
University of Gloucestershire
School of Business Computing and Social Sciences

Doctor of Philosophy

A Hybrid Approach to Intelligent
Prediction of Medical Conditions

A Framework for Advancing Medical Diagnostics through Novel Hybrid Deep Learning Models

DenCeption and HyBoost for Enhanced Feature Extraction and Predictive Accuracy in Medical

Image Analysis

Zainab Loukil

A thesis submitted to the University of Gloucestershire in accordance with the
requirements of the degree of PhD in the School of Business Computing and Social

Sciences.

Date: October 30, 2024

Word Count : 83,082



To my lovely husband Ahmed, thanks for lighting up my world, this is for you.
To my dear parents and their unconditional love and prayers.

To our precious baby on the way, you are already a source of inspiration and joy. This journey
is as much for you as it is for us ...



Declaration of Authorship

I, Zainab Loukil, declare that the work in this thesis was carried out in accordance with the

regulations of the University of Gloucestershire and is original except where indicated by a

specific reference in the text. No part of this thesis has been submitted as part of any other

academic award. The thesis has not been presented to any other educational institution in the

United Kingdom or abroad.

Any views expressed in this thesis are those of the author and in no way represent those of the

University of Gloucestershire.

Signed:

Date: 30/10/2024

ii

DOI: 10.46289/8XU8FE24 



Abstract

Medical image analysis is currently challenged by the need to achieve precision in diagnos-

tic methods while maintaining broad applicability across diverse datasets. This challenge is

intensified by the intricate details present in high-dimensional medical imaging data, affect-

ing diagnostic effectiveness and patient care. Precise feature extraction is crucial in identi-

fying patterns vital for medical diagnoses, yet current models often struggle with real-world

variability, including diverse imaging conditions and patient demographics. This research ad-

vances the field by introducing a novel hybrid feature extraction framework, DenCeption, and

a predictive model, HyBoost, which address these challenges through improved disease pre-

diction accuracy, generalisability and adaptability. DenCeption, combining DenseNet-169 and

Inception-V4 architectures, achieved a notable accuracy of 91.3%, surpassing existing mod-

els like DenseNet-121 (89.3%) on the BRATS MRI dataset, demonstrating its superior feature

extraction capabilities. The hybrid feature extraction framework also proved adaptable across

multiple datasets, including MRI and Retinal images, with accuracy reaching 98.9% in the

Retinal dataset, significantly outperforming traditional methods. HyBoost, integrating multi-

ple machine learning algorithms and leveraging patient demographic and physiological data,

further enhances predictive accuracy. For instance, on the OCT dataset, HyBoost achieved an

accuracy of 98.33%, with a sensitivity of 99.45%, outperforming existing models like XG-

Boost and AdaBoost. These improvements are supported by extensive testing across various

datasets, Fundus, OCT, and X-ray, where HyBoost consistently demonstrated superior per-

formance metrics, including low mean absolute error and high precision. Moreover, a new

evaluation mechanism, involving a sophisticated performance measurement matrix (PMM),

systematically selects the most optimal evaluation metrics, ensuring the robustness and clini-

cal applicability of the models. This mechanism addresses the limitations of existing evalua-

tion approaches, further enhancing the interpretability and reliability of the developed models.

This research represents a significant advancement in medical image processing, setting new

benchmarks in predictive medical imaging analytics. By systematically improving model per-
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formance and integrating advanced machine learning and deep learning applications, this work

revolutionises medical diagnostics, achieving high accuracy rates and robust disease prediction

across multiple imaging modalities.
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Chapter 1

Introduction

1.1 Motivation

The field of medical diagnostics is at a critical juncture where traditional image processing tech-

niques are increasingly inadequate to meet the demands of modern healthcare. The growing

complexity and volume of medical imaging data expose the limitations of manual and con-

ventional methods, which struggle with precision, scalability, and real-time adaptability. This

research is motivated by the urgent need to address these challenges through the integration of

advanced machine learning (ML) and deep learning (DL) methodologies. By leveraging the

transformative power of these technologies, this research aims to revolutionise medical diag-

nostics, enhancing the accuracy and efficiency of disease detection and treatment planning. The

research also seeks to bridge critical gaps in current approaches, such as the insufficient use of

combined high-level and deep hidden features (denoted HF and DHF, respectively), and the

often-overlooked potential of integrating demographic and physiological data for personalised

healthcare. In tackling these multifaceted challenges, this work aspires to advance the field of

medical imaging, ultimately improving patient outcomes and contributing to a more effective

and trustworthy healthcare system.
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1.1.1 Shortcomings of Traditional Techniques in Case of Complex Medi-

cal Images

The ever-growing complexity and volume of medical imaging data present a formidable chal-

lenge to traditional image processing techniques, which struggle to deliver the precision, scal-

ability, and adaptability required for modern diagnostics. This research is driven by the ur-

gent need to overcome these limitations through the development of advanced ML and DL

methodologies. Using the power of these cutting-edge technologies, the aim of this work is to

revolutionise the accuracy and efficiency of medical diagnostics, ultimately improving patient

outcomes and advancing the field of healthcare.

Rapid advances in image processing have revolutionised various fields, with medical di-

agnostics standing out as a key beneficiary. In medical imaging, pre-processing tasks such as

image enhancement, correction of brightness and geometric distortions, noise reduction, and

edge delineation are critical for ensuring the accuracy of subsequent analysis. Such prepara-

tory steps are indispensable for the success of subsequent analytical phases like segmentation,

classification and prediction which is essential for both qualitative and quantitative evaluations

of medical images. However, reliance on manual processing by medical professionals can lead

to inaccuracies resulting from human limitations, such as fatigue or inconsistencies in level of

expertise (Panayides et al., 2020). This underscores the imperative for automated segmentation

methods to ensure both precision and dependability in medical diagnostics.

Although traditional image processing techniques have been fundamental in the advance-

ment of this field, they often perform poorly when dealing with complex medical images.

Challenges such as handling images under varied lighting conditions, deciphering ambiguous

boundaries, and the need for extensive manual adjustments reveal the limitations of conven-

tional methods (Razzak, Naz, and Zaib, 2018). Moreover, the lack of scalability and adapt-

ability in traditional classification methods significantly impacts medical image processing by

limiting the efficiency and effectiveness of diagnostic tasks (Panayides et al., 2020). In fact,

these methods often struggle to handle diverse datasets with varying sizes, resolutions, and
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complexities commonly found in medical imaging. This limitation obstructs the smooth inte-

gration of new data sources and restricts the scalability of classification models.

Another major problem is the inability to adapt to complex scenarios. In fact, the lack of

adaptability in traditional methods can hinder their performance in real-time scenarios where

reliable and accurate diagnoses are crucial. Without the ability to adapt to dynamic changes in

imaging conditions or patient data, traditional models can face difficulties in providing timely

and reliable results, which affects patient care and treatment decisions (Abdou, 2022). Ad-

ditionally, difficulty in incorporating advanced features represents a major motivation to this

research. In fact, scalability issues in traditional methods can make it challenging to incor-

porate advanced features or adapt to evolving medical imaging technologies. This limitation

restricts the models’ ability to leverage cutting-edge techniques for improved diagnostic ac-

curacy and may result in unsatisfactory performance compared to more adaptable automated

approaches such as ML and DL.

In light of these challenges, there is a compelling need to transition towards more advanced

and automated solutions. The limitations of traditional methods in incorporating advanced fea-

tures, adapting to evolving medical imaging technologies, and scaling effectively underscore

the urgency of innovation in this space. This research is driven by the need to develop sophis-

ticated methodologies that can overcome these intrinsic constraints, ultimately improving the

adaptability, efficiency, and accuracy of medical image processing.

1.1.2 Transformative Impact of Deep Learning Approaches on Medical

Imaging

ML and DL are pivotal subsets within the broad spectrum of Artificial Intelligence (AI), each

playing a crucial role in the development and application of intelligent systems (Janiesch,

Zschech, and Heinrich, 2021). ML is a subset of AI that focuses on the development of al-

gorithms and statistical models that enable computers to perform specific tasks without using

explicit instructions, relying instead on patterns and inference derived from data. It is the foun-
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Figure 1.1: Medical Image Classification Process using Deep Learning.

dation for systems that can improve their performance on a task over time with more data. DL,

a subset of ML, takes inspiration from the human brain’s structure and function, employing

artificial neural networks (ANNs) with many layers (hence "deep") to learn and make intelli-

gent decisions. DL models are particularly adept at handling large amounts of data and excel

at tasks such as medical image processing and disease detection, where they can automatically

learn complex representations. Both ML and DL fall under the AI umbrella, a field dedicated

to creating machines capable of performing tasks that would typically require human intelli-

gence. Together, they represent the cutting edge of efforts to permeate machines with the ability

to learn, reason, and adapt to new information or environments (Shinde and Shah, 2018).

Among DL architectures, convolutional neural networks (CNN) have revolutionised the

field of medical imaging, marking a significant milestone in the application of AI to healthcare

(Li, Liu, Yang, Peng, and Zhou, 2021b; Gu et al., 2018; O’shea and Nash, 2015) (Figure 1.1).

CNNs have had a profound impact on medical imaging, enabling significant advancements

in disease detection, diagnosis, and treatment planning. Their architectures excel at learning

from image data without requiring manual feature extraction, thus creating highly accurate and

efficient diagnostic tools (Albawi, Mohammed, and Al-Zawi, 2017; Yamashita, Nishio, Do,
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and Togashi, 2018). Additionally, CNNs have been instrumental in enhancing the precision

of diagnoses across a variety of modalities, including MRI, OCT, Fundus, and X-rays, facili-

tating early detection of diseases such as cancer, neurological disorders, eye related diseases,

cardiovascular and pulmonology conditions (Li et al., 2014). The effectiveness of CNNs is

largely attributed to their hierarchical feature extraction capability, which automatically learns

representations from data. This has been further driven by the vast amount of data and advance-

ments in hardware technology. The significant advancement in CNN performance is attributed

to architectural innovations that focus on exploiting spatial and channel information, enhancing

depth and width, and incorporating multi-path information processing (Anwar et al., 2018).

Despite their transformative impact on medical imaging and disease prediction, CNNs have

yet to overcome several challenges that limit their full potential in healthcare applications. One

of the primary issues is the requirement for large annotated datasets for training, which can be

limited in the medical field due to privacy concerns, the labour-intensive nature of labelling, and

the rarity of certain conditions (Tajbakhsh et al., 2016). Additionally, CNNs often struggle with

generalising from one dataset to another, a phenomenon known as domain shift, which is par-

ticularly problematic in medical imaging where equipment and protocols vary widely across

institutions. The interpretability of CNN decisions also remains a significant problem; the

"black-box" nature of these models can impact trust and adoption by medical professionals who

require understandable diagnostic rationales (Yadav and Jadhav, 2019). Furthermore, CNNs are

susceptible to biases present in training data, which can lead to skewed or inaccurate predic-

tions, especially for underrepresented groups in the data. Lastly, the computational complexity

and resource requirements of CNNs pose challenges for deployment in resource-constrained

settings, limiting accessibility to advanced diagnostic tools. Addressing these challenges is

crucial for the broader acceptance and effective utilisation of CNNs in improving patient care

and outcomes in the medical domain.
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1.1.3 Critical Role of Feature Extraction in Medical Image Analysis

A critical aspect of medical image analysis is the feature extraction stage, which underpins the

accuracy and effectiveness of disease diagnosis and prediction (Nixon and Aguado, 2019). This

crucial phase involves identifying and isolating relevant information from complex medical

images, transforming raw data into a structured format that can be effectively analysed by ML

and DL models. Effective feature extraction not only enhances the model’s ability to discern

subtle patterns and anomalies indicative of specific medical conditions but also significantly

reduces computational complexity by focusing on the most informative aspects of the data. By

capturing the essential characteristics of medical images, this stage ensures that the subsequent

analysis is both accurate and efficient, facilitating early detection and precise characterisation

of diseases (Kumar and Bhatia, 2014).

Within the medical imaging pipeline, the distinction between HF and DHF features signif-

icantly influences the performance of intelligent models, including both ML and DL frame-

works. HF features refer to the more abstract, global attributes of an image, such as overall

shape and structure, which are often directly interpretable by humans. In contrast, DHF features

delve into the finer, more granular details, capturing textures, edges, and intensity variations

that may not be immediately perceptible to the human eye but are crucial for understanding the

nuanced patterns characteristic of various medical conditions. The unique contribution of both

feature types is indispensable for enhancing the accuracy and robustness of diagnostic mod-

els. HF features provide a macroscopic overview that helps in distinguishing between broadly

different categories of abnormalities, while DHF features offer microscopic insights essential

for detecting subtle anomalies that could be early indicators of disease (Lai and Deng, 2018).

Together, these feature sets equip DL and ML models with a comprehensive understanding of

medical images, enabling them to make more accurate predictions and diagnoses.

Despite the strength of this combination, a major shortcoming in current methodologies

is the tendency to use these features in isolation instead of integrating them into a unified

analytical framework. This separation limits the potential synergies that could be achieved by

integrating the global contextual insights provided by HF features with the detailed precision
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of DHF features. The lack of a cohesive approach in combining these feature types restricts

the depth of analysis possible, potentially overlooking complex patterns that could be pivotal

for diagnosis. Bridging this gap by developing techniques that effectively merge HF and DHF

features could lead to a significant enhancement in the performance of intelligent diagnostic

models, resulting a more holistic and nuanced analysis of medical images. Such advancements

would not only enhance diagnostic accuracy but also contribute to the development of more

sophisticated, interpretable, and clinically relevant AI tools in healthcare.

1.1.4 Integration of Demographic and Physiological Data for Personalised

Diagnostics

The integration of demographic and physiological patient data into disease prediction models

represents a critical yet often overlooked dimension in enhancing the accuracy and person-

alisation of healthcare diagnostics (Ganesan, Venkatesh, Rama, and Palani, 2010; Gichoya

et al., 2022; Siuly and Zhang, 2016). Current state-of-the-art methods in medical prediction

primarily focus on clinical imaging and genetic information, frequently neglecting the rich in-

sights that demographic factors (such as age and sex) and specific physiological measurements

(like Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) for cardiovascular

and pulmonary conditions, or Central Retinal Thickness (CRT) for eye diseases) can offer.

These parameters are vital for a comprehensive understanding of a patient’s health profile, as

they can significantly influence disease emergence, progression, and severity. For instance,

the risk factors and manifestations of many pulmonology conditions and eye-related diseases

can vary markedly with age and sex, while physiological markers like blood pressure and CRT

provide direct insights into the current state of a patient’s health. By incorporating these de-

mographic and physiological dimensions into prediction models, the approach moves toward

more nuanced, accurate, and individualized disease prediction and management strategies. This

holistic approach not only holds the promise of improving diagnostic precision but also paves

the way for tailored treatment plans that account for the unique characteristics of each patient,
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ultimately enhancing patient outcomes.

Medical image analysis is currently facing a significant challenge in order to achieve both

precision and broader applicability. However, this is quite challenging because of the complex

details found in high-dimensional medical imaging data. This issue goes beyond technical dif-

ficulties; it crucially affects the effectiveness and trustworthiness of diagnostic methods and

patient care. The complex nature of high-dimensional data requires sophisticated analysis to

identify implicit yet important patterns, which are vital for medical diagnosis. The current

landscape is marked by models that, while often effective in controlled scenarios, underper-

form when confronted with the vast heterogeneity and the nuanced complexities presented by

real-world data. The lack of robustness refers to these models’ susceptibility to variations in

imaging conditions, patient demographics, and pathological manifestations. Moreover, the lack

of interpretability, which is a clinical necessity results the lack of clarity and integration of such

models into the clinical workflow which represents the motivation of this research.

1.2 Problem Statement

The emergence of ML and DL technologies has indicated significant advancements in medical

imaging, suggesting revolutionary improvements in diagnosing and predicting diseases with

high accuracy. However, despite these advancements, several critical challenges persist, re-

stricting the optimal utilisation of ML and DL in healthcare. These challenges include the

difficulty of combining various algorithmic strategies, the complexities of extracting and as-

similating DHF image features effectively, and the complications associated with incorporating

patient-specific information into prediction models. Furthermore, the growing complexity of

medical imaging data necessitates a more sophisticated and adaptable approach to feature ex-

traction and model assessment, ensuring that these technologies can fully cater to the nuanced

demands of contemporary medical diagnostics.

At the core of this research lies a crucial question:

How can the existing gaps in ML and DL applications for medical imaging be bridged
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by incorporating hybrid algorithms in features extraction framework and improving prediction

performance to accommodate the complex requirements of current medical diagnostic pro-

cesses?

Addressing this question is essential to meeting the increasingly complex demands of modern

medical diagnostics.

1.3 Aim

The aim of this study is to identify the current automated ML and DL models used in medical

image processing by investigating the architecture of well used models in medical imaging,

which helps to evaluate the performance of current ML/DL-based feature extraction frame-

work and identify their limitations against the evolving complexity of diseases classification

using medical images. This paves the way to design, develop, and evaluate an adaptive and

scalable disease prediction framework which amalgamates novel hybrid DL-ML based mod-

els and reliable features extraction system to enhance the prediction performance of medical

imaging data.

1.4 Objectives

Following objectives had to be fulfilled to achieve this aim:

1. Investigate the deployment of diverse ML and DL algorithms in medical image process-

ing and delineate existing frontier gaps, paving the way for future innovations related to

disease prediction in healthcare field.

2. Assess the differential impacts of hybrid ML and DL models across a spectrum of medi-

cal imaging modalities, aiming to comprehend their transformative impact and optimise

their use in clinical diagnostics.

3. Design and develop a novel DL-based hybrid model to enhance classification perfor-

mance of medical image processing compared to the existing state-of-the-art methods.
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4. Explore the relationship between HF and DHF feature sets integration within medical

imaging processing, aiming to significantly enhance the performance of ML and DL

models across a variety of computational tasks including segmentation, classification,

and prediction.

5. Design and develop an adaptive and scalable features extraction framework by integrat-

ing the novel designed hybrid DL model to combine an optimised set of HF and DHF

features.

6. Evaluate how the inclusion of detailed demographic and physiological patient data can

refine and enhance the performance disease prediction models, contributing to more tar-

geted and effective medical outcomes.

7. Develop a robust PMM tailored for ML and DL models, with the specifics intent of

advancing algorithmic sophistication and precision in medical imaging applications.

8. Build a sophisticated hybrid model for disease prediction that combines various algorith-

mic approaches, setting a new benchmarking predictive medical imaging analytics.

1.5 Contributions

The key innovation of this research is the design and implementation of an intelligent and

adaptive framework for disease prediction using medical images. To achieve this, four main

contributions have been made in this research:

• Design of a novel DL-based hybrid model: This work conducted a detailed examina-

tion of selected CNN architectures, including wider and deeper networks which have

historically delivered impressive results. Addressing the need for an innovative ap-

proach, this research introduces a novel hybrid architecture, DenCeption, which merges

the strengths of DenseNet-169 and Inception-V4. This combination aims to leverage the

unique advantages of these networks to further enhance medical image processing. This

10



combination was backed with rigorous and thorough experimentation that involved both

existing hybrid models as well as DenCeption’s variants.

The development of the DenCeption model was driven by a critical need to overcome

the limitations inherent in existing CNN architectures. While traditional models like

DenseNet-169 and Inception-V4 have shown remarkable performance in medical image

processing, they each have unique strengths and limitations. DenseNet is known for

its efficiency in parameter usage and feature reuse, while Inception-V4 excels in cap-

turing diverse features through its multi-scale processing capability. However, neither

architecture alone fully addresses the challenges posed by the complexity of medical

imaging data, such as the need for deep feature extraction and efficient handling of high-

dimensional data.

The significance of DenCeption lies in its innovative combination of these two powerful

architectures, merging their strengths to create a model that is more robust and versatile.

This hybrid model was meticulously designed through a detailed examination of existing

CNN architectures, identifying the specific elements of DenseNet-169 and Inception-V4

that could be synergised to enhance medical image processing. The selection of this com-

bination was purposeful; it was the result of rigorous experimentation and comparative

analysis, ensuring that the proposed model would offer a substantial improvement over

existing methods.

DenCeption has demonstrated superior performance in medical image analysis, partic-

ularly in handling complex classification tasks. The extensive testing and validation

against existing hybrid models and variants further confirmed its effectiveness, making it

a valuable contribution to the field of medical diagnostics. By achieving higher accuracy

and better feature extraction, DenCeption stands as a significant advancement, potentially

revolutionising the way medical images are processed and analysed.

• Design of an adaptive and scalable features extraction framework: Towards tackling

the drawback caused by the lack of features combination and enhancing the reliability of
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features extraction methods, this work proposes a new hybrid features extraction frame-

work that focuses on the fusion and optimal selection of HF and DHF. The scalability and

reliability of the proposed method is achieved by the automated adjustment of the final

optimal features based on real-time scenarios resulting an accurate and efficient medical

images disease classification. The proposed framework has been tested on two different

datasets to include BRATS and Retinal sets achieving outstanding results compared to

benchmarking methods.

The motivation behind developing this hybrid feature extraction framework arose from

the recognition that existing methods often failed to adequately combine HF features with

DHF, leading to suboptimal classification performance. Traditional feature extraction

approaches tended to focus either on superficial features or on complex deep features,

without integrating the two in a meaningful way. This gap often resulted in unreliable and

inconsistent outputs, especially in medical image analysis where both types of features

are crucial for accurate diagnosis.

The proposed framework is significant because it addresses these shortcomings by in-

troducing a scalable and adaptive method that dynamically adjusts the feature set based

on complex data scenarios. This ensures that the most relevant features are selected and

fused, optimising the classification process for diverse medical imaging tasks. The de-

cision to focus on the fusion of HF and DHF was informed by a thorough analysis of

their individual contributions to classification accuracy and the need to enhance their

combined impact.

This framework has been proven to be highly effective through extensive testing on di-

verse datasets, where it achieved outstanding results compared to benchmarking methods.

The scalability and adaptability of this approach make it particularly useful in real-world

applications, ensuring consistent and accurate medical image classification across differ-

ent imaging conditions and data complexities.

• Design of a novel evaluation mechanism for DL models : Recent advancements in

12



learning algorithms have led to their extensive use in various fields, including healthcare.

However, selecting the most appropriate evaluation metrics for these algorithms remains

a challenge. In this work, a novel evaluation mechanism that takes into account the

problem domain and the specific application area is proposed. The mechanism involves

randomly assigning weights to each metric for each dimension, applying a correlation

operation to measure the degree to which these variables are related, and repeating this

process for all stages. The resulting matrix is then used to calculate the final PMM vector

that reflects the most optimal measurement metrics. The proposed mechanism provides

a systematic and objective approach to selecting evaluation metrics for DL and ML algo-

rithms, and can be applied to a wide range of applications. The work demonstrates the

effectiveness of the mechanism using a case study on medical image processing applica-

tions.

In the rapidly evolving field of ML, particularly in healthcare applications, selecting the

appropriate evaluation metrics is crucial yet challenging. The proliferation of DL models

has led to a variety of evaluation metrics, but these are often selected without a systematic

approach, potentially leading to biased or suboptimal evaluations. The need for a more

structured evaluation process became apparent through the analysis of existing methods,

which often failed to account for the specific requirements of different medical imaging

tasks.

The novel evaluation mechanism introduced in this research is significant because it pro-

vides a systematic and objective approach to metric selection tailored to the problem

domain. By incorporating a correlation-based approach and applying random weight

assignments, the mechanism ensures that the most relevant metrics are identified and

prioritised, leading to more accurate and meaningful evaluations of DL models.

The PMM mechanism is particularly useful in the context of medical image processing,

where the consequences of misclassification are significant, and the complexity of the

data requires careful consideration of multiple evaluation dimensions. This contribution
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is valuable because it enhances the reliability and validity of DL model assessments,

ultimately leading to better-informed decisions in model selection and deployment in

clinical settings.

• Design of an intelligent and robust predictive framework: This work proposes an in-

novative prediction framework incorporating DenCeption, a scalable feature extraction

framework, coupled with HyBoost, a novel hybrid predictive model. Designed to adapt

to medical image characteristics, HyBoost enhances disease prediction by leveraging

the strengths of various ML algorithms and incorporating vital patient demographic and

physiological data. This approach significantly improves the model’s performance, as

confirmed by 10-fold cross-validation and SHapley Additive exPlanations (SHAP) ex-

plainability analysis. Significant performance enhancements have been resulted across

various datasets including Fundus, OCT, and X-ray scans, indicating a substantial pro-

gression in predictive medical image analysis compared to existing models such as XG-

Boost, AdaBoost, U-Net, Inception-V4, YoLo-V7, EfficientNet-B5, VGG-16/19, and

ResNet.

The need for a robust predictive framework that can adapt to the specific characteristics

of medical images is critical in advancing medical diagnostics. Traditional predictive

models often fail to incorporate vital patient demographic and physiological data, which

are essential for accurate disease prediction. Additionally, these models tend to rely

on a narrow set of features, which limits their generalisability and effectiveness across

different types of medical imaging data.

The proposed predictive framework, which integrates DenCeption and the HyBoost model,

is significant because it represents a comprehensive solution that enhances prediction ac-

curacy by leveraging a wide range of ML algorithms and incorporating crucial patient

data. The HyBoost model is a novel hybrid approach that combines the strengths of XG-

Boost and AdaBoost, two of the most powerful and widely used boosting algorithms in

ML. XGBoost is known for its efficiency and scalability, offering robust performance
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with large datasets and complex feature spaces. It is particularly effective in handling

sparse data and has a built-in regularisation mechanism that reduces the risk of overfit-

ting. On the other hand, AdaBoost excels in improving the performance of weak learners

by focusing on the errors of previous models, making it highly effective in scenarios

where the data is noisy or imbalanced. The combination of these two algorithms in the

HyBoost model is justified by their complementary strengths: XGBoost’s ability to han-

dle diverse and complex data, and AdaBoost’s proficiency in refining predictive accuracy

through iterative learning. This hybrid approach enhances the overall robustness and re-

liability of the predictive framework, making it better suited to the intricate demands of

medical image analysis.

The integration of XGBoost and AdaBoost within the HyBoost model significantly im-

proves the framework’s performance across various datasets. This combination has been

shown to enhance the accuracy of disease prediction while maintaining the adaptability

needed to apply the model to different types of medical imaging data. By leveraging

the strengths of these boosting algorithms, the HyBoost model not only achieves higher

predictive accuracy but also provides more reliable and consistent results, making it a

valuable tool for clinicians. The SHAP explainability analysis further strengthens its util-

ity by offering clear insights into the model’s decision-making process, which is crucial

for gaining trust and ensuring the practical adoption of the model in real-world clinical

settings.

1.6 Scope

This research will encompass a systematic investigation of the various ML and DL algorithms

currently utilised in medical image processing across different modalities such as MRI, OCT,

Fundus, and X-rays. It will explore the integration of HF and DHF features within these images

to boost the performance of related models. The scope includes the development of an innova-

tive hybrid DL architecture for feature extraction and a versatile feature extraction framework.
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Additionally, a robust PMM will be crafted to evaluate and enhance the algorithms involved

in medical imaging. The research will focus on the integration of comprehensive patient data

into predictive models to refine diagnostic accuracy. The study will be bound by the fields

of current technological capabilities and data availability, with an emphasis on addressing the

practical challenges of deploying these models in clinical settings. The deployment of the pro-

posed features extraction and prediction frameworks is not part of the scope of this work. In

addition, medical expert validation of the proposed solution is not part of the scope. Also, the

validation of the proposed framework on real clinical data is not part of this research focus.

1.7 Thesis Structure

The remaining parts of the thesis are structured as follows:

• Chapter 2: Literature Review

This chapter presents a background of the research followed by a thorough discussion

on the evolution of medical image processing from traditional techniques to more auto-

mated approaches. The discussion on different processing methods that can be applied

for more efficient training, features extraction and disease prediction is then presented.

Subsequently, relevant recent studies with their benefits and drawbacks are discussed,

which lays the foundation for the presented research.

• Chapter 3: DenCeption : A Novel Hybrid Deep Learning Based Model

This chapter presents the design, implementation and validation details of the proposed

DenCeption model. It starts by the examination of the DenCeption variants and followed

by a thorough testing process. A benchmarking with existing hybrid DL-based models

will be performed using a set of evaluation metrics. The conducted experiments will use

MRI images for training, testing, and validation stages.

• Chapter 4: A Deep Learning based Scalable and Adaptive Feature Extraction Frame-

work for Medical Images
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This chapter presents the design and implementation of the proposed features extrac-

tion framework. It covers the integration of DenCeption model, presented in Chapter 3,

within the proposed framework. The chapter conveys the proposed algorithm for HF and

DHF features extraction and the impact of their fusion of the overall performance of the

proposed framework. A benchmarking with existing features extraction methods will be

conducted for validation purpose on various medical images to include Fundus and MRI.

• Chapter 5: Advancing Intelligent Medical Diagnostics with HyBoost: A Robust

Predictive Framework for High-Dimensional Imaging Data

This chapter presents the combination of this research contributions detailed in Chapter

3 and 4. It details the design and implementation of the proposed prediction framework

by introducing the novel ML-based model, HyBoost. The chapter provides a thorough

examination of the proposed framework through different medical image modalities to

include OCT, Fundus and X-ray examining various set of diseases to include eye and

pulmonology related conditions. This part of the research also conducts a benchmark-

ing process to validate the proposed prediction framework against related works. This

validation process will be powered by the proposed PMM evaluation mechanism.

• Chapter 6: Conclusion and Future Work

The conclusion offers an analysis of the challenges addressed by the suggested frame-

works and the underlying models, emphasising the advantages of the introduced solu-

tions. It proceeds to outline the limitations of the proposed approach and strategies for

their mitigation. Concluding, it explores potential improvements to the proposed frame-

work and its applicability to a wider range of domains.
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Chapter 2

Literature Review

2.1 Introduction

Image processing has seen rapid advancements, particularly, in medical diagnostic using di-

verse set of images. This field encompasses various pre-processing steps like image recon-

struction, brightness and geometric transformations, noise filtering, and edge detection. Pre-

processing is critical for subsequent steps like segmentation which is vital for qualitative and

quantitative analysis. However, manual processing by physicians can introduce errors due to

human factors such as fatigue and varying levels of experience, highlighting the need for auto-

mated segmentation for precision and reliability. Traditional image processing methods, though

foundational, often face limitations with complex images, leading to challenges in adaptability

and manual tuning requirements. Their performance in diverse and complex image scenar-

ios, like varying lighting or ambiguous boundaries, is limited, necessitating the shift towards

more advanced and automated techniques. This Literature review chapter will provide a thor-

ough presentation and discussion about processing techniques, with particular focus on medical

imaging building the ground for their applications in disease classification and prediction.
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2.2 Research Background

The research landscape began witnessing a pivotal shift towards the exploration of automated

image processing techniques, encompassing segmentation, classification, and detection, with

a particular emphasis on enhancing the analysis and interpretation of medical images. In con-

templating the future trajectory of the proposed method, several potential areas of improvement

can be identified to maximise its performance and utility. Firstly, there’s a compelling need for

further optimisation designed to large datasets, ensuring that the algorithm retains its efficiency

when confronted with an increased volume of data or images of higher resolution. Addition-

ally, enhancing the algorithm’s capacity for noise discrimination presents a significant avenue

for development; refining its ability to accurately distinguish between genuine vessel struc-

tures and extraneous elements like noise or other retinal features, such as the optic disc (OD),

could substantially reduce misdetection and elevate the overall precision. Moreover, adopting a

more sophisticated classification process that overcomes the simplistic binary vessel/non-vessel

categorisation could significantly improve the method’s competence in managing complex sce-

narios and mitigating instances of under-segmentation. Lastly, the incorporation of additional

image features and the leverage of advanced image processing techniques, including DL, stand

as promising strategies to further augment the method’s accuracy and robustness, paving the

way for a more comprehensive and nuanced analysis of medical images.

2.2.1 Neural Networks: A Focus on Convolutional Neural Networks

The pivotal role that ANNs have come to play in the domain of medical image processing

began with their early application in tasks such as image registration, segmentation, and edge

detection (Jiang, Trundle, and Ren, 2010). These initial deployments marked a significant

breakthrough, leading to the widespread adoption of ANNs in various image processing sys-

tems. The literature highlights the transformative impact of neural networks on medical imag-

ing analysis, especially in the domains of medical image registration, segmentation, and edge

detection. These foundational processes are crucial for effective content analysis and regional
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Figure 2.1: Artificial Neural Networks Learning Process.

inspection in medical imaging. The state-of-the-art works shed light on the potential enhance-

ments that neural network applications can bring to medical image processing applications.

These works elaborate on the adaptability and learning capabilities of neural networks, which

can significantly refine diagnostic processes by optimising the relationship between inputs and

outputs. This is particularly evident in visual inspection and visualisation tasks, where medical

imaging serves as an indispensable tool.

The integration of neural networks in medical image processing represents a transformative

shift towards more intelligent, adaptive, and precise healthcare solutions (Jiang, Trundle, and

Ren, 2010). Their power lies in their ability to learn from data, improve their performance

over time, and provide insights that might not be visible to the human eye (Figure 2.1). Their

application in medical imaging has shown promising results in enhancing the accuracy of di-

agnoses, reducing the workload of healthcare professionals, and ultimately paving the way for

personalised and preventive medicine. The continuous evolution of neural network techniques,

coupled with increasing computational power and data availability, is set to further revolutionise

the field of medical imaging and healthcare at large.

These ANN-based techniques have been applied for several purposes to include:

• Image Registration: Techniques for aligning images from different datasets or modali-

ties are explored, with a focus on the use of Self-Organising Maps (SOMs) and other neu-
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ral network-based methods. These techniques aim to establish correspondence between

different images, accommodating for variations due to movements or changes over time.

• Image Segmentation and Edge Detection: The paper discusses neural network ap-

proaches for segmenting medical images into regions with homogeneous properties and

detecting edges of organs or tumours. Methods like the Hopfield network, Kohonen’s

competitive learning, and Multi-Layer Perceptron (MLP) are highlighted for their ability

to classify medical images into content-consistent regions.

• Computer-Aided Diagnosis (CAD): Neural networks are extensively applied in CAD

systems for detecting and diagnosing diseases from medical images. These systems illus-

trate various applications, including breast cancer detection from mammograms and lung

disease identification, showcasing the utility of neural networks in enhancing diagnostic

accuracy and reducing false positives.

These methods have been applied for several diseases such as breast cancer, lung cancer, gen-

eral tumour detection, brain disorders (e.g. Alzheimer’s disease (AD)). Tables 2.1, 2.2 and

2.3 provide a critical representation of ANN-based techniques applied on each of the afore-

mentioned methods, respectively.
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Table 2.1: Neural Network Methods in Image Registration

Method Description Advantages Disadvantages

SOMs

(Miljković,

2017)

Utilises the learn-

ing capability of

SOMs to classify

medical images into

content-consistent

regions, completing

segmentations and

edge detections.

- Preserves topologi-

cal features of input

data

- Good for visualis-

ing complex datasets

- Training can be

computationally in-

tensive

- May require fine-

tuning for optimal

results

Principal Com-

ponent Analysis

(PCA) with

Neural Net-

works (Kurita,

2019)

Employs PCA for

dimensionality

reduction before

feeding data into a

neural network for

registration.

- Reduces data com-

plexity

- Can improve com-

putational efficiency

- PCA step may dis-

card useful informa-

tion

- Sensitive to the

scaling of input data

Multi-scale

SOMs (Chen,

Ashizawa, Yeo,

Yanai, and Yean,

2021)

Utilises a multi-

scale approach to

handle different fre-

quency components

of the images for

registration.

- Handles various

spatial-frequency

components effec-

tively

- Improves accuracy

of registration

- More complex to

implement

- Higher computa-

tional cost
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Table 2.1:: Neural Network Methods in Image Registration (Continued)

Method Description Advantages Disadvantages

Competitive

Learning, Self-

Organizing, and

Clustering (Li,

Liu, Jiao, Chen,

and Li, 2022b)

Designs neural net-

works for alternative

solutions via com-

petitive learning,

self-organising, and

clustering for image

feature processing.

- Provides robust

alignment solutions

- Good for com-

plex datasets with

varying features

- Can be challenging

to set up and train

- May require exten-

sive computational

resources

Table 2.2: Neural Network Methods in Image Segmentation and Edge Detection

Method Description Advantages Disadvantages

MLP (Desai and

Shah, 2021)

Uses MLPs for the

binary classification

of pixels to identify

boundaries and non-

boundaries in medi-

cal images.

- Good for non-

linearly separable

data

- Flexible and

widely applicable

- Requires careful

tuning of network ar-

chitecture

- Prone to overfitting

Fuzzy and

Soft Competi-

tion Learning

(Chouhan, Kaul,

and Singh,

2019)

Implements compet-

itive learning fused

with soft competi-

tion and fuzzy c-

means membership

functions for seg-

mentation.

- Reduces noise ef-

fects in medical im-

ages

- Useful in MRI seg-

mentation

- Complexity in im-

plementation

- May require exten-

sive training data
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Table 2.2: Neural Network Methods in Image Segmentation and Edge Detection (Continued)

Method Description Advantages Disadvantages

Quantizer Neu-

ral Network

(QNN) (Rokh,

Azarpeyvand,

and Khantey-

moori, 2023)

A novel structure

trained by genetic

algorithms for

segmentation, par-

ticularly of MRI and

CT head images.

- Efficient classifica-

tion performance

- Requires fewer

neurons and shorter

training time

- Less interpretabil-

ity of the network

structure

- Reliant on the qual-

ity of genetic algo-

rithms

Multi-resolution

Massive Train-

ing ANN

(MTANN)

(Tajbakhsh and

Suzuki, 2018)

Utilises a multi-

resolution approach

to handle different

frequency com-

ponents for edge

detection.

- Effectively re-

moves noise and

tiny details

- Good for high-

frequency compo-

nent handling

- Computationally

intensive

- Complex archi-

tecture and training

process

Neural Edge

Detector (NED)

(Su et al., 2021)

Employs a modified

multi-layer neural

network trained via

supervised learning

to extract contours

from images.

- Good agreement

with manual edge

extraction

- Efficient in contour

extraction

- Sensitive to noise

and low contrast

- May require exten-

sive training
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Table 2.3: Neural Network Methods in CAD

Method Application Advantages Disadvantages

Radial Ba-

sis Function

Neural Net-

work (RBFNN)

(Montazer,

Giveki, Karami,

and Rastegar,

2018)

Applied for fast de-

tection of masses in

mammograms.

- Faster training

compared to MLP

- Effective in func-

tion approximation

- Sensitive to the

choice of basis func-

tions

- May not scale well

with large datasets

Soft Cluster

Neural Net-

work (SCNN)

(Verma,

McLeod, and

Klevansky,

2009)

Employed for the

classification of

suspicious areas

in digital mammo-

grams.

- Increases generali-

sation ability

- Depicts relation-

ships between fea-

tures and classifica-

tions effectively

- Performance de-

pendent on image

properties

- May require fine-

tuning for different

imaging conditions

Probabilistic

Neural Net-

work (PNN)

(Savchenko,

2019)

Utilised for the

prediction of his-

tological grade,

hormone status, and

axillary lymphatic

spread in breast

cancer patients.

- Fast training pro-

cess

- Effective in classi-

fication and pattern

recognition

- Can be compu-

tationally expensive

during testing phase

- Sensitive to the

smoothing parame-

ter

While neural networks present a robust and adaptive framework for addressing a wide

range of problems in medical image processing, certain fundamental challenges need to be

acknowledged. Firstly, the complexity and interpretability of these models, especially those
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involving DL, cause significant challenges. They often operate as ’black boxes,’ with limited

transparency in their decision-making processes, making it difficult for practitioners to inter-

pret and fully trust their outputs. Secondly, the training of neural networks, particularly the DL

variants, is resource-intensive. It requires significant computational power and time, making it

less accessible for setups with limited resources. Lastly, the performance of neural networks is

heavily contingent on the quality and quantity of the input data. They require large and well-

curated datasets to function effectively. Inadequate, skewed, or poor-quality data can lead to

models that do not generalise well and perform poorly on unseen data. Hence, while neural

networks hold immense promise in revolutionising medical image processing, addressing these

challenges is crucial for their effective and widespread adoption. The transition from traditional

to automated segmentation techniques marks a significant advancement in medical image pro-

cessing, particularly in radiation therapy (RT). This shift is driven by the need for rapid and

accurate segmentation of medical images, which is critical for effective treatment planning and

delivery. Traditional methods like manual delineation, while considered the gold standard, are

time-consuming and suffer from intra- and inter-observer variations, limiting their efficiency

and reliability (Sharp et al., 2014).

Traditional segmentation techniques such as thresholding, region-based methods, edge detection-

based methods, and deformable models like geodesic active contours, have served as the foun-

dation for medical image segmentation. These methods primarily rely on the analysis of image

content, like voxel intensities and image gradients, to differentiate between distinct regions in

medical images. However, they often lack the incorporation of prior knowledge about anatom-

ical structures, which can be crucial for achieving high accuracy in complex medical scenarios.

In contrast, automated segmentation methods introduce sophisticated approaches that lever-

age prior knowledge and ML to enhance segmentation accuracy. Techniques like atlas-based

segmentation, multi-atlas segmentation, and model-based segmentation (using statistical shape

models or statistical appearance models) have significantly improved the robustness and accu-

racy of segmentation. These methods benefit from prior information about the morphology of

anatomical structures or the appearance of organs in different imaging modalities, providing a
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more refined and anatomically consistent segmentation output (Table 2.4).

Table 2.4: Automated Segmentation Techniques

Technique Description Advantages Disadvantages

Atlas-based

Segmentation

(Bach Cuadra,

Duay, and

Thiran, 2015)

Uses a reference

image (atlas) with

pre-segmented

structures to guide

segmentation.

Can provide anatom-

ically viable results.

Performance heavily

depends on the

choice of the atlas.

Multi-atlas Seg-

mentation (Sun,

Zhang, and

Zhang, 2019)

Combines multiple

atlas registrations for

robust segmentation.

Improved robustness

and accuracy.

Computationally in-

tensive and may pro-

duce topological er-

rors.

Model-based

Segmentation

(Ecabert et al.,

2008)

Utilises statistical

models of shape and

appearance to guide

segmentation.

Provides anatom-

ically correct

segmentation.

Requires a compre-

hensive training set

and may lack flex-

ibility for atypical

cases.

The importance of this transition cannot be understated, especially in the context of RT,

where the precise delineation of target volumes and organs at risk directly impacts treatment

effectiveness. Automated segmentation methods offer several advantages over traditional meth-

ods, as follows (Sharp et al., 2014):

• Speed and Efficiency: Automated methods significantly reduce the time required for

segmentation, allowing for faster treatment planning and adaptation.

• Consistency and Objectivity: By reducing human intervention, automated methods of-

fer more consistent and objective segmentation results, minimising the variability asso-

ciated with manual delineation.
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• Integration of Multimodal Data: Automated segmentation techniques can effectively

integrate information from different imaging modalities (like CT, MRI, and PET), pro-

viding a more comprehensive understanding of the anatomical structures.

However, this transition also presents challenges, including the dependence on the quality and

quantity of training data, the need for significant computational resources, and the complexity

involved in interpreting the results of sophisticated models like DL networks.

The evolution of DL in the field of medical imaging is revolutionising the field, offering sig-

nificant enhancements over traditional ML and pattern recognition methods (Razzak, Naz, and

Zaib, 2018). Unlike conventional ML techniques like support vector machines (SVMs), neural

networks, and k-nearest neighbours (KNN), which rely on expertly crafted features and strug-

gle with raw image data, DL algorithms such as CNNs, recurrent neural networks (RNNs), and

generative adversarial networks (GANs) have the ability to digest raw data and learn features

autonomously. This attribute of DL dramatically reduces reliance on domain expertise and

manual feature engineering, allowing for rapid learning and adaptation. DL’s layered approach

and ability to learn hierarchical feature representations make it exceptionally suited for dealing

with the high-dimensional, variable-rich medical images derived from diverse platforms like

CT and MRI scans. A critical assessment reveals that while DL is a powerful tool for image

processing, it’s not without challenges. Table 2.5 provides a comparative analysis of several

existing DL architectures and their respective advantages and disadvantages (Razzak, Naz, and

Zaib, 2018; Iqbal, N. Qureshi, Li, and Mahmood, 2023).

Table 2.5: Comparative Analysis of Deep Learning Architectures

Deep Learning Archi-

tecture

Advantages Disadvantages

Deep Neural Network

(DNN) (Liu et al., 2019)

Able to model complex non-

linear relationships, used for

classification and regression

Training process can be slow,

requires a substantial amount

of labelled data

Continued on next page
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Table 2.5: Comparative Analysis of Deep Learning Architectures (Continued)

Deep Learning Archi-

tecture

Advantages Disadvantages

Deep Convolutional Ex-

treme Learning Machine

(DC-ELM) (Pang and

Yang, 2016)

Computationally efficient, fast

training

Optimisation of parameters

can be challenging for large

datasets

Deep Boltzmann Ma-

chine (DBM) (Duong,

Luu, Quach, and Bui,

2019)

Top-down feedback integrates

ambiguous data for robust in-

ference

Initialisation makes the train-

ing process computationally

expensive

Deep Belief Network

(DBN) (Sohn, 2021)

Greedy layer-wise strategy and

inference are feasible

Training can be complex due to

error propagation to individual

layers

Autoencoders (AEs)

(Pratella, Ait-El-

Mkadem Saadi,

Bannwarth, Paquis-

Fluckinger, and Bottini,

2021)

Can automatically compress

data, useful in reducing dimen-

sionality.

Compression may lead to loss

of important information, lead-

ing to suboptimal reconstruc-

tion.

Deep AE (Chen and

Guo, 2023)

Excellent for unsupervised

learning and dimensionality

reduction

Training can vanish, pre-

training step required

Continued on next page
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Table 2.5: Comparative Analysis of Deep Learning Architectures (Continued)

Deep Learning Archi-

tecture

Advantages Disadvantages

Feed Forward Neu-

ral Networks (FFNN)

(Arumugadevi and

Seenivasagam, 2016)

Simplicity, suitable for basic

tasks in neural networks.

Lack of feedback loops, lim-

iting the ability to handle se-

quence data or temporal pat-

terns.

Long-Short Term Mem-

ory (LSTM) (Mei, Li,

Liu, Cai, and Du, 2021)

Solves vanishing/exploding

gradient issue, capable of

learning long-term dependen-

cies.

More complex and computa-

tionally intensive than tradi-

tional RNNs.

Gated Recurrent Units

(GRU) (Ikuta and Zhang,

2022)

Reduced complexity and com-

putational load compared to

LSTM, solves lengthy depen-

dence in RNN.

Still computationally intensive,

may not capture long-term de-

pendencies as effectively as

LSTM.

U-Net (Siddique, Pahed-

ing, Elkin, and Devab-

haktuni, 2021)

Specialised for biomedical im-

age segmentation, capable of

precise localisation.

Requires substantial annotated

data for training, may struggle

with very large images.

V-Net (Liu, Pang, Jin,

Liu, and Wang, 2022)

Specialised for 3D medical im-

age segmentation, offering de-

tailed anatomical insights.

Computational complexity is

high due to 3D data processing,

may require substantial mem-

ory.

SegNet (Zhang, Lu, Wu,

Ni, and Wang, 2024)

Efficient for indoor scene un-

derstanding and pixel-wise seg-

mentation.

May struggle with complex

scenes or overlapping objects,

requires good quality data.

Continued on next page
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Table 2.5: Comparative Analysis of Deep Learning Architectures (Continued)

Deep Learning Archi-

tecture

Advantages Disadvantages

You Look Only Once

(YOLO) network (Chen

et al., 2024)

Real-time object detection,

faster processing by looking at

the entire image only once.

Less accurate compared to two-

stage detectors, may struggle

with small objects.

DeepLab (Azad et al.,

2022)

Effective for semantic segmen-

tation with atrous convolution,

handling objects at multiple

scales.

Complexity increases with ad-

vanced versions, may demand

more computational resources.

Bidirectional RNNs

(Kim, An, Chikontwe,

and Park, 2021)

Can process data in both for-

ward and backward directions,

capturing future context effec-

tively.

More complex and computa-

tionally intensive, potentially

overfitting in smaller datasets.

Highway Networks (Ha

et al., 2020)

Facilitate training deeper net-

works by enabling information

highways, improving optimisa-

tion.

Complexity in architecture

and hyperparameter tuning can

make them hard to implement.

Wide Residual Net-

work (WideResNet)

(Nakayama, Lu, Li, and

Kamiya, 2020)

Increased feature map size per

layer for more expressive mod-

els, faster training.

Higher computational cost than

standard ResNet, may require

more memory during training.

Pyramidal Network

(PyramidalNet) (Duta,

Liu, Zhu, and Shao,

2020)

Combines top-down and

bottom-up approaches, cap-

turing multiscale context

effectively.

Complexity increases with

depth and pyramid levels, may

require substantial compute

resources.

Continued on next page
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Table 2.5: Comparative Analysis of Deep Learning Architectures (Continued)

Deep Learning Archi-

tecture

Advantages Disadvantages

Xception (Carnagie,

Prabowo, Budiana, and

Singgih, 2022)

Uses depthwise separable con-

volutions, more efficient pa-

rameter usage, improved per-

formance.

May not always outperform

other architectures with similar

parameter counts.

ResNeXt (Koné and

Boulmane, 2018)

Simplified architecture with re-

peated building blocks, im-

proving scalability and perfor-

mance.

Similar to ResNet, complexity

and resource requirements in-

crease with model size.

SqueezeNet (Koonce,

2021)

Highly compact model, re-

duced parameter count without

significant loss in accuracy.

May not capture as complex

features as larger models, po-

tentially lower accuracy.

Fully Connected Neu-

ral Network (FCNN)

(Basha, Dubey, Pula-

baigari, and Mukherjee,

2020)

Can handle input of random

size, flexibility in architecture

design.

May lack some spatial hierar-

chies due to absence of fully

connected layers.

Fast Region Based Con-

volutional Neural Net-

work (Fast-RCNN) (Sir-

adjuddin and Muntasa,

2021)

Faster object detection by pro-

viding entire image to CNN,

generating convolutional fea-

ture map.

Still involves region propos-

als, which can be computa-

tionally expensive compared to

later models.

Continued on next page
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Table 2.5: Comparative Analysis of Deep Learning Architectures (Continued)

Deep Learning Archi-

tecture

Advantages Disadvantages

Mask RCNN (Wang et

al., 2021)

Precise instance segmentation,

extends Faster RCNN by

adding a branch for predicting

masks.

Complexity and computational

requirements are high, particu-

larly for large datasets.

RetinaNet (Miao et al.,

2022)

Addresses class imbalance

with focal loss, effective

for dense and small object

detection.

Complexity in balancing be-

tween speed and accuracy, re-

quires careful tuning.

Boltzmann Machine

(BM) (Jeyaraj and

Nadar, 2019)

Can model complex distribu-

tions and capture high-order

correlations between observ-

able variables.

Training is computationally in-

tensive and may require careful

tuning to avoid local minima.

GAN (You et al., 2022) Powerful for generating realis-

tic samples, useful in data aug-

mentation, image generation,

and unsupervised learning.

Training can be unstable and

challenging, requiring careful

balance between generator and

discriminator.

Table 2.6: Comparison of Traditional Versus Deep Learning Architecture for Automatic Local-
isation (El-Shafai et al., 2024)

Aspect Traditional Architecture Deep Learning Architecture

Feature Extraction Relies on manually extracted, DHF

features.

Automatically learns HF feature

representations from the data.

Continued on next page
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Table 2.6: Comparison of Traditional Versus Deep Learning Architecture for Automatic Local-
isation (Continued)

Aspect Traditional Architecture Deep Learning Architecture

Performance Often limited by the quality and

depth of feature engineering.

Exhibits superior performance, es-

pecially in complex and high-

dimensional data scenarios.

Computational

Requirement

Generally, less computationally in-

tensive.

Requires significant computational

resources, particularly for training.

Learning Capabil-

ity

Limited learning capability, often

requiring manual feature selection.

Exhibits deep learning capabilities,

capturing complex patterns in data.

Adaptability Less adaptable to new, unseen

data.

Highly adaptable, can generalise

well to new, unseen data.

Implementation

Complexity

Less complex models, easier to in-

terpret.

More complex models, sometimes

referred to as "black boxes".

Data Requirement Less reliant on large datasets. Typically requires large datasets to

perform optimally.

Accuracy and Pre-

cision

May struggle with very complex

tasks.

Tends to offer higher accuracy and

precision, especially in complex

tasks.

Despite these architectures offering sophisticated approaches to model complex data, the

application of DL in medical image processing faces several challenges (Razzak, Naz, and

Zaib, 2018):

• Dataset Availability: DL requires large datasets to establish classifier accuracy, and

medical imaging datasets are particularly challenging to compile due to the need for

expert annotation and the rarity of certain conditions.

• Privacy and Legal Issues: Sharing medical data is complicated due to strict privacy
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Figure 2.2: Data Augmentation Process where T F is the Applied Transformation Function
(Garcea, Serra, Lamberti, and Morra, 2023)

laws, which impose massive restrictions on the way patient data can be used and dis-

closed.

• Data Interoperability and Standards: The lack of standardisation in medical data,

arising from variations in hardware and sensor technologies, restricts the creation of uni-

versally applicable models.

The impact of DL on automatic localisation in medical images has been significantly pos-

itive, transforming the landscape of medical image analysis. DL models, particularly DNNs,

have outperformed traditional ML methods in various complex computer vision tasks. The

success of DNNs in object localisation, especially in medical images, has garnered attention

due to their superior performance over conventional methods (Alaskar et al., 2022). Table

2.6 presents a comparative analysis of traditional techniques and DL architectures for different

aspects of image processing for localisation purposes.

While traditional architectures have been fundamental in the initial stages of computer vi-

sion and image processing, the advent and advancement of DL architectures have significantly

shifted the paradigm towards more efficient, accurate, and sophisticated methods of automatic

localisation in medical images. Despite this, challenges like data availability, computational

requirements, and the interpretability of DL models persist, shaping the future directions of

research in this domain (Alaskar et al., 2022).

Through literature, the profound impact of DL on data augmentation is thoroughly re-

viewed, particularly within the field of medical imaging (Figure 2.2).

35

TF sequences 

B~r• -·· • ··-~ 0 '• -&o m, ; 
'••·· ,' 

••• 
Augmented t----+ • • 6e • 

data ••• •• 



DL has been a significant factor in advancing the adoption of sophisticated data augmentation

techniques, effectively addressing pressing challenges such as limited data availability, strict

privacy concerns, and the substantial costs associated with data labelling. The scope of data

augmentation strategies in DL extends across a broad spectrum, ranging from relatively sim-

ple transformations, including cropping, padding, and flipping, to the deployment of complex

generative models. This expansion significantly enhances the diversity and volume of training

data, enabling the enrichment of datasets without the need for additional data collection. More-

over, DL-driven data augmentation facilitates targeted class augmentation, such as the artificial

generation of lesions, thereby providing invaluable support for underrepresented classes within

medical datasets. This capability is especially critical in ensuring the robustness and efficacy

of DL models in medical applications, where the balance and completeness of training data

directly influence model performance and diagnostic accuracy (Garcea, Serra, Lamberti, and

Morra, 2023).

The exploration into the strengths of specific DL architectures reveals a nuanced under-

standing of the way different data augmentation strategies can enhance model performance in

medical imaging. Affine transformations, known for their ability to preserve lines and par-

allelism, emerge as a fundamental tool for geometric adjustments without compromising the

integrity of image content. Their simplicity and ease of integration into DL pipelines make

them a staple augmentation strategy. Erasing transformations, by selectively removing parts of

images, strengthen model robustness against occlusions and mitigate dataset biases, prompting

models to avoid oversimplified detection patterns.

Elastic transformations introduce local shape variations, proving invaluable in simulating

real-world deformations such as those induced by breathing or patient movements, especially

for augmenting organs or lesions. Pixel-level transformations adjust image attributes like

brightness, contrast, and saturation to enhance model robustness across varying scanners and

imaging protocols. GANs stand out for their ability to generate realistic images, significantly

diversifying data and pushing models towards improved generalisation. They are particularly

beneficial for controlled image generation tasks, such as synthesising lesions or enriching un-
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derrepresented classes in datasets.

Feature mixing methods, which combine features or parts of different images to create new

samples, and model-based methods that incorporate physically or biologically inspired models

for image generation or modification, both contribute to model generalisation and robustness.

The latter notably supports the synthesis of artificial lesions or the simulation of disease pro-

gression. Reconstruction-based methods, operating on raw scanner data, allow for the simu-

lation of acquisition artifacts or the variation of acquisition angles, furthering model Acc and

robustness. However, the literature also delves into the challenges and considerations funda-

mental in selecting and implementing these data augmentation strategies. The effectiveness of

these approaches can vary significantly depending on the organ, pathology, and data modality

in question, necessitating a designed approach for different medical imaging tasks. Despite

the potential of data augmentation to substantially elevate model performance and generalisa-

tion, it’s imperative to maintain a balance between complexity and practicality, ensuring that

augmented data accurately reflects realistic scenarios (Garcea et al., 2023).

In addition to tackling the constitutive challenges in medical image analysis, the adoption

of transfer and reinforcement learning (TL and RL, respectively) techniques has emerged as

a transformative strategy, allowing DL models to leverage pre-trained knowledge and signif-

icantly enhance performance, especially in scenarios with limited annotated medical datasets

(Atasever, Azginoglu, Terzi, and Terzi, 2023; Hu, Zhang, Matkovic, Liu, and Yang, 2023).

TL has been instrumental in addressing the challenges of medical image analysis, especially in

situations where labelled data is insufficient, costly, or time-consuming to acquire. The funda-

mental concept of TL is to transfer knowledge from a source domain (where abundant data is

available) to a target domain (where data is limited) (Figure 2.3).

This approach is similar to a person leveraging their existing knowledge to learn a new, re-

lated task more efficiently. In medical image analysis, TL has been widely used due to the

strict requirements for expert annotations and the often-limited availability of labelled med-

ical images. Pre-trained models on large datasets, such as ImageNet, are adapted to medical

tasks through techniques like weight initialisation and fine-tuning. In former case, a pre-trained
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Figure 2.3: Transfer Learning from ImageNet (Mukhlif, Al-Khateeb, and Mohammed, 2023).

model’s weights are used as a starting point and further updated with medical data. Fine-tuning

involves adjusting the weights of certain layers while keeping others frozen, especially when

the new task is similar to the pre-trained task but the dataset is relatively small. The impact

of TL on medical image analysis has been significant, particularly in improving diagnostic ac-

curacy, automating disease detection, and reducing the time and resources required for model

training from scratch. For instance, TL has been employed successfully in various medical

imaging tasks such as brain tumour segmentation, lung nodule detection, and breast cancer

classification.

