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Abstract

Digitalisation can positively impact the efficiency of real-world business processes, but may
also introduce new cybersecurity challenges. One area that is particularly vulnerable to
cyber-attacks is the business logic embedded in processes in which flaws may exist. This is
especially the case when these processes are within web-based applications and services,
which are increasingly becoming the norm for many organisations. Business logic vul-
nerabilities (BLVs) can emerge following the software development process, which may
be difficult to detect by vulnerability detection tools. Through a systematic literature re-
view and interviews with industry practitioners, this study identifies key BLV types and
the challenges in detecting them. The paper proposes an eight-stage operational frame-
work that leverages Artificial Intelligence (AI) for enhanced BLV detection and mitigation.
The research findings contribute to the rapidly evolving theory and practice in this field
of study, highlighting the current reliance on manual detection, the contextual nature of
BLVs, and the need for a hybrid, multi-layered approach integrating human expertise with
AI tools. The study concludes by emphasizing AI’s potential to transform cybersecurity
from a reactive to a proactive defense against evolving vulnerabilities and threats.

Keywords: business logic vulnerabilities; BLVs; business processes; organisational cyber
security; artificial intelligence; AI; operational framework

1. Introduction
As digitalisation expands across business and society at large, more services and prod-

ucts are being delivered to customers via the Internet through mobile and web-based plat-
forms. This growth in web-based transactions has seen a rapid increase in cyber-attacks on
web applications. SiteLock [1] reported that there were an estimated 12.8 million websites
that had been compromised with malware, and many key business processes now involve
the use of web-based applications in the cloud, representing potential points of weakness
that cyber-attackers may exploit. This includes business logic vulnerabilities (BLVs)—flaws
in the design, implementation, or enforcement of business rules within software applica-
tions, which can be exploited to perform unintended operations within the software [2]. As
the complexity of business processes executed by web applications has increased, so has
the risk of potential flaws in the process logic [3]. Business logic attacks are among the top
ten most frequent vulnerabilities, accounting for 3% of all vulnerabilities reported through
the HackerOne platform [4].
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BLVs pose a significant threat to modern web applications and enterprise systems.
Unlike traditional security vulnerabilities, business logic flaws are normally not inherently
linked to coding errors or software bugs, but rather often result from incorrect or incomplete
implementation of business rules and workflows. BLVs may allow attackers to change an
application’s business logic that may be exploited via seemingly valid application transac-
tions that can be utilised to accomplish an additional action, outside the scope of regular
business operations. As Hofesh [5] notes “unlike most other vulnerabilities, business logic
exploits are heavily contextualized and very difficult to detect automatically, leaving room
for different interpretations of the application’s logic, which could go unnoticed by the
developers” (paragraph 1).

Manual techniques and procedures have hitherto often been deployed for detecting
BLVs. The Open Web Application Security Project (OWASP) previously concluded that
automating the identification and resolution of business logic abuse cases is not feasible.
This is because such measures rely heavily on the expertise of the tester, as well as their
comprehensive understanding of the entire business process and its rules [6]. Furthermore,
identifying and mitigating BVLs often depends on the manual expertise of testers who
possess comprehensive knowledge of the application’s business logic and the processes
they support [7,8]. Manual testing expertise can be assessed and accredited via penetration
testing certifications. To become a certified penetration test expert, there are several well-
recognized certifications, each with their own set of requirements and focus areas [9].
Two of the most prominent certifications are the Offensive Security Certified Professional
(OSCP) and the Certified Ethical Hacker (CEH) qualifications, which are highly regarded
and often required for penetration testing roles in industry [10]. The related examinations
involve hands-on practice, and only proven experts are typically capable of conducting
thorough penetration tests.

The impact of such vulnerabilities can be severe, potentially allowing attackers to manipu-
late legitimate functionalities, execute unauthorised transactions, and disrupt business opera-
tions [2,6,11]. However, OWASP have more recently put forward a Web Security Testing Guide
(WSTG) which offers both manual and automated methodologies for testing business logic,
emphasising the importance of addressing unexpected user behavior, privilege escalation,
and process exploitation [12]. An example of combining both manual and automated testing
methodologies is the Selenium tool version 4.0 [13], which simulates real user behavior, such as
clicking, filling out forms, and submitting invalid data. This helps identify failures in handling
edge cases or malicious inputs. Data-driven techniques rely on collecting information about
software, such as program invariants, to identify BLVs. Fortunately, these logic vulnerabilities
can be detected by analyzing the program invariants dynamically using appropriate tools, of
which Daikon is one example [14]. Pei et al. [15] also show that Large Language Models (LLMs)
can also be used to analyze program invariants.

Artificial Intelligence (AI) is now recognized as a key component of technology sup-
port for business operations [16]. AI has been applied to improve business operations,
notably in the context of fraud detection, and financial distress prediction [17,18]. The strate-
gic importance of AI for small and medium-sized enterprises (SMEs) is underscored by
research focusing on how to accelerate their AI-based product development and innovation
processes, particularly in competitive sectors like Fin-Tech [19]. The high-speed, efficiency-
focused nature of development and management that is prevalent in many SMEs often
results in the absence of comprehensive internal control systems, leading to limited risk
awareness among managers and employees [18]. In such an environment, an AI-based
vulnerability automation system is particularly beneficial in that it can systematically detect
threats and enforce security logic without reliance on personal risk awareness. AI-driven
tools have been deployed to strengthen protection against cyber threats and reduce the
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risk of data security breaches [20]. However, to date, their application in the context of
BLVs has been minimal, and yet it is becoming increasingly clear that AI can now be used
to learn and detect logic patterns, making it possible to automate and accelerate process
logic testing that has hitherto been carried out manually. Indeed, Metin et al. [21], in
their study of cybersecurity in SMEs, note that “whilst there is a substantial amount of
research in the literature that looks into different aspects of cybersecurity related issues and
practices, the number of studies that approach the topic from the perspective of processes
remains limited” (p. 4). In this context, this research explores how the implementation of
AI applications can detect and prevent business logic flaws in company business processes
and thereby improve cybersecurity structures. More specifically, the following research
questions (RQs) are addressed:

RQ1. What are the main types of business logic vulnerability and what are the
detection challenges?

RQ2. What operational framework can be developed to guide Al-supported business
logic vulnerability detection?

In summary, the detection of BLVs has traditionally been a manual and resource-
intensive process, as existing automated tools often fail to identify these complex and
subtle flaws because of their specific business context. As a result, there is a significant
void because of the recognised potential of AI in cybersecurity and yet the absence of a
structured, operational roadmap for its specific application to BLV detection from a business
process perspective. The overall objective of this research is thus to address this gap in the
literature and practice by analysing BLVs and then to construct an operational framework
to guide the systematic implementation of AI-supported BLV detection. The framework can
provide a valuable link between theory and practice, synthesizing findings from academic
literature with the real-world experiences of industry practitioners. This approach offers
organisations an actionable, multi-layered strategy. Ultimately, this contribution enables
organisations to shift from reactive detection methods to a more proactive and resilient
security posture against business logic threats.

