
This is a peer-reviewed, final published version of the following document, © 2025 by the
authors and is licensed under Creative Commons: Attribution 4.0 license:

Ajasa, Ade Dotun, Chizari, Hassan ORCID logoORCID:
https://orcid.org/0000-0002-6253-1822 and Alam, Abu S
(2025) Database Security and Performance: A Case of SQL
Injection Attacks Using Docker-Based Virtualisation and its
Effect on Performance. Future Internet, 17 (4). art:156.
doi:10.3390/fi17040156

Official URL: https://doi.org/10.3390/fi17040156
DOI: http://dx.doi.org/10.3390/fi17040156
EPrint URI: https://eprints.glos.ac.uk/id/eprint/14907

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

Academic Editor: Luis Javier

Garcia Villalba

Received: 20 December 2024

Revised: 20 March 2025

Accepted: 21 March 2025

Published: 2 April 2025

Citation: Ajasa, A.D.; Chizari, H.;

Alam, A. Database Security and

Performance: A Case of SQL Injection

Attacks Using Docker-Based

Virtualisation and Its Effect on

Performance. Future Internet 2025, 17,

156. https://doi.org/10.3390/

fi17040156

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Database Security and Performance: A Case of SQL Injection
Attacks Using Docker-Based Virtualisation and Its Effect
on Performance
Ade Dotun Ajasa *, Hassan Chizari * and Abu Alam

School of Computing & Engineering, University of Gloucestershire, The Park, Cheltenham GL50 2RH, UK;
aalam@glos.ac.uk
* Correspondence: adeajasa@connect.glos.ac.uk (A.D.A.); hchizari@glos.ac.uk (H.C.)

Abstract: Modern database systems are critical for storing sensitive information but are
increasingly targeted by cyber threats, including SQL injection (SQLi) attacks. This research
proposes a robust security framework leveraging Docker-based virtualisation to enhance
database security and mitigate the impact of SQLi attacks. A controlled experimental
methodology evaluated the framework’s effectiveness using Damn Vulnerable Web Ap-
plication (DVWA) and Acunetix databases. The findings reveal that Docker significantly
reduces the vulnerability to SQLi attacks by isolating database instances, thereby safe-
guarding user data and system integrity. While Docker introduces a significant increase
in CPU utilisation during high-traffic scenarios, the trade-off ensures enhanced security
and reliability for real-world applications. This study highlights Docker’s potential as a
practical solution for addressing evolving database security challenges in distributed and
cloud environments.

Keywords: security; performance; virtualisation; databases

1. Introduction
Database Management Systems (DBMSs) often store sensitive information, such as

company secrets, financial data, and personal privacy details [1]. However, these systems
are vulnerable to both external and internal threats. External threats include social en-
gineering attacks, while internal threats arise from unauthorised access, privilege abuse,
and vulnerabilities like SQL injection [2].

The authors of the research paper by Kaneko et al. [3] proposed a privacy-enhancing
approach involving the deployment of resource-efficient Docker containers within cloud
environments. This method effectively isolates sensitive information, enabling flexible
implementation of enhanced privacy protections and management strategies as needed.
Given the huge increase in the number of network security threats, such as vulnerabilities,
attacks, data breaches, and privacy violations [4], this research aims to address these
challenges by developing a robust security framework for databases. This framework will
mitigate risks associated with external attacks [5], while also safeguarding user data from
the destructive potential of SQL injection (SQLi) [6].

On the other hand, cloud computing has enabled distributed computing, outsourcing
infrastructure installation, pricing, maintenance, and server scalability. This has led to a
profitable computing industry, where data owners often relinquish control over their data
despite significant financial investment [7]. To address this, a comprehensive evaluation of
security frameworks is necessary, particularly in scenarios requiring frequent user access to

Future Internet 2025, 17, 156 https://doi.org/10.3390/fi17040156

https://doi.org/10.3390/fi17040156
https://doi.org/10.3390/fi17040156
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-6253-1822
https://doi.org/10.3390/fi17040156
https://www.mdpi.com/article/10.3390/fi17040156?type=check_update&version=2

Future Internet 2025, 17, 156 2 of 25

data for real-world applications [8]. While various research papers have explored the use
of Docker as a framework, there remains a gap in understanding how to leverage Docker
from a user-centric perspective to protect both user data and the underlying database.
This research aims to bridge this gap by fostering trust between users and the authorities
managing centralised databases.

This paper is organised with the following structure: Section 1 talks about the intro-
duction of the Database, Docker as a framework, SQL injection (SQLi), research questions,
research objectives, Docker containers, and security. Section 2 describes related works,
research objectives, suitability of the Docker framework, Docker containers, and the se-
curity aims of the research. Section 3 consists of the implementation, the hypotheses, the
type of variables, the schematic diagram of the laboratory, ethics approval and GDPR,
the environment, databases, network analysis, and data collection. Section 4 presents the
results, statistical analysis, tables, and graphs. Section 5 is a summary of findings, while
Section 6 elaborates on the conclusions.

2. Related Works
Table 1 highlights the software used in related works, especially, the use of Docker

images and Docker containers to conduct their implementation, just as this research paper
has used the Docker framework for its implementation. The authors of the research paper
by Zhao et al. [1] highlighted the significant challenges posed by data breaches in 2016.
Real-time processing databases, designed to handle constantly changing workloads, are
particularly susceptible to these threats. Moreover, both external and internal attacks pose
serious risks to databases, often targeting sensitive information, such as commercial secrets,
bank details, and personal privacy [1]. The authors of the research paper by Wagner et al. [2]
further corroborated these findings in their 2017 research. Database Management Systems
(DBMSs) are employed to process and store user data.

Furthermore, security mechanisms and access controls, such as audit logs, cannot
always be relied upon to prevent data breaches. Users, both legitimate and malicious, may
abuse their privileges in order to compromise database security. Databases must be capable
of promptly detecting breaches and collecting evidence to facilitate investigations [2].
According to the authors Said and Mostafa [9], insider threats, particularly those involving
the misuse of legitimate account privileges, remain a persistent challenge in database
security. Detecting such breaches can be extremely difficult. To address this issue, Said et al.
proposed an adaptive and efficient database intrusion detection algorithm inspired by
the Negative Selection algorithm from artificial immune systems and the Danger Theory
model [9].

Two recent studies published in 2021 by research authors Neto et al. [10] and Al-
garni et al. [11] emphasise the persistent challenges of data breaches and database security.
The increasing reliance on the internet has exacerbated the risks of data leakage and cyber
threats. The research paper by Neto et al. [10] analysed data breaches involving personal
information between 2018 and 2019, including the 2019 cyberattack on Capital One, which
exposed sensitive customer information [9]. Similarly, the research paper by Algarni et al.
2021 [11] examined the vulnerabilities of modern business systems to cybersecurity threats.
While cybersecurity solutions can mitigate attacks on database storage, human errors, such
as the loss or theft of devices containing sensitive data or accidental exposure of security
credentials, remain significant contributors to security breaches. Common cyberattacks
include cross-site scripting (XSS), privilege escalation, and SQL injection (SQLi).

The authors of the research paper by Mahrouqi et al. [12] conducted a notable study
in 2016, simulating an SQLi attack in a virtual environment using tools such as VirtualBox,
VMware Workstation, Wireshark, and GNS3. This research aimed to identify websites vul-

Future Internet 2025, 17, 156 3 of 25

nerable to SQLi attacks. Subsequently, the authors of the research paper by Grubbs et al. [6]
advocated for the development of strategies to limit the damage SQLi attacks inflict on
user data stored in databases. The research paper by Williams et al. [13] underscored the
importance of acquiring knowledge about software vulnerabilities, given the heavy reliance
of academic institutions, the private sector, and government entities on database-related
software. This research builds upon this foundation by proposing a method to mitigate
SQLi attack damage to user data held in databases [6].

Hospitals and banks are among the primary victims of SQLi attacks [14]. Databases
accessible via the internet are particularly vulnerable to various types of attacks [15].
As proposed in the research paper by Kaneko et al. [3], an innovative approach involves
storing private information within Docker containers. These containers, which are resource-
efficient and designed for cloud environments, enhance privacy protection and can be
deployed as needed. This approach aligns with the increasing prevalence of network vul-
nerabilities, attacks, and data privacy issues in today’s IT sphere, driven by advancements
in network technology [4]. This research aims to develop a robust security framework that
protects databases from both internal and external threats, specifically addressing SQLi
attack mitigation [6].