RL represents a dynamic and powerful approach in medical image analysis, offering the

potential to significantly enhance decision-making processes and automate complex tasks by

iteratively learning optimal strategies from interactions with the environment (Hu et al., 2023).

The impact of RL on medical image analysis has been increasingly recognised for its potential

in enhancing diagnostic accuracy and automating complex tasks. This comprehensive review

delves into the integration of RL in various medical imaging tasks, highlighting its unique

advantages and the wide range of its applications. Unlike traditional supervised and unsu-

pervised learning models, RL thrives in environments where vast amounts of annotated data

are limited or susceptible to bias, learning through interaction and exploiting past experiences.
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This adaptability makes RL particularly valuable in medical settings, where data annotations

can be resource-intensive and subject to human error. Medical image analysis tasks, including

detection, segmentation, classification, and synthesis, have all benefited from RL’s dynamic ap-

proach. From enhancing landmark and lesion detection to optimising segmentation processes

and improving image classification with minimal training data, RL has demonstrated signif-

icant promise. Moreover, its role in medical image synthesis, particularly in semantic map

generation and pixel value alteration, showcases its adaptability.

TL and RL are powerful paradigms in the field of medical image analysis, each with its

unique advantages. However, they are not seamless, presenting several obstacles that can limit

their effective implementation (Atasever et al., 2023; Hu et al., 2023). TL, while reducing the

need for large, annotated datasets by leveraging knowledge from pre-trained models, faces the

challenge of domain adaptation. When the source and target domains differ significantly, the

transferred knowledge may not align well, leading to a phenomenon known as negative transfer.

Ensuring that the model generalises well to the new domain without overfitting to the source

domain’s features requires careful fine-tuning and validation, a process that can be both time-

consuming and computationally demanding (Atasever et al., 2023). RL, on the other hand, is

fundamentally suited for environments where interaction and sequential decision-making are

crucial. In medical image analysis, RL can navigate through sequential data, learning from the

environment to make predictions or decisions. However, the complexity of defining the state,

action, and reward space in medical contexts can be challenging. The high dimensionality of

medical images and the implications involved in the medical decision-making process demand

thorough design and tuning of the RL model. Furthermore, the training process for RL mod-

els is often computationally intensive and time-consuming, requiring a substantial number of

trial-and-error interactions, which can be a significant bottleneck in time-sensitive medical set-

tings (Hu et al., 2023). In both techniques, the interpretation and explainability of the model’s

decisions are crucial, especially in medical applications where decision-making needs to be

transparent and justifiable. Ensuring that the models not only perform well but also provide

insights into their decision process is a challenge that needs continuous attention.
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In the field of medical image analysis, DL architectures have made significant progress

across various disease types, each showcasing unique contributions along with fundamental

limitations (Razzak, Naz, and Zaib, 2018; Mall et al., 2023). The most commonly used DL

architectures for these applications vary based on the specific requirements of the disease di-

agnosis and the nature of the imaging techniques involved. For Diabetic Retinopathy (DR),

automated detection of related diseases has been realised using Deep CNNs (DCNNs). Stud-

ies have demonstrated high sensitivity and specificity in classifying and detecting DR cases,

particularly using datasets like EyePACS-1, Messidor-2, Kaggle fundus, DRIVE, and STARE.

Additionally, in ophthalmology, architectures like the Visual Geometry Group 16 (VGG-16)

model and the Network Followed Network (NFN+) model have been successful in tasks such

as retinal vessel mapping and DR classification, achieving high area under the curve (AUC)

scores. The ability of these networks to process high-resolution images and extract minute

features is commendable. Nonetheless, the models may struggle with generalisability across

different datasets and require extensive computational resources. For tumour detection in vari-

ous body parts, DL methods have been utilised to process mammographic images, ultrasound

images, and MRI scans. CNNs, along with SVMs for classification, have shown promising

results. DL has also been applied in the analysis of MRI, Positron Emission Tomograp (PET)

images, and functional MRI for the detection of AD’s and Parkinson’s diseases. CNNs, DBNs,

and sparse AEs have been effectively used for feature extraction and classification. For lung

diseases, U-Net and V-Net models have demonstrated efficacy in segmentation tasks, with high

dice coefficient indices indicating precise delineation of lung regions. These models have also

been pivotal during the COVID-19 pandemic for rapid diagnosis and segmentation of infec-

tions in lung CT scans. However, their performance heavily depends on the quality and size

of the training data. Also, the time required for training and fine-tuning these complex models

can be substantial.

While DL architectures continue to revolutionise medical image analysis, offering more

automated, accurate, and faster diagnostics, several challenges persist. The reliance on large,

annotated datasets for training, the computational cost of training and inference, and the need
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for models that generalise well across diverse medical settings are some of the critical prob-

lems. Furthermore, the interpretability of these models remains a crucial aspect, especially

in medical applications where understanding the model’s decision-making process is vital for

clinical acceptance and trust. Future research directions may focus on addressing these chal-

lenges, developing more robust and generalisable models, and enhancing the interpretability

and transparency of DL systems in healthcare.

DL has revolutionised the field of medical image analysis, particularly in the recognition

of multiple lesions from medical images (Jiang et al., 2023). This technology has brought

significant advancements by enabling the analysis of complex image patterns and the identi-

fication of implicit differences between various lesion types, which are often challenging for

human observers. DL models, particularly CNNs, have demonstrated remarkable performance

in accurately classifying, detecting, and segmenting lesions in various organs such as the brain,

skin, breast, lungs, and abdomen. These models have the ability to learn hierarchical feature

representations from medical images, allowing them to capture both the local details and the

global context of the lesions. As a result, DL-based approaches have shown great potential in

improving diagnostic accuracy, reducing the workload of radiologists, and ultimately enhanc-

ing patient care by enabling early detection and treatment of diseases. Below are the tables ( 2.7

and 2.8) summarising the contribution of DL, the limitations, and the architectures/techniques

applied for each of the following:

• Generalised paradigm for multiple-lesion recognition

• Multiple-lesion recognition in different body regions
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Table 2.7: Generalised Paradigm for Multiple-Lesion Recognition (Jiang et al., 2023; Khan
et al., 2020; McNeely-White, Beveridge, and Draper, 2020)

Aspect Contribution of Deep

Learning

Limitations Architectures/ Tech-

niques Applied

Classification Improved accuracy in

identifying specific dis-

eases from medical im-

ages.

Requires large datasets

for optimal perfor-

mance; may struggle

with highly imbalanced

data.

CNNs, ResNet, VGG-

16, VGG-19, Trans-

fer Learning (TL) with

fine-tuning

Detection Ability to detect im-

plicit and early-stage le-

sions, enhancing early

diagnosis.

Challenges in dealing

with varying image

quality and artifacts.

Two-stage models

(RCNN, Fast-RCNN),

Single-stage mod-

els (YOLO, SSD),

Attention Mechanisms

Segmentation Precise segmentation of

lesion areas, crucial for

treatment planning and

monitoring.

Requires high computa-

tional resources and can

be sensitive to hyperpa-

rameter settings.

U-Net, V-Net, nnU-Net,

Encoder-decoder archi-

tectures, Dice Loss for

optimisation
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Table 2.8: Multiple-lesion Recognition in Different Body Regions (Ananda et al., 2021;
Cuevas-Rodriguez et al., 2023; Krizhevsky, Sutskever, and Hinton, 2012)

Disease Dataset Contributions Limitations DL Architecture

Brain

Lesions

BRATS,

CuRIOUS,

HECKTOR,

SLCN,

ADNI, CAD-

Dementia

MRI

Identification of tu-

mours. Widespread

use in categorising

conditions like AD

and segmenting

brain structures.

Enhanced ability

to differentiate be-

tween various types

of brain lesions.

Detection and clas-

sification of brain

images

May require pre-

processing to han-

dle variations in im-

age acquisition pro-

tocols.

CNN, DBN, Sparse

AE, SVM, TL,

Attention Mech-

anisms, Capsule

Neural Network

(CapsNets)

Continued on next page
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Table 2.8: Multiple-lesion Recognition in Different Body Regions (Continued)

Disease Dataset Contributions Limitations DL Architecture

Ocular

Lesions

EyePACS-1,

Messidor-2

Detection and clas-

sification of DR

cases. Improved

classification of

ocular diseases,

such as Age-related

Macular Degener-

ation (AMD) and

Diabetic Macular

Oedema (DMO).

High AUC scores

in tasks like retinal

vessel mapping and

DR classification.

Struggles with

generalisability

across datasets.

Requires extensive

computational re-

sources. Sensitivity

to image quality

and the need for

precise lesion

segmentation.

VGG-16, NFN+,

DCNN, CNN with

multi-scale fea-

ture fusion, TL,

Attention-CNN

Continued on next page

44



Table 2.8: Multiple-lesion Recognition in Different Body Regions (Continued)

Disease Dataset Contributions Limitations DL Architecture

Lung

Lesions

LUNA16,

ANODE09

High accuracy

in segmentation.

Essential during

COVID-19 for

rapid diagnosis and

lung segmenta-

tion. Identification,

description, and

categorisation of

tumours from CT

imaging and radiog-

raphy using CNNs.

Unified techniques

for identifying var-

ious illnesses with

lung X-rays.

Requires large,

quality datasets for

training. Time-

consuming training

and fine-tuning.

Need for large and

diverse datasets to

cover the spectrum

of lung diseases.

V-Net, 2D-CNN,

3D-CNN, U-Net

based segmenta-

tion, Multi-stage

approaches.

The concept of using blocks of layers as structural units is also highlighted as an emerg-

ing direction (Khan et al., 2020; McNeely-White, Beveridge, and Draper, 2020). The survey

categorises recent CNN architectures into seven distinct categories based on their innovative

approaches: spatial exploitation, depth enhancement, multi-path processing, network width,

feature-map exploitation, channel boosting, and attention mechanisms. The examination of

CNNs underscores the shift towards more sophisticated architectural designs, moving beyond

simple parameter optimisation to more complex structures that significantly enhance the net-

work’s ability to learn from data (Ananda et al., 2021; Cuevas-Rodriguez et al., 2023). Datasets

of labelled images were relatively small, and object recognition in realistic settings was a chal-
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lenge due to the variability in object presentations. Therefore, there was a need to leverage

a large learning capacity provided by CNNs, combined with recently available large labelled

datasets like ImageNet, to significantly improve performance on object recognition tasks. In

this context, AlexNet, introduced by Alex Krizhevsky et al. in 2012, is one of the well-known

CNNs that has significant breakthrough in the field of DL and computer vision where it be-

came the foundational architecture of several subsequent CNN models (Krizhevsky, Sutskever,

and Hinton, 2012). It significantly outperformed other models in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC-2012). AlexNet’s architecture consists of 5 convolu-

tional layers followed by 3 fully connected layers. It utilises Rectified Linear Unit (ReLU) as

the activation function, deviating from the classic application of tanh and sigmoid functions

commonly used at the time (Ananda et al., 2021). The use on ReLU nonlinearity improves

training speeds by preventing vanishing gradient problems. Additionally, AlexNet employs

dropout to avoid overfitting in its fully connected layers. It is also known for its implemen-

tation of data augmentation techniques such as image translations, horizontal reflections, and

patch extractions. Towards reducing the size of the network and improving its ability to pick up

on features, AlexNet uses overlapping max pooling. Despite its attempt to reducing overfitting

and the usage of parallel splitting across graphics processing units (GPUs), AlexNet presented

several drawbacks to include:

• Size and complexity where is relatively large and computationally intensive compared to

traditional vision models, requiring significant GPU resources for training.

• Potential overfitting where despite the use of dropout, the network’s complexity and

depth mean it can still be vulnerable to overfitting without thorough oversight of reg-

ularisation and training data augmentation.

• Static Architecture where the latter is relatively fixed and does not employ modules or

blocks that can be easily stacked or modified, limiting flexibility compared to other CNN

modular-based designs.

These drawbacks led to the investigation of the impact of CNNs depth on the accuracy of
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large-scale image recognition. Attempts to enhance these architectures have mainly focused

on aspects like the size of the feature maps or the stride of convolutional layers. Towards

filling a crucial gap by systematically exploring how increasing network depth, facilitated by

small convolutional filters, VGG network has been introduced by Simonyan and Zisserman in

2014 (Simonyan and Zisserman, 2014). The primary attribute of VGG network is its genetic

layout architecture’s simplicity using fixed size of input RGB images of 224x224 passing it

through 3x3 convolution filters. Similar to AlexNet, these are then followed by ReLU acti-

vation functions. These blocks are stacked increasing depth between 16 and 19 convolutional

layers, namely VGG-16 and VGG-19 respectively. Each of these models performs max-pooling

after a set of fully connected layers. VGG’s design choice is pivotal, demonstrating that deeper

networks could significantly improve upon prior architectures (Razzak, Naz, and Zaib, 2018;

Bressem et al., 2020). Subsequently, VGG significantly improved the accuracy on the Ima-

geNet dataset, showcasing the benefits of deeper networks (Yang et al., 2021; Bressem et al.,

2020). Also, features learned by VGG networks have demonstrated a well transfer to other im-

age recognition tasks, demonstrating the adaptability of the learned representations. Despite the

deeper representation of VGG-19 compared to VGG-16 with the expectation to capture more

complex features, the former could be resource-intensive and only provide marginal accuracy

improvement which may not justify the increased complexity. That is, the computational inten-

sity is a common theme for both VGG’s versions where it limits their deployment on hardware

with limited memory. Given their capacity and depth, both VGG networks could be vulnerable

to overfitting, especially when trained on smaller datasets without adequate regularisation or

data augmentation (Yang et al., 2021). Addressing the degradation problem observed when

networks become deeper, where performance saturates and then degrades rapidly, has always

been of great importance. Contrary to expectations, this degradation was not due to overfitting

but because deeper networks are harder to optimise (Yang et al., 2021).

Authors in (He, Zhang, Ren, and Sun, 2016a) have introduced Residual Network (ResNet)

in 2015. This novel architecture, through its residual learning framework, makes it easier to

optimise the network and enable accuracy improvement from significantly increased depth. The
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key innovation in ResNet is the introduction of "skip connections" or "shortcut connections"

that allow gradients to flow through the network directly, addressing the vanishing gradient

problem and enabling the training of networks with depths of up to hundreds or even thousands

of layers. The main principle of those connections is to fit the input from preceding layer to the

following layer without introducing any modification to the current input, which leads to have

a deeper network. The core idea behind ResNets is to learn residual functions with reference to

the layer inputs, instead of learning unreferenced functions. This approach allows the training

of networks with depths of up to 152 layers, substantially deeper than conventional networks

like VGG networks, yet maintaining lower complexity (He, Zhang, Ren, and Sun, 2016b).

ResNet network utilises bottleneck designs for efficiency, with blocks containing 1x1, 3x3, and

again 1x1 convolutions, where 1x1 convolutions reduce and then increase dimensions, leaving

the 3x3 layer as a bottleneck.

Two major types of blocks are composing a ResNet network defined respectively as the

identity and convolutional blocks, resulting two versions of skip connections including the

identity and projection shortcuts. Identity connections bypass the original input to the addition

operator of the current block in order to make sure that the following layer performance level

will be at least the same as the previous layer without degradation. Projection shortcut, how-

ever, is a connection that performs a convolutional operation to ensure the volume size remain

the same after each addition operator. The image volume size injected into a ResNet architec-

ture has a noticeable impact on the skip connections. In case the input dimension is very small

compared to the output image dimension, three solutions could be introduced to solve image

size compatibility problem described as the following (Szegedy et al., 2015):

• Increasing the input dimension by performing all the skip connections as identity short-

cuts mapping and setting a zero padding. In such case no extra parameters are required.

• Performing the projection shortcut mapping to only increase the input dimension and set

the skip connections as an identity shortcut. As a result, extra few parameters are needed.

• Setting all the skip connections as projection shortcuts where a larger number of param-
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eters is required, indeed.

The third solution proved a better efficiency compared to the other two solutions, based on

experiments performed in (Huang, Liu, Van Der Maaten, and Weinberger, 2017b), where pro-

jection shortcuts ensured the volume size stability. ResNet network has been introduced in sev-

eral versions differing mainly by the increase of the number of layers. Each of these versions

present an ease of training due to skip connections helping with vanishing gradients, consis-

tently strong performance, and adaptability in application beyond classification. However, a

common drawback is that ResNet architecture is resource-intensive, particularly deeper mod-

els, diminishing outcomes on performance with increased depth, complexity in deployment on

edge hardware.

Preventing overfitting has always been a target for several years. In fact, given the large

number of parameters in deeper and wider networks, there is a significant risk of overfitting,

especially when the number of labelled training examples is limited. Additionally, there has

been a consistent need to accomplish computational efficiency. Towards tackling these issues,

Inception network, originally introduced as GoogleNet by Google researchers in 2014, has been

designed with the aim to approximate an optimal sparse structure with dense, computationally

efficient components, allowing for increased network depth and width without a significant in-

crease in computational requirements (Szegedy et al., 2015). Inception is well known for its

deep and wider architecture that achieves high accuracy in image classification tasks with rela-

tively efficient computation. This was achieved by introducing the inception module allowing

for efficient computation by combining filters of different sizes to include 1x1, 3x3, and 5x5

convolutions within the same layer. Inception’s foundational architecture applies max-pooling

layers to reduce the spatial dimensions of the feature maps. The network also uses batch nor-

malisation (BN), Root Mean Squared Propagation (RMSprop) optimiser, and employs a global

average pooling layer at the end of the network instead of fully connected layers, which re-

duces the total number of parameters and helps to control overfitting. The original version of

Inception network, known as Inception-V1, has introduced a level of implementation complex-

ity due its novel inception module which did not exist in prior CNNs. In addition, this version
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lacks in residual connections, which could have improved training for even deeper networks.

Follow-up versions have been developed towards enhancing the foundational architecture of

Inception-V1, namely, Inception-V2 and Inception-V3. Despite the improved architecture, the

reduction of number of parameters and computational cost through factorisation as well as la-

bel smoothing implementation towards regularising the model and preventing overfitting on

the training data, Inception-V2 and Inception-V3 faced several drawbacks. In fact, as improve-

ments were added, the architectures of these versions became increasingly complex and harder

to replicate. Moreover, the increase in accuracy began to require more complex engineering

and hyperparameter tuning. Deeper networks, unlike wider networks such as Inception family,

are suffering from several problems including:

• Hard detection of salient objects that have large size variation.

• Choosing the right size of kernel.

• Stacking convolutional layers to get a very deep network causes an overfitting and an

expensive computation cost.

In order to overcome the aforementioned problems, Inception-V4 has been introduced per-

forming with filters that have multiple sizing based on the information distribution: (1) larger

kernel for globally distributed information, and (2) smaller kernel for locally distributed in-

formation. This leads to obtain a wider network instead of deeper one which represents the

principle of inception module composing the Inception family networks. The drawbacks pre-

sented by the naïve Inception-V1, complex Inception-V2 and V3, it has been suggested to have

uniform modules in order to boost the network performances. As a result, the stem modules

have been modified and introduced three different versions of inception modules named A,

B, and C respectively (Tan and Le, 2019). Inception-V3 has introduced a new module called

the reduction module that aims to reduce the computation complexity by going wider instead

of deeper and to avoid the loss of information that might be due to an excessive reduction

of dimensions. However, its reduction blocks have not been explicitly implemented, unlike

reduction blocks of Inception-V4. In fact, two main reduction blocks have been introduced
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including reduction block A that reduces a 35x35 dimension into 17x17 dimension, and a re-

duction block B that reduces the resulted dimension into 8x8 size. The hybrid integration of

Inception with ResNet network, resulting Inception-ResNet, has combined the benefits of in-

ception modules with residual connections, leading to easier training of deeper networks. In

addition, this combination has offered improvements in accuracy and efficiency, matching or

surpassing other architectures of its time. Therefore, it allowed for scaling the network deeper

without the degradation problem. However, this architecture became one of the most complex,

combining two powerful ideas but at the cost of simplicity. Also, training and deploying these

models require significant computational resources, especially for real-time applications.

DL models, including CNNs, struggled with the problem of vanishing gradients, making it

challenging to train very deep networks. While architectures like ResNets introduced skip con-

nections to mitigate this issue, a novel model introduced by Gao Huang et al. in 2017, took this

concept further by ensuring maximum information and gradient flow between all layers in the

network, named Densely Connected Convolutional Network (DenseNet) (Huang et al., 2017b).

This was achieved by connecting each layer to every other layer directly in feed-forward mode,

enhancing feature propagation and encouraging feature reuse, which in turn addressed the van-

ishing gradient problem more effectively and led to models that were both deep and efficient

to train. For a DenseNet with L layers, there are L(L+1)/2 direct connections. Unlike tra-

ditional CNNs, where the input to each layer is only the output from the previous layer, in

DenseNet, each layer receives the concatenated outputs from all preceding layers as its input.

This dense connectivity pattern allows for substantial depth in the network with fewer param-

eters. DenseNets consist of multiple densely connected blocks, with layers within each block

being directly connected to every other layer. Transition layers, which perform convolution and

pooling operations, connect these dense blocks. This design allows for significant reductions

in parameters through feature reuse while maintaining or improving model performance on

various benchmarks. Similar to ResNet, DenseNet presented several versions varying on the

number of layers, hence parameters, as follows:

• DenseNet-121: this version is designed to balance between efficiency and computational
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requirement, which makes it suitabefor wider range of applications.

• DenseNet-169: this version presents a deeper architecture towards improving accuracy

on complex datasets.

• DenseNet-201: this version provides a higher capacity and potentially better performance

on very challenging visual recognition tasks.

• DenseNet-264: this version represents the most extensive version, aiming at expanding

the limits of performance in various benchmarks.

Each DenseNet variant is characterised of a growth rate which critically influences the

model’s depth and complexity, effectively resulting the number of new features each layer

contributes to the global feature map, thus balancing between model efficiency and its ability

to represent complex features. Despite their significant contributions in enhancing deep CNNs

architectures, DenseNet networks present a variety of disadvantages to include:

• Memory Consumption: The concatenation of feature maps from all preceding layers

could lead to increased memory usage during training, which may be a constraint on

hardware with limited resources.

• Computational Overhead: While parameter-efficient, the dense connections increase the

computational complexity, especially as the network depth increases.

• Potential for Overfitting: Despite its regularising effect, the extensive reuse of features

in some scenarios might lead to overfitting, particularly on smaller datasets without the

consideration of relevant regularisation techniques.

Another version fundamentally composed of DenseNet architecture has been introduced by

same authors in 2018, namely Multi-Scale DenseNet (MSDNet) (Huang et al., 2017a). MSD-

Net has been designed on the basis that it can adapt its computational resource usage dynami-

cally, depending on the complexity of the input image. This adaptability makes it highly suit-

able for real-world applications where computational resources are a bottleneck. The complex
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design combining multi-scale representation and dense connectivity could potentially introduce

challenges in understanding, implementing, and optimising the network. The architecture of

MSDNet introduces a risk of overfitting, especially when trained on limited data without appro-

priate regularisation techniques. Similar to DenseNet, while designed for efficient processing,

the multi-scale and dense connectivity aspects of MSDNet network could negatively impact the

computational overhead during the training phase.

In addition to the discussed well known CNN architectures, several convolution-based

models have been introduced for image processing to include: SqueezeNet, MobileNet, Shuf-

fleNet, EfficientNet, Extreme Inception Network (Xception), High-Resolution Network (HR-

Net), HigherHRNet, Neural Architecture Search Network (NASNet), NoisyStudent, ResNeXt,

and Squeeze-and-Excitation based Network (SENet) (Bianco, Cadene, Celona, and Napole-

tano, 2018). Table 2.9 presents a brief overview of each architecture, its advantages and

disadvantages.
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Table 2.9: Overview of Additional CNN Architectures: Advantages and Disadvantages

CNN Network Architecture

Overview

Advantages Disadvantages

SqueezeNet (Iandola

et al., 2016)

• Utilises Fire mod-

ules consisting of a

squeeze layer with

1x1 filters followed

by an expand layer

with a mix of 1x1

and 3x3 filters.

• Begins with a

single convolution

layer, followed by

eight Fire modules,

concluding with a

final convolution

layer.

• Employs delayed

downsampling for

accuracy improve-

ment.

• Reduces commu-

nication overhead in

distributed training.

• Facilitates deploy-

ment on hardware

with limited mem-

ory.

• Maintains com-

petitive accuracy

with significantly

reduced size.

• Complexity in

Design where it

requires critical

trade-off considera-

tions between model

size, efficiency, and

accuracy.

• Limited capacity

where parameter

reduction might

affect performance

on more challenging

tasks.

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

MobileNet-V1

(Howard et al., 2017)

• Uses depth-wise

separable convolu-

tions

• Highly efficient

• Suitable for mobile

devices

• Retains reasonable

accuracy

• Lower accuracy

compared to larger

models

• Trade-off between

latency and accu-

racy

MobileNet-V2

(Howard et al., 2017)

• Replaced residual

structure with linear

bottlenecks

• Uses shortcut con-

nections

• Improved effi-

ciency and accuracy

compared to V1

• Better perfor-

mance on various

tasks without signif-

icant size increase

• Might under-

perform against

recent architectures

in speed-accuracy

trade-off

• Replaced residuals

can be complex to

implement

MobileNet-V3

(Howard et al., 2017)

• Combines ar-

chitecture search

techniques with

NetAdapt algorithm

• Includes squeeze-

and-excitation

blocks

• Further efficiency

and accuracy im-

provements

• Incorporates fea-

ture recalibration

leading to higher

performance

• More complex due

to manual and archi-

tecture search com-

ponents

• Optimisation can

be challenging

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

ShuffleNet-V1

(Zhang, Zhou, Lin,

and Sun, 2018)

• Introduced group

convolutions and

channel shuffle

operations to reduce

computational cost

while maintaining

accuracy.

• Highly efficient

• Suitable for mo-

bile and embedded

devices.

• Maintains compet-

itive accuracy with

fewer parameters.

• Might limit rep-

resentational power

due to group convo-

lutions

• Requiring critical

tuning of hyperpa-

rameters.

ShuffleNet-V2 (Ma,

Zhang, Zheng, and

Sun, 2018)

• Focused on prac-

tical design for

real-world applica-

tions

• Optimising for

direct metrics

like speed and

efficiency.

• Improved compu-

tational efficiency

and simplified ar-

chitecture without

sacrificing perfor-

mance.

• Better utilisa-

tion of hardware

acceleration.

• Enhancements

require architectural

changes, complicat-

ing migration from

initial version.

• Might still not

match the accuracy

of more complex

models on certain

tasks.

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

EfficientNet-B0 to B7

(Tan and Le, 2019;

Tan, Pang, and Le,

2020)

• Based on a base-

line architecture

(B0) scaled up to B7

using an aggregated

coefficient.

• Utilises mobile

inverted bottle-

neck convolutions

with squeeze-

and-excitation

optimisation.

• High efficiency

with fewer param-

eters and floating-

point operations

(FLOPs).

• Scalable across

different computa-

tional budgets.

• Decrease in accu-

racy in case of larger

models (B6, B7)

• resource-intensive.

EfficientNet-V2 (Tan

and Le, 2021)

• Incorporates

Fused- Mobile

Inverted Bottleneck

Convolution (MB-

Conv), progressive

learning, and opti-

mised scaling for

depth, width, and

resolution.

• Faster training and

improved efficiency

without sacrificing

accuracy.

• Models are more

lightweight and

require less compu-

tational power for

both training and

testing.

• More complex and

resource-intensive

then the original

EfficientNet.

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

Xception (Chollet,

2017)

• Comprises 36

convolutional layers

organised into 14

modules around

depthwise separable

convolutions, which

include depthwise

convolutions fol-

lowed by pointwise

convolutions.

• Uses linear resid-

ual connections

around most mod-

ules.

• Outperforms In-

ception V3 on the

ImageNet and sig-

nificantly on larger

datasets.

• Easier to define

and modify due to

its linear stack of

depthwise separable

convolutions.

• Achieves perfor-

mance enhancement

through more effi-

cient use of parame-

ters.

• May need optimi-

sations at depthwise

convolution opera-

tions to match In-

ception V3’s speed.

• Performance may

heavily rely on opti-

misation configura-

tions.

• further tuning re-

quired for optimal

results on various

datasets.

HRNet-V1 (Wang et

al., 2020)

• Starts with high-

resolution stream

• Adds lower-

resolution streams

with parallel con-

nections.

• High accuracy for

pose estimation and

segmentation.

• Adaptable across

tasks

• Higher computa-

tional and memory

demands

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

HRNet-V2 (Wang et

al., 2020)

• Similar to the

initial version with

modifications for

object detection, im-

proved cross-scale

connections.

• Improved feature

fusion for detection

• Maintains task

flexibility with

enhancements.

• Increased model

complexity

• Higher training

and testing time.

HRNet-W (Wang et

al., 2020)

• Core HRNet ideas

optimised for classi-

fication

• reduces network

width

• More efficient than

original HRNet

• Competitive per-

formance for classi-

fication

• Trade-off between

efficiency and peak

accuracy, especially

for high-resolution

images.

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

HigherHRNet (Cheng

et al., 2020)

• HRNet Backbone:

Utilises HRNet’s

high-resolution

maintenance capa-

bilities.

• High-Resolution

Feature Pyramid:

Incorporates a

deconvolution mod-

ule for generating

higher resolution

feature maps.

• Multi-Resolution

Supervision: Ap-

plies different

resolution targets

during training to

ensure effective

scale variation han-

dling.

• Multi-Resolution

Heatmap Aggrega-

tion: Aggregates

heatmaps from dif-

ferent resolutions in

testing for improved

keypoint detection.

• Significantly en-

hances keypoint

localisation ac-

curacy for small

figures.

• Learns to produce

heatmaps that ac-

count for person

scale variations,

improving pose

estimation.

• Outperforms ex-

isting bottom-up

and some top-

down methods on

benchmarks without

needing refinement

techniques.

• Added modules

introduce computa-

tional complexity.

• The approach may

present training and

optimisation chal-

lenges, including

potential overfitting

on certain scales.

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

NASNet-A, B, C (Qin

and Wang, 2019)

• Variants discov-

ered during neural

architecture search

• focusing on

scalability and per-

formance.

• NASNet-A is the

most performant

model.

• High accuracy on

benchmarks

• Scalability across

different computa-

tional requirements

• Transferability to

other tasks.

• Computationally

intensive search

process

• Complex architec-

ture.

NASNet-Mobile (Qin

and Wang, 2019)

• A scaled-down

version of NASNet-

A

• optimised for

efficiency and per-

formance on mobile

devices.

• Designed for ef-

ficiency on mobile

devices.

• Competitive accu-

racy for its size.

• Sacrifices some ac-

curacy for efficiency

• Adapting and op-

timising for a wide

range of devices can

be challenging

NASNet-Large (Qin

and Wang, 2019)

• A scaled-up ver-

sion of NASNet-A

• optimised for max-

imum accuracy and

feature richness.

• Top accuracy on

image classification

tasks

• Produces rich fea-

ture representations.

• High computa-

tional requirements

• May not be suit-

able for real-time

applications or

on-device testing

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

NoisyStudent (Xie,

Luong, Hovy, and Le,

2020)

• Base Models:

EfficientNet archi-

tectures used as

starting points for

teacher and initial

student models.

• Data Augmen-

tation and Noise

Injection: Vari-

ations include

stochastic depth,

and dropout.

• Model Size Scal-

ing: Application

of NoisyStudent

across different

scales of Efficient-

Net (B0, B1, B2,

etc.), demonstrating

larger models ben-

efit more from the

approach.

• Achieves state-

of-the-art results

on benchmarks like

ImageNet.

• Makes mod-

els more robust,

improving generali-

sation.

• Effectively lever-

ages abundant

unlabelled data,

making it a cost-

effective strategy for

improving model

performance.

• Requires signifi-

cant resources for

training, pseudo-

labelling, and

iterative retraining.

• Effectiveness de-

pends on the quality

of pseudo-labels

generated by the

teacher model.

• The iterative

training process

adds complexity,

requiring careful

management of

noise and augmen-

tation strategies.

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

ResNeXt (Xie, Gir-

shick, Dollár, Tu, and

He, 2017)

• Utilises residual

blocks with grouped

convolutions, fea-

turing multiple

parallel paths (or

groups) within each

block.

• This structure is

repeated through-

out the network,

creating a highly

modular and scal-

able architecture.

• Different versions

include ResNeXt-50

(32x4d), ResNeXt-

101 (32x4d), and

ResNeXt-101

(64x4d), varying

in depth and group

configurations.

• Balances compu-

tational efficiency

with high accuracy.

• Modular design

allows for easy

adjustment of depth,

width, and cardi-

nality making it

scalable.

• Generally, out-

performs ResNet

models of similar

complexity.

• More complex

to implement than

traditional architec-

tures due to grouped

convolutions.

• Larger versions

require significant

computational

power.

• Increasing model

size can lead to

decreasing accuracy

improvements.

Continued on next page
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Table 2.9 : Overview of Additional CNN Architectures: Advantages and Disadvantages (Con-
tinued)

CNN Network Architecture

Overview

Advantages Disadvantages

SENet network (Hu,

Shen, and Sun, 2018)

• The core of

SENet, the SE

block, involves

two operations:

Squeeze, which

aggregates feature

maps across spa-

tial dimensions to

produce a channel

descriptor, and

Excitation, which

captures channel-

wise dependencies

through a gating

mechanism.

• This recalibration

process enhances

models perfor-

mance with minimal

additional computa-

tional overhead.

• Enhances the

network’s ability to

focus on relevant

features, improving

performance on

various tasks.

• SE blocks can

be integrated into

a wide range of

existing CNN ar-

chitectures, making

SENet a flexible en-

hancement method.

• Despite their effec-

tiveness, SE blocks

introduce mini-

mal computational

overhead.

• While conceptu-

ally straightforward,

fine-tuning aug-

mented models to

achieve optimal

performance can

require additional

resources.

• The added pa-

rameters and

complexity might

lead to overfitting

without proper

regularisation.

• The improvements

may be less signif-

icant when applied

to already highly

optimised models.
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2.2.2 ML Classifiers

When CNNs are integrated with ML classifiers, the potential for creating an efficient and ac-

curate medical image processing framework is dramatically enhanced. CNNs, as mentioned

above, known for their prowess in feature extraction directly from image data, combined with

the robust classification capabilities of ML classifiers such as Random Forest (RF), Decision

Tree (DT), eXtreme Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost), could

lead to a synergistic effect that can significantly improve the performance of medical image

analysis. This fusion, in addition to its potential to leverage the DL strengths of CNNs in han-

dling raw image data but also it capitalises on the nuanced decision-making and interpretability

offered by traditional ML classifiers. Such a hybrid approach promises to enhance to current

state-of-the-art methods in medical imaging, offering the potential for even more precise diag-

noses, improved patient outcomes, and a deeper understanding of complex diseases.

Table 2.10: ML Models Working Principles and Mathematical Representation

ML Model Overview Mathematical Representation

DT (Char-

buty and

Abdulazeez,

2021)

• DT is a tree-like model that resem-

bles a flowchart.

• It includes internal nodes, branches,

leaf nodes, and root node.

• Each tree partitions data recursively

based on attribute values, a process

known as recursive partitioning.

• The structure of a DT assists in visu-

alising the decision-making process.

The information gain for a split on

feature A is given by Equation 2.1,

where:

• I is the impurity measure,

• Dp, Dle f t , Dright are the datasets of

the parent, left child, and right child

nodes,

• Np, Nle f t , Nright are the number of

samples in each dataset.

Continued on next page
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Table 2.10: ML Models Working Principles and Mathematical Representation (Continued)

ML Model Overview Mathematical Representation

RF (Dai,

Bai, Sun,

Huang,

and Wang,

2018)

• RF uses multiple DTs for tasks like

classification and regression.

• It builds many DTs at training time.

• For classification, it uses the mode

of the classes predicted by the trees;

for regression, it uses the mean pre-

diction.

• Overfitting Correction where RF ad-

dresses the tendency of DTs to overfit

their training data.

• Randomness in trees where each

tree is built with a degree of random-

ness, either from different data sam-

ples or using different feature subsets

for splits.

For a regression problem, the predic-

tion of an RF is presented in Equation

2.2, where

• yt(x) is the prediction of the t-th DT

• T is the total number of trees.

For a classification problem with

classes C, the prediction is the class

with the majority vote, as shown in

Equation 2.3

Continued on next page
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Table 2.10: ML Models Working Principles and Mathematical Representation (Continued)

ML Model Overview Mathematical Representation

XGBoost

(Ramraj,

Nagamalai,

Pandian,

and Vimala,

2016)

• XGBoost is an advanced form of

gradient boosting, known for its effi-

cient and scalable performance.

• Parallel Processing: Utilises parallel

tree boosting, improving speed and

accuracy.

• Versatile framework where it is

compatible with Gradient Boosting

DTs (GBDT) and Gradient Boosting

Machines (GBM) methods.

• Distributed Computing: Operates

on distributed systems like Hadoop,

Sun Grid Engine (SGE) grid, and

Message Passing Interface (MPI).

• Large-Scale Application: Capable

of handling problems with billions of

data points.

XGBoost involves the summing of

predictions from N additive functions

(trees), formulated as in Equation 2.4,

where:

• yi is the predicted value for the i-th

instance,

• φ is the model,

• fk is a function representing an indi-

vidual tree,

• F is the space of all possible trees.

The objective function to be min-

imised is presented in Equation 2.5,

where:

• l is a differentiable convex loss func-

tion that measures the difference be-

tween the predicted value yi and the

actual target yi,

• Ω is the regularisation term.

Continued on next page
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Table 2.10: ML Models Working Principles and Mathematical Representation (Continued)

ML Model Overview Mathematical Representation

AdaBoost

(Sevinç,

2022)

• AdaBoost can be combined with

other learning algorithms to boost

their performance.

• Weak learners integration where it

integrates outputs from multiple weak

learners into a weighted sum for the

final prediction.

• Adjusts the influence of weak learn-

ers based on the accuracy of previous

predictions.

• It is particularly sensitive to noisy

data and outliers.

• AdaBoost is less prone to overfit-

ting compared to other learning algo-

rithms in certain situations.

The AdaBoost model representation

is as formulated in Equation 2.6,

where:

• ht(x) is the weak learner obtained in

the t-th iteration,

• αt is the weight assigned to ht(x),

which is computed based on the error

rate of ht on the training data.

The weights α are calculated as

shown in Equation 2.7, where εt is the

error rate of the classifier ht .

The aforementioned ML classifiers have made substantial contributions to the field of medi-

cal image processing. These algorithms offer a range of benefits, including the ability to handle

complex datasets with high dimensionality, provide interpretability in their decision-making

processes, and achieve high accuracy rates in classification tasks. In medical image processing,

these classifiers play a crucial role in identifying and categorising various pathologies, enhanc-

ing diagnostic precision, and facilitating timely and personalised treatment plans. Each algo-

rithm utilises the collective power of simpler models to achieve greater predictive performance.

RF leverages the diversity of multiple DTs to reduce overfitting. On the other hand, DT serves

as the fundamental building block for more complex models. In addition, XGBoost optimises

gradient boosting for speed and performance, and AdaBoost iteratively refines its learning from
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the errors of previous models. Table 2.10 explains the mechanisms and mathematical under-

pinnings that empower these algorithms to excel in predictive tasks, where Equation 2.1, 2.2,

2.3, 2.4, 2.5, 2.6, 2.7 are defined as follows:

IG(Dp,A) = I(Dp)−
Nle f t

Np
∗ I(Dle f t)−

Nright

Np
∗ I(Dright) (2.1)

y(x) =
1
T

T

∑
t=1

yt(x) (2.2)

y(x) = mode{y1(x),y2(x), . . . ,yT (x)} (2.3)

ŷi = φ(xi) =
N

∑
k=1

fk(xi), fk ∈ F (2.4)

Ob j(Θ) =
n

∑
i=1

l(yi, ŷi)+
N

∑
k=1

Ω( fk) (2.5)

F(x) =
T

∑
t=1

αt ∗ht(x) (2.6)

αt =
1
2

ln(
1− εt

εt
) (2.7)

2.2.3 Medical Image Modalities

By efficiently analysing vast amounts of medical imaging data, such as MRI scans, OCT Fun-

dus and X-rays, these ML classifiers help uncover critical insights into patient health, signif-

icantly contributing to advances in medical diagnostics and treatment strategies (Figure 2.4).

MRI scans are a sophisticated medical imaging technique used to capture high-resolution im-

ages of the inside of the human body without the use of ionising radiation, making them a safer

alternative to X-rays and CT scans. These scans utilise strong magnetic fields and radio waves

to generate detailed images of organs, soft tissues, bone structures, and other internal body

parts. These images are crucial for diagnosing a wide range of conditions, from brain tumours

and spinal cord injuries to musculoskeletal disorders and diseases affecting the heart and inter-
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Figure 2.4: Medical Images Considered in This Research: (a) Chest X-ray (CXR) Image, (b)
Brain MRI Scan, (c) OCT Scan, and (d) Fundus Image.

nal organs. OCT scans, on the other hand, offer a window into the eye’s retina, capturing its

layers with significant clarity to aid in the management of ocular diseases. Fundus photogra-

phy complements this by providing detailed images of the eye’s interior, crucial for tracking

changes over time. Meanwhile, X-ray imaging pierces beyond the surface, revealing the hidden

architecture of bones and dense tissues. Together, these imaging modalities constitute a set of

investigative imaging modalities that enhance the understanding of various medical conditions,

allowing for early detection and informed treatment decisions. These medical images will be

the main focus in the various experiments conducted in this research. Table 2.11 summarises

an overview of each medical imaging type.
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Table 2.11: Medical Images Characteristics: MRI, OCT, Fundus, and X-ray

Medical

image

Characteristics

MRI • High-Resolution Interior Imaging: MRI scans produce detailed images of in-

ternal body structures, including soft tissues, organs, and bones, using magnetic

fields and radio waves.

• Non-Ionising Procedure: Unlike X-rays and CT scans, MRI does not use ionis-

ing radiation, making it safer for repeated use.

• Soft Tissue Contrast: Exceptionally effective in distinguishing between different

types of soft tissues, making it invaluable for diagnosing brain, spinal cord, joint,

and muscle disorders.

• Disease Detection and Monitoring: Utilised for diagnosing and monitoring var-

ious conditions, such as tumours, stroke, and degenerative diseases.

• Guidance for Procedures: MRI guidance can be used for certain types of biopsies

or for planning surgeries (Desikan et al., 2006).

OCT • Non-invasive Imaging Test: OCT uses light waves to create cross-sectional im-

ages of the retina.

• Retinal Examination: It visualises the distinct layers of the retina, the light-

sensitive part of the eye.

• Mapping and Measurement: Allows ophthalmologists to map the retina and

measure its thickness accurately.

• Disease Detection: These detailed measurements assist in detecting various eye

diseases.

• Treatment Guidance: Helps guide treatment for conditions such as age-related

macular degeneration, diabetic eye disease, and glaucoma (Wieser, Biedermann,

Klein, Eigenwillig, and Huber, 2010).

Continued on next page
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Table 2.11: Medical Images Characteristics: MRI, OCT, Fundus, and X-ray (Continued)

Medical

image

Characteristics

Fundus • Interior Eye Imaging: Fundus photography captures images of the eye’s interior,

such as the retina, OD, macula, and posterior pole.

• Equipment Used: Utilises a complex microscope combined with a high-

resolution camera.

• Diagnostic Tool: Aids in diagnosing various eye diseases.

• Documentation: Helps in documenting the progression of eye conditions.

• Monitoring: Used for ongoing monitoring of eye health (Bernardes, Serranho,

and Lobo, 2011).

X-ray • Non-Invasive Technique: X-ray imaging views the body’s internal structures

without surgery.

• Radiography: Utilises X-rays to create images inside the body.

• Bone Imaging: Especially effective for visualising bones, which absorb X-rays

differently from soft tissues.

• Fracture Identification: Commonly used to detect bone fractures.

• Injury and Infection Assessment: Helps in identifying areas of injury or infec-

tion.

• Foreign Object Location: Aids in locating foreign objects embedded in soft

tissues (Huda and Abrahams, 2015).

2.2.4 Performance Evaluation Metrics

Evaluation metrics play a critical role in the development and validation of ML and DL appli-

cations, serving as essential tools for quantifying the performance of algorithms and models.

These metrics provide a quantifiable measure of the performance of a model in prediction de-

cisions when aligned with the actual outcomes, thereby facilitating the comparison of different
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Figure 2.5: Confusion Matrix Representation.

models and guiding the selection of the most effective one for a given task. Common metrics

such as accuracy, precision, recall, and the F1-score are widely used in classification tasks to

evaluate the correctness and relevance of the predictions. For regression tasks, metrics like

mean absolute error (MAE) are employed to assess the deviation of predicted values from the

true values. More complex applications, especially those involving medical imaging or natural

language processing, may require specialised metrics like the Area Under the Receiver Oper-

ating Characteristic curve (AUC-ROC) for evaluating model performance in a more nuanced

manner.

In this work, the main focus is on the following set of key evaluation metrics to include:

• Confusion Matrix: is used to describe the performance of a classification model. As

presented in Figure 2.5, confusion matrix summarises the number of correct and in-

correct predictions with count values and is broken down by each class to include the

following values:

- True Positives (TP): The cases in which the class was positive and the model predicted

positive.

- True Negatives (TN): The cases in which the class was negative and the model pre-

dicted negative.

- False Positives (FP): The cases in which the class was negative but the model predicted

positive.

- False Negatives (FN): The cases in which the class was positive but the model predicted
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negative.

• Accuracy (Acc): widely used in ML and DL applications measuring the proportion of

correctly classified examples over the total number of examples. Mathematically, Acc is

represented as:

Acc =
T P+T N

T P+T N +FP+FN
(2.8)

• Sensitivity (Sen): Used in binary classification to measure the proportion oftrue positive

examples that are correctly classified by the model. Mathematically, Sen is represented

as:

Sen =
T P

T P+FN
(2.9)

• Specificity (Spe): Used in binary classification to measure the proportion of TN exam-

ples that are correctly classified by the model. Mathematically, Spe is defined as follows:

Spe =
T N

T N +FP
(2.10)

• Precision-Recall (PR) Used to measure the trade-off between precision and recall at dif-

ferent classification thresholds. Precision and Recall are represented as follows:

Precision =
T P

T P+FP
(2.11)

Recall =
T P

T P+FN
(2.12)

• ROC curve: Provides a visualisation of the trade-off between true positive and false

positive rates (TPR and FPR, respectively). TPR and FPR are presented as follows:
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T PR =
T P

T P+FN
(2.13)

FPR =
FP

FP+T N
(2.14)

• F1-score: is the harmonic mean of precision and recall, giving both metrics equal weight.

It is useful when you need a balance between precision and recall. Mathematically, it is

presented as follows:

F1− score = 2∗ Precision∗Recall
Precision+Recall

(2.15)

• AUC: Used to measure the performance of a classifier by calculating the area under the

ROC and PR curve. Mathematically, the AUC can be found using integral calculus by

integrating the curve in the ROC or PR space:

For AUC-ROC:

AUC−ROC =

1∫
0

T PR(FPR)d(FPR) (2.16)

For AUC-PR:

AUC−PR =

1∫
0

Precision(Recall)d(Recall) (2.17)

To draw a clear line on how to choose the best set of evaluation metrics, it is important

to understand the advantages and inconveniences of each parameter. Table 2.12 provides a

summary comparison of aforementioned parameters.
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Table 2.12: Comparative Evaluation of Performance Metrics

Measurement

parameter

Pros Cons

Acc Easy to understand and calculate Can be misleading with imbalanced

datasets

Sen Focuses on TPR Doesn’t account for TNs

Spe Focuses on TNR Doesn’t account for TPs

PR Good for imbalanced datasets Doesn’t account for TNs

F1-score Accounts for both precision and re-

call

Can be biased towards either preci-

sion or recall

AUC score Aggregates performance across all

classification thresholds

Doesn’t account for class distribu-

tion

ROC curve Useful for imbalanced datasets,

where it may be more important to

optimise the TPR or FPR/FNR than

the overall accuracy.

The choice of the classification

threshold can have a significant im-

pact on the shape of the curve, and

the optimal threshold may be prob-

lematic.

In addition to the above, loss metrics are commonly used evaluation metrics for ML and DL

algorithms. These metrics measure the difference between the predicted and actual values and

provide an indication of how well the algorithm is performing. The following are some of the

commonly used loss metrics for different types of problems (Simonyan and Zisserman, 2014;

Ronneberger, Fischer, and Brox, 2015):

• MAE: used mainly for regression problems. It measures the average of the absolute dif-

ferences between the predicted and actual values. MAE is presented as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2.18)
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where n represents the number of observations, yi denotes the actual values, and ŷi rep-

resents the predicted values.

• Categorical Cross-Entropy (LCE): is used for multi-class classification problems. It

measures the difference between the predicted probabilities and the actual class labels.

The formula of LCE for a single example is as follows:

LCE(y, ŷ) =−∑
j

yi ∗ log(ŷ j) (2.19)

where:

- y is the binary indicator (0 or 1) if class label j is the correct classification for the ob-

servation,

- ŷ is the predicted probability of the observation being of class j. For a dataset with N

examples is as follows:

LCE =− 1
N

N

∑
i=1

∑
j

yi jlog(ŷi j) (2.20)

Each loss metric has its own advantages and disadvantages, depending on the problem

domain and the characteristics of the data. Table 2.13 presents a comparative summary of loss

metrics.

Table 2.13: Comparative Evaluation of Loss Metrics

Loss Metric Pros Cons

LCE Encourages the model to output

high confidence for the correct

class and low confidence for incor-

rect classes

Not accurate with imbalanced data

and sensitive to label noise and mis-

labelling

Continued on next page
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Table 2.13: Comparative Evaluation of Loss Metrics (Continued)

Loss Metric Pros Cons

MAE Less sensitive to outliers Does not punish larger errors more

severely than smaller errors

2.3 Advancements in Learning-based Segmentation Techniques

for Medical Image Processing

The field of medical image processing has experienced significant advancements, driven by the

incorporation of learning-based techniques. These innovations, originating from the domains

of ML and DL, have transformed the way medical images are analysed, interpreted, and lever-

aged for diagnostic objectives. From CNNs adept at image classification and segmentation to

RL and TL algorithms that enhance image reconstruction, the deployment of these advanced

computational strategies has markedly increased the precision, efficiency, and dependability of

medical diagnostics. These advancements not only enable early and accurate disease detection

but also improve treatment planning and patient monitoring, indicating a new era of person-

alised medicine. As the exploration of ML and DL in medical image processing progresses,

the potential for novel discoveries and innovations that further refine and improve patient care

is extraordinarily promising.

In this context, authors in (Ngo, Lu, and Carneiro, 2017) introduced a novel approach

for the automated segmentation of the left ventricle from cardiac cine MRI data using DBN

network, addressing the challenge of large shape and appearance variations in the visual object

of interest, especially when the annotated training set is small. This advantage is particularly

noteworthy as it underscores the method’s efficiency in leveraging DBNs alongside distance

regularised level set methods to enhance segmentation precision. However, the complexity

and considerable computational time required by this approach, coupled with its reliance on

initial segmentation techniques, indicates areas ready for further optimisation and refinement.
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The suggestion to incorporate 3D shape modelling and motion models presents a promising

avenue to transcend the current slice-by-slice segmentation limitation, potentially offering more

coherent and comprehensive segmentation.

Similarly, authors in (Bao, Zhu, and Li, 2023) introduced a hybrid-scale contextual fusion

network for medical image segmentation. It incorporates a hybrid-scale embedding layer be-

fore the transformer to capture object information across multiple scales. The network utilises

standard transformers and pooling transformers in the first two and last two skip connections,

respectively, to model long-range dependencies and handle long input sequences. A dual-

branch channel attention module was also proposed to focus on crucial channel features and

conduct multi-level features fusion. This fusion scheme effectively captures richer context and

detailed features, leading to efficient encoding and better segmentation performance. The study

addresses the challenge of automatic segmentation of medical images, which is complex due to

varying positions, sizes, and shapes of medical objects like organs and tumours. However, the

computational intensity and the complexity of the network architecture, despite efforts to miti-

gate these through pooling transformers, highlight significant challenges in implementation and

scalability. Moreover, the performance variability across different medical datasets or segmen-

tation tasks underscores the necessity for model-specific tuning, which could limit the method’s

applicability in diverse clinical scenarios. It becomes evident that while both approaches push

the boundaries of medical image segmentation through DL, they encounter common problems

in computational complexity, which highlights the need for model adaptability across various

segmentation tasks.

In the same context, authors in (Zheng, Liu, Feng, Xu, and Zhao, 2023) proposed a novel

neural network architecture for medical image segmentation named Cross-attention and Cross-

scale Fusion Network (CASF-Net) as shown in Figure 2.6. This network is designed to in-

tegrate both coarse and detailed feature representations by employing a dual-branch encoder

network that models non-local dependencies and multi-scale contexts. The proposed cross-

attention and cross-scale module within CASF-Net efficiently perform multi-scale information

fusion, capable of exploring long-range contextual information.
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Figure 2.6: CASF-Net Architecture Proposed in (Zheng, Liu, Feng, Xu, and Zhao, 2023).

Similarly, authors in (Ammari, Mahmoudi, Hmida, Saouli, and Bedoui, 2023) introduced a

novel Deep Active Learning (DAL) approach for right ventricle (RV) segmentation in cardiac

MRI images (CMRI). The study targets the challenge of automatically segmenting the RV in

CMRI images, a task traditionally done manually by radiologists, which is tedious and time-

consuming. The RV’s complex shape and the quality of CMRI images add to the segmentation

difficulty (Ammari et al., 2023). The proposed approach was tested on images from public

patients and custom subjects, resulting in an increase in the dice coefficient from 0.86 to 0.91,

indicating better overlap between the predicted segmentation and the ground truth.

While both methodologies exhibit significant advancements in medical image segmenta-

tion (Zheng et al., 2023; Ammari et al., 2023), they are not without their potential drawbacks.

CASF-Net’s dual-branch architecture, integrating CNN and transformer features, may intro-

duce increased model complexity and computational costs (Zheng et al., 2023). Such intricacy

necessitates precise tuning of the cross-attention and fusion mechanisms across various medical

imaging modalities, alongside attentive regularisation strategies to mitigate overfitting risks due

to the model’s complexity. Authors method in (Ammari et al., 2023), although benefiting from

the DAL approach to efficiently utilise unlabelled data, might encounter challenges related to

the substantial computational resources required for training and inference. The reliance on a

considerable annotated dataset for initial model learning, despite efforts to minimise labelling

workloads, could present practical constraints. Moreover, the method’s strategies to counteract

potential overfitting through data augmentation and uncertainty estimation highlight common

concerns in deploying DL models in medical imaging. Comparatively, the CASF-Net’s endeav-
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our to maximise the joint advantages of CNN and transformer features reflects a compelling

strategy to capture complex image details and contextual information (Zheng et al., 2023). This

contrasts with the DAL approach’s pragmatic use of unlabelled data to enhance model train-

ing efficiency and initial accuracy, demonstrating a focus on optimising data utilisation over

architectural complexity (Ammari et al., 2023).

Under a similar premise, authors in (Billot et al., 2023) proposed SynthSeg, a neural net-

work designed to segment brain scans across a wide range of contrasts and resolutions without

the need for retraining or fine-tuning. It is trained on synthetic data generated from a generative

model conditioned on segmentation. The approach uses domain randomisation, fully randomis-

ing the contrast and resolution of synthetic training data to achieve robust performance across

varied target domains. On the other hand, authors in (Kunhimon, Shaker, Naseer, Khan, and

Khan, 2023) introduced a learnable weight initialisation method for hybrid volumetric med-

ical image segmentation models. This approach, designed for medical data, aims to utilise

available medical training data to effectively learn contextual and structural indicators through

self-supervised objectives. It integrates easily into any hybrid model without needing external

training data. The method focuses on capturing the volumetric nature of medical data early in

the training process, improving segmentation performance by inducing contextual indicators

within the model.

SynthSeg’s adaptability to new contrasts and resolutions without the need for retraining

positions it as a highly adaptive tool in medical imaging analysis (Billot et al., 2023). The

use of synthetic data for training on perfectly aligned ground truths, which can be automati-

cally generated, along with its demonstrated robustness across a wide range of morphological

variability, underscores its potential for widespread clinical application. However, potential

limitations include its dependence on the generative model’s assumptions and the comprehen-

sive coverage of tissue tracings in training label maps to match all tissues present in test scans,

with the effectiveness against various lesions or pathologies remaining an area for future explo-

ration (Billot et al., 2023). Conversely, the method proposed in (Kunhimon et al., 2023) excels

through data-dependent initialisation, learning weight initialisation from the training data itself.
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Similarly, authors in (Xie, Pan, Zhang, and An, 2022) proposed CHI-Net (Context Hier-

archical Integrated Network), a CNN designed for medical image segmentation. CHI-Net is

structured to address the challenges of low contrast, high similarity, and varying scales among

different tissues in 2D medical images. It incorporates two primary modules: Dense Dilated

Convolution (DDC) and Stacked Residual Pooling (SRP). The DDC module captures compre-

hensive complementary features at multiple scales, while the SRP module integrates encoder

detail features through multiple effective field-of-views to generate more discriminative fea-

tures. The network is designed to be flexible and adaptive for different medical image seg-

mentation tasks (Xie et al., 2022). LAEDNet’s lightweight architecture, not only accelerates

the inference process but also ensures adaptability through its variable model sizes (e.i, small,

medium, and large), addressing diverse computational needs and application scenarios (Zhou

et al., 2022). The incorporation of the attention mechanism further refines segmentation ac-

curacy, delivering smoother object contours. However, the complexity nature in its design,

alongside the reliance on the diversity and quality of training datasets, presents challenges in

terms of generalisability and implementation. Additionally, the potential for further optimisa-

tion in model size and computational speed suggests undiscovered efficiencies within its archi-

tecture. Conversely, CHI-Net proved its adaptability to scale and to object variations, through

the contribution of its DDC module, and superior feature representation achieved by the SRP

module (Xie et al., 2022). These innovations enable CHI-Net to excel in various medical image

segmentation tasks, demonstrating robustness and superior performance against other segmen-

tation methods. Nevertheless, the increased complexity and computational demands introduced

by these modules could compromise its applicability in resource-limited settings or real-time

applications. Moreover, its current limitation to two dimensional (2D) images causes a sig-

nificant challenge for extending its application to three dimensional (3D) medical imaging,

necessitating further research and development.