Following this brief introduction, Section 2 sets out the research methodology, center-
ing on a systematic literature review (SLR) complemented by practitioner interview evi-
dence. In Section 3, the study results are set out, and the research questions are addressed.
Section 4 then discusses some tangential issues emerging from the research results. In the
concluding Section 5, the contribution of the research is assessed, limitations are outlined,
and future research areas are noted.

2. Research Method
An explanatory-sequential mixed-methods design was adopted, in which an SLR [22]

was combined with a set of practitioner interviews to validate, challenge, and elaborate upon
the SLR findings. The SLR was the central component of the research method, but practitioner
interviews were used to provide additional material in addressing the two RQs and particu-
larly in validating and evolving the operational framework for BLV detection. This research
process is depicted in Figure 1.

2.1. Systematic Literature Review

For the SLR, several research databases were accessed, including IEEE, Science Direct
and SCOPUS. The search items used are shown in Table A1 (Appendix A), these being
combinations of “Business Process Attacks”, “Artificial Intelligence”, “Generative Artificial
Intelligence” and “Business Logic Vulnerabilities”. The total number of sources located
was 1152. Inclusion and exclusion criteria are shown in Table 1.
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Figure 1. Research process overview.

Table 1. Inclusion and exclusion criteria.

Included Excluded

Papers published in English Papers not published in English

Studies focusing on business logic vulnerabilities
in organizations and AI implementation in order
to reduce cyber risks

Studies only focusing on the negative impact of
AI to organizational security

Contents that are categorized in conferences,
journal articles, and books from databases such
as IEEE, Scopus, and ScienceDirect

Studies not focusing on business logic
vulnerabilities in organizations and AI
implementation in order to reduce cyber risks

Literature available through open access or
university library access through
research databases

Sources that cannot be accessed open access or
through using our university library

Literature sources published
between 2010 and 2024 Literature published before 2010

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
Flow Diagram summarises the overall SLR process, which comprises four main phases—
identification, screening, eligibility, and synthesis (Figure 2). Following the removal of
duplicate entries, the count was reduced to 410 potential sources. Subsequently, 152 records
were discarded after reviewing abstracts and keywords, and after eliminating those with
restricted access, a total of 37 articles remained.

Of the 37 full-text sources included in the final review, 16 were published between
2016 and 2020, and 10 in the period 2020–2024. This probably reflects the growing interest
and academic productivity in AI and cybersecurity in the past decade. 19 of the 37 sources
were conference papers, 14 were published journal articles, and the remainder were from
various sources (a book, a thesis, a preprint article, and a newsletter article).
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Figure 2. The PRISMA flow diagram for the Systematic Literature Review.

2.2. Qualitative Interviews

Following the SLR, which highlighted several key issues about how BLVs are detected
and mitigated in real-world settings, semi-structured interviews were conducted to obtain
practitioner perspectives. The interviewees were selected as representatives of different
industry sectors and size of company, varying from start-ups to well-established companies
with large development teams (Table 2). The interviewees’ experience in their IT environ-
ment was between 3 and 27 years. Ideally, more interviews would have been conducted,
but time constraints and other practicalities, such as the availability and accessibility of
qualified participants, the sensitivity of the subject matter (i.e., business logic vulnerabili-
ties), and scheduling difficulties across different organisations, limited the interview count
to seven. Although there were some limitations, participants were carefully selected to
ensure diversity in organisational roles, sectors, and company sizes, which enriched the
insights gathered. This diversity served to contextualise, triangulate, and extend the in-
sights derived from the SLR. The participants included developers, team leads, and quality
assurance specialists.

Each interview lasted approximately 40 min and was conducted remotely via video
conferencing. Informed consent was obtained prior to recording, and all sessions were tran-
scribed verbatim for analysis. The interviews followed a semi-structured guide consisting
of open-ended questions grouped into three thematic areas: detection practices and chal-
lenges related to BLVs, common types and impacts of these vulnerabilities, and strategies
for their mitigation.

Thematic analysis was used to analyze the data, following the six-phase process
outlined by Braun and Clarke [23]. This process began with familiarization with the dataset,
during which transcripts were read multiple times to gain an overall understanding of the
content. This was followed by initial coding, where meaningful segments were labeled
with descriptive codes. These codes were then organized into broader patterns, resulting
in a number of primary themes and sub-themes being identified. The research team took
the view that seven in-depth interviews with practitioners from different size companies
in various sectors were enough to allow the development of new material to address the
research questions. This is supported by Guest et al. [24], who found that “basic elements
for meta themes were present as early as six interviews” (p. 59). Given the breadth of
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feedback obtained through the interviews, the research team considered that “theoretical
saturation”, which Flick [25] (p. 429) defines as “the judgment that there is no need to
collect further data”, had been achieved.

Table 2. Demographic and professional profile of interview participants.

Code Experience
(yrs) Age Gender Role/Position Team Size/

Context

P1 3 26 Female Co-Founder &
Chief Developer 3-person team

P2 3 37 Female Co-Founder &
Chief Developer

3-person core
start-up

P3 17 45 Male Senior Development
Team Leader 5-person team

P4 13 51 Male Software Development
Team Leader 28-person team

P5 10 38 Male Software Development
Team Leader/Partner 15-person team

P6 27 45 Male
Software Development

Team Manager &
Company Owner

6-person team

P7 23 47 Male
R&D & Software-Quality

Development
Team Manager

6-person team

Throughout the analysis, special attention was paid to ensuring that the identified
themes accurately reflected the participants’ lived experiences rather than being influenced
by the researchers’ assumptions. Summaries of the key themes and corresponding quotes
were shared with the interviewees, and their feedback was integrated into the final version
of the thematic structure. This primary research phase not only validated and expanded
upon the findings of the SLR but also provided rich, contextual insights that directly
informed the design and validation of the operational framework for BLV detection.