Moreover, the widespread adoption of distributed computing via the cloud has trans-
formed the computing industry. While outsourcing installation, maintenance, and scal-
ability has proven financially advantageous, data owners often lack direct control over
their data despite paying high costs for its security [7]. This research evaluates a security
framework through use cases that simulate real-world scenarios, ensuring frequent and
secure access to data [8].

The injection of carefully crafted malicious SQL code through web page input can
potentially lead to the destruction of a database [11]. In contrast to the findings of this
research paper, Wang and Reiter [16] and Hassanzadeh et al. [17] provide a more alarming
assessment of data breaches and database security. A significant number of data breaches
have been reported globally, with 3950 incidents occurring between November 2018 and
October 2019, resulting in the exposure of 60% of victim identities, due to 1665 breaches in
various credential databases [16]. This widespread issue has raised serious concerns among
both companies and individuals. High-profile data breaches, such as those experienced
by Yahoo in 2013 and 2014, LinkedIn in 2012, Marriott International in 2014 and 2018,
and Equifax in 2017, demonstrate that many organisations continue to implement inade-
quate cybersecurity measures, despite advancements in security technology and increased
awareness [17].

Similarly, NoSQL databases, which store data in a format different from relational
tables, have also been targeted by hackers in 2021. While these databases disrupted the
market with their scalability, performance, and availability, compromises were often made
in other areas, including privacy. NoSQL databases are designed to handle unstructured
data which lack a predefined organisation or data model. This flexibility, however, can
come at the cost of privacy features. Data privacy, the right to control how data is collected
and disclosed, is a critical concern that cannot be easily overlooked [18]. Furthermore,
traditional database services have now moved online. In other words, a database is an
organised collection of user data. After all, if the security employed for the database is
capable of protecting the data that it is hosting, malicious attacks or threats from hackers
can prevent the data being stolen. This was stated in 2021 in the research paper published
by Crooks [19], though in 2016 an investigation on how to build a database that would
not be vulnerable to internal or external attacks was proposed in the research paper by
Toapanta et al. [5]. Meanwhile, it is possible to consider network problems and extremely
high computer loads with the introduction of modern applications; however, there has

Future Internet 2025, 17, 156 4 of 25

to be continuity in the flow of data to ensure that the service is guaranteed. The constant
evolution of the scalability and availability of information technology (IT) services is why
Docker containers can be of great value to the information technology industry [20].

Table 1. Comparison of this research paper and other research papers that have employed Docker.

Software What the Software Was Used for

Docker machine [21] Apache Airavata (an open source software suite).

Docker containers [22] Run the Docker containers from different databases.

Docker containers [23] Docker server and Docker client.

Docker container
networking [24] Monitoring server and anomaly monitoring system.

Docker framework [25] SDN-Docker-based architecture for IoT.

Docker [26] Virtual machine.

Docker [20] DNS server, HAproxy, and mail server.

Docker containers [27] Run the Docker containers.

Docker [28] Optimise development and increase efficiency of methods.

Docker [29] 5G mobile networks using Docker containers.

Docker [30] Picto Web would be used within a Docker container.

2.1. Suitability of the Docker Framework in an Environment with High Computational Demands

The authors of the research paper by Moysiadis et al. [31] consider the association
of Docker containers as a virtual technology with traditional framing, cloud computing,
and Information Communication Technologies (ICT). They also consider the advantages
that could be derived from this, including reduction in production costs, boosting of
productivity, better security, and scalability with regard to future upgrades and increasing
performance. As a result, cloud computing can support the demand for handling large
user data and a large number of end devices [31]. Another key thing to remember is that
servers handling the increase in resources used relating to big data applications increase in
storage due to increase in the applications being stored on the servers and balancing of the
load within each server running these applications. Setting up of a Docker Swarm would
be most appropriate to solve these problems as it can deploy multiple Docker containers
on multiple computer hosts in a very short period [28]. The current debate, that was
highlighted in the research paper by Singh et al. [28] published this year (2023), considers
the merits of Docker containers as follows:

• A Docker Swarm efficiently deals with the deletion and duplication of containers [28].
• Docker containers work well with load balancing and when dealing with applications

that are complex [28].
• A Docker Swarm can effectively manage the employment of Docker containers [28].

Correspondingly, the research paper by Zou et al. [24], in comparison to the research
paper by Alyas et al. [32], also mentions the security side of Docker containers. The issues of
the stability and security of the container have become important issues with the rejection
of thousands of apps and websites, for example, the collapse of the Amazon cloud, which
was built upon a virtual machine cluster and container [33]. More researchers are using
Docker because of the advantages it has been reported as having over traditional virtual
machines [24]. Furthermore, according to the research paper by Hersyah et al. [34], it is
known that with the aid of Docker containers supported with automation, the availability,
deployment, redundancy, and granting of authorisation can be applied securely. Addition-

Future Internet 2025, 17, 156 5 of 25

ally, care should be taken to avoid becoming complacent when using cloud services [34].
To exemplify, the same tools that are meant to help with security and easy navigation
within the cloud have been known to be reverse-engineered and used by hackers for attacks
against the cloud services. Furthermore, the cloud service provider has to make sure that
security at their end is up to date, with regard to their software, hardware, and their staff
being highly trained. To this end, virtualisation and the cloud are very closely associated
with each other [34]. In addition, the research paper by Qian et al. [35] refers to storing
users’ information in the cloud, which involves the inclusion of virtualisation and cloud
computing. In other words, compared to the traditional way of utilising virtualisation,
although Docker virtualisation performance expenses are lower, the deployment and deliv-
ery rate are faster. To clarify, with the aid of cloud computing, the following advantages can
be gained: cloud computing can handle large amounts of data traffic and reduce the delay
in network transmission [35]. Furthermore, the research paper by Singh et al. [28] supports
the research paper of da Silva and Lima [36] by explaining how a Docker Swarm provides
an architecture which is decentralised and fault tolerant, and with the aid of Swarm mode,
we can create a Docker Swarm which consists of Docker hosts. In other words, a Docker
Swarm can be seen as improving the quality of Docker regarding availability, security,
maintainability, reliability, and scalability. A Docker Swarm can reassign containers if it
discovers that any one of the containers has failed within the Docker Swarm [28].

2.2. Docker Containers and Security

The primary purpose of Docker containers is to isolate individual microservices
effectively [31]. Docker provides a service called (https://hub.docker.com/ accessed on
20 March 2025), the world’s largest library of container images, which allows users to
share or search for container images. This service is accessible via the Docker Hub website.
The authors of the research paper by Alyas et al. [32] support the findings of the research
paper by Moysiadis et al. [31], while emphasising the importance of addressing security,
sovereignty, and compliance in cloud computing. This highlights the need for solutions to
resolve privacy and security concerns, which remain key barriers to the effective adoption
of mobile cloud computing (MCC) in healthcare environments [37].

Moreover, a single computer can host only a limited number of virtual machines,
whereas the same computer can run thousands of Docker containers simultaneously, offer-
ing superior scalability and mobility. Docker’s ability to operate on almost any platform,
coupled with its ease of deployment and maintenance, further underscores its advan-
tages [24].

2.3. Aims of Research and Research Objectives

This research aims to design and evaluate a high-performance and secure database sys-
tem. Specifically, the study focuses on three key objectives as presented below. By address-
ing these challenges, this research seeks to enhance the overall security and performance of
database systems, safeguarding critical information and ensuring reliable service delivery.

• Research Objective 1—RO1—Investigation into the development of a database that
would not be vulnerable to internal or external attacks and then developing a security
framework.

• Research Objective 2—RO2—Proposing a way to limit the damage Structured Query
Language injection (SQLi) causes to users’ data that are being held in a database.

• Research Objective 3—RO3—Evaluating and proposing a security framework with
the use case where users will have access to high-traffic applications, to closely repre-
sent a real world scenario.

https://hub.docker.com/

Future Internet 2025, 17, 156 6 of 25

This review involved searching for existing research, critically evaluating relevant
studies, and synthesising the findings. The next step involved formulating alternative
hypotheses (Ha) and selecting appropriate statistical tests. For example, to evaluate the
effectiveness of Docker in mitigating SQL injection attacks, we launched controlled SQLi
attacks against (https://www.acunetix.com/, Acunetix, accessed on 19 December 2024) and
(https://github.com/digininja/DVWA, DVWA, accessed on 19 December 2024) databases
(without Docker protection) and recorded the data exfiltration levels. Subsequently, we then
implemented (https://www.docker.com/company Docker, accessed on 19 December 2024)
protection for the same databases and repeated the SQLi attacks, measuring and comparing
the data exfiltration in both scenarios. Statistical tests (e.g., t-tests) were then used to
determine if the observed differences between the two settings were statistically significant.

