
This is a peer-reviewed, final published version of the following in press document and is
licensed under Creative Commons: Attribution 4.0 license:

Cameron, Alexander, Alam, Abu S, Anjum, Nasreen, Khan,
Javed Ali and Mylonas, Alexios (2025) STATOS: A portable tool
for secure malware analysis and sample acquisition in low
resource environments. Array, 26. p. 100391.
doi:10.1016/j.array.2025.100391 (In Press)

Official URL: https://doi.org/10.1016/j.array.2025.100391
DOI: http://dx.doi.org/10.1016/j.array.2025.100391
EPrint URI: https://eprints.glos.ac.uk/id/eprint/14973

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Array 26 (2025) 100391

A
2

Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/locate/array

STATOS: A portable tool for secure malware analysis and sample acquisition

in low resource environments
Alexander Cameron a , Abu Alam a , Nasreen Anjum b , Javed Ali Khan c ,
Alexios Mylonas c ,∗

a School of Computing & Engineering, University of Gloucestershire, The Park, Cheltenham, GL50 2RH, Gloucestershire, UK
b School of Computing, University of Portsmouth, University House, Portsmouth, PO1 2UP, Hampshire, UK
c Cybersecurity and Computing Research Group, Department of Computer Science, University of Hertfordshire, College Lane Campus, Hatfield, AL10
9AB, Hertfordshire, UK

A R T I C L E I N F O

Keywords:
Cyber attacks
Malware analysis
Static analysis
Cyber security

 A B S T R A C T

Malware poses a significant security threat to organisations worldwide, particularly in environments with
limited resources. Static analysis has emerged as a crucial technique for gaining insights into malware, but it
often requires specialised hardware and software, which can be a barrier for organisations facing financial
or supply constraints. To address these challenges, this study presents a Static-Analysis Operating System
(StatOS), a portable Linux derivative operating system designed for static malware analysis. StatOS can be
executed from a USB device, allowing organisations to perform efficient, user-friendly, and secure malware
analysis even on underpowered hardware. This study contributes a practical solution to field analysis of
malware within low-resource environments, providing a model and requirement data for future developments
in portable cybersecurity tools. The tool was validated through a combination of expert feedback using the
Delphi method and security assessments, including Monte-Carlo simulations and Common Vulnerabilities and
Exposures (CVE) evaluations. Results indicate that StatOS meets and exceeds key performance requirements,
with 100% of surveyed cyber specialists agreeing on its effectiveness, and 80% indicating they would use
StatOS in forensic investigations.
1. Introduction

Throughout the history of computer systems, constant competition
has existed between criminals attempting to exploit computer sys-
tems for their advantages and organisations vying to prevent such
attacks. As technological advances have accelerated, the suite of tools
available to cybercriminals has expanded. Cybercriminals no longer
need to manually infect and perform actions on compromised systems;
instead, they can integrate these tasks into malicious software, known
as malware [1].

Malware can be packaged and delivered in various formats to
deceive individuals about the software’s true purpose. Once executed,
the cybercriminal or the malware itself may perform actions such as
encrypting files, destroying data, or covertly collecting information
on a target [2,3]. While reactive protections, such as endpoint pro-
tection software capable of remotely removing suspicious files and
antivirus removal procedures are available, proactive protections that
can be utilised before malware execution are crucial. These proactive

∗ Corresponding author.
E-mail address: a.mylonas@herts.ac.uk (A. Mylonas).

measures can potentially eliminate an infection before it fully occurs,
thereby reducing the potential damage to an organisation from a cyber
attack [4].

It is essential that organisations have the technical capabilities to
analyse malicious software to continually improve security and prevent
malware infections that could cause financial and reputational dam-
age [5,6]. By performing such analyses, organisations can determine
with higher reliability if the software is malicious or disreputable. Ad-
ditionally, they may discover indicators within the suspicious software
that could be used to identify similar malicious software across the
organisation’s network, helping to prevent future infections [7].

However, performing such analyses often requires specialist equip-
ment, including forensic operating systems, disassembly tools, and
dedicated, computationally capable hardware, such as systems with
write-protected storage devices to prevent infections [8,9]. In the event
of a cyber attack requiring forensic investigation, individuals must act
quickly to preserve and acquire digital evidence [10–12]. Rapid sample
https://doi.org/10.1016/j.array.2025.100391
Received 10 November 2024; Received in revised form 28 February 2025; Accepte
vailable online 1 April 2025
590-0056/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar
d 22 March 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/array
https://www.elsevier.com/locate/array
https://orcid.org/0000-0002-3091-6509
https://orcid.org/0000-0002-5958-7905
https://orcid.org/0000-0002-7126-2177
https://orcid.org/0000-0003-3306-1195
https://orcid.org/0000-0001-8819-5831
mailto:a.mylonas@herts.ac.uk
https://doi.org/10.1016/j.array.2025.100391
https://doi.org/10.1016/j.array.2025.100391
http://creativecommons.org/licenses/by/4.0/

A. Cameron et al. Array 26 (2025) 100391
acquisition and investigation are recognised as significantly enhancing
an organisation’s ability to recover from such attacks [13,14].

1.1. Problem statement

Despite the critical importance of rapid and effective malware anal-
ysis, organisations often do not proactively invest in the necessary
hardware and software solutions to achieve this goal or are unable to
invest, e.g., due to lack of resources. This lack of investment results
in a diminished capacity to perform thorough investigations during an
attack, which in turn weakens organisational security [15,16]. Further
complicating matters, digital forensics often requires an abundance of
software tools and the necessary resources to accommodate these tools,
presenting challenges for organisations with limited capacity [17].

Static analysis, a procedure in which items suspected of harbouring
malware are dismantled from their binary presentation and investi-
gated for potential indicators, offers a less resource-intensive method
than dynamic analysis. Static analysis can identify threats without exe-
cuting the malware, thereby reducing the risk to the organisation [18–
21]. However, due to financial and supply constraints, organisations
may struggle to dedicate systems solely for static analysis. Additionally,
digital forensics experts often need to switch between multiple sys-
tems, each running different operating systems to utilise various tools
depending on the task [22].

Reusing existing computer equipment for sample acquisition and
analysis instead of investing in new hardware suggests a gap in the
cybersecurity field for a reusable and potentially portable operating
system. Such a system could be deployed on existing hardware to
perform static analysis without requiring additional capital expendi-
ture [23,24]. Based upon this rationale, the study aims to develop
and validate a portable Static Analysis Operating System (StatOS), de-
signed to alleviate the hardware and resource constraints organisations
face during static malware analysis. The developed tool and research
strategy defined will assist in answering the research question Can a
portable malware analysis tool enhance the ability of organisations
to respond to malware attacks?

The paper firstly seeks to understand how StatOS can be designed
and developed to be a portable, low-resource tool that effectively
performs static malware analysis on underpowered hardware while
maintaining high performance and security, answered in Section 5.
Secondly, the researchers sought the opinions of digital forensic experts
on what essential features and static analysis tools should be integrated
into StatOS to ensure usability and effectiveness, answered in Sec-
tions 3.1 and 4.3. Thirdly, the effectiveness, robustness, and potential
vulnerabilities of StatOS were validated through expert feedback and
security assessments to ensure its reliability in real-world applications,
visible within Sections 5.2 and 7.

1.2. Contribution and organisation

This paper makes the following contributions:

1. Development of StatOS: The creation of StatOS as a portable,
low-resource tool for malware analysis represents a practical
solution to the hardware limitations commonly faced by organ-
isations, and provides a model for the development of similar
tools in the future.

2. Validation of StatOS: Through a comprehensive validation pro-
cess involving the Delphi method and expert feedback, the study
demonstrates the tool’s effectiveness, performance, and usabil-
ity, providing evidence that StatOS can meet industry needs.

3. User-Centred Design: By incorporating feedback from digi-
tal forensics experts throughout the development process, the
study ensures that StatOS is aligned with user expectations and
practical requirements, enhancing its applicability in real-world
scenarios.
2
This paper is organised as follows: Section 2 provides a critical eval-
uation and comparison of three state-of-the-art static analysis tools –
GHIDRA, IDA, and BinaryNinja – highlighting their features, strengths,
and limitations within the cybersecurity ecosystem. Section 3 discusses
the strategy employed to understand the requirements and perform an
evaluation of the tool. Section 4 outlines the formation of requirements
from research and industry expert opinions. Section 5 translates these
requirements into a functional tool. Section 5.2 presents the integrity
testing of the tool through Monte-Carlo simulation and analysis of ac-
tive CVEs. Section 7 employs Delphi-method semi-structured interviews
with industry experts to compare the tool against its requirements.
Finally, Section 8 summarises the findings of the research and discusses
the potential impact of StatOS on the field of malware analysis and
cybersecurity.

2. Evaluation and comparison of state-of-the-art static analysis
tools

Specialist software tools are available to assist in the process of
static analysis, such as BinaryNinja, GHIDRA, and IDA. However, tools
such as these that perform static analysis are fragmented across the
cyber security ecosystem. This section provides a critical evaluation
and comparison of three state-of-the-art static analysis tools—GHIDRA,
IDA, and BinaryNinja—highlighting their features, strengths, and limi-
tations within the cybersecurity ecosystem. Table 1 provides a consol-
idation of the critical evaluation of these tools, comparing the limita-
tions and features essential for static analysis.

2.1. GHIDRA

GHIDRA is an open source, reverse engineering framework, written
in Java by the National Security Agency of America and recently
declassified to the public [25]. As suggested by [26] while other
reverse engineering tools, such as IDA exist with enhanced capabili-
ties, GHIDRA elevated its position as a static analysis tool due to its
open source extensible framework. In addition to GHIDRA being open
source, GHIDRA is also free for private and commercial use, allowing
organisations to make use of the software without a capital cost as
well as permitting organisations not to publicise their own customised
modifications they make to the software [27]. Nevertheless, GHIDRA
has limited capabilities compared to tools such as IDA, which have been
commercially used for many years, which has led to greater uptake and
support when compared to GHIDRA, which is comparatively new.