3. Results
3.1. Introduction

The available literature revealed a range of definitions and statements regarding the
meaning and context of BLVs. Pellegrino and Balsarotti [26] point out that there is no universally
agreed-upon definition of “business logic vulnerabilities” in the literature, and that it is often
described in terms of the type of attack it entails. PortSwigger [27] suggests that “business logic”
refers to the set of rules that define how an application operates. As these rules are not always
directly related to a specific business function or process, the associated vulnerabilities are also
known as “application logic vulnerabilities” or simply “logic flaws”. Logic flaws are often not
evident to users or support personnel as they typically will not be exposed by normal use of the
application. However, an attacker may be able to exploit these logic flaws by interacting with the
application in ways that developers had not intended. Indeed, several authors highlight the fact
that such vulnerabilities can be exploited by attackers to perform unintended operations that
deviate from normal business practices [6,7,11,28]. Some of the key citations from these sources
are included in Table A2 in Appendix A. The RQs are now addressed in turn in the following
two sub-sections, drawing upon both findings from the literature review and interview analysis.
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3.2. RQ1. What Are the Main Types of Business Logic Vulnerability and What Are
the Detection Challenges?

BLVs represent a significant challenge for organisations, requiring a comprehensive
approach to detection and prevention. An understanding of the various types of attacks and
implementation of appropriate prevention systems can help protect a company’s applications
and business processes from potential exploitation. From analysing a range of sources, five main
categories of BLVs can be identified: workflow/application flow bypass; race condition issues;
business logic-based denial-of-service; parameter manipulation; and access control bypass.
Deepa and Thilagam [2] identified three main types of BLVs, namely workflow bypass or
misuse; parameter manipulation (also sometimes called tampering attacks); and access-control
violations (with authentication and authorization bypass). Ghorbansadeh and Shahriari [11]
similarly recognized these three types of logic vulnerability. Alidoosti et al. [29] reference the
excessive traffic that can be created on websites due to poorly defined business rules, which
means that BLVs might lead to denial-of-service (DoS). For example, if there is no limit to the
number of comments received concerning a product on an online shopping site within one
second, malicious attackers can exploit this vulnerability to create excessive traffic on the site.
Alidoosti et al. [30] also identified the situation in which multiple threads or processes access
shared resources concurrently without proper synchronisation. This vulnerability, termed a
“race condition issue”, may lead to unpredictable and erroneous behaviour in the business
logic layer of the application [31]. To prevent this from happening, simultaneous requests and
their priority should be clarified within the framework of business rules and the structure
should be built accordingly. For example, if multiple users attempt to apply a discount code
simultaneously, without proper synchronisation, this could lead to the discount being applied
multiple times or to the wrong user, resulting in financial loss for the business.

Research publications on BVLs suggest a range of possible preventative measures, from the
development of innovative detection frameworks and tools to detailed analyses of specific
threats. Identifying logic flaws requires knowledge of both the intended operation of the
application and the actual behavior as implemented in the application [32]. Four main ap-
proaches can be discerned. Security-knowledge databases can provide a structured frame-
work for detecting and mitigating vulnerabilities in business logic, allowing companies to
address potential flaws proactively [33]. Dynamic security testing techniques, such as the
Business-Layer Session Pussling Racer [31], offer dynamic testing against session race condi-
tions. This ensures that business processes remain robust and secure against timing-based
manipulations. In addition, black-box detection approaches can also play a crucial role in
identifying logic vulnerabilities in web applications. Tools like DetLogic allow for detecting
these vulnerabilities without requiring access to the source code, making it easier to identify and
address potential issues [34]. Automated systems, such as LogicScope, enhance this process by
automating the discovery of logic vulnerabilities, thereby reducing the time and effort needed to
identify and mitigate risks [32]. Finally, integrating self-protection mechanisms within software
systems can significantly enhance security. These mechanisms enable real-time detection and
response to business logic attacks, providing an additional layer of protection [7]. To combat
business-layer DoS attacks, specific mitigation measures can be implemented to increase the
resilience of web applications. These measures involve monitoring and limiting the impact of
suspicious activities to maintain service availability [29].

There are a number of related concepts in the extant literature. Taubenberger et al. [35]
refer to Business Process Vulnerability (BPV), which the authors see as wrongly identified
or unidentified vulnerabilities in information security risk assessments. These, the authors
suggest, can be resolved by analysing the security requirements of information assets in
business process models. Merrell and Stevens [36] discuss a vulnerability management
process, which comprises four main stages: the preparation stage, which includes creating
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and implementing a vulnerability management plan; the identification and analysis phase,
which examines infrastructure vulnerabilities and evaluates whether a particular vulnerability
needs more attention; the exposure management phase then ensures that vulnerability repair
efforts are based on organisational risk; and finally, the root-cause analysis phase aims to
understand how vulnerabilities are introduced into the environment and how to prevent them
in the future. In a wider context still, Al-Turkistani et al. [37] examine organisational cyberse-
curity management and suggest organisations must adopt a range of policies and practices.
These include: adherence to predefined procedures to maintain frequent system upgrades and
enhancements; evaluation of current security controls; compliance with established security
standards; creation of integrated risk assessments and implementation of unified controls;
and establishment of incident response management.

The inadequacies of cybersecurity vulnerability scanner systems currently deployed high-
light the potential benefits of the integration of AI into such systems. Vulnerability scanners like
Nessus, OpenVAS, and Nmap Scripting Engine (NSE) often rely on other third-party “plug-in”
software to detect issues such as software bugs, missing OS patches, insecure configurations,
and exposed ports or services. In large networks, these tools can generate an overwhelming
volume of such data, requiring substantial human interpretation to distinguish true vulnera-
bilities from false positives, often caused by incomplete or missing plug-ins [38]. Furthermore,
they cannot predict or adapt to new and evolving threats, limiting their effectiveness in dynamic
environments. These tools also lack the capability to automate comprehensive risk assessments,
requiring manual aggregation and interpretation of scan results to determine overall security
posture [39]. These related concepts and practices provide a useful background and context to
address the specific issue of BLVs and how they can best be protected against.

In this context, the interviewees highlighted the complexity of BLVs and identified a
number of detection challenges (Table 3). All seven interviewees framed BLV discovery
as an essentially human-driven activity that competes with chronic time and resource
constraints. Senior managers in larger teams described an environment in which “we rely
exclusively on manual assessments to detect BLVs; automated tools create too many false
positives” (P7 in Table 2), and where under-funded start-ups often “discover BLVs in
production” because a dedicated QA function is a “luxury” (P5). Smaller firms echoed
the same tensions, attributing missed flaws to incomplete or poorly communicated re-
quirements (P6) and developer blindness—the tendency to overlook logic they person-
ally authored (P7). Automation, while present in CI/CD pipelines, was said to have
“blind spots for business logic” (P2), because tools verify code syntax rather than usage con-
text. Collectively, these accounts depict BLV detection as an artisanal craft overshadowed
by delivery pressure, fragile documentation, and the limits of current scanning technology.