Another research introduced in (Xia et al., 2022) proposed Edge-Reinforced Neural Net-

work (ER-Net), designed for segmenting vessel-like structures in 3D medical imaging modal-

ities. ER-Net is an encoder–decoder architecture that incorporates a Reverse Edge Attention
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Module (REAM) and an Edge-Reinforced Optimisation Loss (ERloss) to enhance the identifi-

cation and preservation of spatial edge information. Additionally, a Feature Selection Module

(FSM) is integrated to adaptively select discriminative features from both encoder and decoder,

emphasising the weight of edge voxels and improving segmentation performance (Xia et al.,

2022).

On the other hand, authors in (Wang, Li, and Cheng, 2023) introduced an extended EfficientNet-

based U-Net architecture, named EE-UNet, for the automatic and accurate segmentation of the

OD and optic cup (OC) in fundus images, which is crucial for clinical glaucoma screening.

The method uses EfficientNet to extract features at various scales, incorporates a Conditional

Random Field as a RNN (CRF-RNN) within the U-Net framework for end-to-end segmenta-

tion, and employs the ranger optimiser for better convergence. Additionally, a multi-label loss

function is designed to balance the foreground and background pixels (Wang, Li, and Cheng,

2023).

Comparatively, ER-Net’s emphasis on edge preservation and adaptive feature selection di-

rectly contrasts with EfficientNet/U-Net comprehensive approach, integrating advanced neural

network architectures and optimisation strategies for improved feature extraction and segmen-

tation refinement (Xia et al., 2022; Wang, Li, and Cheng, 2023). While both methods demon-

strate superior segmentation capabilities, their respective disadvantages highlight critical areas

for future research, particularly in simplifying network architectures, reducing computational

demands, and enhancing model interpretability and generalisability (Xia et al., 2022; Wang,

Li, and Cheng, 2023). Addressing these challenges will be paramount in advancing the field,

potentially requiring a fusion of the innovative techniques presented in these works to develop

more adaptive, efficient, and accessible segmentation tools for clinical applications.

On a similar pathway, a research proposed in (Xie et al., 2023a) introduced a deep adversar-

ial co-training method for semi-supervised semantic segmentation of medical images, address-

ing the challenge of distribution shift between labelled and unlabelled data . The core idea is

to enhance the model’s robustness against distribution shifts by integrating adversarial training

into the co-training process. This approach simulates distribution shift perturbations through
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adversarial perturbations and applies them to challenge the supervised training phase towards

enhancing the model’s resilience. Co-training involves training two sub-models on disjoint sub-

sets of the dataset to independently extract varied knowledge, enhancing overall performance

by integrating insights from both views and reducing confirmation bias. The proposed method

showed significant improvements on challenging medical datasets, achieving a Dice Similarity

Coefficient (DSC) score of 87.37% with only 20% of labels on the ACDC dataset, comparable

to using 100% of labels. On the SCGM dataset, which exhibits more pronounced distribu-

tion shift, the method achieved a DSC score of 78.65% with 6.5% of labels, outperforming

the baseline by 10.30%. These results demonstrate the method’s superior robustness against

distribution shifts in medical imaging (Xie et al., 2023a).

On the other hand, Authors in (Messaoudi, Belaid, Salem, and Conze, 2023) introduced

novel network architectures for 2D and 3D uni- and multi-modal medical image segmentation,

leveraging the efficiency of pre-trained 2D classification networks on natural images. The key

strategies include: (1) Weight TL (WTL) which is embedding a pre-trained 2D encoder into

higher-dimensional U-Net architectures, and (2) Dimensional TL (DTL), which is expanding

a 2D segmentation network into higher dimensions by extrapolating weights for use in 3D

U-Net-like architectures. These methods are validated on various medical imaging modalities

such as MRI, CT, and ultrasound, showcasing superior performance in challenges like CAMUS

(for echocardiographic data) and CHAOS (for MRI and CT abdominal images) (Messaoudi et

al., 2023). Authors focus on adversarial training and co-training aims to directly confront dis-

tribution shifts, enhancing model robustness and semi-supervised learning efficiency (Xie et

al., 2023a). In contrast, the method’s reliance on pre-trained networks and TL strategies aims

to bypass the computational expensive requirements traditionally associated with training DL

models from scratch, despite the fundamental risks of overfitting and the nuanced demands of

medical image data (Messaoudi et al., 2023). It is evident that both approaches highlight the

importance of innovative ML methodologies in improving segmentation outcomes, yet they

also illuminate the necessity for careful consideration of each method’s limitations and pre-

requisites (Xie et al., 2023a; Messaoudi et al., 2023). Addressing these challenges through
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further research and development will be crucial for advancing the field, potentially requiring

a synthesis of adversarial resilience and TL efficiency to create more adaptive, effective, and

user-friendly segmentation tools for clinical and research applications (Zhu, Wang, Li, and Li,

2023; Shi, Lu, Yin, Zhong, and Yang, 2023; Vasudeva and Chandrashekara, 2023).

2.4 Hybrid Models Versus Singular Approaches

In recent years, the landscape of computational models, particularly in the field of medical

image analysis, has witnessed a paradigm change towards the integration of hybrid method-

ologies. This section delves into the rationale behind the escalating interest in hybrid models

as opposed to traditional singular approaches. Singular models, characterised by their reliance

on a specific computational technique, have been the foundation of numerous advancements

in automated image analysis and disease diagnosis. However, the complexity of medical data,

coupled with the nuanced nature of various diseases, often overcomes the capacity of any single

method to provide a comprehensive solution.

2.4.1 Hybrid Methodologies in Medical Image Analysis: Bridging Com-

putational Techniques for Enhanced Performance

Hybrid models emerge as a sophisticated response to these limitations, combining the strengths

of diverse computational strategies to enhance accuracy, robustness, and interpretability. By

combining techniques such as DL, statistical analysis, and ML algorithms, hybrid models aim

to offset the basic weaknesses of singular approaches. This section aims to investigate the

comparative advantages of hybrid models, emphasising the way their multidimensional nature

allows for a more nuanced understanding and processing of medical images. Through a review

of related works and recent advancements, this section explores the transformative potential

of hybrid models in overcoming challenges that single-method approaches face, such as data

insufficiency, class imbalance, and the need for domain-specific adaptability. This overview

not only highlights the superiority of hybrid models in certain contexts but also sheds light
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on the evolving landscape of medical image analysis, where the synergy between different

computational paradigms paves the way for ground-breaking innovations.

Hybrid DL models offer several advantages that address some of the critical challenges

faced in data science and AI-driven fields, particularly in scenarios characterised by limited

data availability (Gavrishchaka, Yang, Miao, Senyukova, et al., 2018). One of the primary ben-

efits of these models is their improved performance in the face of data incompleteness. This

is achieved by leveraging domain-expert knowledge alongside compact ensembles of comple-

mentary low-complexity models that are discovered through optimisation techniques. Such

an approach enhances the model’s tolerance to incomplete datasets, a common obstacle in

many real-world applications. Furthermore, hybrid models excel in improving model accuracy

(Gavrishchaka et al., 2018). By collaboratively combining the strengths of optimisation-based

ensembles with DNNs, these models are capable of uncovering implicit patterns and non-

linear mixed terms that might be overlooked by singular DNN-based or optimisation-based

approaches. This fusion of methodologies allows for a significant increase in accuracy, making

hybrid models particularly valuable in complex problem-solving scenarios where precision is

paramount.

Operational simplicity is another notable advantage of hybrid models. The complexity in-

volved in discovering and training optimal DNN architectures can be challenging, especially

given the vast parameter spaces and architectural configurations possible (Gavrishchaka et al.,

2018). Hybrid models address this challenge by simplifying the operational workflow. This

is performed by reducing the problem’s dimensionality through the initial use of optimisation-

discovered components, streamlining the process of identifying and training the most effective

DNNs for the task at hand. Additionally, the flexible incorporation of domain knowledge stands

out as a critical benefit of hybrid models (Gavrishchaka et al., 2018). In areas with significant

data limitations, the ability to effectively integrate and leverage existing domain expertise is

invaluable. Hybrid models are designed to accommodate and utilise such knowledge, thereby

enhancing the model’s effectiveness and applicability in specialised fields. This aspect of hy-

brid models underscores their utility in addressing complex challenges where domain-specific

87



insights are crucial for achieving high levels of accuracy and performance.

Hybrid models bring together the strengths of deep automated techniques and traditional

ML approaches, offering several advantages that enhance their performance, applicability, and

scalability across a wide range of tasks (Bozkurt, 2022). One of the primary benefits of these

hybrid models is their high accuracy, with DL components achieving accuracies as high as

96.81%. This level of performance significantly surpasses that of classical ML methods, mak-

ing hybrid models especially valuable in applications where precision is paramount. Another

key advantage is the robust feature extraction capability of DL models (Bozkurt, 2022). Un-

like traditional methods that often require manual feature selection and extraction, DL models

are capable of automatically learning complex feature representations directly from raw data.

This ability not only simplifies the model development process but also ensures that the fea-

tures used for classification or prediction are optimally representative of the underlying data

patterns, thereby providing a more solid foundation for accurate decision-making. Moreover,

hybrid models demonstrate improved generalisation to new, unseen data (Bozkurt, 2022). This

characteristic is crucial for the practical deployment of models in real-world scenarios, where

the ability to accurately predict or classify instances that were not present in the training dataset

can significantly impact the effectiveness and reliability of the model. The enhanced generali-

sation capabilities of hybrid models stem from their sophisticated architecture, which combines

DL’s ability to model high-level abstractions with ML’s efficiency in handling structured data.

The adaptability and scalability of hybrid models stand out as significant advantages (Bozkurt,

2022). By integrating the strengths of ML and DL, these models offer flexible and scalable

solutions that can be adapted to a wide variety of tasks beyond their initial application domain.

Whether it’s activity recognition, image classification, or predictive analytics, hybrid models

can be adapted to meet the specific requirements of different applications, providing an adaptive

toolset for tackling diverse challenges across industries and research domains.

A review paper on hybrid DL (HDL) models was reported in the literature for image clas-

sification emphasises the importance of transitioning from single DL (SDL) models to HDL

models (Jena et al., 2021). This transition is crucial for enhancing performance by leveraging
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the strengths of multiple DL architectures or combining DL with ML models. HDL models

have demonstrated superior performance across various applications, particularly in medical

and non-medical image processing, by integrating the best aspects of two or more SDL models

or fusing DL with ML approaches. The importance of migrating to hybrid models is translated

by the fact that HDL models offer improved stability and performance by combining the ad-

vantages of multiple SDL architectures or integrating DL with ML. Also, the transition to HDL

models is driven by the need for more accurate and automated image classification solutions.

The paper categorises HDLs into three main types: spatial, temporal, and spatial-temporal,

based on the nature of the input data (images, videos, electronic time-series signals) (Jena et

al., 2021). Examples include the Inception-ResNet model, which combines two SDL models

(Inception and ResNet) for enhanced image classification. Applications range across medical

imaging, hyperspectral image classification, emotion recognition from audio-visual data, hu-

man activity recognition, and time-series data analysis, showcasing the diverse utility of HDL

models (Jena et al., 2021).

Hybrid models exhibit superior performance metrics compared to single models. This ad-

vantage is primarily due to the comprehensive feature extraction and classification capabilities

essential in hybrid architectures. By integrating multiple learning approaches, HDL models

can capture a wider range of data characteristics, from high-level abstractions to nuanced de-

tails that might be overlooked by single models. This capability enables hybrid models to

achieve higher accuracy, sensitivity, and specificity in tasks such as image classification, object

detection, and semantic segmentation. Furthermore, hybrid models offer enhanced flexibility

and an expanded application scope. This flexibility allows researchers and practitioners to de-

sign adapted solutions that are specifically optimised for the complexities of various imaging

tasks across different domains. Whether it’s medical imaging, satellite imagery analysis, or

automated quality inspection in manufacturing, hybrid models can be adapted to address the

unique challenges of each task. This adaptability is facilitated by the models’ ability to lever-

age both DL’s powerful representation learning and the domain-specific insights that traditional

ML models provide. Consequently, hybrid architectures are not only more adaptive but also
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capable of expanding the limits of what can be achieved across a broad spectrum of imaging

tasks, setting new standards for performance and applicability in the field.

The migration from solely using ML or DL models to adopting hybrid approaches is crucial

for enhancing the accuracy and efficiency of medical diagnoses, particularly in cancer detec-

tion (Painuli, Bhardwaj, and köse, 2022). Hybrid models, which combine the strengths of

various ML/DL techniques and sometimes incorporate traditional image processing methods,

are shown to better address the complexities of medical image analysis. These models excel in

handling diverse data types, extracting more nuanced features, and improving the interpretabil-

ity of results, which are essential for early and accurate cancer diagnosis. Authors in (Painuli,

Bhardwaj, and köse, 2022) discusses several hybrid models applied to the detection and clas-

sification of various cancers, including lung, breast, liver, pancreatic, and brain cancers, as

well as skin cancer. These models often combine classical image processing techniques with

advanced ML/DL algorithms to enhance feature extraction, segmentation, and classification

accuracy. For example, the use of cascade SVM (C-SVM), CNNs with data augmentation

techniques, and ensemble models incorporating different ML and DL architectures. The ap-

plications of these hybrid models span across different imaging modalities such as CT, MRI,

PET, and dermoscopic images, demonstrating their reliability and effectiveness in improving

diagnostic outcomes.

Hybrid DL models present a significant advancement in medical image processing, capital-

ising on the synergistic potential of combining various learning algorithms. These models stand

out for their improved diagnostic accuracy, a direct result of leveraging the strengths fundamen-

tal in multiple approaches. The ability to integrate and synthesise diverse perspectives enables

these models to achieve a level of precision that surpasses that of single-model systems. One of

the critical advantages of hybrid models is their robustness to the essential variability and com-

plexity of medical images. Traditional single-model approaches often struggle with the wide

range of variations present in medical imaging data, from differences in imaging modalities to

patient-specific characteristics. Hybrid models, however, can navigate these complexities more

effectively, offering more reliable and consistent performance across a broad spectrum of imag-
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ing scenarios. Efficient feature extraction is another benchmark of hybrid DL models. These

systems excel at identifying and combining features from different data levels and aspects, such

as spatial relationships, texture patterns, and contextual information. This capability is crucial

for detecting implicit anomalies that may be indicative of early-stage diseases or conditions

that are otherwise difficult to identify. Furthermore, the integration of various models within

a hybrid framework helps mitigate the risk of overfitting. By drawing on diverse data repre-

sentations and learning methodologies, hybrid models stimulate a more holistic understanding

of the data. This approach not only enhances the model’s accuracy on the training data but

also improves its generalisation to unseen data. Consequently, hybrid DL models are not just

more accurate and robust; they are also more adaptable and capable of delivering consistent

performance across different patient populations and imaging conditions.

2.4.2 Advancing Medical Diagnostics with Hybrid Computational Mod-

els

The emergence of hybrid models as a solution to these challenges is underscored by their capac-

ity to combine diverse data sources and modalities, thereby enhancing model generalisation and

robustness. By incorporating domain knowledge, hybrid models can effectively navigate data

imbalance and variability, improving their interpretability and reliability. Furthermore, hybrid

approaches facilitate the combination of ML/DL techniques with traditional analysis methods,

addressing complex medical data challenges, such as feature extraction and noise reduction.

Importantly, hybrid models also offer pathways to enhance model explainability, stimulating

greater acceptance and trust within the clinical community. Through these diverse advantages,

hybrid models present a compelling framework for advancing diseases diagnosis, promising

greater accuracy, adaptability, and clinical relevance in the face of the basic challenges caused

by ML/DL techniques.

In this context, Yan presented a comprehensive review of the importance and advances in

multi-task DL (MTDL) for medical image computing and analysis (Zhao, Wang, Che, Bao,
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and Li, 2023). Their paper emphasises the critical shift from traditional single-task models to

MTDL approaches due to the fundamental complexity and inter-connectivity of medical imag-

ing tasks. MTDL models leverage the relationships between tasks to improve performance,

generalisation, and computational efficiency. This paradigm shift is crucial for advancing med-

ical image analysis, offering a more holistic and efficient way to handle multiple interrelated

tasks simultaneously (Zhao et al., 2023). The review categorises MTDL network architectures

into four main types to include cascaded, parallel, interacted, and hybrid, each suited for differ-

ent task relationships and complexities. Notably, the hybrid architecture is highlighted for its

ability to integrate the advantages of the other three, making it particularly suitable for complex

task combinations in medical imaging. These architectures facilitate the joint learning of tasks

such as segmentation, classification, and disease diagnosis, demonstrating MTDL’s adaptabil-

ity and potential for enhancing medical diagnostics (Zhao et al., 2023). The Hybrid MTDL

models provide several benefits, including:

• Efficiency in Learning: By sharing common features across tasks, these models reduce

redundancy and improve computational efficiency.

• Improved Generalisation: The models can leverage the noise patterns and task rela-

tionships to learn more generalised features that are robust to variations in the data.

• Feature Prioritisation: They can identify and prioritise important features across tasks,

enhancing the model’s focus and performance on critical aspects of the data.

• Reduced Overfitting: The integration of tasks introduces inductive biases, helping to

mitigate overfitting compared to single-task models.

Authors in (Sun, Wang, and Tang, 2013) presented a hybrid DL model combining Convo-

lutional Networks (ConvNets) and Restricted BMs (RBM) for face verification in uncontrolled

environments (Sun, Wang, and Tang, 2013). This model is designed to learn relational visual

features directly from raw pixels of paired face images. It employs multiple groups of ConvNets

to extract local and global relational features which indicate identity similarities, followed by
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a top-layer RBM that infers from these HF features. This structure aims to capture face simi-

larities from various aspects and is fine-tuned jointly to optimise face verification performance.

The research addresses the challenge of face verification given the significant intra-personal

variations in faces due to changes in cause, illumination, expression, age, makeup, and occlu-

sions, especially when the images are captured in wild, uncontrolled conditions (Sun, Wang,

and Tang, 2013). Traditional methods typically lose critical relational information between face

pairs during the feature extraction stage, which this model aims to preserve and utilise for more

accurate verification. The hybrid ConvNet-RBM model demonstrates competitive performance

on the LFW dataset.

Conversely, authors in (Bourouis, Alroobaea, Rubaiee, and Ahmed, 2020) proposed a hy-

brid solution for medical image segmentation, focusing on accurately identifying patholog-

ical regions in biomedical images, particularly for brain tumour segmentation. This hybrid

framework integrates statistical-based, variational-based, and atlas-based techniques, aiming to

leverage the strengths and mitigate the weaknesses of each approach. The proposed method

consists of a pipeline framework with several steps to include: (1) pre-processing to improve

image quality and remove noise, (2) classification using symmetry axis detection and SVM for

learning, and (3) a refinement step employing a variational-based level set method for precise

boundary detection of regions of interest. The challenge addressed is the precise analysis of

medical images, such as segmentation, detection, and quantification of tumours and cancers,

which is critical for numerous clinical applications (Bourouis et al., 2020). The complexity and

immense volume of medical imaging data make it difficult to design effective segmentation al-

gorithms. Additionally, manual delineation of specific regions is inconvenient, necessitating an

automated and robust solution. The results showcase the effectiveness of the proposed hybrid

framework through various metrics:

• Similarity Index (SI): Achieved an average of 80.9%, indicating a strong agreement

with expert segmentation and demonstrating competitive performance compared to other

methods.
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• Sensitivity and Specificity: Reported high Sen (88.7%) and Spe (94.0%), showcasing

the framework’s ability to accurately detect tumour regions.

• Comparative Analysis: The framework’s SI of 80.9% is compared with other approaches,

showing its competitive edge, especially against methods with lower SI percentages.

Melanoma is a fatal form of skin cancer that can quickly spread to other parts of the body if

not diagnosed early. Early detection significantly improves the chances of survival, making it

crucial to develop automated diagnosis systems that can assist doctors and individuals in iden-

tifying potential melanoma lesions. The challenge lies in accurately distinguishing between

benign and malignant skin lesions surrounded by various challenges, such as the variability

in lesion appearance and the presence of noise in images. In this context, a research has in-

troduced a hybrid method for melanoma skin cancer detection, combining predictions from

three different models: a CNN and two classical ML classifiers (KNN and SVM) (Daghrir,

Tlig, Bouchouicha, and Sayadi, 2020). These models are trained on features describing the

borders, texture, and colour of skin lesions. The final decision is made using majority voting,

where the classification result chosen by the majority of the models is taken as the final output.

This approach aims to leverage the strengths of DL and classical ML to improve the accuracy

of melanoma detection. The experiments conducted on a dataset from the ISIC (International

Skin Imaging Collaboration) archive showed that:

• The CNN model alone achieved an Acc of 85.5%.

• The SVM classifier achieved an Acc of 71.8%.

• The KNN classifier had the lowest Acc of 57.3%.

• Combining the predictions of all three methods through majority voting significantly

improved the performance, achieving an Acc of 88.4%.

Each of the three hybrid methods employs a fusion of technologies to improve upon the

limitations of single-model systems, aiming for higher accuracy, robustness, and comprehen-

sive data interpretation. ConvNets-RBM pushes the boundaries of direct feature learning, while
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Statistical, variational, and atlas-based approach emphasises a cascading improvement in seg-

mentation accuracy, and CNN-KNN-SVM showcases the strength of combining different clas-

sification techniques (Sun, Wang, and Tang, 2013; Bourouis et al., 2020; Daghrir et al., 2020).

Despite these advances, each approach faces challenges in complexity, potential for overfitting,

data dependency, and the necessity for careful integration and tuning of their composite parts.

These factors highlight the trade-off between performance gains and increased operational de-

mands based in hybrid computational methods.

Another research introduced a Hybrid Automated Medical Learning (HAML) framework,

which is a sophisticated combination of distributed DL, multi-agent systems, and knowledge

graphs (Belhadi, Djenouri, Diaz, Houssein, and Lin, 2022). HAML aims to efficiently and auto-

matically learn from medical data, overcoming challenges like data heterogeneity and complex

medical learning tasks. Each agent in the system is designed to learn patterns from medical

data locally, while knowledge graphs facilitate the sharing of relevant patterns and ontologies

among agents to enhance learning and communication. The research addresses the automation

of medical learning to assist medical teams in making informed decisions. Automated medical

learning faces challenges such as heterogeneity in medical data and the complexity of medical

learning tasks, which can lead to inaccuracies in the learning process. HAML is proposed to

mitigate these issues by utilising a combination of advanced intelligent approaches (Belhadi

et al., 2022). HAML demonstrated superior performance in various case studies compared to

the most up-to-date medical learning models, both in computational efficiency and the quality

of solutions. In fact, in process mining, HAML achieved higher accuracy in detecting relevant

patterns from event medical data. Also, in recognising patients’ activities in a smart building

context, HAML efficiently identified different activities. For medical image retrieval, HAML

showed an impressive ability to find the most relevant medical images based on queries. The

results indicate HAML’s effectiveness in handling different types of medical data and tasks,

outperforming existing approaches in terms of speed and accuracy.

Recent research has presented a hybrid DL method for multi-modal medical image fusion,

aiming to address the issue of integrating information from different medical imaging modali-
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ties (e.g., MRI, CT, and Single-photon emission computed tomography (SPECT)) into a single

composite image (Li, Zhao, Lv, and Li, 2021a). This is crucial for enhancing diagnostic accu-

racy by providing comprehensive information in one image, thus helping medical professionals

in making more informed decisions. The primary challenge addressed is the limitation of indi-

vidual medical imaging techniques, which may only offer partial insights due to their specific

focuses (e.g., anatomical versus functional imaging). The goal is to fuse images from multiple

modalities to capitalise on the combined strengths and comprehensive details, overcoming the

scattering of information across different images which could restrict diagnostic processes (Li

et al., 2021a). The proposed method leverages DL to fuse multi-modal medical images into

a single, comprehensive image that retains critical information from each modality. It aims

to overcome deficiencies in existing fusion techniques by improving upon clarity, detail, and

processing efficiency. The method involves pre-processing steps (noise removal, registration,

standardisation), followed by DL-based fusion using a model trained on a diverse set of med-

ical images. This approach ensures that the fusion process is not only aligned to the specific

characteristics of medical imaging but also scalable and efficient for batch processing of mul-

tiple images (Li et al., 2021a). The paper reports improvements across various metrics used to

evaluate image fusion quality, including Edge Operating Gradient (EOG), Root Mean Square

Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), Entropy, Structural Similarity Index Mea-

sure (SSIM), and others. These improvements indicate enhanced clarity, detail preservation,

and overall image quality in the fused outputs compared to existing methods (Li et al., 2021a).

Authors in (Qaid et al., 2021) presented hybrid models that combine DL, TL, and ML tech-

niques for the early detection and classification of COVID-19 from CXR images (Qaid et al.,

2021). Specifically, it utilises CNNs and TL models (using VGG-16 and VGG-19 architectures)

hybridised with powerful ML algorithms. These models are designed to distinguish COVID-19

cases from normal cases and other types of viral pneumonia, leveraging the feature extraction

capabilities of CNNs and the pre-trained knowledge of TL models. The extracted features are

then fed into various ML algorithms (e.g., SVM, RF) for classification. The challenge ad-

dressed is the early detection of COVID-19 to mitigate its spread and alleviate the pressure
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on healthcare systems. Given the similarities between radiographic features of COVID-19 and

other viral pneumonias, distinguishing between them is difficult, necessitating the use of AI

to enhance accuracy and robustness in detection (Qaid et al., 2021). The proposed models

achieved promising results across different configurations and data sets:

• Full accuracy in binary classification of COVID-19 versus normal cases and COVID-19

versus viral pneumonia cases using certain hybrid models.

• For multiclass classification (normal, viral pneumonia, COVID-19), Acc reached up to

97.8%.

• These models outperformed the baseline model, showing higher accuracy, precision, re-

call, and F1-score across various classification scenarios.

Time-consuming and expertise-reliant process of manually identifying regions of interest

in lung high-resolution computed tomography (HRCT) images before applying DL algorithms

for Interstitial Lung Disease (ILD) classification is a critical challenge. The diversity and com-

plexity of ILD manifestations in HRCT images necessitate a robust and efficient classification

approach to enhance healthcare outcomes for patients with ILD, a condition with a high risk of

lung cancer. In this context, Pawar et al. proposed a novel two-stage hybrid approach utilising

DL networks for the classification of ILD from HRCT images (Pawar and Talbar, 2022). This

method aims to improve the accuracy and efficiency of ILD classification by automating the

process, which traditionally relies on manual identification of the region of interest (ROI) in

lung HRCT images. The paper reports considerable improvements in ILD classification per-

formance due to the proposed method’s stage-wise enhancement of DL algorithm performance.

Specifically, the method achieves high accuracy in classifying six ILD classes (normal, emphy-

sema, fibrosis, ground glass, micronodules, and consolidation), with precision, recall, F-score,

and accuracy metrics demonstrating the effectiveness of the approach (Pawar and Talbar, 2022).

Accurate and automatic segmentation and classification of brain tumours from MRI scans is

a challenging task complicated by the high spatial and structural variability of tumours. Manual

segmentation of MRI data is time-consuming and prone to errors, which can adversely affect
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patient outcomes. Early and accurate diagnosis is crucial for effective treatment planning and

improving patient survival rates. To tackle this challenge, a research has proposed a hybrid

deep TL model named GN-AlexNet, aimed at improving the classification of brain tumours

into three types: pituitary, meningioma, and glioma (Samee et al., 2022). This model inte-

grates the architecture of GoogleNet and AlexNet by removing five layers from GoogleNet and

incorporating ten layers from AlexNet, enhancing feature extraction and automatic classifica-

tion capabilities for BT tri-classification. The model was evaluated using a publicly available

Contrast-Enhanced MRI (CE-MRI) dataset and demonstrated superior performance in accuracy

and sensitivity compared to existing methods, including various TL techniques and ML/DL

models. The GN-AlexNet model achieved remarkable performance metrics on the CE-MRI

dataset, outperforming existing TL models to include VGG-16, AlexNet, SqueezNet, ResNet,

MobileNet-V2, and ML/DL approaches. The model attained an Acc of 99.51% and a Sen of

98.90%, demonstrating its effectiveness in classifying brain tumours with high precision and

reliability (Samee et al., 2022).

While these proposals exhibit high accuracy and robustness in their specific applications,

they share a common drawback of complexity and a significant dependence on the quality

and variety of the training data (Qaid et al., 2021; Pawar and Talbar, 2022; Samee et al., 2022).

Model optimisation and computational efficiency are other areas of concern, which are essential

when considering the practical implementation of these models.

The relatively poor generalisability of DCNN models to datasets with characteristics not

well-represented in the training data, particularly in medical image segmentation tasks is a

major challenge in image processing. Although DCNNs show high accuracy in segmenting

anatomical structures, their performance often drops when applied to new datasets with dif-

ferent imaging conditions. MAS (Multi-Atlas Segmentation) methods, while less accurate in

some cases, demonstrate better generalisation capabilities across diverse datasets. In light of

this challenge, authors presented Deep Label Fusion (DLF), a novel hybrid method that inte-

grates the strengths of DCNN and MAS for medical image segmentation (Xie et al., 2023b).

This approach aims to leverage the high accuracy of DCNN in learning complex data represen-
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tations and the robust generalisability of MAS to variations in image characteristics. The DLF

method introduces an end-to-end pipeline with learnable weights, incorporating a weighted vot-

ing subnet for MAS and a fine-tuning subnet to correct residual errors, improving segmentation

accuracy. DLF was evaluated on five datasets representing different anatomical structures and

imaging modalities. The method achieved comparable accuracy to the state-of-the-art DCNN

model, nnU-Net, on datasets similar to the training set. Notably, DLF outperformed nnU-Net

in generalising to datasets with different characteristics, such as varying MRI field strengths or

patient populations. Additionally, DLF consistently improved upon conventional MAS meth-

ods. The paper also introduces a modality augmentation strategy that enhances segmentation

accuracy and interpretability in multimodal imaging scenarios (Xie et al., 2023b).

The variability in COVID-19 clinical presentations and outcomes, ranging from mild symp-

toms to severe complications requiring ICU admission or resulting in death is also a significant

challenge. The goal is to support clinical decision-making by predicting the severity of pa-

tient outcomes based on CT images and clinical data, facilitating early intervention for those

at higher risk. In light if this challenge, authors developed a hybrid ML/DL model to clas-

sify COVID-19 patients based on the severity of their condition, specifically distinguishing

between those requiring ICU admission or facing death (ICU class) and those who do not (non-

ICU class) (Chieregato et al., 2022). This classification was done using data from 558 patients

admitted to a hospital in northern Italy during the early months of the COVID-19 pandemic.

The hybrid model integrates a 3D CNN with CatBoost, a ML algorithm. The CNN serves as a

feature extractor from baseline CT images, while the extracted features, along with laboratory

and clinical data, are selected using the Boruta algorithm enhanced by SHAP values. The re-

duced feature set is then used to train a CatBoost classifier, achieving a probabilistic AUC of

0.949 on the holdout test set (Chieregato et al., 2022).

The need for an automated and accurate classification system for breast cancer histopathol-

ogy to help clinical diagnosis and treatment planning is pivotal. The manual grading of cancer

slides is time-consuming and requires expert knowledge, which is insufficient in many regions.

The automated system aims to reduce diagnostic time and improve accuracy. In this context,
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research in the literature proposed a novel approach for the automated classification of breast

cancer histopathology slides into benign and malignant subtypes using a hybrid DL model that

combines CNN and Long Short-Term Memory RNN (LSTM RNN) (Srikantamurthy, Ralla-

bandi, Dudekula, Natarajan, and Park, 2023). This method, leveraging TL from ImageNet,

was evaluated on the BreakHis dataset, comprising 2480 benign and 5429 malignant images

across various magnifications. The proposed CNN-LSTM model utilises TL to classify four

benign and four malignant breast cancer subtypes. It operates by extracting deep convolutional

features using pre-trained CNN models (like ResNet50 and InceptionV3) from ImageNet, fol-

lowed by an LSTM RNN model for classification. The model was trained and validated using

various optimisers and configurations to achieve the best performance (Srikantamurthy et al.,

2023). The hybrid CNN-LSTM model achieved the highest overall Acc of 99% for binary

classification (benign vs. malignant) and 92.5% for multi-class classification (among subtypes

of benign and malignant cancers). Among the optimisers tested (Adam, RMSProp, and SGD),

Adam was found to be the most effective, producing the maximum accuracy with minimum

model loss. The model outperformed existing CNN models such as VGG-16, ResNet50, and

Inception in classifying breast histopathological images (Srikantamurthy et al., 2023).

One of the paramount challenges in medical image processing if the challenge of time-

consuming MRI scanning procedures, which can affect patient comfort and introduce motion

artifacts. By accelerating the MRI process through improved reconstruction of under-sampled

images, the method aims to reduce scanning time, minimise patient stress, and decrease medical

costs. In this scenario, authors introduced a novel DL framework for reconstructing MRI im-

ages from under-sampled k-space data, aiming to improve the accuracy of MRI reconstruction

(Al-Haidri, Matveev, Al-Antari, and Zubkov, 2023). This framework leverages Conditional

GANs (CGANs) with a U-Net architecture for the generator. Additionally, a unique hybrid

loss function that considers both spatial and frequency domains is proposed to enhance the

quality of the reconstructed images. This method is evaluated against traditional Sensitivity

Encoding (SENSE) reconstruction and other DL approaches, focusing on the improvement of

image quality metrics such as SSIM and PSNR (Al-Haidri et al., 2023). The proposed frame-
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work demonstrated superior performance in reconstructing MRI images compared to traditional

SENSE techniques, with improvements in PSNR by 6.84 and 9.57 for U-Net and CGAN mod-

els, respectively. SSIM metrics were comparable to those provided by SENSE, indicating that

the reconstructed images maintain high fidelity to the original scans (Al-Haidri et al., 2023).

The automated, accurate detection and segmentation of cancerous regions in mammogram

images, differentiating between benign and malignant cases represent a significant problem

to help in timely and effective treatment decisions. For this purpose, Raaj developed a novel

hybrid CNN architecture for classifying mammogram images into normal, benign, and malig-

nant categories, aimed at improving the detection and segmentation of cancer regions in breast

tissues (Raaj, 2023). This hybrid method incorporates a radon transform to convert spatial pix-

els into time–frequency variation images, a data augmentation module to enhance the dataset,

and a mathematical morphological-based segmentation algorithm to precisely segment cancer

pixels. The performance of this system is evaluated using the MIAS and Digital Database for

DDSM datasets. The proposed architecture achieved impressive performance metrics (Raaj,

2023):

• DDSM Dataset: Sen of 97.91%, Spe of 97.83%, Acc of 98.44%, and Jaccard Index (JI)

of 98.57%.

• MIAS Dataset: Se of 98%, Sp of 98.66%, Acc of 99.17%, and JI of 98.07%.

The high cost associated with collecting pixel-wise annotated data for medical image segmen-

tation has become a paramount barrier. The goal is to achieve high accuracy segmentation

labels with limited annotation effort, addressing issues like early stage, effective sample selec-

tion, and manual annotation workload. In this context, authors in (Li et al., 2023b) proposed

a Hybrid Active Learning framework using Interactive Annotation (HAL-IA) for medical im-

age segmentation, designed to reduce annotation costs by decreasing the number of annotated

images required and simplifying the annotation process. This framework incorporates a novel

hybrid sample selection strategy and an interactive annotation module, aiming to address these

challenges.

101



Experimental results on four medical image datasets demonstrated the framework’s effec-

tiveness in achieving high-accuracy segmentation with less labelled data and fewer interac-

tions. The HAL-IA framework outperforms other state-of-the-art methods by obtaining high-

performance segmentation models with fewer labelled data and interactive clicks (Li et al.,

2023b).

Challenges in content-based image retrieval (CBIR) for medical images have become crit-

ical, with special focus on the semantic gap between DHF visual features extracted by ma-

chines and high-level semantic understanding by humans. Vasudeva’s research aims to improve

the accuracy and efficiency of medical image classification and retrieval from large healthcare

datasets, overcoming limitations of existing DL approaches that rely mainly on labelled data

and lack of transparency (Vasudeva and Chandrashekara, 2023). For this purpose, they in-

troduced a hybrid DL model combining CNN with LSTM networks, enhanced by feature ex-

traction using the GLCM for medical image classification. This model aims to achieve higher

classification accuracy and effective image retrieval by utilising additional layers in the CNN-

LSTM architecture and improving retrieval performance with the Euclidean distance technique

(Vasudeva and Chandrashekara, 2023). The hybrid model demonstrated superior performance

compared to single ANN and CNN models, achieving a classification Acc of 99.4%. The pre-

cision, recall, and F1-score metrics also indicated improved accuracy for image classification

on large healthcare datasets. These results underscore the model’s effectiveness in extract-

ing better medical image features and achieving higher classification accuracy (Vasudeva and

Chandrashekara, 2023).

HAL-IA and CNN-LSTM-GLCM showcase innovative hybrid approaches aligned to spe-

cific challenges within medical imaging, emphasising efficiency and accuracy (Li et al., 2023b;

Vasudeva and Chandrashekara, 2023). HAL-IA focuses on reducing annotation issues through

active learning, beneficial for large-scale medical studies requiring extensive labelled data.

CNN-LSTM-GLCM aims at enhancing classification and retrieval accuracy, showcasing the

power of integrating DL with traditional feature extraction methods. Despite their advantages,

both methods encounter challenges related to complexity, whether in implementation, compu-
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tational demands, or optimisation. HAL-IA ’s performance may vary depending on the imaging

modality and complexity of the targets, while CNN-LSTM-GLCM ’s sophisticated model ar-

chitecture could cause challenges in training efficiency and application adaptability (Li et al.,

2023b; Vasudeva and Chandrashekara, 2023). The advantages and limitations of the discussed

and reviewed papers are summarised in Table 2.14.

103



Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages

Ref Hybrid Model Advantages Disadvantages

(Sun, Wang, and

Tang, 2013)

ConvNets-RBM • Learns directly from

raw data, potentially

capturing more nu-

anced features.

• Joint feature ex-

traction maintains

relational data be-

tween face pairs.

• Multiple ConvNet

groups increase ro-

bustness by capturing

diverse similarities.

• Unified architecture

optimises feature

extraction and recog-

nition together.

• Joint fine-tuning

aligns the network

closely with the

verification task.

• The complexity

of the model may

demand high compu-

tational resources.

• The potential for

overfitting due to the

model’s high capacity.

• Performance could

be sensitive to the way

well face images are

aligned.

• Learning from

raw pixels could

miss out on proven

hand-crafted features’

benefits unless optimi-

sation is flawless.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Bourouis et al.,

2020)

Statistical, vari-

ational, and

atlas- based

• Integrates statistical,

variational, and atlas-

based methodologies

for segmentation accu-

racy.

• Effective step-by-

step initialisation leads

to stable and accurate

segmentation.

• Competitive perfor-

mance metrics indicate

a strong match with

ground truth.

• Relies heavily

on the accuracy of

pre-processing regis-

tration.

• Applicability cur-

rently limited to

specific tumour types.

• Acknowledged need

for improvement in

registration algorithms

and a more robust

speed function for

segmentation.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Daghrir et al.,

2020)

CNN-KNN-

SVM

• Combines CNN,

SVM, and KNN to

outperform individual

model accuracy.

• Gains from CNN fea-

ture learning robust-

ness and SVM/KNN

classification effec-

tiveness.

• Can comprehensively

analyse various lesion

characteristics due to

its adaptive approach.

• Managing three

separate models in-

creases computational

complexity.

• Performance is tied

to the quantity and

diversity of training

data.

• Requires precise

calibration to ensure

effective integration of

model outputs without

introducing bias.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Belhadi et al.,

2022)

HAML • Efficient learning

from heterogeneous

medical data using

a combination of

distributed DL and

multi-agent systems.

• Improved com-

munication through

knowledge graphs,

enhancing pattern

sharing and ontology

alignment.

• Scalable architecture

suitable for large-scale

medical data analysis.

• Adaptability to var-

ious medical learning

tasks, increasing its

adaptability.

• System complexity

may limit the ease of

use and maintenance

due to the integration

of multiple intelligent

components.

• Performance heavily

reliant on the quality

and diversity of the

input data.

• Optimisation chal-

lenges and potential

computational over-

head due to the need

for tuning hyperpa-

rameters, particularly

with evolutionary

computation integra-

tion.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Li et al., 2021a) Multi Model

DBM

• Enhanced clarity and

detail in the output of

fused medical images.

• Efficient batch pro-

cessing capabilities

align with the demands

of medical diagnosis.

• Applicable to var-

ious multi-modal

medical image fusion

types, broadening its

diagnostic utility.

• Some information

loss during the fusion

process, suggesting a

need for model and pa-

rameter optimisation.

• Success is depen-

dent on high-quality,

diverse training data,

necessitating exten-

sive, well-labelled

datasets for the best

results.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Qaid et al.,

2021)

CNN-VGG-

16/VGG-19

• High accuracy

in differentiating

COVID-19 from other

conditions.

• Robust feature ex-

traction from X-ray

images using CNNs

and TL.

• Adaptive design that

incorporates various

ML algorithms.

• Demonstrated gen-

eralisability across

different datasets.

• Complexity due

to the combination

of multiple learning

techniques.

• Performance mainly

reliant on data quality

and diversity.

• Time-consuming

model optimisation

and hyperparameter

tuning.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Pawar and Tal-

bar, 2022)

GAN-ResNet50 • Automated process

that reduces the need

for manual regions of

interest extraction.

• Increased classifica-

tion accuracy through

accurate lung segmen-

tation.

• Efficient handling of

whole HRCT images.

• Additional complex-

ity from a two-stage

process.

• Dependency on the

initial lung segmenta-

tion quality.

• Potential challenges

in generalising to other

ILD types not included

in the study.

(Samee et al.,

2022)

GN-AlexNet • Exceptional classi-

fication accuracy and

sensitivity for brain

tumour identification.

• Streamlined process

with automatic feature

extraction and classifi-

cation.

• Architectural adapt-

ability suggesting

potential for broader

medical imaging

applications.

• Complex model due

to dual DL architec-

tures.

• High computational

demands for training

and potentially larger

datasets.

• Uncertainty about

performance general-

isation across varied

and more extensive

datasets.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Xie et al.,

2023b)

DCNN-MAS • Generalisability:

Excels in adapting

to diverse datasets,

surpassing DCNN-

only models in varied

conditions.

• Accuracy: Matches

or exceeds state-

of-the-art DCNN

performances, espe-

cially under variable

conditions.

• Multimodal Data

Utilisation: Employs

innovative augmen-

tation strategies for

effective multimodal

integration.

• Flexibility: Capable

of handling different

segmentation tasks

with variable dataset

sizes.

• Complexity: The

combination of DCNN

and MAS introduces

a more complex seg-

mentation process.

• Computational De-

mand: Requires sig-

nificant computational

power for the end-to-

end learnable pipeline,

including fine-tuning.

• Registration Depen-

dence: Performance

depends on the quality

of atlas-to-target im-

age registration, limit-

ing flexibility in cer-

tain scenarios.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Chieregato

et al., 2022)

CNN-CatBoost • Comprehensive

Assessment: Incorpo-

rates both imaging and

non-imaging data for a

detailed analysis.

• Interpretability: Pro-

vides insights at global

and patient-specific

levels, crucial for

clinical decisions.

• Predictive Accuracy:

Offers high accuracy,

helping in early inter-

vention strategies for

at-risk individuals.

• Limited Generalis-

ability: The model’s

applicability may

be restricted due to

single-center data re-

liance and the specific

pandemic timeframe.

• Small Dataset Con-

cerns: The relatively

modest dataset size

could undermine

model robustness and

prediction variability.

• Outcome Definition

Limitations: The

model’s focus on

ICU admission or

death may not trans-

late across different

medical protocols or

institutions.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Srikantamurthy

et al., 2023)

LSTM-RNN • Reduces feature

extraction necessity

via TL.

• Effectively manages

imbalanced classes

with data augmenta-

tion.

• Shows superior

accuracy in varied

classification tasks.

• Adaptive to differ-

ent cancer types and

diseases.

• High computational

cost and complexity.

• Limited to certain

magnification levels

without adaptability.

• Lacks interpretability

for clinical decision-

making.

Continued on next page

113



Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Al-Haidri et al.,

2023)

CGAN-U-Net • Improves image qual-

ity significantly.

• Simplifies the MRI

reconstruction process.

• Adaptable to various

MRI applications.

• Increased computa-

tional complexity due

to CGANs.

• Effectiveness proven

on a specific dataset,

questioning broader

applicability.

• Unclear compar-

ative effectiveness

against diverse MRI

techniques.

(Raaj, 2023) Hybrid-CNN • High performance in

detection and segmen-

tation metrics.

• Uses image transfor-

mation and augmenta-

tion for better detec-

tion.

• Efficient segmenta-

tion with a mathemat-

ical algorithm.

• Computational com-

plexity due to the

multi-step process.

• Performance tested

on specific datasets,

requiring broader

validation.

• Segmentation may

overlook external

cancer pixels, indi-

cating potential for

improvement.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Li et al., 2023b) Hybrid Ac-

tive Learning

framework us-

ing Interactive

Annotation

(HAL-IA)

• Reduces the need

for extensive manual

annotation, lowering

costs and effort.

• Selects samples

optimally to enhance

model learning.

• Offers an interactive

module for quick,

accurate annotations.

• Addresses the early

stage issue effectively

with a progressive

strategy.

• Implementation com-

plexity due to multiple

components.

• May not perform uni-

formly across all med-

ical imaging types, es-

pecially with complex

shapes.

• Initial sample selec-

tion strategy lacks op-

timisation, suggesting

room for improvement

with advanced tech-

niques.

Continued on next page
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Table 2.14: Comparative Analysis of Hybrid Models: Advantages and Disadvantages (Contin-
ued)

Ref Hybrid Model Advantages Disadvantages

(Vasudeva

and Chan-

drashekara,

2023)

CNN-LSTM

Grey Level

Co-occurrence

Matrix (GLCM)

• Achieves high accu-

racy in classification

using a CNN-LSTM

model enhanced by

GLCM features.

• Extracts robust

features, leveraging

both DL and texture

analysis.

• Enhances image

retrieval with the

Euclidean Distance

Technique, suitable for

large datasets.

• Potentially high

computational demand

due to the complex

model architecture.

• Complexity in train-

ing and optimisation

might require substan-

tial data and resources.

• Implementational

challenges could arise

from the integration

of diverse techniques,

complicating real-

world applications.

These innovative hybrid methods have addressed medical imaging challenges, each with

unique strengths like improved accuracy, enhanced image quality, and efficient segmentation

(Srikantamurthy et al., 2023; Al-Haidri et al., 2023; Raaj, 2023). However, they share common

disadvantages such as computational complexity and the necessity for validation across broader

datasets.
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2.5 Progression of Disease Detection and Classification Tech-

niques

The progression of disease detection and classification techniques has been marked by signif-

icant advancements over recent years, driven by continuous technological advancements and

research breakthroughs. This evolution has been characterised by a shift from traditional diag-

nostic methods towards more sophisticated, accurate, and faster automated systems. The inte-

gration of ML and DL models has played a pivotal role, offering unprecedented precision in

identifying and classifying a wide array of diseases across various medical imaging modalities.

These cutting-edge approaches not only facilitate early detection but also contribute to a deeper

understanding of disease mechanisms, leading to more effective and personalised treatment op-

tions. Delving into this section, an exploration of the milestones achieved in this dynamic field

will be critically discussed, underscoring the transformative impact of these techniques on the

landscape of medical diagnostics and patient care.

In this context, a research proposed in (Mendonca and Campilho, 2006) presented an algo-

rithm for the automated detection of the retinal vascular network, a significant evolution step

from traditional manual image processing to automated techniques. The algorithm combines

differential filters for centreline extraction and morphological operators for vessel segment fill-

ing. The approach considers various intensity and morphological properties of vascular struc-

tures, such as linearity, connectivity, and width. The proposed method underscores the transi-

tion towards automation, significantly enhancing the efficiency and accuracy of medical image

processing. The method’s adaptability, drawing from both local and global image features,

ensures robust performance across a wide spectrum of cases. However, the complexity intro-

duced by its multi-phase algorithm raises concerns regarding computational resource demands

and processing time, particularly with large datasets. Moreover, the potential for misdetec-

tions and the dependency on accurate initial centreline detection highlight critical areas where

inaccuracies can substantially impact the overall effectiveness. On the other hand, authors

in (Deng et al., 2023) introduced an automated CT pancreas segmentation approach specifi-
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cally for acute pancreatitis patients. This method combines a novel object detection approach

namely Region Proposal Network (RPN) and U-Net for segmentation. The research focuses

on the precise localisation and segmentation of the inflamed pancreas, demonstrating a spe-

cialised approach for acute pancreatitis. The use of RPN detectors and U-Net for segmentation

effectively reduces background interference, enhancing focus on target regions. This method’s

specificity for acute pancreatitis showcases its designed utility in complex medical scenarios.

Nevertheless, the two-stage process and reliance on RPN for initial detection introduce poten-

tial inefficiencies, with the risk of false positives in adjacent slices and the acknowledged room

for performance improvement suggesting areas for future refinement.

MedShift, a pipeline designed to automatically identify and evaluate the significance of

shift data in external medical datasets without requiring data sharing between internal and ex-

ternal organisations, proposed in (Guo, Gichoya, Trivedi, Purkayastha, and Banerjee, 2023). It

utilises unsupervised anomaly detectors to understand the internal data distribution and iden-

tify significant deviations in external datasets. The pipeline then clusters these deviations and

uses a multi-class classifier, trained on internal domain data, to assess the impact of removing

the identified shift data on classification performance (Guo et al., 2023). Additionally, a data

quality metric is proposed to quantify the dissimilarity between internal and external datasets.

The efficacy of the method is validated using musculoskeletal radiographs (MURA) and CXR

datasets from multiple sources. On the other hand, the paper in (Trombini, Solarna, Moser,

and Dellepiane, 2023) introduced an unsupervised, graph-based image segmentation method,

specifically designed to partition a digital image into homogeneous regions based on a user-

defined, application-specific goal. This goal-oriented approach is innovative in that it doesn’t

just segment an image into parts but does so with a particular objective in mind, making the

regions more meaningful for subsequent analysis (Trombini et al., 2023).

MedShift offers automatic detection and evaluation of shift data to improve AI model per-

formance across various data sources. Its flexibility and quantitative analysis capabilities stand

out as major strengths, enhancing dataset curation efforts with objective metrics. However, its

approach to handling multi-class problems introduces computational challenges and extends
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training times (Guo et al., 2023). The method’s effectiveness across tasks beyond classifica-

tion remains to be fully validated, with dataset-specific adaptations potentially required. The

reliance on the performance of anomaly detectors further underscores a dependency that could

influence the overall efficacy of the pipeline. The work in (Trombini et al., 2023), on the other

hand, focuses on a goal-oriented, unsupervised approach to segmentation, leveraging both lo-

cal and global image properties through a comprehensive framework. This method’s flexibility

and robustness across imaging domains highlight its adaptability. Yet, the complexity involved

in configuring outcome-based propositions and the potential for over-segmentation present no-

table drawbacks (Trombini et al., 2023). Furthermore, the computation time and sensitivity to

initiate placement may cause challenges in practical applications, affecting the method’s utility

and efficiency in diverse imaging contexts.

Lung cancer staging, crucial for treatment decisions, is currently a time-consuming and

costly process, requiring expert analysis of clinical and imaging data. In this context, a re-

search proposed in (Fotopoulos, Filos, Xinou, and Chouvarda, 2023) aimed to support and

automate this process, making it faster, less expensive, and possibly more accurate, thereby

facilitating better patient management and treatment planning. The study outlines a method for

automating the classification of lung cancer stages using multi-positional radiomics and ML.

The specific focus is on classifying lung cancer stages I and II (low severity) versus stages

III and IV (high severity) based on CT images and radiomics features from both tumour and

lung volumes (Fotopoulos et al., 2023). The proposed method achieved an AP of 77.5% and

Recall of 78.7%. Nevertheless, the model’s performance is limited by the size of the training

set and the simplification of cancer staging into a binary classification, which may reduce the

complexity of the disease stages. Moreover, the reliance on data quality and standardisation un-

derscores potential variability in the model’s accuracy (Fotopoulos et al., 2023). Similarly, the

Gamma-based CNN method excels in delivering high accuracy and robustness in histopathol-

ogy image analysis through an ensemble model that leverages adaptive weights for enhanced

prediction capability (Majumdar, Pramanik, and Sarkar, 2023). This method demonstrates its

effectiveness across multiple datasets, underscoring its generalisability. However, it faces chal-
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lenges related to computational intensity, the complexity of model choice, and only marginal

improvement over the best base learner, which may affect its scalability and practical imple-

mentation in resource-constrained environments (Majumdar, Pramanik, and Sarkar, 2023).

The limited size of annotated training datasets in 3D medical imaging results in the limita-

tion of the development of robust 3D CNNs. Traditional methods often rely on self-supervised

learning, which may not result semantically discriminative representations due to the lack of

large-scale annotated data. In this context, authors in (Zhang, Li, Zhou, Ma, and Yu, 2023)

proposed a fully-supervised pre-training framework, termed SVD-Net, which addresses the

issue of data insufficiency in 3D medical imaging by leveraging large-scale 2D natural im-

age datasets. The method involves a variable dimension transform (VDT) that reformulates

2D natural images to simulate 3D data, which enables the use of semantic supervision from

the 2D domain to train 3D CNNs. The learned 3D representations can then be transferred

to various medical imaging tasks. Towards tackling a similar issue, another study presented

a Multi-scale Attention GAN (MAGAN) designed for medical image enhancement, specif-

ically designed for unpaired images (Zhong, Ding, Chen, Wang, and Yu, 2023). MAGAN

innovatively incorporates multi-scale information fusion in feature extraction through a feature

pyramid network (FPN) and emphasises key image regions using attention mechanisms. It also

addresses the enhancement process comprehensively by optimising for uniform illumination

distribution, texture details, deep semantic features, and smoothness in the enhanced images.

The approach leverages two generators and two discriminators in a GAN setup to achieve these

goals. SVD-Net stands out for its novel approach of leveraging semantic supervision from 2D

image datasets to pre-train 3D CNNs, addressing the insufficiency of annotated 3D medical

images (Zhang et al., 2023). This strategy not only enhances model convergence and accu-

racy but also reduces the need for extensive annotated medical data, setting new performance

benchmarks. However, the potential for domain shift and the method’s dependence on the size

and diversity of the 2D dataset used for pre-training, alongside the significant computational

resources required, cause notable disadvantages (Zhang et al., 2023). MAGAN, through the

integration of multi-scale information and attention mechanisms, focuses on optimising key
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image areas while maintaining essential details, suitable for unpaired images (Zhong et al.,

2023). This adaptability makes it a practical solution for enhancing medical images, improving

downstream segmentation tasks. Despite these strengths, the complexity of the MAGAN archi-

tecture could lead to higher computational costs. Additionally, the method faces challenges in

accurately differentiating specific image features and relies on unpaired images, which might

limit learning capacity compared to supervised methods. The need for further research to ad-

dress these limitations and streamline the model for faster processing without loss of quality is

acknowledged (Zhong et al., 2023).

A research presented in (Kutan, KUTBAY, and ALGIN, 2023) focused on cerebrovascu-

lar vessel segmentation using DL approaches for Time-of-Flight Magnetic Resonance An-

giographs (TOF-MRAs). This research is significant due to the impact of cerebrovascular dis-

eases as a leading cause of death and disability worldwide. Accurate segmentation of cerebral

vessels is crucial for early disease diagnosis and surgical planning. The study involves two

main stages: (1) creating a labelled dataset through Hessian-based filters and image process-

ing algorithms, and (2) comparing the performance of state-of-the-art DL architectures (U-Net,

ResUNet, ResUNet++, TransUNet) in vessel segmentation where ResUNet++ achieved the

highest performance, with a mean IoU score of 91.6%, outperforming other tested architec-

tures.

Similarly, authors in (Yousaf, Iqbal, Fatima, Kousar, and Rahim, 2023) introduced a CNN

based integrated model for the simultaneous detection and classification of two brain diseases:

tumours and Ischemic stroke. This model is an advancement of the encoder-decoder archi-

tecture based on U-NET, enhanced to incorporate feature maps from one encoder block fused

with the output of a subsequent encoder block. This approach aims to maintain low-level,

detailed information and distinguish overlapping features during the encoding process, in ad-

dition to utilising U-NET skip connections. The proposed model demonstrated exceptional

performance on a challenging combined medical dataset, achieving an average Acc of 99.56%,

Spe of 99.99%, precision of 99.59%, and an F1-score of 99.57%.

Conversely, a research in (Li et al., 2023c) proposed a novel unsupervised anomaly de-
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tection framework named SSL-AnoVAE, which incorporates a self-supervised learning (SSL)

module into the anomaly detection process. This SSL module is designed to provide more

precise semantic features (e.g., texture, structure, colour-related features) as prior information

for better image reconstruction. The uniqueness of SSL-AnoVAE lies in its flexibility and uni-

versality, allowing application across different image modalities by adjusting the free-labels

from image transformations to extract feature information with various semantic meanings (Li

et al., 2023c). SL-AnoVAE achieves an Acc of 93.34%, Spe of 94.01%, and Sen of 92.30%.