GHIDRA is capable of simultaneously loading multiple binary files
into a single project for investigation, allowing multi-file investigations.
For static analysis, this feature is exceptionally useful in situations
where one piece of malware may deposit additional files such as
libraries or further payloads. These additional files could be analysed
in conjunction with the original file to determine the relationship be-
tween the different components and potentially the actions taken [28].
GHIDRA also supports custom add-ons which can be created by users
to enhance its abilities and allows multiple users to share projects,
potentially containing multiple files which can be worked on by both
users.

2.2. IDA

IDA (Interactive Disassembler) has existed since 1995 and has ma-
tured considerably, with support for a vast number of architectures and
files [29]. IDA is also available with support for customers who have
purchased the product, which can assist individuals in performing static
analysis and debugging certain issues [30].

To improve the process of static analysis, IDA also supports vari-
able mapping in both its compiler and interface. This allows users to
create user-friendly names of common values that occur throughout a
suspicious file to begin to piece together an understanding of the file

A. Cameron et al. Array 26 (2025) 100391
Table 1
High level feature comparison of GHIDRA, IDA and BinaryNinja tools used for static analysis.
 Comparisons GHIDRA IDA BinaryNinja
 Summary Java based reverse analysis

framework created by the
NSA.

C++ reverse analysis
environment created by
Hex-Rays

C+,C, Python static analysis
tool created by BinaryNinja

 Supports x86, x86 64? Yes Yes Yes
 Open Source? Yes No No
 Approximate Tool Maturity Very New (First Released

2019)
Very Mature (First Released
1995)

New (First Released 2016)

 Specialist Features Effective on files over 1GB
without substantial
performance penalty. Multiple
binaries scan be loaded at
once.Multi-user capabilities.

Huge range of supported
languages, architecture and
file types. Customer support
and variable mapping.

Cloud capabilities,
programmatic API for
automation of analysis.

they are investigating. Such a feature is not available by default within
GHIDRA and instead users must rely on the open source community
developing additions to service this requirement or develop their own
additions [31].

However, while the software is far more mature than that of
GHIDRA and would be desirable for inclusion, the lack of open source
availability and licensing constraints limit the effectiveness of IDA as
a potential solution. Each organisational instance of IDA requires an
active licence, which may be impractical for static analysis in incident
response scenarios.

2.3. BinaryNinja

Binary Ninja is a recent reverse engineering toolset, equipped with
cloud based analysis mechanisms to enable users to offload potentially
computationally intensive tasks from their own hardware. While both
GHIDRA and IDA allow decompilation, the ability to work on a project
with other users potentially across a wide geographical location is an
invaluable feature for organisations with a geographically dispersed
workforce. BinaryNinja allows reverse engineering to take place in a
cloud environment. The software is free to use, provided an account
is created and allows users to collaborate with others on static anal-
ysis projects, while also allowing statistical graphs to be dynamically
generated from interrogated files [32].

However, any binaries being investigated must be uploaded to
BinaryNinja, which may be difficult for organisations who are bound
by confidentiality. Additionally, due to the security arrangements com-
monly in place within malware analysis environments, it is likely that
air gapped networks and computer systems would be used for malware
analysis to prevent malware reporting out to its authors that it has been
detected [33]. This would negate any benefit of cloud services, as while
their features would be useful, air gaps or other connection limitations
may prevent connectivity and usage of the service. Therefore, with
no central Linux distribution for this purpose exclusively, combined
with current shortages of computer hardware, organisations seeking to
perform static analysis must re-use multiple existing computer systems
to support the multiple operating systems and tools required.

2.4. Operating Systems

To support the usage of such tools and acquisitions, a range of Linux
operating systems exist. Such operating systems encompass common-
place cyber security tools and aim to provide a holistic development
and testing environment to cyber security experts. Examples of such
operating systems include Kali Linux, a Linux distribution focused
around cyber security and penetration testing [34]. Kali Linux contains
over 20 tools aimed at static analysis, however not all of these tools
are immediately available and may require internet connectivity to
download the tools from Kali Linux’s repositories. Additional Linux
derivatives such as the SIFT workstation created by the SANS Institute
3
are directly aimed at digital forensics experts, containing hundreds of
small to medium sized software packages to aid forensic analysis [35].

The tool being developed, StatOS, aims to facilitate lightweight
malware analysis through the adoption of a minimal operating system
that can be deployed to infected computer systems to perform both
acquisition and analysis in the field by responders. In this way, a
compromise can be reached between resourcing requirements, tooling
and functionality to design a tool capable of both response and analysis.
Table 2 summarises the operating systems and their aspects.

3. Methodology

To gain a thorough understanding of which security tools should
be added to the solution, primary research of existing static analysis
software favoured by digital forensics experts will be undertaken. The
findings will inform the evaluation process of the product through
Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis
to accurately understand potential areas of improvement for future
development. Results of the primary research will be compared against
existing sources to determine if the experts surveyed in the primary re-
search agree with the general sentiments expressed by existing sources
and if not, what specific differences are visible between pre-existing re-
search and the research undertaken within the project. A full flowchart
of the employed methodology can be seen in Fig. 1. The relevant data
protection legislation within the United Kingdom and the ethical op-
erating procedures of the researchers institutions were followed when
performing research using surveys and interviews.

3.1. Sourcing requirements

To design StatOS, it was necessary to understand the requirements
of a wide range of cyber security and digital forensic experts to jus-
tify design decisions such as the type of operating system, graphical
environments and tool suites to include. To collect the aforemen-
tioned information, a digital survey was created and circulated be-
tween individuals working in computer science, cyber security and
digital forensics, with snowball sampling assisting in collating further
respondents.

3.2. Result processing

After collecting the requisite information, the results were obtained
in a comma separated values (CSV) format, which was subsequently
analysed using a python script. The script was capable of interfacing
with a given CSV results file and scoring respondents based on their
malware forensics experience and job title in terms of relevance to mal-
ware forensics. The resultant technicality was calculated by summing
the scores of the above answers, with respondents being categorised
into low, medium and high levels of technicality in regards to malware
analysis.

A. Cameron et al. Array 26 (2025) 100391
Table 2
A table comparing high level features of commonplace operating systems used for static analysis and digital forensics.
 Comparisons Kali Linux SIFT workstation
 Overview Kali Linux advertises itself as a Linux

distribution for cyber security professionals,
containing a wide range of software suites
aimed at all aspects of cyber security. Static
analysis and digital forensics make up a
portion of the software suites used.

The SIFT workstation is a suite of tools and
pre-packaged version of Ubuntu, specialising
in digital forensics, file recovery and
malware analysis.

 Parent/Derivative Debian Testing Branch Ubuntu
 Target Audience Cyber Security Experts Digital Forensics Experts
 Forensic Analysis Tools
Present

23 >50

 Live CD Capability? Yes No
 Source Gunawam, Lim, Zulkurnain, and Kartiwi,

2018
Sans Institute, 2012
Fig. 1. A flowchart of the research methodology to be used. Following a literature
review, surveys will utilise a combination of snowball sampling and convenient
sampling of digital forensics experts to inform the implementation of StatOS. Once
implemented, StatOS will be evaluated using the Delphi method with digital forensic
experts to support in answering the research question.

3.3. Result categorisation

Participants were asked to rank the importance of several high-
level requirements and features they would expect to be present in an
operating system tool supporting malware analysis. To facilitate un-
derstanding, the authors have included these terms and the definitions
used:
4
1. Portability: The ability to utilise the tool in different environ-
ments.

2. Performance: The speed of the tool to complete forensic task-
ings.

3. User Frendliness: The ease of use of the tool.
4. Cost: The expenditure required to deploy and use the tool.
5. Integrity: The reliability of the tool to maintain system stability.

1. USB Persistence: The ability of the tool to maintain data fol-
lowing use.

2. RAM Capabilities: The ability of the tool to deploy itself as a
RAM-disk.

3. Analysis Tools: The collection of malware analysis tools present
on the operating system.

4. Programming Tools: The collection of programming tools
present on the operating system.

5. Run on Low Hardware: The ability of the tool to operate on
low-end computer hardware.

3.4. Method justification

The approach of collecting requirements and insights from a soft-
ware project target audience and incorporating this into software
projects is a widely recognised approach that enables development
teams to ensure that a project aligns with the expectations of potential
users [36–40]. Advancements such as Agile software development
and crowdsourcing requirement methodologies are also capable of
integrating requirements through surveying users, leading to a greater
alignment of developers and user bases when compared to not using
such methods [41,42].

Furthermore, the use of the Delphi method to validate an engineer-
ing artefact meets requirements is a well established method to reach a
consensus against a target group [43]. Whilst other consensus methods
have seen widespread use such as the Nominal Group Technique,
such methods are generally recognised to be more suitable to research
attempting to explore ideas or propose multiple solutions to a prob-
lem [44]. As the researchers wish to answer several fixed questions,
the Delphi method was chosen due to its widespread usage within the
domain of cyber security and software engineering, in which it has been
used comprehensively to validate the designs of both software and key
frameworks [45–47].

Whilst both methods are effective at different stages, they can
present disadvantages. Requirement sourcing typically requires a large
sample size, which is difficult to acquire and also commonly leads to
only surface-level requirements being discovered, as the level of detail
and subjectivity is marginalised through a survey [48]. In contrast, the
Delphi method typically requires a much smaller sample size as each of
the interviewees are selected based on key relevance to the research,
enabling a greater level of granularity and detail when compared to

A. Cameron et al. Array 26 (2025) 100391
Table 3
Participant demographics of digital forensic experts within the research.
 Demographic data Point survey Interviews
 Respondent Ages 18–55 18–26
 Geographical Location United Kingdom United Kingdom
 Ethnicity Not Collected Not Collected
 Gender Not Collected Not Collected
 Experience in Computing Moderate to Substantial

Experience
Substantial Experience

 Experience in Cyber
Security

Minor to Substantial Substantial Experience

 Experience in Malware Minor to Substantial
Experience

Moderate to Substantial
Experience

requirement crowdsourcing. This detail can present analysis difficulties
as it may not be directly quantifiable or generalisable, however may
provide greater context in answering the research question within
Section 1.1. By combining requirement crowdsourcing and interviews
through methodologies such as the Delphi-method, a balance can en-
sure that the solution created aligns with user requirements at the
design stage and allows for expert scrutiny of the solution [49].

