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Abstract: Value alignment for AI is not “one-size-fits-all”: even polite and friendly models
can still fail to represent individual user contexts and preferences, and local cultural
norms. This paper presents a modular workflow for personal fine-tuning, synthesizing four
core components from our previous research: (1) robust vectorization of user values and
preferences, (2) a binary choice user interface (UI) approach to capturing those preferences
with minimal cognitive load, (3) contrastive activation methods for steering large language
models (LLMs) via difference vectors, and (4) knowledge graph integration for more
auditable and structured alignment. Our approach—descended from past research on
“Towards an End-to-End Personal Fine-Tuning Framework”—demonstrates how these
elements can be combined to create personalized, context-rich alignment solutions. We
report on user studies for the forced-choice UI, describe an experimental pipeline for
deriving “control vectors”, and propose a “moral graph” method for bridging symbolic
and vector-based alignment. Our findings suggest that multi-pronged personalization can
significantly reduce user annotation fatigue, improve alignment fidelity, and allow for more
flexible, interpretable AI behaviors.

Keywords: AI alignment; value vectorization; binary choice UI; contrastive activation;
knowledge graph; personal fine-tuning

1. Introduction
Large language models (LLMs) are increasingly deployed in contexts where they must

cater to each user’s unique preferences. Ensuring reliable alignment with those individual
preferences—what we term personal alignment—remains a significant challenge. Problems
arise when global, one-size-fits-all safety or style guidelines override a user’s specific
needs. Such misalignment can pose agentic safety risks, such as neglecting a user’s dietary
restrictions or failing to consider accessibility requirements.

Building on previous work exploring user preference collection [1], this paper presents
a flexible pipeline for personal alignment that weaves together four complementary com-
ponents. Although Reinforcement Learning from Human Feedback (RLHF) has improved
the behavior of LLMs in a broad sense, it does not always capture the nuanced or evolving
priorities of individual users. This gap motivates our three main research questions:

RQ1: How can we gather each user’s preferences without creating undue cogni-
tive overhead?
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RQ2: Which technical mechanisms ensure a reliable translation of user preferences
into model behavior?

RQ3: How can we maintain transparency and interpretability when tailoring AI
systems to individuals?

We make the following specific contributions:

1. A binary choice interface that reduces cognitive load yet elicits rich personal prefer-
ence data.

2. A hybrid vector–symbolic architecture that bridges continuous embeddings with
more interpretable symbolic representations.

3. An extensible pipeline that supports personal alignment through modular and com-
plementary methods.

4. Empirical validation via a small pilot study.

Our approach synthesizes four key components:

• Value Vectorization and Representation Engineering: We show how to extract user
values as low-dimensional embeddings or “control vectors”, including forward-pass-
based methods and contrastive approaches.

• Binary Choice UI: We introduce a minimal-friction forced-choice interface, inspired by
casual quiz mechanics, that captures user stances and reduces survey fatigue.

• Contrastive Activation Methods: We detail how difference vectors can be derived from
pairs of user-labeled extremes (e.g., “formal vs. casual”, “left vs. right”) and used to
modulate outputs.

• Knowledge Graph Integration: We describe a “moral graph” approach to store user
preferences in a structured, auditable form, bridging vector-based alignment with
symbolic inference.

While each component has precedent in existing work, their combination into a
coherent pipeline for personal alignment represents a novel contribution to the field.

2. Related Work
Research on alignment for large language models has often prioritized global frame-

works, most notably Reinforcement Learning from Human Feedback (RLHF). RLHF has
enabled models such as ChatGPT to become polite or helpful, but has also led to critiques
that it imposes homogenized norms that might not reflect certain cultural or personal
contexts [2,3]. More recent extensions, such as constitutional AI, similarly focus on deriving
sets of universal or near-universal principles.

In parallel, a smaller but growing body of literature emphasizes personalized or
“local” alignment. Direct Preference Optimization does this in an end-to-end fashion,
implicitly learning the preferable traits from the unwanted ones through carefully curated
preference datasets.

There has also been increased attention to “representation engineering”, which can
introduce or amplify specific traits within the model’s latent representations within a model.
For example, the concept of “activation addition” harnesses the difference between hidden
states that correspond to two extremes. Methods for controlling generation by injecting
difference vectors at specific layers are gaining traction, especially given the constraints
that end-to-end fine-tuning might impose.

User interfaces that engage in preference elicitation range from full chat logs—wherein
a user effectively “teaches” the model through repeated conversation—to more structured
questionnaire-based approaches. Our earlier prototypes, referred to as Mark 1 and Mark 2,
adopted a chat or extended survey approach, but we observed significant user drop-off
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due to the cognitive overhead required. This led us to investigate simpler forced-choice
designs reminiscent of personality quizzes, which appear to foster less fatigue.

Symbolic approaches to AI alignment, such as knowledge graphs or moral graphs,
attempt to capture user value systems in the form of discrete nodes and edges that define
the relationships among values [4]. This has the advantage of interpretability and can
allow the system to reason explicitly about conflicts between user preferences. However,
purely symbolic approaches can be brittle, particularly for language-generation tasks that
rely on high-level distributional representations of style and context. For that reason,
bridging symbolic moral graphs with continuous vector spaces is increasingly seen as an
intriguing direction, potentially offering the “best of both worlds” in explainability and
generative flexibility.

Comparison with RLHF and DPO

Although Reinforcement Learning from Human Feedback (RLHF) and Direct Prefer-
ence Optimization (DPO) have significantly advanced alignment for large language models,
they primarily focus on shaping models at a global or population-wide level [5,6]. In con-
trast, Choice Vectors address the need for hyper-personalization by providing lightweight,
user-specific adjustments that do not require extensive retraining or large preference
datasets. To highlight key distinctions, Table 1 compares the Choice Vectors pipeline
with RLHF and DPO along several dimensions, including training overhead, user burden,
interpretability, and real-time adaptability.

Table 1. Comparison of RLHF, DPO, and Choice Vectors.

Aspect RLHF DPO Choice Vectors

Training Overhead

High; requires
curated human
feedback data and
iterative tuning

Moderate; depends
on preference
datasets but still
requires custom
training

Minimal if using
difference vectors
for real-time
steering

User Involvement Often indirect, via
external annotators

Can use
user-labeled data,
but not typically
on-the-fly

Direct forced-choice
or sample-labeled
data; immediate
feedback

Interpretability
Limited unless
reward model is
interpretable

Moderate; can track
preference patterns

High if combined
with knowledge
graphs (“moral
graph”)

Real-Time
Adaptation

Low; RLHF-based
behavior is fairly
fixed post-training

Low–moderate,
re-optimization
required

High; can inject
difference vectors
at inference time

Use Case Focus Broad safety,
general helpfulness

Preference-driven
large dataset tasks

Personalized style,
tone, moral or
ethical stances

The Choice Vectors pipeline thus provides an alternative route to local alignment,
maintaining a complementary relationship with RLHF- or DPO-based global guardrails.

