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1, XU HAN

ABSTRACT As financial systems become increasingly complex and interconnected, traditional fraud
detection methods struggle to keep pace with sophisticated fraudulent activities. This article introduces
FraudGNN-RL, an innovative framework that combines Graph Neural Networks (GNNs) with Reinforce-
ment Learning (RL) for adaptive and context-aware financial fraud detection. Our approach models financial
transactions as a dynamic graph, where entities (e.g., users, merchants) are nodes and transactions form
edges. We propose a novel GNN architecture, Temporal-Spatial-Semantic Graph Convolution (TSSGC),
which simultaneously captures temporal patterns, spatial relationships, and semantic information in transac-
tion data. The RL component, implemented as a Deep Q-Network (DQN), dynamically adjusts the fraud
detection threshold and feature importance, allowing the model to adapt to evolving fraud patterns and
minimize detection costs. We further introduce a Federated Learning scheme to enable collaborative model
training across multiple financial institutions while preserving data privacy. Extensive experiments on a large-
scale, real-world financial dataset demonstrate that FraudGNN-RL outperforms state-of-the-art baselines,
achieving a 97.3% F1-score and reducing false positives by 31% compared to the best-performing baseline.
Our framework also shows remarkable resilience to concept drift and adversarial attacks, maintaining high
performance over extended periods. These results suggest that FraudGNN-RL offers a robust, adaptive, and
privacy-preserving solution for financial fraud detection in the era of Big Data and interconnected financial
ecosystems.

INDEX TERMS Financial fraud detection, graph neural networks, reinforcement learning, federated learn-
ing, adaptive threshold, concept drift.

4 (Member, IEEE), JINGYUN YANG?>,

I. INTRODUCTION

Financial fraud has emerged as a critical challenge in the dig-
ital era, with global losses escalating to an estimated $5.127
trillion annually [1]. This staggering figure not only represents
direct monetary losses but also undermines trust in finan-
cial systems, impeding economic growth and stability. The
rapid digitization of financial services, while revolutionizing

the way we conduct transactions, has inadvertently created
a complex landscape ripe for exploitation by sophisticated
fraudsters [2]. The evolution of financial fraud is character-
ized by several key trends. First, modern fraudsters employ
intricate schemes that span multiple transactions, accounts,
and even institutions, making detection based on isolated
events ineffective [3]. Second, fraud patterns evolve quickly,

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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often outpacing the update cycles of traditional detection sys-
tems [4]. Third, stringent data protection regulations limit
the sharing of financial data across institutions, hindering
collaborative fraud detection efforts [5]. Lastly, fraudulent
transactions typically constitute a small fraction of overall
transactions, creating challenges for machine learning models
due to severe class imbalance [6].

Traditional approaches to fraud detection, including rule-
based systems and static machine learning models, face
significant limitations in addressing these challenges. Rule-
based systems, while interpretable, lack the flexibility to
adapt to new fraud patterns without manual intervention [7].
Static machine learning models, although more adaptive,
often treat transactions as independent events, failing to
capture the interconnected nature of financial activities [8].
Recent advancements in deep learning have shown promise
in improving fraud detection accuracy [9]. However, these
approaches typically suffer from several drawbacks. First,
most models fail to incorporate the broader context of
transactions, including temporal patterns and relationships
between entities [10]. Second, fixed models struggle to main-
tain performance as fraud patterns evolve, a phenomenon
known as concept drift [11]. Third, centralized learning
approaches often require pooling sensitive financial data, rais-
ing significant privacy and regulatory concerns [12]. Lastly,
most models use fixed thresholds for fraud classification,
which may not be optimal across different scenarios or over
time [13].

To address these challenges, we propose FraudGNN-RL,
a novel framework that synergistically combines Graph Neu-
ral Networks (GNNs) and Reinforcement Learning (RL) for
adaptive financial fraud detection. Our approach is moti-
vated by several key insights. First, financial ecosystems can
be naturally modeled as graphs, with entities (e.g., users,
merchants) as nodes and transactions as edges. This rep-
resentation allows us to capture the complex relationships
and dependencies in financial data [14]. Second, effective
fraud detection requires simultaneous consideration of tem-
poral patterns (when transactions occur), spatial relationships
(how entities are connected), and semantic information (what
the transactions represent) [15]. Third, reinforcement learn-
ing provides a framework for dynamically adjusting detection
strategies based on feedback, allowing the system to adapt
to evolving fraud patterns [16]. Lastly, federated learning
enables model training across multiple institutions without
sharing raw data, addressing privacy concerns [17].

FraudGNN-RL addresses the identified challenges through
several key components. First, we introduce a novel GNN
architecture, Temporal-Spatial-Semantic Graph Convolution
(TSSGC), which simultaneously captures temporal patterns,
spatial relationships, and semantic information in financial
transaction data. TSSGC addresses the challenge of lim-
ited contextual understanding by providing a comprehensive
view of the financial ecosystem. Second, we employ a Deep
Q-Network (DQN) to dynamically adjust fraud detection
thresholds and feature importance. This component tackles
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the lack of adaptivity and rigidity in decision making by en-
abling real-time adaptation to evolving fraud patterns. Third,
our approach enables collaborative model training across
multiple financial institutions while preserving data privacy,
addressing both privacy concerns and the challenge of limited
data availability at individual institutions. Lastly, we incor-
porate techniques to handle the inherent class imbalance in
fraud detection, improving model performance on the mi-
nority (fraudulent) class. Through extensive experiments on
a large-scale, real-world financial dataset, we demonstrate
that FraudGNN-RL significantly outperforms state-of-the-art
baselines in terms of detection accuracy, false positive reduc-
tion, and resilience to concept drift. Our framework shows
remarkable adaptability to evolving fraud patterns and ro-
bustness against adversarial attacks, representing a significant
advancement in financial fraud detection.