We, therefore, used a quantitative approach, specifically, a true experimental design
with a between-groups post-test-only structure. This design utilises two groups: a control
group and an experimental group. Both groups are measured on a dependent variable,
which reflects the outcome of interest. The independent variable, representing the manipu-
lation introduced by the experiment, is applied only to the experimental group. Following
the post-test, the main analysis focuses on the differences between the control and experi-
mental groups in terms of the dependent variable. To determine if the observed differences
are statistically significant, a t-test is employed. This test is suitable when comparing the
means of two independent groups with normally distributed, continuous (metric) data (as
outlined by (https://datatab.net/tutorial/paired-t-test DATAtab, accessed on 19 December
2024)).

3. Implementation
3.1. The Hypotheses

• H0—The null hypothesis—There is no significant difference between the means of the de-
pendent variables—CPU_total_(%) for both (https://github.com/digininja/DVWA DVWA
accessed on 19 December 2024) installed in Docker and (https://github.com/digininja/
DVWA DVWA accessed on 19 December 2024) not installed in Docker, as well as
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) installed in Docker and
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) not installed in Docker.

• Ha—The alternative hypothesis—There is a significant difference between the means of
the dependent variables—CPU_total_(%) for both (https://github.com/digininja/DVWA
DVWA accessed on 19 December 2024) installed in Docker and (https://github.com/
digininja/DVWA DVWA accessed on 19 December 2024) not installed in Docker, as well as
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) installed in Docker and
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) not installed in Docker.

H0 : µ1 = µ2

Ha : µ1 ̸= µ2

3.2. Justification Why CPU Is the Most Relevant Metric

Firstly, Table 2 explains the type of variables used: uptime_minute is the independent
variable; CPU_total_(%) is what is going to be measured and is the dependent variable. Ad-
ditionally, any confounding variables which are correlated with both the independent vari-
able (uptime_minute) and the dependent variable (CPU_total_(%)) require to be held con-
stant throughout the experiment. Here, the variable (Virtual operating system—VirtualBox)
does not change. Secondly, Figure 1 explains deduction, which is synonymous with the
quantitative method. Deduction can be expressed as, given a rule and the cause, deduce
the effect [38]. If the rule is—during a Structured Query Language injection (SQLi) attack,
the cause is—it is crucial that the uptime_minutes are measured during the Structured

https://www.acunetix.com/
https://github.com/digininja/DVWA
https://www.docker.com/company
https://datatab.net/tutorial/paired-t-test
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://www.acunetix.com/
https://www.acunetix.com/
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://www.acunetix.com/
https://www.acunetix.com/

Future Internet 2025, 17, 156 7 of 25

Query Language injection (SQLi) attack and the effect will be a CPU_total_(%) increase in
temperature. The author of the research paper [20] measured the (CPU_total_(%)) as one of
the variables. Lastly, Figure 2 represents the schematic diagram of the laboratory which,
was designed and built in VirtualBox [39].

Table 2. Type of variables.

Independent variables (cause) uptime_minutes

Dependent variable (effect) CPU_total_(%) (what is going to be measured)

Confounding variable—Correlation between the independent
and dependent variables Ubuntu 20.04.2 LTS

Controlled or constant variable—This experimental variable
does not change Virtual operating system—VirtualBox

(a) Rule, cause and effect

Deduction Example
Rule During an SQLi attack
Cause uptime_minutes are crucial
Effect CPU_total_(%) will increase

(b) An example of deduction

Figure 1. Deduction [38].

Table 3 illustrates a breakdown and the specifications used to carry out the implementation.

Table 3. Specifications of the host computer and virtual machines.

Hardware CPU Ram Graphics Operating System

Host Intel i7 16GB Intel/Nvidia 2GBRam Parrot OS 4.11

VM Hacker Intel i7 4096MB VMSVGA Oracle (64-Bit)—Parrot
OS 4.11

VM Database—Docker Intel i7 2048MB VMSVGA Ubuntu (64-Bit)

VM Database—No
Docker Intel i7 2048MB VMSVGA Ubuntu (64-Bit)

Future Internet 2025, 17, 156 8 of 25

Figure 2. Schematic diagram of the laboratory. Note: all IP addresses in Figure 2 are unique addresses
that identify a device on the local network.

3.3. SQL Injection Attack

Firstly, Figure 3 explains the schematics towards building the secure framework
(quantitative research). Secondly, DVWA—Database Without Docker Installed—Figure 4
represents the gathering of information from the Damn Vulnerable Web Application,
Figure 5 represents the launching of an SQL injection attack from the information gathered
from Figure 4, and Figure 6 shows that the SQL injection attack was successful. Additionally,
Figure 7 shows the running DVWA (Database with Locker Installed) in a Docker container,
Figure 8 shows the gathering of information to launch an SQL injection attack, Figure 9
shows the launching of an SQL injection attack, and lastly, Figure 10 shows the SQL injection
attack was not successful.

Future Internet 2025, 17, 156 9 of 25

Figure 3. Schematics towards building the secure framework (quantitative research).

3.4. DVWA—Database Without Docker Installed

All implementations were conducted in VirtualBox.

Future Internet 2025, 17, 156 10 of 25

Figure 4. Gathering information from Damn Vulnerable Web Application.

Figure 5. Launching an SQL injection attack.

Figure 6. SQL injection attack was successful.

3.5. DVWA—Database with Docker Installed

All implementations were conducted in VirtualBox.

Figure 7. Running DVWA in a Docker container.

Future Internet 2025, 17, 156 11 of 25

Figure 8. Gathering information to launch an SQL injection attack.

Figure 9. Launching an SQL injection attack.

Figure 10. SQL injection attack was not successful.

3.6. Ethics Approval and GDPR

The ethics approval process and GDPR (General Data Protection Regulation) eval-
uation regarding this research followed the regulations of the UK (United Kingdom)
GDPR [40] and the General Data Protection Regulation of the European Union’s new data
protection law [41]. Because this study does not involve human or animal participants,
the research proposed follows the rules set by (https://www.glos.ac.uk/information/
knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/ (accessed on
19 December 2024) Research Ethics: A Handbook of Principles and Procedures), applying
the guidelines to the research methods process meeting all the regulations required [42].
Lastly, Figure 2 was built in a VirtualBox [39] containment so as ensure that in the event of
a mishap during the implementation, the mishap is contained in the VirtualBox [39] and
does not leak into the host computer.

https://www.glos.ac.uk/information/knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/
https://www.glos.ac.uk/information/knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/

Future Internet 2025, 17, 156 12 of 25

3.7. Environment

This research uses two key technologies to facilitate the experimental setup: Docker
and VirtualBox as discussed below.

Docker is a free, open-source platform for software containerisation. Docker allows
package applications to be packaged with all their dependencies into standardised units
called containers. These containers are lightweight and portable, making them ideal for
replicating and deploying in our experimental environment consistently across different
systems. Docker enjoys widespread adoption, often coming pre-installed in popular
Linux distributions. Notably, several studies have successfully utilised Docker images and
containers for application development and deployment (see Table 4).

Table 4. Other research papers that have employed Docker.

Software What the Software Was Used for

Docker containers [43] Analysing of data.

Docker containers [22] Run the Docker containers from different databases.

Docker Swarm [44] Build a virtual system used for simulation.

Docker containers [45] Capturing the behavior of a container’s life cycle.

Docker swarm [46] Used as a testbed for Distributed Denial-of-Service (DDoS) attacks.

Docker-compose [47] Docker-compose.yml files and Dockerfiles.

Docker images [48] MDSplus—a set of software tools.

Docker swarm [49] Checking the security of misbehaving manager nodes.

Docker swarm [50] Multiple clouds consisting of distributed systems.

Docker containers [51] Evolution and maintenance of Docker containers.

Docker [52] To help Q&A forum users.

Docker [53] Attacks against hCaptcha Systems.

