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Abstract: Modern database systems are critical for storing sensitive information but are
increasingly targeted by cyber threats, including SQL injection (SQLi) attacks. This research
proposes a robust security framework leveraging Docker-based virtualisation to enhance
database security and mitigate the impact of SQLi attacks. A controlled experimental
methodology evaluated the framework’s effectiveness using Damn Vulnerable Web Ap-
plication (DVWA) and Acunetix databases. The findings reveal that Docker significantly
reduces the vulnerability to SQLi attacks by isolating database instances, thereby safe-
guarding user data and system integrity. While Docker introduces a significant increase
in CPU utilisation during high-traffic scenarios, the trade-off ensures enhanced security
and reliability for real-world applications. This study highlights Docker’s potential as a
practical solution for addressing evolving database security challenges in distributed and
cloud environments.

Keywords: security; performance; virtualisation; databases

1. Introduction
Database Management Systems (DBMSs) often store sensitive information, such as

company secrets, financial data, and personal privacy details [1]. However, these systems
are vulnerable to both external and internal threats. External threats include social en-
gineering attacks, while internal threats arise from unauthorised access, privilege abuse,
and vulnerabilities like SQL injection [2].

The authors of the research paper by Kaneko et al. [3] proposed a privacy-enhancing
approach involving the deployment of resource-efficient Docker containers within cloud
environments. This method effectively isolates sensitive information, enabling flexible
implementation of enhanced privacy protections and management strategies as needed.
Given the huge increase in the number of network security threats, such as vulnerabilities,
attacks, data breaches, and privacy violations [4], this research aims to address these
challenges by developing a robust security framework for databases. This framework will
mitigate risks associated with external attacks [5], while also safeguarding user data from
the destructive potential of SQL injection (SQLi) [6].

On the other hand, cloud computing has enabled distributed computing, outsourcing
infrastructure installation, pricing, maintenance, and server scalability. This has led to a
profitable computing industry, where data owners often relinquish control over their data
despite significant financial investment [7]. To address this, a comprehensive evaluation of
security frameworks is necessary, particularly in scenarios requiring frequent user access to
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data for real-world applications [8]. While various research papers have explored the use
of Docker as a framework, there remains a gap in understanding how to leverage Docker
from a user-centric perspective to protect both user data and the underlying database.
This research aims to bridge this gap by fostering trust between users and the authorities
managing centralised databases.

This paper is organised with the following structure: Section 1 talks about the intro-
duction of the Database, Docker as a framework, SQL injection (SQLi), research questions,
research objectives, Docker containers, and security. Section 2 describes related works,
research objectives, suitability of the Docker framework, Docker containers, and the se-
curity aims of the research. Section 3 consists of the implementation, the hypotheses, the
type of variables, the schematic diagram of the laboratory, ethics approval and GDPR,
the environment, databases, network analysis, and data collection. Section 4 presents the
results, statistical analysis, tables, and graphs. Section 5 is a summary of findings, while
Section 6 elaborates on the conclusions.

2. Related Works
Table 1 highlights the software used in related works, especially, the use of Docker

images and Docker containers to conduct their implementation, just as this research paper
has used the Docker framework for its implementation. The authors of the research paper
by Zhao et al. [1] highlighted the significant challenges posed by data breaches in 2016.
Real-time processing databases, designed to handle constantly changing workloads, are
particularly susceptible to these threats. Moreover, both external and internal attacks pose
serious risks to databases, often targeting sensitive information, such as commercial secrets,
bank details, and personal privacy [1]. The authors of the research paper by Wagner et al. [2]
further corroborated these findings in their 2017 research. Database Management Systems
(DBMSs) are employed to process and store user data.

Furthermore, security mechanisms and access controls, such as audit logs, cannot
always be relied upon to prevent data breaches. Users, both legitimate and malicious, may
abuse their privileges in order to compromise database security. Databases must be capable
of promptly detecting breaches and collecting evidence to facilitate investigations [2].
According to the authors Said and Mostafa [9], insider threats, particularly those involving
the misuse of legitimate account privileges, remain a persistent challenge in database
security. Detecting such breaches can be extremely difficult. To address this issue, Said et al.
proposed an adaptive and efficient database intrusion detection algorithm inspired by
the Negative Selection algorithm from artificial immune systems and the Danger Theory
model [9].

Two recent studies published in 2021 by research authors Neto et al. [10] and Al-
garni et al. [11] emphasise the persistent challenges of data breaches and database security.
The increasing reliance on the internet has exacerbated the risks of data leakage and cyber
threats. The research paper by Neto et al. [10] analysed data breaches involving personal
information between 2018 and 2019, including the 2019 cyberattack on Capital One, which
exposed sensitive customer information [9]. Similarly, the research paper by Algarni et al.
2021 [11] examined the vulnerabilities of modern business systems to cybersecurity threats.
While cybersecurity solutions can mitigate attacks on database storage, human errors, such
as the loss or theft of devices containing sensitive data or accidental exposure of security
credentials, remain significant contributors to security breaches. Common cyberattacks
include cross-site scripting (XSS), privilege escalation, and SQL injection (SQLi).