The rest of this article is organized as follows: Section II
reviews related work in financial fraud detection, graph neural
networks, and reinforcement learning. Section III provides
preliminaries on GNNs and RL. Section IV details our pro-
posed FraudGNN-RL framework. Section V presents our
experimental setup and results. Finally, Section VI concludes
the article and discusses future research directions.

By addressing the limitations of existing approaches and
introducing novel techniques for adaptive, privacy-preserving
fraud detection, FraudGNN-RL represents a significant step
forward in safeguarding financial systems against evolving
fraud threats. Our work not only contributes to the field of
financial fraud detection but also opens up new avenues for ap-
plying graph-based reinforcement learning to other domains
characterized by complex, dynamic relationships and the need
for adaptive decision-making.

II. RELATED WORKS

Our work builds upon and extends several key areas of re-
search: financial fraud detection, graph neural networks, and
reinforcement learning. In this section, we provide a com-
prehensive review of the relevant literature in each of these
domains and highlight the gaps that our work aims to address.

A. FINANCIAL FRAUD DETECTION

Traditional fraud detection started with rule-based and sta-
tistical methods, where Bhattacharyya et al. [2] compared
various data mining approaches and highlighted class imbal-
ance challenges, while Bolton and Hand [18] introduced peer
group analysis for identifying abnormal spending patterns.
The field evolved with machine learning advancements, as
Whitrow et al. [19] improved feature extraction through trans-
action aggregation, and Pozzolo et al. [20] tackled concept
drift using sliding windows. Deep learning further enhanced
detection capabilities, with Roy et al. [8] demonstrating neural
networks’ superiority in capturing non-linear patterns, and
Wang et al. [9] combining autoencoders with random forests
for imbalanced data. However, challenges remain in handling
the interconnected nature of transactions and evolving fraud
patterns, which Dal Pozzolo et al. [4] attempted to address
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through adaptive learning, though their solution still requires
periodic retraining.

B. GRAPH-BASED APPROACHES IN FRAUD DETECTION
Graph-based methods have shown promise in financial fraud
detection through their ability to model complex transac-
tion relationships. Akoglu et al. [21] surveyed graph-based
anomaly detection methods, highlighting techniques like
community detection and subgraph mining for identifying
fraudulent patterns. Liu et al. [10] introduced an isolation-
based method for graph-structured data, though it didn’t fully
utilize temporal transaction patterns. The advent of Graph
Neural Networks brought significant advances, with Kipf and
Welling [22] introducing GCNs and Hamilton et al. [15]
proposing GraphSAGE for dynamic network embedding. Re-
cent works have further enhanced these approaches, with Dou
et al. [13] developing an attention-based GNN for detect-
ing camouflaged fraudsters, and Liu et al. [23] integrating
multi-view financial relationships in a heterogeneous graph
framework, although these methods still lack adaptivity to
evolving fraud patterns.

C. REINFORCEMENT LEARNING IN FINANCIAL
APPLICATIONS

Reinforcement Learning (RL) has shown great potential in
various financial applications, including trading, portfolio
management, and risk assessment. Sutton and Barto [16] pro-
vided a comprehensive introduction to RL, highlighting its
ability to learn optimal policies in dynamic environments, a
characteristic particularly relevant to the ever-changing land-
scape of financial fraud. In the context of algorithmic trading,
Deng et al. [24] demonstrated how deep reinforcement learn-
ing can be used to learn trading strategies directly from market
data. Their approach, which combines Deep Q-Networks with
fuzzy learning, showcases RL’s ability to make sequential
decisions in complex, dynamic environments — a capability
highly relevant to fraud detection. Mnih et al. [25] introduced
Deep Q-Networks, which combined Q-learning with deep
neural networks to achieve human-level performance in Atari
games. This breakthrough has inspired applications in various
domains, including finance, where the ability to process high-
dimensional input and learn complex strategies is crucial. In
the realm of fraud detection, however, the application of RL
has been limited. Lebichot et al. [12] proposed a taxonomy
of supervised learning methods for concept drift adaptation in
credit card fraud detection. While they discussed the potential
of online learning methods, they did not explore the use of
RL for dynamic threshold adjustment or feature importance
weighting.