VirtualBox is the framework in which all the images used in this research paper would
be built and comes installed by default in most Linux distributions. VirtualBox is a powerful
virtualisation software solution developed and maintained by Oracle. VirtualBox allows
the creation and management of virtual machines, essentially emulating entire computer
systems within the host machine. While Docker containers share the host operating system
kernel, virtual machines create isolated environments with their own guest operating
systems. VirtualBox provides a robust platform for building the foundation upon which
our Docker images will operate. Several researchers have employed VirtualBox in their
studies (see Table 5).

Table 5. Other research papers that have employed VirtualBox.

Software What the Software Was Used for

VirtualBox [54] VirtualBox and host performance comparison.

VirtualBox virtualiser [55] Educational purposes (laboratory).

Virtualisation laboratory [56] Computer networking with undergraduates.

VirtualBox [57] VMware and VirtualBox comparison.

VirtualBox [58] Linux applications running in Windows.

Future Internet 2025, 17, 156 13 of 25

3.8. Databases

In this research, we used two databases for experimental research on SQLi attacks
as follows:

Damn Vulnerable Web Application (DVWA) is a free, open-source web application
intentionally designed to be insecure. This controlled environment allows security profes-
sionals to test their penetration testing tools in a safe, legal manner. Similarly, researchers
can utilise DVWA to obtain practical experience with web application security. DVWA has
been used by several researchers in this field [59–61].

Acunetix is a commercial web vulnerability scanner designed to identify security
weaknesses in web applications. It offers a comprehensive suite of features for automated
scanning, allowing security professionals to efficiently detect potential vulnerabilities
that could be exploited by attackers. Several research studies have employed Acunetix
to evaluate its effectiveness in vulnerability detection, including the following research
papers: [62,63].

To work with the databases, we used (https://www.mysql.com/downloads/ (ac-
cessed on 19 December 2024) MySQL), a free and open-source Relational Database Man-
agement System (RDBMS). (https://www.phpmyadmin.net/ (accessed on 19 December
2024) phpMyAdmin) is also used to work with MySQL. We used Linux OS as our platform
to access databases.

3.9. Network Analysis

Wireshark is a free and open-source network protocol analyser used to monitor in-
coming network traffic on the target Ubuntu 20.04 system. Wireshark is a popular tool
among network security professionals worldwide, offering deep insights into network
communication by capturing and analysing network packets. By capturing the traffic on
the victim’s computer, Wireshark enables us to observe the attacker’s interactions and
potentially identify vulnerabilities exploited during the attack. The research papers by
Sandhya et al. [64] and Das and Tuna [65] show how researchers have used Wireshark in
their network security experiments. Wireshark is used to monitor the incoming network
traffic on the victims computer running (https://releases.ubuntu.com/focal/ (accessed on
19 December 2024) Ubuntu 20.04.6 LTS (Focal Fossa)).

Nmap is a powerful open-source network scanner and security auditing tool commonly
used by system administrators and security professionals. Operating as a command-line tool
on Linux systems, Nmap offers a comprehensive suite of features for network exploration and
vulnerability identification. This research will utilise Nmap to perform security scans on the
target system, potentially revealing open ports, services running on those ports, and potential
security weaknesses. The research conducted by [66–70] shows the diverse applications of
Nmap in security research. This tool would be used on the virtual machine running the
penetrating operating system (https://parrotsec.org/ (accessed on 19 December 2024) Parrot
OS) to see if it can capture the victim’s IP address.

3.10. Data Collection

This research utilises Glances (version 3.9 or higher) [71], a system monitoring tool
written in Python, to gather crucial performance metrics throughout the experiment.
Glances provides functionalities for monitoring system performance through a web in-
terface, remote access via the Linux terminal, and a client/server mode for broader data
collection. During the experiment, Glances is used to capture real-time measurements of
key performance indicators (KPIs), including CPU utilisation, data throughput, and time.
Glances has been successfully used for data collection in previous research efforts, as demon-
strated by the research papers by Kok et al. [72] and Manore et al. [73].

https://www.mysql.com/downloads/
https://www.phpmyadmin.net/
https://releases.ubuntu.com/focal/
https://parrotsec.org/

Future Internet 2025, 17, 156 14 of 25

This research uses JASP 0.18 (Jeffrey’s Amazing Statistics Program) [74], which is an
open-source statistical software package developed with support from the University of
Amsterdam. JASP provides a user-friendly interface and robust statistical analysis capabili-
ties, making it a valuable tool for researchers like ourselves. Additionally, its integration
with the Open Science Framework (OSF) facilitates data sharing and transparency, aligning
with our commitment to open science practices. JASP’s growing popularity within the
scientific community is evident in its utilisation by various recent studies (e.g., Houminer-
Klepar et al. [75]). We also used https://www.lock5stat.com/StatKey/index.html StatKey
(accessed on 19 December 2024) as a tool to bootstrap the difference in means.

4. Results
This section presents the statistical analysis conducted to evaluate the impact of Docker

on CPU utilisation during SQL injection attacks against DVWA and Acunetix web applica-
tions. The type of sampling used to collect the data was one of the non-probability sampling
methods called convenience sampling. The results are readily available and easy to collect.
Additionally, in comparison to other sampling techniques, convenience sampling can help
overcome most limitations associated with research. For example, if old people always
assemble in a park, the researcher can then go to the park and collect the samples—the park
acts as a convenient place to collect samples [76]. Furthermore, convenience sampling
is inexpensive (cheap), which can be seen as an advantage. Convenience sampling is
easy to execute and efficient, but in this research, limitations include a small sample size
drawn from a large sample pool, which limits generalisability [77]. In the case of the Damn
Vulnerable Web App (DVWA) database results, the first 20 (number of values) data items
were collected, while, for the Acunetix database results, the first 15 (number of values) data
items were collected.

• Paired Samples t-Test: A paired-samples t-test was employed for each dataset
(DVWA and Acunetix) to compare the means of CPU utilisation (CPU_total_(%))
between scenarios with and without Docker protection (ND—No Docker, WD—With
Docker). This test is appropriate as we are analysing data from the same set of
systems measured under two different conditions (attack with and without Docker).
Additionally, a two-tailed test was chosen as we are not pre-determining the direction
of the difference (improvement or degradation) in CPU utilisation.

• Hypothesis Testing: The null hypothesis (H0) states that there is no significant differ-
ence in the mean CPU utilisation between the No Docker (ND) and With Docker (WD)
scenarios for both DVWA and Acunetix. The alternative hypothesis (Ha) proposes
that there is a significant difference.

• Significance Level and Critical Value: The level of significance (α) was set at 0.05,
indicating a 5% chance of rejecting the null hypothesis when it is actually true. Based
on the degrees of freedom (df = n − 1, where n is the number of samples in each group),
the critical values for the two-tailed test were determined from a t-distribution table.

Table 6 presents the descriptive statistics for the experiments conducted on Acunetix
and DVWA, both with and without Docker protection. A total of 15 experiments were
performed on Acunetix, and 20 experiments were conducted on DVWA. Each experiment
was repeated twice: once with Docker and once without. CPU utilisation was measured
both before the SQL injection attack (Before) and during the attack (During). While the
maximum CPU usage reached 100% in all cases, the mean and median CPU utilisation val-
ues were significantly higher during the attack when Docker was used. This increased CPU
usage was further evidenced by the higher standard deviation observed in the “During”
phase with Docker, indicating greater variability in CPU utilisation during these periods.

https://www.lock5stat.com/StatKey/index.html

Future Internet 2025, 17, 156 15 of 25

Figures 11 and 12 present histograms illustrating the distribution of CPU utilisation for
all eight experimental scenarios: before and during SQL injection attacks on Acunetix and
DVWA, both with and without Docker protection. A visual inspection of these histograms
reveals a notable trend: the CPU utilisation exceeds 50% more frequently in scenarios
involving Docker compared to those without Docker. This suggests that Docker, while
enhancing security, may also incur a performance overhead in certain scenarios. This is
considered further in the next paragraph.

Table 6. Descriptive statistics.