To expand upon the outlined methodology, 50 experts will be
selected to support requirement crowdsourcing, based upon a combina-
tion of convenient sampling and snowball sampling of digital forensics
experts sourced from the UK [50]. These sampling methods have been
chosen due to the range of experts available in the local area. Once
selected and consent is given, experts will complete an online survey,
outlining the capabilities of the product. Once the product has been im-
plemented, experts will then, using a Likert scale, rank the effectiveness
and robustness of the product. A Likert scale has been used to reflect
and measure the granularity of answers given [51].

Additionally, the Delphi-method has been chosen to ensure a con-
sensus is reached across a range of industry experts, reducing the
impact of potential selection bias from the researcher. Interviewees
were selected based upon the relevance of their role to the subject
matter, accessibility to the researchers and expertise within fields of
malware, rather than other factors, which ensures that the techni-
cal capabilities of the respondents align with the target audience of
StatOS [52–54].

Information has been provided upon the demographics of partici-
pants of the research within Table 3.

To inform the final SWOT analysis, Monte-Carlo methodologies
will be used with automated penetration testing software to provide
insight into StatOS’s robustness. Monte-Carlo methodologies have been
selected as an appropriate method due to the ability to repeatedly test
an item to understand its characteristics [55]. After as many rounds of
penetration testing could be reasonably performed, the average number
of vulnerabilities and their CVSS impact score will be analysed to give
an overall impression of the solutions dependability [56].

After completion of the surveys and interviews, the Delphi method
will be deployed to in conjunction with industry experts selected
through convenient sampling and snowball sampling to evaluate the
product. The Delphi method has been selected as it will allow experts
to form a majority consensus, which will greatly assist in the creation
of the final SWOT analysis [57].

4. Requirement sourcing results

The following section will discuss the results of sourcing require-
ments for StatOS from industry experts, followed by the processing
of the aforementioned results to inform the implementation process.
Opinions and sentiments regarding operating systems, user interfaces
and favoured static analysis tools will be evaluated to form a table of
key requirements.
5
4.1. Operating system findings

It has been found that low technicality groups place a higher value
on programming tools than malware analysis toolsets. All respondents
within the low technicality group had not performed any malware anal-
ysis. Therefore, it is likely that acquiescence bias could be impacting
respondents; [58] discusses the tendency for likert scales such as the
scales used within the survey to cause respondents to select seemingly
positive answers, regardless of the justification behind such selections.
Fig. 2 displays these results.

All technicality groups had placed a high value on performance,
however it is notable that high technicality groups place a higher value
on portability than all other groups, potentially due to the nature of
digital forensics and computer incident response engagements often
requiring physical relocation to a customer site, where portability
would be useful [59]. Medium technicality groups place a lower level
of value on user friendliness than all other groups, which is validated
by the group’s high uptake of terminal usage compared to both low and
high technicality.

Low and high technicality groups are almost congruent, mirroring
each other in terms of all aspects except portability. Uniquely, medium
technicality respondents value the operating systems integrity at a
lower level than low and high technicalities. This differs from other
groups and both industry and academic consensus, as for malware
analysis, isolation and integrity can be deemed highly essential due to
the risk of infection [60].

To understand potential features to implement into StatOS, respon-
dents were asked to rank key features and how essential they believe
the features to be. From such questions, the following results were
collated and are visible in Fig. 3.

As can be seen in Fig. 3, all technicality groups value the majority
of features. However, medium technicality groups diverge away from
ramdisk capabilities, while low technicality groups place the highest
value on programming tools. Such differences could be due to medium
technicality respondents having performed a minimal level of malware
analysis, potentially being impacted by the ambiguity effect. When de-
prived of key information to support a decision, respondents may prefer
options they are familiar with and understand, rather than options that,
while potentially the same or better, are not well understood [61]. The
higher value of programming tools among low technicality groups can
likely be attributed to the fact the group has not performed malware
analysis in any form. Without experience of malware analysis it is
likely the respondents are falling-back to tools they understand the
importance of [62].

Other notable differences between groups would be that high tech-
nicality respondents place a higher value on USB persistence than
medium and low technicality groups. This could potentially be because
experienced malware analysts may wish to save ongoing investigations
and progress to the device, a process commonplace for more advanced
or multi-stage analyses, which may not have been identified by other
groups [63].

4.2. Interface findings

Regarding interfaces, participants of all technicality groups favour
some form of GUI and terminal usage. The low technicality group
represents the lowest share of participants who prefer terminals exclu-
sively, while the high technicality group represents the highest share
of participants preferring terminals. This is likely due to terminals
inherent verbosity and lack of abstraction, ensuring advanced users
receive more detailed information than they may receive if performing
a similar action through a GUI interface [64]. Results illustrating the
above have been included in Fig. 4:

It is notable that terminals never exceed ¼of responses, with the
majority of respondents in both high and low technicalities preferring
GUI’s over terminals. Medium technicalities prefer a combination of

A. Cameron et al. Array 26 (2025) 100391
Fig. 2. Radar charts identifying each technicality group’s opinions on key operating system aspects.
Fig. 3. Radar charts identifying each technicality group’s opinions on key operating system features.
both GUI’s and terminals, which is the second-most preferred option
in all respondent groups. Based on these findings, StatOS must include
some form of graphical user interface in addition to conventional
terminal interfaces, as all demographics appear to benefit from the
inclusion of such interfaces [65].

In respondents who identified GUI’s as their primary interface of
choice, the survey opened an additional questioning path in order to
understand the specific types of GUI respondents preferred and why.
From such questioning, the following results were collected in Fig. 5.
6
Specific GUI’s such as XFCE and Gnome3 mentioned in medium and
high technicality groups, making up the second-highest selection after
Windows-like GUI’s. Low technicality groups mention MacOS-like GUI’s
and KDE, however the frequency of respondents identifying these are
comparatively low to the volume of low technicality respondents se-
lecting windows-like GUI’s. Generally, environments that are described
as ‘‘windows-like‘‘ are preferred, presumably due to the respondents
familiarity with the Microsoft Windows software suite and respondents
adhering to this choice [66]. Respondents were asked in a free-text

A. Cameron et al. Array 26 (2025) 100391
Fig. 4. Pie charts illustrating the breakdown of preferences to GUI’s and terminals.

field to identify why they preferred GUI’s, with the resulting answers
collated and analysed through a word-frequency cloud which has been
displayed in Fig. 6.

4.3. Tool findings

In relation to tools, GHIDRA and IDA were the top two tools in
both the low and high technicality groups, with the medium group
favouring BinaryNinja. Paradoxically, while this software suite is most
favoured in medium technicalities, the software is least favoured in
both low and high technicalities; a potential theory could be that the
advanced interface options may be found to be difficult for lower
technicalities due to an expectation of knowledge, whilst also obscuring
more advanced options behind wizards and menu options. To draw
parallels with this idea, [67] suggests that specialised CLI interfaces
are often more performant and reliable, however have a long learning
curve. Portions of this thinking may be applicable to advanced GUI’s
such as those of IDA and GHIDRA. The results have been displayed as
a stacked bar graph in Fig. 7.

As can be seen, while the data supports the fact that BinaryNinja
is most favoured in medium technicality groups, the data also supports
the fact that BinaryNinja appears to be the least favoured of all the tools
in the same technicality group; investigating the raw data resolves this
anomaly, displaying that respondents opinions varied considerably for
this data point. Users were prevented from selecting the same tool more
than once in any column, thereby preventing this unusual data from
being generated by error. Instead, it appears that the balance of opinion
in the medium technicality group is very balanced in this regard, with
some respondents in favour of BinaryNinja, while others are against
this. Based upon the results discussed, the following core requirements
of StatOS could be created, visible in Table 4.
7
Table 4
A table of requirements, based upon the research conducted.
 Requirement No Requirement
 1 Support underpowered hardware
 2 Include familiar GUI’s and terminals
 3 Inclusion of malware and programming tools
 4 Portability and performance to be prioritised
 5 System must provide appropriate integrity
 6 System must be user-friendly to target audience
 7 USB persistence and ramdisk capabilities

5. OS implementation

To support the discovered requirements, we utilised open source
software from the GNU Project, the Linux Kernel and Linux From
Scratch project, with other supporting open source software
included [68,69]. The minimal amount of software packages required
to create a Linux based operating system suitable for static analysis
tasks was determined by analysing the minimum requirements of Linux
operating systems. Once identified, relevant packages were configured,
compiled and incorporated into the solution, with this process repeated
until a functional tool was created.

Ensuring StatOS remains portable and highly performant led to the
design decision to utilise a USB 3.0 compliant thumb drive. As the
devices are physically compact and can be manufactured in a variety
of sizes, the portability requirement of StatOS would be satisfied.
Furthermore, USB 3.0 devices are backwards compatible with USB 2.0
compliant ports, found on the majority of computer systems in the past
few decades. USB 3.0 devices support some of the highest available
speeds for USB devices, ensuring performance is maintained [70].

The design process utilised a virtualized disk image, which was
iteratively written to a physical USB 3.0 device during development and
testing. The partitioning scheme relied on three partitions. A design de-
cision was taken to create a separate partition to store ‘‘boot’’ files such
as kernel images and bootloader modules to avoid potential erasure of
the key kernel images used to boot the device. As the composite files are
relatively small, the partition does not need to exceed 250 mebibytes.

The ‘‘root’’ filesystem houses the conventional Linux filesystem
directories, system binaries and userspace applications. In order to
contain a desktop environment, static analysis and programming tools,
in addition to a regular Linux environment, the partition must be sized
appropriately. As such, the partition has been sized at 5124 mebibytes.

A problem identified during the design and implementation phase
was the process of how files could be saved to the USB for later analysis
or acquisition; as StatOS is often run in RAM only mode, saving files
to the USB would be impossible all file systems would reside in RAM.
To resolve this issue, a fat32 filesystem, labelled ‘‘StatOS_data’’, is
present to house acquired malware, suspicious files and other media to
investigate. This partition can be expanded by the user to the desired
size and mounted in the operating system in both RAM only mode
and regular mode, allowing for users to move files between RAM and
persistent storage when required.