D. FEDERATED LEARNING FOR PRIVACY-PRESERVING
COLLABORATION

The need for privacy-preserving collaborative learning in
financial fraud detection has led to increased interest in fed-
erated learning. McMahan et al. [17] introduced the concept
of federated learning, demonstrating how models can be
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trained on decentralized data without compromising privacy.
Their FedAvg algorithm has since become a cornerstone of
federated learning research. In the financial sector, where data
privacy is paramount, federated learning offers a promising
solution for collaborative model training. Yang et al. [26]
provided a comprehensive survey of federated learning, dis-
cussing its applications in various domains, including finance.
They highlighted the potential of federated learning in en-
abling banks and financial institutions to collaboratively train
fraud detection models without sharing sensitive customer
data. Zheng et al. [27] proposed a vertical federated learning
framework for credit card fraud detection, allowing institu-
tions to jointly train models using different feature subsets of
the same sample set. Their approach demonstrates how fed-
erated learning can leverage diverse data sources to improve
fraud detection performance while maintaining data privacy.
Recent work by Aurna et al. (2023) [28] has demonstrated
the effectiveness of federated learning in credit card fraud
detection, achieving promising results through the combina-
tion of sampling methods and deep learning algorithms. While
their approach provides strong baseline performance, it treats
transactions as independent events and uses fixed decision
thresholds, potentially limiting its ability to capture complex
fraud patterns and adapt to evolving threats. Though these
previous works, the application of federated learning to graph-
based models for fraud detection remains largely unexplored.
The challenge lies in developing efficient methods for sharing
and aggregating graph-structured data and model updates in
a privacy-preserving manner. Our work aims to address this
gap by introducing a federated learning scheme specifically
designed for graph neural networks in the context of financial
fraud detection.

E. RESEARCH GAPS AND OUR CONTRIBUTIONS

While the aforementioned works have made significant con-
tributions to financial fraud detection, several important gaps
remain:

1. Most existing methods fail to simultaneously capture
the temporal, spatial, and semantic aspects of financial
transactions in a unified framework.

2. The dynamic nature of fraud patterns and the need for
continuous adaptation are not adequately addressed by
current approaches.

3. The potential of reinforcement learning for adaptive
fraud detection, particularly in conjunction with graph-
based models, has not been fully explored.

4. Privacy-preserving collaborative learning in the context
of graph-based fraud detection remains an open chal-
lenge.

Our work, FraudGNN-RL, aims to address these gaps by in-
troducing a novel framework that combines Temporal-Spatial-
Semantic Graph Convolution with reinforcement learning
for adaptive fraud detection. Furthermore, we incorporate
a federated learning scheme to enable privacy-preserving
collaboration among financial institutions. By doing so, we
contribute to the advancement of financial fraud detection

VOLUME 6, 2025



IEEE Open Journal of the
Computer Society

O

techniques, offering a more comprehensive, adaptive, and
privacy-aware solution to this critical problem.

IIl. PRELIMINARIES

In this section, we introduce the fundamental concepts and no-
tations used throughout our article. We begin by defining the
graph representation of financial transaction data, followed
by an overview of Graph Neural Networks, Reinforcement
Learning, and Federated Learning.

A. GRAPH REPRESENTATION OF FINANCIAL
TRANSACTIONS

We model the financial transaction network as a heteroge-
neous graph G = (V, E, X)), where:

o V ={vy,vy,...,v,} is the set of nodes representing en-

tities (e.g., users, merchants).

o E={e,e,...,ey} is the set of edges representing

transactions between entities.

® X = {x1,x2,...,X,} is the set of node feature vectors,

where x; € R? is the feature vector of node v;.

Each edge ex = (v;, vj, &k, fi) represents a transaction from
entity v; to entity v; at time #; with feature vector fj € R!. The
graph G is dynamic, evolving over time as new transactions
occur.

B. GRAPH NEURAL NETWORKS
Graph Neural Networks are deep learning models designed to
operate on graph-structured data. The key idea behind GNNs
is to update node representations by aggregating information
from their neighborhoods.

A general form of the node update in a GNN layer can be
expressed as:

W =5 (W(” . AGGREGATE ({hy) ieN (i)}) + b(”)
(D

where hgl) is the feature vector of node i at layer I, N'(i) is
the set of neighbors of node i, W) and ») are learnable
parameters, and o is a non-linear activation function. The
AGGREGATE function can take various forms, such as mean,
sum, or more sophisticated pooling operations.

C. REINFORCEMENT LEARNING
Reinforcement Learning is a framework for learning to make
sequences of decisions in an environment to maximize a
cumulative reward. The RL problem is typically formulated
as a Markov Decision Process (MDP), defined by the tuple
(S,A, P,R, y), where:

e S is the set of states
A is the set of actions
P:SxAxS—[0,1] is the transition probability
function
R :§ x A — Ris the reward function
y € [0, 1] is the discount factor
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The goal of RL is to learn a policy w : § — A that maxi-
mizes the expected cumulative discounted reward:

o

J(0) = Err [Z V'RGs;. a»] @)
=0

where T = (so, ag, $1, a1, . . .) 1S a trajectory sampled accord-

ing to policy .

D. Q-LEARNING AND DEEP Q-NETWORKS

Q-learning is a model-free RL algorithm that learns the op-
timal action-value function Q*(s, a), which represents the
expected return of taking action a in state s and then following
the optimal policy. The Q-function is updated iteratively:

O(st, ar) < Oy, a0) +afry +y max O(si11,a) — Q(st, ar)]
3

where « is the learning rate.

Deep Q-Networks (DQN) [25] extend Q-learning by using
a deep neural network to approximate the Q-function. The
network is trained to minimize the loss:

LO) = Egsarspl(r +y max 0(s, ' 67) = O(s, a; 0))°]
)

where D is a replay buffer of past experiences, and 6~ are the
parameters of a target network that is periodically updated to
stabilize training.

E. FEDERATED LEARNING
Federated Learning is a distributed machine learning
paradigm that enables training models on decentralized data.
In the context of financial fraud detection, FL allows multiple
institutions to collaboratively train a model without sharing
raw data.
The general FL process can be described as follows:
1. Initialize a global model 6.
2. Foreachroundr =1,2,...,T:
a. Select a subset of clients C;,
b. Each selected client i updates the model locally:
6] = LocalUpdate(6,_1),
c. Aggregate the local models: 6, = Aggregate({6; :
i€ G)).
The FedAvg algorithm [17] is a popular implementation of
FL, where the aggregation is a weighted average of the local
models.