The authors of the research paper by Mahrouqi et al. [12] conducted a notable study
in 2016, simulating an SQLi attack in a virtual environment using tools such as VirtualBox,
VMware Workstation, Wireshark, and GNS3. This research aimed to identify websites vul-
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nerable to SQLi attacks. Subsequently, the authors of the research paper by Grubbs et al. [6]
advocated for the development of strategies to limit the damage SQLi attacks inflict on
user data stored in databases. The research paper by Williams et al. [13] underscored the
importance of acquiring knowledge about software vulnerabilities, given the heavy reliance
of academic institutions, the private sector, and government entities on database-related
software. This research builds upon this foundation by proposing a method to mitigate
SQLi attack damage to user data held in databases [6].

Hospitals and banks are among the primary victims of SQLi attacks [14]. Databases
accessible via the internet are particularly vulnerable to various types of attacks [15].
As proposed in the research paper by Kaneko et al. [3], an innovative approach involves
storing private information within Docker containers. These containers, which are resource-
efficient and designed for cloud environments, enhance privacy protection and can be
deployed as needed. This approach aligns with the increasing prevalence of network vul-
nerabilities, attacks, and data privacy issues in today’s IT sphere, driven by advancements
in network technology [4]. This research aims to develop a robust security framework that
protects databases from both internal and external threats, specifically addressing SQLi
attack mitigation [6].

Moreover, the widespread adoption of distributed computing via the cloud has trans-
formed the computing industry. While outsourcing installation, maintenance, and scal-
ability has proven financially advantageous, data owners often lack direct control over
their data despite paying high costs for its security [7]. This research evaluates a security
framework through use cases that simulate real-world scenarios, ensuring frequent and
secure access to data [8].

The injection of carefully crafted malicious SQL code through web page input can
potentially lead to the destruction of a database [11]. In contrast to the findings of this
research paper, Wang and Reiter [16] and Hassanzadeh et al. [17] provide a more alarming
assessment of data breaches and database security. A significant number of data breaches
have been reported globally, with 3950 incidents occurring between November 2018 and
October 2019, resulting in the exposure of 60% of victim identities, due to 1665 breaches in
various credential databases [16]. This widespread issue has raised serious concerns among
both companies and individuals. High-profile data breaches, such as those experienced
by Yahoo in 2013 and 2014, LinkedIn in 2012, Marriott International in 2014 and 2018,
and Equifax in 2017, demonstrate that many organisations continue to implement inade-
quate cybersecurity measures, despite advancements in security technology and increased
awareness [17].

Similarly, NoSQL databases, which store data in a format different from relational
tables, have also been targeted by hackers in 2021. While these databases disrupted the
market with their scalability, performance, and availability, compromises were often made
in other areas, including privacy. NoSQL databases are designed to handle unstructured
data which lack a predefined organisation or data model. This flexibility, however, can
come at the cost of privacy features. Data privacy, the right to control how data is collected
and disclosed, is a critical concern that cannot be easily overlooked [18]. Furthermore,
traditional database services have now moved online. In other words, a database is an
organised collection of user data. After all, if the security employed for the database is
capable of protecting the data that it is hosting, malicious attacks or threats from hackers
can prevent the data being stolen. This was stated in 2021 in the research paper published
by Crooks [19], though in 2016 an investigation on how to build a database that would
not be vulnerable to internal or external attacks was proposed in the research paper by
Toapanta et al. [5]. Meanwhile, it is possible to consider network problems and extremely
high computer loads with the introduction of modern applications; however, there has
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to be continuity in the flow of data to ensure that the service is guaranteed. The constant
evolution of the scalability and availability of information technology (IT) services is why
Docker containers can be of great value to the information technology industry [20].

Table 1. Comparison of this research paper and other research papers that have employed Docker.

Software What the Software Was Used for

Docker machine [21] Apache Airavata (an open source software suite).

Docker containers [22] Run the Docker containers from different databases.

Docker containers [23] Docker server and Docker client.

Docker container
networking [24] Monitoring server and anomaly monitoring system.

Docker framework [25] SDN-Docker-based architecture for IoT.

Docker [26] Virtual machine.

Docker [20] DNS server, HAproxy, and mail server.

Docker containers [27] Run the Docker containers.

Docker [28] Optimise development and increase efficiency of methods.

Docker [29] 5G mobile networks using Docker containers.

Docker [30] Picto Web would be used within a Docker container.