Additional problems included that it would be difficult to transfer
files into the USB; this was resolved through the aforementioned fat32
partition. As fat32 can be read by the majority of operating systems,
the decision was made to alter portions of the boot process to copy any
files present in the ‘‘StatOS_data’’ partition to the Desktop. This allowed
users to view only the data partition of StatOS in other operating
systems and natively transfer in files they deem to be suspicious, as
shown in Fig. 8.

To support both the USB persistence and ramdisk requirements,
a modified initial ram filesystem was used. As discussed, utilising a
ramdisk filesystem considerably increases both the speed and forensic
isolation of secondary storage. However, ramdisks incur a moderate to
significant initial delay, whilst the operating system is copied into the
ramdisk. Therefore, offering the ability to choose between persistence

A. Cameron et al. Array 26 (2025) 100391
Fig. 5. Bar graphs communicating the most favoured GUI types in respondents who prefer GUI’s.
Fig. 6. A word cloud categorising all respondents’ justifications for preferring GUI’s,
with words that occur more often enlarged.

or ram disk functionality at start-up gives a user greater control over
how they wish to use the tool. However, launching with persistence and
not utilising a ramdisk increases the risk of contamination of the USB
device, as file artefacts could remain on the root partition of StatOS
and persist across uses, instead of being confined to the dedicated
‘‘StatOS_data’’ partition. It is noted that launching with persistence,
whilst increasing the risk of contamination, does have the benefit of
circumventing time delays associated with copying into RAM, therefore
allowing responders to enter the tool faster at the cost of heightened
risk. If StatOS were to be used in training scenarios, testing, or if an
individual wishes to persist changes, designing the operating system to
support both possibilities would achieve far greater functionality.
8
To support both the USB persistence and ramdisk requirements, a
modified initial ram filesystem was used. When executed, the initramfs
would load into main memory and pause operation before mounting
the ‘‘root’’ filesystem. At this point, a prompt was displayed to users,
asking them to select if they wish to run from RAM, or run from the USB
persistently. Depending on the selection, the initramfs would either
generate a ramdisk and copy the contents of the ‘‘root’’ filesystem into
main memory before switching root to this ramdisk, or mount the USB
and proceed normally.

A notable issue encountered throughout the development of StatOS
was ensuring that StatOS contained key software such as GUI’s and
analysis tools, whilst remaining small enough such that the entire
operating system could be written to a USB drive with minimal storage.
Whilst USB devices increasingly provide a reduced cost per gigabyte of
storage, maintaining an operating system under four gigabytes allows
for users to determine at boot time if the tool should copy itself into
a ramdisk, or run from the USB device itself. Therefore, a smaller op-
erating system footprint enables users the choice of ramdisk operation
that may be otherwise unavailable.

This was achieved through removing features temporarily required
during the compilation process, minimising the total size of the Linux
kernel and through compiler options that minimise additional features
deemed unnecessary or unrelated to the requirements of StatOS, as well
as the exclusion of certain packages that were not absolutely necessary.
Fig. 9 has been included to illustrate the result of these configurations.

5.1. OS GUI design

A key requirement of StatOS was the familiarity of a graphical user
interface; this was achieved through the inclusion of XORG graphical
user interface and supporting libraries. Based upon the preliminary

A. Cameron et al. Array 26 (2025) 100391
Fig. 7. Respondents opinions on favoured malware analysis tools.
Fig. 8. A screenshot depicting the process of loading suspicious files into StatOS for analysis.
Fig. 9. A diagram revealing StatOS’s OS size after package removals, kernel modifica-
tions and debug symbol removal.
9
survey displaying that respondents of all technicalities overwhelmingly
prefer windows-like environments, the XFCE desktop environment was
included. As XFCE is capable of emulating an environment similar to
Microsoft Windows’ GUI’s whilst remaining relatively lightweight, the
desktop environment was an extremely viable candidate.

To modernise the environment, XFCE4’s ‘‘panel’’ functionality was
used to create a border on the top of the GUI window, containing a start
menu, application tray and system tray. From this menu, the operating
systems core utilities and analysis tools could be operated. A secondary
panel was used to create a middle-centred border on the bottom of the
GUI, containing application launchers that are configured to point at
the underlying binary executable files. The design decision was taken
to include this secondary menu to clearly identify analysis tools upon
entering the GUI in a user-friendly manner, whilst still retaining the
windows-like top menu. An annotated image of the desktop can be seen
in Fig. 10.

Two folders were created on the desktop; a tools folder and a
folder named ‘‘Imported Artefacts’’. The purpose of the tools folder
is to house the GHIDRA java tarball, such that a user could modify
the installed version if required. The artefacts folder was designed to
house suspicious files deposited by a user for investigation, as well as
being populated during boot-time by the contents of the ‘‘StatOS_data‘‘
FAT32 partition. This would allow users to deposit files onto the FAT32
partition for investigation from a target computer system, then launch

A. Cameron et al. Array 26 (2025) 100391
Fig. 10. A screenshot taken from StatOS showing the XFCE4 desktop.
Fig. 11. A screenshot of GHIDRA being used to analyse a binary on StatOS.
StatOS in either ramdisk or persistent mode, at which point the contents
of the partition would either be copied into RAM in the relevant folder
or directly mounted respectively.

With the modern GUI and terminal interfaces in place, it was
possible to install malware analysis tools such as IDA and GHIDRA,
which were highly valued in low and high technicality groups during
the preliminary survey results analysis. Programming tools such as
Python and C compilers were additionally installed into the operating
system and are accessible through both the GUI and terminal interfaces.
An image of GHIDRA running on StatOS can be seen in Fig. 11.

5.2. Robustness assurances

To ensure StatOS is capable of presenting a high level of security
and forensic isolation against accidental infection, a number of mod-
ifications are present within the design. A notable integrity feature is
that a customised Linux kernel has been used, which has been com-
piled without the capability to interface with conventional secondary
storage devices. Furthermore, only specific SATA drivers are included
10
to support the kernel being able to identify and mount the USB disk
itself, with the intention of preventing the device from being able to
mount internal hard drives and potentially infect a host machine being
utilised for analysis.

Defensive strategies such as the above are layered to provide a
defence-in-depth approach [71]. In addition to removing kernel mod-
ules responsible for driving the majority of storage devices, the custom
kernel has been stripped of its ability to interface with filesystems other
than ext2, ext4, ramdisks and fat32 partitions, in an effort to further
reduce the attack surface of StatOS and therefore the probability of
an infection occurring [72]. Networking capabilities have additionally
been removed where possible, to protect against the eventuality of a
malware infection attempting to traverse a network.

To support this, the packages and their associated cryptographic
checksums have been compared against the authoritative versions cre-
ated by the package maintainers, to attest that the packages are le-
gitimate copies [73]. Source code of the core operating system pack-
ages used to create the initial operating system will be validated
through VirusTotal’s sample submission analyser [74]. VirusTotal al-
lows individuals and organisations to upload suspicious files, which

A. Cameron et al. Array 26 (2025) 100391
will be passed to a multitude of pattern-based, heuristic and artificial
intelligence systems to identify potential malicious items [75].

Participants were not asked to comment on the aforementioned se-
curity controls. The researchers intention was to gain requirements and
opinions to develop the potential tool, rather than ask participants their
opinion on the specific security controls that should be deployed, as this
would expand the scope of the initial research question considerably.

6. Integrity verification of StatOS source

To measure the integrity of StatOS, the core packages, libraries and
source code responsible for creating the base operating system were
analysed through VirusTotal, using the Monte Carlo methodology. To
allow for multiple upload batches over time, automated upload scripts
were utilised to manage the file-upload process and return the analysis
links. Once the VirusTotal links were collated, a secondary Bash script
was used to communicate with VirusTotal over a REST API to extract
analysis results in JSON format.

In total, 83 source packages were analysed against 56 antimalware
engine solutions, with VirusTotal performing repeated analysis daily
over the course of one month with the intention of correlating new
IOC’s or malware against the source packages.

As highlighted above, 2/83 source code packages were identified by
VirusTotal as potentially suspicious or harbouring malware. Investigat-
ing the results in further detail reveals the alerts were triggered by an
archive within the tests directory of‘‘e2fsprogs-1.46.4’’ and two shell
scripts within the test directory of ‘‘util-linux-2.37.2’’. Both alerts were
generated by the same antimalware engine with the same score, MAX;
MAX is an antimalware solution capable of using heuristic analysis and
machine learning to attempt to identify malware, which ultimately led
to the detection.

The detection of both software packages was detected as medium-
high, indicating a potential presence of malware. Upon inspecting
each software package using VirusTotal Graph, a mechanism that al-
lows relationships between indexed samples to be discovered, it was
found that the e2fsprogs package was likely triggered due to malware
calling the library to interface with filesystems on a target computer
system. As e2fsprogs contains utilities for maintaining ext2, ext3 and
ext4 filesystems, applications that interface with such filesystems will
call utilities from e2fsprogs. Both legitimate and malicious application
seeking to manipulate filesystems will use e2fsprogs. In short, the
package itself was innocent, however due to a large volume of indexed
malware calling the library, the machine learning algorithm categorised
the package as malicious by association with known malicious mal-
ware that contained function calls to applications compiled within the
e2fspackage.

Regarding the second detection, the alerted shell scripts from util-
linux’s test folder were isolated and investigated. Comparing the source
code of the alerted ‘‘functions.sh’’ and ‘‘run.sh’’ to the authoritative
GitHub directory for util-linux displayed two differences. A commented
URL had been changed, in addition to a modification to one section of
if/else logic to catch edge-cases. As these alterations relate to compile
tests which are not included in StatOS, there is no security impact.

6.1. Elimination of outdated components

Each of the 83 source code packages was subjected to a search
against the United States Government’s National Vulnerability
Database, with the resulting vulnerabilities being collated and visible
in Fig. 12.

Out of the 83 source code packages, 15 potential vulnerabilities
were identified. Tables detailing the number of vulnerabilities, their
associated CVSS Score Group and the most frequent vulnerability types
per CVSS Score group have been included in Tables 5 and 6.

As illustrated, most vulnerabilities associated with StatOS’s envi-
ronment fall into the medium-high categories. While the majority of
11
Fig. 12. A graph detailing each vulnerability and their associated CVSS score.