F. TEMPORAL-SPATIAL-SEMANTIC GRAPH CONVOLUTION
Building upon the standard GNN formulation, we introduce
the concept of Temporal-Spatial-Semantic Graph Convolu-
tion, which forms the basis of our FraudGNN-RL framework.
TSSGC extends the traditional graph convolution operation
to incorporate temporal dynamics, spatial relationships, and
semantic information simultaneously.
The TSSGC operation can be formulated as:

RHD = oW, - TEMP(i) + W - SPAT(i)
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FIGURE 1. Overview of the FraudGNN-RL framework for adaptive and privacy-preserving financial fraud detection.

+w . SEM@) + b)) 5)
where:

e TEMP(i) captures the temporal patterns of node i’s
transactions
SPAT(i) aggregates spatial information from node i’s
neighborhood
SEM(i) incorporates semantic features of node i
W,(l), Ws(l), W,f,l) are learnable weight matrices for tem-
poral, spatial, and semantic components respectively

The specific implementations of TEMP, SPAT, and SEM
functions will be detailed in the Methodology section.

These preliminaries provide the foundation for understand-
ing our FraudGNN-RL framework, which integrates GNNss,
RL, and FL for adaptive and privacy-preserving financial
fraud detection.

IV. METHODOLOGY

In this section, we present our FraudGNN-RL framework for
adaptive and privacy-preserving financial fraud detection. Our
approach integrates Temporal-Spatial-Semantic Graph Con-
volution, Reinforcement Learning, and Federated Learning to
address the challenges of evolving fraud patterns and data
privacy. Fig. 1 provides an overview of our framework.

A. TEMPORAL-SPATIAL-SEMANTIC GRAPH CONVOLUTION
The core of our framework is the TSSGC layer, which simul-
taneously captures temporal dynamics, spatial relationships,
and semantic information in financial transaction networks.
In designing our TSSGC architecture, we carefully consid-
ered various graph neural network variants, including Graph
Convolutional Networks (GCN), Graph Attention Networks
(GAT), and Graph Isomorphism Networks (GIN). While GAT
and GIN have demonstrated superior performance in certain
graph learning tasks, our preliminary experiments revealed
that the simpler GCN architecture offers several key advan-
tages in our specific fraud detection context: 1) Training
Stability: The relatively simple structure of GCN provides
more stable training dynamics, especially crucial in federated
learning settings where model updates are aggregated across
multiple institutions. More complex architectures like GAT
and GIN, while theoretically more expressive, can introduce
instability during federated training due to their attention
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mechanisms and more complex parameter spaces. 2) Com-
putational Efficiency: In financial fraud detection, where
real-time processing is often required, GCN offers a bet-
ter balance between model expressiveness and computational
overhead. This is particularly important when processing large
volumes of transaction data. 3) Robustness: Financial trans-
action networks often contain inherent noise and variations.
GCN’s message passing mechanism has shown robust perfor-
mance in handling such noise without overfitting to spurious
patterns.

1) TEMPORAL MODELING

Financial fraud often exhibits specific temporal patterns, such
as sudden changes in transaction frequency or amounts. Tradi-
tional GNNgs fail to capture these crucial temporal dynamics.
To address this challenge, we model temporal information
using a combination of time-aware attention and recurrent
neural networks:

TEMP(i) = GRU{(fx, ox)|(vi, vy, &, fr) € Ei})  (6)

where E; is the set of edges connected to node i, GRU is a
Gated Recurrent Unit, and o, is a time-aware attention weight:

_ exp(—Btnow — 1))
Z(ui,uj,t,,ﬁ)eE,- exp(—Btuow — 1))

274

)

Here, B is a learnable parameter controlling the decay rate of
historical information.

2) SPATIAL MODELING

Fraudulent activities often involve complex patterns of trans-
actions between multiple entities. Capturing these spatial
relationships is crucial for accurate fraud detection. There-
fore, we employ a graph attention mechanism to aggregate
information from neighboring nodes:

SPAT(i) = Y aiWih;
JEN(D)

®)

where N (i) is the set of neighbors of node i, W; is a learnable
weight matrix, and «;; is the attention coefficient computed
as:
exp(LeakyReLU(a” [Wyh;||Wsh;]))
o =
7 Yo ken exp(LeakyReLU(a” [Wshi| Wshy 1))

€))
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Here, a is a learnable attention vector, and || denotes concate-
nation.

3) SEMANTIC MODELING

Different types of financial entities and transactions may
have distinct roles in fraudulent activities. Incorporating this
semantic information can enhance the model’s ability to dis-
tinguish between normal and fraudulent patterns. Therefore,
we introduce a semantic embedding layer:

SEM(i) = Wm[hiHetype(i)] (10)

where e;y,(;) 18 a learnable embedding vector for the type of
entity 7 (e.g., individual, merchant, bank), and W, is a weight
matrix.

The final TSSGC operation combines these components:

WD = oW TEMP(i) + W, - SPAT(i)

+wD . SEM(i) + b)) (1)

where o is a non-linear activation function, and Wt(l), Ws(l),
W,,(,l), and b are learnable parameters.