Interviewees also highlighted how complexity compounded the detection process.
When asked which flaws are hardest to manage or detect, practitioners converged on a
small set of high-impact but low-visibility categories. Access-control lapses topped the
list—e.g., an SaaS client who “was able to view data they were not authorised to access”
(P4), because of a single permission. Equally pernicious are time-sensitive financial rules:
missing a quarterly price update rendered an entire quoting engine inaccurate (P7). Several
interviewees noted concurrency exploits, such as race conditions that allow a balance
to be spent multiple times (P6), and fraud logic failures where stolen credit cards slip
through undetected (P3), as particular problems. In addition, “silent” integration limits—
like an undocumented 10-megabyte application program interface (API) cap that truncates
responses without errors (P3)—illustrate how BLVs can remain invisible until manifested as
business losses. What unites these cases is not sophisticated code manipulation but subtle
mismatches between business rules, system timing and real-world behaviour—the very
space where traditional vulnerability scanners offer little coverage.
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Table 3. Themes identified from interviews relating to BLVs and detection challenges (RQ1).

Primary Theme Sub-Theme Relevant Interviewee Quotation Interpretation

Detection
Challenges

Manual-first
detection culture

“We rely exclusively on manual
assessments to detect BLVs . . .
automated tools create too many
false positives.” P7

Reliance on human
judgement introduces
scalability, cost and
consistency issues.

Limited QA resources &
time pressure

“In start-ups . . . many BLVs are
discovered in production because we
can’t cover every edge path.” P5

Budget and schedule
pressure shift discovery to
post-release.

Incomplete or
misunderstood
requirements

“BLVs often result from human error,
such as incomplete or incorrectly
communicated requirements.” P6

Early analysis flaws
propagate into hidden
logic issues.

Developer
blindness/familiarity bias

“Developers may be unable to
recognise flaws in the logic they
themselves implemented.” P7

Insider perspective masks
hidden assumptions.

Automation blind spots

“Automated testing and scanning
tools are typically ineffective . . . the
system behaves correctly under
standard conditions.” P2

Current scanners lack
business-context
understanding, forcing
manual fallback.

Nature and
Complexity

of BLVs

Access-control &
authorisation bypass

“A customer was able to view data
they were not authorised to access
due to a permission
misconfiguration.” P4

Mis-scoped privileges
silently expose data.

Time-sensitive financial
logic gaps

“Quarter-based pricing logic was
missed, so the system failed to reflect
time-sensitive costs.” P7

Overlooked temporal rules
create direct
revenue impact.

Concurrency/race-
condition exploits

“A race condition let the same
balance be used multiple times,
creating funds that do not
actually exist.” P6

State timing issues allow
monetary abuse.

Undetected fraud scenarios
“Failure to detect fraudulent
credit-card use can lead to significant
financial loss.” P3

Fraud logic needs
behavioural context as well
as code checks.

Hidden integration limits
“An undocumented 10 MB API limit
silently truncated data, making the
issue hard to detect.” P3

Third-party constraints
become latent BLVs when
unvalidated.

3.3. RQ2. What Operational Framework Can Be Developed to Guide Al-Supported Business Logic
Vulnerability Detection?

In a general sense, it is clear that business continuity planning can benefit from
the incorporation of AI-powered cybersecurity to improve an organisation’s capacity to
identify and address cybersecurity issues. With such integration, cybersecurity measures
can be both preventive and reactive, addressing threats before they have a substantial
negative impact [40]. BLVs represent a critical and often overlooked category of security
flaws that do not usually arise from syntactic coding errors but rather from misaligned
or poorly enforced business rules. Unlike traditional software vulnerabilities, BLVs are
deeply contextual and frequently mimic legitimate user behavior, making them difficult
to detect using conventional static and dynamic analysis tools. To address this challenge,
an AI-supported BLV detection framework is put forward here, based on an analysis of best
practice documented in current sources and supported by practitioner interview evidence.
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The framework comprises eight stages, for which various technologies may be applied in
different process areas (Figure 3).

 

Figure 3. AI-supported BLV detection framework (indicating the 8 stages, with technology options
and application areas).

1. Identify business logic components: A comprehensive and detailed mapping
of all business processes is required, highlighting how different activities, such as user
authentication and data validation, interact with each other. This approach helps in
understanding the overall structure and flow of operations and determining potential points
of failure [41]. Ghorbansadeh and Shahriari [11] present a method for analyzing source
code to detect logic vulnerabilities through data and control flow analysis. This approach is
applied to annotated programs, which include additional information or metadata—such
as comments, assertions, types, specifications, or other annotations—that assist in guiding
the analysis, verification, or transformation of the code. Interviewees confirmed that such
activities were being pursued often in the context of software development. P7, for example,
noted “business flows are modelled in UML activity/sequence diagrams”.

2. Data collection and pre-processing: For each business process, historical data, includ-
ing logs, user interactions, and transaction records from various sources, such as server logs,
application logs, and database transactions, need to be collected. This was emphasised by P2,
who commented that “insufficient backend logging in Firebase makes BLVs hard to detect”.
Also, P5 observed that “most logic flaws tend to surface during functional testing. We use the
Selenium webdriver tool [13] to simulate real user behavior—like clicking, form-filling, or sub-
mitting invalid data—to detect edge-case or malicious input handling failures”. This aligns
with Felmetsger et al. [14], who noted that exercising the application in a “normal” way to iden-
tify logic flaws cannot be fully automated and often requires human assistance—though tools
like Selenium can facilitate scripting realistic user interactions. Indeed, Felmetsger et al. [14]
introduced an automated method for detecting logic vulnerabilities, starting with dynamic
analysis. Via this approach, Chicory [42], Daikon’s Java front-end application code, is modified
to collect execution traces that provide details about variable values during regular operation.
Daikon then processes these runtime traces to infer low-level behavioral patterns, or “likely
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program invariants”, which serve as a behavioral fingerprint of normal program execution [14].
Execution-trace processing therefore consists of (i) instrumenting each method so that, at run
time, it emits the values of all parameters, return values, and relevant object fields at both entry
and exit points, and (ii) serialising these snapshots into a trace file that records the chronological
sequence of state changes observed during typical user interactions. As Felmetsger et al. [14]
(p. 5) remark, “Chicory produces traces only for procedure entry and exit points and non-local
variables”, enabling Daikon to generate invariants for “method parameters, function return val-
ues, static and instance fields of Java objects, and global variables”. Internally, Daikon “runs a
program, observes the values that the program computes, and then reports properties that were
true over the observed executions” [42] (p. 1). The result is “a file containing a serialized version
of likely invariants for the given web application” [14] (p. 6), effectively a machine-checkable
behavioural specification that can provide a baseline for later model-based vulnerability de-
tection. These Daikon-inferred invariants are treated as implicit behavioral specifications,
establishing a behavioral baseline. Subsequently, their tool, Waler, employs model checking
to identify program paths that violate these specifications, thereby flagging potential logic
vulnerabilities [14]. Daikon can thus play a role in the Data Collection and Preprocessing phase,
as it processes execution traces to infer likely invariants that capture the application’s observed
behavior, providing input for subsequent model-based logic vulnerability detection.