Table 5
A table of vulnerabilities in StatOS and their composite CVSS
scores.
 CVSS score group Number of vulnerabilities
 Low 1
 Medium 5
 High 7
 Critical 2

Table 6
A table detailing the most common vulnerability types
at each CVSS level.
 Most frequent
vulnerability type

CVSS score
group

 Missing Initialisation of
Resource

Low

 Mixed Medium
 Use After Free High
 Buffer Overflow Critical

these vulnerabilities have either no impact due to the removal of all
but essential kernel modules or restricted permissions, a subset of the
vulnerabilities have the ability to impact StatOS’s integrity and must be
considered. It is suggested that, while useful, a CVSS score itself should
not inform the majority of a security decision, because the scoring
algorithm does not take into account the exposure of a specific system
to a vulnerability, only the severity if exploited [76].

Such vulnerabilities and scores have been included below. Three
vulnerabilities listed below have the potential to cause memory corrup-
tion, denial-of-service attacks or potentially arbitrary code execution in
legacy or weakened applications.

• CVE-2021-39537
• CVE-2022-23219
• CVE-2022-23218

These vulnerabilities offer attackers a viable method to attempt to
compromise or otherwise disrupt the standard activities of an analyst
using StatOS. While all of the vulnerabilities require local access due to
StatOS having no networking capabilities, CVE-2022-23218 and CVE-
2022-23219 could allow denial-of-service attacks to be carried out
relatively trivially. Additionally, both of these vulnerabilities can allow
applications compiled without stack protectors to be vulnerable against
buffer overflow attacks, thereby leading to potential arbitrary code exe-
cution. At the time of developing StatOS, these vulnerabilities were not

A. Cameron et al. Array 26 (2025) 100391
publicly known and therefore there was no mitigation technique that
could have been implemented to protect against such vulnerabilities.

Based upon the analyses within Sections 5.2, 6 and 6.1, StatOS
has largely achieved a suitable level of robustness whereby the design
can be finalised and submitted for evaluation by experts within digital
forensics and cyber security.

While there are vulnerabilities present within certain software pack-
ages that could lead to denial of service or potential buffer overflows
if legacy software was used, StatOS is not intended to be installed onto
computer systems and instead is intended to run temporarily to support
field analysis and diagnostics, with the researchers mitigating these
vulnerabilities once patches are available.

7. Delphi method interviews

To provide evaluative feedback of StatOS, 10% of the initial survey
respondents were interviewed about the design and implementation.
Interviews were semi-structured in nature, with questions being led
through the use of a interview questionnaire to identify key areas to
gain feedback. Through the use of remote video link software and in-
person interviews, StatOS was demonstrated, with results being added
to the survey as appropriate.

Towards the end of the interview, interviewees were asked directly
about potential improvements and weaknesses within StatOS, if they
had not already mentioned these subjects during the evaluation. An
unstructured and brief conversation followed this to close the interview
to collect any intangible or difficult to quantify sentiments or results.

During the software evaluation sections of the discussion, all respon-
dents categorised the inclusion of GHIDRA and IDA as largely positive,
with GHIDRA receiving the most positive responses. Persons testing
StatOS found the tools useful for reverse engineering and static analysis,
and found the performance benefits of running in RAM to be very
useful.

In regards to evaluating OS performance, the boot time of 60 s to
copy into RAM was met with mixed responses from different respon-
dents, being classed as slow, moderate and fast by different respon-
dents. By asking users what they believe an average amount of RAM is
for average enterprise computer systems, it was possible to understand
the feasibility of StatOS being used on existing equipment. Generally,
8 GB was considered moderate by respondents, which is a suitable
amount of RAM to use StatOS and therefore, it can be implied that users
believe StatOS is capable of running on moderately equipped hardware.

Further discussing boot times with users, it was asked if users would
be willing to accept a longer boot time to initialise into RAM. While the
majority of respondents agreed that this would be acceptable, Person D
gave a counter argument, explaining that sometimes speed is required
in forensic incidents and therefore investigations might not have time
to wait for a complete initialisation, however stated that generally this
depended on the severity of the incident being investigated.

Users were asked what they believed an average memory stick’s
size to be, in order to understand how effective StatOS could be mass-
produced or deployed in a cost-effective manner. Such results indicated
that sizes between 32–16 GB were considered moderate; as StatOS is
capable of running from an 8 gigabyte USB, this reinforces the cost
effectiveness and low hardware requirements of the solution. Users also
generally believe that files being analysed are unlikely to exceed 1000
megabytes, which would be reaching the upper limitations of StatOS’s
current capabilities.

Regarding the initial requirements of StatOS, all users agreed that
all the requirements discussed had been met, with respondents agreeing
that portability and performance largely exceeded any requirements. A
majority of users would use StatOS for forensic taskings, with potential
future features such as signature-based malware detection and IDE’s
being suggested for inclusion. A table outlining these results is visible
within Table 7.
12
7.1. Potential reservations

It is notable that of the 5 interviewees, whilst 4 would use a tool
like StatOS within their organisation, one expressed reservations. The
individual did not elaborate on their reasoning, however from the
interview transcripts and responses to requirements relating to tooling,
user-friendliness and terminal environments, the individual may have
preferred an environment containing a greater selection of such tools,
or potentially preferred to observe how StatOS would function over a
prolonged time period.

As identified in Section 4.3, requirements relating to the develop-
ment of StatOS were set out to definitively identify StatOS’s strengths
and weaknesses, as well as opportunities and threats. In the interest
of further verifying requirements have been met, a convenient random
sampling selection of industry experts who undertook the primary
survey will give feedback on StatOS through semi-structured interviews
and the delphi method. Through a combination of primary research sur-
veys, Delphi-method interviews and Monte-Carlo source code analysis,
StatOS has been created and evaluated. A final SWOT table illustrating
StatOS’s strengths, weaknesses, opportunities and threats has been
included in Table 8.

8. Conclusions and future work

From the research and development undertaken, StatOS tool has
been created in-line with the requirements sourced from individuals
and experts within cyber security. The software was tested against such
requirements through Monte-Carlo vulnerability analyses, before being
evaluated through Delphi-method interviews with 10% of the initial
survey respondents to provide confirmation of requirements being met.

From such research, it has been found that organisations often
struggle to obtain budgeting for dedicated analysis hardware. StatOS
would present a useful tool to mitigate against hardware shortages for
themselves and their respective organisations, due to the low hardware
requirements and relative ease of acquiring USB devices. Individuals
found StatOS to meet all the requirements visible in Table 4, with
StatOS exceeding requirements relating to portability and performance
due to its ramdisk functionalities. These results indicate that StatOS rep-
resents a positive contribution towards the goal of alleviating hardware
shortages in cyber security through the usage of Linux derivatives.

To enhance the viability and effectiveness of StatOS, future work
is encouraged to develop a more comprehensive approach to package
management, signature updating and the incorporation of vulnerability
management processes into the development of the tool. Additional
research should be undertaken with an increased sample size, as well as
further practical use of StatOS to understand how individuals interact
with the tool.

8.1. Limitations

Limitations include that integrity analysis was performed by the re-
searcher; performing additional external research such as interviewing
penetration testers would provide a more authoritative analysis source,
in addition to potential threat modelling. Future research should seek
to increase the overall number of participants to increase the reliability
of the results, in addition to attempting to maintain StatOS over an
extended period of time to understand its continued viability.

As mentioned within Section 3, whilst the sample size chosen is
sufficient, a greater sample size would further strengthen the results. As
such, the researchers recommend that future works attempt to gather
a greater sample size across a wider geographical area and increase
the number of participants, both at the survey and interview stages, to
validate the results against a larger sample size.

Whilst collecting demographic information would provide a greater
ability to analyse the data, the ethical implications of collecting such
data would make timely data collection impractical, as well as requiring

A. Cameron et al. Array 26 (2025) 100391
Table 7
Delphi method results for StatOS.
 ID Requirements Would use?
 Terminals

and GUIs
Analysis and
coding tools

User
friendliness

Performance and
portability

RAM and persistence

 1 Achieved Exceeded Achieved Achieved Exceeded Yes
 2 Achieved Achieved Achieved Exceeded Achieved Yes
 3 Achieved Achieved Achieved Exceeded Achieved No
 4 Exceeded Achieved Exceeded Exceeded Achieved Yes
 5 Achieved Achieved Achieved Exceeded Achieved Yes
Table 8
Strengths, weaknesses, opportunities and threats (SWOT) analysis of StatOS.
 Strengths Weaknesses Opportunities Threats
 Highly performant when
running in RAM; capable of
performing analyses rapidly.

Susceptible to physical attacks
or attacks with physical
access.

Updated software to mitigate
CVE’s.

Majority of analysis performed
using tools such as
SIFT/REMNUX/Kali/Parrot.

 Highly portable due to USB3.0
device. Device is easily stored
and transported, with minimal
equipment required to
operate.

Source compiled nature makes
modifications difficult when
deployed.

Include additional analysis
software.

Upstream package
management of other tools
streamlines distribution and
compatibility in a way which
is not possible with StatOS.

 Capable of switching between
RAM modes for speed and
persistence modes to save
changes and investigation
progress. Gives flexibility
during analysis.

FAT32 data partition
constrains analysis files to
4 GB maximum per file.

Inclusion of antimalware
scanners.

Uncontrollable discovery of
further CVE’s being identified
within software used.

 Contains the two most
requested analysis tools from
the initial survey; GHIDA and
IDA. Both are functional and
can be operated effectively.
Contains C compiler, Python2
and Python3 and shell
scripting capabilities for
programming.

Initial boot time is extended
when copying into RAM.

Development of a reporting
mechanism.

Alternative tools support
additional architectures other
than x86-64.

 Provides both a command line
user interface over TTY’s and
a GUI using XFCE4. Terminal
emulation is possible in the
GUI to allow both command
line and GUI operation
simultaneously.

Storage size limits the features
provided by GUIs and CLI
applications.

Potential support for dynamic
analysis.

Greater development efforts
and communities around
existing tools ensure new
features and software is
integrated rapidly.

 Feedback evidences that the
user interface provided and
the proposed mechanisms are
user friendly to individuals
within cyber security, who
would be the primary target
audience.

Limited sample size of
respondents could be
increased to afford greater
reliability.