3. Proposed Approach
The approach we propose weaves together four elements into a cohesive pipeline

that can be deployed incrementally or as a whole. The result is a way to capture user
stances via minimal binary selection, transform these stances into numeric representations
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or difference vectors, refine or combine them via contrastive methods, and optionally store
them in a knowledge graph for ongoing interpretability and expansion.

3.1. Value Vectorization and Representation Engineering

A key premise is that user values and stylistic preferences can be encoded in vectors
that can be inserted into a model’s hidden states or prompts. Rather than relying on a
monolithic “persona prompt”, we aim to isolate particular latent directions that corre-
spond to a user’s stances on humor, formality, directness, or any number of ethical and
stylistic dimensions.

To achieve this, we collect user examples of “approved” and “disapproved” outputs.
For each example, we conduct forward passes in the model, capturing hidden states at
certain layers. We then compute either the average difference between states that the user
endorses and those the user rejects, or apply a form of dimensionality reduction to discover
principal axes of difference.

We employed Principal Component Analysis (PCA) due to its linear interpretability—
difference vectors discovered in principal component space can be easily added or sub-
tracted at inference to manipulate model behavior. Alternative methods like t-SNE or
UMAP are highly effective for visualizing clusters in high-dimensional data, but they intro-
duce nonlinear transformations that complicate real-time vector addition. These methods
excel at revealing complex cluster structures in user embeddings or model activations,
helping stakeholders observe how various preferences group or overlap. However, because
t-SNE and UMAP optimize for local rather than strictly linear neighborhood preservation,
they are less suited for direct manipulation of hidden states.

In other words, we cannot simply “add a UMAP difference vector” at inference time
with the same reliability we enjoy using PCA-based offsets. Nevertheless, t-SNE or UMAP
may be employed in post hoc analyses to identify emergent clusters of user preferences,
confirm that desired styles form coherent regions in the latent space, or explore potential
edge cases in preference distributions—thereby complementing the operational benefits of
a purely linear approach.

Furthermore, linear methods such as PCA align naturally with “activation addi-
tion” [7], preserving meaningful directions in the latent space. Future work could evaluate
manifold-based methods for more nuanced preference embeddings, but PCA suffices for
our immediate goal: identifying robust, distinct directions for user-specified traits.

The effectiveness of these representation engineering techniques has been dramat-
ically illustrated by Vogel [8], who demonstrated with Mistral-7B how targeted vector
manipulations can induce specific cognitive states in language models. By isolating and
manipulating activation vectors representing conceptual states (such as ’dream-like’ or
’analytical’ thinking), Vogel showed how even relatively small modifications to hidden
representations can produce significant, predictable shifts in a model’s generation style and
reasoning approach while maintaining coherent outputs.

Another technique involves prompting the model to produce two extremes of a
scenario—for instance, a very compassionate version vs. a very blunt version—and then
deriving the difference in hidden-state activations. The result is a “control vector” that can
be added to, or subtracted from, the hidden states of new prompts, thereby steering the
model’s generation style.

We find that such a control vector is lightweight to store and often robust to modest
changes in the prompt or the sampling temperature. Though advanced users might want
to refine it further through low-rank adapters, for many purposes these difference vectors
can be reapplied in real time at inference, without extensive additional training.



Multimodal Technol. Interact. 2025, 9, 22 5 of 23

3.2. Binary Choice User Interface

While a variety of questionnaires or chat-based interactions can extract user prefer-
ences, we introduce a minimal interface in which users are presented with two statements
and asked which they prefer or agree with more strongly. This design, which might resem-
ble personality quizzes or short polls, dramatically reduces cognitive load compared to
free-form dialogue or multi-question surveys.

Once the user selects one of two statements, the system records a small “offset” in the
relevant dimension. For example, a user might be confronted with the choice between “I
find sarcastic humor acceptable in almost all contexts” vs. “I prefer empathetic, sincere
language even when critical”. Choosing the former might nudge the sarcasm dimension
upward, while the latter might tilt the system more toward sincerity. Users may be
presented with approximately ten such pairs, drawn from a pool that covers style, moral
stances, or boundary conditions. The forced-choice model ensures that each decision is
quite rapid: in pilot tests, participants reported a high completion rate and a clearer sense
of the system’s immediate purpose.

These data can then be aggregated in a vector-based manner by associating each forced-
choice with a known dimension, or used to define symbolic edges or tags in a knowledge
graph. We have found that this binary choice interface yields a set of user stances that can
be readily integrated into vector offset approaches, thus forming a streamlined route from
minimal user input to robust model transformations.

3.3. Contrastive Activation Methods

Having established how we gather user stances (either from examples or forced
choices) and how we can transform them into vectors, we further explore contrastive
activation. The general principle is that if one obtains two contrasting states in the model—
an extreme scenario and its opposite—then the difference in their hidden states can serve
as a “steering vector”. For instance, if a user wants the model to sound more “warm
and empathetic”, we can prompt the model to produce a “warm” response and a “cold”
response, then compute the difference at a certain layer. Adding that difference vector to
new contexts encourages the warm style to emerge.

Technically, we gather two outputs by prompting the model with instructions that
ask it to adopt opposing styles or positions. We record hidden states for each token in
each sequence, then average them in a consistent manner. The difference in these averaged
states is saved as a small matrix or vector. At inference time, we inject this difference into
other prompts by modifying the hidden state at the same layer index. In pilot trials with
GPT-2 and a 7B-parameter LLaMA, these methods produce consistent style changes for a
large fraction of test prompts, though some user instructions or system-level constraints
can override them.

This approach has been further validated by Panickssery et al. [9], who demonstrated
a robust implementation of contrastive activation addition specifically for LLaMA 2 models.
Their work showed that targeted steering vectors derived from contrastive examples could
effectively modify the model’s response style while maintaining coherence and factual
accuracy across diverse prompts.

To refine our understanding of user preferences, we collect both positive and negative
examples of desired model behavior. By analyzing the difference between these examples,
we identify the key dimensions along which the model’s outputs should vary. This process
involves averaging the representations of positive and negative examples separately, then
computing their difference to create a steering vector.
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To ensure these vectors capture meaningful variation rather than noise, we apply
dimensional reduction techniques to identify the primary axes of difference between
preferred and non-preferred outputs.