The method introduced in (Kutan, KUTBAY, and ALGIN, 2023) significantly reduces manual

annotation efforts and shows promise for clinical applications in cerebrovascular disease diag-

nosis. However, its effectiveness depends on the quality of labelled data and requires consid-

erable computational resources, raising concerns about biases and the practicality of deploying

such complex models in resource-limited settings (Kutan, KUTBAY, and ALGIN, 2023). On

the other hand, the enhanced U-NET model, with new skip connections, exhibits high clinical

applicability through its performance metrics (Yousaf et al., 2023). Nonetheless, its gener-

alisability may be constrained by reliance on specific datasets and untested applicability to a

broader range of brain diseases or imaging modalities. Additionally, the method’s focus on

two-class classification and training on limited datasets could affect its robustness and general-

isation capabilities (Yousaf et al., 2023). The proposed approach in (Li et al., 2023c) capitalises

on self-supervised learning through the SSL-AnoVAE framework for improved anomaly detec-

tion and staging in retinal diseases. Its universal adaptability and insights into optimising unsu-

pervised anomaly detection (UAD) methods underscore its potential clinical value. However,

challenges with mathematical interpretability and detecting diseases with minimal structural or

colour changes in retinal images suggest limitations in its applicability across different medi-

cal imaging tasks, particularly those less reliant on structure and colour information (Li et al.,

2023c).
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2.5.1 The impact of Learning-based Approaches on DMO Disease Clas-

sification

The field of ophthalmology has undergone a profound transformation, attributed to the integra-

tion of cutting-edge technologies, particularly DL and ML. Eye diseases, which encompass a

wide spectrum of conditions affecting vision and ocular health, have garnered specific attention

in this era of AI-driven healthcare innovation. DL and ML techniques are making significant

strides in the early diagnosis, monitoring, and treatment of these ocular disorders, ultimately

improving patient outcomes and quality of life. Table 2.15 summarises the discussed litera-

ture to include study objective, data source/sample, DMO related disease findings, and research

gaps.
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Table 2.15: ML and DL Applications in DMO Related Prediction Literature

Ref Year of

Publi-

cation

Study

Objective

Data Source/

Sample

DMO Re-

lated Disease

Findings

Research Gaps

(Varadarajan

et al., 2020)

2020 Predict

center-

involved

DMO

directly

from Fun-

dus pho-

tographs.

• Thailand

dataset

• Eye PACS-

DMO dataset

in the US.

• Model outper-

formed retinal

specialists in

detecting center-

involved DMO

(ci-DMO).

• Prediction of

intraretinal and

subretinal fluid.

• AUC-ROC of

0.89, 85% Sen

at 80% Spe.

• Dataset diver-

sity

• Data standardi-

sation

Continued on next page
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Table 2.15 ML and DL Applications in DMO Related Prediction Literature (Continued)

Ref Year of

Publi-

cation

Study

Objective

Data Source/

Sample

DMO Re-

lated Disease

Findings

Research Gaps

(Xu et al.,

2022)

2022 Predict vi-

sual acuity

outcomes

in DMO

patients fol-

lowing anti

Vascular

Endothelial

Growth

Factor

(anti-

VEGF)

therapy us-

ing a GAN

algorithm.

Retrospective

review of

DMO pa-

tients’ records

who un-

derwent

anti-VEGF

therapy.

AI-based pre-

diction displays

the therapeutic

effects of dif-

ferent treatment

drugs on DMO

patients. The

model produces

high-resolution,

near-realistic

OCT images.

• Inclusion crite-

ria

• Model gener-

alisability

• Information

loss

• Alternative

model explo-

ration

• Experimental

details

• Sample size

Continued on next page
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Table 2.15 ML and DL Applications in DMO Related Prediction Literature (Continued)

Ref Year of

Publi-

cation

Study

Objective

Data Source/

Sample

DMO Re-

lated Disease

Findings

Research Gaps

(Zhang

et al., 2022)

2022 Predict vi-

sual acuity

outcomes in

diabetic pa-

tients post

anti-VEGF

therapy

using an

ensemble

model of

regression

algorithms.

281 patients

with clinical

and OCT

image-based

features

dataset.

The ensemble

model of LR

and RF models

had the best

predictive per-

formance for

visual acuity

outcomes with

Mean Average

Errors (MAEs)

between 0.137-

0.153 for acuity

and 0.164-

0.169 for acuity

variance.

• Generalisabil-

ity

• Validation ne-

cessity

Continued on next page
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Table 2.15 ML and DL Applications in DMO Related Prediction Literature (Continued)

Ref Year of

Publi-

cation

Study

Objective

Data Source/

Sample

DMO Re-

lated Disease

Findings

Research Gaps

(Rasti et al.,

2020)

2020 Predict the

response

of DMO

patients to

anti-VEGF

treatment

using a

novel DL

model

named

CADNet.

127 patients’

pre-treatment

OCT scans.

CADNet, with

incorporation

of attention

mechanisms

and feature

selection.

• Dataset diver-

sity

• Threshold ex-

ploration

• Model inter-

pretability

• External vali-

dation

(Chen,

Chiu, Chen,

Woung, and

Lo, 2018)

2018 Present vi-

sual acuity

outcomes

in DMO

patients at

different

timelines.

DMO

dataset from

DRCR.net,

USA

Utilised mul-

tiple clinical

variables for

prediction with

an MLP model;

reported high

correlation

coefficients.

• Model compar-

ison justification

• Generalisabil-

ity

• Interpretability

Continued on next page
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Table 2.15 ML and DL Applications in DMO Related Prediction Literature (Continued)

Ref Year of

Publi-

cation

Study

Objective

Data Source/

Sample

DMO Re-

lated Disease

Findings

Research Gaps

(Rajesh,

Raajini,

Sagayam,

and Dang,

2020)

2020 Propose a

ML-based

model

combining

statistical

methods

with SVM

and KNN

for DMO

detection.

DMO dataset

with spe-

cific medical

conditions.

DMO detection,

achieving high

performance.

• Methodology

clarity

• Generalisabil-

ity

• Interpretability

(Kumar

and Gupta,

2023)

2023 Develop a

DL-based

model for

binary clas-

sification of

normal and

eye disease

images.

Kaggle

dataset

ResNet50 and

Xception mod-

els achieved the

highest valida-

tion accuracies.

• Data augmen-

tation specificity

• Hyperparame-

ter tuning details

• Cross-

validation

• Generalisabil-

ity

Continued on next page
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Table 2.15 ML and DL Applications in DMO Related Prediction Literature (Continued)

Ref Year of

Publi-

cation

Study

Objective

Data Source/

Sample

DMO Re-

lated Disease

Findings

Research Gaps

(Mishra

and Singh,

2022)

2022 Apply

DL-based

approaches

for classi-

fying OCT

eye scans

Kaggle External Limit-

ing Membrane

(ELM) Segmen-

tation

• Benchmarking

with current

methods

• Interpretability

• Generalisabil-

ity

• Explanation

of techniques

and feature

extraction

(Li et al.,

2022a)

2022 Develop a

framework

for DR

and DMO

classifica-

tion using

Fundus

images

8739 Fundus

images

DR and DMO

Classification

achieving high

performance

for classifi-

cation tasks.

Outperformed

ophthalmol-

ogists and

state-of-the-art

methods.

• Dataset biases

and quality

• Data hetero-

geneity impact

• Generalisabil-

ity

• Validation

One of the main challenges identified in the literature is the detection of ci-DMO. This is

caused by the human evaluation of Fundus photographs which has several limitations. Authors
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Figure 2.8: ci-DMO Prediction Process Using OCT and Related Fundus Scans (Varadarajan
et al., 2020).

in (Varadarajan et al., 2020) proposed leveraging DL to predict ci-DMO directly from Fundus

images, aiming to improve accuracy and cost-effectiveness (Varadarajan et al., 2020) (Figure

2.8).

This research used two independent datasets, one from Thailand and another from Eye PACS-

DMO in the US for training and validation of the DL model. Their model outperformed retinal

specialists in detecting ci-DMO demonstrating higher sensitivity and specificity. Their model

also predicted the presence of intraretinal and subretinal fluid. The proposed framework covers

the generalisability criterion presented by the test of a secondary dataset. Their experiments

proved that the use of larger training datasets helps in further enhancing the model Acc where

the model outperformed human evaluation by achieving a ROC-AUC equal to 89% correspond-

ing to 85% Sen at 80% Spe against only 45% Spe (Varadarajan et al., 2020). The features used

in this work also prove the importance of the region around the fovea in predicting ci-DMO

from Fundus images. While the research used two datasets, both are relatively small and spe-

cific to certain populations which results a limited diversity in used datasets. In addition, data

standardisation is a key gap in this work where the criteria for ci-DMO diagnosis and inclu-

sion/exclusion varied between datasets. Interpretability is also one of the key gaps this work. In

fact, while the study identifies the relevant region for predictions, further research could delve

into the interpretability of the model, explaining why certain features are crucial for diagnosis.
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The prediction of visual acuity outcomes in DMO patients following anti-VEGF therapy is

a challenging theme covered by authors in (Xu et al., 2022). The paper retrospectively reviewed

records of DMO patients who underwent of anti-VEGF therapy to include both A-scans and

B-scans. The authors employed pix2pixHD GAN algorithm to generate post-therapeutic OCT

images from pre-therapeutic ones. The model demonstrated a good accuracy level where the it

objectively displays the therapeutic effects of different treatment drugs for DMO patients. De-

spite the high ability of their proposed framework to produce high reduction and near-realistic

images (which are essential for prediction), authors’ proposed methodology still suffers from

multiple key gaps as follows:

• Restrictive inclusion criteria in the choice of the used dataset which may limit the diver-

sity of the patient population.

• Lack of model generalisability where the framework did not include more complex clin-

ical scenarios.

• Loss of important information due to some pre-processing stages undertaken by authors

such as resizing.

• Lack of alternative models that could potentially perform better than the selected GAN.

This would add additional insights into the suitability of the final framework.

• Lack of detailed experimentation outcomes.

• Sample size considered which has a direct impact on the model’s predictive performance.

Predicting visual acuity outcomes in patients with diabetes after anti-VEGF therapy was

also a recurrent theme in (Zhang et al., 2022). Authors proposed research involved 281 pa-

tients, where the used dataset included 18 features involving both clinical and OCT image-

based features. Six regression algorithms were tested, with the ensemble model of Logistic

Regression (LR) and RF achieving the best predictive performance for visual acuity (mean av-

erage error (MAE) of 0.137-0.153) and visual acuity variance (MAE of 0.164-0.169). Despite
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the high accuracy presented by their model, it lacks in generalisability where it was only tested

on relatively small dataset. In addition, while the paper mentions feature selection, it would be

valuable to provide more details on the criteria or methods used to select the 18 features and

justify why certain features were chosen over others. Also, towards validating the predictive

models, external validation on an independent dataset would be beneficial. This will boost the

robustness and generalisability approval of their proposed framework.

Predicting the response of patients with DMO to anti-VEGF treatment using pre-treatment

OCT scans was also a complicated challenge addressed by to authors in (Rasti et al., 2020).

The authors proposed a novel DL model named CADNet (Convolutional Attention-to-DMO

Network) to predict treatment response. CADNet incorporates attention mechanisms and fea-

tures selection techniques. To assess their model’s generalisability, authors employed cross-

validation. The study compared CADNet’s performance with other baseline models, including

traditional ML algorithms and popular DL architectures like VGG-16, ResNet50, InceptionV3,

and Xception. CADNet outperformed these models. While the study’s dataset consists of 127

patients, it would be beneficial to have a larger and more diverse dataset to enhance the model’s

generalisability. In addition, the study uses a fixed threshold of -10% to classify patients as

responsive and non-responsive. Different thresholds may have varied clinical implication, and

the choice of threshold should be further explored. DL models, including CADNet, often lack

interpretability. Understanding which features or patterns the model uses for predictions is

crucial in a clinical setting.

Another approach of applying ML-based models under the umbrella of predicting visual

acuity outcomes was introduced in (Chen et al., 2018). Authors proposed a new model to

predict visual acuity outcomes at different timelines using DMO dataset. The study employed

MLP with a backpropagation learning rule. Resonating with the earlier referenced studies, gen-

eralisability remains a problem in this work. The study used several clinical variables for pre-

diction, which is comprehensive. However, the rationale for including specific variables should

be better explained. Additionally, the study did not incorporate certain factors, such as adverse

effects, which could be relevant in real-world clinical decision-making. The choice of an MLP
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neural network for prediction is reasonable. However, the paper lacks details on the model’s

architecture, hyperparameter tuning, and validation techniques. The paper reported high cor-

relation coefficients for the MLP models (0.79), which is promising. However, it would be

beneficial to provide additional metrics such as MAE to assess the model’s predictive accuracy

more comprehensively. Details about the validation techniques used for assessing the model’s

generalisation ability are missing. In fact, it is essential to describe how the dataset was split

into training, validation, and testing sets and how cross-validation was performed.

By combining different statistical methods alongside ML techniques such as SVM and

KNN, authors in (Rajesh et al., 2020) proposed a ML-based model using DMO dataset with

specific medical conditions. The suggested hybrid approach enables a comprehensive analysis

of epistasis in the context of DMO detection, achieving 99% recall, 73.88% precision, 99.99%

Acc, and 84.61% F1-score. The complexity of the proposed methodology is quite challenging

due to lack of explanation of used methods as well as used parameters. The paper compares the

proposed statistical method with SVM and KNN working solely. However, a broader compar-

ison with other state-of-the-art epistasis detection methods or an explanation of why these two

ML algorithms were chosen for comparison would add depth to the analysis. Generalisability

and interpretability are also problematic in this work.

Towards performing binary classification task, authors in (Kumar and Gupta, 2023) pro-

posed a novel DL-based model for classifying normal and eye disease related images using

Kaggle dataset. Their DL related experimentation involved multiple architectures to include

CNN, deep CNN, AlexNet2, Xception, InceptionV3, DenseNet121, and ResNet50. Perfor-

mance wise, the latter achieved the highest validation Acc of 98.9% followed by 98.4% Acc

for Xception. While data augmentation techniques were employed to address the scarcity of

training samples, the study does not specify the degree of augmentation on the specific pa-

rameters used, which can impact model’s performance. The study also lacks details regarding

hyperparameter tuning for each model. Cross-validation is a crucial step in assessing model

generalisability, however, the study does not mention whether cross-validation was performed

or how the dataset was split for training and validation. Interpretability, equally, is one of the
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key gaps of the proposed framework. In fact, DL models particularly CNNs, are often consid-

ered as “black boxes”, which makes it challenging to understand the decision-making process

of these models in a medical context. Similarly, authors in (Mishra and Singh, 2022) applied

DL-based approaches to classify normal and DMO affected eye scans (OCT). The paper lacks

of an explanation as well as justification of the chosen technique for all stages to include pro-

cessing, features extraction, and choice of evaluation metrics and their clinical relevance. The

paper mentions that CNNs with varying numbers of convolutional layers were evaluated, but

it also lacks detailed information on the architecture, hyperparameter tuning, and rationale be-

hind choosing the final model. Despite the use of data from different sources, the proposed

framework does not address how the model performs on data from different sources or if it is

robust to variations in image quality.

2.5.2 Advancements in Learning-based Approches for DR Detection

DR is a prevalent microvascular complication of diabetes, leading to progressive vision impair-

ment and, in severe cases, blindness. Early detection and timely intervention are crucial for

managing the progression of DR. Traditional diagnostic methods involve manual examination

of Fundus photographs by ophthalmologists, a process that can be time-consuming and subject

to inter-observer variability. Recent advancements in ML and DL have showed in a new era

for DR prediction through Fundus images. Automated algorithms can analyse vast datasets

of Fundus photographs, identifying implicit pathological changes often overlooked in manual

examinations. These ML and DL models not only enhance diagnostic accuracy but also fa-

cilitate a quicker and more scalable screening process. The expanding literature on this topic

highlights the transformative potential of these technologies in revolutionising DR screening

and management.

Studies presented in the literature in (Gargeya and Leng, 2017, Gulshan et al., 2016) delved

into the development and validation of DL algorithms for the automated detection of DR from

retinal Fundus images. The study proposed in (Gargeya and Leng, 2017) focused on an AI

model trained using over 75,000 public images and presents a robust performance with an AUC
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of 0.97. The efficacy of this model in identifying DR is noteworthy, suggesting a considerable

potential for AI-driven DR screening on a global scale. On the other hand, the work in (Gulshan

et al., 2016) introduced a deep CNN that has been trained on a substantially larger dataset of

128,175 retinal images. Notably, its performance metrics, particularly the AUC which exceeded

0.99 for both datasets, are impressive. The algorithm’s performance was assessed using two

separate datasets with high grading consistency by at least seven board-certified ophthalmol-

ogists. The algorithm displays adaptability, with the flexibility to balance between sensitivity

and specificity based on different operational needs, making it potentially a very precise tool

for referrable DR screening in clinical settings. In another dimension, the study in (Li et al.,

2019) showcased the application of deep TL using the Inception-v3 architecture. This model

was trained on 19,233 images from 5278 patients, and following a 10-fold cross-validation

strategy, it displayed an Acc of 93.49% with an AUC of 0.9905. The model’s performance,

especially in distinguishing between cases requiring referral and those not, was comparable

to human experts, indicating its reliability in automating DR detection and recommendations.

While each algorithm showcases impressive performance metrics, the choice of dataset sizes

and methodologies differ. Authors in (Gargeya and Leng, 2017) and (Gulshan et al., 2016)

emphasise the breadth of their datasets, however, authors in (Li et al., 2019) leverage the power

of TL. Additionally, the provision of visual heatmaps in (Gargeya and Leng, 2017) study can

be a unique aid for clinicians. However, despite these advancements, there’s an implicit call

for further research in all studies, pointing towards a need for real-world implementation and

exploration of the algorithms practical implications.

In the field of DR prediction, recent research has delved deeply into devising automated

models that leverage the capabilities of advanced neural networks to identify DR features from

medical imagery. The research proposed in (Tsiknakis et al., 2021) delves into creating an op-

timal model for detecting DR characterised by symptoms like augmented blood vessels, fluid

leaks, exudates, haemorrhages, and micro-aneurysms. Emphasising the pivotal role of contem-

porary medical imagery in diagnosing DR, it also points out evaluation challenges. The study

introduces an automated knowledge model to discern DR features via various neural networks,
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namely Back Propagation Neural Network (BPNN), DNN, and CNN. The foundational BPNN

model exhibited the least accuracy due to its singular hidden layer, contrasting the superior per-

formance of DL structures such as DNN and CNN. These advanced models could locate DR

features and ascertain their severity. A fundamental challenge was setting precise thresholds

for each feature class, a challenge surmounted using the weighted Fuzzy C-means algorithm.

Evaluating their efficacy on 1000 retinopathy images, the DNN model outperformed the BPNN

in accuracy and efficiency, while the CNN, backed by the VGGnet model, produced a 72.5%

Acc rate on a training set but waved slightly during tests on 300 images. Salient discoveries

encompassed DNN’s paramount accuracy outperforming both DNN and CNN, the central pro-

cessing unit (CPU) imposed limitations affecting CNN’s training time, and DNN’s overarching

effectiveness and precision, especially against DNN.

Leveraging the existing drive of ML advancements in DR detection, authors in (Mushtaq

and Siddiqui, 2021) employed DenseNet-169 to detect DR in its early stages. The approach

classifies Fundus images based on severity levels: No DR, Mild, Moderate, Severe, and Prolif-

erative DR (PDR), using datasets from DR Detection 2015 and APTOS 2019 Blindness Detec-

tion. The DenseNet-169 model achieved a training Acc of 95% and a validation Acc of 90%.

When compared to other models like SVM, DT, KNN, and a regression model, the proposed

model achieved the highest Acc of 90%.

Yet another noteworthy contribution in this arena was a study in (Zhang et al., 2021) which

focused on devising an intelligent diagnostic method for severe DR using colour Fundus images

from a Kaggle dataset of 88,702 photos. Utilising the Inception-V3 classification algorithm,

it was observed that images with a resolution of 896x896 pixels surpassed the performance

of 299x299 pixel images in metrics like harmonic mean, AUC, sensitivity, and specificity.

Notably, prediction errors predominantly surfaced in the moderate Non-PDR (NPDR) grade,

especially in detecting the IRMA lesions. Despite its merits, the study identified the challenge

of data imbalance in public datasets and underscored the need for well-balanced data to im-

prove the model’s accuracy. The findings underscore AI’s promise in enhancing DR diagnostic

precision, even though with a call for continued refinements.
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These papers collectively underscore the expanding potential of advanced neural network

models in DR detection. While traditional DR diagnostic methods are resource-intensive and

often vulnerable, the integration of ML showcases promising results. However, each study,

while innovative, also sheds light on the challenges and limitations faced. From data imbalance

to the need for precise thresholds and the computational challenges imposed by hardware con-

straints, the research illuminates the outstanding challenges of automating DR detection. It is

evident that while AI and ML present revolutionary possibilities in DR diagnosis, there’s a per-

sistent need for continued refinements, dataset optimisation, and computational advancements

to realise their full potential.

Switching the focal point to glaucomatous retinal images, paper proposed in (Thanki, 2023)

unveils a system underpinned by DNN and ML paradigms. Rigorous evaluations were con-

ducted using performance metrics such as confusion matrix andtrue positives. The model,

built on key training parameters, was benchmarked against datasets from the DRISTHI-GS

and ORIGA archives. Leveraging the SqueezeNet model’s capabilities, the paper illustrated

that LR emerged as the leading classifier, surpassing its counterparts in accuracy and precision

metrics. A study published in (Akella and Kumar, 2023), introduced a computerised system

for analysing and assessing DR using retinal Fundus photographs. The research utilises the

YOLO-V3 DL model to identify and categorise DR into five stages: normal, mild, moderate,

severe, and proliferative, using colour Fundus images. The model exhibited high precision and

sensitivity, with the mean average precision (mAP) measured for DR lesion detection. The

findings suggest that the proposed model outperforms existing ones in accuracy and execution

time, effectively distinguishing all DR stages. Another paper focused on the automatic detec-

tion of DR, delving into DR detection and its different stages using DL with Fundus images

(Sunkari et al., 2024). Using a real-time hospital dataset, the study introduced a ResNet-18 ar-

chitecture paired with a Swish function, achieving an Acc of 93.51%, Sen of 93.42%, precision

of 93.77%, and an F1-score of 93.59%. The research concludes by comparing the effectiveness

of different models like Simple CNN, VGGNet-16, MobileNet-V2, and ResNet, finding the

ResNet-18 with Swish to be the most efficient for DR detection.
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Contrastingly, authors in (Surya, Kashyap, Nadig, and Raman, 2023) aimed to create a

predictive model for diagnosing DR in the Indian population, using systemic data and exclud-

ing Fundus photography. The study utilised ML on datasets from a population-based cross-

sectional study with 1425 subjects, including known and newly diagnosed diabetes cases. Five

ML algorithms were tested: RF, LR, SVM, ANN, and DT. Data were split in two experimen-

tal methods: an 80-20 percentage split and a three-way split (60% training, 30% validation,

10% test). 10-fold cross-validation was also applied. Performance was assessed using the ROC

curve, AUC, accuracy, sensitivity, and specificity. The RF classifier stood out, achieving the

highest performance with AUC values of 91% in the percentage split, 86% in the three-way

split, and 90% in cross-validation. Given its superior performance, the RF classifier is recom-

mended for targeted DR screening in the broader population.

Collectively, these studies underscore the evolving landscape of DR detection techniques.

While the research in (Thanki, 2023) investigations underscore the potential of DL models in

analysing retinal images, authors research uniquely diverges, focusing on systemic data, re-

flecting the diversity in approach (Wahab Sait, 2023). The YOLO V3’s performance in (Akella

and Kumar, 2023) might be commendable for its speed and accuracy, but the integration of

Swish function in ResNet-18 indicates an innovative approach to improve detection capabili-

ties (Sunkari et al., 2024). The other study in (Surya et al., 2023), however, emphasises the

importance of expanding detection strategies beyond imagery, especially in resource-limited

settings. As the prevalence of DR rises, such diverse methodologies ensure a broader, more

inclusive approach to its early detection and management.

Several other studies have delved into this area, capitalising on the power of ML and DL

techniques to interpret DR datasets for accurate disease prediction. One research emphasised

the overlooked aspect of data pre-processing and dimensionality reduction, which is instrumen-

tal in generating unbiased results (Usman, Saheed, Ignace, and Nsang, 2023). In this venture,

colour Fundus Photographs (CFPs) underwent a meticulous data pre-processing, followed by

leveraging PCA for feature extraction. Building on this foundation, a DL Multi-Label Feature

Extraction and Classification (ML-FEC) model was conceived. This model taps into the poten-
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tial of pre-trained CNN structures. Furthermore, a strategic deployment of TL integrated with

three renowned CNN architectures: ResNet50, ResNet152, and SqueezeNet1. Adjustments

catering to lesion detection and classification provided promising outcomes, with ResNet152

taking the lead in Acc, reaching 94.40%. Such findings point towards the model’s potential

in real-world clinical setups, improving DR screening programs. Another study, inspired by

the successes of DL in diagnosing various conditions, paved a way to design enhanced neural

networks targeting the precise detection and categorisation of DR across five distinct stages

(Khanna, Singh, Thawkar, and Goyal, 2023). The methodology encompassed the formulation

of three novel CNNs. The first was an original creation, the second integrated the effectiveness

of five elite networks, while the third synergised CNN with the capabilities of CNN-LSTM

structures. Their performances were juxtaposed with twenty-one globally acknowledged im-

age nets. Comprehensive evaluations manifested a peak in accuracy, sensitivity, and AUC

score, suggesting that the proposed networks not only performed well often overpass many

existing models. Such advancements can be instrumental in identifying retinal complications

in diabetic patients, streamlining diagnosis, and fortifying preventive measures against vision

deterioration.

Further expanding the horizon of eye-related disorders, another paper brought to light the

risks of Uveal melanoma (UM) and choroidal nevus (CN) (Shakeri et al., 2023). While DR pre-

dominantly affects individuals aged between 20-65, UM, a grave intraocular cancer, primarily

threatens those aged between 50-80. Early identification of UM can significantly limit associ-

ated mortality risks. To this end, a method integrating TL with a CNN was introduced, aiming

to detect UM and enrich diagnostic interpretations (Shakeri et al., 2023). However, the complex

nature of DL models can often obscure prediction comprehension. Addressing this challenge,

the SHAP methodology was adopted. It strategically highlights the regions of an eye image

that predominantly influence DR and CN predictions. The outcomes were promising, with

SHAP analysis serving as a beacon, elucidating the underlying reasons behind classifications

and offering a profound understanding of prediction dynamics.

Based on the above discussion, these studies underscore the immense potential and versatil-
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ity of ML and DL techniques in revolutionising ocular diagnostics. While all three researches

advocate the cause of early detection and intervention, their methodologies and focal points

vary. The research in (Usman et al., 2023) accentuates the importance of data pre-processing

and feature extraction, while the method proposed in (Khanna et al., 2023) delves into the

innovation of CNN architectures. The study proposed in (Shakeri et al., 2023) uniquely in-

tegrates TL with SHAP to demystify predictions. Each study adds a unique dimension, and

when viewed in conjunction, they offer a comprehensive insight into the future of DR detection

and other ocular disorders. The consolidation of their findings can serve as a robust platform,

pushing the boundaries of ocular diagnostics and paving the way for accurate and timely inter-

ventions.

A research published in (Keerthana, Tejasree, Rao, Kumar, and Yalla, 2023) examines the

efficacy of various ML algorithms in detecting DR. The study utilises large sets of retinal im-

ages from multiple databases including Kaggle, Messidor, and IEMRC. The research employs

an ensemble of ML classifiers applied to features extracted from retinal image processing to de-

termine the disease’s presence. The aim is early detection of DR to prevent severe vision loss.

The study incorporates both supervised algorithms, such as SVM, ResNet, DensNet, Naive

Bayes (NB), KNN, and neural networks, as well as unsupervised algorithms like k-means clus-

tering, hierarchical clustering, and Markov chains for classification. The most accurate results

were achieved by ResNet and DenseNet with an Acc rate of 96.22%.

Traditional DR diagnosis using Fundus images is challenging and time-consuming, as it re-

quires expert professionals to detect minute features. Hence, an automated method to diagnose

DR can be beneficial for early detection. A study proposed in (Athira and Nair, 2023) classi-

fies DR into three stages: No D (No DR), NPDR, and Proliferative DR (PDR). Although DL

algorithms are popular for classification tasks, many have low accuracy for early DR stages.

The research introduces an algorithm employing advanced image processing, automatic hyper-

parameter tuning, and neural network training, emphasising the sensitive features for improved

prediction. The algorithm’s effectiveness was tested against modified versions of Resnet50,

VGG-16, Mobilenetv2, Inceptionv3, and InceptionResnetv2. The values obtained are consoli-
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dated and displayed in Table 2.16. The Resnet50-based network showed the best performance

for both tasks.

Table 2.16: Resnet-50 Outperformance in DR Classification Task (Athira and Nair, 2023)

Evaluation

Metric

Resnet-

50

VGG-16 Mobilenet-

V2

Inception-

ResnetV2

Inception-

V3

Classification

Accuracy

0.947 0.861 0.858 0.870 0.852

Kappa Score 0.884 0.713 0.739 0.929 0.724

Detection Ac-

curacy

0.998 0.942 0.94 0.982 0.949

Authors in (Syed and MA, 2023) proposed an automated system to detect, segment, and

classify the microvascular complication of type 2 diabetes mellitus, DR, using the EyePACS

dataset. The research introduces an RU-Net (Residual U-Net) for segmentation and a CCNN

(Concatenated CNN) for DR’s multi-class classification. The suggested classification approach

achieved accuracies of 98.81% for benchmark data and 96.83% for real-time data, proving its

potential to aid doctors in efficiently and accurately detecting and classifying DR.

Reflecting on the literature, the increasing reliance on advanced ML and DL methods in

detecting and classifying DR using retinal images. From using ensemble classifiers and atten-

tion mechanisms to incorporating hybrid optimisation algorithms, the literature demonstrates

rapid advancements in automated DR diagnosis. Notably, the ResNet-based approaches appear

to outperform other methods, suggesting its prominence in the field. However, while many

of these methods have shown high accuracy rates, practical implementation in real-world sce-

narios, scalability, and cost-effectiveness are aspects that need further exploration. It’s also

essential to evaluate the model’s adaptability to different datasets and real-world conditions.

The literature opens doors to more streamlined and efficient prediction of DR, which can sig-

nificantly impact patient care and management. However, continuous validation, especially

with larger and more diverse datasets, is imperative to ensure the reliability and generalisability
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of these models in clinical settings.

2.5.3 Progression of Analysis Techniques for Pulmonology Related Con-

ditions

ML and DL have equally emerged as revolutionary tools in the analysis of X-ray images. Over

recent years, numerous studies have been conducted to leverage these techniques for the diag-

nosis of various disorders. Particularly, their application in predicting pneumonia from X-ray

images has garnered significant attention. Traditional diagnostic methods often depend on ra-

diologists’ expertise, making them susceptible to human error and subjective variability. In

contrast, ML and DL models offer a more standardised and efficient approach, with the poten-

tial to identify complex patterns not easily discernible by the human eye. The growing body

of literature in this field underscores the promising potential of these models in enhancing the

accuracy and speed of pneumonia detection.

In recent years, there’s been a noticeable advancemetns in the application of DL models for

detecting and classifying pneumonia and other related lung diseases using CXR. The research

suggested in (Sharma and Guleria, 2023a) utilised a model based on VGG-16 to classify pneu-

monia from CXR datasets, showcasing an enhanced performance compared to other models

with an Acc ranging between 92.15% to 95.4%. However, while CXRs serve as a vital diag-

nostic tool, interpreting them accurately requires skilled radiologists, which leads to challenges

such as limited expert availability and high costs. A study proposed in (Yi, Tang, Tian, Liu, and

Wu, 2023) introduced a DCNN designed to overcome these challenges. Their model was adept

at categorising CXR images as normal or indicative of pneumonia, demonstrating superior effi-

ciency in disease identification. Lung afflictions like pneumonia, COVID-19, and Tuberculosis

have exhibited significant overlaps, necessitating holistic diagnostic approaches.

Recognising this need, authors in (Ahmed et al., 2023b) introduced a model capable of de-

tecting these diseases simultaneously, displaying commendable accuracy across various datasets.

Their innovative approach acknowledges that a patient testing negative for one disease might
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still suffer from another. Performance evaluation using several public datasets from Kaggle

generated significant results: an overall Acc of 98.72%, with recall scores of 99.66% for pneu-

monia, 99.35% for No-findings, 98.10% for Tuberculosis, and 96.27% for COVID-19. When

subjected to unseen data from the same augmented dataset, the model surpassed previous re-

search in terms of accuracy and other evaluation metrics.

With the pandemic’s rapid spread, tools like CovidDWNet, proposed in (Celik, 2023), have

become critical. This DL architecture, adept at promptly detecting COVID-19 using CT and

X-ray images, showcased impressive accuracy metrics, emphasising its rapid prediction ca-

pability. The proposed architecture utilises feature reuse residual block (FRB) and depthwise

dilated convolutions (DDC) units, enhancing feature acquisition from the images. Further inte-

gration with the Gradient boosting (GB) algorithm led to the CovidDWNet+GB model, which

increased performance by roughly 7% in CT images and 3-4% in X-ray images. This com-

bined architecture achieved an outstanding 99.84% and 100% Acc on binary class CT datasets

and demonstrated 96.81% Acc on multi-class X-ray images and 96.32% on combined X-ray

and CT datasets. Notably, CovidDWNet+GB can process thousands of images within seconds,

highlighting its rapid prediction capability.

Given the importance of accurate CXR examinations, authors in (Ahmed, Nuwagira, Tor-

lak, and Coskunuzer, 2023a) introduced a novel technique utilising topological data analysis

(TDA) to extract unique patterns, making it exceptionally efficient even with small datasets.

Furthermore, AI tools like the LWSNet, introduced by Lasker, have been pivotal in distin-

guishing between various lung diseases, exhibiting heightened accuracy through its unique DL

structure (Lasker, Ghosh, Obaidullah, Chakraborty, and Roy, 2023). The proposed framework

uses a simplified version of typical DL models paired with a lightweight CNN model, mak-

ing it suitable for resource-limited devices. Testing on three separate public datasets and their

combined version revealed the highest classification Acc of 98.54% with the quadruple stack.

Comparative analyses showed that using LWSNet improved the average accuracy between in-

dividual to quadruple models by up to 2.88% across the datasets.
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2.6 Identified Challenges

The landscape of diseases diagnosis leveraging ML and DL techniques is infested with seri-

ous challenges, which are pivotal in understanding the evolving interest in hybrid model ap-

proaches. These challenges not only highlight the limitations of singular ML/DL methodolo-

gies but also emphasise the necessity for innovative solutions that hybrid models present, as

follows:

• Data Requirements and Accessibility: The efficacy of ML/DL models is heavily highly

dependent on the availability of extensive datasets for training. However, acquiring such

datasets is often restricted by privacy concerns and restrictive data sharing policies, which

limit the scope of potential training material.

• Insufficiency of Fully Labelled Datasets: The lack of comprehensively labelled datasets

further compounds the difficulty in training and validating models effectively, as full and

accurate annotations are crucial for the development of reliable diagnostic tools.

• Data Imbalance: The prevalence of imbalanced datasets, where certain conditions are

over-represented compared to others, introduces biases into the models, skewing predic-

tions and undermining their clinical utility.

• Input Data Variability: The heterogeneity in data modalities, capturing techniques, and

the conditions under which data is collected introduces variability that can significantly

challenge the training process and the model’s ability to generalise.

• Feature Extraction and Selection: The complexity of medical images and the refine-

ment of disease manifestations necessitate sophisticated feature extraction and selection

methods to ensure model accuracy, a task that remains challenging due to the complex

nature of medical data.

• Generalisation Across Modalities: The specificity of models to particular data modal-

ities restricts their applicability across diverse clinical settings, demanding flexible solu-

tions that can adapt to various types of medical imaging.
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• Computational Demands: Balancing high diagnostic accuracy with computational ef-

ficiency is a persistent challenge, impacting the feasibility of deploying ML/DL models

in real-world clinical environments.

• TL Limitations: Although TL represents a promising avenue for overcoming dataset

limitations, the distinct nature of medical data compared to the data used in pre-training

often results in suboptimal model generalisation.

• Noise and Variability in Imaging: The presence of noise and the variability, fundamen-

tal in lesion appearances, necessitate advanced pre-processing and analysis strategies,

complicating the diagnostic process.

• Explainability and Clinical Trust: The ambiguous nature of many ML/DL models

causes a significant barrier to their clinical adoption, as the medical community prioritises

understanding the decision-making process behind diagnostic predictions.

Hybrid DL models, while advancing the frontiers of medical image analysis and other com-

plex applications, introduce certain limitations and challenges:

• Complex Integration: designing these advanced models necessitates a seamless integra-

tion of diverse ML techniques and architectures, elevating the complexity of development

and necessitating more intensive computational power and expert intervention.

• Data Intensiveness: Despite their ability to operate on reduced data dimensions, these

models still demand substantial, high-quality datasets to train effectively, particularly for

the DL components.

• Reliance on Expert Knowledge: The efficacy of hybrid models can be significantly

improved by incorporating domain expertise. However, acquiring and integrating this

expertise remains a challenging task, often limited by availability and the complexities

involved in translation to computational models.

• Operational Complexity: The implementation of these models can be resource-intensive,

posing a potential bottleneck in environments where real-time analysis is paramount.
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• Data Dependency: The success of DL components within hybrid models is deeply con-

nected to the quality and wide range of the training data. In scenarios with limited or

skewed datasets, the model’s performance might not align with expectations.

• Overfitting Risks: Despite various strategies to mitigate overfitting, the sophisticated

nature of DL frameworks within hybrid models can make them more susceptible to this

issue compared to their simpler counterparts.

• Interpretability Challenges: Complex models, particularly DL-based ones, can obscure

the interpretability of the decision-making process, presenting a challenge in settings

where understanding and trust in the model’s reasoning are crucial.

• Data Labelling and Quality:The need for well-labelled and comprehensive datasets is

a persistent challenge, directly influencing the training and generalisation capabilities of

these models.

• Balancing Multiple Objectives: In multi-task hybrid models, achieving the ideal bal-

ance between different objectives and avoiding task dominance is a sensitive task, critical

for the overall performance of the model.

• Explainability and Clinical Acceptance: The ’black box’ nature of some components

within hybrid models can impact their adoption in clinical practice. Enhancing the inter-

pretability and explainability of these models is essential for bridging the gap between

technological advancements and their practical utility in healthcare settings.

Traversing through recent related studies, it becomes evident that DL’s influence on these

diseases diagnosis and prediction is both profound and promising. However, the literature also

underscores the challenges that demand further attention. The increasing reliance on advanced

ML and DL methods in detecting and classifying multiple diseases using these different med-

ical images underscores the transformative impact of these technologies in healthcare. These

methods not only enhance diagnostic accuracy but also facilitate a more nuanced understanding

of disease mechanisms, leading to more effective and personalised treatment strategies. From
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using ensemble classifiers and attention mechanisms to incorporating hybrid optimisation al-

gorithms, existing solutions demonstrates rapid advancements in automated disease prediction.

Notably, DL and ML approaches appear to outperform classic methods, suggesting their promi-

nence in the field. However, while many studies, such as those presented, achieve high accuracy

rates, it’s essential to critically assess the broader implications and limitations of these models.

First of all, while accuracy is undoubtedly an essential metric, it does not always provide a

complete picture of a model’s effectiveness. High accuracy rates can sometimes mask model

biases, especially if the datasets employed aren’t sufficiently diverse. Overfitting on specific

datasets might lead to poor real-world performance, especially given the vast diversity of poten-

tial patient data. It’s also crucial to assess models based on metrics like sensitivity, specificity,

and precision, which might offer a more nuanced understanding of the model’s true diagnostic

capabilities.

Another point of conflict is the reproducibility and scalability of these models. The majority

of the discussed models are tested on selected datasets and under specific conditions. There’s

an underlying assumption that such models, once deployed, will function with the same effi-

ciency in diverse medical settings, which might not always be the case. The real-world medical

landscape is saturated with variations in equipment, patient demographics, and image quality.

A model that performs exceptionally well in a controlled research setting might underperform

when exposed to this variability.

Furthermore, a singular focus on technical metrics might overshadow other essential aspects

of medical diagnostics, such as interpretability and clinical relevance. While many models

produce high accuracy rates, their lack of interpretability can obstructs their clinical adoption.

Medical professionals often require an understanding of how a particular diagnosis was derived,

especially when making critical health decisions. A black-box model, despite its accuracy,

might remain underutilised if it fails to provide insights into its decision-making process.

Lastly, while the introduction of novel architectures and techniques is commendable, the

sustainability and computational feasibility of such models must be examined. Not every med-

ical facility, especially those in resource-limited regions, can afford the computational power
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required by some of the advanced DL models. The push for innovation should be balanced

with a drive for accessibility, ensuring that these advancements benefit a broad spectrum of

healthcare settings.

2.7 Datasets Overview and Selection Rationale

In this research, multiple datasets were selected and utilised across different chapters to evalu-

ate and validate the proposed models and frameworks. The choice of datasets, including MRI,

OCT, Fundus, and X-ray images, was driven by the need to cover a broad spectrum of medical

imaging modalities that are critical in various diagnostic tasks. Each dataset was carefully se-

lected based on its relevance to the study’s objectives, its availability, and its capacity to provide

diverse and complex data for training and testing the models. This section provides a detailed

description of each dataset, their sizes, and the rationale behind their selection. Additionally,

the section will outline how the data was split between training, validation, and testing to en-

sure robust model evaluation. Table 2.17 summarises the key details of the datasets used in

this research.

Table 2.17: Summary of Datasets Used in Research

Dataset Imaging

Modality

Number of

Images

Used in

Chapters

Additional

Data

Rationale for Selec-

tion

BRATS

MRI

MRI 8,000 3, 4 Age, Survival

days, Resec-

tion status

Benchmark in brain

tumour analysis; ro-

bust testing of model

adaptability.

Continued on next page
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Table 2.17: Summary of Datasets Used in Research (Continued)

Dataset Imaging

Modality

Number of

Images

Used in

Chapters

Additional

Data

Rationale for Selec-

tion

Retinal Fundus 1,000 4 Age, Scan-

ning history,

Disease stage

Complexity and de-

tailed labelling; crit-

ical for retinal dis-

ease detection.

Fundus

Images

Fundus 18,615 5 Age, Gender,

SBP, DBP,

Diabetic type,

CRT

Balanced dataset

with demographic

data; ideal for DR

analysis.

OCT

Scans

OCT 25,197 5 Age, SBP,

DBP, Diabetic

type, CRT

Key for ophthal-

mology, particularly

DMO; large dataset

for robust testing.

X-ray

Scans

X-ray 5,467 5 Age, SBP,

DBP

Fundamental for

pulmonology; crit-

ical for testing

disease prediction

models.

2.7.1 MRI Dataset

The BRATS MRI dataset, obtained as part of the RSNA-ASNR-MICCAI Brain Tumor Seg-

mentation Challenge 2021 (Baid et al., 2021), was selected for its comprehensive imaging data

in brain tumour analysis, namely O6-methylguanine-DNA methyltransferase (MGMT) which

is significant in determining the treatment response in glioblastoma patients, making accurate

image processing critical for reliable analysis and prediction. Despite being simple and un-
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labelled, this dataset was chosen due to its extensive use in the medical imaging community,

particularly for benchmarking segmentation and classification models in brain tumour studies.

• Size: The dataset comprises 2,000 cases, equivalent to 8,000 MRI scans, each available

as NIfTii files (.nii.gz) across four different modalities: Native (T1), Post-contrast T1-

weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery (T2-

FLAIR).

• Usage: The BRATS dataset was utilised in Chapters 3 and 4 to test and validate the pro-

posed DenCeption model and the feature extraction framework. The inclusion of patient-

specific information such as age, survival days, and resection status further enhanced the

evaluation of the proposed models.

• Rationale: The BRATS dataset was selected due to its challenging nature in brain tumour

segmentation and its widespread acceptance as a benchmark in the field. Its simplicity,

despite being unlabelled, allowed for testing the robustness of the proposed models under

varied clinical imaging protocols.

2.7.2 Retinal Dataset

The Retinal dataset, consisting of 1000 Fundus scans, was chosen for its complexity and the

detailed labelling provided by medical experts (Linchundan, 2019). This dataset includes both

normal and abnormal Fundus images, offering a rich source of data for evaluating models

designed for retinal disease detection, particularly DR disease.

• Size: The dataset contains 1000 Fundus coloured scans available as .jpeg files, cate-

gorised into normal and abnormal (presence of DR) scans.

• Usage: This dataset was primarily used in Chapter 4 to validate the proposed feature

extraction framework, focusing on its ability to distinguish between different stages of

retinal diseases.
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• Rationale: The Retinal dataset was selected for its relevance to ophthalmology, a field

where accurate image analysis is crucial for early detection and management of diseases

such as DR. The dataset’s complexity and the additional parameters (patient age, scan-

ning history, and disease stage) made it ideal for testing the scalability and reliability of

the proposed frameworks.

2.7.3 Fundus Dataset

The Fundus dataset, obtained from the DR Kaggle competition, provides a balanced set of

images for normal and DR-affected eyes (Tanlikesmath, 2019). It is particularly valuable for

studying the impact of cardiovascular health and diabetic conditions on retinal health.

• Size: The dataset includes 18,615 Fundus images, evenly split between normal and DR-

affected cases.

• Usage: This dataset was utilised in Chapter 5 to explore the integration of demographic

and physiological features into the predictive models, enhancing the overall accuracy and

interpretability of the results.

• Rationale: The Fundus dataset was chosen for its comprehensive representation of DR

cases across a wide age range and its inclusion of relevant physiological data. This made

it an excellent candidate for developing models that integrate visual data with patient-

specific health information.

2.7.4 OCT Dataset

The OCT dataset, also from Kaggle, focuses on DMO and provides a substantial number of

scans to test the robustness of the proposed models in detecting retinal diseases (Mooney,

2018b).

• Size: The dataset contains 25,197 OCT scans, with 11,599 scans showing DMO and

13,598 normal scans.

151



• Usage: In Chapter 5, this dataset was critical for testing the proposed predictive models,

particularly in the context of ophthalmology where OCT scans are a key diagnostic tool.

• Rationale:OCT is a critical imaging modality in ophthalmology, particularly for condi-

tions like DMO. The dataset’s size and focus on a specific retinal condition made it an

ideal choice for evaluating the proposed models in a real-world scenario.

2.7.5 X-ray Dataset

The X-ray dataset, focusing on pulmonary conditions such as pneumonia, was selected to ex-

tend the scope of the research into pulmonology (Mooney, 2018a). This dataset allowed for

the testing of models designed to detect anomalies in chest X-rays, a common and critical

diagnostic tool in medicine.

• Size: The dataset includes 5,467 X-ray scans, with 3,883 scans showing pneumonia and

1,584 normal scans.

• Usage: This dataset was used in Chapter 5 to evaluate the proposed predictive frame-

works’ effectiveness in detecting pulmonary diseases, integrating additional health data

to improve prediction accuracy.

• Rationale: X-ray imaging is a fundamental diagnostic tool for pulmonary conditions.

The dataset’s focus on pneumonia, combined with its demographic and health infor-

mation, provided a robust platform for testing the generalisability and accuracy of the

proposed models.

2.7.6 Dataset Usage for Training, Testing, and Validation

For each dataset, the data was split into training, testing, and validation sets to evaluate the

models effectively. Specifically, 60% of the data was used for training, 30% for testing, and

10% for validation. This split ensured that the models were trained on a sufficient amount of

data while still providing a robust evaluation on unseen data, with an additional validation set to
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fine-tune model parameters. The diverse nature of the datasets, along with the varied imaging

modalities, allowed for comprehensive testing of the models across different medical fields,

ensuring their adaptability and generalisability.

2.8 Datasets Selection Strategy

The decision to use a variety of datasets across different diseases and imaging modalities was

intentional and strategic. The overarching goal of this research is to develop robust, adaptable,

and generalisable models capable of performing well across a range of medical imaging tasks,

rather than being tailored to a single disease or imaging modality.

2.8.1 Generalisation and Robustness

By using multiple datasets, each representing different diseases (e.g., brain tumours, retinal

diseases, pulmonary conditions), the research aimed to test the adaptability and scalability of

the proposed models. Focusing on a single disease dataset might limit the scope of the research

and the applicability of the models. The use of diverse datasets ensures that the models are

not overfitted to a specific disease or imaging modality but can generalise well across different

medical conditions.

2.8.2 Comprehensive Evaluation

The research sought to address a broad spectrum of challenges in medical imaging, from seg-

mentation and classification to disease prediction, across various medical fields such as neurol-

ogy, ophthalmology, and pulmonology. The inclusion of datasets like BRATS MRI, Retinal,

Fundus, OCT, and X-ray scans allowed for a comprehensive evaluation of the models under

different scenarios, thus demonstrating their versatility and effectiveness in real-world applica-

tions.
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2.8.3 Enhancing Model Capabilities

Each dataset contributes unique characteristics that challenge the models in different ways. For

example, MRI scans present challenges in terms of 3D data processing, while Fundus, OCT,

and X-ray scans require detailed analysis of retinal and lung structures respectively. By testing

the models on these varied datasets, the research was able to refine and enhance the models’

capabilities, ensuring they are equipped to handle the diverse demands of medical diagnostics.

2.8.4 Applicability in Multi-Disease Diagnosis

In clinical settings, it is common for patients to present with multiple conditions that may

require different imaging modalities for diagnosis. Developing models that can process and

analyse different types of medical images ensures their applicability in multi-disease diagnosis,

which is increasingly relevant in modern healthcare.

2.9 Cross-Validation Method

A comprehensive 10-fold cross-validation strategy was implemented across all datasets used

in this research. This approach ensures that each dataset is trained, tested, and validated in

a consistent and robust manner, thereby enhancing the reliability and generalisability of the

proposed models. The following sections outline the cross-validation process applied in each

chapter and across all datasets, along with the rationale behind this approach.

2.9.1 10-Fold Cross-Validation Overview

10-fold cross-validation is a well-established method in ML for assessing model performance.

In this approach, the dataset is randomly partitioned into 10 equal-sized subsamples. Of the 10

subsamples, a single subsample is retained as the validation data for testing the model, while

the remaining 9 subsamples are used as training data. This process is repeated 10 times, with

each of the 10 subsamples used exactly once as the validation data. The results from the 10
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folds are then averaged to produce a single estimation of the model’s performance.

2.9.2 Application of 10-Fold Cross-Validation in Each Chapter

Chapter 3: BRATS MRI Dataset

In Chapter 3, where the BRATS MRI dataset is used to train and validate the proposed DenCep-

tion model, 10-fold cross-validation was applied to ensure the model’s robustness in handling

complex medical imaging data. Given the nature of the BRATS dataset, which includes 8,000

MRI scans across different modalities (T1, T1Gd, T2, T2-FLAIR), this method allowed for a

thorough evaluation of the model’s performance in tumour detection and segmentation tasks.

Each fold provided insights into how well the model generalises across different subsets of the

data, ensuring that the results are not biased by a particular data partition.

Chapter 4: Retinal and BRATS MRI Datasets

For Chapter 4, where both the Retinal dataset and BRATS MRI dataset are used, the same

10-fold cross-validation strategy was employed. The Retinal dataset, consisting of over 1000

Fundus images, was subjected to this rigorous validation process to assess the accuracy and

consistency of the feature extraction framework. This dataset, being more complex and la-

belled, required careful cross-validation to ensure that the model performs well across varying

image types and patient conditions. The repeated validation over 10 folds provided a reliable

measure of the model’s ability to classify normal versus abnormal retinal conditions, such as

DR.

Chapter 5: Fundus, OCT, and X-ray Datasets

In Chapter 5, where multiple datasets are used, including Fundus, OCT, and X-ray scans, 10-

fold cross-validation was applied consistently across all datasets. This was crucial to ensure

that the predictive models, including the proposed HyBoost model, were thoroughly evaluated

across different imaging modalities and patient demographics. For the Fundus dataset (18,615
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images), OCT dataset (25,197 scans), and X-ray dataset (5,467 scans), the cross-validation pro-

cess provided a comprehensive assessment of the model’s adaptability and accuracy in predict-

ing various conditions like DMO and pneumonia. By maintaining consistency in the validation

process across different datasets, this ensures that the comparisons made between the models’

performances were fair and reliable.

2.9.3 Consistency and Clarity in Cross-Validation

The application of 10-fold cross-validation across all datasets and chapters was critical for

maintaining consistency and clarity in the evaluation of the proposed models. This approach

not only validated the models’ performance on unseen data but also ensured that the models

were not overfitting to any particular dataset. The results from the cross-validation provided a

robust measure of each model’s ability to generalise across different types of medical images

and conditions, thereby confirming the models’ applicability in diverse clinical scenarios.

2.10 The Testbed

To process and evaluate the proposed models, University of Gloucestershire Research AI Server

is used. The operating system setup is based on the Ubuntu Linux distribution with its latest

Long Term Support release. NVIDIA and CUDA drivers have been installed to utilise the

GPUs available in the system. The latest versions available for the RTX 2080Ti series cards

have been used. The software environment considered is Python and MATLAB, in addition to

the servers’ tools. The programming environment used to build the models consists of Python

programming language with TensorFlow as the CNN modelling framework. The latest release

of Anaconda distribution of Python with all its supporting packages have been used. The only

updates to the base Anaconda distribution consist of the TensorFlow and the OpenCV image

processing libraries. MATLAB installation is required to provide a runtime environment for

some of the tools in development. In addition to the tools required to build the models, two

packages have been provided that are required in order to serve the models as tools for the
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use by the server. Docker and K8S allow for containerisation of software, allowing tools and

applications to run without a view or access to any components of the system. Table 2.18

summarises the considered testbed. This setup will be applicable for all conducted experiments

in this work.

Table 2.18: System Specifications, Operating System, and Drivers

Specifications Operating System Drivers

Hardware 1x ASUS ESC8000

2x Intel Xeon Gold 5218

16x 32GB DDR4

2666Mhz ECC RDIMM

(512GB Total)

8x GPU RTX 2080TI

11GB Blower

1x 2TB Intel 760p M.2

PCIe NVME

8x 2TB Seagate Exos

7E2000 ST2000NX0433

10GbE SFP+ Network

Adapter

1x PIKE II 3108-8i-

16PD/1G

Ubuntu 18.04.3 LTS

(kernel: 5.0.0-32-

generic x86_64)

Nvidia Graphics

Drivers 430.50

CUDA 10.1.

Python environment MATLAB 2019b Servers tools

Continued on next page
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Table 2.18: System Specifications, Operating System, and Drivers (Continued)

Specifications Operating System Drivers

Software Anaconda 2019.03

Conda 4.7.10

Python 3.7.4

Tensorflow 2.0.0

Opencv 4.1.1.26

keras (version 2.31)

tensorflow-gpu (v1.2.1)

matplotlib (v3.1.1)

opencv (v4.1.2)

flask (v1.2.1)

scikit-learn (v0.21.3)

scipy (v1.3.1)

numpy (v1.17.3)

h5py (v.2.10.0)

pytorch (v1.3.0)

Deep learning toolbox

Parallel computation

toolbox

Computer Vision

toolbox

Signal Processing

toolbox

Statistics and Machine

Learning toolbox

Docker 19.03.2

Microk8s v1.16.2

2.11 Conclusion

Following an extensive exploration of traditional and automated methodologies in medical im-

age processing, this literature review underscores the gradual shift from conventional tech-

niques to more sophisticated, learning-based methods. By delving into the impact of traditional

methods on image processing performance and the significant advancements brought about by

automated and hybrid models, this thesis has illuminated the evolving landscape of medical

image analysis. Notably, the comparative analysis of novel DL approaches and the exploration

of hybrid models versus singular strategies highlight a critical path toward enhancing medical
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diagnostics. Identifying gaps in reliability, efficiency, interpretability, scalability, and adaptabil-

ity, this research is positioned to contribute significantly to the field. The forthcoming chapters

are thoroughly designed to bridge these gaps. The first chapter will introduce a novel hybrid

DL model, marking a significant advancement in medical image processing. Subsequent chap-

ters will disclose an adaptive and scalable feature extraction framework and prediction method,

designed to address the nuances of different types of medical imaging data, including MRI,

Fundus, OCT, and X-ray images. This comprehensive approach not only endorses the integra-

tion of cutting-edge computational techniques but also aims to significantly enhance disease

prediction performance. Through this holistic methodology, the thesis stands as an innovative

effort to navigate the complexities of medical image analysis, setting a new benchmark for fu-

ture research in the domain. In the following chapter, a design and implementation of a novel

hybrid DL based model will be presented.
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Chapter 3

DenCeption: A Novel Hybrid Deep

Learning Based Model

3.1 Introduction

The domain of AI has witnessed significant growth, particularly in enhancing and innovating

systems and technologies. Among its branches, DL is distinguished for its exceptional capa-

bilities in processing and analysing images, showcasing significant advancements in the field

of medical imaging. This area is crucial for advancing various applications related to med-

ical diagnosis, treatment planning, and prognostic evaluations. CNNs are at the forefront of

DL techniques employed for medical image analysis, with various architectures demonstrating

considerable success in this domain. This chapter conducts a detailed examination of selected

CNN architectures, including wider and deeper networks which have historically delivered im-

pressive results. Addressing the need for an innovative approach, this work introduces a novel

hybrid architecture, DenCeption, which merges the strengths of DenseNet-169 and Inception-

V4. This combination aims to leverage the unique advantages of these networks to further

enhance medical image processing.

CNNs have been applied to enhance diagnostic accuracy and operational efficiency in med-

ical procedures, such as targeting tumour/cancer detection through analysis tools. Several re-
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Figure 3.1: Typical CNN Architecture for Medical Image Analysis (Yang, Lan, Gao, and Gao,
2020)

searches explored the application of CNNs across various diagnostic images such as MRI,

CT, aiming to significantly reduce the time consumed during image processing phases (Arena,

Basile, Bucolo, and Fortuna, 2003; Mishra and Rahul, 2021). These researches focused on the

fast and efficient analysis of these images to assist in identifying inherited mutations disposing

individuals to various diseases and improving real-time processing capabilities in the health-

care field. Through detailed studies, including the development of three-dimensional CNN

models via simulation and their application in radiosurgery, as an example, several researches

demonstrated the potential of CNNs to speed up image processing operations crucially (Arena

et al., 2003; Zhao, Li, Rahaman, and Xu, 2022). Their applications highlight their ability to ef-

ficiently detect diseases, such as quickly isolate tumour regions, reconstruct cerebral ventricles

for surgical planning, . . . etc. The findings suggest a promising future for CNNs in advancing

medical diagnosis and treatment (Bankman, 2008; Yang et al., 2021). Figure 3.1 shows a

typical CNN architecture for medical image analysis.