Further architecture support. N/A

 Can be quickly deployed for
bulk analysis through USB
device imaging, allowing
blank USB devices to be
converted into bootable
StatOS devices

Requires technical knowledge
to provision a StatOS USB or
automate the process.

Potential for greater user
friendliness through the
integration of basic splash
screens in initramfs.

N/A
substantial redaction, which would ultimately detract from the value of
given demographic information [77,78]. Future research would bene-
fit from collecting more comprehensive demographic information for
greater analysis.

It is acknowledged that the key operating system features discussed
in Section 4.1 and ranked by respondents within the preliminary sur-
vey were formulated from a review of existing literature rather than
through direct primary research. Undertaking additional research with
experts in digital forensics and cyber security could lead to the addition
or alteration of these key features, which may ultimately improve the
capabilities of StatOS.

It is recognised that both sampling methods chosen are
non-probability sampling methods and, therefore, experience an ele-
vated potential risk of bias compared to probability-based sampling
13
methods. Whilst interviews and requirement sourcing with a larger
selection of participants would be preferable, sample sizes smaller
than the chosen sample in this study requirement sourcing have been
demonstrated to be highly successful in requirement sourcing [79–81].
Additionally, probability-based sampling methods would require an
extended time period to build a pool of research participants of similar
size, which, whilst reducing the risk of bias, would detract considerably
from the time available to develop and design the solution, leading to
a solution with dramatically reduced capabilities.

To mitigate against such biases, respondents were selected from
various organisational roles, across multiple organisations and in differ-
ent industries to give a more comprehensive sample. Furthermore, the
results included metrics on the percentage of individuals working at the

A. Cameron et al. Array 26 (2025) 100391
same organisation as the research organiser to address potential uncon-
scious biases such as affinity bias. It has been suggested that Affinity
bias occurs in individuals who feel an affinity or form of connection
with another person; after working within related departments, it is
possible that such a connection could be present, which could lead to an
impact on the results [82]. By identifying such biases, it is anticipated
that it will better reflect an accurate and true representation of the
results [83].

Further mitigations include the research methodology decision to
perform the preliminary survey before the design of the solution to
gather insights. By performing the research in this manner, the risk
of response bias in favour of the researcher was considerably dimin-
ished, as the respondents were not evaluating a solution and instead
were giving experiences, insights and opinions. Further demographic
information can be seen within Section 3, with additional discussion in
Section 8.1.

CRediT authorship contribution statement

Alexander Cameron: Writing – original draft, Software, Investiga-
tion, Data curation, Conceptualization. Abu Alam: Writing – review
& editing, Validation, Supervision, Resources, Project administration,
Methodology, Formal analysis, Data curation. Nasreen Anjum: Writing
– review & editing, Visualization, Validation, Resources, Project ad-
ministration, Methodology, Formal analysis, Conceptualization. Javed
Ali Khan: Writing – review & editing, Validation, Resources, Funding
acquisition, Formal analysis. Alexios Mylonas: Writing – review &
editing, Validation, Resources, Funding acquisition, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.array.2025.100391.

Data availability

No data was used for the research described in the article.

References

[1] Anson S. Applied incident response. 1st ed. John Wiley & Sons; 2020, p. 3–21.
[2] Kleymenov A, Thabet A. Mastering malware analysis. 1st ed. Packt Publishing,

Limited; 2019, p. 498–510.
[3] Anjum N, Yang Z, Saki H, Kiran M, Shikh-Bahaei M. Device-to-device (D2D)

communication as a bootstrapping system in a wireless cellular network. IEEE
Access 2019;7:6661–78.

[4] Karapoola S, Rebeiro C, Parekh U, Veezhinathan K. Towards identifying early
indicators of a malware infection. In: Proceedings of the 2020 ACM Asia
conference on computer and communications security. New York, NY, USA:
ACM; 2020, p. 680–1. http://dx.doi.org/10.1145/3321705.3331006, URL https:
//dl.acm.org/doi/10.1145/3321705.3331006.

[5] Mell P, Kent K, Nusbaum J. Special publication 800-83 sponsored by the
department of homeland security guide to malware incident prevention and
handling recommendations of the national institute of standards and technology.
2005, p. 6–11. http://dx.doi.org/10.5555/2206294.

[6] Fang J, Yang Z, Anjum N, Hu Y, Asgari H, Shikh-Bahaei M. Secure intelli-
gent reflecting surface assisted UAV communication networks. In: 2021 IEEE
international conference on communications workshops. IEEE; 2021, p. 1–6.

[7] Sykosch A, Ohm M, Meier M. Hunting observable objects for indication of
compromise. In: Proceedings of the 13th international conference on availability,
reliability and security. New York, NY, USA: ACM; 2018, p. 1–8. http://dx.doi.
org/10.1145/3230833.3233282, URL https://dl.acm.org/doi/10.1145/3230833.
3233282.
14
[8] Caviglione L, Wendzel S, Mazurczyk W. The future of digital forensics: Challenges
and the road ahead. IEEE Secur Priv 2017;15:13–5. http://dx.doi.org/10.1109/
MSP.2017.4251117, URL http://ieeexplore.ieee.org/document/8123473/.

[9] Imran K, Anjum N, Alghamdi A, Shaikh A, Hamdi M, Mahfooz S. A secure and
efficient cluster-based authentication scheme for internet of things (IoTs). CMC-
Computers Materials & Continua 2022;70(1):1033–52.

[10] Schlette D, Caselli M, Pernul G. A comparative study on cyber threat intelligence:
The security incident response perspective. IEEE Commun Surv & Tutorials
2021;23(4):2525–56. http://dx.doi.org/10.1109/COMST.2021.3117338.

[11] Nisioti A, Loukas G, Laszka A, Panaousis E. Data-driven decision support
for optimizing cyber forensic investigations. IEEE Trans Inf Forensics Secur
2021;16:2397–412. http://dx.doi.org/10.1109/TIFS.2021.3054966.

[12] Makrakis GM, Kolias C, Kambourakis G, Rieger C, Benjamin J. Industrial and crit-
ical infrastructure security: Technical analysis of real-life security incidents. IEEE
Access 2021;9:165295–325. http://dx.doi.org/10.1109/ACCESS.2021.3133348.

[13] Sun N, Zhang J, Rimba P, Gao S, Zhang LY, Xiang Y. Data-driven cy-
bersecurity incident prediction: A survey. IEEE Commun Surv & Tutorials
2019;21(2):1744–72. http://dx.doi.org/10.1109/COMST.2018.2885561.

[14] Pliatsios D, Sarigiannidis P, Lagkas T, Sarigiannidis AG. A survey on SCADA
systems: Secure protocols, incidents, threats and tactics. IEEE Commun
Surv & Tutorials 2020;22(3):1942–76. http://dx.doi.org/10.1109/COMST.2020.
2987688.

[15] Ozer M, Varlioglu S, Gonen B, Adewopo V, Elsayed N, Zengin S. Cloud incident
response: Challenges and opportunities. In: 2020 international conference on
computational science and computational intelligence. IEEE; 2020, p. 49–54.

[16] Attinasi MG, De Stefani R, Frohm E, Gunnella V, Koester G, Tóth M, et al. The
semiconductor shortage and its implication for euro area trade, production and
prices. Econ Bull Boxes 2021;4.

[17] Sikorski M, Honig A. Practical malware analysis. 1st ed. William Pollock; 2012,
p. 465–75.

[18] Nagano Y, Uda R. Static analysis with paragraph vector for malware detection.
In: Proceedings of the 11th international conference on ubiquitous information
management and communication. New York, NY, USA: ACM; 2017, p. 1–7. http:
//dx.doi.org/10.1145/3022227.3022306, URL https://dl.acm.org/doi/10.1145/
3022227.3022306.

[19] Berady A, Jaume M, Tong VVT, Guette G. From TTP to IoC: Advanced persistent
graphs for threat hunting. IEEE Trans Netw Serv Manag 2021;18(2):1321–33.

[20] Chierzi V, Mercês F. Evolution of IoT linux malware: A mitre att&ck ttp based
approach. In: 2021 APWG symposium on electronic crime research. IEEE; 2021,
p. 1–11.

[21] D’Elia DC, Coppa E, Palmaro F, Cavallaro L. On the dissection of evasive
malware. IEEE Trans Inf Forensics Secur 2020;15:2750–65.

[22] Northrop EE, Lipford HR. Exploring the usability of open source network forensic
tools. In: Proceedings of the 2014 ACM workshop on security information
workers, vol. 2014-November. New York, New York, USA: ACM Press; 2014,
p. 1–8. http://dx.doi.org/10.1145/2663887.2663903, URL http://dl.acm.org/
citation.cfm?doid=2663887.2663903.

[23] Zografopoulos I, Ospina J, Liu X, Konstantinou C. Cyber-physical energy systems
security: Threat modeling, risk assessment, resources, metrics, and case studies.
IEEE Access 2021;9:29775–818.

[24] Liu J, Yin T, Yue D, Karimi HR, Cao J. Event-based secure leader-following
consensus control for multiagent systems with multiple cyber attacks. IEEE Trans
Cybern 2020;51(1):162–73.

[25] Alves-Foss J, Song J. Function boundary detection in stripped binaries. In:
Proceedings of the 35th annual computer security applications conference.
New York, NY, USA: ACM; 2019, p. 84–96. http://dx.doi.org/10.1145/3359789.
3359825, URL https://dl.acm.org/doi/10.1145/3359789.3359825.

[26] Rohleder R. Hands-on ghidra - A tutorial about the software reverse engineering
framework. In: Proceedings of the 3rd ACM workshop on software protection.
New York, New York, USA: ACM Press; 2019, p. 77–8. http://dx.doi.org/
10.1145/3338503.3357725, URL http://dl.acm.org/citation.cfm?doid=3338503.
3357725.

[27] Both JJ, Spaans P, Geana A, de Laat C. Analyzing and enhancing embedded
software technologies on RISC-V64 using the Ghidra framework. 2020, p. 1–4.

[28] Bhat O, Yeprem Z, Lingesh V. Comparison of 3 reverse engineering tools
emotet view project smart homes view project. 2019, p. 8–15. http://dx.doi.org/
10.13140/RG.2.2.35123.07203, URL https://www.researchgate.net/publication/
333907927.