2.1. Suitability of the Docker Framework in an Environment with High Computational Demands

The authors of the research paper by Moysiadis et al. [31] consider the association
of Docker containers as a virtual technology with traditional framing, cloud computing,
and Information Communication Technologies (ICT). They also consider the advantages
that could be derived from this, including reduction in production costs, boosting of
productivity, better security, and scalability with regard to future upgrades and increasing
performance. As a result, cloud computing can support the demand for handling large
user data and a large number of end devices [31]. Another key thing to remember is that
servers handling the increase in resources used relating to big data applications increase in
storage due to increase in the applications being stored on the servers and balancing of the
load within each server running these applications. Setting up of a Docker Swarm would
be most appropriate to solve these problems as it can deploy multiple Docker containers
on multiple computer hosts in a very short period [28]. The current debate, that was
highlighted in the research paper by Singh et al. [28] published this year (2023), considers
the merits of Docker containers as follows:

• A Docker Swarm efficiently deals with the deletion and duplication of containers [28].
• Docker containers work well with load balancing and when dealing with applications

that are complex [28].
• A Docker Swarm can effectively manage the employment of Docker containers [28].

Correspondingly, the research paper by Zou et al. [24], in comparison to the research
paper by Alyas et al. [32], also mentions the security side of Docker containers. The issues of
the stability and security of the container have become important issues with the rejection
of thousands of apps and websites, for example, the collapse of the Amazon cloud, which
was built upon a virtual machine cluster and container [33]. More researchers are using
Docker because of the advantages it has been reported as having over traditional virtual
machines [24]. Furthermore, according to the research paper by Hersyah et al. [34], it is
known that with the aid of Docker containers supported with automation, the availability,
deployment, redundancy, and granting of authorisation can be applied securely. Addition-
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ally, care should be taken to avoid becoming complacent when using cloud services [34].
To exemplify, the same tools that are meant to help with security and easy navigation
within the cloud have been known to be reverse-engineered and used by hackers for attacks
against the cloud services. Furthermore, the cloud service provider has to make sure that
security at their end is up to date, with regard to their software, hardware, and their staff
being highly trained. To this end, virtualisation and the cloud are very closely associated
with each other [34]. In addition, the research paper by Qian et al. [35] refers to storing
users’ information in the cloud, which involves the inclusion of virtualisation and cloud
computing. In other words, compared to the traditional way of utilising virtualisation,
although Docker virtualisation performance expenses are lower, the deployment and deliv-
ery rate are faster. To clarify, with the aid of cloud computing, the following advantages can
be gained: cloud computing can handle large amounts of data traffic and reduce the delay
in network transmission [35]. Furthermore, the research paper by Singh et al. [28] supports
the research paper of da Silva and Lima [36] by explaining how a Docker Swarm provides
an architecture which is decentralised and fault tolerant, and with the aid of Swarm mode,
we can create a Docker Swarm which consists of Docker hosts. In other words, a Docker
Swarm can be seen as improving the quality of Docker regarding availability, security,
maintainability, reliability, and scalability. A Docker Swarm can reassign containers if it
discovers that any one of the containers has failed within the Docker Swarm [28].

2.2. Docker Containers and Security

The primary purpose of Docker containers is to isolate individual microservices
effectively [31]. Docker provides a service called (https://hub.docker.com/ accessed on
20 March 2025), the world’s largest library of container images, which allows users to
share or search for container images. This service is accessible via the Docker Hub website.
The authors of the research paper by Alyas et al. [32] support the findings of the research
paper by Moysiadis et al. [31], while emphasising the importance of addressing security,
sovereignty, and compliance in cloud computing. This highlights the need for solutions to
resolve privacy and security concerns, which remain key barriers to the effective adoption
of mobile cloud computing (MCC) in healthcare environments [37].

Moreover, a single computer can host only a limited number of virtual machines,
whereas the same computer can run thousands of Docker containers simultaneously, offer-
ing superior scalability and mobility. Docker’s ability to operate on almost any platform,
coupled with its ease of deployment and maintenance, further underscores its advan-
tages [24].

2.3. Aims of Research and Research Objectives

This research aims to design and evaluate a high-performance and secure database sys-
tem. Specifically, the study focuses on three key objectives as presented below. By address-
ing these challenges, this research seeks to enhance the overall security and performance of
database systems, safeguarding critical information and ensuring reliable service delivery.

• Research Objective 1—RO1—Investigation into the development of a database that
would not be vulnerable to internal or external attacks and then developing a security
framework.

• Research Objective 2—RO2—Proposing a way to limit the damage Structured Query
Language injection (SQLi) causes to users’ data that are being held in a database.

• Research Objective 3—RO3—Evaluating and proposing a security framework with
the use case where users will have access to high-traffic applications, to closely repre-
sent a real world scenario.

https://hub.docker.com/
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This review involved searching for existing research, critically evaluating relevant
studies, and synthesising the findings. The next step involved formulating alternative
hypotheses (Ha) and selecting appropriate statistical tests. For example, to evaluate the
effectiveness of Docker in mitigating SQL injection attacks, we launched controlled SQLi
attacks against (https://www.acunetix.com/, Acunetix, accessed on 19 December 2024) and
(https://github.com/digininja/DVWA, DVWA, accessed on 19 December 2024) databases
(without Docker protection) and recorded the data exfiltration levels. Subsequently, we then
implemented (https://www.docker.com/company Docker, accessed on 19 December 2024)
protection for the same databases and repeated the SQLi attacks, measuring and comparing
the data exfiltration in both scenarios. Statistical tests (e.g., t-tests) were then used to
determine if the observed differences between the two settings were statistically significant.