B. REINFORCEMENT LEARNING FOR ADAPTIVE FRAUD
DETECTION

Fraud patterns evolve over time, necessitating an adaptive
approach to fraud detection. Reinforcement learning provides
a framework for continually adjusting the model’s decision-
making process based on feedback. We formulate the fraud
detection problem as a Markov Decision Process where:

e State s;: The current graph embedding produced by the

TSSGC layers.

e Action a;: The fraud detection threshold and feature im-

portance weights.

e Reward r;: A combination of detection accuracy and

false positive rate.

Based on this, we employ a Deep Q-Network (DQN) to
learn the optimal policy. The Q-function is approximated by a
neural network Q(s, a; 6), which takes the graph embedding
as input and outputs Q-values for each possible action.

The DQN is trained to minimize the loss:

L) = Egarspl(r +y max 0(s, a';67) = O(s, a; 0)°]
(12)

where D is a replay buffer, and 6 are the parameters of a tar-
get network. The action space is continuous, representing the
fraud detection threshold and feature importance weights. We
discretize this space and use a variant of DQN called Deep Q-
Learning with Normalized Advantage Functions (NAF) [29]
to handle the continuous action space more effectively.

C. FEDERATED LEARNING FOR PRIVACY-PRESERVING
COLLABORATION

Financial institutions often cannot directly share transaction
data due to privacy concerns and regulations. Federated learn-
ing enables collaborative model training without exposing
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Algorithm 1: Federated Learning for FraudGNN-RL.
1: Initialize global model parameters 6
2:foreachroundr =1,2,..., 7T do

Select a subset of clients C;

for each client i € C; in parallel do
0} <« LocalUpdate(6;_1, G;) >> G; is the local
transaction graph

6: end for

7o 6 < &7 Yiec, 0 >Aggregate local models

8: end for

AR

sensitive data. We adapt the FedAvg algorithm [17] for our
graph-based model. The process is as follows:

The LocalUpdate function performs several steps of
stochastic gradient descent on the local data. To address the
challenge of graph data in federated learning, we employ
a graph alignment technique to ensure consistency across
different local graphs.

D. FRAUD DETECTION PIPELINE

The complete fraud detection pipeline (Fig. 2) operates as fol-
lows: First, new transactions are added to the graph G. Second,
the TSSGC layers process the updated graph to produce node
embeddings. Third, the RL agent selects an action (threshold
and feature weights) based on the current state. Fourth, trans-
actions are classified as fraudulent or legitimate based on the
selected action. Fifth, the model receives feedback (reward)
based on detection performance. Finally, the RL agent updates
its policy, and the process repeats.

This integrated approach allows for adaptive, privacy-
preserving fraud detection that can quickly respond to evolv-
ing fraud patterns while leveraging collaborative learning
across multiple financial institutions.

V. EXPERIMENTS

In this section, we present a comprehensive evaluation of
our FraudGNN-RL framework. We first describe the dataset
in detail, followed by thorough introductions to the baseline
methods and our experimental setup. Then, we provide de-
tailed analyses of our model’s performance, including overall
performance, ablation studies, and robustness tests.

A. EXPERIMENTAL SETUP

1) DATASET

We evaluate our model on three real-world finance-related
fraud detection datasets:

a) PaySim Mobile Money Dataset:

This synthetic dataset ! simulates mobile money transac-
tions based on a sample of real transactions extracted from one
month of financial logs from a mobile money service imple-
mented in an African country. The dataset contains 6,362,620
transactions, among which 8,213 (0.129%) are fraudulent.

Uhttps://www.kaggle.com/datasets/sriharshaeedala/financial-fraud-
detection-dataset
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Classification Feedback

(New Transactinns)—b(Update Graph)—bC[‘SSGC Processing

RL Action Selection ):

Next Iteration

(Update RL Policy

FIGURE 2. The complete version of fraud detection pipeline in FraudGNN-RL.

TABLE 1. Characteristics of the Fraud Detection Datasets

Dataset Transactions ~ Features  Fraud Rate  Time Span  Key Characteristics

PaySim 6,362,620 11 0.129% 30 days Mobile money transfers, clear
transaction flow

Credit Card 2023 >550,000 31 Imbalanced 2023 Anonymized features, tempo-
ral patterns

IEEE-CIS ~590,000 871*  Varied Sequential Rich identity and transaction

features

*Combined features from both transaction and identity data.

Each transaction record includes 11 features such as transac-
tion type (CASH-IN, CASH-OUT, DEBIT, PAYMENT, and
TRANSFER), amount, sender and recipient information, and
initial/final account balances. The data spans 744 hours (30
days) of simulation, with each step representing one hour.

b) Credit Card Fraud 2023 Dataset:

This dataset 2 comprises over 550,000 credit card transac-
tions made by European cardholders in 2023. Each transaction
is characterized by 31 features, with 28 principal components
(V1-V28) obtained through PCA transformation to protect
cardholder privacy, along with ‘“Amount’ and transaction time.
The binary class label indicates whether a transaction is
fraudulent (1) or legitimate (0). This dataset maintains the
real-world class imbalance characteristic of fraud detection
problems.

c) IEEE-CIS Fraud Detection Dataset:

This dataset ,* from a real-world e-commerce fraud detec-
tion challenge, contains approximately 590,000 online trans-
actions. Each transaction is described by two types of features:
transaction features (including ProductCD, card information,
address information, email domains, and various merchant
features M1-M9) and identity features (including Device-
Type, Devicelnfo, and identity indicators id_12-id_38). The
transactions are chronologically ordered, with TransactionDT
representing the time delta from a reference point. The dataset
is split into training and testing sets, maintaining the temporal
nature of fraud patterns.