[29] Ferguson J, Kaminsky D. Reverse engineering code with IDA Pro. 1st ed. Syngress
Pub.; 2008, p. 5–18.

[30] Eagle C. The ida pro book, 2nd edition. 1st ed. No Starch Press; 2011, p. 29–34.
[31] Holzer A, Kinder J, Veith H. Using verification technology to specify and detect

malware. 2007, p. 2–7.
[32] Maier D, Seidel L. JMPscare: Introspection for binary-only fuzzing. In: Proceed-

ings 2021 workshop on binary analysis research. Reston, VA: Internet Society;
2021, p. 2–6. http://dx.doi.org/10.14722/bar.2021.23003, URL https://www.
ndss-symposium.org/wp-content/uploads/bar2021_23003_paper.pdf.

[33] Elovici Y, Kachlon A, Kedma G, Guri M. AirHopper: Bridging the air-gap between
isolated networks and mobile phones using radio frequencies. 2014, p. 1–4.

https://doi.org/10.1016/j.array.2025.100391
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb1
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb2
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb2
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb2
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb3
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb3
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb3
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb3
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb3
http://dx.doi.org/10.1145/3321705.3331006
https://dl.acm.org/doi/10.1145/3321705.3331006
https://dl.acm.org/doi/10.1145/3321705.3331006
https://dl.acm.org/doi/10.1145/3321705.3331006
http://dx.doi.org/10.5555/2206294
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb6
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb6
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb6
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb6
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb6
http://dx.doi.org/10.1145/3230833.3233282
http://dx.doi.org/10.1145/3230833.3233282
http://dx.doi.org/10.1145/3230833.3233282
https://dl.acm.org/doi/10.1145/3230833.3233282
https://dl.acm.org/doi/10.1145/3230833.3233282
https://dl.acm.org/doi/10.1145/3230833.3233282
http://dx.doi.org/10.1109/MSP.2017.4251117
http://dx.doi.org/10.1109/MSP.2017.4251117
http://dx.doi.org/10.1109/MSP.2017.4251117
http://ieeexplore.ieee.org/document/8123473/
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb9
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb9
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb9
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb9
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb9
http://dx.doi.org/10.1109/COMST.2021.3117338
http://dx.doi.org/10.1109/TIFS.2021.3054966
http://dx.doi.org/10.1109/ACCESS.2021.3133348
http://dx.doi.org/10.1109/COMST.2018.2885561
http://dx.doi.org/10.1109/COMST.2020.2987688
http://dx.doi.org/10.1109/COMST.2020.2987688
http://dx.doi.org/10.1109/COMST.2020.2987688
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb15
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb15
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb15
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb15
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb15
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb16
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb16
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb16
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb16
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb16
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb17
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb17
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb17
http://dx.doi.org/10.1145/3022227.3022306
http://dx.doi.org/10.1145/3022227.3022306
http://dx.doi.org/10.1145/3022227.3022306
https://dl.acm.org/doi/10.1145/3022227.3022306
https://dl.acm.org/doi/10.1145/3022227.3022306
https://dl.acm.org/doi/10.1145/3022227.3022306
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb19
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb19
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb19
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb20
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb20
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb20
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb20
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb20
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb21
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb21
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb21
http://dx.doi.org/10.1145/2663887.2663903
http://dl.acm.org/citation.cfm?doid=2663887.2663903
http://dl.acm.org/citation.cfm?doid=2663887.2663903
http://dl.acm.org/citation.cfm?doid=2663887.2663903
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb23
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb23
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb23
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb23
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb23
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb24
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb24
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb24
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb24
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb24
http://dx.doi.org/10.1145/3359789.3359825
http://dx.doi.org/10.1145/3359789.3359825
http://dx.doi.org/10.1145/3359789.3359825
https://dl.acm.org/doi/10.1145/3359789.3359825
http://dx.doi.org/10.1145/3338503.3357725
http://dx.doi.org/10.1145/3338503.3357725
http://dx.doi.org/10.1145/3338503.3357725
http://dl.acm.org/citation.cfm?doid=3338503.3357725
http://dl.acm.org/citation.cfm?doid=3338503.3357725
http://dl.acm.org/citation.cfm?doid=3338503.3357725
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb27
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb27
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb27
http://dx.doi.org/10.13140/RG.2.2.35123.07203
http://dx.doi.org/10.13140/RG.2.2.35123.07203
http://dx.doi.org/10.13140/RG.2.2.35123.07203
https://www.researchgate.net/publication/333907927
https://www.researchgate.net/publication/333907927
https://www.researchgate.net/publication/333907927
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb29
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb29
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb29
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb30
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb31
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb31
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb31
http://dx.doi.org/10.14722/bar.2021.23003
https://www.ndss-symposium.org/wp-content/uploads/bar2021_23003_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/bar2021_23003_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/bar2021_23003_paper.pdf
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb33
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb33
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb33

A. Cameron et al. Array 26 (2025) 100391
[34] Win T-Y, Tianfield H, Mair Q. UCC 2014 : 2014 IEEE/ACM 7th international
conference on utility and cloud computing : proceedings : 8-11 december, 2014,
London, England, united kingdom. 2014, p. 1004–9.

[35] Kovacs F, Gcfa G. SANS institute information security reading room windows 10
as a forensic platform. 2021.

[36] Callegaro M, Manfreda KL, Vehovar V. Web survey methodology. Sage; 2015.
[37] Bano M, Zowghi D. A systematic review on the relationship between user

involvement and system success. Inf Softw Technol 2015;58:148–69.
[38] Mao K, Capra L, Harman M, Jia Y. A survey of the use of crowdsourcing in

software engineering. J Syst Softw 2017;126:57–84.
[39] LaToza TD, Van Der Hoek A. Crowdsourcing in software engineering: Models,

motivations, and challenges. IEEE Softw 2015;33(1):74–80.
[40] Stol K-J, Fitzgerald B. Two’s company, three’s a crowd: a case study of

crowdsourcing software development. In: Proceedings of the 36th international
conference on software engineering. 2014, p. 187–98.

[41] Lei H, Ganjeizadeh F, Jayachandran PK, Ozcan P. A statistical analysis of
the effects of Scrum and Kanban on software development projects. Robot
Comput-Integr Manuf 2017;43:59–67.

[42] Li C, Huang L, Ge J, Luo B, Ng V. Automatically classifying user requests in
crowdsourcing requirements engineering. J Syst Softw 2018;138:108–23.

[43] Flostrand A, Pitt L, Bridson S. The Delphi technique in forecasting–A
42-year bibliographic analysis (1975–2017). Technol Forecast Soc Change
2020;150:119773.

[44] McMillan SS, King M, Tully MP. How to use the nominal group and delphi
techniques. Int J Clin Pharm 2016;38:655–62.

[45] Chowdhury N, Katsikas S, Gkioulos V. Modeling effective cybersecurity training
frameworks: A delphi method-based study. Comput Secur 2022;113:102551.

[46] Dawood KA, Sharif KY, Ghani AA, Zulzalil H, Zaidan A, Zaidan B. Towards
a unified criteria model for usability evaluation in the context of open source
software based on a fuzzy Delphi method. Inf Softw Technol 2021;130:106453.

[47] Nugraha Y, Brown I, Sastrosubroto AS. An adaptive wideband delphi method
to study state cyber-defence requirements. IEEE Trans Emerg Top Comput
2015;4(1):47–59.

[48] Hosseini M, Shahri A, Phalp K, Taylor J, Ali R. Crowdsourcing: A taxonomy and
systematic mapping study. Comput Sci Rev 2015;17:43–69.

[49] Flostrand A. Finding the future: Crowdsourcing versus the Delphi technique. Bus
Horiz 2017;60(2):229–36.

[50] Etikan I. Comparison of convenience sampling and purposive sampling.
Am J Theor Appl Stat 2017;5:1. http://dx.doi.org/10.11648/j.ajtas.20160501.
11, URL http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=
146&doi=10.11648/j.ajtas.20160501.11.

[51] Joshi A, Kale S, Chandel S, Pal D. Likert scale: Explored and explained.
Br J Appl Sci Technol 2015;7:396–403. http://dx.doi.org/10.9734/BJAST/
2015/14975, URL http://www.sciencedomain.org/abstract.php?iid=773&id=5&
aid=8206.

[52] Saab F, Elhajj IH, Kayssi A, Chehab A. Modelling cognitive bias in crowdsourcing
systems. Cogn Syst Res 2019;58:1–18.

[53] Wang J, Cui Q, Wang Q, Wang S. Towards effectively test report classification to
assist crowdsourced testing. In: Proceedings of the 10th ACM/IEEE international
symposium on empirical software engineering and measurement. 2016, p. 1–10.

[54] Soprano M, Roitero K, La Barbera D, Ceolin D, Spina D, Mizzaro S, et al. The
many dimensions of truthfulness: Crowdsourcing misinformation assessments on
a multidimensional scale. Inf Process Manage 2021;58(6):102710.

[55] LeBreton JM, Ployhart RE, Ladd RT. A Monte Carlo comparison of relative
importance methodologies. Organ Res Methods 2004;7:258–82. http://dx.doi.
org/10.1177/1094428104266017.

[56] Allodi L, Banescu S, Femmer H, Beckers K. Identifying relevant information cues
for vulnerability assessment using CVSS. In: CODASPY 2018 - Proceedings of
the 8th ACM conference on data and application security and privacy, vol.
2018-January. Association for Computing Machinery, Inc; 2018, p. 119–26.
http://dx.doi.org/10.1145/3176258.3176340, http://arxiv.org/abs/1803.07648.

[57] Scheibe M, Skutsch M, Schofer J. IV. C. Experiments in delphi methodology.
Delphi Method: Tech Appl 2002;257–81.

[58] Primi R, Santos D, De Fruyt F, John OP. Comparison of classical and modern
methods for measuring and correcting for acquiescence. Br J Math Stat Psychol
2019;72(3):447–65.

[59] Nyre-Yu M, Gutzwiller RS, Caldwell BS. Observing cyber security incident
response: qualitative themes from field research. In: Proceedings of the human
factors and ergonomics society annual meeting, vol. 63, no. 1. SAGE Publications
Sage CA: Los Angeles, CA; 2019, p. 437–41.
15
[60] Guri M, Elovici Y. Bridgeware: The air-gap malware. Commun ACM
2018;61(4):74–82. http://dx.doi.org/10.1145/3177230.