3. AI model selection and training: Appropriate AI models can be trained using the
collected data. For example, records of all login attempts, successful and failed transactions,
and error logs can be collected and used to train an AI model [43]. Known vulnerabilities,
such as unauthorised access or fraudulent transactions, can also be used to train the AI
models [44]. Appropriate data mining techniques such as neural networks, decision trees,
or support vector machines can be chosen based on the nature of the data and the specific re-
quirements of the vulnerability detection task. The selected models should be trained using
labeled data with previously identified vulnerabilities [45]. Ensuring diversity in the train-
ing data to cover a wide range of potential vulnerabilities is particularly important. This was
emphasized by P7 who stated that “automated tools create too many false positives” and
thus “we rely exclusively on manual assessments”. Overall, interviewees confirmed the
need for smarter, context-aware tooling. At this point, Automated machine-learning
(AutoML) frameworks—such as open-source, distributed, in-memory H2O platform—
automatically handle data preparation, algorithm selection, and hyperparameter tuning.
Using an AutoML framework at Stage 3 (AI model selection and training) enables prac-
titioners to train and rapidly deploy high-performing predictive models with minimal
manual effort, reduce false positives, and eliminate manual feature selection [46,47].

As noted above in stage 2, identifying invariants is a key task in program analysis, with ap-
plications such as Daikon being used for bug detection, vulnerability assessment, and formal
verification. This process relies on dynamic analysis, which requires collecting execution traces
from multiple programs runs to generate reliable invariants. Pei et al. [15] explored the use of
large language models for program invariant prediction. Their study found that models trained
on source code and fine-tuned for invariant generation can successfully perform invariant
prediction in a manner akin to static analysis, rather than relying solely on dynamic analysis.

4. Feature selection: Relevant features from the data indicative of business logic flaws
should be extracted. This would include, for example, measurable attributes that embody
the rules of a mission-critical workflow and whose deviation reliably signals a business-
logic flaw. Prior studies [2] show that parameters enforcing business-related limits (for in-
stance, price, quantity or age ranges) and “state variables”, such as role and user-id, govern
access decisions, so tampering with them directly undermines the intended behaviour
of an application. Empirical evidence [34] further demonstrates that out-of-range values
(e.g., age = −5), missing validation of the 〈role, user-id〉 session pair, or bypassing CSRF
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(Cross Site Request Forgery) token checks expose parameter-manipulation, access-control
and workflow-bypass defects. In the context of training AI models that automatically
detect such flaws, Saabel et al. [48] advise that “the first important step for our method-
ology is selecting the most relevant features to minimize training loss and to make AI
interpretations easier” (p. 17). Consequently, only attributes tightly coupled to business
invariants such as login-attempt frequency, value-range checks, session-role consistency,
and sanctioned page-transition sequences, should be promoted to the feature set, ensuring
that the AI focuses on anomalies that truly matter for business-logic vulnerability detection.
Domain knowledge can be used to select features that highlight anomalies in business
operations, and P7 emphasised the importance of “identifying mission-critical processes”
for examination for business logic flaws.

5. Anomaly detection: Appropriate techniques can be employed to identify deviations
from normal business logic patterns. Statistical methods and machine learning algorithms
can be used to detect when the system behaves in unexpected ways. For example, unusually
high transaction amounts that deviate from a user’s normal spending pattern can be detected,
and P3 also reported that credit-card fraud cases often go unnoticed. Unsupervised learning
methods can be used to detect previously unknown vulnerabilities [49]. Here, Daikon [14,42]
can also be used, as the likely invariants it generates from normal execution traces serve as
implicit behavioral baselines; violations of these invariants during later executions represent
deviations from expected logic, analogous to anomalies. Here again, AutoML frameworks
create automated algorithms to improve performance, reduce false positives, and eliminate
manual feature selection [46,47].

6. Validation and testing: Ensuring the model’s accuracy by testing it on data that was
not used during training helps in evaluating its real-world applicability. Detailed testing
should be performed to ensure the model accurately identifies vulnerabilities without
false positives [50]. P5 observed that layered testing was essential to confirm that the
model correctly identifies true vulnerabilities while minimising false alarms that could
cause unnecessary alerts, noting “unit tests prevent regressions and manual penetration
testing remains essential for logic-level flaws”. P1 stated “we rely on edge-case analysis
and scenario-based testing because linters can’t catch logic flaws”, suggesting that explicit
modelling exposes paths that scanners do not find. Selenium [13] can also be utilized in this
stage, specifically in functional testing, by simulating realistic user interactions to detect
logic flaws in web applications.

7. Integration and deployment: When a vulnerability is detected, it is necessary to
clarify in advance which teams will be alerted and how, and to develop the subsequent
action plan. By using AI in corporations, security personnel can respond more quickly to
threats after they have been identified. When a cyber-attack is detected, AI sends an alarm
to the information security control system. This enhances overall efficiencies in labor
utilisation [51]. Nevertheless, P5 noted that tool blind-spots meant that manual reviews
were still necessary in some instances.

8. Continuous learning and improvement: Establishing a living, evolving, system
is arguably the most critical aspect of this 8-stage process. AI systems must remain
relevant by adapting to changes in business processes and emerging security threats.
Hofesh [5] (paragraph 15) notes that “continuous testing and automation is . . .. . . the only
way to ensure maximum security in defending against BLVs, at least at a high level”. In this
context, P4 noted that “elevated privileges expire after 30 min; we adjust after each incident”.
Additionally, the model used must be kept up to date, and the way it works should be re-
viewed periodically. Interviewees confirmed that they practice incremental tuning, embedding
active-learning retraining loops in their maintenance procedures.
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The interview data provided first-hand practitioner perspectives that support the value
of the BLV framework outlined above. Practitioners’ reliance on UML flow diagrams under-
scores the relevance of Stage 1 (Identify business logic components), while their frustrations
with shallow logging highlights the importance of the data-engineering focus in Stage 2.
High-impact but low-visibility flaws—race conditions, silent API truncations and fraud
heuristics—map directly onto the anomaly-detection capability envisaged in Stages 5 and 6.
Policy expiry windows and post-incident script updates reported by participants provide
real-world evidence for embedding continuous-learning mechanisms into the on-going main-
tenance phase of the framework (Stage 8). Table 4 enhances the eight-stage framework by
clarifying the process, objective and expected consequences at each stage in the cycle.

Table 4. AI-supported BLV detection framework: process, objectives and consequences at each stage.