CNNs, with their ability to automatically learn features from a large dataset of images, offer

a more effective and rapid solution for medical image analysis. This includes tasks like seg-

mentation, classification, and disease detection, which are crucial for accurate diagnosis and

treatment planning. CNNs are well known for their high performance in various real-world ap-

plications beyond medical imaging, like speech and text recognition, due to their deep architec-

tural design that mimics the human brain’s neuron connectivity (Alzubaidi et al., 2021; Razzak,
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Naz, and Zaib, 2018). This architecture allows CNNs to learn multiple levels of abstraction and

representation from data, making them particularly suited for complex image analysis tasks in

the healthcare sector. The outstanding performance showed by CNNs has led to their wide use

in case of complex applications such as computer vision, segmentation, object-detection, video

processing, natural language processing, speech recognition, and other several tasks particu-

larly medical image processing. Their multilayer neural network architectures are designed to

recognise visual patterns from pixels composing the image by minimising its pre- processing.

There are four main categories composing deep CNNs to include: spatial exploitation (e.g.,

AlexNet), depth (e.g., Inception-V4), and multi-connection based CNNs (e.g., DenseNet and

ResNet) underscoring their significance in expanding the limits of their potential contributions

in medical image processing and analysis (Khan et al., 2020; Girdhar, Sinha, and Gupta, 2023).

The contribution of this work is to design and implement a hybrid DL model that combines

the advantages of different CNN based architectures to enhance the existing state-of-the-art

robustness and accuracy in image processing, with a particular focus on medical imaging. The

chapter is composed as follows:

• Section 2 provides a discussion about the integration of these CNNs, with particular

focus on DenseNet, ResNet, and Inception family, in hybrid architectures. The section

also delves into a critical discussion about related works.

• Section 3 summarises the identified gaps and challenges in the literature.

• Section 4 focuses on a detailed presentation of the proposed hybrid DL model, Den-

Ception. This section will serve as the demonstration of the different hybrid blocks

composing the proposed novel model.

• Section 5 presents the rationale behind the selection of the proposed DenCeption model.

• Section 6 covers the conducted experiments followed by an introduction to the used

dataset in Section 7.
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• Section 8 presents the outcomes of the performed experiments and a critical discussion

of the obtained results at the testing and validation stages. The critical comparison will

involve DenCeption variants as well as benchmarking methods.

• The chapter concludes with Section 9.

3.2 Related Works: Deeper and Wider Hybrid CNN Archi-

tectures

Given the critical evaluation performed on these different well known CNN architectures, the

scope of this work is to focus on the outperforming models with a compromise of accuracy and

computational demands. Therefore, DenseNet, ResNet, and Inception family networks will

be the primary emphasis in this chapter. ResNet and DenseNet networks are characterised by

a deeper architecture considering the number of: connections, layers, nodes, and parameters

which leads to a more complicated networks (Pleiss et al., 2017). Unlike ResNet and DenseNet

that stack convolutional blocks together to get a deeper network and a better performance,

Inception family present an engineered architecture characterised by its complexity in obtaining

higher speed and better accuracy (Emara, Afify, Ismail, and Hassanien, 2019). Tables 3.1, 3.2,

and 3.3 present a critical review of the different network’s versions of ResNet, DenseNet, and

Inception family.
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Table 3.1: ResNet Network: Advantages and Disadvantages (Xu, Fu, and Zhu, 2023)

ResNet Version Advantages Disadvantages

ResNet-18 • Fast processing and training due

to fewer layers.

• Suitable for applications with

real-time requirements and less

complex tasks.

• Lower computational and mem-

ory requirements make it ideal for

real-world deployment.

• Lower capacity may result in re-

duced accuracy on highly complex

datasets compared to deeper ver-

sions.

ResNet-34 • Better accuracy than ResNet-18

for more complex tasks.

• Maintains a balance between

computational efficiency and model

capacity.

• Better processing and training

time performance.

• Underperforms in case of com-

plex datasets and tasks compared to

deeper ResNet versions.

ResNet-50 • Uses bottleneck blocks for im-

proved efficiency and depth.

• Higher capacity and accuracy

on complex tasks compared to

ResNet-18 and ResNet-34.

• Ensures a good balance of perfor-

mance and computational demand.

• Higher computational require-

ments than ResNet-18 and ResNet-

34.

• May require more critical tuning

and regularisation to avoid overfit-

ting.

Continued on next page
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Table 3.1: ResNet Network: Advantages and Disadvantages (Continued)

ResNet Version Advantages Disadvantages

ResNet-101 • Deeper architecture leads to im-

proved accuracy and feature extrac-

tion capabilities.

• Suitable for highly complex

datasets and tasks.

• Achieves better accuracy.

• Significantly increased compu-

tational and memory requirements

compared to shallower versions.

• Longer training and processing

times, making it less suitable for

real-time applications.

ResNet-152 • The deepest standard ResNet

model, offering the highest capac-

ity and potential accuracy.

• Demonstrates state-of-the-art per-

formance on various benchmarks

and complex tasks.

• Very high computational cost and

memory usage, challenging to de-

ploy on resource-constrained plat-

forms.

• Diminishing performance im-

provements relative to the increase

in depth and computational re-

sources.

165



Table 3.2: DenseNet Network: Advantages and Disadvantages (Huang et al., 2017b)

DenseNet Ver-

sion

Advantages Disadvantages

DenseNet-121 • Offers a good balance between

model complexity and computa-

tional efficiency, making it adapt-

able.

• Suitable for environments with

moderate computational resources.

• While efficient, it may not cap-

ture as complex features as its

deeper counterparts, which might

limit its performance on more com-

plex tasks.

DenseNet-169 • Improved accuracy on complex

datasets.

• Maintains an equilibrium between

network depth and required compu-

tations.

• Increased depth is resource-

intensive compared to DenseNet-

121.

DenseNet-201 • High capacity offering better

performance on challenging visual

recognition tasks.

• Aims to maximise accuracy for

demanding datasets.

• Very resource-intensive.

DenseNet-264 • Deepest version of DenseNet.

• Best suited for benchmarking and

research applications where perfor-

mance is paramount.

• Highly demanding in computa-

tional resources.

• Less practical for deployment in

limited-resource scenarios.

• Training and processing times are

considerably longer due to its size.
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Table 3.3: Inception Networks Family: Advantages and Disadvantages (Szegedy et al., 2017)

Inception Ver-

sion

Advantages Disadvantages

Inception-V1

(GoogLeNet)

• Significantly increases network

depth and width without a substan-

tial increase in computational cost.

• Utilises 1x1 convolutions to re-

duce dimensionality and computa-

tional cost.

• Less efficient in handling high-

resolution inputs compared to later

versions.

• Complexity of its architecture

makes it harder to understand and

modify.

Inception-V2 • Introduced BN.

• Improved training speed and

model performance.

• Made architectural improvements

to inception modules for increased

efficiency.

• Still faced challenges with model

complexity and understanding the

interactions between different lay-

ers and blocks.

Inception-V3 • Further refined the inception mod-

ules with factorised convolutions to

reduce the number of parameters.

• Introduced RMSProp optimiser,

label smoothing, and updated fac-

torisation ideas for convolution.

• Achieved significantly higher ac-

curacy on ImageNet and other

benchmarks.

• Computationally intensive.

• The complexity of the architecture

increased, requiring more resources

for training.

Continued on next page
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Table 3.3: Inception Networks Family: Advantages and Disadvantages (Continued)

Inception Ver-

sion

Advantages Disadvantages

Inception-V4 • Combined the strengths of Incep-

tion architecture with residual con-

nections.

• Significantly improved training

speed and accuracy.

• Adaptable to be integrated in hy-

brid models.

• High computational and memory

requirements.

The significant contribution these architectures have offered to the image processing field

has led to the high interest in combining their advantages towards getting better performance

as well as less computational costs as a common drawback. Several researches have introduced

hybrid combinations of these architectures. In fact, authors in (Yasashvini, Panjanathan, Grace-

line, and Jani Anbarasi, 2022) proposed a hybrid CNN architecture with ResNet and DenseNet

to improve DR classification. These hybrids aim to leverage DL and TL for more accurate

disease stage analysis. The advantages include enhanced feature extraction and classification,

utilising large unlabelled datasets, and improved accuracy. The hybrid CNN with DenseNet

has achieved the highest Acc of 96.22%. The disadvantages involve substantial computational

resources for training as well as the complexity of integrating and optimising hybrid models.

Authors in (Alotaibi and Alotaibi, 2020) proposed a hybrid CNN architecture combining

ResNet-152 and Inception-V1 models for Hyperspectral Image Classification (HSI), addressing

the challenge of high feature dimensions with limited labelled samples in HSI classification.

This hybrid architecture achieved notable accuracies: 95.31% on the Pavia University dataset,

99.02% on the Pavia Centre scenes dataset, 95.33% on the Salinas dataset, and 90.57% on

the Indian Pines dataset. The advantage of this approach is the improved HSI classification

performance by combining the strengths of both ResNet-152 and Inception-V1 architecture.
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However, a potential disadvantage could involve increased model complexity and computa-

tional requirements due to the combination the high complexity of ResNet-152.

Another hybrid model has been proposed in (Zhang and Feng, 2019) using both Inception-

V4 and DenseNet-121. Authors introduced their Inception-DenseNet architecture that embeds

Inception-like blocks within a DenseNet framework. This architecture incorporates hybrid acti-

vation operations differing from previous Inception blocks, aiming for more flexible responses

to object semantic regions. The Inception-DenseNet architecture demonstrates competitive or

superior classification Acc with average of 88% on various image datasets compared to existing

models like DenseNets and ResNets, with fewer trainable parameters. The key advantages of

the proposed hybrid model include: (1) a reduction in the number of trainable parameters com-

pared to original DenseNet, (2) an efficient training process due to dense connections, and (3)

an enhanced nonlinear mapping and feature diversity through hybrid activation functions and

multi-branch structure. In the following section, a proposal of a novel hybrid DL architecture

will be introduced highlighting the hybrid structure of the resulted network.

3.3 Identified Challenges

Despite DL’s profound capabilities, its models face several inherent challenges that can restrict

their efficiency and effectiveness. Understanding these challenges is crucial for the develop-

ment of more advanced and efficient models. The challenges faced by current DL models

covered in the discussed literature include:

• Size and Complexity: Large, computationally intensive models requiring significant

GPU resources compared to traditional vision models.

• Potential Overfitting: Vulnerability to overfitting despite dropout techniques, empha-

sising the need for rigorous regularisation and data augmentation.

• Static Architecture: Limited adaptability due to fixed structures, lacking the flexibility

of modular designs.
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• Skip Connection Challenges: Complexity in managing input dimensions and parameter

efficiency across different skip connection strategies.

• Detection of Salient Objects: Difficulty in detecting objects with large size variation.

• Deep Network Challenges: Overfitting and high computational costs associated with

very deep networks.

• Memory Consumption and Computational Overhead: Increased memory usage and

computational complexity, particularly in models with dense connections.

Addressing these challenges is pivotal for advancing the field of DL in computer vision, ne-

cessitating innovative solutions that enhance model adaptability, efficiency, and effectiveness.

3.4 Proposed Hybrid Deep Learning Model: DenCeption

This work proposes an adaptive hybrid CNN based model that combines DenseNet-169 and

Inception-V4. The motivation of this proposal is the idea of combining the advantages of

DenseNet-169 and Inception-V4 (as per Tables 3.2 and 3.3) to result DenCeption. The par-

ticular focus of DenCeption is on reducing the complex medical image size during processing

by keeping relevant features. The contribution of the proposed model is to potentially reduce

the number of DHF features, hence reducing the number of trainable parameters. The major

uniqueness of the DenCeption is the modification of both the original dense block and transition

block of DenseNet-169.

The idea is to construct a new dense block (DB), namely hybrid dense block (HDB) com-

posed of convolutional and inception modules. This will show the effect of the concatenation

operation of each convolution on the output of inception modules. The new densely connections

will be translated by the dense connectivity between all inception modules within the HDBs by

conserving the initial dense connections between convolutional blocks (CBs). Towards min-

imising the size of the medical images while being processed, an integration of reduction A

(RA) and reduction B (RB) blocks into the transition block (TB) takes place, constructing the
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Figure 3.2: Original Inception-A module (Szegedy, Ioffe, Vanhoucke, and Alemi, 2017).

Figure 3.3: Original Inception-B module (Szegedy, Ioffe, Vanhoucke, and Alemi, 2017).

proposed hybrid transition block (HTB). As a result, reduction modules (RA) and (RB) will

be densely linked to inception modules A (InA) and B (InB), respectively. A single Inception

C (InC) module will be part of HTBs as well. Figures 3.2, 3.3, 3.4, 3.5 and 3.6 present

the structures of the original InA, InB, InC, RA, and RB modules respectively (Szegedy et al.,

2017). Figure 3.7 illustrates the proposed hybrid network.

DenCeption network consists of a convolutional layer linked to a max pooling layer, fol-

lowed by alternation of four HDB blocks and three HTB blocks. Each HDB produces a set of

features resulted from highly dense CB blocks linking different internal components including
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Figure 3.4: Original Inception-C module (Szegedy, Ioffe, Vanhoucke, and Alemi, 2017).

Figure 3.5: Original Reduction A module (Szegedy, Ioffe, Vanhoucke, and Alemi, 2017).

BN layer, Convolutional layer, ReLU activation function, inception modules to include InA and

InB. Figure 3.8 illustrates the HDB composition.

The alternative integration of InA and InB increase the dense connections opting to min-

imise the total channels by that it means reducing the sample representation and used for key-

points rearrangements along with 3*3 convolutional layer. The final outcome of (n+1)th HDB

is N ∗N ∗M ∗ (1+α), where N is the size of the of the feature map (FM) and M is the to-

tal number of channels considered, and α < 2. Each of the proposed HDBs applies different

filtering process in the inception modules InA and InB which is difference from the original

inception modules as showed in Figure 3.9 and 3.10.

The hybrid InA, InB modules are presented in Figure 3.9 and 3.10 where n, l, k, t, and j are
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Figure 3.6: Original Reduction B module (Szegedy, Ioffe, Vanhoucke, and Alemi, 2017).

Figure 3.7: Proposed Hybrid DenCeption Architecture

Figure 3.8: Hybrid Dense Block Architecture

the number of filters defined in Tables 3.4 and 3.5.
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Figure 3.9: DenCeption InA Module

Figure 3.10: DenCeption InB Module

Table 3.4: InA Filter Numbers Per HDB Block

HDB

Block

n l t k

1 24 48 8 24

Continued on next page
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Figure 3.11: Hybrid Transition Block Architecture

Table 3.4: InA Filter Numbers Per HDB Block (Continued)

HDB

Block

n l t k

2 128 128 96 64

3 256 256 64 128

4 256 256 256 128

Table 3.5: InB Filter Numbers Per HDB Block

HDB

Block

n l t k j

1 24 48 8 24 48

2 128 128 96 64 96

3 256 256 64 128 192

4 256 256 256 128 192

By increasing the dense connections composing the HDB, the FMs extracted at each nth

layer shows an increase as well. Therefore, the HTB is taking over the outcome and reduces

the extracted FMs dimension from the

(n1)th

HDB. Figure 3.11 presents the composition of the HTB block.
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Figure 3.12: DenCeption InC Module

The presence of reduction blocks, inherited from Inception architecture, including RA and

RB had a fundamental value in: (1) improving the FMs representation, (2) reducing the FMs

dimension, and (3) emphasising on keeping the regions of interest’s DHF features (loss rate

is very low). The key value of integrating Inception C (InC) module is that it plays a crucial

role in the proposed architecture by introducing specific operations and convolutions adapted

to address critical aspects of feature representation. Its operation through the HTB block con-

tributes to the overall performance of the hybrid model by providing additional flexibility in

feature extraction and processing as well as maintaining relevant information that might be lost

due to transition blocks. InC module represents the link between the resulted output of (RB)

modules to the average pooling operation block. The RA module applies a stride equal to 2,

followed by a 1x1 CB block, linked to RB which applies a stride equal to 1 and increases the

number of filters towards enhancing the deep extraction of FMs. Afterwards InC module ap-

plies an increase number of filters to help balance the size of the output as well as the number

of channels per operation followed by an average pooling layer which further applies a stride

equal to 2 and maintains a constant number of filters as resulted from InC connection. Figures

3.12, 3.13, and 3.14 present the hybrid InC, RA, and RB modules where n, t, l, k, and m are the

number of filters defined in Tables 3.6, 3.7, and 3.8.
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Figure 3.13: DenCeption RA Module

Figure 3.14: DenCeption RB Module

Table 3.6: InC Filter Numbers Per HTB Block

HTB

Block

n t l k

1 256 192 8 24

2 512 256 32 32

Continued on next page
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Table 3.6: continued: InC Filter Numbers Per HTB Block (Continued)

HTB

Block

n t l k

3 512 256 128 128

Table 3.7: RA Filter Numbers Per HTB Block

HTB

Block

n l m k

1 64 48 64 24

2 224 128 256 64

3 320 256 512 128

Table 3.8: RB Filter Numbers Per HTB Block

HTB

Block

n l m k

1 128 128 128 96

2 256 256 256 128

3 320 512 512 256

3.5 Rationale Behind the Selection of the DenCeption Model

The selection of the DenCeption model as the proposed hybrid DL architecture was driven by a

systematic and methodical approach, aimed at addressing specific challenges in medical image

processing while leveraging the strengths of existing CNN architectures. The decision to com-

bine DenseNet-169 and Inception-V4 into the DenCeption model was carefully considered; it

was based on a thorough analysis of the advantages and limitations of various DL architectures,

with the goal of optimising performance for complex medical image analysis tasks.
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3.5.1 Addressing Identified Challenges

The primary motivation for developing the DenCeption model arose from the limitations ob-

served in both traditional and existing DL models. Traditional CNNs, while effective in certain

scenarios, often struggle with maintaining a balance between model complexity, computational

efficiency, and accuracy, particularly in the context of high-dimensional medical imaging data.

DenseNet and Inception architectures, each with their own unique strengths, were identified as

potential solutions to these challenges. DenseNet-169’s ability to enhance feature reuse and

reduce the number of parameters, coupled with Inception-V4’s multi-scale feature extraction

and enhanced computational efficiency, made them perfect choices for integration.

3.5.2 Selection Criteria for Hybridisation

The hybridisation of DenseNet-169 and Inception-V4 into DenCeption was guided by several

key criteria:

• Feature Extraction and Efficiency: DenseNet’s densely connected layers facilitate effi-

cient feature reuse, which is crucial for reducing the computational burden without com-

promising accuracy. Inception-V4, on the other hand, excels in extracting multi-scale

features, which is particularly beneficial for medical images that often contain intricate

details at various scales.

• Model Adaptability: The need for a model that can adapt to varying complexities

in medical images was paramount. By combining the strengths of DenseNet-169 and

Inception-V4, DenCeption was designed to be adaptable, allowing it to handle a wide

range of medical imaging tasks with varying levels of difficulty.

• Computational Constraints: The selection process also considered the computational

resources typically available in medical settings. While both DenseNet and Inception ar-

chitectures are known for their computational demands, the hybrid model was optimised

to strike a balance between performance and resource efficiency, ensuring its feasibility

for practical deployment.
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3.5.3 Comparative Analysis and Experimental Validation

Prior to finalising the DenCeption architecture, a comparative analysis was conducted, involv-

ing extensive experimentation with different CNN architectures. These experiments focused

on evaluating the performance of various combinations of DenseNet and inception modules in

terms of accuracy, computational efficiency, and scalability. The results of these experiments

clearly indicated that the hybrid DenCeption model outperformed other configurations, partic-

ularly in tasks requiring precise feature extraction and classification in medical images. Details

of the experiments conducted and the results obtained will be presented in the coming sections.

3.5.4 Alignment with Research Goals

The overarching goal of this research is to advance the state-of-the-art in medical image pro-

cessing by developing a robust, efficient, and highly accurate DL model. DenCeption was

selected because it directly addresses the identified gaps in existing methods, offering a novel

approach that combines the best aspects of DenseNet and Inception architectures. This hybrid

model not only meets the technical requirements but also aligns with the practical needs of the

healthcare industry, where accuracy, efficiency, and adaptability are critical.

3.5.5 Justification for Model Components

Each component of the DenCeption model was carefully chosen to enhance its overall func-

tionality. The HDB and HTB were designed to optimise feature extraction and dimensionality

reduction, respectively, ensuring that the model remains both effective and efficient. The inte-

gration of inception modules within these blocks further contributes to the model’s ability to

handle complex and diverse medical imaging data, providing a comprehensive solution to the

challenges identified in the literature.
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3.6 Conducted Experiments

Towards testing the proposed DenCeption performance against the aforementioned hybrid and

singular models on medical images, a classification-based task will be performed. The set of

experiments conducted in this chapter will involve the test of the current proposal with different

versions of DenCeption to include:

• DenCeption with no hybrid transition block, namely DenCeption-HDB, where the growth

rate k=32 for all BN, ReLU and conv layers as per the conventional structure of the clas-

sic TB.

• DenCeption with hybrid dense block without InB Inception block, namely Denception-

HDB-NInB.

• DenCeption with hybrid dense block without InA Inception block, namely Denception-

HDB-NInA.

• DenCeption with no hybrid dense block, namely DenCeption-HTB.

• DenCeption with hybrid transition block without RB reduction block, namely Denception-

HTB-NRB.

• DenCeption with hybrid transition block without RA reduction block, namely Denception-

HTB-NRA.

• DenCeption with hybrid transition block without InC reduction block, namely Denception-

HTB-NInC.

• DenCeption with both hybrid blocks using the foundation of DenseNet-121, namely

DenCeption-121.

• DenCeption with both hybrid blocks using the foundation of DenseNet-201, namely

DenCeption-201.
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• DenCeption with both hybrid blocks using the foundation of DenseNet-161, namely

DenCeption-161.

Table 3.9 presents the layers composition of each of the above versions. The comparison

will also involve the reviewed state-of-the-art models to include ResNet-DenseNet (Yasashvini

et al., 2022), ResNet-Inception (Alotaibi and Alotaibi, 2020), and Inception-DenseNet-121

(Zhang and Feng, 2019). The labelled MRI dataset is split into three main sets: 60% training,

30% testing, and 10% validation. To test the performance of the proposed framework the

following metrics are considered: Acc, Sen, Spe, precision, F1-score, and MAE.
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Table 3.9: Hybrid DenCeption Variants Architecture

Hybrid Mod-

els

HDB HDB with

no InB

HDB with

no InA

HTB HTB with

no RB

HTB with

no RA

HTB with

no InC

Classic

DB

Classic

TB

1×1CB

InA

3×3CB

InB




1×1CB

InA

3×3CB




1×1CB

3×3CB

InB





RA

1×1CB

RB

InC

2×2AP





1×1CB

RB

InC

2×2AP





RA

1×1CB

InC

2×2AP





RA

1×1CB

RB

2×2AP


1×1CB

3×3CB


1×1CB

2×2AP



DenCeption-

HDB

×



6

12

32

32


×


1

1

1



DenCeption-

HDB-NInB

×



6

12

32

32


×


1

1

1


Continued on next page
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Table 3.9: Hybrid DenCeption Variants Architecture (Continued)

Hybrid Mod-

els

HDB HDB with

no InB

HDB with

no InA

HTB HTB with

no RB

HTB with

no RA

HTB with

no InC

Classic

DB

Classic

TB

DenCeption-

HDB-NInA

×



6

12

32

32


×


1

1

1



DenCeption-

HTB

×


1

1

1

 ×



6

12

32

32



DenCeption-

HTB-NRB

×


1

1

1

 ×



6

12

32

32


Continued on next page
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Table 3.9: Hybrid DenCeption Variants Architecture (Continued)

Hybrid Mod-

els

HDB HDB with

no InB

HDB with

no InA

HTB HTB with

no RB

HTB with

no RA

HTB with

no InC

Classic

DB

Classic

TB

DenCeption-

HTB-NRA

×


1

1

1

 ×



6

12

32

32



DenCeption-

HTB-NInC

×


1

1

1

 ×



6

12

32

32



DenCeption-

121

×



6

12

24

16


×


1

1

1


Continued on next page
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Table 3.9: Hybrid DenCeption Variants Architecture (Continued)

Hybrid Mod-

els

HDB HDB with

no InB

HDB with

no InA

HTB HTB with

no RB

HTB with

no RA

HTB with

no InC

Classic

DB

Classic

TB

DenCeption-

201

×



6

12

48

32


×


1

1

1



DenCeption-

161

×



6

12

36

24


×


1

1

1



DenCeption ×



6

12

32

32


×


1

1

1
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3.7 Dataset

The decision to use the BRATS MRI dataset, despite its simplicity and the fact that it is un-

labelled, was based on several strategic considerations that align with the research objectives.

Below is a detailed justification addressing why the BRATS data was chosen and how it con-

tributes to the overall goals of the research.

3.7.1 Benchmarking and Validation

The BRATS dataset is widely recognised in the medical imaging community, particularly in the

field of brain tumour analysis. It has been used extensively as a benchmark for developing and

testing segmentation and classification models. Despite being unlabelled, its established use in

competitions like the RSNA-ASNR-MICCAI Brain Tumor Segmentation Challenge makes it a

valuable resource for validating the performance of new models against industry standards.

3.7.2 Real-World Clinical Relevance

The BRATS dataset, although unlabelled, closely mirrors real-world clinical scenarios where

MRI scans are often presented without pre-annotations. This reflects the reality that in many

clinical settings, models need to perform accurately without the benefit of fully labelled datasets.

The use of BRATS data, therefore, provides an opportunity to test the model’s robustness and

ability to handle real-world challenges, such as working with raw, unlabelled data.

3.7.3 Complexity in Data Structure

While the BRATS dataset is unlabelled, it is far from simplistic in terms of data structure.

The dataset includes multiple modalities (T1, T1Gd, T2, T2-FLAIR) acquired from different

clinical protocols and scanners. This complexity in data acquisition and the inherent variability

in the images provide a challenging environment for testing the adaptability and performance of

the proposed models. The dataset’s multi-modality nature demands a model that can generalise
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across different types of MRI scans, which is critical for ensuring the model’s applicability in

diverse clinical scenarios.

3.7.4 Strategic Use in Early Model Development

The BRATS dataset was strategically used in the early stages of model development (as detailed

in Chapters 3 and 4) to fine-tune the feature extraction and segmentation capabilities of the

proposed DenCeption model. The simplicity of the dataset in terms of labelling allows the

research to focus on improving the core functionalities of the model, such as handling multi-

modal MRI data, before moving on to more complex, fully labelled datasets.

3.7.5 Contribution to Model Robustness

The inclusion of BRATS data, despite its simplicity, contributes to enhancing the robustness of

the proposed models. By testing the models on unlabelled data, the research ensures that the

models are not overly reliant on labelled training data and can perform effectively even when

such annotations are unavailable. This is particularly important for developing models that can

be deployed in varied clinical settings, where access to fully labelled data may be limited.

3.8 Results and Discussion

3.8.1 Training and Testing Results: DenCeption Versus DenCeption Vari-

ants and Benchmarking Methods

The training results showcase DenCeption outperformed other models with the highest Acc

of 91.3% (Table 3.10). Following it, DenCeption-201, DenCeption-161, and DenCeption-

121 all presented a noticeable performance with accuracies around 89%. ResNet-Inception

model has the lowest Acc of 73.4% (Alotaibi and Alotaibi, 2020). DenCeption-201 has the

highest Sen (90%) compared to the other variants, indicating its ability to correctly identify

positive cases, yet less than DenCeption’s Sen (93%). DenCeption-HTB-NInC has the lowest
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Sen (64%), suggesting it may miss a significant number of positive cases. DenCeption has also

showed a precision of 93.7%, showing its strength in correctly identifying negative cases. The

models with no InA and InB models in the HDB block, tend to have lower Spe, suggesting

a difficulty in accurately classifying negative cases. As per the table, precision is highest for

DenCeption (94%), indicating a high proportion of TP identifications out of all positive iden-

tifications. However, ResNet-Inception shows the lowest precision (70.3%), indicating more

FPs. DenCeption has the highest F1-score of 93.4%, demonstrating excellent overall perfor-

mance. Conversely, DenCeption-HTB-NInC has the lowest F1-score, reinforcing that it’s the

weakest performer compared to all other variants and benchmarking methods. DenCeption has

the lowest MAE of 0.2, aligning with its high accuracy. Higher MAE in other models like

DenCeption-HTB-NInC (0.88) and ResNet-Inception (0.84) indicates more significant errors

in prediction.

Table 3.10: Training Results of DenCeption Versus Other Variants and Benchmarking Methods

Methods Acc (%) Sen (%) Spe (%) Precision

(%)

F1-score

(%)

MAE

ResNet-

DenseNet

(Yasashvini

et al., 2022)

88.3 88 87 79 83.2 0.6

ResNet-

InCeption

(Alotaibi

and Alotaibi,

2020)

73.4 74 73 70.3 72.1 0.84

Continued on next page
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Table 3.10: Training Results of DenCeption Versus Other Variants and Benchmarking Methods
(Continued)

Methods Acc (%) Sen (%) Spe (%) Precision

(%)

F1-score

(%)

MAE

InCeption-

DenseNet-

121 (Zhang

and Feng,

2019)

88.5 87 89.2 83 84.9 0.61

DenCeption-

HDB

88.1 80 78 81 80.4 0.58

DenCeption-

HDB-NInB

83 78 79.6 80 78.9 0.72

DenCeption-

HDB-NInA

77 69 70 72 70.4 0.8

DenCeption-

HTB

76.4 68 68.1 70 68.9 0.84

DenCeption-

HTB-NRB

76 68.3 67.4 69 68.6 0.85

DenCeption-

HTB-NRA

76.2 67 68 73 69.8 0.83

DenCeption-

HTB-NInC

74 64 62.3 66 64.9 0.88

DenCeption-

121

89.3 89 88.4 90 89.4 0.4

Continued on next page
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Table 3.10: Training Results of DenCeption Versus Other Variants and Benchmarking Methods
(Continued)

Methods Acc (%) Sen (%) Spe (%) Precision

(%)

F1-score

(%)

MAE

DenCeption-

201

89.7 90 89.5 91 90.3 0.38

DenCeption-

161

89.5 89.6 89 90.3 89.8 0.4

DenCeption 91.3 93 93.7 94 93.4 0.2

These results indicate that both ResNet-DenseNet (Yasashvini et al., 2022) and InCeption-

DenseNet-121 (Zhang and Feng, 2019) models perform comparably in terms of accuracy and

specificity, but InCeption-DenseNet-121 slightly outperforms in F1-score and has a marginally

lower MAE, indicating more consistent performance. The variations of DenCeption show a

wide range of performance, with the ’HDB’ and ’HTB’ variants showing weaker results across

metrics compared to ’121’, ’201’, and ’161’. This indicates that certain configurations of Den-

Ception are superior to others, and fine-tuning the architecture is critical. Models without

hybrid inception modules to include ’NInA’, ’NInB’, and ’NInC’ tend to perform worse across

all metrics than their counterparts, highlighting the importance of these components for model

accuracy and reliability.

In critically analysing the DenCeption model in relation to its benchmarks and variants, it

is essential to consider various factors such as overall performance metrics, model complexity,

and practical applicability.

DenCeption Versus Benchmarks

Compared to these benchmarks, DenCeption generally outperforms ResNet-DenseNet (Yasashvini

et al., 2022) and ResNet-Inception (Alotaibi and Alotaibi, 2020)significantly in terms of accu-

racy, precision, and F1-score. The ResNet-Inception model, with the stochastic depth, exhibits
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the lowest performance among the benchmarks, which may suggest that while stochastic depth

can potentially help in training deeper networks, it does not necessarily translate to higher

performance in all cases. ResNet-DenseNet, while reasonably competitive, still underperform

compared to DenCeption model’s performance. On the other hand, InCeption-DenseNet-121

model closely outperform the DenCeption variants in accuracy, but still underperforms com-

pared to the best-performing DenCeption models (Zhang and Feng, 2019). Its relatively high

Sen and Spe indicate it is a robust model, but DenCeption’s higher precision suggests it has

better discriminative power for positive class identification.

DenCeption Versus its Variants

DenCeption-HDB variants show a drop in performance compared to the top DenCeption mod-

els. The hybrid HDB blocks, while innovative, may introduce complexity without proportional

increase in performance, as indicated by their lower Sen and Spe scores. This suggests a po-

tential overfitting issue or that the model architectures might not be capturing the features as

effectively as the main DenCeption model. Conversely, in case of DenCeption-HTB variants,

the different versions of the transition block seem to negatively impact the performance met-

rics, particularly for those missing RA, RB, or InC hybrid modules. This is possibly due to

an over-reduction in feature space or ineffective feature translation from one block to another.

The increased MAE across these variants also points to less accurate predictions. These results

were quite different in case on DenCeption-121, DenCeption-201, and DenCeption-161. In

fact, these models demonstrate a high level of performance across all metrics, suggesting that

the specific configurations of hybrid HDB and HTB blocks in these architectures are well-suited

to the classification task.

There is not a direct correlation between model complexity (number of parameters) and

performance. While some DenCeption variants have fewer parameters but manage to achieve

high accuracy and other performance metrics, some with more parameters do not perform as

expected. This highlights the importance of architecture optimisation over highly increasing

model depth or width. This proves the outstanding performance of DenCeption that, although
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with small number of parameters compared to other models including those from its variants

or from benchmarking models. The DenCeption model, with its inception, dense block, and

transition block combination, showed an exceptional capability to capture a richer feature rep-

resentation than its benchmarks and some of its variants. This is evident in its superior perfor-

mance, particularly in precision and F1-score, which are critical for class imbalance scenarios

often found in real-world datasets. Some variants present a potential of overfitting risks, where

models perform well on the training data but may not generalise as well on unseen data. This

is suggested by the increased MAE and lower Sen/Spe scores. Given the observations from

the training outcomes, it became evident that removing hybrid Inception components including

InA, InB, and InC tends to degrade performance, reaffirming the value of these modules in the

DenCeption architecture for effective feature extraction and representation. The DenCeption

model demonstrates high performance and is especially dominant in its precision and accuracy

metrics. Its distinguished HDB and HTB combination proves that not all modifications lead to

improvements, as seen with the HDB only and HTB only variants.

The results presented in Table 3.10 show a close range of accuracies among the DenCeption

variants. While these results may initially appear similar, a deeper analysis reveals the nuances

that differentiate these models, particularly when considering other performance metrics be-

yond Acc, Sen, Spe, precision, F1-score, and MAE, as follows:

• Acc Analysis: The slight difference in accuracy between DenCeption and its variants,

such as DenCeption-201 and DenCeption-161, can be attributed to the architectural mod-

ifications aimed at balancing depth and complexity. DenCeption-201, for instance, in-

cludes a deeper structure compared to DenCeption-121, which may allow for more intri-

cate feature extraction, particularly in complex imaging tasks. However, this increased

depth also introduces a higher computational cost and potential for overfitting, which

might slightly affect its generalisation capability, explaining the minor differences in ac-

curacy.

• Sen and Spe Analysis: Sen and Spe are critical metrics in medical image analysis, par-
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ticularly in scenarios where the cost of false negatives or false positives is high. The

DenCeption model’s Sen (93%) and Spe (93.7%) outperform those of the variants, sug-

gesting that the original model is slightly better at correctly identifying both positive and

negative cases. However, DenCeption-201 and DenCeption-161 are very close in these

metrics, indicating that while they are slightly less accurate overall, they still maintain a

strong balance between identifying true positives and true negatives.

• Precision and F1-Score Analysis: The F1-score and precision metrics also highlight

the robustness of the DenCeption model. With a precision of 94% and an F1-score of

93.4%, DenCeption demonstrates superior performance in maintaining a high proportion

of correctly identified positive results out of all positive results identified. The variants,

particularly DenCeption-201 and DenCeption-161, maintain high precision and F1-score

close to 90%, indicating that they are still highly effective but slightly less balanced than

the original DenCeption model in this regard.

• MAE Analysis: The MAE metric further underscores the performance differences. Den-

Ception has the lowest MAE of 0.2, which reflects its high reliability and lower error rate

in prediction tasks. The variants exhibit slightly higher MAE values, with DenCeption-

201 and DenCeption-161 showing MAEs of 0.38 and 0.4 respectively. While these dif-

ferences are not large, they do suggest that DenCeption is better optimised for minimising

errors in predictions, making it more reliable across different scenarios.

While the accuracy differences among DenCeption and its variants are not substantial, the

additional metrics provide a more complete picture. The original DenCeption model maintains

a slight edge in overall performance, particularly in Sen, Spe, and MAE. The variants, while

performing admirably and offering nearly comparable accuracy, show minor differences that

could influence their suitability for specific medical imaging tasks where either computational

efficiency or a particular balance of sensitivity and specificity is prioritised.

Towards better understanding the performance of the proposed hybrid model during the

training and testing phase against other variants (DenCeption-121, DenCeption-201, and DenCeption-
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Figure 3.15: Testing Results: Top-1 Error of DenCeption Variants

Figure 3.16: Testing Results: Top-1 Error of DenCeption Versus Benchmarking Methods

161) as well as existing benchmarking methods, relationship between Top-1 error versus the

variation of the number of parameters per model has been conducted as shown in Figures 3.15

and 3.16, respectively.

Figure 3.15 reveals that, as the number of parameters increases, the Top-1 error for all

DenCeption variants decreases, which suggests that having more parameters helps to reduce

the classification error rate of the model. In particular, DenCeption’s behaviour in decreas-
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ing the Top-1 error while increasing the number of parameters is common, where additional

parameters often correlate with a network’s capacity to learn more complex features from the

data. Similarly, the DenCeption-161 (k=48) variant starts with a higher error rate compared

to the others but demonstrates a significant drop as parameters increase, ending up with the

lowest Top-1 error among all the variants. This significant drop-in error rate suggests that this

model is highly capable of learning from additional parameters, possibly due to a more effec-

tive network design that leverages the increased growth rate. However, it is worth noting that

a compromise decision regarding the number of parameters and the efficiency of the model

is critical as it impacts the adaptability and scalability of the model as well as its computa-

tional efficiency. On the other hand, DenCeption-201 (k=24) variant maintains a consistent

advantage over the DenCeption-121 (k=24) when comparing models with the same growth rate

(k). In fact, DenCeption-201 shows a consistently lower Top-1 error across all parameter sizes,

indicating a better capacity to generalise or learn features. Its performance improvement is

more pronounced at lower parameter counts, highlighting efficient use of the model’s capac-

ity. In contrast, DenCeption-121 initially starts with a higher error than the baseline but shows

significant improvement with an increase in parameters. The model shows a stabilisation in

performance improvement beyond a certain parameter count, suggesting a balance in learning

capacity.

The proposed DenCeption (k=24) variant shows a less rapid descent in error rate com-

pared to the more complex models. By observing the resulted graph, it looks that the variant

DenCeption-161 (k=48) achieves a perfect balance between the number of parameters and per-

formance, as it achieves the lowest error rate in the end. However, this has a drawback regard-

ing the additional parameters, which might entail a more complex model that may require more

computational resources. As per Figure 3.15, incremental improvements become less signifi-

cant where increases in parameters lead to minor improvements in error rates, particularly in

case of DenCeption-121 and DenCeption-201. This suggests that simply adding more param-

eters may not always result in significant performance enhancement and leads to consider the

trade-off between complexity and performance. Additionally, the consideration of overfitting
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issue is crucial in evaluating these models. In fact, deeper models with more parameters, like

DenCeption-161 (k=48), may be at risk of overfitting. Therefore, it is crucial to validate these

models on a separate validation set to ensure that their generalisability to unseen data.

Compared to other benchmarking methods, DenCeption maintains its high performance by

showing the lowest Top-1 error rate across the number of parameters, indicating a robust model

with high efficiency in parameter utilisation as shown in Figure 3.16. The graph also proves

that a significant reduction in error rate with an increase in the number of parameters, is a high-

light of an effective architecture for learning from data. Inception-DenseNet-121 demonstrates

improved performance over the other models, except for DenCeption, as parameters increase

(Zhang and Feng, 2019). There’s a significant decrease in error rate with the first increase

in parameters, which then starts to stabilise, resulting a drawback with additional parameters.

ResNet-DenseNet achieved higher Top-1 error rates compared to DenCeption and Inception-

DenseNet-121 (Yasashvini et al., 2022). However, despite an initial significant decrease, the

enhancement in performance reaches a saturation point with an increase in parameters, indi-

cating that ResNet-DenseNet may be less efficient at utilising additional parameters beyond

a certain point. ResNet-Inception (Stochastic Depth), on the other hand, has a unique per-

formance curve, starting with the highest error and showing a significant improvement as the

number of parameters increases (Alotaibi and Alotaibi, 2020). This indicates that the use of

stochastic depth might contribute to the efficient training of deep networks, allowing the model

to eventually outperform ResNet-DenseNet, yet to outperform the proposed DenCeption. This

proves that, while all models improve with more parameters, DenCeption achieves this more

effectively, indicating it is well suited for environments where computational resources are lim-

ited, yet presenting highest Acc (91.3%), Sen (93%), Spe (93.7%), precision (94%), F1-score

(93.4%), and lowest MAE (0.2).

In the following, as part of the validation stage, an evaluation of the unseen data will be

conducted. This experiment enables to assess the generalisability of the proposed DenCeption

model. This helps to avoid overfitting problem. By analysing the Top-1 and Top-5 errors, it

enables the evaluation of the model’s precision and its ability to distinguish the most likely
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class and its top five likely classes, respectively. The analysis of the depth and the numbers of

parameters per model allows a better understanding of the computational complexity, scalabil-

ity and generalisability of these models. This will be considered as a validation process to the

proposed DenCeption model. The results are presented in Tables 3.11 and 3.12 considering

two growth rates with values of k=32 and k=24 respectively.

3.8.2 Validation Results: DenCeption Versus Variants and Benchmark-

ing Methods

As shown in Table 3.11, as the depth and the number of parameters increase, there is an im-

provement in Top-1 and Top-5 error rates. However, this pattern is not consistent as some

models with fewer parameters, such as DenCeption-121, outperform more complex models

like DenCeption-HDB. DenCeption outperforms the other variants as well as the benchmark-

ing methods with the lowest Top-1 and Top-5 error rates equal to 23.4 and 5.87 respectively.

This performance is followed closely by the DenCeption-201 model. It suggests that the archi-

tecture of DenCeption is more effective in extracting and generalising features from the data,

due to optimised layer configurations and parameter utilisation. The ResNet-Inception model

with stochastic depth shows relatively higher error rates. This indicates that stochastic depth

does not consistently provide benefits across different network architectures, especially when

comparing against networks like DenCeption that potentially have more optimised pathways

for feature propagation. The HDB and HTB variants show varied results, with HDB coupled

with classic TB generally performing better than HTB coupled with classic DB. Removing

inception modules from HDB (DenCeption-HDB-NInA and DenCeption-HDB-NInB) impacts

performance negatively, signifying the importance of these modules in the learning ability of

the network.
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Table 3.11: Validating Results with Growth Rate k=32

Methods Top-1 error

(%)

Top-5 error

(%)

Depth Number of

parameters

(x106)

ResNet-DenseNet

(k=32) (Yasashvini

et al., 2022)

26.87 7.12 110 11.7

ResNet-InCeption

(stochastic depth)

(Alotaibi and

Alotaibi, 2020)

28.32 8.93 110 11.9

InCeption-

DenseNet-121

(k=32) (Zhang and

Feng, 2019)

26.44 6.43 100 12

DenCeption-HDB

(k=32)

27.44 8.1 150 15.4

DenCeption-HDB-

NInB (k=32)

27.08 7.89 100 9.3

DenCeption-HDB-

NInA (k=32)

29.7 9.02 100 9.7

DenCeption-HTB

(k=32)

30.8 9.93 110 10.3

DenCeption-HTB-

NRB (k=32)

31.27 10.16 90 9.5

Continued on next page
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Table 3.11: Validating Results with Growth Rate k=32 (Continued)

Methods Top-1 error

(%)

Top-5 error

(%)

Depth Number of

parameters

(x106)

DenCeption-HTB-

NRA (k=32)

31.03 10.07 90 9.6

DenCeption-HTB-

NInC (k=32)

32.9 10.43 100 10.4

DenCeption-121

(k=32)

26.6 7.03 190 7.3

DenCeption-201

(k=32)

25.3 6.42 270 12

DenCeption-161

(k=32)

26.3 6.91 290 17.3

DenCeption (k=32) 23.4 5.87 230 8.17

By decreasing the growth rate, DenCeption with k=24 presents the best model across the

variants and benchmarking methods with significantly lower error rates, despite having fewer

parameters and moderate depth compared to other models. This proves the highly effective

use of its architectural features and parameters, resulting in strong generalisation. DenCeption-

121, DenCeption-201, and DenCeption-161, on the other hand, demonstrated good parameter

efficiency, achieving low error rates with a smaller number of parameters compared to bench-

marking methods. In fact, when compared with the ResNet-DenseNet (Yasashvini et al., 2022)

and ResNet-Inception (Alotaibi and Alotaibi, 2020) models, the DenCeption variants show

clear superiority, indicating that the hybrid DenseNet-Inception architecture, especially when

fine-tuned (as in DenCeption variants), can outperform more traditional hybrid approaches.

Hence the outperformance of DenCeption when compared with Inception-DenseNet-121.
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Table 3.12: Validating Results with Growth Rate k=24

Methods Top-1 error

(%)

Top-5 error

(%)

Depth Number of

parameters

(x106)

ResNet-DenseNet

(k=24) (Yasashvini

et al., 2022)

21.3 4.22 90 10.4

ResNet-InCeption

(stochastic depth)

(Alotaibi and

Alotaibi, 2020)

23.5 5.66 110 11.9

InCeption-

DenseNet-121

(k=24) (Zhang and

Feng, 2019)

20.1 4.03 70 11

DenCeption-HDB

(k=24)

19.30 3.07 110 13.4

DenCeption-HDB-

NInB (k=24)

20.06 4 90 6.1

DenCeption-HDB-

NInA (k=24)

22.4 4.55 90 6.3

DenCeption-HTB

(k=24)

22.7 4.7 60 7.5

DenCeption-HTB-

NRB (k=24)

23 4.2 70 6.2

Continued on next page
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Table 3.12: Validating Results with Growth Rate k=24 (Continued)

Methods Top-1 error

(%)

Top-5 error

(%)

Depth Number of

parameters

(x106)

DenCeption-HTB-

NRA (k=24)

21.9 3.45 40 6.3

DenCeption-HTB-

NInC (k=24)

24.2 5.7 60 6.9

DenCeption-121

(k=24)

18.3 2.87 150 5.4

DenCeption-201

(k=24)

17.5 2.3 200 8

DenCeption-161

(k=24)

18.04 2.5 250 10

DenCeption (k=24) 15.1 1.73 190 3.6

3.9 Conclusion

The comprehensive analysis of the DenCeption model, as evidenced by the provided train-

ing and testing results, Confirms its exceptional performance across various evaluation met-

rics. Notably, the DenCeption model achieves a novel standard of Acc achieving 91.3%, set-

ting a new benchmark for excellence among the evaluated models. On a similar pathway,

DenCeption-201, DenCeption-161, and DenCeption-121 variants demonstrate notable perfor-

mance with accuracies around 89%. The ResNet-Inception model (Alotaibi and Alotaibi,

2020), however, underperformed with the least Acc of 73.4%. The DenCeption-201 variant

excels in Sen, with a rate of 90%, showcasing its adaptability at accurately identifying posi-

tive instances, although slightly lower than DenCeption’s highest Sen of 93%. Contrarily, the
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DenCeption-HTB-NInC variant displays the lowest Sen at 64%, which shows the importance

of integrating InC module within HTB increasing the recognition of a considerable number

of positive cases. The precision rate of DenCeption reaching 94% underscores its efficiency

in accurately identifying negative instances. The variants of InA and InB modules within the

HDB block showed reduced Spe, reflecting a challenge in accurately classifying negative in-

stances. Furthermore, DenCeption achieves the highest F1-score of 93.4%, illustrating its ex-

ceptional overall performance, while the DenCeption-HTB-NInC variant presenting the lowest

performance further prove the importance of InC module alongside RA and RB reduction mod-

ules. The minimal MAE of 0.2 aligned with DenCeption’s high accuracy is reflected in higher

MAE values in other models, such as DenCeption-HTB-NInC (0.88) and ResNet-Inception

(0.84), indicating significant prediction errors. The proposed DenCeption model’s exceptional

performance, as showed in the training results, suggests a significant advancement over the

ResNet-DenseNet (Yasashvini et al., 2022) and InCeption-DenseNet-121 models in terms of

accuracy and specificity. The diverse performance range of DenCeption variants highlights

the critical impact of precise architecture fine-tuning. Variant models lacking hybrid inception

modules, namely as ’DenCeption-HDB-NInA’, ”DenCeption-HDB-NInB’, and ”DenCeption-

HTB-NInC’, face performance degradation across all metrics, underscoring the indispensable

role of these modules in the DenCeption architecture for effective feature extraction and rep-

resentation. Transitioning from training and testing to validation stages is a critical step in

affirming the DenCeption model’s efficacy. The validation phase evaluates the model’s gener-

alisability and robustness, using unseen data to mitigate overfitting issues. Through an in-depth

analysis of Top-1 and Top-5 errors, alongside depth and number of parameters per model, the

validation process examines the computational complexity, scalability, and generalisability of

the proposed model, DenCeption. This phase was pivotal in validating the DenCeption model’s

performance, ensuring its applicability and reliability in practical scenarios. DenCeption’s per-

formance, particularly against its variants and benchmarking methods, highlights a future path

for research and development in DL models, addressing complex classification tasks with en-

hanced efficiency and effectiveness.
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In this chapter, DenCeption has been introduced as an innovative DL model, paving the

way for for a detailed discussion in the next chapter on the essential role of both HF and DHF

feature extractions in enhancing the learning process. Moreover, the chapter will explore how

DenCeption integrates in parallel with other techniques within the proposed advanced feature

extraction framework, marking a significant advancement in the field.
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Chapter 4

A Deep Learning based Scalable and

Adaptive Feature Extraction Framework

for Medical Images

4.1 Introduction

In the previous chapter, the development and validation of DenCeption has been detailed, a

cutting-edge DL model designed to advance computational accuracy and efficiency. This chap-

ter builds on the groundwork established by DenCeption, turning the attention to an in-depth

examination of feature extraction techniques. By exploring both HF and DHF feature extrac-

tions, this work aims to highlight their crucial roles in enhancing the learning process. Further-

more, this chapter will show how integrating DenCeption within the newly proposed feature

extraction framework not only improves the capabilities of state-of-the-art methods but also

sets the stage for significant breakthroughs in the field of ML/DL and image analysis.

Medical image processing is a challenging step towards the efficiency enhancement of dis-

ease detection and diagnosis. The analysis of medical images has been considered as chal-

lenging and time-consuming task, particularly, for doctors and specialists. Improving the early

diagnosis of a medical disease presents a serious challenge. To cope with this problem, medical
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field is being in a massive progress to improve existing physiological analysis methods as well

as medical machines for early disease detection and prediction. This topic has gained a great

importance in medical innovative research, as a result it becomes an inner area for researchers

including different specialities such as doctors and data scientists to use medical images in

several applications.

One of the interesting stages in image processing is the medical image content-based re-

trieval. The complicated composition of medical images makes the information extraction a

challenging step. Features extraction represents an important stage towards providing rele-

vant image content based to result efficient medical application, for example, disease detection,

medical analysis, as well as disease prediction. Each medical application is reflected by a focus

area, namely, RoI, which contains most of the needed features to accurately accomplishing the

target task, e.g., classification. In recent years, AI, approaches particularly DL, have evolved

significantly due to the improvement in the processing capacity of computers and the accumu-

lation of big data (Arel, Rose, and Karnowski, 2010). DL proved a strong ability to identify

meaningful relationships in raw data, which justifies its application to support diagnosing, treat-

ing, and predicting outcomes in many medical situations. DL approaches, have already demon-

strated their proficiency, surpassing human performance in medical applications particularly in

diagnosing and predicting disease progression. DL proved a strong ability to identify meaning-

ful relationships in raw data, which justifies its application to support diagnosing, treating, and

predicting outcomes in many medical situations. DL is transforming the practice of medicine;

it is helping doctors diagnose patients more accurately, make predictions about the patient’s

future health, and recommend better treatments (Ravì et al., 2016; Litjens et al., 2017). DL

approaches present key-methods for several medical applications including decision making,

disease stage tracking, disease detection, disease diagnosis and analysis. DL networks have

shown a high sensitivity and accuracy for the detection of several diseases including breast

cancer (Yala, Lehman, Schuster, Portnoi, and Barzilay, 2019), brain tumour (Zhao et al., 2018),

DMO (Tang et al., 2021)...etc. Its application, particularly for features extraction, has con-

tributed to managing the progression of these diseases by enhancing early detection. Figure 4.1
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Figure 4.1: DL Impact On Medical Applications

presents a diagram summarising the impact of DL on medical applications.

The application of DL approaches has also increased the scalability and reliability of fea-

tures extraction methods. As aforementioned, CNNs represent one of the most used archi-

tectures in features extraction (Razzak, Naz, and Zaib, 2018), in addition to MLP (Lai and

Deng, 2018). The implication of CNN’s architectures at this processing stage has shown a

great improvement in the outcome of the classification and prediction tasks which represents a

challenging area in medical imaging. Despite the integration of DL in medical image process-

ing, traditional features extraction methods have also been applied concurrently. Particularly,

salient and semantic features are one of the important extracted features in medical images

(Gao, Ma, Liu, Liu, and Zhang, 2021; Conghua, Yuqing, and Jinyi, 2006). These features have

been used in several applications such as images fusion, and image content-based retrieval.

A proposed research in (Gao et al., 2021) introduced a medical images fusion method based

on salient feature extraction using Particle Swarm Optimisation (PSO) algorithm and the fuzzy

logic. The suggested salient features extraction method is based on the non-subsampled shealet

transform (NSST), where the latter helps into reducing the computational complexity of the

proposed approach. The image fusion process is based mainly on the extraction of low and

high frequency sub-bands features through the fuzzy logic and uses the PSO algorithm for

optimisation. The proposed method has been tested on eight pairs of grey-scale and five pairs of
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colour multimodal medical images.The amount of the testing set is considered very low in order

to validate the suggested method. Subsequently, this limits the scalability of its application in

real-time scenarios.

Semantic features have also been applied by authors in (Conghua, Yuqing, and Jinyi, 2006).

Their method is based on the space density function, where they enhanced the original method

which used Bayesian Belief network (BNN) (Peng and Long, 2001; Conghua, Song, Zhu, and

Wang, 2005). The main idea is to transform the medical images from grey-scale to density

function space. Their method has been tested on 400 pieces of images covering head, chest,

abdomen and limbs of human bodies. The outcome precision of their method reflects a good

image retrieve performance achieving 88.8%. One of the drawbacks presented by this method

is the non-consideration of coloured dataset and the limited number of validation images. Com-

parable to (Conghua, Yuqing, and Jinyi, 2006), this leads to a potential scalability problem. In

addition, based on (Gao et al., 2021; Conghua, Yuqing, and Jinyi, 2006), salient features extrac-

tion is mainly dependent on labelled datasets, which decrease its reliability and responsiveness

in case of unlabelled input samples. That is, these irregular features are not efficient in such

scenarios. Therefore, in this work, the main focus is on the regular features categorised as HF

and DHF features.

Many classical and recent methods have been proposed to solve the features extraction step.

Some of these methods consider single feature usage, such as texture, some others contemplate

a combination of different feature levels. In this paper, a new features extraction framework

is proposed. The first contribution of the method is to select the optimal features combination

according to the input dataset. The fusion involves two main types of features including HF and

DHF features in case of neural network application. The second contribution of the proposed

extraction tool is the integration of the proposed automated hybrid deep network, DenCep-

tion, for DHF features extraction. The massive enhancement of the resulted classification is

dedicated to the resulted optimal features fusion. The structure of the chapter is as follows:

• Section 2 covers the related features extraction works.
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• Section 3 highlights the identified problems.

• Section 4 presents the proposed features extraction methodology. A detailed explanation

of the different types of features considered in this work will be covered, in addition to

the features weighting and fusion stages.

• Section 5 presents the used datasets.

• Section 6 covers the conducted experimentation and the proposed research evaluation

mechanism.

• Section 7 provides a critical evaluation of the obtained results for the different datasets.

• The chapter ends with Section 8.

4.2 Related Works

Medical image features extraction presents an important step towards resulting highly accurate

analysis related, for instance, to disease detection, classification, and prediction. Extracting

reflective features reinforces the efficiency rate of these particular applications. Features are

categorised as two main types: HF and DHF features (Chowdhary and Acharjya, 2020). HF

features, in particular, include texture, shape, and colour features. These features represent the

fundamental factor that can be extracted from medical images (Mutlag, Ali, Aydam, and Taher,

2020). DHF features cover the low-level characteristics of a medical image. These include

hidden information reflecting important analysis and leading to enhancing the diagnosis relia-

bility (Jeyakumar and Kanagaraj, 2019). In this context, several proposed features extraction

frameworks have been applied to address both HF and DHF extraction issues. However, these

related works still outline some drawbacks in terms of the deployment (Huerga et al., 2021;

Hazarika, Maji, Sur, Paul, and Kandar, 2021; Tsai, Zhang, Hung, and Min, 2017; Rundo et al.,

2019; Rundo et al., 2021; Kavya and Padmaja, 2017; Xiao, Liang, Guan, and Hassanien, 2013;

Zewail and Hag-ElSafi, 2017; Liu and Shi, 2011; Mingqiang, Kidiyo, Joseph, et al., 2008). HF
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and DHF features, in particular, are considered the main point of interest in several features

extraction methods. Multiple challenges have been highlighted in the literature to include:

• Testing models using different dataset sizes and complexities,

• Using different types of datasets to convey coloured and grey-scale based images,

• Potential of validating models using real-case scenarios,

• Testing features extraction systems responsiveness to multiple cases, and

• The lack of sufficient extracted features in some particular scenarios.

The size of datasets applied for features extraction experimentation has an impact on the

complexity of the framework outcomes. Hence, considering different dataset sizes is of great

importance in experiments validation. In fact, Tahira et al. evaluated their DL-based method

over challenging datasets, namely, APTOS-2019 and IDRiD (Nazir et al., 2021). Both datasets

have different sizes and complexities, hence the difference in the validation performances of the

same model. Similar impact has been highlighted in the content-based image retrieval system

proposed by Lin et al. in (Lin, Chen, and Chan, 2009). The use of different sets of data,

covering multiple aspects, proved the importance of such consideration in features extraction-

based models to achieve 99.2% Acc, 72.7% AP, and 50% average recall. That said, this factor

has not been considered in several proposed features extraction frameworks. Despite the use

of complex datasets, these methods lack the dataset experiments validation which, as a result,

impact their reliability.