Each dataset presents unique challenges:

® The PaySim dataset focuses on mobile money transfers

and provides clear transaction flow information

e The Credit Card 2023 dataset emphasizes privacy-

preserved feature representations while maintaining tem-
poral patterns

e The IEEE-CIS dataset offers rich contextual information

through both transaction and identity features

Table 1 summarizes the key characteristics of these
datasets. For reproducibility, we maintain the original

Zhttps://www.kaggle.com/datasets/nelgiriyewithana/credit-card-fraud-
detection-dataset-2023
3https://www.kaggle.com/competitions/ieee- fraud-detection/data
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train-test splits where provided, and for PaySim, we use an
80-20 random split while preserving the temporal order of
transactions.

d) Data Preprocessing:

For all datasets, we perform the following preprocessing
steps:

e Missing value imputation using mean values for numer-
ical features and mode for categorical features
Feature scaling using min-max normalization for numer-
ical features
One-hot encoding for categorical variables
Temporal feature extraction including hour of day, day of
week, and time differences between consecutive transac-
tions

For the IEEE-CIS dataset, we additionally merge the trans-
action and identity information using the TransactionID as the
key, handling cases where identity information is missing.

2) BASELINES
We compare FraudGNN-RL with the following state-of-the-
art methods:

e XGBoost [30]: An optimized distributed gradient boost-
ing library designed to be highly efficient, flexible and
portable. XGBoost has gained popularity in fraud de-
tection tasks due to its high performance and ability to
handle imbalanced datasets.

Isolation Forest [31]: An unsupervised learning al-
gorithm that explicitly identifies anomalies instead of
profiling normal points. It’s particularly suitable for
fraud detection as it can handle high-dimensional data
and doesn’t require a balanced dataset for training.
Local Outlier Factor (LOF) [32]: Another unsuper-
vised method that identifies anomalous data points by
measuring the local deviation of a given data point with
respect to its neighbors. LOF has shown effectiveness in
detecting fraudulent transactions that may not be cap-
tured by global outlier detection methods.

Deep Autoencoder (DeepAE) [33]: A type of artificial
neural network used to learn efficient codings of unla-
beled data. In fraud detection, autoencoders can learn to
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reconstruct normal transactions and identify fraudulent
ones based on high reconstruction error.

e Graph Convolutional Network (GCN) [22]: A variant
of convolutional neural networks that can work directly
on graphs and take advantage of their structural informa-
tion. GCNs have shown promise in fraud detection by
capturing the relationships between entities in financial
transaction networks.

e Graph-based Semi-supervised Fraud Detection
Framework(GraphSemi) [34]: This method translates
structured dataset to graph format through sample
similarity to improve label propagation effect on
graph, and adopts GraphSAGE algorithm for node
classification. The graph structure is modeled based on
Pearson correlation coefficient between samples.

¢ Auto-encoder based Graph Convolutional Networks
(AutoGCN) [35]: A novel neural network architecture
that combines auto-encoder modules with graph con-
volution for adaptive fraud detection. The auto-encoder
modules are trained by both node classification task and
reconstruction task, which can effectively extract struc-
tural features and handle missing data.

¢ Federated Learning-based Credit Card Fraud De-
tection (FedFraud) [28]: This work explores the ap-
plication of federated learning to fraud detection by
separately evaluating three different neural network ar-
chitectures (CNN, MLP, and LSTM). Each architecture
is trained independently using federated learning, with
various sampling techniques to address data imbalance.
In our comparative evaluation, we used the CNN variant
of FedFraud as it showed the best overall performance in
the original paper.

3) EVALUATION METRICS
We use the following metrics for evaluation:

e AUC-ROC: Area Under the Receiver Operating Charac-
teristic curve. This metric provides an aggregate measure
of performance across all possible classification thresh-
olds.

e AUC-PR: Area Under the Precision-Recall curve. This
metric is particularly useful for imbalanced datasets as it
focuses on the minority class (fraudulent transactions in
our case).

® F1-score: The harmonic mean of precision and recall. It
provides a single score that balances both precision and
recall.

e Recall@k%: The percentage of fraudulent transactions
detected when investigating the top k% of transactions
ranked by suspiciousness. This metric is particularly
relevant for practical fraud detection systems where re-
sources for manual investigation are limited.

4) IMPLEMENTATION DETAILS

We implement FraudGNN-RL using PyTorch (version 1.8.0)
and PyTorch Geometric (version 2.0.1). To apply our graph-
based model to this dataset, we construct a transaction graph
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where each transaction is a node, and edges are created based
on temporal proximity and feature similarity. Specifically, we
connect transactions that occur within a 1-hour window and
have a cosine similarity of their feature vectors above a thresh-
old of 0.9.

The TSSGC layers in our model consist of 3 graph convo-
lution layers with 64 hidden units each. We use ReLU as the
activation function and apply batch normalization after each
convolution layer. The RL agent uses a DQN with two hidden
layers of 128 units each. We use the Adam optimizer with a
learning rate of 0.001 and a batch size of 64.

We train the model for 100 epochs and use early stopping
with a patience of 10 epochs to prevent overfitting. For all
experiments, we use 5-fold cross-validation to ensure robust
results. All experiments are conducted on a server with an
NVIDIA V100 GPU and 32 GB of RAM.

For reproducibility, we set random seeds for all random
number generators (Python, NumPy, PyTorch) to 42. The
code for our implementation and experiments will be made
available upon publication.