Contrastive activation methods are especially promising because they minimize over-
head. They do not require elaborate new training steps. Instead, they rely on the user’s
willingness to provide or verify a pair of extremes. Since this also integrates well with the
forced-choice UI, we can imagine a scenario where the user’s preference is gleaned from
multiple binary selections, which yields a sense of the “extreme” the user most wants to
emulate, thereby reinforcing that difference vector for future output generation.

Another recent approach, Contrastive Preference Learning (CPL) [10], proposes learn-
ing optimal policies directly from user preferences, without the intermediary step of reward
modeling. CPL leverages a contrastive learning objective, which has shown promise in
scaling to large datasets. This approach offers an alternative path to aligning AI systems
with human preferences.

Recent work on self-rewarding language models suggests another promising direction
for preference refinement [11]. Rather than relying solely on external feedback or static
reward models that may be bottlenecked by human performance levels, a self-rewarding
approach enables the model to generate its own training signals during preference learning.
When applied to our contrastive activation framework, this could allow the system to itera-
tively refine its understanding of user preferences by generating and evaluating potential
responses against learned preference vectors. However, care must be taken to ensure that
such self-generated rewards remain aligned with the user’s actual preferences rather than
drifting toward model-internal optimizations.

3.4. Knowledge Graph/Moral Graph Integration

Eliciting and representing human values for AI alignment poses significant challenges.
Values are often abstract, context-dependent, and difficult to articulate. Recent work
has proposed representing values as “attentional policies” that capture what people pay
attention to when making meaningful choices. This approach aims to make values more
concrete, disambiguated, and ultimately more useful for aligning AI systems.

Although vector-based methods are powerful and relatively easy to implement, they
remain somewhat opaque when it comes to interpretability. Symbolic approaches, such
as knowledge graphs, can provide a more explicit representation of the user’s moral or
stylistic stances.

Knowledge graphs are data structures that store information in a graph format, with
entities (nodes) connected by relationships (edges). This structure is highly effective for
representing complex networks of information and enabling semantic queries and reason-
ing over data. In the context of large language models (LLMs), vectors often represent text
data features or embeddings in a multidimensional space that captures semantic meaning.

By mapping abstract, high-dimensional data into a knowledge graph, it is possible
to enable an LLM to navigate or “traverse” this graph like a tree. This traversal allows
the LLM to reason with the data in a structured and potentially more transparent manner,
making inferences or drawing conclusions based on the relationships and entities within
the graph, rather than solely relying on patterns within the vector space.

It is therefore feasible to derive meaningful, discrete pieces of information from the
vectors or embeddings generated by LLMs. This step is crucial for constructing a knowledge
graph from vector data, as it identifies which aspects of the vectors should be represented
as entities and relationships within the graph. A knowledge graph could therefore allow
an LLM to reason with the values by traversing the tree, enhancing the model’s ability to
interpret and interact with the underlying data.
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A knowledge graph can store nodes that reflect particular preferences or constraints—
“User generally disapproves of sarcastic jokes”, or “User highly values direct honesty”—and
edges that capture relationships between these stances, such as contexts in which they
apply or their relative priority.

For instance, suppose a user node in the moral graph has edges capturing the stance
“prefers honesty over politeness in direct messages.” In parallel, we store a corresponding
reference vector derived from user-labeled exemplars of “honest but slightly blunt” text.
When a new prompt requires the model to navigate between politeness and honesty, the
system can consult this node to retrieve both (1) the symbolic declaration that honesty has
higher priority for direct messages and (2) the associated vector offset that shifts generation
toward directness. This dual approach—symbolic for interpretability, vector-based for
real-time style control—helps ensure the model’s output remains aligned with the user’s
explicitly stored preference.

The foundation of our approach is the transformation of user preferences into numeri-
cal representations that can influence model behavior. When a user expresses a preference,
we capture it as a vector in a high-dimensional space where similar preferences cluster
together, as shown in Figure 1. These vectors are normalized to ensure consistent influence
across different contexts.
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The knowledge graph component provides a structured representation of user prefer-
ences and their relationships. Each node in the graph represents a specific preference, while
edges represent relationships between preferences. These relationships might indicate
reinforcement, conflict, or contextual dependencies.

The system maintains a bidirectional mapping between the graph structure and
the vector representations. This allows us to combine the interpretability of symbolic
representations with the flexibility of continuous vectors. When making decisions about
model outputs, the system can consider both the immediate vector representations and the
broader context provided by the knowledge graph.

For contrasting preferences—such as formal vs. casual communication styles—we
compute a difference vector. This difference represents the direction of change needed to
shift model outputs toward one preference or the other. The strength of this shift can be
adjusted through a scaling parameter, allowing for fine-tuned control over how strongly
the preference affects model behavior.

Combining knowledge graphs with vector-based offsets allows for both interpretabil-
ity (symbolic) and flexibility (continuous). However, certain trade-offs arise. A symbolic
representation (e.g., “User disallows sarcasm in formal writing”) is immediately under-
standable. Purely vector-based adjustments might obscure the rationale for an output style.
Knowledge graph constraints must be carefully enumerated. Vectors, meanwhile, can
handle subtle emergent behaviors without explicit rule definitions, but risk losing clarity
on why the model shifted. Graph structures require updates when preferences evolve,
else or conflicts may arise. Vector approaches are easier to recast with new forced-choice
data. In practice, our pipeline layers the two approaches: real-time style manipulation
through vectors, with symbolic checks or rules to address high-stakes moral constraints.
This synergy balances the user’s freedom with the system’s clarity and accountability.

The linearity of value and preference encoding in AI systems has important implica-
tions for the interpretability and controllability of value alignment. Klingefjord et al. [12]
propose constructing “moral graphs” as an alternative alignment target, leveraging the
linearity of value representations to create a scalable and auditable foundation for AI
alignment [13]. Moral graphs leverage transitive votes, allowing the “wisest” values to
emerge from a large population. This approach shows promise in providing a scalable,
legitimate, and auditable foundation for AI alignment.

3.5. Integration Pipeline

The complete system processes user interactions through several stages, as shown
in Figure 2. First, it collects user choices through the binary interface. These choices are
transformed into initial vector representations that capture the user’s basic preferences.
The system then refines these vectors through contrastive examples, identifying the most
relevant dimensions of variation.

These refined representations are stored in the knowledge graph along with their
relationships to other preferences. During inference, the system combines all relevant
preferences according to the current context, producing outputs that reflect the user’s
holistic preference profile.