We, therefore, used a quantitative approach, specifically, a true experimental design
with a between-groups post-test-only structure. This design utilises two groups: a control
group and an experimental group. Both groups are measured on a dependent variable,
which reflects the outcome of interest. The independent variable, representing the manipu-
lation introduced by the experiment, is applied only to the experimental group. Following
the post-test, the main analysis focuses on the differences between the control and experi-
mental groups in terms of the dependent variable. To determine if the observed differences
are statistically significant, a t-test is employed. This test is suitable when comparing the
means of two independent groups with normally distributed, continuous (metric) data (as
outlined by (https://datatab.net/tutorial/paired-t-test DATAtab, accessed on 19 December
2024)).

3. Implementation
3.1. The Hypotheses

• H0—The null hypothesis—There is no significant difference between the means of the de-
pendent variables—CPU_total_(%) for both (https://github.com/digininja/DVWA DVWA
accessed on 19 December 2024) installed in Docker and (https://github.com/digininja/
DVWA DVWA accessed on 19 December 2024) not installed in Docker, as well as
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) installed in Docker and
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) not installed in Docker.

• Ha—The alternative hypothesis—There is a significant difference between the means of
the dependent variables—CPU_total_(%) for both (https://github.com/digininja/DVWA
DVWA accessed on 19 December 2024) installed in Docker and (https://github.com/
digininja/DVWA DVWA accessed on 19 December 2024) not installed in Docker, as well as
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) installed in Docker and
(https://www.acunetix.com/ Acunetix accessed on 19 December 2024) not installed in Docker.

H0 : µ1 = µ2

Ha : µ1 ̸= µ2

3.2. Justification Why CPU Is the Most Relevant Metric

Firstly, Table 2 explains the type of variables used: uptime_minute is the independent
variable; CPU_total_(%) is what is going to be measured and is the dependent variable. Ad-
ditionally, any confounding variables which are correlated with both the independent vari-
able (uptime_minute) and the dependent variable (CPU_total_(%)) require to be held con-
stant throughout the experiment. Here, the variable (Virtual operating system—VirtualBox)
does not change. Secondly, Figure 1 explains deduction, which is synonymous with the
quantitative method. Deduction can be expressed as, given a rule and the cause, deduce
the effect [38]. If the rule is—during a Structured Query Language injection (SQLi) attack,
the cause is—it is crucial that the uptime_minutes are measured during the Structured

https://www.acunetix.com/
https://github.com/digininja/DVWA
https://www.docker.com/company
https://datatab.net/tutorial/paired-t-test
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://www.acunetix.com/
https://www.acunetix.com/
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://www.acunetix.com/
https://www.acunetix.com/
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Query Language injection (SQLi) attack and the effect will be a CPU_total_(%) increase in
temperature. The author of the research paper [20] measured the (CPU_total_(%)) as one of
the variables. Lastly, Figure 2 represents the schematic diagram of the laboratory which,
was designed and built in VirtualBox [39].

Table 2. Type of variables.

Independent variables (cause) uptime_minutes

Dependent variable (effect) CPU_total_(%) (what is going to be measured)

Confounding variable—Correlation between the independent
and dependent variables Ubuntu 20.04.2 LTS

Controlled or constant variable—This experimental variable
does not change Virtual operating system—VirtualBox

(a) Rule, cause and effect

Deduction Example
Rule During an SQLi attack
Cause uptime_minutes are crucial
Effect CPU_total_(%) will increase

(b) An example of deduction

Figure 1. Deduction [38].

Table 3 illustrates a breakdown and the specifications used to carry out the implementation.

Table 3. Specifications of the host computer and virtual machines.

Hardware CPU Ram Graphics Operating System

Host Intel i7 16GB Intel/Nvidia 2GBRam Parrot OS 4.11

VM Hacker Intel i7 4096MB VMSVGA Oracle (64-Bit)—Parrot
OS 4.11

VM Database—Docker Intel i7 2048MB VMSVGA Ubuntu (64-Bit)

VM Database—No
Docker Intel i7 2048MB VMSVGA Ubuntu (64-Bit)
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Figure 2. Schematic diagram of the laboratory. Note: all IP addresses in Figure 2 are unique addresses
that identify a device on the local network.

3.3. SQL Injection Attack

Firstly, Figure 3 explains the schematics towards building the secure framework
(quantitative research). Secondly, DVWA—Database Without Docker Installed—Figure 4
represents the gathering of information from the Damn Vulnerable Web Application,
Figure 5 represents the launching of an SQL injection attack from the information gathered
from Figure 4, and Figure 6 shows that the SQL injection attack was successful. Additionally,
Figure 7 shows the running DVWA (Database with Locker Installed) in a Docker container,
Figure 8 shows the gathering of information to launch an SQL injection attack, Figure 9
shows the launching of an SQL injection attack, and lastly, Figure 10 shows the SQL injection
attack was not successful.