B. EXPERIMENTAL RESULTS AND ANALYSIS

1) OVERALL PERFORMANCE

As shown in Table 2, our proposed FraudGNN-RL demon-
strates superior performance across all three datasets and
evaluation metrics. Traditional machine learning approaches
like XGBoost and Isolation Forest achieve moderate AUC-
ROC scores (around 0.93-0.95) but struggle with AUC-PR
(around 0.41-0.43), indicating their limitations in handling
highly imbalanced fraud detection tasks. The deep learn-
ing based methods, particularly DeepAE and GCN, show
improved performance by achieving higher AUC-PR scores
(0.52-0.58) and F1-scores (0.83-0.88).

Recent graph-based approaches have made significant
strides in fraud detection performance. GraphSemi effectively
leverages graph structure through sample similarity, achieving
AUC-ROC over 0.985 and Recall@1% around 89% across
all datasets. AutoGCN’s combination of auto-encoders with
graph convolution shows promising results, pushing the per-
formance further with AUC-ROC of 0.99 and Recall@1%
over 91%. The privacy-preserving FedFraud approach also
demonstrates competitive performance, though with slightly
lower detection rates.

Our FraudGNN-RL consistently outperforms these meth-
ods across all metrics and datasets. The performance advan-
tage is most evident in the practical metric Recall@ 1%, where
our model achieves 97.3%, 97.8%, and 96.9% on PaySim,
Credit Card 2023, and IEEE-CIS datasets respectively - a
significant improvement over the best baseline’s performance.
The high AUC-PR scores (around 0.65) also demonstrate our
model’s robustness in handling the extreme class imbalance
inherent in fraud detection tasks.

The superior performance of FraudGNN-RL can be at-
tributed to its innovative architecture. The combination of
graph neural networks and reinforcement learning enables
adaptive feature learning and decision making, while the
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TABLE 2. Overall Performance Comparison on Three Datasets

Method PaySim Credit Card 2023 IEEE-CIS
AUC-ROC  AUC-PR F1 Recall@1% | AUC-ROC  AUC-PR F1 Recall@1% | AUC-ROC  AUC-PR F1 Recall@1%

XGBoost 0.948 0.412 0.756 69.8 0.957 0.438 0.783 72.1 0.952 0.425 0.768 70.5
Isolation Forest 0.928 0.385 0.722 65.4 0.935 0.392 0.745 67.2 0.932 0.388 0.735 66.3
LOF 0.915 0.362 0.698 62.5 0.922 0.375 0.712 64.8 0.918 0.368 0.705 63.2
DeepAE 0.965 0.524 0.839 79.2 0.972 0.538 0.852 81.5 0.968 0.532 0.845 80.4
GCN 0.978 0.578 0.879 83.7 0.983 0.585 0.885 84.9 0.980 0.582 0.882 84.2
GraphSemi 0.985 0.612 0.901 88.9 0.988 0.625 0.912 89.8 0.986 0.618 0.908 89.2
AutoGCN 0.990 0.638 0.925 91.8 0.992 0.645 0.932 92.5 0.991 0.642 0.928 92.1
FedFraud 0.988 0.632 0914 90.5 0.990 0.638 0.922 91.2 0.989 0.635 0.918 90.8
FraudGNN-RL 0.995 0.647 0.923 97.3 0.996 0.652 0.928 97.8 0.995 0.649 0.925 96.9

FedFraud results are based on the CNN variant of the model, which demonstrated the best performance among the three architectures (CNN, MLP, LSTM) in the original paper.

temporal-spatial-semantic graph convolution captures com-
prehensive patterns in financial transactions. Furthermore, the
federated learning scheme allows collaborative training while
preserving data privacy, addressing a critical requirement in
real-world financial applications. The experimental results
demonstrate that our model effectively balances the trade-off
between detection accuracy and false positive rate, making
it particularly suitable for practical deployment in financial
fraud detection systems.

2) ABLATION STUDY

To thoroughly validate the effectiveness of each component
in our proposed FraudGNN-RL framework, we conduct com-
prehensive ablation experiments by removing key components
(GNN, RL, and FL) separately. Specifically, we evaluate the
following variants:

® w/o GNN: Replace the graph neural network with a

standard deep neural network while keeping RL and FL.
components.

* w/o RL: Remove the reinforcement learning component,

using fixed thresholds for decision making.

e w/o FL: Train the model in a centralized manner without

federated learning.

e w/o GNN&RL: Remove both GNN and RL compo-

nents.

¢ w/o GNN&FL: Remove both GNN and FL components.

w/o RL&FL: Remove both RL and FL components.
Full model: The complete FraudGNN-RL framework
with all components.

Fig. 3 presents the performance comparison of different
variants on three datasets. From the results, we observe
that each component makes substantial contributions to the
model’s overall performance. The GNN component plays a
crucial role in capturing the complex relationships in financial
transaction networks, as evidenced by the significant perfor-
mance drop when it is removed (AUC-ROC decreases by
3.2%, 3.5%, and 3.8% on PaySim, Credit Card 2023, and
IEEE-CIS datasets respectively). The RL component enables
adaptive decision making, contributing to improved detection
rates particularly in AUC-PR scores (2.8%, 3.1%, and 2.9%
decrease when removed). The FL. component, while having
a relatively smaller impact on raw performance metrics, is
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FIGURE 3. Performance comparison of different model variants in the
ablation study across three datasets. The results demonstrate the
contribution of each component (GNN, RL, and FL) to the model’s overall
performance. The full model consistently achieves the best performance
across all metrics and datasets.

essential for privacy preservation and enables collaborative
learning across institutions (1.5%, 1.8%, and 1.6% decrease
in F1-score when removed).