This integrated approach balances immediate responsiveness to user preferences with
longer-term learning and refinement. It can adapt to changing contexts while maintaining
consistency with the user’s overall value system.
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3.6. Knowledge Graph vs. Vector-Based Alignment: A Comparison

Our pipeline deliberately merges knowledge graph (“moral graph”) structures with
continuous vector offsets. A comparison between these is shown in Table 2. While vector-
based approaches excel at smooth real-time control, they can lack direct interpretability for
non-expert stakeholders. Conversely, knowledge graph structures are more transparent,
enabling explicit rule checking (e.g., “User always prohibits sarcasm in formal settings”).
However, these symbolic representations may become brittle if the user’s preferences are
not exhaustively enumerated.

Table 2. Comparison of knowledge graph and vector-based alignment.

Dimension Vector-Based Alignment Knowledge Graph Alignment

Flexibility High (continuous space,
easy to combine)

Moderate (requires explicit
nodes/edges)

Interpretability Relatively opaque latent
directions

High (symbolic constraints are
human-readable)

Scalability Easy to add new offsets for
new traits

Potentially large graphs
become complex to maintain

Contextual Reasoning Implied by embeddings,
less explicit logic

Can embed explicit “if-then”
or hierarchical rules

Typical Use Cases Style or tonal shifts;
short-term adjustments

Auditable moral/ethical
constraints; traceable policies
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In practice, many users benefit from a hybrid approach, using vectors for quick
personalization and knowledge graphs for high-stakes or auditable constraints.

3.7. Integration with Transformer Architectures

A major advantage of our pipeline is its post hoc compatibility with pre-trained
transformer-based models such as LLaMA, GPT-4, or GPT-2. The difference vectors operate
within the hidden activations at specific layers; hence they do not necessitate full model
fine-tuning through large-scale backpropagation on millions or billions of parameters.
Creating difference vectors is typically an offline process, requiring a few forward passes
on user-labeled examples. During inference, the pipeline intercepts the token embed-
dings (or hidden states at a chosen layer) and adds the relevant preference offsets. This
additive approach minimally changes the forward pass logic, preserving overall model co-
herence while yielding user-tailored style or ethical stance. In essence, we achieve real-time
personalization at negligible cost, even in large-scale production settings.

4. Implementation and Preliminary Results
To test these ideas in practice, we developed a prototype pipeline that merges the

aforementioned components. We used a combination of Python 3 scripts and front-end web
tools to orchestrate data collection, vector extraction, contrastive computations, and (op-
tionally) knowledge graph storage. The system was deployed on AWS, with a lightweight
Node.js front-end for user interaction and a back end that stored user preferences and
partial computations in MongoDB.

In a small pilot study, we recruited twenty participants to try a forced-choice series of
about ten questions, each question contrasting two statements about style or moral stance.
Complete user feedback data from the interface testing is available in the Supplementary
Materials. They completed these quickly, usually within three minutes, and participants
reported minimal confusion about how to proceed. For several participants, we additionally
captured a short set of text examples—two or three that they found appealing, and two or
three that they found unappealing—and used these examples to derive a difference vector
via a forward-pass approach. We then asked each participant to evaluate a short scenario in
which the model, a GPT-2 or LLaMA-7B, generated text either without the difference vector
or with it included. Approximately 70–85% of participants perceived that the difference
vector injection made the style or tone more closely aligned with their declared preference,
suggesting that these local modifications exert a real effect on output style.

We also allowed a subset of users to interact with a minimal knowledge graph interface
built in Neo4j, in which they could define labeled preferences—e.g., “User is high on empa-
thy but moderate on directness”—and connect them with edges specifying the contexts in
which these preferences hold. Although the sample was too small for strong quantitative
conclusions, we found that, when referencing the knowledge graph, the model was able to
retrieve relevant preference nodes and produce text that was consistent with the user’s self-
stated stance in that context. This is a preliminary demonstration that combining symbolic
structures with vector offsets can unify both interpretability and flexible generation.

In our design, each node can be associated with a vector or set of vectors derived from
user examples, linking the symbolic representation to the continuous latent space. When
the model prepares to generate a response, it can retrieve from the graph which nodes are
relevant to the domain of the question, combine or weigh the relevant vectors, and thus
produce an output that remains consistent with the user’s symbolic constraints. In addition,
if certain stances conflict—if the user wants to be “honest” but “sugarcoat criticism”—the
knowledge graph can highlight that tension, suggesting that the user either reevaluate or
specify how to handle contradictory values in different contexts.
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Our pilot implementation for the knowledge graph aspect has been modest, focusing
on a handful of advanced users who were comfortable defining nodes and edges. These
participants generally reported that they enjoyed the transparency of seeing how the system
weighed certain stances, though it remained too time-intensive for casual use. We anticipate
that a more automated approach—potentially one that converts forced-choice selections
directly into graph edges—could allow more mainstream users to benefit from knowledge
graphs without having to manage them manually.

4.1. Binary Selection UI

In recent developments within user interface design for AI systems, a novel approach
has been proposed that departs from traditional text-based interactions. Instead of utilizing
a chat interface, which may be overemphasized due to the viral popularity of platforms
like ChatGPT, this approach involves presenting users with two distinct statements and
asking them to select the one they agree with more. This method, inspired by elements
from Infinite Craft [14] and interactive platforms like Buzzfeed, allows for a unique data
collection technique where user preferences are captured through binary choices.

The interface presents users with carefully constructed pairs of statements. Each
pair targets a specific preference dimension while maintaining clarity and relevance. For
example, when assessing communication style preferences, users might choose between
“Keep communication casual and friendly” and “Maintain professional distance”.

These choices are designed to be:

• Mutually exclusive, forcing a clear preference signal
• Concrete rather than abstract, making the choice more tangible
• Directly mappable to model behavior adjustments

The binary choice mechanism simplifies decision making for users by offering two
distinct options, which could be extended by incorporating historical data on user prefer-
ences. This historical log could be linked to a “regenerate” button, providing users with
contrastive options based on their previous interactions—shorter or longer responses, for
instance, as per Figure 3. Adjustments such as changing the seed or increasing the tempera-
ture of responses could dynamically alter the output, thereby catering more accurately to
user expectations.
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This not only simplifies the user interaction but also effectively builds a detailed
personality profile over time, akin to results one might expect from a Buzzfeed-like quiz.
The simplicity of the binary selection interface facilitates the accumulation of user preference
data, which can then be used to create a nuanced profile of the user. This profile could be
enhanced with graphical elements such as search trees that query a large language model
(LLM) when encountering new or complex inputs at the edge of the established graph.
The challenge remains in designing these profiles to be both interesting and engaging,



Multimodal Technol. Interact. 2025, 9, 22 12 of 23

potentially through gamification techniques linked to Reinforcement Learning from Human
Feedback (RLHF) or Direct Policy Optimization (DPO).