Database Acunetix DVWA

No. Cases 15 20

Container No Docker With Docker No Docker With Docker

Scenario Before During Before During Before During Before During

Median 2.9 7 2.9 17.5 5.55 11.25 5.4 37.5

Mean 10.207 14.753 13.713 36.9 10.56 18.735 11.46 49.745

Std. Deviation 24.091 24.378 25.332 36.065 21.927 21.035 21.557 38.633

Skewness 3.746 3.462 3.191 0.519 4.285 3.358 4.031 0.187

Std. Error of
Skewness

0.58 0.58 0.58 0.58 0.512 0.512 0.512 0.512

Kurtosis 14.251 12.702 11.075 −1.593 38.818 12.664 17.044 −1.847

Std. Error of
Kurtosis

1.121 1.121 1.121 1.121 0.992 0.992 0.992 0.992

Minimum 1.8 1.8 1.4 1.4 1.4 5.1 2.2 3.9

Maximum 96.4 100 100 96.6 100 100 100 100

(a) Before SQLi attack with no Docker (b) During SQLi attack with no Docker

(c) Before SQLi attack with Docker (d) During SQLi attack with Docker

Figure 11. Distribution histogram of CPU usage in attacking Acunetix.

As shown in Table 7, for the DVWA data, the calculated t-statistic (t = 3.307) exceeded
the critical value (CV = ±2.093). This statistically significant result (p < 0.05) rejects the null
hypothesis, indicating a significant difference in CPU utilisation between the No Docker
and With Docker scenarios when attacking DVWA. Similarly (see Table 8), for the Acunetix
data, the t-statistic (t = 2.339) exceeded the critical value (CV = ±2.145), leading to rejection
of the null hypothesis (p < 0.05). This suggests a statistically significant difference in CPU

Future Internet 2025, 17, 156 16 of 25

utilisation between the two scenarios for Acunetix as well. As such, the statistical analysis
confirms that Docker plays a role in influencing CPU utilisation during SQL injection
attacks (see Table 9).

(a) Before SQLi attack with no Docker (b) During SQLi attack with no Docker

(c) Before SQLi attack with Docker (d) During SQLi attack with Docker

Figure 12. Distribution histogram of CPU usage in attacking DVWA.

Table 7. Legend for paired-samples t-test results for DVWA.

Formula - Interpretation

CV(19) = ±2.093 - t(19) = 3.307 exceeds the CV

df = n − 1 - n = 19

p < 0.05 - p = 0.004 is less than p < 0.05

95%CI [11.4, 50.6] - Does not contain 0

Cohen’s d - 0.74 (Effect—between moderate and large)

95%CI - Confidence Interval

CV(19) - Critical Value

df - Degrees of freedom

n = 20 - Number of values

p - The p-value

t - The paired-samples t-test

In terms of the effectiveness of an SQLi attack, both DVWA and Acunetix were success-
fully compromised when Docker was not installed. This indicates that these applications,
in their default state, are susceptible to SQL injection attacks (as expected). When Docker
was installed on the systems hosting DVWA and Acunetix, the SQL injection attacks were
unsuccessful. This suggests that Docker, in this context, effectively mitigated the risks asso-
ciated with SQL injection. By isolating the application within a container, Docker can help
prevent attackers from exploiting vulnerabilities and compromising the underlying system.
This is due to Docker’s ability to restrict access to resources and isolate the application
from the host environment. Table 9 presents the readings from the paired samples t-test
results for DVWA and the readings from the paired samples t-test results for Acunetix.
Additionally, in Table 9, the sampling used was non-probability (planning) convenience

Future Internet 2025, 17, 156 17 of 25

sampling, which reflects the easy availability of the samples that were chosen from all the
samples available.

This is why the Critical Value (CV) used is CV(19) for DVWA and CV(14) for Acunetix.

Table 8. Legend for paired-samples t-test results for Acunetix.

Formula - Interpretation

CV(14) = ±2.145 - t(14) = 2.339 exceeds the CV

df = n − 1 - n = 14

p < 0.05 - p = 0.04 is less than p < 0.05

95%CI [1.84, 42.5] - Does not contain 0

Cohen’s d - 0.60 (Effect—between moderate and large)

95%CI - Confidence Interval

CV(14) - Critical Value

df - Degrees of freedom

n = 15 - Number of values

p - The p-value

t - The paired-samples t-test

Table 9. Readings from the paired-samples t-test results.

Database t() p 95%CI d

DVWA t(19) = 3.307 0.004 [11.4, 50.6] 0.74
Acunetix t(14) = 2.339 0.04 [1.84, 42.5] 0.60

Additionally, we used bootstrapping to compare the means between CPU usage in
different situations to further examine the hypothesis. Figures 13–20 (Bell curves) prove
that there are a significance difference with DVWA - (before an SQLi attack without Docker,
During an SQLi attack without Docker), (before an SQLi attack with Docker and During an
SQLi attack with Docker). There is also a significance difference with Acunetix - (before
an SQLi attack without Docker, During an SQLi attack without Docker), (before an SQLi
attack with Docker and During an SQLi attack with Docker). Additionally, there is also a
significance difference (without Docker installed: before an SQLI attack with both databases
combined, During an SQLI attack both databases combined. Furthermore, there is also a
significance difference (with Docker installed: before an SQLI attack with both databases
combined, During an SQLI attack both databases combined (see Table 10).

Future Internet 2025, 17, 156 18 of 25

Figure 13. Acunetix no Docker installed.

Table 10. StatKey legend.

+ + Significant Difference

− − Significant Difference

+ − No Significant Difference

− + No Significant Difference

Figure 14. Acunetix with Docker installed.

Figure 15. DVWA no Docker installed.

Future Internet 2025, 17, 156 19 of 25

Figure 16. DVWA with Docker installed.

Figure 17. Acunetix with Docker before an SQLi attack.

Figure 18. Acunetix with Docker during an SQLi attack.

Future Internet 2025, 17, 156 20 of 25

Figure 19. DVWA with Docker before an SQLi attack.

Figure 20. DVWA with Docker during an SQLi attack.

5. Summary of Findings
This research aimed to design and evaluate a database system that prioritises per-

formance, security, and user accessibility, particularly in the face of SQL injection attacks
and high-traffic demands. While numerous studies have explored the use of Docker as a
framework for various applications, there remains a significant gap in understanding how
Docker can be used to enhance database security.

The findings of this study demonstrate the efficacy of a decentralised database ap-
proach built upon the Docker framework. By isolating database instances within Docker
containers, the risk of external attacks, including SQL injection, is significantly reduced,
addressing Research Question 1. Additionally, such an environment provides a robust
defence against SQL injection attempts, safeguarding user data and database integrity, thus
addressing Research Question 2. Furthermore, the Docker-based database showed high
CPU utilisation during attack, which needs to be considered when used in high-traffic
applications, fulfilling Research Question 3. A key advantage of this approach is that it
does not necessitate modifications to the traditional database infrastructure. By introducing
Docker as a layer of abstraction, the existing database remains unaffected. The Docker
framework offers improved security. Although, this research was designed from the user’s
perspective as a decentralised database without altering the existing centralised database,
developers or administrators of a centralised database should look at the practical bene-
fits of being able to run Docker images with any assigned IP (Internet Protocol) address
of their choice; this improves the security of a database running in a Docker container.
Meanwhile, the authors of the research paper Gore et al. [43] obtained a positive result

Future Internet 2025, 17, 156 21 of 25

when utilising Docker containers to handle data in a network environment compared to
the results of the research paper by Velasquez et al. [22] that showed Microsoft Azure,
Amazon Web Services, OpenStack, IBM, VMware and Google Compute Engine, which
are all cloud providers, are now being supported by Docker. Additionally, the research
paper by Reis et al. [47] reported that developers are not keen on using different types
of tools to build their Docker-compose.yml files and Dockerfiles. Lastly, as presented
in Table 3, under graphics Intel/Nvidia 2GBRam, the more memory (Ram) a video card
(Nvidia (GPU) Graphics Processing Unit) has, the more this would help in reducing the
high-traffic bottle necks encountered where the CPU (Central Processing Unit) is the only
processor processing information within a database. A limitation of this research was the
use of convenience sampling. Positive ideas for future work/research include measuring
the computer memory and investigating the potential for more data output.

6. Conclusions
This research evaluated the performance and security aspects of traditional and Docker-

based database systems. The primary objective was to mitigate the risks associated with
SQL injection attacks and ensure reliable access to high-traffic applications. By adopting a
user-centric approach to database design, we demonstrated that a Docker-based database
can effectively limit the impact of SQL injection attacks on user data. Additionally, the de-
centralised nature of this approach empowers users with greater control over their data,
improving accessibility and reducing the risk of unauthorised access. The findings of this
research suggest that a Docker-based database can provide a robust and secure solution
for various applications. By isolating database instances within containers, Docker can
significantly reduce vulnerability to external attacks, including by SQL injection.