Future Internet 2025, 17, 156 9 of 25

Figure 3. Schematics towards building the secure framework (quantitative research).

3.4. DVWA—Database Without Docker Installed

All implementations were conducted in VirtualBox.
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Figure 4. Gathering information from Damn Vulnerable Web Application.

Figure 5. Launching an SQL injection attack.

Figure 6. SQL injection attack was successful.

3.5. DVWA—Database with Docker Installed

All implementations were conducted in VirtualBox.

Figure 7. Running DVWA in a Docker container.
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Figure 8. Gathering information to launch an SQL injection attack.

Figure 9. Launching an SQL injection attack.

Figure 10. SQL injection attack was not successful.

3.6. Ethics Approval and GDPR

The ethics approval process and GDPR (General Data Protection Regulation) eval-
uation regarding this research followed the regulations of the UK (United Kingdom)
GDPR [40] and the General Data Protection Regulation of the European Union’s new data
protection law [41]. Because this study does not involve human or animal participants,
the research proposed follows the rules set by (https://www.glos.ac.uk/information/
knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/ (accessed on
19 December 2024) Research Ethics: A Handbook of Principles and Procedures), applying
the guidelines to the research methods process meeting all the regulations required [42].
Lastly, Figure 2 was built in a VirtualBox [39] containment so as ensure that in the event of
a mishap during the implementation, the mishap is contained in the VirtualBox [39] and
does not leak into the host computer.

https://www.glos.ac.uk/information/knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/
https://www.glos.ac.uk/information/knowledge-base/research-ethics-a-handbook-of-principles-and-procedures/
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3.7. Environment

This research uses two key technologies to facilitate the experimental setup: Docker
and VirtualBox as discussed below.

Docker is a free, open-source platform for software containerisation. Docker allows
package applications to be packaged with all their dependencies into standardised units
called containers. These containers are lightweight and portable, making them ideal for
replicating and deploying in our experimental environment consistently across different
systems. Docker enjoys widespread adoption, often coming pre-installed in popular
Linux distributions. Notably, several studies have successfully utilised Docker images and
containers for application development and deployment (see Table 4).

Table 4. Other research papers that have employed Docker.

Software What the Software Was Used for

Docker containers [43] Analysing of data.

Docker containers [22] Run the Docker containers from different databases.

Docker Swarm [44] Build a virtual system used for simulation.

Docker containers [45] Capturing the behavior of a container’s life cycle.

Docker swarm [46] Used as a testbed for Distributed Denial-of-Service (DDoS) attacks.

Docker-compose [47] Docker-compose.yml files and Dockerfiles.

Docker images [48] MDSplus—a set of software tools.

Docker swarm [49] Checking the security of misbehaving manager nodes.

Docker swarm [50] Multiple clouds consisting of distributed systems.

Docker containers [51] Evolution and maintenance of Docker containers.

Docker [52] To help Q&A forum users.

Docker [53] Attacks against hCaptcha Systems.

VirtualBox is the framework in which all the images used in this research paper would
be built and comes installed by default in most Linux distributions. VirtualBox is a powerful
virtualisation software solution developed and maintained by Oracle. VirtualBox allows
the creation and management of virtual machines, essentially emulating entire computer
systems within the host machine. While Docker containers share the host operating system
kernel, virtual machines create isolated environments with their own guest operating
systems. VirtualBox provides a robust platform for building the foundation upon which
our Docker images will operate. Several researchers have employed VirtualBox in their
studies (see Table 5).

Table 5. Other research papers that have employed VirtualBox.

Software What the Software Was Used for

VirtualBox [54] VirtualBox and host performance comparison.

VirtualBox virtualiser [55] Educational purposes (laboratory).

Virtualisation laboratory [56] Computer networking with undergraduates.

VirtualBox [57] VMware and VirtualBox comparison.

VirtualBox [58] Linux applications running in Windows.
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3.8. Databases

In this research, we used two databases for experimental research on SQLi attacks
as follows:

Damn Vulnerable Web Application (DVWA) is a free, open-source web application
intentionally designed to be insecure. This controlled environment allows security profes-
sionals to test their penetration testing tools in a safe, legal manner. Similarly, researchers
can utilise DVWA to obtain practical experience with web application security. DVWA has
been used by several researchers in this field [59–61].

Acunetix is a commercial web vulnerability scanner designed to identify security
weaknesses in web applications. It offers a comprehensive suite of features for automated
scanning, allowing security professionals to efficiently detect potential vulnerabilities
that could be exploited by attackers. Several research studies have employed Acunetix
to evaluate its effectiveness in vulnerability detection, including the following research
papers: [62,63].