Stage Process Objective Consequences (Key Outcome)

1. Identify business logic
components

Map all business processes and
their interactions. Analyze source
code using data/control flow
analysis and annotated programs.
Utilize NLP, Graph Analysis, and
LLMs for analysis.

To understand the
complete structure and
flow of operations to
identify potential points of
failure.

A clear and comprehensive model
of the application’s intended logic
(e.g., in UML diagrams), which
serves as the “ground truth” for
detecting future deviations.

2. Data collection &
pre-processing

Collect historical data including
logs, user interactions,
and transaction records.
Use tools like Selenium to
simulate user behavior and
Daikon to collect execution traces
and infer program invariants.

To gather comprehensive
data from diverse sources
and establish a behavioral
baseline of normal
program execution.

A rich, structured dataset and a
“behavioral fingerprint” of the
application, addressing issues like
insufficient logging and providing
the foundation for model training.

3. AI model selection
& training

Train AI models (e.g., Neural
Networks, SVMs) using the
collected data and records of
known vulnerabilities.
Use LLMs for program invariant
prediction.

To train models on diverse
data to accurately
distinguish between
legitimate transactions
and potential
vulnerabilities manually
by Supervised ML or
automatically
using AutoML.

A trained, context-aware AI
model capable of identifying
known vulnerability patterns,
aiming to reduce the false
positives that practitioners report
with existing tools.

4. Feature selection

Extract relevant features from data
that indicate logic flaws.
Use domain knowledge to select
features that highlight anomalies
in mission-critical processes.
Utilize techniques like Decision
Trees and SHAP.

To identify the most
critical data characteristics
(e.g., abnormal login
frequency) that signal a
potential vulnerability.

A refined set of key risk factors
that allows the AI model to focus
on the most important signals,
improving detection accuracy and
efficiency.

5. Anomaly detection

Employ unsupervised learning
methods (e.g., Autoencoders,
Isolation Forest) to find deviations
from normal patterns.
Use violations of Daikon-inferred
invariants to flag anomalies.
AutoML for anomaly dedection.

To identify unexpected
system behaviors and
previously unknown
vulnerabilities that deviate
from established
business logic.

The detection of novel and hidden
logic flaws, such as credit-card
fraud that may have previously
gone unnoticed by other systems.
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Table 4. Cont.

Stage Process Objective Consequences (Key Outcome)

6. Validation & testing

Test the model on unseen data to
evaluate real-world performance.
Use layered testing, including
unit tests, manual penetration
testing, and functional testing
with Selenium.
Employ adversarial testing
techniques (e.g., FGSM, PGD).

To ensure the model
accurately identifies true
vulnerabilities while
minimizing false positives
and unnecessary alerts.

A robust, validated model with
higher accuracy and lower false
alarm rates, increasing trust in the
automated detection system.

7. Integration &
deployment

Integrate the model into the
security control system, sending
automated alerts upon threat
detection. Have a pre-defined
action plan for which teams will
be alerted and how they
will respond.

To deploy the validated
model into the live
environment and
automate the initial stages
of incident response.

Faster threat response times and
enhanced labor utilization,
though manual oversight may
still be needed for certain cases.

8. Continuous
learning & improvement

Establish a system that adapts to
changing business processes and
new threats.
Use Reinforcement Learning and
Active Learning to learn
from feedback.
Periodically retrain and review
the model, embedding learning
loops into maintenance.

To create a living, evolving
defense system that
maintains its relevance
and effectiveness
over time.

A resilient and adaptive security
framework that can defend
against emerging BLVs, reflecting
the practice of continuous
improvement seen in industry.

4. Discussion
The analysis of the interview material and development of the operational framework

highlight a number of issues worthy of further discussion. Firstly, the analysis indicates that,
at present, BLV detection remains largely reactive and resource intensive. Manual human
insight is crucial for identifying BLVs, but this manual-first approach creates substantial
bottlenecks due to limited quality assurance resources and time constraints. This issue is
especially pronounced in startup environments, where testing is often sacrificed under de-
livery pressure. As P5 noted, “we discover many BLVs in production because we can’t cover
every edge path”, highlighting the reactive nature of current detection practices. P4 sug-
gested that “a hybrid approach—tools like Amazon Q complementing manual analysis—is
most effective”. Additionally, the phenomenon of developer familiarity bias—the tendency
of developers to overlook flaws in their own code—indicates a need for external review
mechanisms, such as peer reviews or red-teaming (disaster recovery simulation) exercises.
Several participants also pointed out the limitations of automated tools, maintaining that
automated scanners lack business-context understanding. This underscores a significant
technological gap in current application security tools.

Secondly, BLVs are contextual, subtle, and have high impact. The findings reveal that
BLVs are not always caused by traditional technical bugs; instead, they often arise from
misunderstood or misimplemented business rules. These issues tend to present themselves
as subtle misconfigurations, timing problems, or gaps in logic that may appear correct under
normal conditions but fail in specific circumstances. For example, interviewees recorded
how a single permission misconfiguration resulted in unauthorized access to sensitive
data, while timing-related logic errors caused pricing discrepancies that directly impacted
revenue. Race conditions were found to create “phantom” funds, allowing users to spend
balances that did not actually exist. Additionally, weaknesses in fraud detection logic
enabled stolen credit cards to be used without triggering any alerts, and undocumented
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API limits led to silent data truncation, resulting in inaccurate outcomes. These examples
collectively demonstrate that BLVs can have a significant business impact, despite being
largely undetectable by conventional vulnerability detection tools. This highlights their
context-dependent nature and emphasizes the need for domain-specific understanding—a
capability that current automated scanning technologies often lack.

Thirdly, effective mitigation requires a hybrid, multi-layered approach. Effective manage-
ment of BLVs relies on a combination of human expertise, domain modeling, and selective au-
tomation. Interviewees articulated a layered defence model that blends formal testing, domain
modelling and selective automation. A common pattern starts with unit tests for regressions,
moves to client-oriented user acceptance testing (UAT), and culminates in manual penetration
testing focused on logic abuse. Additionally, workflow modeling and scenario-based testing
were emphasized as being of particular value for revealing hidden logic paths. By simulating
realistic user interactions to identify logic flaws in web applications, Selenium [13] can be
useful for functional testing. Tools like Amazon Q were mentioned as helpful in identifying
anomalies that require human verification, suggesting a promising human-in-the-loop model
for future BLV detection systems. In stage 2 (data collection and pre-processing), program
invariants can be found using tools like Daikon [14,42] or using LLM techniques [15]. Impor-
tantly, companies that adopted least privilege access policies with time-bound permissions
demonstrated proactive risk management, showing that operational guardrails can limit the
impact of undetected BLVs. Although no single practice dominates, the emerging best practice
is clear: combine multi-stage human testing and explicit business-workflow modelling with
lightweight, context-aware automation, thus exploiting the strengths of each while recognising
the current limits of machine-only solutions. Program invariants are also useful for anomaly
detection in BLV.