[61] Jiroušek R, Kratochvíl V. Ambiguity effect: decision-making influenced by lack
of information. In: 2021 IEEE international conference on technology and
entrepreneurship. IEEE; 2021, p. 1–6.

[62] Talluri BC, Urai AE, Tsetsos K, Usher M, Donner TH. Confirmation bias
through selective overweighting of choice-consistent evidence. Curr Biol-
ogy 2018;28(19):3128–35.e8. http://dx.doi.org/10.1016/j.cub.2018.07.052, URL
https://www.sciencedirect.com/science/article/pii/S0960982218309825.

[63] Votipka D, Punzalan MN, Rabin SM, Tausczik Y, Mazurek ML. An investigation
of online reverse engineering community discussions in the context of ghidra. In:
2021 IEEE European symposium on security and privacy. IEEE; 2021, p. 1–20.

[64] Vaithilingam P, Guo PJ. Bespoke: Interactively synthesizing custom GUIs from
command-line applications by demonstration. In: Proceedings of the 32nd annual
ACM symposium on user interface software and technology. 2019, p. 563–76.

[65] Isaacs KE, Gamblin T. Preserving command line workflow for a package
management system using ASCII DAG visualization. IEEE Trans Vis Comput
Graphics 2019;25(9):2804–20. http://dx.doi.org/10.1109/TVCG.2018.2859974.

[66] Chi SS, Shanthikumar DM. Local bias in google search and the market response
around earnings announcements. Account Rev 2017;92(4):115–43.

[67] Voronkov A, Martucci LA, Lindskog S. System administrators prefer command
line interfaces, don’t they? an exploratory study of firewall interfaces. In:
Fifteenth symposium on usable privacy and security. 2019, p. 259–71.

[68] Tan X, Zhou M, Fitzgerald B. Scaling open source communities: An empirical
study of the linux kernel. In: 2020 IEEE/ACM 42nd international conference on
software engineering. IEEE; 2020, p. 1222–34.

[69] Lawall J, Muller G. Coccinelle: 10 years of automated evolution in the linux
kernel. In: 2018 USeNIX annual technical conference. 2018, p. 601–14.

[70] Rangan CA, Holla KA, Kulkarniz V, Kumarx A, Patil A. Data rate based
performance analysis and optimization of bulk OUT transactions in USB 3.0
SuperSpeed protocol. In: 2018 second international conference on advances in
electronics, computers and communications. IEEE; 2018, p. 1–6.

[71] Maglaras LA, Kim K-H, Janicke H, Ferrag MA, Rallis S, Fragkou P, et al. Cyber
security of critical infrastructures. ICT Express 2018;4(1):42–5. http://dx.doi.org/
10.1016/j.icte.2018.02.001, URL https://www.sciencedirect.com/science/article/
pii/S2405959517303880.

[72] Ghavamnia S, Palit T, Mishra S, Polychronakis M. Temporal system call special-
ization for attack surface reduction. In: 29th USeNIX security symposium. 2020,
p. 1749–66.

[73] Hof B, Carle G. Software distribution transparency and auditability. 2017, arXiv
preprint arXiv:1711.07278.

[74] Peng P, Yang L, Song L, Wang G. Opening the blackbox of virustotal: Analyzing
online phishing scan engines. In: Proceedings of the internet measurement
conference. 2019, p. 478–85.

[75] Masri R, Aldwairi M. Automated malicious advertisement detection using Virus-
Total, URLVoid, and TrendMicro. In: 2017 8th international conference on
information and communication systems. 2017, p. 336–41. http://dx.doi.org/
10.1109/IACS.2017.7921994.

[76] Spring J, Hatleback E, Householder A, Manion A, Shick D. Time to change the
cvss? IEEE Secur Priv 2021;19(2):74–8. http://dx.doi.org/10.1109/MSEC.2020.
3044475.

[77] Zanatta AL, Machado LS, Pereira GB, Prikladnicki R, Carmel E. Software
crowdsourcing platforms. IEEE Softw 2016;33(6):112–6.

[78] Hirth M, Jacques J, Rodgers P, Scekic O, Wybrow M. Crowdsourcing technology
to support academic research. In: Evaluation in the crowd. crowdsourcing
and human-centered experiments: dagstuhl seminar 15481, Dagstuhl Castle,
Germany, November 22–27, 2015, revised contributions. Springer; 2017, p.
70–95.

[79] Stolee KT, Elbaum S. Exploring the use of crowdsourcing to support empirical
studies in software engineering. In: Proceedings of the 2010 ACM-IEEE interna-
tional symposium on empirical software engineering and measurement. 2010, p.
1–4.

[80] Hosseini M, Shahri A, Phalp K, Taylor J, Ali R, Dalpiaz F. Configuring crowd-
sourcing for requirements elicitation. In: 2015 IEEE 9th international conference
on research challenges in information science. IEEE; 2015, p. 133–8.

[81] Tsai W-T, Wu W, Huhns MN. Cloud-based software crowdsourcing. IEEE Internet
Comput 2014;18(3):78–83. http://dx.doi.org/10.1109/MIC.2014.46.

[82] Gammie E. Unconscious bias and professional skepticism. Int Account Educ Stand
Board (IAESB) 2018.

[83] McCormick H. The real effects of unconscious bias in the workplace. UNC Exec
Dev Kenan- Flagler Bus Sch DIRECCIÓN 2015.

http://refhub.elsevier.com/S2590-0056(25)00018-9/sb34
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb34
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb34
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb34
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb34
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb35
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb35
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb35
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb36
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb37
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb37
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb37
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb38
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb38
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb38
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb39
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb39
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb39
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb40
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb40
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb40
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb40
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb40
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb41
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb41
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb41
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb41
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb41
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb42
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb42
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb42
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb43
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb43
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb43
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb43
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb43
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb44
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb44
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb44
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb45
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb45
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb45
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb46
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb46
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb46
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb46
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb46
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb47
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb47
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb47
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb47
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb47
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb48
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb48
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb48
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb49
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb49
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb49
http://dx.doi.org/10.11648/j.ajtas.20160501.11
http://dx.doi.org/10.11648/j.ajtas.20160501.11
http://dx.doi.org/10.11648/j.ajtas.20160501.11
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=146&doi=10.11648/j.ajtas.20160501.11
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=146&doi=10.11648/j.ajtas.20160501.11
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=146&doi=10.11648/j.ajtas.20160501.11
http://dx.doi.org/10.9734/BJAST/2015/14975
http://dx.doi.org/10.9734/BJAST/2015/14975
http://dx.doi.org/10.9734/BJAST/2015/14975
http://www.sciencedomain.org/abstract.php?iid=773&id=5&aid=8206
http://www.sciencedomain.org/abstract.php?iid=773&id=5&aid=8206
http://www.sciencedomain.org/abstract.php?iid=773&id=5&aid=8206
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb52
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb52
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb52
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb53
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb53
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb53
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb53
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb53
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb54
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb54
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb54
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb54
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb54
http://dx.doi.org/10.1177/1094428104266017
http://dx.doi.org/10.1177/1094428104266017
http://dx.doi.org/10.1177/1094428104266017
http://dx.doi.org/10.1145/3176258.3176340
http://arxiv.org/abs/1803.07648
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb57
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb57
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb57
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb58
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb58
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb58
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb58
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb58
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb59
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb59
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb59
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb59
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb59
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb59
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb59
http://dx.doi.org/10.1145/3177230
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb61
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb61
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb61
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb61
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb61
http://dx.doi.org/10.1016/j.cub.2018.07.052
https://www.sciencedirect.com/science/article/pii/S0960982218309825
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb63
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb63
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb63
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb63
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb63
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb64
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb64
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb64
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb64
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb64
http://dx.doi.org/10.1109/TVCG.2018.2859974
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb66
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb66
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb66
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb67
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb67
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb67
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb67
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb67
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb68
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb68
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb68
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb68
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb68
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb69
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb69
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb69
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb70
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb70
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb70
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb70
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb70
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb70
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb70
http://dx.doi.org/10.1016/j.icte.2018.02.001
http://dx.doi.org/10.1016/j.icte.2018.02.001
http://dx.doi.org/10.1016/j.icte.2018.02.001
https://www.sciencedirect.com/science/article/pii/S2405959517303880
https://www.sciencedirect.com/science/article/pii/S2405959517303880
https://www.sciencedirect.com/science/article/pii/S2405959517303880
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb72
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb72
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb72
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb72
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb72
http://arxiv.org/abs/1711.07278
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb74
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb74
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb74
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb74
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb74
http://dx.doi.org/10.1109/IACS.2017.7921994
http://dx.doi.org/10.1109/IACS.2017.7921994
http://dx.doi.org/10.1109/IACS.2017.7921994
http://dx.doi.org/10.1109/MSEC.2020.3044475
http://dx.doi.org/10.1109/MSEC.2020.3044475
http://dx.doi.org/10.1109/MSEC.2020.3044475
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb77
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb77
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb77
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb78
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb79
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb79
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb79
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb79
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb79
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb79
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb79
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb80
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb80
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb80
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb80
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb80
http://dx.doi.org/10.1109/MIC.2014.46
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb82
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb82
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb82
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb83
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb83
http://refhub.elsevier.com/S2590-0056(25)00018-9/sb83

	STATOS: A portable tool for secure malware analysis and sample acquisition in low resource environments
	Introduction
	Problem Statement
	Contribution and Organisation

	Evaluation and Comparison of State-of-the-Art Static Analysis Tools
	GHIDRA
	IDA
	BinaryNinja
	Operating Systems

	Methodology
	Sourcing Requirements
	Result Processing
	Result Categorisation
	Method Justification

	Requirement Sourcing Results
	Operating System Findings
	Interface Findings
	Tool Findings

	OS Implementation
	OS GUI Design
	Robustness Assurances

	Integrity Verification of StatOS Source
	Elimination of Outdated Components

	Delphi Method Interviews
	Potential Reservations

	Conclusions and Future Work
	Limitations

	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Supplementary data
	Data availability
	References