In this context, a supervised SVM based features extraction model has been suggested by

Xiao et al. in (Xiao et al., 2017), providing a good model performance validation. Similar

approach has also been proposed by authors in (Janakasudha and Jayashree, 2020), however,

different datasets have been used. Considering the same extraction method, both works proved

different validation performances which, as a result, stresses the importance of considering

size and complexity of datasets when it comes to building a reliable model (Janakasudha and
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Jayashree, 2020; Xiao et al., 2017). Moreover, considering the aforementioned factor will

potentially add a scalability factor to the resulted model.

Medical images can be presented in different morphological manners. These multiple rep-

resentations could also impact the final outcome of the features extraction framework. Con-

sidering the latter, types of medical images including both colour and grey-scale images, have

significant effect on the processing stage. Features, to include HF and DHF, vary from one

medical image type to another. In fact, colour-based images are a source of colour feature

which is lacking in grey-scale based images.

Texture and shape features, on the other hand, can be extracted from both image types,

however, some of these researches ignore the importance of coloured based datasets, instead

focusing mainly on grey-scale medical images (Huerga et al., 2021; Tsai et al., 2017; Rundo

et al., 2019; Rundo et al., 2021; Xiao et al., 2013; Zewail and Hag-ElSafi, 2017; Janakasudha

and Jayashree, 2020; Xiao et al., 2017; Altaf, Anwar, Gul, Majeed, and Majid, 2017; Howarth

and Rüger, 2004; Dara, Tumma, Eluri, and Kancharla, 2018; Madusanka, Choi, So, and Choi,

2019). This can be justified by the cost of considering coloured medical images, however, this

has a drop impact on the reliability and scalability of these methods. In fact, as proposed in

(Liu and Shi, 2011), the consideration of two types of datasets gives the model a free-space

to interpret HF and DHF features; thus, removing the interpretability as a major challenge.

This, however, was not the case for exiting features extraction models that focused mainly

on texture and shape features extraction (Madusanka et al., 2019; Janakasudha and Jayashree,

2020; Xiao et al., 2017). Despite achieving interesting results in terms of accuracy, sensitivity,

and specificity, these methods lack of the consideration of colour-based medical images dataset,

hence, the non-scalability of their proposed models. DHF-based features extraction frameworks

also have been, in multiple instances, part of the above challenges particularly when it comes

to processing medical images such as CT and MRI scans proposed respectively by (Dara et

al., 2018; Liu, Liu, and Zhu, 2020; Janakasudha and Jayashree, 2020). However, despite

the consideration of colour-based medical images dataset, DHF extraction can also lack the

importance of features that can be extracted through grey-scale based datasets (Nazir et al.,
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2021). Hence, its lack of reliability and scalability as per the above.

The potential use of features extraction frameworks on real-case scenarios also makes sev-

eral proposed methods under the question of their responsiveness, reliability and scalability

towards particular testing experiments (Altaf et al., 2017; Howarth and Rüger, 2004; Liu, Liu,

and Zhu, 2020). The consideration of multiple inquires helps in evaluating the consistency of

the proposed model. Authors in (Altaf et al., 2017), for instance, considered multiple tech-

niques combinations. However, no experimental setup has been in place to cover multiple

scenarios, hence, the lack of sufficient features extraction. Similar experimentation approach

has been considered by research proposed in (Howarth and Rüger, 2004), which limited their

evaluation mechanism leading to a drawback in considering multiple features combinations, to

include HF and DHF, hence the importance of features fusion.

Texture features have been the interest point of several features extraction frameworks pro-

posed in the literature. In particular, several methods have been applied for texture features

extraction. Grey-Level Co-occurrence Matrix (GLCM), has been widely used for texture fea-

tures extraction (Hazarika et al., 2021). GLCM has demonstrated high efficiency in extracting

discriminative features. Authors in (Tsai et al., 2017) proposed a GPU based features extraction

from MRI images (grey-scale) with the objective of accelerating processing time metric and re-

ducing its complexity. Based-on RoIs localised in the medical image, a set of Haralick features

are derived from GLCM including: auto-correlation, dissimilarities, variance, entropy...etc.

Despite the high level of efficiency obtained by the suggested method, the work lacks in iden-

tifying the complexity of the used dataset which limits the potential of benchmarking their

proposed method.

In the same context, a research presented (Rundo et al., 2019) in proposed a new GPU-

powered texture features extraction method based on the full dynamics of grey-scale levels .

The tested dataset is composed of MRI and CT scans with no specification of related dataset

size. This raises doubts about the scalability of these methods and their reliability in real-

case scenarios. Recently, a CUDA-powered method for texture features extraction method

has been proposed to cover unsupervised analysis of medical images, particularly CT scans
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(Rundo et al., 2021). The suggested method relies on the mixture between GLCM and SOM,

namely CHASM. The proposed method showed high performances in terms of responsiveness

over-passing the pre-suggested methods (Tsai et al., 2017; Rundo et al., 2019). In addition,

the proposed approach is based mainly on unsupervised extraction which covers the case of

unlabelled dataset. A drawback presented by CHASM of the disregard of coloured dataset

which can be a challenging problem when it comes to its possible application as a first or second

clinical line tool. Texture features have also been extracted for medical disease detection, for

instance, Glaucoma. Authors in (Kavya and Padmaja, 2017) proposed a new framework for

Glaucoma detection using texture features extraction. In addition to GLCM, Gaussian Markov

Random Field (GMRF) has been applied for texture extraction. The combination GLCM-

GMRF reinforced the output result of the final classification task Acc to reach 86%. Despite

the high performance of the proposed model, it did not cover the colour features of the used

OCT dataset, which in turn limits the method’s generalisability. Furthermore, utilising only 50

images for validation is deemed inadequate for thoroughly verifying the effectiveness of the

proposed method.

Shape features are also one of the most useful HF features to extract relevant information

from medical images, for instance, tumour shape in case of MRI images and Optic Nerve Head

(ONH) in case of OCT images (Kavya and Padmaja, 2017; Xiao et al., 2013; Zewail and Hag-

ElSafi, 2017; Liu and Shi, 2011; Mingqiang, Kidiyo, Joseph, et al., 2008). A proposed research

has considered deformation-based features to construct a more accurate anatomical meaning

from the images to represent the brain tumour proposed by Xiao et al. in (Xiao et al., 2013).

Their work is based on the use of MRI image, particularly the lateral ventricular part of the brain

towards extracting the deformation of the shape features. The method consists of retrieving

the lateral ventricular shape, then the estimation of its deformation and finally transforming

it into an actual representative feature. One of the advantages of this method is the use of

the supervised and unsupervised methods including KNN and conventional Fuzzy c-means

clustering (FCM), respectively. Their classification results shown a high Sen of 95.3% in case

of supervised method (KNN), and 81.9% in case of unsupervised method (FCM). However, the
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drawbacks of their method are that: (1) the exclusion of other features (e.g., texture) in order to

improve the classification outcome, (2) the lack of covering colour-based dataset, and (3) the

lack of scalability due to a limitation in validating the suggested method with very few cases

(i.e., 15 cases).

Shape features have been also considered as key-features of proposed method by authors

in (Zewail and Hag-ElSafi, 2017). This sparse contourlet-based extraction approach is com-

posed of mainly two methods including Second Moment Matrix (SMM), and non-subsampled

Contourlet representation (NSCT). The combination NSCT-SMM is based mainly on non-

maximum suppression and thresholding after the generation of shape features strength. The

outcome of the proposed method showed a high Acc of 78.91% and a low MAE to achieve

21.43%. Combining HF features presents a supporting factor for medical applications by pro-

viding extra relevant information about the target RoIs (Mutlag et al., 2020; Hazarika et al.,

2021). Texture and shape features fusion has been considered in several works, particularly

in (Nazir et al., 2021). In fact, authors proposed a new implementation of features extraction

from medical images consisting of the extraction of three features levels: (1) key-points, (2)

contours, and (3) textures, storing them into a feature vector and highlighting them on the orig-

inal medical image. The suggested implementation has been tested on three different datasets

including MRI, Iris and Bones achieving a classification Acc of 90% which is higher than the

aforementioned proposed approaches. That is, features fusion represents a key-stage towards

enhancing image content-based retrieval. One of the disadvantages of the method is, again, the

scalability and reliability by the omission of different datasets and lack of validation experi-

ments, as well as the lack of extraction of colour features. The latter represents a key-element

in several medical applications that are colour-based.

Colour feature-based retrieve is of interest to many recent researches following the ad-

vanced engineering technologies in enhancing the medical image scans quality as well as in-

tegrating coloured options in image analysis and diagnosis, particularly in case of OCT scanss

(Lin, Chen, and Chan, 2009). Traditional features extraction methods, including those to ex-

tract HF features, are still facing challenges extracting DHF due to their classical composition.
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AI techniques, particularly DL, have shown an interesting enhancement of classification and

prediction applications. Dara et al., proposed a DL-based deep features extraction method us-

ing CNN (Dara et al., 2018). The latter has been tested along with DBN and MLP on an MRI

dataset composed of 69 subjects. CNN presented the most accurate network with 99% Acc.

Despite considering the high accuracy, the suggested framework lacks of the reliability factor

because of the small number of input sample which might risk causing a thrashing problem, and

suffers from achieving scalable factor due to the disregard of unlabelled data. Similar approach

has been adopted by (Nazir et al., 2021). The proposed method is based on CNN architec-

ture, particularly DenseNet-100. The model accurately extracts hidden features and results an

outstanding classification performance applied on OCT dataset for DMO detection. Despite

the existence of colour features, the method eliminated the latter and focused mainly on DHF

features. Subsequently, integrating colour features might have increased the final classification

outcome. The complementarity of DHF and HF features represents the main contribution of

this work. In the following section, a highlight of the identified problems is presented.

4.3 Problems Identified

The main drawbacks identified in existing features extraction methods include responsiveness,

scalability, and reliability. Several approaches achieved high accuracy as an initial evaluation

of the proposed framework, however many requirements have not been met so far. An efficient

features extraction method consists of the consideration of every aspect that can be retrieved

from the medical images in order to reflect a certain RoI. This includes texture, shape, and

colour (in case of coloured dataset). In addition, hidden features that can be extracted through

DL approaches represent additional important features towards having a complimentary feature

set. The elimination of one of these features could result in affecting the final efficiency of the

medical application. The use of small set of medical images represents an inefficient way to

validate a proposed framework. In fact, features provided by a small set of images limits the

generalisability of the evaluated method. Add to that, several problems can occur including
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Figure 4.2: Proposed Features Extraction Methodology Framework

the overfitting where the DL model is not capable of successfully classifying the data when it

becomes higher than what it has been trained on (small dataset), and under-fitting where the

DL network’s ability is limited in terms of finding the accurate relationship between the dataset

used and the input samples. Thus, the non-scalability of the designed feature extraction model.

In turn, this effects its reliability and initial efficient functionality. In this chapter, the addressed

problems are as follows:

• Unautomated methods for medical image-based features extraction

• Non-scalability of existing approaches

• The lack of the use of HF and DHF features in a unique framework

4.4 Methodology of the Proposed Features Extraction Model

Feature extraction from image data is a crucial step, particularly, its significant application

in case of medical images is considered challenging. The variety and deepness of extracted

features represent the key-points in achieving high classification and prediction performances.

The methodology presented in this research focuses mainly on the extraction and fusion of HF

and DHF features. HF features extraction is based on segmented images whereas DHF features

are derived from associated parameters provided along with the input dataset. The proposed

features extraction framework is illustrated in Figure 4.2.
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The figure illustrates the comprehensive and systematic approach of the proposed features

extraction methodology framework. This framework is pivotal in processing and analysing

medical images to extract the most relevant features that are critical for accurate classification

and diagnosis. Below is a breakdown of each component of the framework to provide an overall

understanding of its operation and significance:

• Medical Image Input and Pre-Processing: The process begins with the acquisition of

medical images, which are the primary data source for this framework. These images

undergo pre-processing and segmentation, a crucial step that prepares the raw image data

for feature extraction. The pre-processing involves operations such as noise reduction,

contrast enhancement, and image normalisation, ensuring that the image data is clean and

standardised, which enhances the reliability of the subsequent analysis. Segmentation is

employed to isolate ROIs within the images, focusing the feature extraction process on

the most relevant areas that are indicative of disease.

• HF and DHF Feature Extraction: The framework distinguishes between two types of

features: HF and DHF features. HF features capture the fine details and textures within

the image. The framework utilises techniques like GLCM and Tamura for texture anal-

ysis, RF (Random Forest) for shape feature extraction, and CHKM (Color Histogram

of K-Means) for colour features. These features are crucial for identifying subtle varia-

tions in image data, which may correspond to different stages or types of diseases. DHF

features are extracted using the DenCeption model, a hybrid DL architecture that lever-

ages the strengths of DenseNet-169 and Inception-V4. DHF features represent broader,

more abstract patterns in the image data, capturing the overall structure and larger-scale

anomalies. This dual approach ensures that both detailed local features and global struc-

tural information are considered in the analysis.

• Dataset Associated Parameters: In addition to the image data, the framework inte-

grates associated patient parameters (such as age, survival days, and resection status) into

the feature extraction process. These parameters provide essential context, enabling the
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framework to tailor feature extraction based on patient-specific characteristics, thereby

improving the relevance and accuracy of the extracted features.

• Features Weighting and Fusion: After HF and DHF features are extracted, the frame-

work proceeds to the weighting and fusion stages. The SOM technique is used to assign

weights to the extracted features. This step is crucial for prioritising features based on

their importance in the classification task. The weighted features are then fused, ensur-

ing that the most relevant features are emphasised in the final feature set. Afterwards,

the framework performs two levels of feature fusion. The first level fuses HF features

alone, which consolidates the detailed local information. The second level involves fus-

ing both HF and DHF features, creating a comprehensive feature set that captures both

fine-grained details and overarching patterns. This dual fusion approach ensures that the

classification model has access to a rich and balanced set of features, enhancing its ability

to make accurate predictions.

• Optimal Features Selection: Following the fusion process, the framework employs

ANN to perform optimal feature selection. The ANN is trained to identify the most

informative features from the fused set, discarding redundant or less relevant features.

This step is vital for reducing the dimensionality of the data, which not only improves

the efficiency of the classification model but also enhances its generalisation capability.

• Classification: The final step in the framework is the classification of the processed data.

With the optimal set of features selected, the classification model can now accurately dis-

tinguish between different classes, such as healthy versus diseased states. The robustness

of this framework ensures that the classification model is well-equipped to handle a wide

variety of medical imaging data, making it adaptable to different diagnostic tasks.

The proposed framework’s blocks, as illustrated in Figure 4.2, will be detailed in the following

subsections, providing an in-depth explanation of each component and its role in the overall

feature extraction process.
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4.4.1 Image Pre-Processing

Image pre-processing represents a major and essential step towards improving features extrac-

tion by eliminating unwanted noise and irrelevant regions located in the medical image. The

proposed image pre-processing model consists of the following principles:

• Ground truth extraction for data training and testing stage

• Images denoising using block matching and 3Ds filtering (BM3D) method.

• Bias field correction using N4 bias field correction method.

These steps are pivotal in order to enhance the quality of the image considered, from al-

gorithmic perspective, as a matrix of pixels/intensities. It leads into the elimination of non-

essential areas that contain unwanted signals which results image quality degradation. In fact,

the medical image ground truth is important for the validation of the RoIs segmentation. De-

noising of medical scanned images such as OCT, MRI, CT, ...etc is also an important stage

towards enhancing the outcome of medical applications including, detection, analysis, and pre-

diction. Subsequently, denoising stage generates clean images with high signal-to-noise ratio

as well as high spatial resolution. In this denoising model, block-matching and BM3D method

is used to denoise the input samples (Zhao, Hoffman, McNitt-Gray, and Ruan, 2019). Main

steps used in BM3D are grouping, 3-dimensional discrete wavelet transformation and wavelet

shrinkage. BM3D can remove the noise easily by eliminating it from the group of similar

patches. The principle of denoising is to remove the additive noise and invert the blurring at

the same time (Kaur, Singh, and Kaur, 2018). This method is called Wiener filter. The latter

determines the optimal trade-off between the inverse filtering and the noise smoothing. The N4

bias field correction algorithm is a popular method for correcting low-frequency intensity and

the non-uniformity present in the medical image data, known as a bias or gain field.

The main purpose of this stage is to ensure that the mask image and the main input image

occupy the same physical space to ensure pixel to pixel correspondence. All these steps are

complementary towards producing a high-quality input sample that can be effectively processed
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and analysed. Figure 4.3 presents an example of image pre-processing applied on MRI image.

The figure illustrates the pre-processing steps applied to the FLAIR modality in MRI scans

for two subjects: one with a negative MGMT status (Figure 4.3.a) and another with a positive

MGMT status (Figure 4.3.b).

• Subject with Negative MGMT: In Figure 4.3.a, the pre-processing steps for a subject

with a negative MGMT status are shown. The process begins with the original FLAIR

modality, which often contains noise and potential artifacts. The first step involves de-

noising, which significantly enhances the clarity of the image by reducing noise while

preserving essential features. The denoised image is then subjected to bias field correc-

tion, which compensates for intensity inhomogeneities that could otherwise distort the

analysis. The corrected image shows improved contrast and uniformity, facilitating more

accurate feature extraction and subsequent analysis. The ground truth image is also pro-

vided for comparison, representing the expected outcome or reference for validating the

pre-processing steps.

• Subject with Positive MGMT: Similarly, Figure 4.3.b depicts the pre-processing steps

for a subject with a positive MGMT status. The original FLAIR modality is first de-

noised to remove unwanted noise, enhancing the visibility of critical features such as

tumour regions. The next step is bias field correction, which further refines the image

by addressing any uneven intensities that may obscure the accurate interpretation of the

data. This process ensures that the final pre-processed image is optimised for subsequent

analysis, particularly in distinguishing between healthy and diseased tissue. The ground

truth image is shown alongside the pre-processed images, serving as a benchmark for

evaluating the effectiveness of the pre-processing steps.

The pre-processing of FLAIR modalities is a crucial step in medical image analysis, espe-

cially in the context of brain tumour detection and characterisation. The figure highlights how

denoising and bias field correction are applied to improve image quality and ensure that the im-

ages are suitable for further analysis. By enhancing the clarity and consistency of the images,
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(a) Subject with Negative MGMT

(b) Subject with Positive MGMT

Figure 4.3: Pre-Processing Result on FLAIR Modality

these pre-processing steps help in achieving more reliable and accurate diagnoses, particularly

when distinguishing between different MGMT statuses. The inclusion of both negative and

positive MGMT cases underscores the framework’s adaptability and effectiveness across var-

ied clinical scenarios.

4.4.2 Image Segmentation and Associated Parameters

Image segmentation characteristics represent the lower level of image characteristics includ-

ing pixel intensities, RoI, bounding, edges...etc. It is defined by semantic image segmentation

through extraction of RoIs of the input samples. Medical image segmentation represents a chal-

lenging step due to its deformable characteristics. The aim of semantic segmentation is to par-

tition the image into multiple segments in order to simplify the representation of which makes

it more significant and easier to process. The focus of this work is mainly on unsupervised

segmentation algorithms. For instance, Markov Random Field (MRF) presents one of the well-

used unsupervised segmentation algorithms, in addition to Expectation-Maximization (EPM)
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Figure 4.4: MRF-EPM Segmentation: Test Done on a Scan Sample from the BRATS Dataset

algorithm. The combination MRF-EPM iterates the posteriori probabilities and distributions

of labelling in case there are no possibilities of the construction of an estimate segmentation

model, i.e., no predefined classes. The segmentation process starts with randomly estimating

the model parameters, then computing the conditional probabilities of a label given a random

image region using naïve Bayes technique. The conditional probabilities are defined as follows

(Equation 4.1):

P(
λ

ri
) =

P( ri
λ
)P(λ )

∑
λ∈L

P( ri
λ
)P(λ )

(4.1)

where L represents the set of possible labels, is the given label, and ri is the region of features.

Finally, MRF-EPM iterative algorithm uses the output of proceeding step in order to calculate

the priori estimate of a given label, λ ∈ L. The computation involves a hidden estimate of the

number of labels (β ), knowing that the actual number of total labels is unknown. The priori

estimate is defined as the following (Equation 4.2):

P(λ ) =
∑

λ∈L
P(λ

ri
)

| β |
(4.2)

Figure 4.4 shows the result of MRF-EPM algorithm applied on the MRI image presented in Fig-

ure 4.2. The method successfully segments the RoIs in the original image. Resulted segmented

images will be used as the input data for the feature extraction model.
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4.4.3 Proposed Hybrid High-Level Features Extraction Model

HF features are mainly defined by the features that can be interpreted by human brain. This is

presented in the form of spectral features including texture, shape, and colour.

Texture Features Extraction

Texture features are based on the collection of image regions. It generally refers to a specific

region within the image. Referred RoIs provide other important features such as shape and

colour which will be discussed in the subsequent sections. Texture features extraction meth-

ods are generally divided into two main categories based on: (1) spatial relationship between

regions, and (2) primitive attributes. The former includes (i) primitive region types presented

as numbers and (ii) spatial organisation covering functional, structural, and statistical features.

Primitive attributes texture features category focuses mainly on (i) grey-scale and (ii) geomet-

rical attributes. The latter covers the shape, area, ...etc, whereas, grey-scale attributes enclose

average and extremum. Texture features generally highlight discriminative features that repre-

sent key-features in disease detection and prediction applications. The focus of the proposed

texture features extraction method is based on statistical features as the following:

• First- and second- order features including: contrast, entropy, angular second moment,

and homogeneity.

• Additional features to include Coarseness and directionality.

Texture features reflect changes that might happen in the medical image due to disease

detection and progression which in turn affects the pixels intensities. Several methods can

be applied to extract texture features, for instance, GMRF (Kavya and Padmaja, 2017), SOM

(Rundo et al., 2021), GLCM (Rundo et al., 2019; Kavya and Padmaja, 2017; Altaf et al., 2017),

and Tamura (Mutlag et al., 2020; Umamaheswari, Bhavani, and Sikamani, 2018) approaches.

Multiple performance parameters of the aforementioned methods have been reported in the lit-

erature to include classification accuracy, processing speed-up and other parameters. Despite
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of demonstrating a valuable speed-up performance of 0.3 times, SOM method requires addi-

tional parallel computing platform that allows it to use certain types of GPUs which represents

a limitation in case of resource-limited setup environments. GLCM, on the other hand, showed

an independent processing speed-up to reach 19.5 times due to its processing optimisation and

image handling. It also overpassed the classification Acc of GMRF to achieve 86%. By consid-

ering the optimal pixel direction and orientation, Tamura’s features application showed quite an

interesting classification Acc to reach 96% and 3.43% of the mAP retrieval. As per the above,

in this study a combination of GLCM and Tamura is proposed.

First and Second Order Texture Features: GLCM Technique

GLCM technique is based mainly on pixels intensity and related changes. The major ad-

vantage of GLCM is that the co-occurring groups of pixels are spatially linked in multiple di-

rections by referencing to two different factors including distance and angular second moment

relationships. GLCM also highlights the busy texture regions defined by a very rapid changes

of one-pixel intensity compared to its neighbours. Thus, it results a high intensity alteration of

the related special frequencies. The GLCM algorithm first quantises the segmented input by

specifying the value of each pixel intensity. The quantisation is specified based on a range of

grey-scale included in the range of [2:256]. Second, it creates the co-occurrence matrix sized

(n*n), where n presents the number of levels used in the quantisation step. The creation of co-

occurrence matrix (GLCM f ) is based on the calculation of the number of occurrences of a pixel

(p), located at (i,j) coordinates, in a pre-defined iterative window that covers the surrounding

pixels. The steps are detailed as follows:

• Set p the sample considered for calculation.

• Set S the group of neighbour pixels surrounding p. The selected group is done under a

centred window having as length, and height values in [3:999] interval.

• Each element (i,j) of GLCM matrix, based on S, is defined as (Eq 4.3):

GLCM(i, j) = occ(i, j) (4.3)
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where i,j are the ith and jth pixels intensities ∈ [0:n-1], and occ() is the function rep-

resenting the time of occurrence of i,j in S based on multiple direction and distance

relationships. Which means (Eq 4.4):

GLCM(i, j) = ∑
k

occ(i, j) (4.4)

where k is the total occurrence of (i,j) in the centred window.

• Construct the symmetrical matrix of GLCM and add it to the co-occurrence matrix itself

(Eq 4.5):

GLCM f = GLCM+GLCMs (4.5)

where GLCMs is the symmetric matrix and GLCM f is the final co-occurrence matrix

which results the following equation (Eq 4.6):

GLCM f (i, j) = ∑
k

occ(i, j)+occ( j, i) = 2∑
k

occ(i, j) (4.6)

where occ(i,j) is the number of occurrences of intensity i as a reference in relationship

with j, and occ(j,i) is the number of occurrences of intensity j as a reference in relationship

with i.

• Normalisation of GLCM f (Eq 4.7):

GLCM f (i, j) =
∑
k

occ(i, j)

M
(4.7)

where M is the number of total elements, M > 0.

• Calculate first and second order texture features as the following:

– Angular Second Moment (ASM): ASM is known also as Energy feature, denoted
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fASM, it is defined as the squared elements of GLCM f , as follows (Eq 4.8):

fASM = ∑
j∈n

∑
j∈n

GLCM f (i, j)2 (4.8)

– Entropy (E): It is determined as the quantification of randomness to be employed in

distinguishing the texture of the segmented input sample, as follows (Eq 4.9):

fE =−∑
i∈n

∑
j∈n

GLCM f (i, j)∗ log(GLCM f (i, j)) (4.9)

– Contrast (C): Contrast is defined as the value of density contrast reference pixels

and surrounding pixels, as follows (Eq 4.10):

fC = ∑
j∈n

∑
j∈n

(i, j)2GLCM f (i, j) (4.10)

where GLCM f (i,j) equals to pixel at the (i,j) location.

– Homogeneity (H): H is defined by approximately measure the GLCM f elements

distribution to GLCM f diagonal (Eq 4.11):

fH = ∑
j∈n

∑
j∈n

GLCM f (i, j)
1+ | j− i |

(4.11)

Additional Texture Features

Tamura is also one of the well-used quantitative texture features extraction methods. It

is based mainly on human visual perception and it represents an immense potential in image

representation. Tamura provides a set of texture features including: roundness, directionality,

line-likeness, regularity, coarseness, as well as contrast texture features. Ideally, Tamura’s

texture features present complementary features to those extracted through GLCM approach.

The main drawbacks let to combining GLCM and Tamura are as follows:

• GLCM is a sparse matrix, containing many zero elements, which causes an increase in

computational time and resource (Kaur, Singh, and Kaur, 2018; Baid et al., 2021).
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• Tamura performs inefficiently in case of generic (non-homogeneous) images.

The proposed feature extraction approach includes Coarseness (Coa) and Directionality

(Dir) as additional features. Tamura’s discriminative features are defined in the following:

• Coarseness: Coa is defined by iteratively find the largest size in which the tissue is present

through different patterns at multiple scales. The granularity measurement is done by

calculating, for each pixel (i,j), six averages for a window of size 2Z ∗2Z , where Z ∈[0:5],

surrounding the pixel defined as follows (Eq 4.12):

Coaz =
i+2Z−1

∑
k=i−2Z−1−1

j+2Z−1

∑
t= j−2Z−1−1

pix(k, t)
22Z (4.12)

where pix(k,t) is the pixel intensity at location (k,t). Iteratively, at each pixel, calcula-

tion of non-overlapping neighbours defined by the absolute difference AZ(i, j) in both

relationships: Vertically (V) and Horizontally (H) as follows (Eq 4.13a and 4.13b):

AZ,V (i, j) =|Coa(Z,V )(i, j+2Z−1)−Coa(Z,V )(i, j−2Z−1) | (4.13a)

AH,V (i, j) =|CoaH,V (i+2Z−1, j)−CoaZ,H(i−2Z−1, j) | (4.13b)

Finally, considering either direction (V or H), calculation of the value of Z is processed in

order to maximise AZ,V (i, j) or AZ,H(i, j), respectively. The function is defined as follows

(Eq 4.14):

SZ,BEST (i, j) = 2Z (4.14)

resulting the final coarseness feature equation (Eq 4.15):

fCoaZ =
Coa(i, j)

SZ,BEST (i, j)
(4.15)

• Directionality Dir is defined by devolving the existence of any directional pattern in an

image by measuring the overall degree of directivity (vertically, horizontally, or diago-
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nally). This feature reflects the consistency of the region being processed. Dir consists

in calculating the edge histogram (HDir). Dir texture feature is defined as follows (Eq

4.16):

fDir = 1−N ∗N ∗m∗
m

∑
k=1

∑
θ∈ψk

(θ −θk)
2 ∗HDir(θ) (4.16)

where:

– N: normalisation factor

– θ : quantisation angular position constructed by counting the edges of pixels with

associated angles directions.

– m: number of peaks

– ψk: angles window associated to the kth peak.

The remaining Tamura texture features are of importance but not considered in this method.

The texture features extraction is implemented in Algorithm 1 and comprise two main steps:

• Step 1: Calculation of GLCM f matrix based on the occurrences (occ()) of pixels at a

location (i,j) in the surrounding window S.

• Step 2: Calculation of Tamura texture features based on the best pixel direction and

orientation at location (i,j) in the surrounding window S.
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Algorithm 1: Texture Features Extraction
Data: RoIs (Region of Interests)
Result: fASM, fE , fC, fH , fCoaZ,BEST , fDir

1 n ⇐ number of levels
2 M ⇐ n2 > 0
3 for i ∈ {0, . . . ,n} do
4 for j ∈ {0, . . . ,n} do
5 for k ∈ {0, . . . ,M} do
6 GLCM f (i, j)⇐ 2

M ∑occ(i, j)
7 fASM ⇐ ∑∑GLCM f (i, j)2

8 fE ⇐−∑∑GLCM f (i, j)∗ log(GLCM f (i, j))
9 fC ⇐ ∑∑(i, j)2 ∗GLCM f (i, j)

10 fH ⇐ ∑∑
GLCM f (i, j)

1+| j−i|

11 pix(i, j)⇐ intensity value of the pixel at location (i, j)
12 SZ ⇐ 22Z where Z ∈ [0 : 5]
13 N ⇐ normalisation factor
14 θ ⇐ quantisation angular position
15 m ⇐ number of peaks
16 ψk ⇐ angles window associated with the kth peak.
17 HDir ⇐ edge histogram
18 Mw ⇐ measurement window
19 for i, j ∈ {0, . . . ,n} do
20 for k = i−2Z−1 −1 to i+2Z−1 do
21 for k = j−2Z−1 −1 to j+2Z−1 do
22 CoaZ ⇐ ∑

pix(i, j)
Mw

23 AZ,V (i, j)⇐|CoaZ,V (i, j+2Z−1)−CoaZ,V (i, j−2Z−1) |
24 AZ,H(i, j)⇐|CoaZ,H(i+2Z−1, j)−CoaZ,H(i−2Z−1, j) |
25 if AZ,V (i, j)> AH,V (i, j) then
26 SZ,BEST (i, j)⇐ SZ,V

27 fCoaZ,V ⇐ CoaZ,V
SZ,BEST

28 else
29 SZ,BEST (i, j)⇐ SZ,H

30 fCoaZ,H ⇐ CoaZ,H
SZ,BEST

31 for k = 1 to m do
32 for each angle θ ∈ ψk do
33 ρ ⇐ ∑(θ −θk)

2 ∗HDir(θ)

34 fDir ⇐ 1−N ·m ·ρ
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The hybrid composition of the proposed texture features extraction involves multiple inter-

pretation levels of the input image which gives the system a better understanding of the image

composition at different RoIs. GLCM-Tamura combination is considered as a booster to the

whole feature extraction framework by: (1) speeding-up the processing time, (2) optimising

the use of computational resources, and (3) increasing the efficiency of the final classification

aiming to overpass the performance of existing methods as shown in Table 4.1.

Table 4.1: Examples of Existing Texture Features Extraction Methods

Methods Classification

Accuracy

Processing

Speed-up

Mean Aver-

age Precision

Retrieval

SOM (Rundo et al.,

2021)

- 10.03 times -

GLCM (Rundo et al.,

2019)

- 19.5 times -

GLCM-MRF (Kavya

and Padmaja, 2017)

86% - -

GLCM (Altaf et al.,

2017)

79.8% - -

Tamura (Mutlag et al.,

2020)

96% - -

Tamura (Zhao et al.,

2019)

- - 3.43%

Shape Features Extraction

Based on the aforementioned related works, shape features extraction is mainly based-on geom-

etry features including: area, slope, perimeter, centroid, irregularity index, equivalent diameter,

convex area, and solidity...etc. Table 4.2 summarises the benchmarking of existing methods.
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Table 4.2: Examples of Existing Shape Features Extraction Methods

Methods Acc Sen Spe MAE

Fourrier Descriptor (Liu and

Shi, 2011)

80% - - -

RF-FCM (Xiao et al., 2013) 81.9% 38.9% 99.7% -

SMM-NSCT (Zewail and

Hag-ElSafi, 2017)

78.9% - - 21.43%

GLCM- voxel-based mor-

phometry (VBM) (Xiao et

al., 2017)

91.4% 99% 83.33% -

SVM-RFE (Madusanka et

al., 2019)

86.61% 75% 77.78% -

VBM (Janakasudha and

Jayashree, 2020)

93.8% - - -

Towards efficiently using shape features, selected approaches need to meet essential key-

points including: (1) identifiability, (2) transition, rotation, and scale invariance, (3) affine

invariance, (4) noise resistance, (5) occultation invariance, (6) statistically independent, and (7)

importantly reliable. Shape features extraction approaches can be categorised as the following:

• Counter-based methods

• Region-based methods

• Space and transform domain-based methods Information preserving and non-information

preserving based methods

As per the results presented in (Liu and Shi, 2011), Fourier descriptor overpassed statistical

descriptors by achieving over 80% Acc. In fact, Fourier descriptors are highly insensitive to

translation, rotation, scale changes as well as the starting processing point. It has shown high
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performances in case of identified objects (human face, vehicles ...etc). However, in case of

medical imaging the shape of different RoIs in the input sample changes through time progres-

sion, age and gender factors as well. Therefore, this study considers the region focus as the

main shape feature extraction approach by calculating the coordinates of all points belonging

to a particular RoIs. It is defined as the following (Equation 4.17, 4.18a.a and 4.18b.b):

fRF = (x̄, ȳ) (4.17)

where:

x̄ =
1
A ∑

(x,y)∈RoI
x (4.18a)

ȳ =
1
A ∑

(x,y)∈RoI
y (4.18b)

where A is the region area: A = ∑
(x,y)∈RoI

1.

Colour Features Extraction

This feature is based on coloured medical images. Several features extraction methods have

been used in the literature. Colour feature extraction approaches includes global descriptors

defined when the whole image is considered, and local descriptors when separated portions

of the image are considered. CHKM, and Zernike chromaticity derived from chromaticity

approach are considered highly robust colour features extraction methods. However, it is not the

case of colour histogram method. Four main specifications are essential to consider a method

as efficient and accurate:

• Storage space

• Scalability

• Computational time required

• Rotation invariance
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Based on the aforementioned criteria, CHKM has been applied for colour features extrac-

tion. CHKM considers 224 different colours possibilities. The main process conveyed by

CHKM is to select a colour, denoted cp, from 224 possibilities that reassemble the best to a

particular pixel colour and update the latter with cp. This step is applied on each pixel towards

classifying all the pixels of an image into k clusters. The outcome of it is defined by the mean

of all pixels in each cluster. The final output of CHKM feature is (Equation 4.19):

fCHKM =
NK

N
(4.19)

Where N is the total number of pixels localised in the image, and NK is the total number

of pixels belonging to cluster K. This method efficiently shortens image retrieval time and

improves its performance. Moreover, CHKM demonstrates a less computational time factor, a

high robustness to noise and displacement invariance. Algorithm 2 demonstrates the proposed

shape and colour features extraction model.
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Figure 4.5: Image Dimensionality Reduction Through Convolutional Layer where (a) Feature
Width, (b) Feature Height, (c) Number of Channels

tion...etc. Moreover, DL is being used for deep features extraction, particularly, CNN frame-

works. The working principle of CNN is to extract features maps (FMs) of each input layer,

for instance, the input of nth layer if the FMs extracted from the (n1)th layer. The shape of

the input layer in CNN is defined as N*N*M, where N is the size of the FMs, and M repre-

sents the total number of channels considered. Figure 4.5 illustrates image size reduction using

convolutional layers. DenCeption model, defined in the previous chapter, will be applied to

extract DHF features. Resulted features will then be passed to the features weighting block of

the proposed framework.

4.4.5 Features Weighting

Features Initialisation and Normalisation

Towards determining the approximate optimal degree of influence of each extracted feature,

weighting presents a crucial step for relevant features selection. The weighting technique used

in this work is to assign random initial weights. Let F be the matrix of extracted features and

W is the associated weights vector defined as follows (Equation 4.20, 4.21):

F = [ fASM, fE , fC, fH , fCoa, fDir, fRF , fCHKM, fDHF ] (4.20)
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W = [WASM,WE ,WC,WH ,WCoa,WDir,WRF ,WCHKM f ,WDHF ] (4.21)

After randomly assigning weights to each particular feature, a feature normalisation is ap-

plied which produces, subsequently, a normalised features weights having as values in the range

of [0,1]. This conveys the following relationships (Equation 4.22):

F(xi,w) =
k

∑
j=1,w j∈w

w jxi j (4.22)

where w j is the weight associated to xi j feature ∈ k , and k is the number of features.

Weights Regularisation

Several weighting techniques are introduced in the literature including, LR, RF classifier,

Bayesian linear model...etc. The objective of considering each feature’s importance is to adjust

the allocated weights during the network’s training process. The efficiency of each aforemen-

tioned technique is mainly linked to the size of the dataset being trained which most likely can

cause overfitting, underfitting and vanishing problems, as mentioned earlier. The pre-definition

of dataset classes is also an essential requirement for most of these techniques. To overcome

this challenge, it is essential to consider using unsupervised learning approach. In this con-

text, utilising SOM for weight regularisation offers distinct advantages over other ML models

due to its unique characteristics. SOM excels in producing low-dimensional representations of

high-dimensional data, making it ideal for weight regularisation tasks (Nazir et al., 2021).

Unlike traditional models, SOM utilises competitive learning, enabling it to efficiently cap-

ture complex patterns and relationships in the data without the need for labelled examples. The

topological map created by SOM groups similar input data points together, facilitating effective

weight generalisation by identifying common patterns and features within the data without ex-

plicit supervision (Khacef, Rodriguez, and Miramond, 2020). Additionally, SOM’s competitive

learning mechanism and neighbourhood relationships allow it to adapt to the underlying data

distribution and capture intricate structures present in the input space, enhancing its capability

for weight regularisation compared to other ML models. Initially, in the learning phase, SOM
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associates W, as the random input weights vector with the artificial neurons, namely, units of

the network. Then, each input feature vector f ∈ F is presented to all units in the SOM. The

unit with most similar weights to the input vector becomes the best matching unit, namely

BMU. Based on the Euclidian distance, BMU is defined as follows (Equation 4.23):

BMU = argimin∥ f −wi∥ (4.23)

Once the BMU is calculated, the weight vector is updated as folows (Equation 4.24):

wi(k+1) = wi(k)+δ (k)∆i(BMU,k)( f −wi(k)) (4.24)

The SOM training iterations conclude when all features have been assigned updated weights.

The feature vector with higher weight represents the feature with higher importance and vice-

versa. The closer wi is to zero, the more irrelevant the related feature is.

4.4.6 Features Fusion

Towards constructing a more robust features extraction outcome, capable of efficiently using

multiple types of medical image and can lead to a high classification and prediction perfor-

mances, the purpose of the proposed framework is to combine the HF features including those

part of texture, shape, and colour, as well as fusing HF and DHF features as a following step. A

set of experiments will be held to identify the optimal features combination that will feed into

the disease classification stage.

High-Level Features Fusion

The first combination is presented by fusing texture and shape features considering their ob-

tained weights from SOM. Therefore, there is no need to design a linear model with a fixed

proportion and iteratively determining its value in order to update the fused features. Avoiding
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that, the features fusion is presented as the following (Equation 4.25):

Ftexture−shape = max(0,
k

∑
i

wi ftexture +
m

∑
j

w j fshape +b1) (4.25)

where k is the number of texture features, m is the number of shape features, and b1 is the

bias. Same operation is applied for other considered combinations including: (i) shape-colour,

(ii) texture-colour, and (iii) texture-shape-colour, defined as the following (Equation 4.26, 4.27,

4.28):

Fshape−colour = max(0,
m

∑
i

wi fshape +
n

∑
j

w j fcolour +b2) (4.26)

Ftexture−colour = max(0,
k

∑
i

wi ftexture +
n

∑
j

w j fcolour +b3) (4.27)

Ftexture−shape−colour = max(0,
k

∑
i

wi ftexture +
m

∑
i

wi fshape +
n

∑
j

w j fcolour +b4) (4.28)

where n is the number of colour features and (b2,b3,b4) are the bias considered for shape-

colour, texture-colour, and texture-shape-colour fusion operation, respectively. The updated

weights are obtained by using feed-forward ANN. The resulted updated weights W
′

and fea-

tures combination F
′
vectors are defined as follows (Equation 4.29, 4.30):

W
′
= [W

′
ftexture−shape

,W
′
fshape−colour

,W
′
ftexture−colour

,W
′
ftexture−shape−colour

] (4.29)

F
′
= [ ftexture−shape, fshape−colour, ftexture−colour, ftexture−shape−colour] (4.30)

HF and DHF Features Fusion

At this stage the optimal HF features combination is considered. Let Foptimal = fi, j where i,j

are the optimal selected HF features fusions ∈ F. Following the fusion strategy applied for HF
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features, Foptimal and DHF combination is defined as the following (Equation 4.31):

FFoptimal−DHF = max(0,
t

∑
i

w
′
iFoptimal +

s

∑
j

w j fDHF +b5) (4.31)

where t is the number of optimal features fusion, having as possible values k+m, m+n, k+n, or

k+m+n, s is the number of DHF features, b5 is the bias and w is the optimal features fusion

weight vector. Updated weights are obtained using ANN.

4.5 Dataset

The selection of the BRATS MRI dataset (grey-scale, unlabelled) and the Retinal dataset

(coloured, labelled) for training, testing, and validating the proposed feature extraction frame-

work was a strategic decision driven by the need to ensure the model’s robustness, adaptability,

and generalisability across diverse medical imaging scenarios. Below is a thorough justification

for the use of these two datasets.

4.5.1 BRATS MRI Dataset

Complexity and Realism in Medical Imaging

The BRATS MRI dataset, despite being unlabelled and composed of grey-scale images, pro-

vides a highly relevant and challenging environment for testing feature extraction models in

the context of brain tumour analysis. The dataset includes multiple imaging modalities: T1,

T1Gd, T2, and T2-FLAIR, acquired from different clinical settings, which introduces variabil-

ity in imaging protocols and scanner characteristics. This variability closely mirrors real-world

clinical scenarios where models must operate effectively across different imaging conditions

without relying on pre-existing labels.
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Benchmarking and Evaluation

BRATS is widely recognised as a benchmark in the medical imaging community, particularly

for brain tumour segmentation and analysis. Utilising this dataset allows the proposed frame-

work to be evaluated against established standards in the field, providing a clear indication of

its performance in a critical area of medical diagnostics. The absence of labels in BRATS chal-

lenges the model to identify and extract meaningful features without the guidance of annotated

data, testing its ability to generalise from raw, unlabelled inputs.

Enhancing Model Robustness

Incorporating BRATS MRI data in the training and validation phases is crucial for ensuring that

the feature extraction framework can handle the inherent complexities of MRI scans, which

are often characterised by subtle variations in intensity and texture. The model’s ability to

effectively process and analyse grey-scale images without labels demonstrates its robustness

and adaptability, essential traits for deployment in diverse clinical environments where labelled

data may not always be available.

Validation of Feature Extraction

The use of BRATS in the validation phase of the framework is particularly important because

it allows the model to be tested on high-dimensional, unlabelled medical imaging data. This

process helps to confirm that the extracted features are both relevant and useful for subsequent

tasks, such as segmentation and classification, even in the absence of explicit labels. The

validation against this challenging dataset reinforces the framework’s capacity to generalise its

feature extraction capabilities to other complex and unlabelled datasets.
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4.5.2 Retinal Dataset

Detailed Labelling and Clinical Relevance

The Retinal dataset, composed of coloured and meticulously labelled Fundus images, serves

as a crucial component in training and validating the proposed framework, particularly in the

context of ophthalmological diagnostics. The detailed labelling of the dataset, which includes

annotations for various stages of DR, provides a rich source of data for training the model to

recognise and differentiate between normal and pathological conditions with high accuracy.

Complementary to BRATS

The Retinal dataset complements the BRATS MRI dataset by introducing a different type of

medical imaging—coloured Fundus scansthat require the model to handle a completely differ-

ent set of challenges, such as colour differentiation and higher image complexity. This diversity

in data types ensures that the feature extraction framework is not overly specialised for a single

imaging modality but is instead capable of adapting to a wide range of medical images.

Enhancing Generalisability

The use of a labelled dataset like the Retinal dataset allows for the training and fine-tuning of the

model in a supervised learning context, which is essential for enhancing the model’s accuracy

and performance. The detailed labels provide ground truth data that the model can use to learn

the correct associations between image features and clinical outcomes. This training process

enhances the model’s ability to generalise its learned features to other labelled datasets and

real-world clinical settings.

Validation and Testing

Incorporating the Retinal dataset into the testing and validation phases allows for a rigorous

evaluation of the feature extraction framework’s effectiveness in a well-defined, labelled en-

vironment. This evaluation is crucial for assessing how well the model can extract relevant
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features that correspond to clinically significant outcomes. The validation against labelled data

also provides a benchmark for measuring the framework’s performance in a controlled setting,

ensuring that it meets the high standards required for clinical applications.

4.5.3 Combined Justification

Diverse Imaging Modalities

By using both the BRATS MRI and Retinal datasets, the research ensures that the proposed

feature extraction framework is capable of processing and analysing a wide variety of medical

images, ranging from grey-scale, unlabelled MRI scans to coloured, labelled Fundus images.

This diversity is critical for developing a model that is both versatile and reliable across different

medical fields.

Comprehensive Model Evaluation

The combination of these datasets allows for a comprehensive evaluation of the feature extrac-

tion framework across different stages of model development: training, testing, and validation.

The BRATS dataset challenges the model to function without labels, testing its robustness,

while the Retinal dataset allows for supervised learning and detailed validation, enhancing the

model’s overall accuracy and generalisability.

Addressing Multiple Clinical Needs

By incorporating datasets from different medical disciplines (neurology and ophthalmology),

the research addresses a broader range of clinical needs, demonstrating the framework’s po-

tential utility in various healthcare contexts. This approach not only validates the framework

across different datasets but also highlights its capability to contribute to multiple areas of med-

ical diagnostics.
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4.6 Conducted Experimentation and Research Evaluation Mech-

anism

To evaluate the effectiveness of the proposed features extraction method in comparison with

existing works, an evaluation scheme of various measurement parameters is considered essen-

tial. For this purpose, two main experiments will be conducted to evaluate the capability of

the proposed framework in handling different dataset cases including labelled and unlabelled

data. The experiments conducted aimed to establish rigorous conditions that would thoroughly

assess the efficacy of the feature extraction process. Additionally, the design of these experi-

ments was inclusive of diverse dataset representations, covering both grey-scale and coloured

medical images as inputs. The details of these experiments are structured as follows:

• Experiment 1 (Exp 1): involves grey-scale and unlabelled dataset, which will be con-

ducted using BRAST dataset.

• Experiment 2 (Exp 2): covers coloured and labelled dataset, which will be carried out

using the Retinal dataset.

The described experiments were conducted to: (1) assess if the proposed approach meets

the established criteria for HF and DHF feature extraction and integration where an evaluation

against its variants will be conducted, and (2) confirm its effectiveness in accurately perform-

ing feature extraction in comparison with benchmarking methods. To deepen the assessment

of the proposed framework, the evaluation process broadens to encompass four critical criteria

of evaluation to include responsiveness, adaptability, scalability, and reliability. This suggested

evaluation mechanism is named RASR. These aspects will be explored following the execu-

tion of the two initial experiments and will be applied to both the variations of the proposed

framework and the benchmarking methods. RASR’s four assessment criteria are defined as

follows:

• Responsiveness: refers to the duration needed to precisely identify pertinent features in

response to dataset modifications. Essentially, it measures the efficiency of a feature ex-
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traction model to process various types of medical images within a specified time frame,

taking into account the parallel processing capabilities.

• Adaptability: defines the flexibility of a model to independently identifying essential

features without reliance on external input, functioning efficiently in an unsupervised

context.

• Scalability: refers to a model’s capacity to effectively process medical images of any

kind, regardless of their type, size, or complexity. It indicates the method’s capability

to handle datasets of varying dimensions, efficiently addressing both overfitting and un-

derfitting concerns. Scalability is the attribute that allows the feature extraction process

to accommodate the expanding volume of data seamlessly, thus maintaining consistent

performance and responsiveness.

• Reliability: covers the model’s ability to continue accurate processing despite the pres-

ence of faults. Should a bug arise at any stage, it will not impact the other components.

Each criterion of the RASR evaluation mechanism varies to include: (1) High, (2) Good, (3)

Moderate, and (4) Passable, and (5) Low levels. Towards validating the accurate functionality

of the proposed features extraction framework, several features extraction block variants will

be involved in the testing mechanism to include: (1) HF only, (2) DHF only, and (3) HF-DHF

fusion, denoted as Block1, Block2, and Block3 respectively. This will enable the validation of

the importance of HF and DHF features fusion in enhancing the classification results. Table 4.3

summarises the different testing cases of Block1.

Table 4.3: Block 1 Variants - HF Fusions

Case Texture Shape Colour

1 X X -

2 X - X

Continued on next page
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Table 4.3: Block 1 Variants - HF Fusions (Continued)

Case Texture Shape Colour

3 - X X

4 X X X

To evaluate the classification outcomes of tested variants and benchmarking methods against

the proposed method, a set of quantitative performance metrics is considered including: Sen,

Spe, Acc, and MAE.

4.7 Results and Discussion

4.7.1 Proposed Method Versus its Variants

The testing of Block1, Block2, and Block3 was performed following Exp1 and Exp2 as men-

tioned above. For this purpose, each experiment served as a different testing approach using

different medical imaging type to include MRI and Fundus as part of BRATS and Retinal

datasets. Firstly, the testing of Block1 will only reflect the importance of HF features within

the proposed framework where four different cases will be tested, optimised, and then classi-

fied using SVM. Secondly, Block2 will only focus on the contribution of DHF features in the

final decision of the classifier model. Finally, the testing of Block3 will serve as the validation

of the proposed framework where it merges the optimal combination of HF and DHF features

(Foptimal) towards enhancing the final classification outcome.

BRATS Dataset: Grey-scale and Unlabelled Case

Table 4.4 presents the obtained performance metrics of the individual variants blocks to include

Block1 and Block2.
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Table 4.4: Individual Blocks Variants Testing using Performance Metrics: BRATS Dataset

Testing Block Processing

Time

(h:mm:ss)

Sen Spe Acc MAE

Block1 – HF Features Only

Case 1 Features 8:15:00 73% 70% 72.4% 0.28

Case 2 Features 7:33:00 70% 68% 69.6% 0.31

Case 3 Features 6:44:00 68% 67% 67.8% 0.33

Case 4 Features 11:20:00 75% 71% 74.2% 0.26

Block2 – DHF Features Only 3:40:00 67.2% 53% 64.36% 0.37

In case of HF only features, the performance metrics indicate that the processing time varies

significantly. In fact, Texture-Shape combination takes the longest time to reach more than 11

hours, but results in the highest Acc of 74.2% and lowest MAE of 0.26 among HF-only cases.

This suggests that while the Texture-Shape-Colour feature set provides the most balanced per-

formance, the trade-off in terms of computational efficiency is notable. On the other hand,

the application of DHF only features resulted from DenCeption showed a significantly shorter

processing time of less than 4 hours. Nevertheless, DHF-only features resulted the least Acc

of 64.36% and the highest MAE of 0.37. This indicates that, despite the lower computational

cost, relying solely on DHF may not be sufficient for accurate classification in the context of

the proposed framework.

This also proves that the optimisation block does not perform well in case of lack of diverse

features set. The individual HF features block generally provide a higher accuracy than DHF

alone, which further indicates the need of diverse features and reinforces the avoidance of

useless redundancy. However, the processing time of HF cases is also greater. This could

suggest that HF features capture more informative characteristics pertinent to the classification

task, although at a computational cost. The integration of DHF with HF features significantly

increased Acc, particularly in the case of Texture-Shape features (97%) as present in Table 4.5.
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Table 4.5: Integration Block Variant Testing using Performance Metrics: HF-DHF Fusion using
BRATS Dataset

Testing Block3 Processing

Time

Sen Spe Acc MAE

Case 1 - DHF 10:30:00 98% 96% 97% 0.02

Case 2 - DHF 9:43:00 77% 76% 76.2% 0.24

Case 3 - DHF 8:35:00 73% 70% 72.4% 0.28

Case 4 - DHF 14:10:00 80% 78% 79.6% 0.21

This improvement can be attributed to the complementary nature of the different feature

sets, where the depth and abstraction of DHF features enrich the discriminative power of HF

textural and shape information. Therefore, not all features contribute equally to classification

accuracy, and indiscriminate addition of features does not guarantee performance improvement.

In fact, with the existence diverse and relevant features set, the optimal selection block plays its

pivotal role. The latter can identify and utilise only those features that enhance classification,

avoiding unnecessary computational cost and potential overfitting. These results also illustrate

the importance of strategic feature selection. In fact, the highest accuracy is achieved not by

the most complex model, but by the one that wisely combines relevant features.

In cases where the complexity does not translate into a corresponding accuracy enhance-

ment, it suggests that some features may introduce redundancy or noise rather than discrimi-

native information. The high processing time presented by most of the experiments impacted

by two main factors. In fact, the unlabelled input images increased the processing time of the

overall system as it affects the particular processing time of the overall system as it affects the

particular processing time of DHF extraction. The DenCeption model took around four hours

to proceed the deep DHF extraction of its own. Subsequently, this impacted remaining fusion

experiments requiring parallel resources processing. In addition, the type of the processed MRI

image (NifTii) is considered as a complicated input image, which has a drawback on its pro-

cessing time. This, therefore, justifies the lower processing time of the experiments done on the
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Retinal dataset, where the latter is composed of mainly .jpeg images which will be presented in

the following sub-section.

Mapping the resulted performance metrics, it is evident that the specifications of the BRATS

dataset have impacted the RASR outcomes of the proposed optimal features extraction method.

In fact, its responsiveness to block testing scheme has not been successful where it comes to

individual block testing, except Texture-Shape fusion. Moving forward into the integration

testing of HF and DHF blocks, BRATS dataset showed a successful responsiveness, partic-

ularly in case of Texture-Shape-DHF, Texture-Colour-DHF, and Texture-Colour-Shape-DHF

fusions. The lack of responsiveness presented by Shape-Colour fusion could be interpreted by

the absence of Texture feature which represents a key feature in tumour disease detection and

classification, which, as a result, impacted the responsiveness of the system processing.

The responsiveness gained by Texture-Colour-Shape-DHF fusion compared to Texture-

Colour-Shape fusion is linked mainly to the increase of the Sen and Spe of the optimal features

selection system. The increase of a deeper understanding of the input medical images, MRI

in this case, impacted the performance of the system. As per this case, Texture-Colour-DHF

also showed an evolutionary impact on the overall classification accuracy which helped into

optimising the system processing. Despite that, the overall system is not considered as scalable

given that it does not involve the shape features, which represents in this particular dataset a

critical parameter that reflects the evolution of the tumour and helps in optimising its classifi-

cation. Texture-Colour-DHF, on the other hand, is also classified as a non-scalable solution for

the same reason. That said, Texture-Shape, Texture-Shape-Colour, Texture-Shape-DHF, and

Texture-Shape-Colour-DHF have demonstrated a scalable solution by including key features

positively impacting on the overall classification. Table 4.6 summarises the mapping of RASR

evaluation mechanism on Block3 testing using BRATS dataset.
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Figure 4.6: Critical Sample Testing of Block3 - BRATS Dataset

Table 4.6: Block3 Variants Evaluation using RASR for BRATS Dataset

Block3 Variant Responsiveness Adaptability Scalability Reliability

Case 1 - DHF Moderate High Good High

Case 2 - DHF Good Moderate Moderate Moderate

Case 3 - DHF High Low Low Low

Case 4 - DHF Low Passable Good Good

The mapping of Table 4.6 confirms the high importance of Texture-Shape fusion in the

case of BRATS dataset. Towards validating the training stage of the proposed method against

its variants, an example of testing MRI image is presented in Figure 4.6.

The figure shows the testing result of the tumour detection and classification alongside the

indication of the resection status and the estimated survival days. The sample image belongs

to a patient with GTR and 131 survival days. As per the results, Texture-Shape-DHF case has

successfully identified the tumour with the correct specifications: GTR as resection status and

approximate survival days of 128 which is strongly comparable with the original number. How-

ever, remaining blocks to include Texture-Colour-DHF and Shape-Colour-DHF have failed to

identify the validation parameters resulting each (STR,10) and (N/A, 500) as values for resec-

tion status and approximate survival days respectively. Therefore, this validates the presented
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results in Tables 4.4, 4.5 , and 4.6.

Justification of Extracted Features for BRATS MRI Dataset

• Texture Features: In MRI scans, particularly those used in brain tumour analysis, tex-

ture features are crucial because they help capture the intricate variations in the intensity

patterns of the tissues, which are indicative of different pathological states. GLCM and

Tamura methods were employed to extract features like texture contrast, energy, homo-

geneity, and entropy. These were selected because they provide valuable insights into

the structural variations and are effective in distinguishing between normal and abnormal

tissue in brain scans. Texture features played a significant role in the BRATS dataset,

where the classification task heavily relied on identifying the irregular texture patterns

associated with brain tumours. The results showed that texture features, when combined

with shape features, achieved higher accuracy and reliability.