Fourthly, the detection framework put forward here can be used within and alongside
the software development life cycle (SDLC). Each stage of the framework can be aligned
with standard SDLC phases—from requirements gathering to software maintenance—and
incorporated into each phase as appropriate. The integration of domain-specific modeling,
layered testing strategies, and hybrid automation guided by human expertise enables
early identification and mitigation of BLVs throughout the SDLC. Further, the interview
data provided insights into how two modern software development approaches, low-
code platforms and DevSecOps pipelines, affect the risks and opportunities for managing
BLVs. Low-code platforms emerged in the interviews as a double-edged sword for BLV
management as noted by Lethbridge [52]. Participants praised the speed at which visual,
drag-and-drop workflows can be presented to clients and refined during UAT. Participant
P6, for example, noted that their in-house low-code tool “allows us to move from needs
analysis to a working prototype in just days, giving us adequate time for UAT before
the release”. However, this rapid development can conceal underlying complexities.
Developers often introduce “nice-to-have” features on the fly, leading to undocumented
paths that may compromise the integrity of business rules. P1, whose startup business
integrates custom code into FlutterFlow (an AI app builder), admitted that after a few
sprints, “the system becomes harder to control and debug”. This concern was echoed by P5,
who observed that low-code components generated by LLMs sometimes expose API keys
or embed insecure defaults. Overall, these insights suggest that while low-code can shorten
feedback cycles—an advantage for BLV discovery—it also necessitates the explicit export of
visual flows into machine-readable graphs. This practice would enable logic-aware testing
and anomaly detection, allowing for the identification of issues that might not be obvious
to the naked eye.

The discussion around DevSecOps paints a complementary picture: while automation
is widespread, its effectiveness often stops at syntax checks. Participants using continuous
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integration-continuous delivery (CI/CD) pipelines reported having robust static scans and
unit-test gates—as observed by Kushwaha et al. [53]—but acknowledged that these tools
are generally insufficient for detecting BLVs. For example, even large Software-as-a-Service
(SaaS) teams, utilizing hybrid services like Amazon Q, admitted that their focus tends
to be more on infrastructure vulnerabilities rather than logic flaws. Despite this limita-
tion, the DevSecOps culture that includes layered environments (e.g., Development, Test,
Pre-Production, Production) remains valuable. As one participant pointed out, “different
QA eyes at each stage increase the likelihood of detecting BLVs”. The message is clear:
while DevSecOps already provides the framework for automation, it lacks awareness of
business context. By incorporating logic-specific test cases and policy checks as essential
build gates—using workflow artifacts generated from low-code tools—organizations can
effectively combine rapid delivery with reliable detection of BLVs.

Automated machine-learning (AutoML) frameworks, such as the open-source, distributed,
in-memory H2O platform, simplify the processes of data preparation, al-gorithm selection,
and hyperparameter tuning. By utilizing an AutoML framework in Stage 3 for model selection
and training, practitioners can efficiently train and rapidly deploy high-performing predictive
models with minimal manual effort. This approach not only reduces the occurrence of false
positives but also eliminates the need for manual feature selection [46,47].

Figure 4 visually contrasts this advanced AutoML approach with the traditional ma-
chine learning workflow. In the traditional approach, depicted in the top loop, a human
practitioner must manually perform each laborious step: data pre-processing, feature ex-
traction and selection, model selection and tuning, and ensemble building. In contrast, the
AutoML approach, shown in the bottom loop, automates these same complex and iterative
steps, replacing the manual effort with a machine-driven process. The primary advantage il-
lustrated is the significant reduction in time and specialised expertise required, allowing the
practitioner to move from data collection to analyzing results more efficiently. This automa-
tion frees up human experts to focus on interpreting the final predictions and delivering
business value, rather than on the time-consuming mechanics of model development.

Figure 4. Comparison of the Traditional ML and AutoML approaches. Based on: [46].
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Lastly, Mengi et al. [54] (p. 1) state that “Machine learning (ML) has become an impor-
tant part of many aspects of our daily life. High-performance machine learning applications,
on the other hand, necessitate the use of highly qualified data scientists and domain special-
ists. Automated machine learning (AutoML) aims to reduce the need for data scientists by
allowing domain experts to automatically construct machine learning applications without
extensive statistical and machine learning knowledge”. This suggests that this concept is
likely to increase in significance in the near future.

5. Conclusions
This study explores the topic of BLVs and sets out how AI may be deployed to enhance

the detection and prevention of BLVs within wider organisational cybersecurity operations.
From the existing literature, key AI-driven methodologies were identified, including machine
learning-based anomaly detection, automated risk assessment, and proactive cybersecurity
response mechanisms. In addition, the findings from the interviews provide a connection
between practitioner experience and actionable strategy. They engender a comprehensive
understanding of BLVs as complex, high-risk challenges that require a multi-dimensional
response. Interview evidence allowed for the development of a more robust, AI-supported
framework that can systematically detect and mitigate business logic flaws.

While this study provides an operational framework for AI-driven BLV detection, several
limitations should be acknowledged. Although the development of the framework was sup-
ported by practitioner input, it has not yet been empirically tested and evaluated in real-world
environments, requiring follow-on case study experimental implementations. Additionally,
while the study explores AI and GenAI applications in cybersecurity, it does not compare
the effectiveness of specific AI models or evaluate their performance in real-time security
operations. A more in-depth analysis of machine learning techniques, their detection accuracy,
and computational efficiency would further strengthen the framework’s applicability. More-
over, the study does not address the potential risks of AI-based security solutions, such as
false positives, adversarial attacks, or ethical concerns related to AI-driven automation.

Despite these limitations, the authors believe the study establishes a solid founda-
tion for future research by highlighting AI’s transformative role in business logic security.
Addressing these challenges will help refine AI-driven cybersecurity strategies, ensuring
scalable, adaptable, and resilient security frameworks for modern enterprises. The findings
clearly indicate that traditional security tools often fail to address BLVs, which arise from
flaws in the logical flow of business processes rather than conventional security weaknesses.
The proposed framework provides a structured approach to overcoming these challenges.
It integrates AI techniques for real-time monitoring, automated threat identification, and
continuous learning-based cybersecurity defences. Future research could include appli-
cation of the framework in different industries and organisational settings to assess its
practical effectiveness and adaptability. The integration of the framework with software
development methodologies would also be a profitable line of future enquiry, as BLVs
often originate in the software development process. Quantitative studies on the costs
and benefits of BLV detection would also prove of value and support the business case for
required investment in BLV detection frameworks such as that put forward here.