Author Contributions: Conceptualization, A.D.A.; Methodology, A.D.A.; Validation, A.D.A.; Formal
analysis, A.D.A.; Writing – original draft, A.D.A., H.C. and A.A.; Writing – review & editing, A.D.A.
and H.C.; Visualization, A.D.A.; Supervision, H.C. and A.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhao, X.; Lin, Q.; Chen, J.; Wang, X.; Yu, J.; Ming, Z. Optimizing security and quality of service in a Real-time database system

using Multi-objective genetic algorithm. Expert Syst. Appl. 2016, 64, 11–23. [CrossRef]
2. Wagner, J.; Rasin, A.; Glavic, B.; Heart, K.; Furst, J.; Bressan, L.; Grier, J. Carving database storage to detect and trace security

breaches. Digit. Investig. 2017, 22, S127–S136. [CrossRef]
3. Kaneko, I.; Yuda, E.; Okada, H. Docker Vectorization, a Cloud-Native Privacy Agent—The Analysis of Demand and Feasibility

for Era of Developing Complexity of Privacy Management. Appl. Sci. 2023, 13, 3235. [CrossRef]
4. Tao, X.; Liu, Y.; Zhao, F.; Yang, C.; Wang, Y. Graph database-based network security situation awareness data storage method.

Eurasip J. Wirel. Commun. Netw. 2018, 2018, 294. [CrossRef]
5. Toapanta, S.M.T.; Gallegos, L.E.M.; Trejo, J.A.O. Security analysis of civil registry database of Ecuador. In Proceedings of the 2016

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016 ;
pp. 1024–1029. [CrossRef]

6. Grubbs, P.; Ristenpart, T.; Shmatikov, V. Why Your Encrypted Database Is Not Secure. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems. Association for Computing Machinery, HotOS ’17, Whistler, BC, Canada, 7–10 May 2017;
pp. 162–168. [CrossRef]

7. Alves, P.G.M.R.; Aranha, D.F. A framework for searching encrypted databases. J. Internet Serv. Appl. 2018, 9, 1. [CrossRef]

http://doi.org/10.1016/j.eswa.2016.07.023
http://dx.doi.org/10.1016/j.diin.2017.06.006
http://dx.doi.org/10.3390/app13053235
http://dx.doi.org/10.1186/s13638-018-1309-9
http://dx.doi.org/10.1109/ICEEOT.2016.7754841
http://dx.doi.org/10.1145/3102980.3103007
http://dx.doi.org/10.1186/s13174-017-0073-0

Future Internet 2025, 17, 156 22 of 25

8. Santos, N.; Younis, W.; Ghita, B.; Masala, G. Enhancing Medical Data Security on Public Cloud. In Proceedings of the 2021 IEEE
International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 103–108. [CrossRef]

9. Said, W.; Mostafa, A.M. Towards a Hybrid Immune Algorithm Based on Danger Theory for Database Security. IEEE Access 2020,
8, 145332–145362. [CrossRef]

10. Neto, N.N.; Madnick, S.; Paula, A.M.G.D.; Borges, N.M. Developing a Global Data Breach Database and the Challenges
Encountered. J. Data Inf. Qual. 2021, 13, 1–33. [CrossRef]

11. Algarni, A.M.; Thayananthan, V.; Malaiya, Y.K. Quantitative Assessment of Cybersecurity Risks for Mitigating Data Breaches in
Business Systems. Appl. Sci. 2021, 11, 3678. [CrossRef]

12. Mahrouqi, A.; Tobin, P.; Abdalla, S.; Kechadi, T. Simulating SQL-Injection Cyber-Attacks Using GNS3. Int. J. Comput. Theory Eng.
2016, 8, 213–217. [CrossRef]

13. Williams, M.A.; Dey, S.; Barranco, R.C.; Naim, S.M.; Hossain, M.S.; Akbar, M. Analyzing Evolving Trends of Vulnerabilities in
National Vulnerability Database. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA,
USA, 10–13 December 2018; pp. 3011–3020. [CrossRef]

14. Gonzalez, C.; Jung, G. Database SQL Injection Security Problem Handling with Examples. In Proceedings of the 2019 6th
International Conference on Computational Science and Computational Intelligence (CSCI 2019), New York, NY, USA, 5–7
December 2019; pp. 145–149. [CrossRef]

15. Odirichukwu, J.C.; Asagba, P.O. Security concept in web database development and administration—A review perspective.
In Proceedings of the 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON),
Owerri, Nigeria, 7–10 November 2017; pp. 383–391, ISSN 2377-2697. [CrossRef]

16. Wang, K.C.; Reiter, M.K. Using Amnesia to Detect Credential Database Breaches. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13 August 2021; p. 18.

17. Hassanzadeh, Z.; Biddle, R.; Marsen, S. User Perception of Data Breaches. IEEE Trans. Prof. Commun. 2021, 64, 374–389. [CrossRef]
18. Goel, K.; Hofstede, A.H.M.T. Privacy-Breaching Patterns in NoSQL Databases. IEEE Access 2021, 9, 35229–35239. [CrossRef]
19. Crooks, N. A Client-centric Approach to Transactional Datastores. In Proceedings of the 2021 International Conference on

Management of ACM, Virtual, 20–25 June 2021; pp. 3–5. [CrossRef]
20. Perri, D.; Simonetti, M.; Gervasi, O. Deploying Efficiently Modern Applications on Cloud. Electronics 2022, 11, 450. [CrossRef]
21. Saha, P.; Govindaraju, M.; Marru, S.; Pierce, M. Integrating Apache Airavata with Docker, Marathon, and Mesos. Concurrency

Computat. Pract. Exper. 2016, 28, 1952–1959. [CrossRef]
22. Velasquez, W.; Munoz-Arcentales, A.; Salvachua Rodriguez, J. A Case Study: Ingestion Analysis of WSN Data in Databases using

Docker. In Proceedings of the 2018 1st International Conference on Computer Applications & Information Security (ICCAIS’
2018), Riyadh, Saudi Arabia, 4–6 April 2018.

23. Mentz, L.L.; Loch, W.J.; Koslovski, G.P. Comparative experimental analysis of Docker container networking drivers. In
Proceedings of the 2020 IEEE 9th International Conference on Cloud Networking (CloudNet), Piscataway, NJ, USA, 9–11
November 2020; pp. 1–7. [CrossRef]

24. Zou, Z.; Xie, Y.; Huang, K.; Xu, G.; Feng, D.; Long, D. A Docker Container Anomaly Monitoring System Based on Optimized
Isolation Forest. IEEE Trans. Cloud Comput. 2022, 10, 134–145. [CrossRef]

25. Bedhief, I.; Kassar, M.; Aguili, T. Empowering SDN-Docker Based Architecture for Internet of Things Heterogeneity. J. Netw. Syst.
Manag. 2022, 31, 14. [CrossRef]

26. Leahy, D.; Thorpe, C. Zero Trust Container Architecture (ZTCA): A Framework for Applying Zero Trust Principals to Docker
Containers. Int. Conf. Cyber Warf. Secur. 2022, 17, 111–120. [CrossRef]

27. Aleksandrovs-Moisejs, D.; Ipatovs, A.; Grabs, E.; Rjazanovs, D. Evaluation of a Long-Distance IEEE 802.11ah Wireless Technology
in Linux Using Docker Containers. Elektron. Elektrotechnika 2022, 28, 71–77. [CrossRef]

28. Singh, N.; Hamid, Y.; Juneja, S.; Srivastava, G.; Dhiman, G.; Gadekallu, T.R.; Shah, M.A. Load balancing and service discovery
using Docker Swarm for microservice based big data applications. J. Cloud Comput. 2023, 12, 4. [CrossRef]

29. Ramanathan, S.; Bhattacharyya, A.; Kondepu, K.; Fumagalli, A. Enabling containerized Central Unit live migration in 5G radio
access network: An experimental study. J. Netw. Comput. Appl. 2024, 221, 103767. [CrossRef]

30. Yohannis, A.; Kolovos, D.; García-Domínguez, A. Exploring complex models with picto web. Sci. Comput. Program. 2024,
232, 103037. [CrossRef]

31. Moysiadis, V.; Tsakos, K.; Sarigiannidis, P.; Petrakis, E.G.M.; Boursianis, A.D.; Goudos, S.K. A Cloud Computing web-based
application for Smart Farming based on microservices architecture. In Proceedings of the 2022 11th International Conference on
Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–5. [CrossRef]