The implications of this methodology extend to improving data collection for social
science research, including surveys, censuses, and capturing temporal changes in public
opinion. The design proposes that approximately 70% of the survey framework be prede-
fined, with AI dynamically generating the remaining content to probe deeper into emerging
trends and nuanced user responses. This could include follow-up questions to clarify initial
choices or adapt questions to uncover niche perspectives and subtle distinctions. Fur-
ther, the integration of graphs and charts that compare an individual’s responses with
global or demographic averages introduces a social or matching component, enhancing the
interactive experience.

Questions about the type of data logging necessary for effective encoding remain,
with considerations on whether binary choices could be transformed into more traditional
formats like a Likert 5-point scale or vector data. Sensitive topics could be addressed
through mechanisms that allow mature users to opt in, ensuring that data collection
remains respectful and ethically sound.

Rationale for Binary Choice

Earlier iterations (Mark 1 and Mark 2) indicated that free-text questionnaires and
conversational surveys had high user attrition. Participants cited survey fatigue and
uncertainty about how responses were used. By contrast, we found that a forced-choice
interface offered three key advantages. Empirically, users took <10 s per choice, reducing
dropout rates by over 50%. Every selection directly impacts the alignment vector (e.g.,
“sarcastic vs. empathetic”), which users see reflected immediately in system output. Forced-
choice pairs are unambiguous, limiting confusion about question intent. We acknowledge
that Likert scales or multi-point sliders offer finer resolution; however, pilot tests suggested
that the binary approach yields comparable alignment quality with fewer questions. For
example, formal vs. casual preference was inferred with minimal user input, thanks to
strongly contrasted statements.

4.2. Interface Evolutions and Improvements

The interface approach evolved through several iterations. Mark 1 employed tra-
ditional surveys to collect comprehensive user preferences and demographics. While
thorough, this method proved problematic—users found it cognitively demanding and
expressed discomfort about providing sensitive data without a clear purpose. Comple-
tion rates were low, indicating that extensive questionnaires were not viable for practical
preference collection.

Mark 2 shifted to a conversational interface, aiming to gather preferences through
natural dialogue. The revised architecture incorporates a Chat Interface, where the LLM
engages users in casual introductory conversations. This interface is strategically developed
to solicit information about the user’s demographics and values, aiming to deepen the
system’s understanding of its users. Subsequently, the responses gathered from these
interactions are systematically summarized and stored in the form of “character cards”, as
in Figure 4.

While more engaging than surveys, this approach still showed significant limitations.
Approximately 20% of users disengaged after just a few interactions, and feedback indicated
that even casual conversation required too much sustained attention. Additionally, power
users found the chat format inefficient for expressing specific preferences.
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These early iterations provided valuable insights: successful preference collection
required minimal cognitive load, clear purpose, and immediate value to users. Most impor-
tantly, they revealed that direct questioning—whether through surveys or conversation—
was fundamentally too demanding. This led to a binary choice approach in Mark 3.

Our final iteration, Mark 3, replaced open-ended text interactions with a binary choice
model that asked users to select between two statements reflecting their preferences, as
outlined in Figure 5. This forced-choice approach significantly reduced the time and effort
required. Users reported a clearer sense of purpose and showed higher completion rates
compared to earlier versions. By compressing preference elicitation into quick “choose
one of two” decisions, Mark 3 minimized user fatigue while still capturing meaningful
signals about personal values and stylistic boundaries. These binary choices could then
be translated into vector offsets or knowledge graph nodes, forming the basis for more
focused and personalized AI alignment.

By framing preference collection as a series of performative scenarios rather than
direct queries, we discovered users provide richer and more consistent signals. Instead of
abstract questions, we present concrete situations where preferences emerge naturally. For
example, rather than directly querying formality preferences, we present email-writing
scenarios with choices like “Start with ‘Hey there!’ and include a joke” vs. “Begin with
‘Dear [Name]’ and stick to key points”.
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This theatrical approach using natural “scenes” led to multiple improvements: users
showed more consistent responses across scenarios, higher engagement, better preference
recall, and stronger alignment between stated and observed preferences in subsequent
interactions. The scenarios build progressively while maintaining low cognitive load,
enabling comprehensive preference capture through simple, relatable choices.

The new version leveraged large language models (LLMs) to effectively process and
store a diverse array of data, including the capability to ask relevant clarifying questions.
This marked a significant improvement in handling diverse inputs. By transitioning from
proprietary databases to off-the-shelf functional LLMs for data processing, it was possible
to significantly reduce the occurrence of bugs; indeed, no bugs were reported by users,
underscoring the increased reliability of the system.

Additionally, our review of numerous state-of-the-art methods for encoding user
preferences showed that simple text descriptions remain the most reliable and universally
applicable method for interfacing with LLMs. This method, familiar and intuitive to users,
has adapted well to the rapid changes in AI architectures and encoding strategies.

A particularly effective refinement emerged from analyzing how users naturally
interact with AI systems in production. We observed that the “regenerate” or “rewrite”
button present in many commercial AI interfaces represents a high-intent interaction point—
users click this when they specifically want content adjusted to their preferences. This led
to implementing what we call “targeted regeneration”—when users click regenerate, they
are presented with semantically meaningful choices like “more formal”, “more concise”, or
“more technical”.

This approach proved remarkably efficient for two reasons. First, it captures pref-
erences at the exact moment users are motivated to express them. Second, it creates a
natural feedback loop—each regeneration choice helps build a more nuanced profile of
user preferences. Two primary vector dimensions—formality (formal/informal) and length
(concise/detailed)—appear to account for approximately 80% of regeneration requests.
This finding suggests that a relatively small set of well-chosen vectors might cover most
real-world personalization needs. Additional dimensions like technical specificity show
significant value in specialized contexts, such as medical or legal domains.

4.3. Extracting Accurate and Robust Representations of Political/Emotional/Ethical Values

Building upon the representation engineering techniques discussed in the previous
subsection, we now explore methods for extracting accurate and robust representations of
political, emotional, and ethical values.
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Currently, there are limited benchmarks available for assessing values and political
alignments, such as honesty vs. sycophancy evaluations. Recent studies have explored
methodologies for uncovering latent knowledge within the internal activations of large
language models (LLMs) [15,16]. These approaches demonstrate that prompting an LLM
to generate text from the perspective of an individual with a specific background or life
stance likely results in a latent representation of these characteristics. This phenomenon
suggests that the model’s internal activations encode significant, retrievable knowledge
about diverse human experiences and viewpoints. The ability to access and utilize these
latent representations can be further leveraged by employing linear probes. Such probes
can serve as effective tools for benchmarking the capabilities of a range of models in
understanding and representing complex human attributes. This application not only
enhances our comprehension of the depth and scope of knowledge contained within LLMs
but also provides a practical framework for evaluating their performance in simulating
human-like understanding and reasoning.

