdropping with programmable
data planes,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Jul. 2020, pp. 91–96.

[19] C.-M. Iurian, D. Zinca, I.-A. Ivanciu, T.-M. Blaga, and V. Dobrota, ‘‘A syn
flooding ddos attack detection in p4-based programmable networks,’’ Acta
Technica Napocensis, vol. 62, no. 2, pp. 19–24, 2022.

[20] Z.-Y. Shen, M.-W. Su, Y.-Z. Cai, and M.-H. Tasi, ‘‘Mitigating SYN
flooding and UDP flooding in P4-based SDN,’’ in Proc. 22nd Asia–Pacific
Netw. Oper. Manage. Symp. (APNOMS), Sep. 2021, pp. 374–377.

[21] X. Chen, H. Liu, D. Zhang, Q. Huang, H. Zhou, C. Wu, and Q. Yang,
‘‘Empowering DDoS attack mitigation with programmable switches,’’
IEEE Netw., vol. 37, no. 3, pp. 112–117, May 2023.

[22] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, ‘‘Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,’’ in Proc. 27th Netw. Distrib. Syst. Secur. Symp.
(NDSS), 2020.

[23] Z. Xiong and N. Zilberman, ‘‘Do switches dream of machine learning:
Toward in-network classification,’’ in Proc. 18th ACM Workshop Hot
Topics Netw., Nov. 2019, pp. 25–33.

[24] S. Rathee, D. Uttamchandani, K. Haribabu, and A. Bhatia, ‘‘An efficient
method to collect statistics in SDN using curvature based sampling,’’ in
Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2021, pp. 175–180.

[25] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, ‘‘Deep
packet: A novel approach for encrypted traffic classification using deep
learning,’’ Soft Comput., vol. 24, no. 3, pp. 1999–2012, Feb. 2020.

[26] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and
A. A. Ghorbani, ‘‘CICIoT2023: A real-time dataset and benchmark
for large-scale attacks in IoT environment,’’ Sensors, vol. 23, no. 13,
p. 5941, Jun. 2023. [Online]. Available: https://www.mdpi.com/1424-
8220/23/13/5941

136456 VOLUME 13, 2025

M.-R. Fida et al.: IoTShield: Defending IoT Systems Against Prevalent Attacks

[27] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
‘‘PForest: In-network inference with random forests,’’ 2019,
arXiv:1909.05680.

[28] J.-H. Lee and K. Singh, ‘‘SwitchTree: In-network computing and
traffic analyses with random forests,’’ Neural Comput. Appl., pp. 1–12,
Nov. 2020.

[29] K. Tools. HPING3 Package Description. Accessed: Jan. 27, 2024.
[Online]. Available: https://www.kali.org/tools/hping3

[30] (2017). Dvwa. DAMN Vulnerable Web Application. Accessed:
Mar. 5, 2024. [Online]. Available: https://github.com/digininja/DVWA

[31] T. H. News. (2023). Ddos 2.0: IoT Sparks New DDoS Alert.
Accessed: Jan. 1, 2024. [Online]. Available: https://thehackernews.
com/2023/09/ddos-20-iot-sparks-new-ddos-alert.html

[32] K. Raaen and T. M. Grønli, ‘‘Latency thresholds for usability in games:
A survey,’’ in Proc. Norsk IKT-Konferanse Forskning oG utdanning
(Norwegian ICT Conf. Res. Educ.), 2014.

[33] R. E. Bailey, J. J. Arthur, and S. P. Williams, ‘‘Latency requirements
for head-worn display S/EVS applications,’’ Proc. SPIE, vol. 5424,
pp. 98–109, Aug. 2004.

[34] M.-R. Fida, A. H. Ahmed, T. Dreibholz, A. F. Ocampo, A. Elmokashfi,
and F. I. Michelinakis, ‘‘Bottleneck identification in cloudified mobile
networks based on distributed telemetry,’’ IEEE Trans. Mobile Comput.,
vol. 23, no. 5, pp. 5660–5676, May 2024.

[35] D. Scano, A. Giorgetti, F. Paolucci, A. Sgambelluri, J. Chammanara,
J. Rothman, M. Al-Bado, E. Marx, S. Ahearne, and F. Cugini, ‘‘Enabling
P4 network telemetry in edge micro data centers with kubernetes
orchestration,’’ IEEE Access, vol. 11, pp. 22637–22653, 2023.