32. Alyas, T.; Tabassum, N.; Iqbal, M.w.; Alshahrani, A.; Alghamdi, A.; Shahzad, S.K.; Waseem, M. Resource Based Automatic
Calibration System (RBACS) Using Kubernetes Framework. Intell. Autom. Soft Comput. 2022, 35, 1165–1179. [CrossRef]

http://dx.doi.org/10.1109/CSR51186.2021.9527987
http://dx.doi.org/10.1109/ACCESS.2020.3015399
http://dx.doi.org/10.1145/3439873
http://dx.doi.org/10.3390/app11083678
http://dx.doi.org/10.7763/IJCTE.2016.V8.1046
http://dx.doi.org/10.1109/BigData.2018.8622299
http://dx.doi.org/10.1109/CSCI49370.2019.00031
http://dx.doi.org/10.1109/NIGERCON.2017.8281910
http://dx.doi.org/10.1109/TPC.2021.3110545
http://dx.doi.org/10.1109/ACCESS.2021.3062034
http://dx.doi.org/10.1145/3448016.3461471
http://dx.doi.org/10.3390/electronics11030450
http://dx.doi.org/10.1002/cpe.3708
http://dx.doi.org/10.1109/CloudNet51028.2020.9335811
http://dx.doi.org/10.1109/TCC.2019.2935724
http://dx.doi.org/10.1007/s10922-022-09702-3
http://dx.doi.org/10.34190/iccws.17.1.35
http://dx.doi.org/10.5755/j02.eie.31146
http://dx.doi.org/10.1186/s13677-022-00358-7
http://dx.doi.org/10.1016/j.jnca.2023.103767
http://dx.doi.org/10.1016/j.scico.2023.103037
http://dx.doi.org/10.1109/MOCAST54814.2022.9837727
http://dx.doi.org/10.32604/iasc.2023.028815

Future Internet 2025, 17, 156 23 of 25

33. Prigg, M. Amazon’s Cloud Service Partial Outage Affects Certain Websites. 2017. Section: Science. Available online: https://www.
reuters.com/article/technology/disruption-in-amazon-s-cloud-service-ripples-through-internet-idUSKBN1672E1/ (accessed
on 19 December 2024).

34. Hersyah, M.H.; Hossain, M.D.; Taenaka, Y.; Kadobayashi, Y. A Risk Assessment Study: Encircling Docker Container Assets on
IaaS Cloud Computing Topology. In Proceedings of the 2023 6th Conference on Cloud and Internet of Things (CIoT), Lisbon,
Portugal, 20–22 March 2023; pp. 225–230, ISSN 2159-6972. [CrossRef]

35. Qian, J.; Wang, Y.; Wang, X.; Zhang, P.; Wang, X. Load balancing scheduling mechanism for OpenStack and Docker integration.
J. Cloud Comput. 2023, 12, 67. [CrossRef]

36. da Silva, L.F.; Lima, J.V.F. An evaluation of relational and NoSQL distributed databases on a low-power cluster. J. Supercomput.
2023, 79, 13402–13420. [CrossRef]

37. Shabbir, M.; Shabbir, A.; Iwendi, C.; Javed, A.R.; Rizwan, M.; Herencsar, N.; Lin, J.C.W. Enhancing Security of Health Information
Using Modular Encryption Standard in Mobile Cloud Computing. IEEE Access 2021, 9, 8820–8834. [CrossRef]

38. Udacity. Deduction, Induction, Abduction—Georgia Tech—KBAI: Part 5. 2015. Available online: https://www.youtube.com/
watch?v=-nn3XMoPC7s (accessed on 19 December 2024).

39. Oracle VirtualBox. 2025. Available online: https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-
downloads.html (accessed on 19 December 2024).

40. ICO. UK GDPR Guidance and Resources; ICO: Wilmslow, UK, 2025.
41. What is GDPR, the EU’s New Data Protection Law? 2018. Section: GDPR Overview. Available online: https://gdpr.eu/what-is-

gdpr/ (accessed on 19 December 2024).
42. University of Gloucestershire. Research Ethics: A Handbook of Principles and Procedures; University of Gloucestershire: Cheltenham,

UK, 2022. Available online: https://www.glos.ac.uk/information/knowledge-base/research-ethics-a-handbook-of-principles-
and-procedures/ (accessed on 19 December 2024).

43. Gore, R.; Banerjea, S.; Tyagi, N.; Saurav, S.; Acharya, D.; Verma, V. An Efficient Edge Analytical Model on Docker Containers for
Automated Monitoring of Public Restrooms in India. In Proceedings of the 2020 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), New Delhi, India, 14–17 December 2020; pp. 1–6. [CrossRef]

44. Naik, N. Building a virtual system of systems using docker swarm in multiple clouds. In Proceedings of the 2016 IEEE
International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 3–5 October 2016; pp. 1–3. [CrossRef]

45. Pratap Yadav, M.; Pal, N.; Kumar Yadav, D. A formal approach for Docker container deployment. Concurr. Comput. Pract. Exp.
2021, 33, e6364. [CrossRef]

46. Tomar, A.; Mishra, P.; Bisht, R.; Kumar, P.S. A Step Towards Generation of DoS/DDoS Attacks Dataset for Docker-Centric
Computing. Int. J. Math. Eng. Manag. Sci. 2022, 7, 81–91. [CrossRef]

47. Reis, D.; Piedade, B.; Correia, F.F.; Dias, J.P.; Aguiar, A. Developing Docker and Docker-Compose Specifications: A Developers’
Survey. IEEE Access 2022, 10, 2318–2329. [CrossRef]

48. Lane-Walsh, S.; Stillerman, J.; Santoro, F.; Fredian, T. Introduction to MDSplus using Docker. Fusion Eng. Des. 2021, 165, 112121.
[CrossRef]

49. Farshteindiker, A.; Puzis, R. Leadership Hijacking in Docker Swarm and Its Consequences. Entropy 2021, 23, 914. [CrossRef]
50. Naik, N. Performance Evaluation of Distributed Systems in Multiple Clouds using Docker Swarm. In Proceedings of the 2021

IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 15 April–15 May 2021; pp. 1–6, ISSN 2472-9647.
[CrossRef]

51. Ksontini, E.; Kessentini, M.; Ferreira, T.d.N.; Hassan, F. Refactorings and Technical Debt in Docker Projects: An Empirical Study.
In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), Melbourne,
Australia, 15–19 November 2021; pp. 781–791, ISSN 2643-1572. [CrossRef]

52. Melo, L.; Wiese, I.; d’Amorim, M. Using Docker to Assist Q amp;A Forum Users. IEEE Trans. Softw. Eng. 2021, 47, 2563–2574.
[CrossRef]

53. Hossen, M.I.; Hei, X. A Low-Cost Attack against the hCaptcha System. In Proceedings of the 2021 IEEE Security and Privacy
Workshops (SPW), San Francisco, CA, USA, 27 May 2021; pp. 422–431. [CrossRef]

54. Dordevic, B.; Timcenko, V.; Pavlovic, O.; Davidovic, N. Performance comparison of native host and hyper-based virtualization
VirtualBox. In Proceedings of the 2021 20th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia
and Herzegovina, 17–19 March 2021; pp. 1–4. [CrossRef]

55. Abdulsattar, O.L.; Al-Hemiary, E.H. Virtualized Network Management Laboratory for Educational Purposes. ISC Int’L J. Inf.
Secur. 2019, 11, 6.