In this approach, we simultaneously process contrasting responses—such as left-wing
vs. right-wing, or authoritarian vs. libertarian—using parallel workflows. By applying
Principal Component Analysis (PCA) to the internal representations based on these con-
trasts, we can explore deeper insights with less reliance on usual prompting methods,
focusing instead on extracting and examining internal representations.

This process of using contrastive vectors could lead to fascinating developments, espe-
cially when combined. For instance, employing a rudimentary Mixture of Experts (MoE)
approach with interchangeable or combined LoRA (Low Rank Adaptation) could shift
research focus from evaluative metrics to more fundamental research and demonstrations.

Recently, there has been a significant increase in the development of these adapters,
which store lightweight fine-tunes and can easily be attached atop large generative models
like StableDiffusion. These adapters are designed to improve the performance of gener-
ative models in specific domains, such as generating cartoons, anime, photographs, or
illustrations [17].

The availability of a wide range of LoRA adapters has opened up new opportunities
for enhancing the capabilities of generative image models. A recent publication by Zou
et al. [18] introduces LoRRA, a novel low-rank method designed to align internal represen-
tations of large language models (LLMs) with those obtained through targeted prompting.
This technique is particularly applied to refine the model’s handling of complex concepts
such as truthfulness. The study’s findings suggest that this alignment technique can also
be extended to identity and political belief vectors, indicating that similar methodologies
might be utilized to manipulate these vectors purposefully. Such manipulation could be
employed either to induce specific behaviors in the model or to enhance its capabilities
in “theory of mind” processes, where the model needs to understand and anticipate the
intentions and beliefs of others.

In our ongoing efforts to refine Representation Engineering techniques, a new exper-
iment was initiated to develop a system capable of adapting to individual responses to
specific examples. Initially, this method utilized a generic approach to generate “happy”
outputs. However, recognizing that perceptions of happiness can vary widely among indi-
viduals, we implemented a genetic algorithm designed to personalize these responses, as
shown in Figure 6. This algorithm dynamically updates the default “happy” vectors based
on user feedback. For example, if a user indicates that flowers are a source of happiness for
them, the algorithm modifies their happiness vector to emphasize floral examples. This
tailored approach significantly enhances the accuracy and personalization of the system’s
emotional representations, ensuring that the outputs align more closely with individual
users’ interpretations of emotional states.
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Further, genetic algorithms (GAs) offer self-regulation but with more permanence,
allowing for the extraction of an internal representation of a value. This technique not only
aligns models but also facilitates comparisons across different models and model families,
and potentially even across their training corpora.

A significant limitation of representation engineering involves the challenge of finding
vectors; typically, this involves collecting hidden states during a forward pass, which
requires processing large amounts of data. However, by combining these vectors in new
ways—such as matrix multiplication combining 1000 × 1000 vectors—we might reduce the
need for entirely new work, leveraging existing data more effectively.

4.4. Performance Considerations

A key benefit of the contrastive activation approach is its low computational overhead
at inference. Once a difference vector is derived (which can be executed offline or rarely
repeated), injecting it during a forward pass is akin to adding a small matrix to hidden
states. In our experiments with LLaMA-7B and GPT-2, we observed a <3% latency overhead
for each forward pass when injecting up to three difference vectors simultaneously. Storing
these offsets requires only a few kilobytes (or at most a few megabytes if there are many
user-specific vectors). As such, scalability primarily hinges on the number of unique user
vectors. With a carefully managed vector store, the method remains feasible for large-scale
multi-user deployments. Additionally, since difference vectors do not modify the base
model weights, we avoid the repeated training cycles that methods like RLHF or DPO
may require for updates. This makes the pipeline suitable for applications needing instant
personalization without incurring major computational costs.

4.5. Participant Demographics and Study Limitations

Our pilot user study involved 20 participants recruited via local university mailing
lists and personal contacts, aged in their 20s through 50s, with diverse but predominantly
Western cultural backgrounds and varying levels of AI familiarity. The small sample
restricts the generalizability of results—fine-grained effects on older adults or culturally
distinct user bases remain underexplored. Future large-scale studies should incorporate
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more diverse populations, enabling analyses of alignment preferences by age, culture, and
language proficiency. This would refine the forced-choice statements and difference vector
derivations for broader applicability.

4.6. Real-World Application Examples

To illustrate how a personalized superego agent can operate in real-world settings, we
highlight three paper prototype deployments demonstrating how the oversight mechanism
can reconcile universal ethical guidelines with individual user constraints.

1. Medical Triage Support. In a hypothetical hospital triage scenario, an agentic
AI system proposes patient care plans that sometimes include interventions conflicting
with specific religious or ethical restrictions (e.g., blood transfusions). A superego agent
continuously monitors these plans by referencing both a universal medical ethics rubric
and each patient’s personalized directives. If the system recommends a transfusion for a
patient whose religious stance prohibits blood products, the superego agent intercepts that
planning step and flags the contradiction. It then prompts the main AI to propose viable
alternatives (e.g., volume expanders) that align with the user’s stated beliefs.

2. Cross-Cultural Business Management. Consider a multinational team collaborat-
ing on a global marketing campaign. An agentic AI is tasked with generating outreach
strategies tailored to regional norms. While developing a marketing plan that features
humor, the base AI might overlook certain cultural sensitivities in particular markets. The
superego agent consults a broad alignment rubric to disallow offensive or culturally insen-
sitive content. It also taps into user-defined guidelines for tone and style (e.g., formal vs.
casual greetings), ensuring that each outreach plan respects local norms and the corpora-
tion’s overall ethical standards. This results in flexible content that resonates across global
markets without crossing cultural red lines.

3. Enterprise-Grade Policy Compliance. In a large corporation subject to strict com-
pliance regulations (financial, privacy, environmental), a superego agent provides an
additional layer of oversight for an internal planning system. Whenever the AI proposes
a course of action—such as resource allocations or contract negotiations—the superego
agent checks it against both the company’s general legal rubric and department-specific
user preferences. For instance, an environmental compliance officer may have flagged a
prohibition on non-recyclable packaging. If the AI suggests using plastic-based materi-
als for product shipping, the superego agent blocks or modifies that portion of the plan,
advising a sustainable alternative.