To work with the databases, we used (https://www.mysql.com/downloads/ (ac-
cessed on 19 December 2024) MySQL), a free and open-source Relational Database Man-
agement System (RDBMS). (https://www.phpmyadmin.net/ (accessed on 19 December
2024) phpMyAdmin) is also used to work with MySQL. We used Linux OS as our platform
to access databases.

3.9. Network Analysis

Wireshark is a free and open-source network protocol analyser used to monitor in-
coming network traffic on the target Ubuntu 20.04 system. Wireshark is a popular tool
among network security professionals worldwide, offering deep insights into network
communication by capturing and analysing network packets. By capturing the traffic on
the victim’s computer, Wireshark enables us to observe the attacker’s interactions and
potentially identify vulnerabilities exploited during the attack. The research papers by
Sandhya et al. [64] and Das and Tuna [65] show how researchers have used Wireshark in
their network security experiments. Wireshark is used to monitor the incoming network
traffic on the victims computer running (https://releases.ubuntu.com/focal/ (accessed on
19 December 2024) Ubuntu 20.04.6 LTS (Focal Fossa)).

Nmap is a powerful open-source network scanner and security auditing tool commonly
used by system administrators and security professionals. Operating as a command-line tool
on Linux systems, Nmap offers a comprehensive suite of features for network exploration and
vulnerability identification. This research will utilise Nmap to perform security scans on the
target system, potentially revealing open ports, services running on those ports, and potential
security weaknesses. The research conducted by [66–70] shows the diverse applications of
Nmap in security research. This tool would be used on the virtual machine running the
penetrating operating system (https://parrotsec.org/ (accessed on 19 December 2024) Parrot
OS) to see if it can capture the victim’s IP address.

3.10. Data Collection

This research utilises Glances (version 3.9 or higher) [71], a system monitoring tool
written in Python, to gather crucial performance metrics throughout the experiment.
Glances provides functionalities for monitoring system performance through a web in-
terface, remote access via the Linux terminal, and a client/server mode for broader data
collection. During the experiment, Glances is used to capture real-time measurements of
key performance indicators (KPIs), including CPU utilisation, data throughput, and time.
Glances has been successfully used for data collection in previous research efforts, as demon-
strated by the research papers by Kok et al. [72] and Manore et al. [73].

https://www.mysql.com/downloads/
https://www.phpmyadmin.net/
https://releases.ubuntu.com/focal/
https://parrotsec.org/
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This research uses JASP 0.18 (Jeffrey’s Amazing Statistics Program) [74], which is an
open-source statistical software package developed with support from the University of
Amsterdam. JASP provides a user-friendly interface and robust statistical analysis capabili-
ties, making it a valuable tool for researchers like ourselves. Additionally, its integration
with the Open Science Framework (OSF) facilitates data sharing and transparency, aligning
with our commitment to open science practices. JASP’s growing popularity within the
scientific community is evident in its utilisation by various recent studies (e.g., Houminer-
Klepar et al. [75]). We also used https://www.lock5stat.com/StatKey/index.html StatKey
(accessed on 19 December 2024) as a tool to bootstrap the difference in means.

4. Results
This section presents the statistical analysis conducted to evaluate the impact of Docker

on CPU utilisation during SQL injection attacks against DVWA and Acunetix web applica-
tions. The type of sampling used to collect the data was one of the non-probability sampling
methods called convenience sampling. The results are readily available and easy to collect.
Additionally, in comparison to other sampling techniques, convenience sampling can help
overcome most limitations associated with research. For example, if old people always
assemble in a park, the researcher can then go to the park and collect the samples—the park
acts as a convenient place to collect samples [76]. Furthermore, convenience sampling
is inexpensive (cheap), which can be seen as an advantage. Convenience sampling is
easy to execute and efficient, but in this research, limitations include a small sample size
drawn from a large sample pool, which limits generalisability [77]. In the case of the Damn
Vulnerable Web App (DVWA) database results, the first 20 (number of values) data items
were collected, while, for the Acunetix database results, the first 15 (number of values) data
items were collected.

• Paired Samples t-Test: A paired-samples t-test was employed for each dataset
(DVWA and Acunetix) to compare the means of CPU utilisation (CPU_total_(%))
between scenarios with and without Docker protection (ND—No Docker, WD—With
Docker). This test is appropriate as we are analysing data from the same set of
systems measured under two different conditions (attack with and without Docker).
Additionally, a two-tailed test was chosen as we are not pre-determining the direction
of the difference (improvement or degradation) in CPU utilisation.

• Hypothesis Testing: The null hypothesis (H0) states that there is no significant differ-
ence in the mean CPU utilisation between the No Docker (ND) and With Docker (WD)
scenarios for both DVWA and Acunetix. The alternative hypothesis (Ha) proposes
that there is a significant difference.

• Significance Level and Critical Value: The level of significance (α) was set at 0.05,
indicating a 5% chance of rejecting the null hypothesis when it is actually true. Based
on the degrees of freedom (df = n − 1, where n is the number of samples in each group),
the critical values for the two-tailed test were determined from a t-distribution table.