• Shape Features: The shape of a tumour or lesion in MRI scans is often a critical indi-

cator of its type and stage. Hence, extracting shape-related features was essential for a

comprehensive analysis. RF and other shape descriptors were used to quantify the area

and perimeter of the regions of interest, such as tumours. These features were chosen be-

cause they help delineate the boundaries and physical dimensions of abnormal growths,

which are key for tumour detection and classification. Shape features complemented

texture features by providing geometric context, which is particularly important in cases

where texture alone might not be sufficient to distinguish between similar tissue types.

• Deep Hidden Features: DHF, extracted through the DenCeption model, capture more

abstract and complex patterns within the MRI scans that may not be apparent through

texture and shape features alone. These features are crucial for enhancing the model’s

ability to identify subtle variations in the data. DHF were used to add depth to the feature

set, improving the overall discriminative power of the model. The integration of DHF

with texture and shape features resulted in a significant improvement in accuracy, as

evidenced by the results showing that Texture-Shape-DHF fusions outperformed other
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feature combinations.

Retinal Dataset: Colour and Labelled Case

Table 4.7 presents the outcomes of performance metrics tested on the individual variants blocks

to include Block1 and Block2 using Retinal dataset.

Table 4.7: Individual Blocks Variants Testing using Performance Metrics: Retinal Dataset

Testing Block Processing

Time

(h:mm:ss)

Sen Spe Acc MAE

Block1 – HF Features

Only

Case 1 Features 5:30:00 71% 69% 70.6% 0.3

Case 2 Features 3:00:00 77% 73% 76.2% 0.24

Case 3 Features 2:50:00 69% 65% 68% 0.32

Case 4 Features 4:20:00 81% 80% 80.8% 0.19

Block2 – DHF Features

Only

1:30:00 68% 60% 66.4% 0.34

The table shows that Texture-Shape features demonstrate moderate Sen (71%) and Spe

(69%), leading to a fairly good Acc (70.6%) but at the expense of a longer processing time of

more than 5 hours. Texture-Colour features, on the other hand, show improved accuracy of

76.2% and lower MAE of 0.24, suggesting a good balance of feature Sen, with a significantly

reduced processing time. As per Table 4.7, Shape-Colour features underperform in all aspects,

indicating that these features alone are less effective for the classification of DR using Fundus

images. This was not the case for Texture-Shape-Colour features. In fact, the latte excel in all

performance metrics to achieve 81% Sen, 80% Spe, 80.8%, Acc, and 0.19 MAE. However, this

improvement was at the cost of a higher processing time, suggesting that while combining these

features leads to better accuracy, it requires more computational resources. When comparing to
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Block2 – DHF Features Only, which shows the least accuracy and highest mean average error,

it is clear that HF, particularly Texture-Shape-Colour Features, are superior for this dataset. The

fusion of the latter with DHF features have showed an outstanding level of performance across

most of the evaluation metrics as presented in Table 4.8.

Table 4.8: Integration Block Variant Testing using Performance Metrics: HF-DHF Fusion using
Retinal Dataset

Testing Block3 Processing

Time

(h:mm:ss)

Sen Spe Acc MAE

Case 1 - DHF 3:30:00 84% 81% 83.4% 0.17

Case 2 - DHF 4:45:00 91% 88% 90.4% 0.03

Case 3 - DHF 2:55:00 78% 71% 76.6% 0.24

Case 4 - DHF 5:13:00 99% 98% 98.9% 0.01

In fact, the results of the features fusion block variant (Block3) proved that Texture-Shape

Features with DHF has improved in all metrics compared to single HF and DHF blocks (Block1

and Block2 respectively), but with a processing time that suggests increased computational de-

mand. Texture-Colour features with DHF show a better Acc (90.4%) and an a low MAE (0.03),

indicating a highly reliable model, despite longer processing time of approximately 5 hours.

However, Texture-Shape-Colour with DHF provide the highest Acc of 98.9%, Sen of 99%,

Spe of 98% and exceptionally low MAE of 0.01. The reliability of this combination comes

with a substantial cost of processing time but comparable to Texture-Colour-DHF fusion case.

Shape-Colour features with DHF, on the other hand, slightly enhance performance metrics over

single Block1 and Block2, but remain less effective than other DHF combinations. Therefore,

it is evident that the addition of DHF to HF consistently improves model performance, but not

always in a linear format. The Texture- Shape-Colour-DHF case stands out for achieving high

accuracy with a reasonable processing time, suggesting an efficient balance of features usage.

Mapping the results of Retinal dataset through RASR evaluation mechanism (Table 4.9),
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Texture-Shape-DHF fusion demonstrates good performance across all metrics, showing good

responsiveness in adapting to dataset changes within a reasonable time. Its adaptability and

scalability are also rated as good, meaning it can identify essential features independently and

handle a variety of image types and sizes effectively.

Table 4.9: Block3 Variants Evaluation using RASR for Retinal Dataset

Block3 Variant Responsiveness Adaptability Scalability Reliability

Case 1 - DHF Good Good Good High

Case 2 - DHF Moderate High Good High

Case 3 - DHF High Moderate Low Passable

Case 4 - DHF Moderate High High High

The high reliability score indicates a robust model capable of maintaining accuracy even

if faults arise. On the other hand, the Texture-Colour-DHF fusion, while having moderate re-

sponsiveness, excels in adaptability, indicating a strong ability well operate in unsupervised

cases and to learn from the data without external inputs. Its good scalability and high reliability

prove that while it may take slightly longer to process, it does so with high consistency and

less vulnerability to errors. The results showed by Shape-Colour-DHF fusion are reflected on

its high responsiveness, likely due to a less complex feature set allowing for faster processing

times. However, it shows moderate adaptability, due to its lack of effectiveness in unsupervised

contexts compared to other fusions. Its low scalability is caused by its difficulties in handling

diverse datasets. This fusions impact on the overall framework reliability indicates that while

generally dependable, it may not be as robust as other fusions against system faults. Finally,

the Texture-Shape-Colour-DHF fusion, despite its moderate responsiveness, demonstrates high

adaptability and scalability in handling complex feature sets and a wide range of image types

and sizes effectively. Its high reliability also confirms its capability to maintain accurate pro-

cessing through potential challenges.

Towards validating the obtained results in relation to the Retinal dataset, a critical sample

of Fundus scan is shown in Figure 4.7 The latter shows the DR detection and stage estimation
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Figure 4.7: Critical Sample Testing of Block3 - Retinal Dataset

of the disease (Advanced stage in this particular sample).

As per the figure, Texture-Shape-Colour-DHF and Texture-Colour-DHF have successfully iden-

tified and detected the stage of the DR present in the scan, which was not the case for remaining

experiments. This proves the importance of the extraction of key features that can support the

system in the identification of critical samples and decreases the FN rates.

Justification of Extracted Features for Retinal Dataset

• Texture Features: In the context of retinal images, texture features are critical for iden-

tifying pathological changes such as retinal thickening, fluid accumulation, or hemor-

rhages, which are characteristic of diseases like DR. Similar to the MRI case, GLCM

and Tamura were used to extract texture features. These were selected based on their

ability to capture the fine structural details in retinal images, which are vital for accurate

disease detection. Texture features played a pivotal role in differentiating between nor-

mal and abnormal retinal images, with the results showing that combinations involving

texture features generally achieved higher Sen and Spe.

• Shape Features: These are important in retinal images to detect abnormalities in the

geometry of the retina, such as irregular blood vessel patterns or distortions caused by

macular edema. RF and other shape descriptors were used to extract features like area

and perimeter. These were selected because they help in identifying distortions or en-
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largements in the retinal structure that are indicative of DR. Shape features contributed

to the robustness of the classification model, especially when combined with texture fea-

tures, leading to improved accuracy and lower MAE.

• Colour Features: These features are particularly important in retinal images where

colour variations can signify different stages of diseases like DR. For example, hem-

orrhages and exudates appear as distinct colour patterns in Fundus images. CHKM was

used to extract colour features such as the mean colour value and standard deviation.

These were selected to capture the full range of colour variations in the retinal images,

which are crucial for detecting and classifying different stages of DR. Colour features

were found to be highly effective in the Retinal dataset, with the combination of Texture-

Shape-colour-DHF achieving the highest classification Acc of 98.9%. This indicates that

colour, when combined with other features, provides a significant boost to the model’s

performance.

• Deep Hidden Features: In the case of retinal images, DHF extracted via the DenCeption

model help in capturing complex patterns that are not easily identifiable through tradi-

tional feature extraction methods. These include deep variations in texture and colour

that correlate with different disease stages. The inclusion of DHF was crucial in achiev-

ing high classification accuracy and reducing mean average error. The combination of

Texture-Shape-colour-DHF was particularly effective, demonstrating the importance of

integrating DL based features with traditional ones.

To compare Block3’s performance on each experiment (including Exp1 and Exp2), ROC

curve graph has been considered for both dataset cases (BRATS and Retinal respectively) as

presented in Figure 4.8.a and 4.8.b.

For the BRATS dataset (Figure 4.8.a), the ROC curves show that all methods have a rela-

tively high TPR (Sen), even as the FPR (1-Spe) increases. This indicates that the variants are

generally effective at identifying true cases. The Texture-Shape-DHF combination appears to

have a slightly higher curve, further proving that it offers the best balance between Sen and
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Figure 4.8: ROC Curve of Block3 Variants Testing: (a) BRATS Dataset, (b) Retinal Dataset

Spe among the tested fusions for this particular dataset. In contrast, for the Retinal dataset

(Figure 4.8.b), the curves are much closer together, implying that the differentiation between

the fusions is not as pronounced. Nevertheless, Texture-Shape-Colour-DHF leads slightly over

Texture-Colour-DHF, indicating that the former combination of features is likely the most ef-

fective at classification for this particular dataset. These analyses further prove that that while

combining multiple types of features with DHF may offer some advantage, the improvement is

incremental rather than transformational. Moreover, the fact that the ROC curves of all methods

are quite close together, especially in the Retinal dataset, could indicate a level of redundancy

when adding more complexity to the feature set. This might imply that simpler combinations

of features could be nearly as effective while being more computationally efficient. To further

validate the best variants of each dataset, a comparison against benchmarking methods will be

conducted in the following section.

4.7.2 Benchmarking Methods

The benchmarking methods selected for comparison with the proposed approach encompass a

diverse range of techniques, from those that harness HF feature extraction to others that delve

into DHF extraction, illustrating a comprehensive evaluation across the spectrum of feature

analysis methodologies. In this context, authors in (Altaf et al., 2017) proposed a method
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that integrates GLCM to calculate texture features such as entropy, energy, homogeneity, and

correlation. Their method also used volumetric ratios of grey matter and white matter to cere-

brospinal fluid, alongside clinical features to improve classification accuracy. Labelled MRI

data has been used for multi-class AD and mild cognitive impairment diseases classification,

namely AD and MCI respectively. The proposed framework combines both texture and clinical

features, which has improved classification accuracy.

The application of multi-class classification offers an advantage to the proposal with an

Acc of 79.8%, however, it is less than the Acc obtained through single class classification

(94.8%). Additionally, the use of GLCM only for features extraction might pose computational

challenges and could lead to overfitting due to its complexity and inherent high dimensional-

ity. Although clinical features enhance the accuracy, they also increase the complexity of the

model and the necessity for comprehensive clinical data, which may not always be available.

Also, these clinical features might not solve the classification challenge between highly similar

classes such as AD and MCI. Focusing only on HF features, a research proposed a method

for glaucoma detection using texture features extraction (Kavya and Padmaja, 2017). In this

context, GLCM has been used to calculate the occurrences of pixel pairs with specified values

and relationships to determine the texture of an image. GLCM was applied alongside MRF

technique to extract texture features, considering the changes in texture and intensity values

in the Fundus images used. The medical images applied has the colour feature which was

not considered for binary classification purpose. The latter was performed using SVM. The

experiment was performed on labelled data containing annotations provided by ophthalmolo-

gists leveraged as ground truths for sensitivity and specificity calculations achieving an Acc of

86%. The method integrates multiple image segmentation techniques, which could potentially

enhance the accuracy of the affected region extraction with the Fundus image. In addition,

the use of both GLCM and MRF may provide a comprehensive understanding of the textural

changes in the optic nerve head due to glaucoma, leading to more accurate detection.

The use of SVM for classification is a proven ML approach for binary classification tasks,

which may yield good results in distinguishing between normal and glaucomatous images.
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While the proposed framework presents high achievements in segmentation and classification

accuracy, the use of texture-based features alone may not be sufficient to capture all the nuances

of glaucoma progression. The reviewed work does not mention the use of colour information,

which could be crucial for some types of glaucoma detection. The application of these methods

may be computationally intensive and limit their scalability and reliability. A brain disease

classification method using multi-feature fusion approach has been also proposed in (Qin and

Wang, 2019). Similar to the work proposed in (Altaf et al., 2017), the solution addresses the

classification of AD and MCI using structural MRI, as grey-scale scans used for the conducted

experiments. The classification framework fuses three types of features: grey-matter volume

from VBM, texture features from GLCM, and Gabor features. These features are intended to

capture both 2D and 3D information from brain MRIs.

The process involves feature selection using an improved version of the SVM Recursive

Feature Elimination (SVM-RFE) algorithm enhanced with a covariance method. The goal is to

extract the most relevant features that can distinguish between normal controls (NC), AD, and

MCI cases. The proposed method is tested on the public ADNI database. The proposed method

is characterised by its multi-feature fusion which could improve the accuracy of AD and MCI

classification compared to using single-feature methods achieving an Acc of 91.4% and 97%

for AD and MCI, respectively. Improved covariance feature selection technique SVM-RFE

has also played a pivotal role in selecting optimal subset of features, addressing the issue of

overfitting that arises due to high dimensionality in MRI data. Conversely, the method suffers

from several drawbacks to include: (1) complexity of the method where the fusion of multiple

features and the improved feature selection process increase the computational complexity of

the method, (2) lack of generalisability, in fact, while the method is tested on a specific dataset,

its effectiveness on data from different sources or acquired with varying imaging parameters

was not tested, and (3) lack of interpretability where the proposed feature selection approach

was not well-defined. Correspondingly, authors in (Madusanka et al., 2019) proposed a multi-

feature fusion technique for AD and MCI classification using MRI images.

The method combines texture and morphometric features derived from MRI, specifically
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utilising Gabour filters, hippocampus morphometric analysis, and both 2D and 3D GLCM for

feature extraction. The combination of 2D and 3D GLCM features makes the proposed method

unique compared to the one proposed in (Xiao et al., 2017). In fact, the application of 3D

GLCM captures spatial dependencies across MRI slices, helps providing more robust repre-

sentation of brain structures than 2D analysis alone, though increasing its computational com-

plexity. The classification was performed using an SVM only with a 10-fold cross-validation

approach achieving an Acc of 86.61% and 78.95% for AD and MCI respectively. Nonetheless,

the suggested approach did not perform as well as the comparable method introduced in (Qin

and Wang, 2019). Additionally, the process of selecting the most informative features for clas-

sification is described as resource-intensive, which could impact the method’s efficiency and

ease of use in clinical settings.

Similar to (Qin and Wang, 2019), the proposed method lack of generalisability where it is

crucial to validate the approach across diverse datasets to ensure its robustness and applicabil-

ity. On a different note, Lin proposed A smart content-based image retrieval system based on

colour and texture feature to enhance retrieval performance (Lin, Chen, and Chan, 2009). The

proposed method has a great potential in its applicability on medical images data by consider-

ing three primary image features: Colour Co-occurrence Matrix (CCM), Difference Between

Pixels of Scan Pattern (DBPSP), and CHKM. CCM calculates the probability of the same pixel

colour occurrence between each pixel and its adjacent ones, DBPSP calculates differences be-

tween pixels according to motifs of scan patterns and converts it into probability occurrence,

and CHKM classifies pixels into k-clusters based on colour similarity. The study employs

Sequential Forward Selection (SFS) for feature selection to optimise feature sets for improved

detection rates and computational efficiency. By integrating colour and texture features the pro-

posed method has the potential to handle diverse input images, offering robust and adaptable

performance achieving 92.2% Acc. Despite the showed performance, the proposed methods

have several drawbacks to include: (1) high computational complexity, (2) Sen to noise varia-

tions with the input imaging requiring a flexible image pre-processing stage to avoid any lack

of reliance on the texture and colour distributions, and (3) dependence on parameter tuning
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which, in turn, affects the feature weights assignment and regularisation.

The benchmarking methods also involved works that exclusively utilise DHF extraction

techniques, setting the stage for a detailed comparison and understanding of their contributions

in the context of classification tasks enhancement. In this context, Nazir introduced an auto-

mated system for detecting DR and DMO from retinal images using a DL approach centered

around a custom CenterNet model, incorporating DenseNet-100 for feature extraction (Nazir

et al., 2021). This method first prepares a dataset with annotations to identify RoIs and then

utilises the CenterNet model, enhanced with DenseNet-100, to localise and classify the disease

lesions from annotated coloured Fundus images. The proposed framework is tested on chal-

lenging datasets, including APTOS-2019 and IDRiD, demonstrating high accuracy (97.93%

and 98.10%, respectively) in disease detection and classification. The work presents a robust

feature extraction approach incorporating DenseNet-100, which results the enhancement of the

overall system’s ability to recognise small lesions and deal with low-intensity and noisy images.

The proposed method is also simple and efficient leveraging a one-stage detector (CenterNet),

which offers a computationally efficient alternative to traditional two-stage detection methods

while maintaining high performance. However, this impacts the scalability of the method to

handle larger datasets.

The suggested framework presents lines of potential generalisation capability by using

cross-dataset validation, though, both datasets represent the same type of medical imaging

(Fundus). Despite the improvements in generalisation, there remains a potential of overfitting,

especially when the method is trained on highly specific datasets, which could affect its perfor-

mance on unseen data or under diverse conditions. Also, the non-consideration of other types

of medical scans and grey-scale based images in addition to its heavy reliance on the quality

of annotations for training, limit its adaptability. On the other hand, Dara proposed a CNN

based feature extraction method for lung cancer classification dataset (TCGA-LUAD), using

CT scans (Dara et al., 2018). The method aims to convert input data into a set of features

to simplify subsequent learning and analysis processes. The proposed framework outlines an

approach for automatic feature extraction using CNNs, alongside comparisons with MLP both
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with and without manual feature extraction. The methodology employed relies on the con-

volutional and pooling layers of CNNs to process and extract features from medical images

automatically.

The employment of CNNs for automatic feature extraction from CT scans proved the sig-

nificant reduction of the pre-processing resources required and potentially uncover features that

may not be evident through manual extraction methods. The proposed CNN based method has

also showed a scalability by covering a relatively large dataset, which is beneficial given the

increasing volume of medical imaging data. In addition to the resource-intensity required by

the proposed method, it would have been beneficial if the validation experiments involved a

different dataset with diverse image type and target disease which might have increased the

reliability and adaptability of the proposed method. The paper also lacks any explanation re-

garding weights and parameters regularisation which raise a concern regarding overfitting risks.

Table 4.10 summarises the characteristics of each of the reviewed works.

Table 4.10: Comparison of Benchmarking Feature Extraction Methods and Their Correspond-
ing Imaging Data Type Coverage

Method Reference Features Imaging Data Image Type

HF DHF Unlabelled Labelled Grey-scale Coloured

GLCM (Altaf

et al.,

2017)

X X X

GLCM-

MRF

(Kavya

and Pad-

maja,

2017)

X X X

Continued on next page
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Table 4.10: Comparison of Benchmarking Feature Extraction Methods and Their Correspond-
ing Imaging Data Type Coverage (Continued)

Method Reference Features Imaging Data Image Type

HF DHF Unlabelled Labelled Grey-scale Coloured

GLCM-

VBM

(Xiao

et al.,

2017)

X X X

SVM-

RFE

(Madusanka

et al.,

2019)

X X X

CHKM-

CCM

(Lin,

Chen,

and Chan,

2009)

X X X X

DenseNet-

100

(Nazir et

al., 2021)

X X X X

CNN-

MLP

(Dara

et al.,

2018)

X X X

Proposed

Method

X X X X X X

The conducted experiments will serve as the assessment framework in correspondence with

the established evaluation criteria. This process affirms the effectiveness of the suggested ap-

proach in comparison to benchmarking methods. The responsive and adaptable nature of the

proposed method has been enhanced by its scalability and dependability. All methods have

been applied in accordance with Exp1 and Exp2 using BRATS and Retinal datasets, respec-

tively. Tables 4.11 and 4.12 presents the outcome of the conducted experiments for bench-
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marking methods against the proposed features extraction framework for BRATS and Retinal

datasets, respectively.

For the BRATS dataset, Table 4.11 illustrates a comparative overview where the proposed

method outperforms others across all performance metrics. Nazir’s work applying DenseNet-

100 and Lin’s work with CHKM-CCM, demonstrate high accuracies of 90.5% and 89.1% re-

spectively, where the proposed method’s Acc achieves 97%. When considering Sen and Spe,

which are critical in medical diagnostics to reduce FNs and FPs, the proposed method sur-

passes other methods with 98% and 96%, while the best competing methods, DenseNet-100

and CHKM-CCM, show a Sen of 92% and 87.2% and Spe of 89.7% and 89.7% respectively.

Precision and F1-score prove that the proposed method at 96.3% and 97.14% exceeds all other

methods. A no%distinction is also observed in the MAE where the proposed method achieves

a minimal 0.09, significantly outperforming other methods, demonstrating that it not only iden-

tifies correct features more consistently but also with fewer errors, making it highly reliable for

clinical applications.

In the context of the Retinal dataset, as shown in Table 4.12, similar patterns of perfor-

mance have been identified. In fact, the proposed method achieves an outstanding Acc of 97%,

while the best competing methods CHKM-CCM and GLCM-VBM reach 90.7% and 87.3%

respectively. Sen and Spe are paramount in DR disease classification to ensure accurate patient

diagnosis, and here too, the proposed method excels with 98% and 96% versus CHKM-CMM’s

92% Sen and GLCM-VBM’s 87% Spe. In precision and F1-score, the proposed method demon-

strates a high reliability with scores of 96.3% and 97.14%, overcoming other methods. This

distinction is pivotal with MAE of 0.09, reinforcing the proposed method’s capacity to provide

dependable and precise diagnoses over the others.

When critically comparing the individual feature sets (HF and DHF), it becomes clear that

the integration of both does not always guarantee superior performance. For instance, in Ta-

ble 4.11, the cases utilising HF features alone exhibit lower accuracies compared to the DHF

features only. However, the integration of these feature sets, especially in cases where Tex-

ture, Shape, and Colour are combined with DHF, shows a significant increase in performance
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metrics, indicating that an optimised combination of features can enhance accuracy and model

reliability.

Table 4.11: Benchmarking Results of BRATS Dataset Versus Proposed Methods

Method Acc (%) Sen (%) Spe (%) Precision

(%)

F1-score

(%)

MAE

GLCM (Altaf

et al., 2017)

68 70 65 67.3 68.6 0.33

GLCM-MRF

(Kavya and

Padmaja,

2017)

87.3 83.44 89 86 84.6 0.25

GLCM-VBM

(Xiao et al.,

2017)

71 75.3 68 72.3 73.4 0.3

SVM-RFE

(Madusanka

et al., 2019)

75.2 72 77 74.3 73.1 0.28

CHKM-CCM

(Lin, Chen,

and Chan,

2009)

89.1 87.2 89.7 88 87.5 0.2

DenseNet-

100 (Nazir

et al., 2021)

90.5 92 89.7 93 92.4 0.15

Continued on next page
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Table 4.11: Benchmarking Results of BRATS Dataset Versus Proposed Methods (Continued)

Method Acc (%) Sen (%) Spe (%) Precision

(%)

F1-score

(%)

MAE

CNN-MLP

(Dara et al.,

2018)

88.7 90.1 89 90 90.04 0.26

Proposed

Method

97 98 96 96.3 97.14 0.02

Table 4.12: Benchmarking Results of Retinal Dataset Versus Proposed Methods

Method Acc (%) Sen (%) Spe (%) Precision

(%)

F1-score

(%)

MAE

GLCM (Altaf

et al., 2017)

73.8 75 72 74.7 74.8 0.4

GLCM-MRF

(Kavya and

Padmaja,

2017)

80.1 83 83.4 79 80.9 0.32

GLCM-VBM

(Xiao et al.,

2017)

87.3 86 87 85.8 85.8 0.21

SVM-RFE

(Madusanka

et al., 2019)

83 81.2 83.4 81 81.09 0.29

Continued on next page
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Table 4.12: Benchmarking Results of Retinal Dataset Versus Proposed Methods (Continued)

Method Acc (%) Sen (%) Spe (%) Precision

(%)

F1-score

(%)

MAE

CHKM-CCM

(Lin, Chen,

and Chan,

2009)

90.7 92 89 91 91.4 0.11

DenseNet-

100 (Nazir

et al., 2021)

89.7 88.4 88 87.3 87.8 0.19

CNN-MLP

(Dara et al.,

2018)

83.7 85 83.1 81 82.9 0.24

Proposed

Method

98.9 99 98 98.4 98.6 0.01

4.8 Conclusion

Disease classification requires specialist’s expertise in locating inner areas of interest from

medical images, particularly, grey-scale images (MRI) and coloured images (Fundus). That is,

manual features extraction can be time consuming which might have side effects on the diag-

nosis and analysis process. To cope with this challenge, an automated features extraction and

selection method is proposed. The framework is based on combining HF and DHF features

towards achieving a high quality of medical analysis with optimised features set. The novel DL

framework, DenCeption, has been applied for DHF extraction alongside HF features extrac-

tion techniques. The optimal combination of texture, shape, colour, and DHF has been used

as an input to the classification model. The main aim of the proposed method is to create a
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generalisable framework that can pick the best features combination based on the character-

istics of the input dataset. Multiple experiments have been considered to test each possible

features combination and reflect that on the proposed evaluation mechanism, RASR, to convey

responsiveness, adaptability, scalability and reliability.

The conducted experiments have also been tested on benchmarking methods to validate

the proposed approach. The proposed features extraction framework achieved outstanding re-

sults on both coloured/labelled and grey-scale/unlabelled based datasets, namely, BRATS and

Retinal respectively. The novel method reached 97% for Texture-Shape-DHF combination

and 98.9% for Texture-Shape-Colour-DHF combination, respectively. Despite the use of other

features combinations, the high impact the aforementioned combinations provided helped in in-

tensifying the responsiveness and reliability of the proposed framework by minimising the FPs

and FNs that can occur. Considering the above results, the proposed framework can be scaled

to be applied in real-time experiments. Hence, the potential application of its use in second

and/or first clinical line. Moreover, a disease prediction model will be designed towards testing

the proposed features extraction model on scenarios other than classification. The proposed

prediction framework will be proposed in the following chapter.

In concluding this chapter, the complex interplay of HF and DHF has been explored, scru-

tinising their distinct contributions and combinations towards improving classification accu-

racy. The proposed feature extraction framework, marked by its responsiveness, adaptability,

scalability, and reliability, has undergone thorough testing across two diverse datasets, each

depicting a unique scenario. Moving forward, this framework will be integral to the predictive

model in the next chapter. By integrating within this model, the framework aim to enhance the

analysis influence of selected features on prediction outcomes. Furthermore, the chapter will

covey a proposal of a new performance measurement tool, designed to assist in the nuanced

selection of suitable metrics. This tool is aimed at accommodating problem specifics, appli-

cation demands, and data accessibility, facilitating a comprehensive strategy for performance

assessment and feature impact evaluation.
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Chapter 5

Advancing Intelligent Medical Diagnostics

with HyBoost: A Robust Predictive

Framework for High-Dimensional

Imaging Data

5.1 Introduction

In the previous chapter, the proposed adaptive feature extraction framework was introduced,

initiating a substantial advancement in the domain of medical imaging analysis. The combina-

tion of the innovative DenCeption model, which, combined with a keen selection of pertinent

features, is crucial in refining the learning task across diverse scenarios. The framework’s

skill in pinpointing the best features, customised for each particular situation, highlights its

adaptability and efficiency. In the context of the current chapter, the emphasis shifts toward

disease prediction, building on the foundation established by the cutting-edge approach to fea-

ture extraction. The core of this framework, with its ability to wisely select and apply the

most influential features, is key in boosting the predictive accuracy of the proposed framework.

By leveraging the strengths of DenCeption and carefully selected features, the proposed solu-
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tion aims to expand the frontiers of disease prediction, providing a more detailed and effective

solution to this complex challenge.

In the rapidly advancing field of automation in disease diagnosis, AI, particularly ML and

DL, is playing an increasingly pivotal role. The nuanced utilisation of AI in analysing complex

datasets for medical imaging, such as OCT, X-ray, and Fundus photography, is transforming the

landscape of disease prediction and management. These technologies not only streamline the

diagnostic process but also bring forth the potential for personalised patient care, underpinning

the significance of integrating varied physiological and demographic features into the predictive

models. The advent of ML and DL in medical imaging has prompted a substantial advancement

in the quality of prediction. These advanced computational approaches have empowered clini-

cians with tools that offer an unparalleled depth of insight into the human anatomy. Particularly,

in ophthalmology, where the detailed visualisation offered by OCT and Fundus photography

is critical for early and accurate disease detection. X-ray imaging, too, has benefited from AI,

with ML algorithms now adept at discerning patterns and anomalies that may escape the human

eye. This type of scanning has undergone a renaissance with ML/DL interventions, introduc-

ing a new level of precision in detecting skeletal anomalies and thoracic complications. The

integration of demographic data and physiological features, such as age, gender, and systemic

health markers, into AI models has been instrumental in enhancing the accuracy of disease

prediction. The diversity of data captured in medical images, is key to the advancement of

ML/DL applications. These characteristics inform the models, fostering an environment where

the confluence of data types enriches the predictive accuracy. It is this synergy that underscores

the value of ML/DL in medical imaging, not only in refining predictions but also in tailoring

patient care. The promise held within these advancements is one of a future where AI-driven

diagnostics are not only adjuncts but integral components of patient care, presenting an insight

into the field of healthcare marked by precision, efficiency, and proactive intervention. The

combination of ML and DL with the analysis of medical images has led to significant changes

in diagnosis methods. The arrival of these advanced technologies marks the beginning of a pe-

riod characterised by the merging of high computing power and complex algorithms, resulting
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Figure 5.1: Power of ML and DL in Healthcare Data Handling (Rahmani et al., 2021).

in improved medical diagnosis processes and notable progress in how patients are cared for

(Figure 5.1).

Medical imaging is a critical component of modern healthcare, providing clinicians with

non-invasive means to visualise the inner workings of the body. As such, the quality and in-

terpretability of these images are paramount. The evolution of ML/DL applications within

this domain has been pivotal, offering unprecedented accuracy and efficiency in image analy-

sis. These tools have the ability to learn from vast amounts of data, identifying patterns and

anomalies with exceptional precision. Their application ranges broadly across various imaging

modalities, including Fundus photography, OCT, and X-ray imaging—each serving a unique

purpose in disease diagnosis and management. Fundus photography, which captures the back

of the eye, is essential for diagnosing conditions such as DR and glaucoma (Das, Biswas, and

Bandyopadhyay, 2022). DL models, trained on thousands of labelled images, can detect im-

plicit changes in the retina, providing critical information that may not be immediately evident

to the human eye (Mukherjee and Sengupta, 2023) (Figure 5.2).

This capability enhances early disease detection, which is crucial for conditions where early

intervention can prevent or delay progression (Bala, Sharma, and Goel, 2023). OCT imaging,

which offers a cross-sectional view of the eye, is indispensable for diagnosing retinal diseases

(Sun, Yang, Tang, Ng, and Cheung, 2021). DL algorithms, through layer segmentation and fea-

ture analysis, have dramatically improved the speed and accuracy of OCT interpretation (Ting
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Figure 5.2: DR Detection Using Non Referable and Referable Fundus Imgaes: DL Vs Special-
ists (Noriega et al., 2021).

Figure 5.3: OCT Scan Dimensional Representation: (A) Axial Scan, (B) Cross-sectional Scan,
and (C) OCT Volume (Khan, Sohail, Zahoora, and Qureshi, 2020).

et al., 2019). This rapid, automated analysis facilitates immediate clinical decision-making,

which is particularly beneficial in high-volume, resource-constrained settings (Li, Ran, Che-

ung, and Prince, 2023a) (Figure 5.3).

X-ray imaging, one of the oldest forms of medical imaging, has also seen significant en-

hancements with the application of ML/DL. These technologies have shown great promise in

detecting pathologies such as fractures, lung nodules, and signs of diseases like pneumonia
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Figure 5.4: Automated Approach for X-ray Analysis (Ait Nasser and Akhloufi, 2023).

and tuberculosis (Sharma and Guleria, 2023c). The algorithms can prioritise cases, detect im-

plicit or complex conditions, and even predict disease progression based on historical data (Ait

Nasser and Akhloufi, 2023) (Figure 5.4).

The impact of ML/DL-based frameworks on disease prediction cannot be overstated. These

frameworks analyse medical images with an efficiency and accuracy that surpass traditional

methods, often identifying early-stage diseases before they manifest clinically. By enabling

the early prediction of diseases, ML/DL technologies can dramatically influence patient out-

comes, reduce the burden on healthcare systems, and streamline the workflow for healthcare

professionals. Moreover, as these technologies continue to evolve, they constantly refine their

predictive capabilities, learning from new data to adapt and improve. The potential for ML/DL

to integrate with emerging imaging technologies and electronic health records presents an op-

portunity for a comprehensive approach to patient care, where predictive analytics can lead to

personalised treatment plans and proactive health management (Kumar, Kumar, Deb, Ungure-

san, and Muresan, 2023). The advent of ML and DL in medical image processing has marked

a significant milestone in the field of diagnostics. With a focus on imaging modalities like

Fundus, OCT, and X-ray, ML/DL frameworks have profoundly impacted disease prediction,

offering a preview into a future where AI-powered diagnostics enhance every aspect of patient

care. As researchers continue to leverage these technologies, they edge closer to a healthcare

paradigm characterised by early detection, precision medicine, and improved prognostic out-

comes.
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5.2 Research Contributions

In this context, this research tackles challenges and advancements in medical image analysis,

focusing on the complexity of high-dimensional medical imaging data. This work highlights

the need for sophisticated analytical approaches to interpret these complex datasets effectively.

The main contributions of this work are outlined as follows:

• Development of a Scalable and Versatile Prediction Framework: This work intro-

duces a novel framework capable of efficiently adapting to various medical imaging data.

The design focuses on scalability, ensuring that the framework can handle diverse and

large datasets effectively. It is versatile enough to be applicable across different medical

conditions, making it a significant contribution to the field of medical diagnostics.

• Creation of an Innovative Hybrid Predictive Model: A key contribution of this re-

search is the introduction of a hybrid predictive model that synergises the strengths of

multiple ML algorithms. This model is designed to optimise both the efficiency and ac-

curacy of the predictive process, making it a substantial advancement over traditional

single-algorithm models. Its hybrid nature allows for a more robust analysis of complex

medical data, leading to more precise and reliable predictions.

• Integration of Demographic and Physiological Features for Enhanced Performance:

Another major contribution is the incorporation of additional demographic and physio-

logical features into the predictive model. This integration is pivotal as it allows for a

more comprehensive analysis of patient data, taking into account a wider range of vari-

ables that can influence disease outcomes. By including these extra features, the model’s

ability to predict diseases is significantly enhanced, offering a more holistic approach to

medical diagnostics. This aspect of the research not only improves the accuracy of dis-

ease prediction but also paves the way for more personalised and effective patient care.

The structure of this chapter is organised in the following manner:

• Section 3 delves into a discussion about works pertinent to the study.
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• Section 4 describes the prediction framework being proposed and explains the algorithm

behind the hybrid predictive model recommended.

• Section 5 presents the rationale behind the selection of the HyBoost model.

• Section 6 covers the datasets used in this chapter.

• Section 7 outlines the experimental procedures undertaken within the scope of this re-

search.

• Section 8 illuminates features extraction and sample testing.

• Section 9 engages in a discussion on the results achieved and the process of benchmark-

ing these findings. The section also shows the impact of demographic and physiological

features.

• Finally, the chapter draws to a close with Section 10, which serves as the conclusion.

5.3 Related Works

In the discipline of healthcare, the integration of DL techniques has prompted a significant

transformation, offering not only improved diagnostic accuracy but also improved efficiency

and cost-effectiveness in the diagnosis and prediction of various medical conditions. Among

the domains that have witnessed substantial progress, DL’s impact on the field of ophthalmol-

ogy and pulmonology is undeniably significant. The application of DL in these disciplines has

revolutionised the way eye and lung related diseases are diagnosed, monitored, and treated.

Within this broader landscape, the focus of this related works section centers on the profound

implications of DL for DR, DMO, and lung related diseases. These diseases significantly af-

fect a substantial portion of individuals with health conditions, making their early and accurate

diagnosis crucial for effective treatment.

This section will delve into a selection of recent studies that exemplify the intersection of

DL and diseases-related applications. These studies collectively illuminate both the potentials
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and challenges that arise when AI meets the complexities of the aforementioned diseases. Con-

sequently, they offer insights into the advancements, contributions, and critical gaps that exist

within this rapidly evolving field hence their use as banchmarking state-of-the-art methods in

the validation of the proposed framework. The reviewed papers highlight the multidimentional

nature of DL applications in the field of DR, DMO and lung diseases, where, they address

the pivotal issues of data diversity, model interpretability, and the necessity for more extensive

datasets and external validation. Traversing through these studies, it becomes evident that DL’s

influence on these diseases diagnosis and prediction is both profound and promising. However,

the literature also underscores the challenges that demand further attention, as discussed in the

literature review chapter.

Ophthalmology has experienced a significant revolution, thanks to the adoption of advanced

technologies, especially DL and ML. A broad range of eye diseases, impacting vision and

the overall health of the eyes, has become a focal point in the current wave of AI-powered

healthcare advancements. Through DL and ML methods, notable progress is being achieved in

the early detection, continuous monitoring, and management of these eye conditions, leading

to enhanced patient outcomes and better quality of life.

Predicting the response of patients with DMO to anti-VEGF treatment using pre-treatment

OCT scans is a complex challenge addressed by authors in (Alryalat et al., 2022). They have

developed a novel DL-based model for prediction purpose. The study employed a segmen-

tation model based on the U-Net architecture, which was enhanced with squeeze excitation

layers, inception modules, and multi-scale attention mechanisms, offering a nuanced approach

to feature recalibration and spatial emphasis within the network. The model achieved high

accuracy in segmenting DMO-related features in OCT images, with an Acc of 95.9%, AUC

of 93.4%, Spe of 98.9%, Sen of 87.9%, precision of 80.7%, F1-score of 83.9%, and dice of

83.9%. For classifying patients as good or poor responders to anti-VEGF treatment, the study

compared different DL models and found that including the predicted mask in the input layer

improved classification Acc to 75%.

Real-world testing of the model showed 60% Acc in classifying response to treatment.
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The model’s accuracy was compared to ophthalmology trainees and specialists, with retina,

specialists achieving the highest Acc at 86.3%. The study’s main limitation is the relatively

small sample size, which might limit the model’s generalisability. A larger and more diverse

dataset would provide stronger evidence of the model’s effectiveness. While the model showed

promise in classifying response to treatment, the Acc (60%) in real-world testing is relatively

modest. Further refinement and validation are needed for practical clinical use. As men-

tioned above, DL models, especially complex ones like the proposed architecture can lack

transparency and interpretability. Understanding how the model arrived at its predictions is

essential for clinical acceptance. Something is worth mentioning that the model’s performance

in a specific population may not generalise well to other populations with different genetic and

environmental factors. Validation or a more diverse dataset is crucial.

The research proposed in (Li et al., 2022a) advances upon the traditional Inception-V4 by

proposing improvements that could potentially enhance pattern recognition capabilities, reflect-

ing a trend towards more complex, deeper architectures. Instead of a binary classification of

affected and non-affected eye scans, authors proposed a novel framework for DR and DMO

classification using 8739 Fundus images (Li et al., 2022a). Their model was also tested on sec-

ondary data for testing purposes. Both of the used datasets have been independently reviewed

and graded by ophthalmologists. Towards preventing overfitting problem, data augmentation

techniques such as cropping, flipping, and rotation were applied to increase the heterogeneity

of Fundus images. The authors employed an ensemble of five classification model instances

based on improved Inception-V4 architecture. Each model learned different discriminative

features, even when trained with the same data. The ensemble approach aimed to increase clas-

sification robustness. The model achieved high Sen (0.925), Spe (0.961) and AUC (0.992) for

both non-referable DMO and referable DMO classification tasks on the primary test dataset.

It performed slightly better than ophthalmologists in these tasks. As mentioned above, the

models’ generalisability was demonstrated by applying it to the Messidor-2 dataset, where it

outperformed previously reported state-of-the-art methods in terms of AUC for DR and DMO

detection. The impact of input image size on model performance was analysed, showing that
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larger image sizes generally led to better performance. Sub-sampling experiments indicated

that increasing the dataset size could further improve model accuracy (Li et al., 2022a). Com-

paring the ensemble model with five instances to a single model with larger input image size

revealed improved performance with the ensemble approach and reduced time requirements.

Despite the use of multiple datasets for training and testing/validation, which is a strength, the

dataset’s composition and quality could potentially introduce biases. The use of an ensemble

approach is a notable feature, improving the model’s robustness and generalisation. However, it

would be interesting to explore the model’s performance on other retinal conditions or expand

its capabilities to identify a broader range of diseases.

DR, a widespread complication of diabetes, poses a significant risk of progressive visual

deterioration and, in advanced stages, blindness. The importance of early detection and prompt

treatment in controlling DR’s advancement cannot be overstated. Historically, the diagnosis of

DR has relied on ophthalmologists conducting manual inspections of Fundus images, a method

that is not only time-intensive but also prone to variations between observers. However, the

emergence of ML and DL technologies has ushered in a ground-breaking era for the prediction

and analysis of DR through Fundus photographs. Automated algorithms are now capable of

processing large collections of Fundus images, detecting subtle pathological changes that might

be missed during manual reviews. These ML and DL approaches significantly improve diag-

nostic precision and offer a faster, more efficient approach to screening. The growing body of

research on this subject underscores the revolutionary impact these technological advances are

having on the screening and management of DR, as elaborated upon in the literature chapter.

A significant departure from Inception-based architectures is seen in (Wahab Sait, 2023),

which adopts YoLo V7 for real-time object detection. It utilises a quantum marine predator

algorithm for feature selection—merging evolutionary computation with quantum mechanics

concepts—and employs the Adam optimiser to fine-tune MobileNetV3. Such a multi-aspected

approach suggests a promising synergy between high-speed detection frameworks and sophis-

ticated optimisation techniques. Addressing the mounting concerns surrounding DR, author

introduced a agile deep-learning architecture tailored for DR severity grading, optimised for
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limited computational prowess. By integrating pre-processing techniques with the Yolo-V7

feature extraction mechanism and the Quantum Marine Predator Algorithm (QMPA) for fea-

ture selection, the MobileNet-V3 model demonstrated robustness, producing accuracies more

than 98% on two substantial datasets (Wahab Sait, 2023) . The model’s streamlined design,

optimised for swift computations, holds promise for its incorporation into mobile applications,

potentially revolutionising remote healthcare solutions (Gupta, Thakur, and Gupta, 2023).

In evaluating these studies, it’s evident that the nexus between computational techniques

and ophthalmological diagnostics is strengthening. The focus is not just on achieving high

accuracy but also on designing systems that are efficient and can be seamlessly integrated into

real-world applications, particularly in remote healthcare. Refining these models, especially to

excel in low-quality image scenarios, is the next frontier, promising to reshape the future of

ocular diagnostics.

In contrast, the adoption of of EfficientNet B5 by a research proposed in (Paul and Talukder,

2023) underscores an interest in scalable architectures that meticulously balance model com-

plexity and accuracy. EfficientNets have set new benchmarks in leveraging compound scal-

ing; thus, their inclusion in comparative studies serves as an excellent touchstone for com-

putational efficiency and performance. In this context, authors introduced a self-adaptive en-

semble method for grading DR severity by stacking several dual attention mechanisms (Paul

and Talukder, 2023). This dual attention model employs two distinct attention processes: one

concentrates on lesion-specific areas, while the other learns correlations between spatial de-

scriptors, effectively predicting DR severity levels. The study also introduces a self-adaptive

meta-learner for stacking multiple dual attention models efficiently. When tested on the APTOS

2019 dataset, this approach surpassed many existing models, achieving an Acc of 97.78%.

The paper suggested in (Shimpi and Shanmugam, 2023) delves into the amplification of

DR screening to avert blindness, underscoring the vitality of precocious detection via Fundus

imaging. Notwithstanding the progress in CNN methodologies, overfitting persists as a prob-

lem. In this context, the study proposes an innovative multiclass AdaBoost strategy integrated

with CNN-based categorisation to surmount overfitting and augment classification precision.
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The exploration utilised the VGG-16 pretrained model for discerning features and employed

the factor analysis technique for pre-processing DR snapshots. Concerning experimental out-

comes and their analysis, the importance of accuracy, predominantly in skewed datasets, was

accentuated and the accuracy calculation formula was interpreted. The research employed a

conventional AdaBoost procedure encompassing 400 DTs, registering 87.45% training preci-

sion and 77.08% testing precision. In the AdaBoost model, the VGG 16 CNN was employed

as a lone baseline estimator, with the peak testing accuracy attained using a 9-layer network,

achieved at 91.05%. Furthermore, the AdaBoost CNN Classifier, leveraging a 9-layer VGG 16

CNN, showed an enhancement in Acc rates from 91.76% to 95.56%. Intriguingly, an increase

in the estimator count inversely impacted accuracy. In the field of TL, the AdaBoost-VGG 16-

CNN showcased its indispensability, elucidating that it expedited computation durations and

heightened accuracy. When juxtaposed, the AdaBoost VGG-16 CNN surpassed both its single

CNN estimator counterpart and the traditional AdaBoost equipped with a DT. Conclusively, the

fusion of ensemble learning, specifically AdaBoost methodologies with CNN, manifests as an

advancement in prediction and categorisation tasks. The integration of TL further amplifies ac-

curacy while limiting computational demands. Such improvements are paramount for effective

DR screening, influencing diabetes treatment and the prognosis for patients.

Reflecting on the literature, the increasing reliance on advanced ML and DL methods in

detecting and classifying DR using retinal images. From using ensemble classifiers and atten-

tion mechanisms to incorporating hybrid optimisation algorithms, the literature demonstrates

rapid advancements in automated DR diagnosis. Notably, the ResNet-based approaches appear

to outperform other methods, suggesting its prominence in the field. However, while many

of these methods have shown high accuracy rates, practical implementation in real-world sce-

narios, scalability, and cost-effectiveness are aspects that need further exploration. It’s also

essential to evaluate the model’s adaptability to different datasets and real-world conditions.

The literature opens doors to more streamlined and efficient prediction of DR, which can sig-

nificantly impact patient care and management. However, continuous validation, especially

with larger and more diverse datasets, is imperative to ensure the reliability and generalisability
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of these models in clinical settings.

ML and DL have rapidly become transformative in the analysis of X-ray imagery. In recent

years, a plethora of research has been devoted to harnessing these technologies for the diag-

nosis of various medical conditions, with their use in detecting pneumonia from X-ray images

receiving notable focus. Traditional diagnostic practices, which rely heavily on the expertise

of radiologists, are often prone to human error and subjective interpretations. In stark contrast,

ML and DL algorithms present a more uniform and efficient method, capable of uncovering

intricate patterns that might elude human observation. The expanding research in this area

highlights the considerable promise of ML and DL techniques in improving both the precision

and the expedience of pneumonia diagnostics.

Given the alarming mortality rates associated with pneumonia, especially in children, timely

detection becomes paramount. X-rays, while instrumental, come with their set of challenges

like potential misdiagnoses. A VGG-19 DL model was employed to tackle these issues, demon-

strating promising results (Sharma and Guleria, 2023b). In fact, using a dataset of 5856 CXR,

the model achieved an Acc of 93%, precision and recall of 0.931, F1-score of 0.931, and

an AUC of 0.973. When benchmarked against other models, the proposed model excelled.

Alongside pneumonia, X-rays can identify other conditions like emphysema, lung cancer, and

tuberculosis. However, many DL models in this domain face computational and interpretability

challenges. To address these concerns, a study in (Vetrithangam et al., 2023) proposed a mod-

ified ResNet152v2 DL model, emphasising high accuracy and efficient computation. Their

refined model is designed for efficient pneumonia prediction from CXR, aiming for high ac-

curacy, reduced complexity, and faster computation. When benchmarked, the model surpassed

other methods, achieving 99.77% Acc, 99.86% Sen and precision, and 95.4% Spe.

5.3.1 Identified Challenges

DL’s important role in disease diagnosis and prediction highlights both its potential and the

challenges that accompany its integration into healthcare. While the application of advanced

ML and DL techniques in analysing medical images has shown to enhance diagnostic accu-
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racy and offer deeper insights into disease mechanisms, critical gaps in the current research

landscape necessitate further examination. These technologies, despite their advancements,

face issues related to model bias, overfitting, reproducibility, scalability, interpretability, and

clinical relevance, alongside concerns about their sustainability and computational demands.

Addressing these challenges is crucial for ensuring that the benefits of ML and DL are acces-

sible across diverse medical settings and can contribute effectively to personalised treatment

strategies. Identified challenges include:

• Model Bias and Diversity: High accuracy rates may conceal biases, particularly with

non-diverse datasets, potentially skewing real-world performance.

• Overfitting: Models exceptionally tuned to specific datasets may not generalise well

across the diverse spectrum of patient data.

• Reproducibility and Scalability: Many models are tested under controlled conditions,

raising concerns about their performance in varied real-world settings.

• Interpretability and Clinical Relevance: The ’black-box’ nature of some models may

hinder their adoption by medical professionals who require understandable diagnostic

pathways.

• Sustainability and Computational Demands: The computational intensity of some ad-

vanced DL models may not be feasible for every medical facility, especially in resource-

constrained areas.

Exploring these gaps not only highlights areas for improvement but also underscores the ne-

cessity of developing robust, interpretable, and scalable DL and ML models that can operate

effectively across the full spectrum of healthcare environments.
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Figure 5.5: Proposed Prediction Framework.

5.4 Proposed Prediction Framework

In this section, a detailed explanation of the proposed prediction framework will be presented.

The section will also convey the applied primary and secondary datasets as well as the vari-

ous experiments performed to evaluate and validate the proposed framework. The importance

of annotations, particularly labels, in providing additional information about features within a

medical image is crucial in prediction tasks. This makes it easier for DL- and ML-based algo-

rithms to understand and interpret medical images. The used datasets already fulfill this stage,

thus, it has not been incorporated as a major block in the proposed prediction framework, as

shown in Figure 5.5.

5.4.1 Block 1: Image Pre-Processing

Image pre-processing is an instrumental aspect in the pipeline of training DL models, particu-

larly when working with medical datasets such as those involving DR, DMO, and pneumonia

distribution. Multiple stages compose this block as illustrated in Figure 5.6.

Adjusting image dimensions through image resizing is a crucial step in pre-processing that en-
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Figure 5.6: Image Pre-processing Steps.

sures consistent input to models and algorithms. Additionally, applying noise reduction tech-

niques is important to remove noise and artifacts from the images. The process also involves

enhancing and normalising the contrast of the image to improve the visibility of details and

adjusting the brightness to make the medical image more appealing and suitable for analysis.

Cropping is performed to remove non-essential parts of the medical image, thereby focusing

on the RoI. Normalisation is another essential step where pixel values are scaled to a specific

range to ensure consistency and compatibility with ML and DL algorithms. Lastly, resampling

is used to change the image resolution by either upscaling or downscaling, which is necessary

to adapt the image to different display and processing requirements.

5.4.2 Block 2: Features Extraction

The second major block is presented by features extraction (Loukil, Mirza, Sayers, and Awan,

2023). This block consists of extracting HF and DHF features from used medical images-based

datasets. Various steps have been incorporated to finalise the list of features prepared for the

prediction block. These steps are summarised as follows:
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• Extracting HF features to include: texture contrast, texture energy, texture homogene-

ity, entropy, coarness, directionality, mean colour value, mean standard deviation value,

shape area, and shape perimeter.

• Extract DHF features using DenCeption (Loukil and Salah, 2020).

• Automatic assignment of weights based on features importance in each used dataset.

• Features reduction and selection.

5.4.3 Block 3: Additional Features Incorporation

The third block consists of the incorporation of additional demographic and physiological fea-

tures depending on the applied dataset. Below is a list of considered features:

• Age

• Sex

• SBP

• DBP

• Diabetic type and CRT for ophthalmology related datasets.

The inclusion of additional features in prediction tasks holds significant importance in medical

and clinical data analysis. These auxiliary features provide valuable context and patient specific

information that can greatly enhance the accuracy and clinical relevance of the predictive mod-

els. For instance, age is a fundamental factor influencing disease risk and progression, as health

conditions often vary with age. Sex can also be a key determinant of disease prevalence and

presentation. Additionally, blood pressure metrics are essential for predicting cardiovascular

and hypertension-related outcomes. Disease type not only guides the choice of predictive mod-

els but also adds domain-specific knowledge to the analysis. Moreover, CRT measurements are
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vital in ophthalmological related predictions. By incorporating these features, predictive mod-

els can be tailored to individual patients, leading to more precise risk assessments and treatment

recommendations, ultimately improving patient care and healthcare decision-making.

5.4.4 Block 4: Prediction

The fourth major block covers the prediction/classification task. This block represents the core

of the decision-making process, utilising a comprehensive set of features to provide precise

and holistic insights. By combining HF, DHF, and supplementary patients’ information, the

framework achieves a multidimensional perspective on the patient’s health and the associated

risks. This integrated approach enhances the predictive power of the proposed framework,

offering a more nuanced understanding of the underlying medical conditions and their poten-

tial outcomes. The HF features capture diverse visual patterns, while DHF features abstract

complex information, and additional features contribute vital contextual details, allowing the

prediction model to make informed decisions. With all these components working in concert,

the prediction block becomes a powerful tool for risk assessment, disease diagnosis, and treat-

ment recommendations offering a holistic and patient-centred approach to healthcare decision

support, which is not part of this work’s scope.

In the evolving landscape of automated prediction models, hybrid models that combine the

strengths of multiple algorithms often emerge as powerful solutions to challenging prediction

problems. In this work, one such promising combination is proposed by integrating XGBoost

and AdaBoost, two renowned ensemble methods with distinctive advantages. XGBoost, an

exemplar of gradient boosting techniques, is known for its ability to handle missing data, cap-

ture complex patterns, and deliver highly accurate predictions, especially with structured data.

On the other hand, AdaBoost, standing for AdaBoost, operates by iteratively focusing on mis-

classified instances, thus ensuring that the model gives due attention to more challenging data

points. By synthesising the capabilities of XGBoost and AdaBoost, the hybrid model aims

to integrate XGBoost’s advantages in delineating complex data relationships with AdaBoost’s

adaptive learning mechanism. Such a fusion not only augments the robustness of predictions
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Figure 5.7: HyBoost Blocks: Training, Testing and Re-training Phases.

but also offers an innovative approach to capitalise on the complementary strengths of both

algorithms. This combination is envisioned to outperform individual models, providing a so-

phisticated tool for the proposed predictive framework. Figures 5.7 and 5.8 shows the major

steps constructing HyBoost. These steps are summarised in Table 5.1. The algorithm of the

proposed hybrid model is illustrated in Algorithm 4.

During data preparation, the data is split into training and validation sets. This step is

followed by feature engineering, normalisation, and the handling of any missing values. After

this, AdaBoost is initialised by assigning equal weights to all instances in the training set. In

every boosting iteration of AdaBoost, an XGBoost model is trained on the weighted dataset.

This model then predicts the outcomes for the validation set. The weighted error rate of the

XGBoost model is calculated, which in turn determines the influence that particular model

has in the final prediction, based on its error rate. Weights are then updated — increased for

instances that were incorrectly predicted and decreased for those correctly predicted. After
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Figure 5.8: Optimal Parameters Selection Block of HyBoost Model.

adjusting, the weights are normalised. When making the final prediction for a new instance,

each individual XGBoost model gives its prediction for the target. The conclusive prediction is

a weighted vote, with weights being determined by the influence of each model. The outcomes

of the prediction model is incorporated in the fifth block, namely feature rationale using Shapley

Additive explanation (SHAP).

5.4.5 Block 5: Shapley Additive Explanation

The inclusion of SHAP within the proposed framework holds significant importance in post-

prediction analysis. SHAP is an advanced interpretability technique that provides insights into

the block box nature of DL/ML models, shedding light on the rationale behind a model’s pre-

dictions. After the prediction block, it is crucial to understand why a specific decision was

made, especially in the context of healthcare application. By employing SHAP values, the
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framework explains the contribution of each feature, be it HF image details, DHF abstractions,

or additional patient-specific information to the final prediction. This level of transparency is

paramount for trust and accountability in the medical domain, where even slight misunderstand-

ing or misinterpretation can have profound consequences. SHAP enables to grasp the driving

factors behind each prediction, facilitating the assessment of model behaviour, the identifica-

tion of potential biases, and the fine-tuning of the model for enhanced accuracy and fairness.

This block will ensure that the decision-making process not only accurate but also comprehen-

sible and justifiable, thereby, increasing its utility and trust worthiness in real world medical

applications.

Table 5.1: HyBoost Major Blocks Description

Phase Step Description

HyBoost Training
XGBoost Training • Initialisation of XGBoost with Hxgb and

train on Dtrain to get the model Mxgb

• Prediction on Dtrain using Mxgb to get

yxgb

• Computation of residuals

AdaBoost Training Initialisation of AdaBoost with Hab and

train on Dtrain with the residuals to get the

model Mab.

Prediction For each instance x j in Dtest :

• Prediction using Mxgb to get ŷxgb j

• Prediction using Mab to get ŷab j

• Computation of final prediction Yf inal

using the weighted parameter α ∈ [0,1]

Tuning and Optimisation • Using 10-fold cross-validation to find

optimal Hxgb, Hab, and α .

Continued on next page
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Table 5.1: HyBoost Major Blocks Description (Continued)

Phase Step Description

Optimal Parameters Se-

lection

• Selection of H∗
xgb, H∗

ab, and α∗ based

on best 10-fold cross-validation perfor-

mance.

Retraining • Retraining Mxgb and Mab on Dtrain using

H∗
xgb, H∗

ab, and α∗.