In all three paper prototypes, the superego agent can apply the personalization meth-
ods to intervene swiftly at the planning stage rather than waiting for a final output, which
helps prevent misalignment before it crystallizes into problematic actions. By integrating
broad ethical standards with personal, cultural, or organizational constraints, these exam-
ples demonstrate how a superego agent can steer agentic AI systems toward contextually
sound and ethically grounded solutions.

5. Discussion
This personal alignment pipeline consists of four interconnected components that

work together while maintaining independent functionality. The system processes user
preferences through stages of collection, representation, refinement, and application.

Our experience implementing and testing this pipeline highlights both the promise
and the challenges of personalized alignment. On the positive side, the forced-choice
interface proved markedly effective in lowering user effort compared to earlier chat-based
or extensive survey-based attempts. Users, when asked to pick which of two statements
they favored, could rapidly form a profile that, in turn, enabled the system to steer the
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model’s style or moral position. This highlights the value of small but carefully curated
sets of contrasting statements.

Although our pilot results suggest that applying difference vectors improves style
alignment for many users, these findings should be viewed as indicative rather than
conclusive. Given the small sample size and limited variety of tasks, the preliminary
data primarily underscore the feasibility of the approach, rather than providing definitive
evidence of its broader effectiveness. We recommend larger-scale, more diverse studies in
the future to substantiate and refine these early observations.

Tension was identified between local difference vectors and the broad RLHF or “mod-
eration filters” that many pre-trained models include. In some cases, the global safety filters
overrode local style modifications, especially if the model believed the user’s request was
contradictory to a fundamental policy. This suggests that personal alignment must often be
negotiated within the constraints of a “floor” of global alignment.

We regard the knowledge graph extension as a promising but still underexplored
avenue. Users who want to see why the model is producing a certain style can gain
reassurance from a symbolic representation of their preferences. However, knowledge
graphs introduce overhead, both in terms of user interactions and the complexity of merges
between symbolic constraints and continuous vectors. Achieving a stable and consistent
bridging of these layers likely requires more advanced meta-prompting, or specialized
retrieval that can unify multiple user-specified stances.

The combination of forced-choice data capture, difference-vector-based representation,
and knowledge graph integration represents a step toward holistic personalization pipelines
that can adapt to many domains. The pilot data suggest that each element can stand on its
own—forced choices can produce simple “sliders” for style or stance, difference vectors can
be injected with minimal overhead, and knowledge graphs can be used to store detailed
moral structures—but that synergy arises when they are used together.

While our contrastive activation methods allow for localized adjustments to model
outputs, these local preference vectors can still be superseded by the global Reinforcement
Learning from Human Feedback (RLHF) rules embedded in the base model. In practice, if
a personal vector conflicts with a broader policy—e.g., a universal safety guideline—those
higher-level RLHF constraints may override local changes. This tension can be especially
salient for readers who are new to the concept: it reflects a crucial design tradeoff between
ensuring baseline safety for all users and enabling individualized fine-tuning. Future
research could explore more nuanced strategies for reconciling user-driven preference
offsets with the universal guardrails imposed by RLHF.

Traditional RLHF research relies on training and hiring annotators to explicitly choose
between different model outputs. However, an alternative approach is to leverage user
edit feedback, which is naturally generated in applications like AI writing assistants. By
learning user preferences based on their historical edits and the given context, AI systems
can adapt their outputs to minimize the need for user edits over time. This approach
not only improves the efficiency of the AI system but also enhances its interpretability by
learning descriptive user preferences.

In addition to user edit feedback, another valuable source of preference data for AI
alignment is user queries themselves. Work on extracting user preferences from search
queries [19] suggests that the information-seeking behavior of users can provide rich
insights into their values, goals, and decision-making processes. Integrating techniques for
mining user preferences from query data into the proposed value alignment framework
could further enhance the system’s ability to capture and align with user values across a
wide range of contexts and domains.
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As user preferences are diverse and context-dependent, they can vary significantly
depending on the schema of operation. For example, a user may prefer a formal writing
style when communicating with their boss, while adopting a more casual tone when writing
to friends. To capture this complexity, techniques such as CIPHER could be employed, a
method that infers user preferences from historical edits using retrieval techniques [20].
CIPHER eliminates the need for users to engage in prompt engineering themselves, making
the AI system more accessible and user-friendly. By incorporating context-dependent user
preferences, AI systems can thereby generate outputs that are more closely aligned with
user expectations and requirements.

Future work could explore combining the self-improvement approach discussed in
this paper with the real-time user intent prediction extension to CIPHER. This combination
could enable AI systems to proactively align themselves with user preferences at a granular
level, leveraging the high volume of data points generated by user typing interactions. The
prediction loss patterns could provide valuable insights into the gaps in the AI’s under-
standing of user intent, guiding the refinement of the system’s internal representations.
Theoretically, this user intent prediction could be performed by an ensemble of smaller,
more efficient models, while the actual response generation could utilize larger, more
powerful models, as suggested by recent research on model scaling efficiencies [21].

5.1. Adapting to Evolving User Preferences

AI alignment cannot remain static—users’ values and stylistic needs may shift over
time. Our framework supports incremental updates to personal alignment in multiple ways.
Users can revisit the binary choice UI periodically, or click “Regenerate” with a preference
tweak (e.g., “more formal”, “less technical”). Each new forced-choice or regenerate action
refines the preference vectors. Newly labeled examples are merged with existing user
data, recomputing or adjusting difference vectors. Large changes can trigger partial or
full PCA recalculations if existing principal components no longer capture the user’s main
preferences. The moral graph can add or remove edges and nodes as a user’s ethical
or stylistic positions change—making them more or less rigid in certain domains. By
refreshing alignment data, the system naturally evolves without exhaustive retraining.
Re-elicitation is lightweight, and updated difference vectors or knowledge graph nodes
can be injected at inference time in near-real-time.

5.2. Ethical Considerations and Potential Biases

The personalization capabilities described herein raise important ethical questions and
potential bias risks. By allowing users to adjust a model’s behavior via binary selections
and difference vectors, there is a danger of reinforcing personal or cultural biases without
reflection. Additionally, users in ideological echo chambers may push the model toward
extreme or divisive viewpoints. As a mitigation strategy, we maintain universal safety
filters derived from RLHF or other high-level policy constraints, ensuring that extreme or
harmful content remains disallowed. If the model detects conflict between personal prefer-
ence vectors and overarching policies, it can prompt for clarification or fallback to standard
outputs. Transparent UI design can show how certain forced-choice selections could bias
outputs. Users can remain aware of the cumulative impact of their preferences. Evaluating
the pipeline with users from different backgrounds or domains can help uncover uninten-
tional biases introduced by default choice pairs or knowledge graph schemas. Addressing
these complexities requires ongoing vigilance in how user-driven customizations intersect
with broader social norms and potential harm vectors.