Table 6 presents the descriptive statistics for the experiments conducted on Acunetix
and DVWA, both with and without Docker protection. A total of 15 experiments were
performed on Acunetix, and 20 experiments were conducted on DVWA. Each experiment
was repeated twice: once with Docker and once without. CPU utilisation was measured
both before the SQL injection attack (Before) and during the attack (During). While the
maximum CPU usage reached 100% in all cases, the mean and median CPU utilisation val-
ues were significantly higher during the attack when Docker was used. This increased CPU
usage was further evidenced by the higher standard deviation observed in the “During”
phase with Docker, indicating greater variability in CPU utilisation during these periods.

https://www.lock5stat.com/StatKey/index.html
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Figures 11 and 12 present histograms illustrating the distribution of CPU utilisation for
all eight experimental scenarios: before and during SQL injection attacks on Acunetix and
DVWA, both with and without Docker protection. A visual inspection of these histograms
reveals a notable trend: the CPU utilisation exceeds 50% more frequently in scenarios
involving Docker compared to those without Docker. This suggests that Docker, while
enhancing security, may also incur a performance overhead in certain scenarios. This is
considered further in the next paragraph.

Table 6. Descriptive statistics.

Database Acunetix DVWA

No. Cases 15 20

Container No Docker With Docker No Docker With Docker

Scenario Before During Before During Before During Before During

Median 2.9 7 2.9 17.5 5.55 11.25 5.4 37.5

Mean 10.207 14.753 13.713 36.9 10.56 18.735 11.46 49.745

Std. Deviation 24.091 24.378 25.332 36.065 21.927 21.035 21.557 38.633

Skewness 3.746 3.462 3.191 0.519 4.285 3.358 4.031 0.187

Std. Error of
Skewness

0.58 0.58 0.58 0.58 0.512 0.512 0.512 0.512

Kurtosis 14.251 12.702 11.075 −1.593 38.818 12.664 17.044 −1.847

Std. Error of
Kurtosis

1.121 1.121 1.121 1.121 0.992 0.992 0.992 0.992

Minimum 1.8 1.8 1.4 1.4 1.4 5.1 2.2 3.9

Maximum 96.4 100 100 96.6 100 100 100 100

(a) Before SQLi attack with no Docker (b) During SQLi attack with no Docker

(c) Before SQLi attack with Docker (d) During SQLi attack with Docker

Figure 11. Distribution histogram of CPU usage in attacking Acunetix.

As shown in Table 7, for the DVWA data, the calculated t-statistic (t = 3.307) exceeded
the critical value (CV = ±2.093). This statistically significant result (p < 0.05) rejects the null
hypothesis, indicating a significant difference in CPU utilisation between the No Docker
and With Docker scenarios when attacking DVWA. Similarly (see Table 8), for the Acunetix
data, the t-statistic (t = 2.339) exceeded the critical value (CV = ±2.145), leading to rejection
of the null hypothesis (p < 0.05). This suggests a statistically significant difference in CPU
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utilisation between the two scenarios for Acunetix as well. As such, the statistical analysis
confirms that Docker plays a role in influencing CPU utilisation during SQL injection
attacks (see Table 9).

(a) Before SQLi attack with no Docker (b) During SQLi attack with no Docker

(c) Before SQLi attack with Docker (d) During SQLi attack with Docker

Figure 12. Distribution histogram of CPU usage in attacking DVWA.

Table 7. Legend for paired-samples t-test results for DVWA.

Formula - Interpretation

CV(19) = ±2.093 - t(19) = 3.307 exceeds the CV

df = n − 1 - n = 19

p < 0.05 - p = 0.004 is less than p < 0.05

95%CI [11.4, 50.6] - Does not contain 0

Cohen’s d - 0.74 (Effect—between moderate and large)

95%CI - Confidence Interval

CV(19) - Critical Value

df - Degrees of freedom

n = 20 - Number of values

p - The p-value

t - The paired-samples t-test

In terms of the effectiveness of an SQLi attack, both DVWA and Acunetix were success-
fully compromised when Docker was not installed. This indicates that these applications,
in their default state, are susceptible to SQL injection attacks (as expected). When Docker
was installed on the systems hosting DVWA and Acunetix, the SQL injection attacks were
unsuccessful. This suggests that Docker, in this context, effectively mitigated the risks asso-
ciated with SQL injection. By isolating the application within a container, Docker can help
prevent attackers from exploiting vulnerabilities and compromising the underlying system.
This is due to Docker’s ability to restrict access to resources and isolate the application
from the host environment. Table 9 presents the readings from the paired samples t-test
results for DVWA and the readings from the paired samples t-test results for Acunetix.
Additionally, in Table 9, the sampling used was non-probability (planning) convenience
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sampling, which reflects the easy availability of the samples that were chosen from all the
samples available.

This is why the Critical Value (CV) used is CV(19) for DVWA and CV(14) for Acunetix.

Table 8. Legend for paired-samples t-test results for Acunetix.