When multiple components are removed simultaneously,
we observe compounded negative effects. The combination of
GNN and RL shows the strongest synergy, as removing both
leads to the most significant performance degradation (5.7%,
6.1%, and 5.9% decrease in AUC-ROC). This demonstrates
that the graph structure learning and adaptive decision mak-
ing are complementary in detecting fraudulent patterns. The
experimental results validate our architectural design choices
and confirm that each component contributes uniquely to the
model’s effectiveness.

Furthermore, the ablation results on different datasets show
consistent patterns, indicating that the contribution of each
component is robust across different fraud detection scenar-
ios. The impact is particularly pronounced on the IEEE-CIS
dataset, where the rich identity information makes the GNN
component more valuable for capturing complex relation-
ships. The RL component shows strong benefits on the Credit
Card 2023 dataset, suggesting its effectiveness in handling
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FIGURE 4. Analysis of model robustness to class imbalance across three datasets. (a) Absolute AUC-PR scores under different imbalance ratios. (b)
Performance degradation ratio compared to 2.0% baseline. The degradation ratio is calculated as (Score(2.0%) - Score(x%))/Score2.0%, where smaller
values indicate better robustness to class imbalance. Results are averaged across PaySim, Credit Card 2023, and IEEE-CIS datasets.

anonymized features. The FL component’s contribution is
most evident on the PaySim dataset, likely due to the clear
transaction flow information that benefits from collaborative
learning.

3) ROBUSTNESS TO CLASS IMBALANCE

To rigorously evaluate our model’s robustness to class im-
balance, we conduct experiments on all three datasets. The
original fraud ratios in these datasets are quite different:
PaySim contains 0.129% fraudulent transactions, Credit Card
2023 dataset has 0.172% fraud cases, and IEEE-CIS dataset
shows varying fraud rates across different transaction types.
To enable systematic comparison, we create datasets with con-
trolled fraud ratios (0.1%, 0.5%, 1.0%, and 2.0%) from each
dataset using random sampling while preserving the temporal
ordering of transactions. This setup allows us to analyze both
absolute performance and relative performance degradation
under different imbalance scenarios.

As shown in Fig. 4, we evaluate both the absolute perfor-
mance (measured by AUC-PR) and the relative performance
degradation across all three datasets. Traditional methods
show significant performance drops when handling severe
class imbalance. For example, on the PaySim dataset, XG-
Boost shows 28.5% degradation when the fraud ratio de-
creases from 2.0% to 0.1%, while Isolation Forest and LOF
exhibit even larger degradations of 35.2% and 38.7% respec-
tively. Similar patterns are observed on the Credit Card 2023
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and IEEE-CIS datasets, with average degradations of 29.3%
and 30.1% for these traditional methods.

Graph-based methods demonstrate better stability across
all datasets. GCN and GraphSemi show smaller performance
drops (22.3% and 18.9% average degradation respectively),
benefiting from their ability to capture structural patterns in
transaction networks. This improvement is particularly notice-
able on the IEEE-CIS dataset, where rich identity information
helps maintain model performance even under severe imbal-
ance.

Our FraudGNN-RL achieves the smallest degradation
across all three datasets (15.3% on average), with consistent
performance on PaySim (14.8%), Credit Card 2023 (15.5%),
and IEEE-CIS (15.6%). This enhanced robustness to class
imbalance can be attributed to several design choices: (1) The
graph structure helps preserve important patterns even with
limited positive samples, which is particularly effective for the
transaction flow patterns in PaySim; (2) The RL component
adaptively adjusts decision thresholds based on data distribu-
tion, helping handle the anonymized features in Credit Card
2023 dataset; (3) The federated learning framework enables
learning from multiple data sources, effectively leveraging
the diverse feature sets in IEEE-CIS dataset while partially
mitigating the impact of local data imbalance.

These results demonstrate that FraudGNN-RL not only
achieves better absolute performance but also maintains
more stable performance across different imbalance ratios
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and different types of financial fraud detection scenarios.
The consistent performance across datasets with varying
characteristics (mobile money transfers, credit card trans-
actions, and e-commerce transactions) further validates the
generalizability of our approach in handling class imbalance.

VI. CONCLUSION AND FUTURE WORKS

A. CONCLUSION

This article presents FraudGNN-RL, a novel framework com-
bining GNNs with RL for financial fraud detection. Our
key contributions include: (1) TSSGC layers that effectively
capture temporal-spatial-semantic patterns in transaction net-
works, (2) RL-based dynamic decision boundary adjustment
for evolving fraud patterns, and (3) superior performance
on three fraud detection datasets among different metrics.
FraudGNN-RL demonstrates exceptional robustness to class
imbalance while maintaining reasonable computational over-
head, making it particularly valuable for real-world applica-
tions where fraudulent transactions are rare but costly.

B. FUTURE WORKS

Future research directions include: (1) improving model in-
terpretability, (2) enabling online learning capabilities, (3)
incorporating multi-modal data, (4) implementing federated
learning for privacy preservation, (5) enhancing adversarial
robustness, (6) exploring transfer learning for cross-domain
applications, and (7) optimizing scalability for large-scale
deployments. These advancements will be crucial for main-
taining effectiveness against evolving financial fraud threats.
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