[36] J. Zhang, S.Wen, J. Zhang, H. Chai, T. Pan, T. Huang, L. Zhang, Y. Liu, and
F. R. Yu, ‘‘Fast switch-based load balancer considering application server
states,’’ IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1391–1404, Jun. 2020.

[37] S. Kamamura, ‘‘Dynamic traffic engineering considering service
grade in integrated service network,’’ IEEE Access, vol. 10,
pp. 79021–79028, 2022.

[38] B. Coelho and A. Schaeffer-Filho, ‘‘BACKORDERS: Using random
forests to detect DDoS attacks in programmable data planes,’’ in Proc. 5th
Int. Workshop P4 Eur., Dec. 2022, pp. 1–7.

[39] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108–116.

[40] N. Moustafa and J. Slay, ‘‘UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’’ in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6.

[41] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas, ‘‘Line-speed and
scalable intrusion detection at the network edge via federated learning,’’ in
Proc. IFIP Netw. Conf. (Netw.), Jun. 2020, pp. 352–360.

[42] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, ‘‘Towards
effective feature selection in machine learning-based botnet detection
approaches,’’ in Proc. IEEE Conf. Commun. Netw. Secur., Oct. 2014,
pp. 247–255.

[43] G. Siracusano, S. Galea, D. Sanvito, M. Malekzadeh, G. Antichi, P. Costa,
H. Haddadi, and R. Bifulco, ‘‘Re-architecting traffic analysis with neural
network interface cards,’’ in Proc. 19th USENIX Symp. Networked Syst.
Design Implement. (NSDI), 2022, pp. 513–533.

[44] G. Xie, Q. Li, G. Duan, J. Lin, Y. Dong, Y. Jiang, D. Zhao, and Y. Yang,
‘‘Empowering in-network classification in programmable switches by
binary decision tree and knowledge distillation,’’ IEEE/ACM Trans. Netw.,
vol. 32, no. 1, pp. 382–395, Feb. 2024.

[45] L. A. Q. González, L. Castanheira, J. A. Marques, A. E. Schaeffer-
Filho, and L. P. Gaspary, ‘‘Bungee-ML: A cross-plane approach for a
collaborative defense against DDoS attacks,’’ J. Netw. Syst. Manage.,
vol. 31, no. 4, p. 77, Oct. 2023.

MAH-RUKH FIDA received the Ph.D. degree
in measurements and analytics in mobile broad-
band (MBB) computing from The University of
Edinburgh, U.K., and the Postdoctoral degree in
performance modeling in MBB networks from
Simulamet, Oslo, Norway. She is currently a
Senior Lecturer with the School of Business,
Computing, and Social Sciences, University of
Gloucestershire, U.K. In addition to her existing
work on telemetry and performance evaluation

within programmable networks, her research interests include applied data
analytics and AI-based modeling, particularly in the fields of the Internet of
Things and secure communications.

AZZA H. AHMED received the master’s degree
from the University of Nottingham, in 2012,
and the Ph.D. degree from Oslomet University,
Norway, in 2023. She is currently a Postdoctoral
Research Fellow with Simula Metropolitan Centre
for Digital Engineering in Oslo, Norway. She
was a Lecturer with the University of Khartoum,
Sudan. Her work revolves around the measure-
ment and analysis of mobile broadband networks
performance, network performance optimization,

network automation, and machine learning to solve networking problems.
Her research interests include network management and control, seeking
innovative solutions to enhance the operational efficiency, and reliability of
these complex systems.

AMEER SHAKAYB ARSALAAN (Member,
IEEE) received the Ph.D. degree from the
School of Computer and Mathematical Sciences,
University of Adelaide, Australia, in 2024, jointly
funded by HEC Pakistan and University of
Adelaide. He is currently a Lecturer with the
Department of Computer Science, University of
Swabi, Pakistan. He has published extensively and
collaborated with industry and academic partners
to bridge research with real-world applications in

wireless communication. He is specializing inwireless networks, particularly
MANETs, IoT, and QoI-based data transmissions, his work focuses on
advanced routing protocols and adaptive algorithms to optimize network
performance and fulfill user’s requirements in decentralized systems.
Recognized for his contributions to emergency response and autonomous
vehicle networks.

VOLUME 13, 2025 136457