56. Ionescu, V.M.; Petrini, A.C. Virtualization Laboratory for Computer Networks at Undergraduate Level. In International Joint
Conference SOCO’16-CISIS’16-ICEUTE’16; Advances in Intelligent Systems and Computing; Graña, M., Lopez-Guede, J.M., Etxaniz,
O., Herrero, A., Quintian, H., Corchado, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 527,
pp. 776–784. [CrossRef]

https://www.reuters.com/article/technology/disruption-in-amazon-s-cloud-service-ripples-through-internet-idUSKBN1672E1/
https://www.reuters.com/article/technology/disruption-in-amazon-s-cloud-service-ripples-through-internet-idUSKBN1672E1/
http://dx.doi.org/10.1109/CIoT57267.2023.10084910
http://dx.doi.org/10.1186/s13677-023-00445-3
http://dx.doi.org/10.1007/s11227-023-05166-7
http://dx.doi.org/10.1109/ACCESS.2021.3049564
https://www.youtube.com/watch?v=-nn3XMoPC7s
https://www.youtube.com/watch?v=-nn3XMoPC7s
https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-downloads.html
https://www.oracle.com/virtualization/technologies/vm/downloads/virtualbox-downloads.html
https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/what-is-gdpr/
https://www.glos.ac.uk/information/knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/
https://www.glos.ac.uk/information/knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/
http://dx.doi.org/10.1109/ANTS50601.2020.9342845
http://dx.doi.org/10.1109/SysEng.2016.7753148
http://dx.doi.org/10.1002/cpe.6364
http://dx.doi.org/10.33889/IJMEMS.2022.7.1.006
http://dx.doi.org/10.1109/ACCESS.2021.3137671
http://dx.doi.org/10.1016/j.fusengdes.2020.112121
http://dx.doi.org/10.3390/e23070914
http://dx.doi.org/10.1109/SysCon48628.2021.9447123
http://dx.doi.org/10.1109/ASE51524.2021.9678585
http://dx.doi.org/10.1109/TSE.2019.2956919
http://dx.doi.org/10.1109/SPW53761.2021.00061
http://dx.doi.org/10.1109/INFOTEH51037.2021.9400684
http://dx.doi.org/10.1007/978-3-319-47364-2_77

Future Internet 2025, 17, 156 24 of 25

57. Vojnak, D.T.; Eordevic, B.S.; Timcenko, V.V.; Strbac, S.M. Performance Comparison of the type-2 hypervisor VirtualBox and
VMWare Workstation. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November
2019; pp. 1–4. [CrossRef]

58. Ionescu, V.M.; Patel, M.; Hindocha, D. Alternatives for Running Linux Applications in Windows. In Proceedings of the 2019 11th
International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019; pp. 1–4.
[CrossRef]

59. Costa, G.; Russo, E.; Valenza, A. Damn Vulnerable Application Scanner. In Proceedings of the 5th Italian Conference on Cyber
Security (ITASEC), Online, 7–9 April 2021; p. 15.

60. Tyagi, S.; Kumar, K. Evaluation of Static Web Vulnerability Analysis Tools. In Proceedings of the 2018 Fifth International
Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, India, 20–22 December 2018; pp. 1–6. [CrossRef]

61. Makino, Y.; Klyuev, V. Evaluation of web vulnerability scanners. In Proceedings of the 2015 IEEE 8th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland,
24–26 September 2015; pp. 399–402. [CrossRef]

62. Vyamajala, S.; Mohd, T.K.; Javaid, A. A Real-World Implementation of SQL Injection Attack Using Open Source Tools for
Enhanced Cybersecurity Learning. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology
(EIT), Rochester, MI, USA, 3–5 May 2018; pp. 0198–0202. [CrossRef]

63. Nagpure, S.; Kurkure, S. Vulnerability Assessment and Penetration Testing of Web Application. In Proceedings of the 2017
International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 17–18 August 2017;
pp. 1–6. [CrossRef]

64. Sandhya, S.; Purkayastha, S.; Joshua, E.; Deep, A. Assessment of website security by penetration testing using Wireshark.
In Proceedings of the 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS),
Coimbatore, India, 6–7 January 2017; pp. 1–4. [CrossRef]

65. Das, R.; Tuna, G. Packet tracing and analysis of network cameras with Wireshark. In Proceedings of the 2017 5th International
Symposium on Digital Forensic and Security (ISDFS), Tirgu Mures, Romania, 26–28 April 2017; pp. 1–6. [CrossRef]

66. Ramirez, R.; Chang, C.K.; Liang, S.H. PLC Cybersecurity Test Platform Establishment and Cyberattack Practice. Electronics 2023,
12, 1195. [CrossRef]

67. Hines, C.D.; Chowdhury, M.M. Uncover Security Weakness Before the Attacker Through Penetration Testing. In Proceedings
of the 2022 IEEE International Conference on Electro Information Technology (eIT), Mankato, MN, USA, 19–21 May 2022;
pp. 492–497, ISSN 2154-0373. [CrossRef]

68. Ayyoub, B.; Abu-Ein, A.; Zahran, B.; Nader, J.; Al-Hazaimeh, O. Enhance Linux Security Server Misconfigurations and hardening
Methods. Inf. Sci. Lett. Info 2023, 12, 1285–1298. [CrossRef]

69. Sharma, I.; Pahuja, V. Comparative Analysis of Open-Source Vulnerability Assessment Tools for Campus Area Network. In
Proceedings of the 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 1–3 March
2023; pp. 1–6. [CrossRef]

70. Mohan, A.; Swaminathan, G.A.; Shafana, N.J. Automated Tools and Techniques in Vulnerability Assessment. In Proceedings of
the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January
2022; pp. 533–540. [CrossRef]

71. Glances—An Eye on Your System. 2025. Available online: https://nicolargo.github.io/glances/ (accessed on 19 December 2024).
72. Kok, G.X.; Choong, K.N.; Vethanayagam, C.; Owada, Y.; Sato, G. An Analysis of a Large Scale Wireless Image Distribution System

Deployment. In Proceedings of the 2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Kota
Kinabalu, Malaysia, 27–28 April 2019; pp. 150–155. [CrossRef]

73. Manore, C.; Manjunath, P.; Larkin, D. Performance of Single Board Computers for Vision Processing. In Proceedings of the 2021
IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021;
pp. 0883–0889. [CrossRef]

74. JASP—A Fresh Way to Do Statistics. 2025. Available online: https://jasp-stats.org/ (accessed on 19 December 2024).
75. Houminer-Klepar, N.; Bord, S.; Epel, E.; Baron-Epel, O. Are pregnancy and parity associated with telomere length? A systematic

review. BMC Pregnancy Childbirth 2023, 23, 733. [CrossRef]
76. Taherdoost, H. Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. SSRN Electron.

J. 2016 . Available online: https://www.semanticscholar.org/paper/Sampling-Methods-in-Research-Methodology%3B-How-to-
a-Taherdoost/7f2379b5698c9bda5c0e58956a976bb8873e9214 (accessed on 2 June 2024).

77. Jager, J.; Putnick, D.L.; Bornstein, M.H. II. More Than Just Convenient: The Scientific Merits of Homogeneous Convenience
Samples. Monogr. Soc. Res. Child Dev. 2017, 82, 13–30. [CrossRef]

http://dx.doi.org/10.1109/TELFOR48224.2019.8971213
http://dx.doi.org/10.1109/ECAI46879.2019.9042127
http://dx.doi.org/10.1109/PDGC.2018.8745996
http://dx.doi.org/10.1109/IDAACS.2015.7340766
http://dx.doi.org/10.1109/EIT.2018.8500136
http://dx.doi.org/10.1109/ICCUBEA.2017.8463920
http://dx.doi.org/10.1109/ICACCS.2017.8014711
http://dx.doi.org/10.1109/ISDFS.2017.7916510
http://dx.doi.org/10.3390/electronics12051195
http://dx.doi.org/10.1109/eIT53891.2022.9813950
http://dx.doi.org/10.18576/isl/120319
http://dx.doi.org/10.1109/ESCI56872.2023.10100030
http://dx.doi.org/10.1109/ICSSIT53264.2022.9716474
https://nicolargo.github.io/glances/
http://dx.doi.org/10.1109/ISCAIE.2019.8743734
http://dx.doi.org/10.1109/CCWC51732.2021.9376035
https://jasp-stats.org/
http://dx.doi.org/10.1186/s12884-023-06011-8
https://www.semanticscholar.org/paper/Sampling-Methods-in-Research-Methodology%3B-How-to-a-Taherdoost/7f2379b5698c9bda5c0e58956a976bb8873e9214
https://www.semanticscholar.org/paper/Sampling-Methods-in-Research-Methodology%3B-How-to-a-Taherdoost/7f2379b5698c9bda5c0e58956a976bb8873e9214
http://dx.doi.org/10.1111/mono.12296

Future Internet 2025, 17, 156 25 of 25

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	Suitability of the Docker Framework in an Environment with High Computational Demands
	Docker Containers and Security
	Aims of Research and Research Objectives

	Implementation
	The Hypotheses
	Justification Why CPU Is the Most Relevant Metric
	SQL Injection Attack
	DVWA—Database Without Docker Installed
	DVWA—Database with Docker Installed
	Ethics Approval and GDPR
	Environment
	Databases
	Network Analysis
	Data Collection

	Results
	Summary of Findings
	Conclusions
	References