Formula - Interpretation

CV(14) = ±2.145 - t(14) = 2.339 exceeds the CV

df = n − 1 - n = 14

p < 0.05 - p = 0.04 is less than p < 0.05

95%CI [1.84, 42.5] - Does not contain 0

Cohen’s d - 0.60 (Effect—between moderate and large)

95%CI - Confidence Interval

CV(14) - Critical Value

df - Degrees of freedom

n = 15 - Number of values

p - The p-value

t - The paired-samples t-test

Table 9. Readings from the paired-samples t-test results.

Database t() p 95%CI d

DVWA t(19) = 3.307 0.004 [11.4, 50.6] 0.74
Acunetix t(14) = 2.339 0.04 [1.84, 42.5] 0.60

Additionally, we used bootstrapping to compare the means between CPU usage in
different situations to further examine the hypothesis. Figures 13–20 (Bell curves) prove
that there are a significance difference with DVWA - (before an SQLi attack without Docker,
During an SQLi attack without Docker), (before an SQLi attack with Docker and During an
SQLi attack with Docker). There is also a significance difference with Acunetix - (before
an SQLi attack without Docker, During an SQLi attack without Docker), (before an SQLi
attack with Docker and During an SQLi attack with Docker). Additionally, there is also a
significance difference (without Docker installed: before an SQLI attack with both databases
combined, During an SQLI attack both databases combined. Furthermore, there is also a
significance difference (with Docker installed: before an SQLI attack with both databases
combined, During an SQLI attack both databases combined (see Table 10).
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Figure 13. Acunetix no Docker installed.

Table 10. StatKey legend.

+ + Significant Difference

− − Significant Difference

+ − No Significant Difference

− + No Significant Difference

Figure 14. Acunetix with Docker installed.

Figure 15. DVWA no Docker installed.
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Figure 16. DVWA with Docker installed.

Figure 17. Acunetix with Docker before an SQLi attack.

Figure 18. Acunetix with Docker during an SQLi attack.
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Figure 19. DVWA with Docker before an SQLi attack.

Figure 20. DVWA with Docker during an SQLi attack.

5. Summary of Findings
This research aimed to design and evaluate a database system that prioritises per-

formance, security, and user accessibility, particularly in the face of SQL injection attacks
and high-traffic demands. While numerous studies have explored the use of Docker as a
framework for various applications, there remains a significant gap in understanding how
Docker can be used to enhance database security.

The findings of this study demonstrate the efficacy of a decentralised database ap-
proach built upon the Docker framework. By isolating database instances within Docker
containers, the risk of external attacks, including SQL injection, is significantly reduced,
addressing Research Question 1. Additionally, such an environment provides a robust
defence against SQL injection attempts, safeguarding user data and database integrity, thus
addressing Research Question 2. Furthermore, the Docker-based database showed high
CPU utilisation during attack, which needs to be considered when used in high-traffic
applications, fulfilling Research Question 3. A key advantage of this approach is that it
does not necessitate modifications to the traditional database infrastructure. By introducing
Docker as a layer of abstraction, the existing database remains unaffected. The Docker
framework offers improved security. Although, this research was designed from the user’s
perspective as a decentralised database without altering the existing centralised database,
developers or administrators of a centralised database should look at the practical bene-
fits of being able to run Docker images with any assigned IP (Internet Protocol) address
of their choice; this improves the security of a database running in a Docker container.
Meanwhile, the authors of the research paper Gore et al. [43] obtained a positive result
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when utilising Docker containers to handle data in a network environment compared to
the results of the research paper by Velasquez et al. [22] that showed Microsoft Azure,
Amazon Web Services, OpenStack, IBM, VMware and Google Compute Engine, which
are all cloud providers, are now being supported by Docker. Additionally, the research
paper by Reis et al. [47] reported that developers are not keen on using different types
of tools to build their Docker-compose.yml files and Dockerfiles. Lastly, as presented
in Table 3, under graphics Intel/Nvidia 2GBRam, the more memory (Ram) a video card
(Nvidia (GPU) Graphics Processing Unit) has, the more this would help in reducing the
high-traffic bottle necks encountered where the CPU (Central Processing Unit) is the only
processor processing information within a database. A limitation of this research was the
use of convenience sampling. Positive ideas for future work/research include measuring
the computer memory and investigating the potential for more data output.

6. Conclusions
This research evaluated the performance and security aspects of traditional and Docker-

based database systems. The primary objective was to mitigate the risks associated with
SQL injection attacks and ensure reliable access to high-traffic applications. By adopting a
user-centric approach to database design, we demonstrated that a Docker-based database
can effectively limit the impact of SQL injection attacks on user data. Additionally, the de-
centralised nature of this approach empowers users with greater control over their data,
improving accessibility and reducing the risk of unauthorised access. The findings of this
research suggest that a Docker-based database can provide a robust and secure solution
for various applications. By isolating database instances within containers, Docker can
significantly reduce vulnerability to external attacks, including by SQL injection.
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