Our current discussion of ethical concerns highlights the risk of reinforcing user biases
when personal alignment systems allow individuals to shape outputs in line with their
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own worldviews. We acknowledge the possibility that such personalization could produce
echo chambers or amplify polarized viewpoints, especially if these preferences discourage
exposure to contrary perspectives. In extreme cases, the alignment tools might steer a
model to confirm harmful or discriminatory beliefs. To mitigate these issues, it is crucial to
couple local personalization with broader “universal guardrails”, such as baseline safety
layers informed by RLHF or constitutional principles.

One promising avenue is to encourage user interfaces that periodically expose contra-
dictory points of view, prompting the user to reconsider certain stance vectors or imposing
a “diversity threshold” on repeated style or opinion requests. In institutional deploy-
ments, oversight from a centralized policy board might require that personal preference
vectors remain within organizational ethical boundaries or regulatory frameworks. Ul-
timately, balancing user autonomy with collective responsibility means acknowledging
that hyper-personalization does not exist in a moral vacuum. Continuous monitoring, user
education, transparent explanation of how preferences shape outcomes, and the provision
of alternative or “counter-factual” viewpoints all contribute to a safer, more balanced
alignment ecosystem.

5.3. Generalization Across Cultural and Linguistic Contexts

Our approach has primarily been tested with English-speaking users in a relatively
narrow cultural range. Yet personal alignment challenges may vary significantly in multilin-
gual or non-Western settings. For instance, politeness norms differ drastically between East
Asian languages and Western languages. To address such variations, future expansions
could present culturally relevant statement pairs, ensuring that the “casual vs. formal”
dimension reflects local norms. The system could derive difference vectors from multi-
lingual corpora. Symbolic moral graphs might encode region-specific ethical nuances or
high-context communication norms. By systematically collecting feedback from global
user cohorts, the pipeline can better accommodate varied linguistic and social expectations,
reducing the risk of culturally insensitive AI behaviors.

5.4. Future Directions

While our current framework focuses on text-based large language models, there are
several extensions worth exploring. The concept of “difference vectors” could extend to
image, video, or speech models, adjusting visual style or vocal prosody to user preferences
in real time. Recent self-rewarding approaches [11] might learn from user feedback on
the fly, combining forced-choice data with self-generated reward signals. Tools for auto-
generating symbolic constraints from user chat logs or preference examples could reduce
the overhead of manual moral graph curation. By iterating on these ideas, the pipeline could
become a generalized personalization layer for multiple generative models and domains.

6. Conclusions
This work offers a robust account of how four complementary techniques—value

vectorization, a binary choice user interface, contrastive activation methods, and knowl-
edge graph integration—may be woven together to achieve personal fine-tuning of large
language models. The impetus for our approach is the recognition that truly individualized
alignment cannot rely solely on universal policies or naive prompt engineering. Instead, it
demands mechanisms for capturing individual stances, efficiently converting them into
steerable representations, and retaining transparency in how those representations shape
the model’s eventual outputs.

We have presented a prototype that demonstrates each part of the pipeline. Our
user studies highlight the viability of forced-choice questionnaires as a low-friction means
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of gathering data, while preliminary experiments on contrastive activation confirm that
difference vectors can indeed nudge a model’s style toward user preferences. The concept
of knowledge graph integration, though still in its early stages, opens the door to a more
explicable form of alignment in which moral or stylistic constraints can be visualized,
debated, or updated in a structured way.

Moving forward, we plan to expand the pilot studies to larger and more diverse user
groups, refine the knowledge graph integration so that it can be seamlessly combined
with the vector-based offsets, and investigate ways to detect and reconcile contradictory
preferences within a single user’s moral stance. We also wish to explore how these methods
could be generalized to modalities beyond text, such as generative image models or multi-
turn decision-making systems, all of which might benefit from deeper personalization. Our
overarching conclusion is that personalization need not remain a marginal afterthought,
but can instead be integrated systematically into alignment pipelines, thereby enabling
users to feel genuinely seen and accommodated by the AI systems they work with.

6.1. Failure Cases and Conflict Resolution

While our pilot studies and user tests have been promising, certain scenarios highlight
potential limitations of the pipeline. Users with intricate or context-specific rules (e.g., “use a
sarcastic tone only when addressing close friends but a sincere tone in professional emails”)
may experience incomplete coverage if the forced-choice UI does not explicitly probe these
subtleties. Requests such as “give me brutally honest feedback, but ensure no one’s feelings
get hurt” are inherently contradictory; partial solutions include explicit user prompts to
resolve conflicts, or falling back to a pre-existing global alignment policy (e.g., RLHF or
universal safety guidelines). If the user’s domain (technical jargon, domain-specific ethical
stances) differs drastically from the model’s fine-tuning data, difference vectors alone may
not suffice. In such cases, a more robust approach could involve LoRA-based fine-tuning
or additional curated training data. As a conflict resolution mechanism, when the user’s
symbolic constraints (e.g., “No sarcasm in professional contexts”) conflict with vector-based
instructions, the system can prioritize symbolic rules as a “hard override”. The system
can present further forced-choice prompts to clarify conflicting values or domain context.
Where personal preferences clash with platform-wide safety guidelines, the system defaults
to universal moderation filters to avoid policy violations.

Another concern involves the risk that repeated or compounding difference vectors
could unintentionally push the model to more extreme outputs than the user intended. For
example, a mild preference for directness may, after multiple regenerations, result in an
overly blunt style. We mitigate this by applying scaling factors where each difference vector
injection is bound by a scale (e.g., 0–1 range), preventing runaway style intensification.
A small “decay” factor can be applied so that minor iterative tweaks do not accumulate
indefinitely. The UI can occasionally re-ask core preference questions to ensure alignment
remains in sync with user expectations.

6.2. Threats to Validity

We acknowledge several threats to the validity of our findings and approach. Forced-
choice prompts might not always capture genuine preferences—some users may pick
randomly, or interpret statements differently. The sample size was small, and cultural diver-
sity was limited. Results may not generalize to all demographics or languages. “Preference
vectors” or difference vectors might oversimplify multifaceted human values. Symbolic
knowledge graphs help but also rely on the completeness of their schema. With only 20 par-
ticipants, statistical power is low. The observed improvements in style alignment, though
promising, need replication with larger user bases. We propose larger-scale replication and
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more robust user studies, including cross-cultural evaluations, to address these limitations
comprehensively. In our next research, we intend to create a public demonstration of our
research to enable broad access to a testbed for validation with a range of stakeholders and
use cases.
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