The potential of AI and GenAI constitutes a transformational shift in cybersecurity,
enabling businesses to move from reactive to proactive security strategies. Organisations
can benefit strategically from investment in AI-driven cybersecurity architectures, incident
response automation, and AI-enhanced security testing to safeguard business processes
against evolving cyber threats. By fostering collaboration between cybersecurity professionals,
AI researchers, and policymakers, more resilient and adaptive cybersecurity frameworks can
be built that align with the requirements of modern business in the digital era.
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Appendix A. Systematic Literature Review Detail

Table A1. Search strings used and sources located.

RQ Search Terms Count

IEEE

RQ1 (“All Metadata”:“Business Logic Vulnerabilities”) 1
RQ1 (“All Metadata”:“Logic Attacks”) 10
RQ1 (“All Metadata”:Business Logic Vulnerabilities) AND (“All Metadata”:AI) 0
RQ1 (“All Metadata”:Logic Attacks) AND (“All Metadata”:AI) 188

RQ1 (“All Metadata”:AI) AND (“All Metadata”:business process) AND (“All
Metadata”:cyber security) 115

RQ1 (“All Metadata”:Artificial intelligence) AND (“All Metadata”:“process security”) 39

RQ1 (“All Metadata”:Artificial intelligence) AND
(“All Metadata”:“business security”) 14

RQ1 (“All Metadata”:Artificial intelligence) AND (“All Metadata”:business process)
AND (“All Metadata”:compromise) 1

RQ2 (“All Metadata”:“Artificial intelligence”) AND
(“All Metadata”:vulnerability scanner) 20

RQ2
(“All Metadata”:“Artificial intelligence”) AND (“All Metadata”:Framework)
AND (“All Metadata”:Business Security) AND
(“All Metadata”:Vulnerability Detection)

16

RQ2 (“All Metadata”:“Artificial intelligence”) AND (“All Metadata”:threat detection)
AND (“All Metadata”:Business Process) 89

Scopus

RQ1 ALL (“Business Logic Vulnerabilities”) 20
RQ1 ALL (“Logic Attacks”) 117
RQ1 ALL (“Business Logic Vulnerabilities”) AND ALL (“AI”) 0
RQ1 ALL (“Logic Attacks”) AND ALL (“AI”) 5

RQ1 ALL (“AI”) AND ALL (“Business Process”) AND ALL (“Cyber Security”) AND
ALL (“Corporate”) 25

RQ1 ALL (Artificial Intelligence) AND (“Business Process Security”) AND
(“Business Vulnerability”) 9

RQ1 ALL (Artificial Intelligence) AND (“Business Logic Vulnerability”) 6

RQ1 ALL (Artificial intelligence) AND ALL (“business process”) AND ALL
(“Generative AI”) AND (“Cybersecurity”) 3

RQ2 ALL (“Artificial Intelligence”) AND (“Vulnerability Scanner”) AND
(“Cybersecurity”) AND (“Detection”) 64

RQ2 ALL (“Artificial Intelligence”) AND (“Framework”) AND (“Business Security”)
AND (“Vulnerability”) 23

RQ2 ALL (“Artificial Intelligence”) AND (“Threat Detection”) AND
(“Business Process”) 128
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Table A1. Cont.

RQ Search Terms Count

ScienceDirect

RQ1 “Business Logic Vulnerabilities” 6
RQ1 “Logic Attacks” 68
RQ1 “Business Logic Vulnerabilities” AND “AI” 1
RQ1 “Logic Attacks” AND “AI” 14

RQ1 “Artificial Intelligence” AND “Business Process” AND “Cyber Security” AND
“Corporate Security” 6

RQ1 “Artificial Intelligence” AND “Business Vulnerability” 10
RQ1 “Artificial Intelligence” AND “Business Logic Vulnerability” 1

RQ1 Artificial intelligence AND “business process” AND “Generative AI”
AND “Cybersecurity” 27

RQ2 “Artificial Intelligence” AND “Vulnerability Scanner” AND “Cybersecurity” 42
RQ2 “Artificial Intelligence” AND “Threat Detection” AND “Business Process” 55

RQ2 Artificial Intelligence AND “Framework” AND “Business Security”
AND “Vulnerability” 29

Table A2. Business Logic Vulnerability related definitions from the Systematic Literature Review.

Li et al. [33] “The business logic in the software design
phase reflects the interaction between the
objects. Such interactions may be exploited by
an attacker, which can be used to break
software system for illegitimate interests.”

Stergiopoulos et al. [8] “Application Business Logic Vulnerability”
(BLV) is the flaw present in the faulty
implementation of business logic rules within
the application code.”

Stergiopoulos et al. [8] “Business logic vulnerabilities are an important
class of defects that are the result of faulty
application logic. Business logic refers to
requirements implemented in algorithms that
reflect the intended functionality of
an application.”

Pellegrino and Balzarotti [26] “Logic vulnerabilities still lack a formal
definition, but, in general, they are often the
consequence of an insufficient validation of the
business process of a web application.”

Deepa & Thilagam [2] “Business Logic Vulnerabilities (BLVs) are
weaknesses that commonly allow attackers to
manipulate the business logic of an application.
They are easily exploitable, and the attacks
exploiting BLVs are legitimate application
transactions used to carry out an undesirable
operation that is not part of normal
business practice.”

Ghorbanzadeh and Shahriari [11] “Logic vulnerabilities are due to defects in the
application logic implementation such that the
application logic is not the logic that was
expected. Indeed, such vulnerabilities pattern
depends on the design and business logic of
the application. There are no specific and
common patterns for application logic
vulnerabilities in commercial applications.”
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Table A2. Cont.

Kim et al. [28] “Business logic vulnerabilities occur when the
application logic is exposed to the client-side,
allowing attackers to tamper with the business
flow and perform unintended operations.”

Zeller et al. [7] “An important class of security problems are
vulnerabilities in business rules. (. . .) Such
attacks are called logical attacks and pose a
distinct challenge to securing software
applications. In logical attacks, weaknesses in
the business rules are identified and exploited
with the intent of disrupting services offered to
legitimate users.”

OWASP [6] “Weaknesses in this category identify some of
the underlying problems that commonly allow
attackers to manipulate the business logic of an
application. Errors in business logic can be
devastating to an entire application. They can
be difficult to find automatically, since they
typically involve legitimate use of the
application’s functionality. However, many
business logic errors can exhibit patterns that
are similar to well-understood implementation
and design weaknesses.”

PortSwigger [27] “Business logic vulnerabilities are flaws in the
design and implementation of an application
that allow an attacker to elicit unintended
behavior. This potentially enables attackers to
manipulate legitimate functionality to achieve
a malicious goal. These flaws are generally the
result of failing to anticipate unusual
application states that may occur and,
consequently, failing to handle them safely.”
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