5.4.6 Block 6: Adaptive Performance Evaluation

The final block consists of evaluating the performance of the proposed framework using an

adaptive evaluation matrix (PMM) proposed in (Loukil, Mirza, and Sayers, 2023). PMM is a

novel adaptive evaluation mechanism designed to enhance the performance evaluation of ML

and DL models. This mechanism consists of three primary components: problem specification,

task identification (including prediction and classification), and data characteristics (incorpo-

rating features, class distribution, and data balance specifications) as shown in Figure 5.9.

Figure 5.9: Proposed Performance Evaluation Framework

The approach relies on user input regarding the specifications of each component, making

the method adaptable to various input scenarios. The mechanism then processes this input to

form a three-dimensional PMM, where each dimension reflects the importance of the associated

metrics. This importance is assesed using a correlation coefficient formula that assigns weights

to each performance metric. The 3D-PMM is constructed using an algorithm that processes
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each dimension in parallel. The primary purpose of the 3D-PMM tool is to identify evaluation

parameters in a reliable and adaptive manner, resulting in an optimal set of metrics (PMM

optimal vector). The suggested approach consists of three main components x1, x2, and x3,

respectively as follows:

• Problem specification,

• Task identification to include prediction, classification, etc...

• Data characteristics to include features, classes distribution, and balanced/imbalanced

specification.

The consideration of these three components has the potential to efficiently enhance per-

formance evaluation of ML/DL based models. The proposed evaluation mechanism consists of

getting input from the user covering the specification of each component; this would vary de-

pending on the input scenario which makes the proposed mechanism adaptive. As a follow-up

step, provided features, related class distribution, as well as data balancing information are used

as a base knowledge to the proposed 3D PMM matrix (3D-PMM). Each component has a spe-

cific contribution to the proposed 3D-PMM matrix final output, as shown in Figure 5.10. Each

matrix dimension is characterised by nxn size, where n defines the total number of performance

metrics. In fact, each dimension reflects the importance of involved metrics by assigning a cor-

relation coefficient reflecting their weights, hence their importance, defined as below (Equation

( 5.1)):

corrcoe f (y,z) =
Cov(y,z)
σy ∗σz

(5.1)

=
∑[(y−mean(Y ))∗ (z−mean(Z))]√
[∑(y−mean(Y ))2 ∗∑(z−mean(Z))2]

where y, z are the weights of the performance metric, Y, Z are the set of performance metrics

for a particular dimension. The weights are defined as WCii, where i ∈ 1..n of each dimension

noted by, (x1,x1), (x1,x3), and (x2,x3), respectively. The 3D-PMM is implemented as shown
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Figure 5.10: Three-Dimensional Representation of PMM Matrix

Figure 5.11: Conversion of Two-Dimensional PMM Matrix into Optimal Set of Performance
Measurement Metrics Vector

in Algorithm 3, comprising three main parallel processes of each separate dimension.

3D-PMM tool intend to efficiently and adaptively identifying reliable and comprehensive evalu-

ation parameters denoted by PMMoptimal vector, as shown in Figure 5.11. The resulted optimal

set of metrics is then used as part of the performance measurement of the given ML/DL based

model.

5.5 Rationale Behind the Selection of the HyBoost Model

The selection and design of the HyBoost model were guided by a strategic and evidence-based

approach, aimed at addressing specific challenges in medical image analysis and disease pre-

diction. The decision to integrate XGBoost and AdaBoost into the HyBoost model was not

arbitrary but based on a detailed assessment of their complementary strengths and their ability
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Algorithm 3: Optimal Performance Evaluation Metrics
Input: C(x1,x2),C(x1,x3),C(x2,x3): set of evaluation metrics for each dimension
Output: PMMoptimal

1 W ⇐ weight assignment function
2 n ⇐ total number of metrics
3 c ⇐ performance metric
4 x1 ⇐ problem specification
5 x2 ⇐ task identification
6 x3 ⇐ data characteristics
7 C(x1,x2) ⇐ [c121,c122, ...,c12n] : set of performance metrics for dimension (x1,x2)

8 C(x1,x3) ⇐ [c131,c132, ...,c13n] : set of performance metrics for dimension (x1,x3)

9 C(x2,x3) ⇐ [c231,c232, ...,c23n] : set of performance metrics for dimension (x2,x3)

10 D12,D13,D23 ⇐ 2D matrix of (x1,x2), (x1,x3), and (x2,x3) dimensions, respectively
11 Step 1:
12 for i ∈ {1, . . . ,n} do
13 WC12[i]⇐W (C12[i])

14 Step 2:
15 for i ∈ {1, . . . ,n} do
16 for j ∈ {1, . . . ,n} do
17 if i == j then
18 WC12ii ⇐ corrcoe f (C12i,C12i)
19 D12[i, i]⇐WC12ii

20 else
21 WC12i j ⇐ corrcoe f (C12i,C12 j)

22 D12[i, j]⇐WC12i j

23 Repeat Step 1 and 2 for D13 and D23
24 for i ∈ {1, . . . ,n} do
25 for j ∈ {1, . . . ,n} do
26 if i == j then
27 PMM[i, j]⇐ max(D12[i, i],D13[i, i],D23[i, i])

28 else
29 PMM[i, j]⇐ max(D12[i, j],D13[i, j],D23[i, j])

30 for i ∈ {1, . . . ,n} do
31 for j ∈ {1, . . . ,n} do
32 if PMM[i, j]> 0 then
33 PMMoptimal[i]⇐ PMM[i, j]

34 else
35 Continue

36 return PMMoptimal
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to meet the complex requirements of medical diagnostics.

5.5.1 Addressing Identified Challenges in Disease Prediction

The development of the HyBoost model was motivated by the need to overcome the limitations

of traditional predictive models in handling complex medical imaging data. In particular, issues

such as model overfitting, bias, interpretability, and computational demands were identified as

critical challenges in the application of DL and ML in healthcare. The integration of XGBoost

and AdaBoost was carefully considered to address these challenges effectively.

5.5.2 Justification for XGBoost

XGBoost was chosen as a core component of the HyBoost model due to its proven ability to

handle large, structured datasets with high dimensionality. XGBoost excels in capturing com-

plex patterns and relationships within the data, which is essential for accurate disease predic-

tion. Its regularisation techniques help to prevent overfitting, making it well-suited for medical

datasets where the risk of overfitting is high due to the complexity and variability of the data.

Moreover, XGBoost’s efficiency in handling missing data and its scalability across different

hardware environments make it a robust choice for medical applications.

5.5.3 Justification for AdaBoost

AdaBoost was selected to complement XGBoost in the HyBoost model due to its adaptive

learning mechanism. AdaBoost focuses on improving the model’s accuracy by iteratively re-

weighting misclassified instances, thereby enhancing the model’s ability to learn from difficult

or minority cases. This is particularly useful in medical imaging, where certain disease pat-

terns may be less prevalent or harder to detect. The combination of AdaBoost with XGBoost

enhances the model’s overall robustness, ensuring that it can accurately predict outcomes even

in challenging scenarios.
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5.5.4 Integration of XGBoost and AdaBoost in HyBoost

The integration of XGBoost and AdaBoost into a hybrid model, HyBoost, was driven by the

goal of combining their strengths to create a more powerful predictive tool. XGBoost’s ability

to model complex relationships and AdaBoost’s focus on difficult cases result in a model that

not only provides high accuracy but also generalises well across different datasets. This hybrid

approach is particularly advantageous in medical diagnostics, where diverse data sources and

patient characteristics can complicate predictions.

5.5.5 Practical Benefits of HyBoost

The HyBoost model offers several practical benefits that make it particularly useful for med-

ical image analysis. By leveraging the complementary strengths of XGBoost and AdaBoost,

HyBoost provides a more nuanced understanding of medical data, leading to more accurate

and reliable disease predictions. This is further enhanced by the model’s ability to incorpo-

rate additional patient-specific features, such as demographic and physiological data, which

enrich the predictive process. The inclusion of SHAP values in the framework ensures that the

model’s decisions are transparent and interpretable, addressing a critical need for explainability

in clinical settings.

5.5.6 Alignment with Research Goals

The selection of the HyBoost model aligns with the overarching goals of this research, which

aims to advance the field of medical diagnostics through the development of robust, scalable,

and interpretable predictive models. HyBoost’s hybrid architecture is designed to meet the

demands of modern healthcare environments, where accuracy, efficiency, and adaptability are

paramount. The model’s ability to handle diverse data and provide clear explanations for its

predictions positions it as a valuable tool for clinicians, enhancing their ability to make in-

formed decisions based on complex medical data.
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5.6 Datasets

The datasets used in this chapter encompass a wide range of medical imagery and associated

patient information, offering a rich foundation for various analyses, particularly in the domains

of ophthalmology and pulmonology.

The selection of different datasets, including the Fundus dataset as the primary dataset,

and the OCT and X-ray datasets as secondary datasets, was a deliberate choice aimed at thor-

oughly evaluating the adaptability and generalisability of the proposed models, particularly the

HyBoost framework. Below is a detailed justification addressing the differences between the

primary and secondary datasets and the rationale behind using these diverse datasets.

5.6.1 Fundus Dataset as the Primary Dataset

DR is a leading cause of blindness, and early detection is crucial. The Fundus dataset provides a

rich set of labelled images, making it ideal for developing robust predictive models. The Fundus

dataset was selected as the primary dataset because of its critical relevance to ophthalmology,

particularly in the diagnosis of DR, a prevalent and visually debilitating condition. This dataset

provides a balanced and comprehensive set of images that are ideal for training DL models,

making it the cornerstone of the research in Chapter 5. The focus on Fundus images allowed

for the development and fine-tuning of the HyBoost model in a specific, high-impact area of

medical diagnostics. The dataset includes both normal and DR-affected images, along with

demographic and physiological data, which provide a complex yet well-rounded foundation

for training the model. As the primary dataset, Fundus images allow the research to focus

on a specific medical condition, ensuring the model is trained on a dataset with clear clinical

relevance and well-defined outcomes.
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5.6.2 OCT and X-ray Datasets as Secondary Datasets: Selection Justifi-

cation

The OCT and X-ray datasets were introduced as secondary datasets to evaluate the HyBoost

model’s performance across different medical imaging modalities and disease contexts. By

testing the model on these additional datasets, the research aims to demonstrate the model’s

adaptability and ensure its robustness across diverse scenarios.

OCT Dataset

• Complementary to Fundus Dataset: OCT scans provide cross-sectional images of the

retina, which complement the 2D Fundus images by offering additional depth informa-

tion crucial for diagnosing retinal conditions such as DMO. This allows the model to

learn and adapt to a different type of imaging data while staying within the domain of

ophthalmology.

• Testing Versatility: By applying the model to OCT data, the research tests the model’s

ability to handle different image characteristics, such as variations in texture and structure

that are distinct from those in Fundus images.

X-ray Dataset

• Diverse Medical Field: The X-ray dataset shifts the focus from ophthalmology to pul-

monology, thereby expanding the scope of the model’s application. This dataset includes

chest X-rays used to diagnose conditions like pneumonia, which introduces a different

type of imaging modality with unique challenges, such as detecting subtle variations in

lung tissue.

• Ensuring Generalisation: Using the X-ray dataset helps in assessing the generalisation

capabilities of the HyBoost model across entirely different types of medical imaging. The

ability to accurately process and analyse X-ray images indicates the model’s robustness

and adaptability to various medical diagnostic tasks.
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5.6.3 Rationale for Using Different Datasets

• Addressing the Need for Adaptability: The primary reason for using different datasets

is to ensure that the models developed are not only effective within a single domain but

are adaptable to various medical imaging contexts. This approach is crucial for creating

versatile models that can be applied across different clinical scenarios, enhancing their

practical utility in real-world settings.

• Ensuring Comprehensive Model Evaluation: By employing multiple datasets, the re-

search provides a comprehensive evaluation of the HyBoost model. The primary dataset

(Fundus) allows for the focused development of the model, while the secondary datasets

(OCT and X-ray) offer additional layers of validation, ensuring that the model can main-

tain high performance across different types of medical images.

• Mitigating Overfitting and Bias: Utilising datasets from different medical fields re-

duces the risk of overfitting and helps to identify and mitigate any biases that might arise

from training on a single type of data. This approach enhances the model’s reliability and

robustness, making it more likely to perform well in diverse clinical environments.

5.6.4 Visualisation of Additional Parameters Across Datasets: Focus on

Fundus and OCT Datasets

Understanding the distribution of patient demographics and clinical parameters is crucial for

interpreting the results of medical image analysis and the performance of predictive models.

The following section present visual analyses of key parameters such as age distribution and

CRT across different diabetic types, specifically in the context of Fundus images affected by

DR and OCT scans affected by DMO. These visualisations provide insights into how these

variables vary across different subtypes of diabetes and how they correlate with specific retinal

conditions.

Figures 5.12.a and 5.12.b illustrate the age distribution of patients, categorised by diabetic
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Figure 5.12: Age Distribution by Diabetic Type for - (a): Fundus Images Affected by DR and
(b): OCT Scans Affected by DMO.

type, for Fundus images affected by DR and OCT scans affected by DMO, respectively. This

analysis highlights the age-wise distribution of patients with ocular complications due to di-

abetes, showcasing significant trends across various diabetic subtypes. The data reveals that

T2DM patients consistently form the largest group across different age ranges in both datasets,

emphasising the widespread impact of T2DM on ocular health. Notably, while the Fundus

dataset reflects a relatively stable number of DR-affected individuals aged 30 to 70, the OCT

dataset shows an increase in DMO-affected individuals from 40 to 80 years. These trends un-

derscore the critical role of T2DM in the progression of retinal diseases like DR and DMO

across different age groups.

Further, Figures 5.13.a and 5.13.b depict the distribution of CRT values across different

diabetic types for patients with DR, as observed in Fundus images, and for patients with DMO,

as observed in OCT scans. The visualisations reveal a cohesive pattern in CRT values, predom-

inantly around the 600 mark, across both datasets. Interestingly, the MODY diabetic subtype

consistently exhibits lower median CRT values in both retinal conditions, suggesting a unique

manifestation of retinal complications specific to this diabetic group. This detailed comparison

not only highlights the similarities in CRT distribution across different diabetic types but also

underscores the distinct retinal characteristics associated with specific subtypes, thereby pro-

viding a deeper understanding of the pathophysiological differences in diabetic retinal diseases.
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Algorithm 4: Algorithm for HyBoost Hybrid Predictive Model

Data: Dtrain = {(xi,yi)}N
i=1, Dtest =

{
x j
}M

j=1, Mxgb (XGBoost model), Mab (AdaBoost

model), Hxgb, Hab, K, T , α ∈ [0,1]

Result: Y ∗
f inal (final best prediction)

1 Initialisation:

2 ŷxgb ⇐ Mxgb’s residuals (predictions)

3 ŷab ⇐ Mab’s predictions

4 Yf inal ⇐ final prediction prior to optimisation

5 Step 1: HyBoost Training Phase

6 Step 1.1: Train XGBoost

7 for k ∈ {1, . . . ,K} do

8 Obi ⇐ ∑
N
i=1 l

(
yi, ŷ

(k−1)
i + fk(xi)+Ω( fk)

)
9 gi ⇐ ∂

∂ ŷ(k−1)
i

l
(

yi, ŷ
(k−1)
i

)
10 hi ⇐ ∂ 2

∂ (ŷ(k−1)
i )2

l
(

yi, ŷ
(k−1)
i

)
11 ŷ(k)i ⇐ ŷ(k−1)

i +η fk(xi)

12 Mxgb(xi)⇐ XGBoost(Dtrain,Hxgb)

13 residuals ⇐ yi − ŷxgb

14 Step 1.2: Train AdaBoost

15 for t ∈ {1, . . . ,T} do

16 αt ⇐ 1
2 ln

(
1−εt

εt

)
17 wi,t+1 ⇐ wi,t ∗ exp(−αtyiht(xi))

18 Mab(xi)⇐ AdaBoost(Dtrain, residuals,Hab)

19 Step 2: HyBoost Prediction Phase

20 for j ∈ {1, . . . ,N} do

21 ŷ f inal j ⇐ α ∗ ŷxgb j +(1−α)∗ ŷab j

22 Step 3: Tuning and Optimisation

23 Optimise (Hxgb,Hab,α) with cross-validation

24 Step 4: Optimal Parameters Selection

25 H∗
xgb,H

∗
ab,α

∗ ⇐ argmaxHxgb,Hab,α CrossValidationScore(Dtrain,Hxgb,Hab,α)

26 Step 5: Re-training Phase

27 for j ∈ {1, . . . ,M} do

28 Y ∗
f inal j

⇐ α∗ ∗M∗
xgb(x j)+(1−α)∗M∗

ab(x j)
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Figure 5.13: CRT Distribution by Diabetic Type for – (a): Fundus Images Affected by DR and
(b): OCT Scans Affected by DMO.

5.7 Experimentation Scenarios

In the proposed disease prediction framework, a series of comprehensive experiments has been

designed to ensure robustness and generalisability of the model. The aforementioned datasets,

derived from Fundus and OCT imaging, will be at the forefront of the training phase. In con-

trast, the X-ray dataset, a modality distinct from the training datasets, will act as the validation

set. This strategy ensures that the prediction model does not just fit the nuances of a partic-

ular imaging technique but extends its diagnostic proficiency across diverse medical imaging

platforms, thus testing its generalisability. The first phase of experiments revolves around eval-

uating a variety of classifiers, namely RF, DT, XGBoost, and AdaBoost, as well as the proposed

HyBoost model. To rigorously assess their performance, two distinct scenarios will be consid-

ered, as follows:

• Baseline Scenario: The classifiers will be trained on the raw imaging data, without any

supplementation of demographic and physiological features. This provides an absolute

performance metric, reflective of the fundamental capabilities of the classifiers when

applied directly on imaging datasets.

• Enhanced Scenario: In this setup, the classifiers will be enhanced with additional de-

mographic and physiological features, aiming to exploit the potential complementarities

that these combined feature sets might offer.
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Each of these scenarios will further devide into two experimental paths: (1) where the classi-

fiers are deployed with their default hyperparameters and (2) where they undergo meticulous

hyperparameter tuning. Such a methodical approach ensures that all possibilities have coevered

to obtain the best possible model.

For benchmarking phase, SHAP values will be employed across top three well performed

methods for post-classification evaluation. SHAP will delve deep into the results, interpreting

and explaining the decision-making processes of the best method used in the benchmarking

phase versus the proposed framework. This not only provides an interpretability layer over

the predictive framework but also offers invaluable insights that might be pivotal for clinical

validations.

Towards evaluating the results of each of the experiments, the robust PMM matrix will

be applied. By carefully analysing each dataset’s results, the aim to discern the most fitting

performance metrics for each scenario, providing a detailed and refined understanding of the

proposed models’ strengths and areas of improvement. Taking into account disease predic-

tion, classification, and the previously mentioned datasets for 3D-PMM, the resulting optimal

vector comprises metrics to include: ROC curve, PR curve, AUC score, Precision, Recall, F1-

score, accuracy, specificity, and LCE. These metrics will be utilised to evaluate all upcoming

experiments.

Fine-tuning hyperparameters is a critical step in the development of the proposed prediction

model. Hyperparameters, unlike model parameters that are learned during training, are pre-set

configurations that can significantly influence the performance of a model. Properly tuned hy-

perparameters can make the difference between an average model and a highly accurate one.

Without the right hyperparameters, even the most sophisticated algorithms might fail to provide

satisfactory results or might take an inefficiently long time to train. On the other hand, with

optimal hyperparameters, the same algorithms can achieve impressive performance in much

less time. Therefore, comparing model performances with and without hyperparameter tuning

is of paramount importance. Such a comparison provides insights into the potential enhance-

ments brought about by tuning and highlights the necessity of investing time and resources into
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Figure 5.14: Experimentation Process.

this often-overlooked step. It demonstrates the direct impact of hyperparameter choices on a

model’s accuracy, efficiency, and overall effectiveness, emphasising the indispensable role they

play in model optimisation. Table 5.2 provides a brief overview of the key hyperparameters

for each tested model.

In the upcoming experiments, the aim is to demonstrate a compelling proposition: even

when individual models like RF, DT, AdaBoost, and XGBoost are fine-tuned to their optimal

performance, they might still fall short in comparison to the proposed hybrid model. By ac-

curately adjusting hyperparameters and optimising each model, the purpose is to ensure an

equitable basis field for comparison. The hypothesis suggests that the integrated fusion of

AdaBoost and XGBoost in the proposed hybrid approach will consistently outperform these

individual models, even at their best. This exploration is pivotal, shedding light on the potential

benefits of integrating the strengths of multiple models into a cohesive hybrid system. Figure

5.14 illustrates the experiments done on each dataset.
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Table 5.2: Hyperparameters Overview

Model Hyperparameters Description

RF n estimators, max depth, min samples

split, min samples leaf

Number of trees in the forest, Maxi-

mum depth of tree, Minimum samples

required to split, Minimum samples at

leaf node

DT criterion, splitter, max depth, min sam-

ples split, min samples leaf

Function to measure the quality of a

split, Strategy used, Maximum depth

of tree, Minimum samples required to

split, Minimum samples at leaf node

XGBoost learning rate, n estimators, max depth,

min child weight, gamma, subsample,

colsample bytree

Step size shrinkage, Number of boost-

ing rounds, Maximum depth, Minimum

sum of instance weight, Minimum loss

reduction, Fraction of samples, Fraction

of features

AdaBoost n estimators, learning rate, algorithm Number of weak learners, Learning

rate, Algorithm used

HyBoost learning rate, n estimators, max depth,

min child weight, gamma, subsample,

colsample bytree, n estimators, learning

rate, algorithm

Step size shrinkage, Number of boost-

ing rounds, Maximum depth, Minimum

sum of instance weight, Minimum loss

reduction, Fraction of samples, Fraction

of features, Number of weak learners,

Learning rate, Algorithm used
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5.8 Features Extraction and Sample Testing

5.8.1 Data Preparation: Image Pre-Processing Outcome

Figure 5.15 presents the original OCT, Fundus, and X-ray as well as the output of pre-processing

step, respectively. As per the obtained results, image resizing ensures a uniform input shape for

the neural, optimising memory usage and computational efficiency.

Figure 5.15: Image Pre-Processing Outcome.

Noise reduction, typically executed using methods like Gaussian blur, is pivotal for these

datasets because it eliminates unwanted variations and artifacts that might not be represen-

tative of actual pathological changes. This step accentuates authentic features of the image,

ensuring that the DL model is trained on real patterns rather than false noise. Next, contrast

adjustment significantly improves the visibility of implicit features in retinal and lung images.

Given that DR, DMO, and pneumonia can present with nuanced morphological alterations, en-

hancing the contrast through equalise hist method allows the model to discern and learn from

these critical, yet slight, changes more effectively. Cropping, when applied prudently using

extracted image contrast, centers the model’s attention on the most relevant part of the image,

such as the macula or the OD, ensuring that it’s focusing on regions with the highest diagnos-

tic value. Normalisation standardises pixel intensities across the dataset, ensuring consistent
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and faster convergence during training, by mitigating issues related to scale disparities in the

gradient updates. Lastly, resampling techniques are employed as a form of data augmenta-

tion, potentially increasing the robustness of the DL/ML models by enabling it to learn from

diverse representations of the same feature. In summation, each of these pre-processing steps

contributes to refining the input data for DL/ML models, ensuring not only efficient training

but also enhancing their ability to generalise well on unseen medical images, which is vital for

reliable and accurate disease prediction.

5.8.2 Features Extraction and Selection

High-level Features Extraction

As aforementioned, the process of extracting features starts mainly with HF extraction. By

applying the process detailed in (Loukil et al., 2023), the resulted features are presented in the

following. Towards understanding the relationships existing between these feature, correlation

heatmap visualisation method was applied, particularly for disease affected data in each dataset.

By identifying these correlations, it could provide better understanding of how these features

interact and potentially influence the predictive power of the proposed prediction model. Fea-

tures that are highly correlated might introduce multicollinearity, which can affect the stability

and interpretability of the model. Therefore, it’s essential to consider these relationships when

training a ML/DL model, especially for tasks as critical as disease prediction. Three main

heatmaps were produced to include: DR Fundus heatmap (Figure 5.16), DMO OCT heatmap

(Figure 5.17), and pneumonia X-ray heatmap (Figure 5.18).

Observations

Figure 5.16 shows a strong negative correlation existing between Texture Contrast and Tex-

ture Homogeneity features, which indicates that as one feature increases, the other tends to

decrease. This might suggest that areas with higher texture contrast tend to have less uniform

textures. Coarseness, the mean values and standard deviations of RGB colours (BGR), on the

305



Figure 5.16: Correlation Heatmap for Fundus Dataset. The HF feature are from left to right
(x-axis) and top to bottom (y-axis) as follows: Texture Contrast, Texture Energy, Texture Ho-
mogeneity, Entropy, Coarseness, Directionality, BGR, mean_values_std, Shape Area, Shape
perimeter.

Figure 5.17: Correlation Heatmap for OCT Dataset. The HF feature are from left to right
(x-axis) and top to bottom (y-axis) as follows: Texture Contrast, Texture Energy, Texture Ho-
mogeneity, Entropy, Coarseness, Directionality, BGR, mean_values_std, Shape Area, Shape
perimeter.
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other hand, are highly positively correlated. This may imply that as the coarseness of an image

increases, there’s also an increase in the average colour values and their variability. Direction-

ality, particularly, showcases a strong negative correlation with the Shape Area, meaning that

images with more defined directions or orientations might have smaller shape areas.

As per Figure 5.17, there is a significant negative correlation between Texture Energy and

Coarseness. This suggests that smoother textures (lower coarseness) might be associated with

higher energy levels in the image. The mean colour values are highly negatively correlated with

Texture Energy and Texture Homogeneity. This could suggest that images with higher average

colour values tend to have more varied uniform textures with lower energy levels. Shape Area

and Shape Perimeter in this heatmap, on the other hand, showcase a strong positive correlation,

indicating that as the area of the shape in an image increases, its perimeter tends to increase

proportionally.

Figure 5.18: Correlation Heatmap for X-ray Pneumonia Dataset. The HF feature are from left
to right (x-axis) and top to bottom (y-axis) as follows: Texture Contrast, Texture Energy, Tex-
ture Homogeneity, Entropy, Coarseness, Directionality, BGR, mean_values_std, Shape Area,
Shape perimeter.

Figure 5.18 reveals that Texture Contrast and Texture Homogeneity again display a strong

negative correlation, consistent with the first heatmap (Figure 5.16). Texture Energy and

Coarseness are negatively correlated. This indicates that images with rougher textures might
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have lower texture energy. The BGR values show a strong negative correlation with Texture

Energy and a positive correlation with Coarseness. These correlations suggest a balance be-

tween colour uniformity and texture roughness in the dataset. A notable observation is the high

positive correlation between BGR values and their standard deviations. This suggests that im-

ages with higher average colour values also tend to have a greater variability in colour. There

is also a positive correlation between Shape Area and Shape Perimeter, similar to the second

heatmap (Figure 5.17), indicating a proportional relationship between the two. Table 5.3 sum-

marises the strong negative correlations presented by HF, their strong positive correlations, the

presence or absence of weak correlations, as well as the implications for their feature selection

resulted from each dataset.

Table 5.3: Datasets Heatmap Observations

Heatmap Category Observation

DR Fundus

dataset

Strong Negative Correlations • Texture Contrast with Texture Energy (-

0.75) and Texture Homogeneity (-1.00)

• Directionality with mean_values_colour

(-0.84)

Strong Positive Correlations • Texture Energy with Texture Homo-

geneity (0.75)

• Coarseness with mean_values_Std

(0.98)

• Entropy with Directionality (0.62),

mean_values_colour (0.61), and

mean_values_Std (0.50)

Continued on next page
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Table 5.3: Datasets Heatmap Observations (Continued)

Heatmap Category Observation

No or Weak Correlations • Shape Area’s correlation with Entropy (-

0.47) and with Directionality (-0.84)

• Shape Perimeter with Shape Area (0.29)

• Coarseness and Directionality correla-

tion (-0.01)

Implications for Feature Selec-

tion

• Consideration of not using highly corre-

lated features like Texture Contrast with

Texture Homogeneity or Coarseness with

mean_values_Std

• Assessing the predictive power of weak

correlations like Shape Area and Shape

Perimeter

DMO OCT

dataset

Strong Negative Correlations • Texture Contrast with Texture Homo-

geneity (-1.00)

• Texture Contrast with Texture Energy

(-0.59)

• Texture Energy with Coarseness (-0.98)

and mean_values_colour (-0.92)

• Texture Homogeneity with

mean_values_colour (-0.61) and

mean_values_Std (-0.70)

Continued on next page
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Table 5.3: Datasets Heatmap Observations (Continued)

Heatmap Category Observation

Strong Positive Correlations • Texture Energy with Texture Homo-

geneity (0.59)

• Coarseness with mean_values_Std

(0.98) and Directionality (0.91)

• mean_values_colour with

mean_values_Std (0.91)

• Shape Area with Shape Perimeter (0.77)

No or Weak Correlations • Weak correlations of Entropy with most

other features

• Negligible correlation between Direc-

tionality and mean_values_colour (0.01)

Implications for Feature Selec-

tion

• Avoiding using highly correlated fea-

tures to prevent multicollinearity.

• Assessing the importance of weak cor-

relations.

Pneumonia

X-ray

dataset

Strong Negative Correlations • Texture Contrast with Texture Homo-

geneity (-1.00) and Texture Energy (-

0.91)

Continued on next page
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Table 5.3: Datasets Heatmap Observations (Continued)

Heatmap Category Observation

Strong Positive Correlations • Texture Homogeneity with Texture En-

ergy (0.91)

• Directionality with Coarseness (0.99)

No or Weak Correlations • Weak correlations of Entropy,

mean_values_colour, and Shape Area

with most other features

• Weak correlations of Texture Contrast,

Texture Energy, and Texture Homogene-

ity with features like mean_values_Std,

mean_values_colour, and Shape Perime-

ter

Implications for Feature Selec-

tion

• Exclusion of highly correlated features

like Texture Contrast, Texture Homo-

geneity, and Texture Energy to reduce

multicollinearity.

• Exploration of the implications of Direc-

tionality and Coarseness before deciding

on exclusions.

Analysis

Across all the heatmaps, there’s a clear interplay between features like Texture Contrast, Tex-

ture Energy, Texture Homogeneity, and the colour metrics. These relationships provide vital

information when constructing predictive models since they can heavily influence decisions
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surrounding feature selection, engineering, and interpretation of models. Especially in the field

of disease prediction, understanding these interrelations can augment the proposed prediction

model’s capability to detect implicit variations in images, which could be indicative of disease

presence or progression. For the DR Fundus heatmap, one might contemplate not incorporating

features that are highly correlated to avoid redundancy. Also, understanding the clinical impli-

cations of these features concerning DR Fundus images could enhance disease detection or

progression insights. On the DMO OCT heatmap, the relationships between Texture Contrast,

Texture Energy, and Texture Homogeneity could offer indicators about the disease’s character-

istics. Lastly, the pneumonia X-ray heatmap shows intriguing relationships, especially between

texture metrics and the unique correlations observed with coarseness and directionality.

Deep Hidden Features Extraction

DenCeption played a critical role in extracting efficient DHF features. The processing resulted

6271 features with various importance across each dataset. Given the complexity of the gener-

ated features, unlike HF case, multiple correlation heatmaps are required for each dataset to get

a better understanding of the different existing relationships. Due to the high number of fea-

tures resulted, examples of sample testing’s heatmaps are presented as follows for each dataset.

Figure 5.19.a represnts the heatmap of the testing sample from Fundus dataset. As shown,

the diagonal represents the correlation of a feature with itself, and the value is always 1. Fea-

ture_3133 and Feature_3614 exhibit a strong negative correlation, represented by the deep blue

square. This implies that when the value of one of these features increases, the other tends to

decrease, and vice versa. This type of relationship might indicate that these features provide

contrasting information about the dataset. Furthermore, Feature_2108, Feature_3746, and Fea-

ture_5637 appear to have a strong positive correlation with one another, as shown by the red

regions in the heatmap. This suggests that these features might carry similar information. This

confirm that when building the predictive model, it is crucial to consider not including all of

these features where some of them can be excluded to avoid redundancy. Certain feature pairs
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Figure 5.19: Correlation Heatmap Generated DHF Features for: (a) Fundus DR Dataset, (b)
OCT DMO Dataset, (c) X-ray Pneumonia Dataset

like Feature_3614 with Feature_2108 and Feature_3614 with Feature_3746 have light-coloured

regions, suggesting no or very weak correlation. This implies that these feature pairs might be

independent of each other or that their relationship is not linear. On the other hand, some

features present mixed correlation cases. In fact, Feature_5637 seems to have a strong posi-

tive correlation with Feature_3746 but only a weak to moderate correlation with Feature_3133.

This kind of mixed relationship can offer insights into how certain features might interact with

others differently.

On the other hand, Figure 5.19.b illustrates the testing sample for OCT dataset. As pre-

sented, Feature_1463 and Feature_358 exhibit a very strong positive correlation, as indicated

by the bright red square. This implies that as one of these features increases in value, the other

tends to increase as well, and vice versa. It can be concluded that these two features might
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carry similar information and might be potentially redundant when used together in a model.

On the other hand, some features do not present any kind of correlations. In fact, features such

as Feature_2251 with Feature_1463 and Feature_2251 with Feature_358 show no or very weak

correlation as indicated by the pale colour. This means changes in one feature don’t necessarily

predict changes in the other. The blue square between Feature_3609 and Feature_3258 indi-

cates a strong negative correlation. This suggests that as one feature value increases, the other

tends to decrease and vice versa. This is an interesting relationship and may signify that these

features provide complementary information about the dataset. As per the heatmap, some fea-

tures are with little to no variability. The near-white colour in some blocks indicates very low

correlation, almost nearing zero. This can be seen between features like Feature_3609 with

Feature_1463 and Feature_3609 with Feature_358. Such low correlations could be indicative

of one or both features having little variability, or that there’s no linear relationship between

them.

Conversely, the correlation heatmap presented in Figure 5.19.c, presents the outcome of

X-ray dataset. In fact, several pairs of features, such as Feature_5093 and Feature_6166, Fea-

ture_6166 and Feature_3988, and Feature_3988 and Feature_5093, have shown deep red re-

gions indicating strong positive correlations. This means when one feature increases in value,

the other tends to increase as well, suggesting that they may carry similar information. The

feature pair Feature_3386 and Feature_5093 has a deep blue region which indicates a strong

negative correlation. This suggests that when the value of one of these features increases, the

other one tends to decrease. This type of relationship might be of interest as it shows the fea-

tures are providing contrasting information. Some feature pairs, such as Feature_3386 with

Feature_6166 and Feature_3386 with Feature_3988, exhibit light-coloured regions suggesting

a weak to moderate correlation. This indicates that these feature pairs might have a less pro-

nounced linear relationship. Feature_5093 appears to have a strong positive correlation with

both Feature_6166 and Feature_3988, but Feature_3386 shows contrasting relationships with

these features - a negative correlation with Feature_5093 and a weak correlation with the others.

As per the above analysis of each dataset, some features are strongly correlated (either pos-
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itively or negatively), which suggests that they might be carrying redundant or complementary

information. When building a model, the consideration of multicollinearity reduction is fun-

damental. The presence of features with no strong correlation to others might be valuable, as

they could provide unique information to a predictive model. However, if a feature does not

correlate with any other feature or the target variable, it might not add much predictive en-

hancement. This stage allowed for examining random subsets of features for similar patterns

and better understand the DHF distribution in each particular case. The next step includes con-

ducting feature importance and reduction technique SOM to further understand and optimise

the dataset for model building.

Final DHF Features Set

Following the application of SOM technique on each dataset, feature selection has taken place

based on the assigned weights to each feature. The neural network has been trained using a

learning rate of 0.5 and sigma of 1.0. The training was done though 8000 epochs through

different batches. The feature importance was performed based on the neurons’ activations

composing the neural network. The selected DHF was finalised with maximum aggregation

of these features to ensure that: only relevant features are considered and redundant features

are kept when needed. It is crucial to note that SOM’s effectiveness isn’t only about reducing

dimensionality but ensuring the retained features maintain or enhance the prediction model’s

performance.

Towards critically evaluating the obtained results for each dataset it is essential to consider

the following key components presented by SOM to include:

• Sensitivity to parameter settings

• Inherent characteristics of datasets

• Relevance and Domain Knowledge

• Reproducibility and Stability

315



Table 5.4 abridges the importance of each of the above components.

Table 5.4: SOM Key Components (Miljković, 2017)

Component Key Points

Sensitivity to Parame-

ter Settings in SOM

- Dependent on parameters like grid size, topology, learn-

ing rate, and neighbourhood function.

- Need to run Sen analysis to evaluate robustness.

- Observe changes in resulting feature sets.

Inherent Characteris-

tics of Datasets

- Different imaging modalities have unique qualities and

variances.

- Affects results of feature reduction.

- Understand dataset nature for better insight.

Relevance and Domain

Knowledge

- Align selected features with domain knowledge.

- Engage domain experts for evaluation of feature signifi-

cance.

- Check for exclusion of vital features or retention of re-

dundant ones.

Reproducibility and

Stability

- Ensure reproducibility given SOM’s stochastic nature.

- Be aware of potential variance in selected features when

running multiple times.

After applying SOM to various datasets, the number of features retained varies. Specifi-

cally, for the X-ray dataset, the algorithm selected 1051 features, demonstrating its ability to

condense the information while preserving the essential characteristics of the data. In the case

of the OCT dataset, a larger set of 1500 features was selected, which may indicate the pres-

ence of more complex patterns or a higher degree of variability within the data. Lastly, for

the Fundus dataset, SOM selected 1100 features, showcasing its adaptability and effectiveness

across different types of datasets. By doing so, SOM helps in transforming the data into a more

manageable and meaningful format, which is crucial for subsequent analysis and interpretation.
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A vital piece in this evaluation is understanding the impact of feature reduction on the per-

formance of the downstream task, prediction. If the model’s performance remains consistent

or even improves with fewer features, it speaks volumes about the SOM’s efficiency and ef-

fectiveness in feature selection. Conversely, a noticeable performance process was followed to

reassess the reduction process, as per the method in (Loukil et al., 2023). The reason behind

the proposed process is that, while the significant feature reduction achieved through the SOM

process is praiseworthy, the real test would lie in the application of these features in actual

tasks. An evaluation of model performance metrics before and after the reduction is essential

offering tangible insights into the feature selection process’s true efficacy. In this work, the

reassessment process focused mainly on comparing the reduced features versus the original set

of features, where the former achieved promising results which confirms SOM’s efficiency.

5.9 Prediction Results and Discussion

5.9.1 Baseline Scenario Results

This section sheds light on critical assessment of the predictive performance of the previously

mentioned models, excluding any additional demographic and physiological features. This

evaluation will serve as a foundation for filtering out the models with unsatisfactory perfor-

mance, advancing only the outperforming models to the subsequent testing phase.

Fundus Dataset Prediction Results

The results obtained by training the prediction models including and excluding the hyperparam-

eters fine-tuning is summarised in Tables 5.5 and 5.6. Without tuning, DT model displayed an

Acc of 52.43%, signifying that approximately 52% of its predictions were correct. The preci-

sion stood at 52.80%, meaning that around 53% of its positive predictions were indeed positive,

suggesting low FPs. The recall was at 61.30%, indicating that it correctly identified 61% of all

actual positive cases, highlighting fewer FNs. The F1-Score, which harmoniously balances pre-

cision and recall, was recorded at 56.73%, where a score closer to 1 denotes better performance.
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Upon hyperparameter tuning, there were noticeable shifts. The accuracy faced a marginal en-

hancement of 0.02%, settling at 52.45%. Conversely, precision decreased to achieve 51.88%,

indicating an increase in FP predictions post-tuning. The recall increased to 63.60%, revealing

a reduction in FNs and a better identification rate of actual positives. Lastly, the F1-Score, rep-

resenting the equilibrium between precision and recall, rose to 57.14%, suggesting a slightly

superior overall balance achieved through tuning.

Table 5.5: Fundus-DR Prediction Results without Fine-tuning

Model Acc (%) Precision

(%)

Recall (%) F1-Score

(%)

LCE

XGBoost 61.08 62.58 58.45 60.44 0.45

RF 51.79 52.62 52.53 52.58 0.6

DT 52.43 52.80 61.30 56.73 0.55

AdaBoost 60.66 61.45 56.49 58.87 0.53

HyBoost 63.36 64.20 59.75 63.72 0.4

Table 5.6: Fundus-DR Prediction Results with Fine-tuning

Model Acc (%) Precision

(%)

Recall (%) F1-Score

(%)

LCE

XGBoost 62.27 62.76 59.72 61.20 0.41

RF 54.41 54.33 53.43 53.88 0.5

DT 52.45 51.88 63.60 57.13 0.52

AdaBoost 63.41 63.92 60.91 62.40 0.39

HyBoost 64.96 65.28 63.25 62.39 0.36

Tuning DT model resulted in slight improvements in accuracy, recall, and F1-Score, at the

cost of a minor drop in precision. Depending on the application, one might prioritise recall over

precision or vice versa. For instance, in case of DR prediction, having a high recall might be
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more crucial than having high precision. This is because missing a diagnosis (FN) could have

severe implications, while a FP might lead to further tests but no immediate harm. However,

generally, the trade-off between precision and recall should be determined based on the specific

context and the consequences of making false predictions.

The results from RF model shows that the model’s Acc is around 51.78%, which means it

correctly predicts the outcome roughly 52% of the time. The precision indicates that when the

model predicts a positive outcome, it is correct around 52.62%. Recall states that the model

identifies 52.53% of all the actual positive outcomes. After being tuned, RF accuracy has risen

to 54.41%, showing an improvement. Precision also rose to 54.33% with tuning, meaning the

model has reduced the number of FPs. Though recall has seen a minor decrease, it’s still in the

same ballpark. The performance improvements after tuning, though modest, are significant.

An increase in precision without a severe drop in recall often indicates a more reliable model.

This is crucial, especially in applications where FPs can have grave consequences. However,

it’s worth noting that the overall performance metrics (like accuracy) are still just above 50%.

In many real-world applications, such a performance might not be satisfactory. For instance,

in DR detection and prediction, a high recall might be more crucial because missing out on TP

cases can be life-threatening.

The performance of the AdaBoost model on the Fundus data shows no%improvements af-

ter the tuning process. An examination of the metrics reveals that accuracy increased from

60.66% in the untuned model to 63.41% in the tuned version. Likewise, precision faced an

increase from 61.45% to 63.96%. The recall also demonstrated a positive shift, moving from

56.49% to 60.91%. Additionally, the F1-Score, improved from 58.87% to 62.40%. The cor-

responding changes in the confusion matrix values further substantiate the improved classifi-

cation outcomes after tuning. These observations underscore the importance of model optimi-

sation, emphasising that fine-tuning can significantly enhance performance, making the model

more effective for specific datasets, particularly Fundus dataset.

The results from the XGBoost model without any tuning show a promising performance.

In fact, the model achieved an Acc of 61.08%, which means that it correctly predicted the out-
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comes for 61.08% of the samples in the test set. Similarly, the precision is found to be 62.58%.

The recall, which indicates how many actual positives were identified, was at 58.45%. Lastly,

the F1-Score, which is the harmonic mean of precision and recall and provides a single metric

for model performance, is at 60.44%. On the other hand, when the XGBoost model was tuned,

the performance improved across all metrics. The accuracy went up slightly to 62.27%, indi-

cating a better overall prediction rate. The precision of the tuned model was 62.76%, a slight

increase from the untuned model, showcasing that the model’s positive identifications became

more accurate post-tuning. The recall value also showed an increase to 59.72%, implying that

the model became slightly better at identifying the actual positive samples. The F1-Score, a

crucial metric for understanding a model’s robustness, increased to 61.20%. Comparing the

two sets of results, it’s evident that tuning the XGBoost model provided an improvement, al-

though slight, across all the metrics. The enhanced performance of the tuned model highlights

the significance of optimising the model to achieve the best possible results. It’s also worth

noting that even minor improvements in performance can have a significant impact, especially

when dealing with large datasets or critical applications.

In the case of the proposed HyBoost (untuned case), the accuracy is approximately 63.36%,

meaning it correctly predicts the outcome 63.36% of the time which is still overpassing the per-

formance of the other models solely (AdaBoost and XGBoost). The precision is approximately

64.20%. Recall, measuring the ratio of correctly predicted positive observations to the ac-

tual positives, is about 59.75%. The F1-Score is approximately 63.72%. In the case of tuned

HyBoost, on the other hand, the accuracy indicates a correct prediction rate of 64.97%. The

precision is slightly improved at about 65.28%. Moreover, the recall has slightly increased to

approximately 63.25%. The F1-Score for the tuned model is 62.39%. Comparing both models,

it’s evident that tuning the HyBoost algorithm improved its accuracy and precision. In fact,

there was a trade-off, with the recall noticeably increasing in the tuned model. This suggests

that the tuned model is better at making correct predictions overall, and shows more Sen in

identifying positive cases.

Before fine-tuning, the HyBoost model outperforms all others with an LCE of 0.4, suggest-
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ing its hybrid approach is effective from the outset, while XGBoost also demonstrates strong

predictive capability with a competitive LCE of 0.45. The RF model, however, exhibits the

highest LCE at 0.6, indicating a need for refinement, and the DT model, with an LCE of 0.55,

shows it has potential yet is outperformed by XGBoost and AdaBoost, which holds a moder-

ate LCE of 0.53. After fine-tuning, improvements across the models are evident; XGBoost’s

LCE drops to 0.41, RF to 0.5, and DT’s decreases slightly to 0.52, showcasing the benefits

of model optimisation. Notably, AdaBoost’s LCE diminishes to 0.39, indicating a significant

enhancement, but it is HyBoost that exhibits the most substantial improvement to an LCE of

0.36, underscoring the impact of fine-tuning on its hybrid structure, which makes it a promising

tool for Fundus-DR prediction.

Figure 5.20.a presents the AdaBoost model ROC curve without applied tuning. As illus-

trated, the AUC value reaches 0.65, signifying the model’s moderate capacity to differentiate

between the positive and negative classes. The curve’s position above the diagonal underscores

that the model performs better than mere random guessing. Conversely, Figure 5.20.b, where

AdaBoost model is presented with tuning, showcases an improved AUC of 0.69. Its curve is

more distanced from the diagonal, denoting enhanced performance in distinguishing the classes

post-tuning. Ultimately, while tuning has improved the model’s efficacy, as marked by the AUC

ascent from 0.65 to 0.69, both metrics hint at potential avenues for further optimisation in the

model’s discriminative abilities.

The graph shown in Figure 5.20.c, with an AP of 0.65, depicts the AdaBoost model’s per-

formance without tuning. Here, precision values experience sharp fluctuations at higher recall

rates, suggesting potential instability in certain threshold ranges. As transitioning to the sec-

ond graph (Figure 5.20.d), where tuning has been applied, there is a noticeable enhancement

in the PR curve, represented by an increased AP value of 0.70. The curve in the tuned model

is smoother, indicating a more consistent performance across varying thresholds. This com-

parison underscores the significant impact of model tuning on improving the precision and

recall trade-off, thereby enhancing the overall reliability and accuracy of the AdaBoost model

in analysing Fundus data.
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Figure 5.20: Fundus AdaBoost ROC (a) PR (c) Curves without Hyperparameters Fine-tuning
and ROC (b) PR (d) Curves with Hyperparameters Fine-tuning.

Figure 5.21.a and 5.21.b show the XGBoost ROC curve without and with inclusion of

hyperparameters fine-tuning.

The Fundus ROC curve of XGBoost model, without tuning, reveals an AUC of 0.65. This

AUC value suggests moderate model performance, as an AUC of 0.5 equates to no discrimi-

natory power (random guessing), while an AUC of 1.0 denotes a flawless model. This curve’s

position above the diagonal line of no discrimination indicates the model’s capacity to differen-

tiate between positive and negative classes. In contrast, when tuning is applied to the XGBoost

Fundus ROC Curve, the AUC slightly improves to 0.67, again displaying the curve above

the diagonal, which implies some degree of discriminatory power. To sum up, the XGBoost

model’s tuning led to a modest enhancement in discriminatory capability, with the AUC rising

from 0.65 to 0.67. Nonetheless, both model variations showcase moderate efficacy, suggesting

potential avenues for improvement.

Figure 5.21.c represents the PR curve for the XGBoost model without tuning. Observing the
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Figure 5.21: Fundus XGBoost ROC (a) PR (c) Curves without Hyperparameters Fine-tuning
and ROC (b) PR (d) Curves with Hyperparameters Fine-tuning.

curve, it starts from a high precision level near 1.0 and gradually descends as recall increases.

A smoother curve, particularly in the higher recall regions, usually implies a better-performing

model. The AP score for this curve is 0.67. This score provides an aggregate measure of

the model’s performance across all classification thresholds and indicates that the model has

a reasonably good balance between precision and recall. Figure 5.21.d, on the other hand,

displays the PR curve post-tuning of the XGBoost model. The curve initiates with fluctuations

in the precision, which may be due to overfitting or noise in the data. However, it stabilises after

a recall of approximately 0.2. While the curve generally seems smoother than the first, the AP

score is slightly lower at 0.66. Although the difference is minimal, it suggests that the tuning

didn’t substantially enhance the overall model performance in terms of the PR balance. When

comparing the two curves, both the untuned and tuned XGBoost models have relatively similar

performance in terms of precision and recall for the Fundus data. The slight decrease in the AP

score after tuning may be due to overfitting or other model-specific factors. Nevertheless, both
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curves display a good balance between precision and recall, with AP scores centric around 0.66

and 0.67.

As shown in Figure 5.22.a, the untuned version of the proposed HyBoost model exhibits an

AUC of 0.68. This value suggests that the model possesses a moderate capability to discrim-

inate between classes, but overpassing the performance of previous tested models. A perfect

classifier would have an AUC of 1, while a completely random classifier would result an AUC

of 0.5. Hence, with an AUC of 0.68, the non-tuned model is performing better than a random

guess but has room for improvement. Contrastingly, Figure 5.22.b showcases the performance

of the HyBoost model post-tuning, evident in its elevated AUC of 0.71. This enhancement,

although marginal, is significant, implying that the process of tuning has optimised certain pa-

rameters of the model, thereby refining its classifying performance compared to AdaBoost and

XGBoost. An AUC of 0.71 suggests that the tuned model holds a better discriminative abil-

ity than its non-tuned counterpart. In essence, while both models demonstrate commendable

performance, the slight edge in AUC for the tuned version underscores the importance and

potential benefits of fine-tuning the proposed hybrid model to better adapt to specific datasets,

such as Fundus in this context.

The two PR curves, shown in Figure 5.22.c and 5.22.d, demonstrate the performance of

the HyBoost model when applied to Fundus data under distinct configurations: before and af-

ter tuning. The initial figure represents the HyBoost model’s performance without any tuning,

resulting an AP score of 0.70. This suggests that the model demonstrates a commendable bal-

ance between precision and recall, but there is potential for further enhancement. In contrast,

the subsequent figure shows the model’s performance post-tuning, reflected in a slightly higher

AP score of 0.71. This marginal increase in the AP score indicates that the tuning process has

effectively optimised specific parameters of the model, improving its ability to maintain pre-

cision across varying recall thresholds. While the HyBoost model demonstrates robust perfor-

mance in both scenarios, the enhanced AP score following tuning emphasises the significance

of considering extra features that helps the model to optimise precision and recall, especially

when dealing with specific datasets like Fundus.
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Figure 5.22: Fundus HyBoost ROC (a) PR (c) Curves without Hyperparameters Fine-tuning
and ROC (b) PR (d) Curves with Hyperparameters Fine-tuning.

OCT Dataset Prediction Results

The results obtained by training the prediction models including and excluding the hyperpa-

rameters fine-tuning is summarised in Tables 5.7 and 5.8. To get deeper insights about the

resulted values of top performed models training, the will be followed by a critical evaluation

of the resulted ROC and PR curves
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Table 5.7: OCT-DMO Prediction Results without Fine-tuning

Model Acc (%) Precision

(%)

Recall (%) F1-Score

(%)

LCE

XGBoost 93.63 94.54 91.96 93.04 0.3

RF 90.79 90.55 89.55 90.05 0.35

DT 54.58 50.70 85.24 63.58 0.61

AdaBoost 93.01 94.62 90.00 92.25 0.32

HyBoost 96.62 95.09 93.6 96.27 0.21

Table 5.8: OCT-DMO Prediction Results with Fine-tuning

Model Acc (%) Precision

(%)

Recall (%) F1-Score

(%)

LCE

XGBoost 94.09 94.6 92.34 93.9 0.26

RF 91.86 96.13 85.87 90.71 0.34

DT 61.41 55.22 87.59 67.74 0.6

AdaBoost 93.81 95.14 91.28 93.17 0.31

HyBoost 97.06 98.63 96.08 97.18 0.18

The tuned DT model has higher accuracy, precision, recall, and F1-score compared to the

untuned DT model. After tuning, the DT model seems to perform better in all metrics. The

improvement in the precision of the DT model after tuning is notable, which indicates a reduc-

tion in FPs. Both models have a high recall, suggesting that they are able to identify a large

proportion of the actual positive instances. It seems that the tuning on the DT model has been

effective, as it shows improvement in all the evaluation metrics.

Without tuning, the RF model’s metrics resulted an Acc of 90.79%, signifying that it cor-

rectly predicted 90.79% of the samples. Its precision stood at 90.55%, meaning 90.55% of its

positive predictions were accurate, while its recall at 89.55% indicated it correctly identified
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this percentage of actual positive samples. The F1-Score, representing the harmonic mean of

precision and recall, was 90.04%. Post-tuning with RF, metrics showed an improved accuracy

of 91.86%, precision of 96.13% highlighting the model’s improved reliability in positive pre-

dictions, and a slightly reduced recall of 85.87%, suggesting it missed some actual positives.

However, the F1-Score slightly increased to 90.71%, indicating a better balance between pre-

cision and recall. In summary, the tuned model exhibited improved accuracy and precision,

making its positive predictions more trustworthy. Despite the rise in precision, there was a

slight decline in recall, pointing to the model’s conservative stance in predicting positives. This

trade-off, accentuated by the minor increment in F1-Score, means the model achieved a more

balanced performance post-tuning.

Upon analysing the outcomes of the AdaBoost classifier, it’s evident that the model’s per-

formance showed no%improvements post tuning. Initially, without any tuning, the classifier

achieved an Acc of 93.02%, precision of 94.62%, recall of 89.99%, and an F1-score of 92.25%.

However, after the tuning process, the model’s accuracy rose to 93.81%, showcasing an in-

crease of 0.79%. Similarly, the precision experienced an enhancement, moving up by 0.52% to

reach 95.14%. The recall metric also showed a significant boost, rising by 1.29% to a value of

91.28%. Moreover, the F1-score, which harmonises precision and recall, observed a commend-

able ascent of 0.92%, culminating at 93.17%. In summary, the tuning procedure unequivocally

optimised the performance of the AdaBoost classifier across all the metrics, underscoring the

importance of model fine-tuning in achieving superior results.

OCT related results for the untuned XGBoost presented an accuracy rate of approximately

93.61%, suggesting that the model correctly predicted the outcomes in a significant majority of

cases. The precision score of about 94.54% denotes that, of all the positive predictions made

by the model, 94.54% were indeed correct. Meanwhile, the recall or Sen, which measures how

many actual positives the model was able to capture, stands at approximately 91.96%. The

F1-Score is about 93.04%, indicating a balanced performance between precision and recall.

Moving on to the results after tuning XGBoost, there’s a noticeable improvement where the

accuracy rate has risen to approximately 96.09%. This shows an enhancement in the model’s
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performance in making correct predictions. The precision score has significantly increased to

about 98.85%, meaning the model made very few FP predictions after tuning. The recall rate

is around 93.44%, suggesting a slight improvement in detecting actual positive cases. Finally,

the F1-Score for the tuned XGBoost stands at approximately 96.07%, showing an improved

and balanced model performance between precision and recall. Tuning the XGBoost model

has positively impacted its performance across all metrics. The results demonstrate the value

of fine-tuning algorithms to enhance their predictive accuracy and reliability.

The untuned proposed HyBoost model achieved an accuracy of approximately 96.62%,

showcasing its capability to correctly classify instances. Moreover, it exhibits a high precision

of approximately 95.09%, signifying that the proportion of TP predictions among all positive

predictions is quite high. In terms of recall, the model retrieves about 93.60% of the actual

positive instances. The F1-Score, which is a harmonic mean of precision and recall, stands

at approximately 96.27%, indicating a balanced performance between precision and recall.

On the other hand, the HyBoost model post-tuning shows an enhanced performance. This

advanced precision in classification post-tuning is evident with an accuracy soaring to approx-

imately 97.06%. Its precision is also exemplary, standing at nearly 98.63%, indicating an even

higher reliability in its positive predictions. The recall has seen an improvement, now capturing

about 96.08% of actual positive instances. Complementing these metrics, the F1-Score reaches

approximately 97.18%, revealing a very well-balanced model in terms of both precision and

recall. Tuning the HyBoost model has evidently led to a noticeable enhancement in its per-

formance across all metrics, making it a more reliable choice for OCT results classification,

particularly in DMO prediction.

the HyBoost model stands out with the lowest LCE at 0.21, indicating a superior initial

performance likely due to its advanced hybrid design. XGBoost follows with a commendable

LCE of 0.3, while AdaBoost is not far behind, indicating an LCE of 0.32. The RF model’s LCE

is slightly higher at 0.35, suggesting some room for improvement. The DT model exhibits the

highest LCE at 0.61, indicating that it might be less adept at handling the dataset without ad-

justments. Upon fine-tuning, all models exhibit improvements in LCE values. XGBoost shows

328



a marked decrease to 0.26, which underscores the effectiveness of fine-tuning in enhancing its

predictive capabilities. RF also improves, although marginally, to an LCE of 0.34. The DT

model sees a slight decrease in LCE to 0.6, indicating that while fine-tuning has had an effect,

it remains the least effective model among those tested. AdaBoost’s LCE marginally decreases

to 0.31, suggesting that fine-tuning has a positive but limited impact on its performance.

In analysing the ROC curve shapes (Figure 5.23.a and 5.23.b), the untuned AdaBoost

model’s curve rapidly ascends towards the top-left corner, denoting a high Sen at a low FPR.

Interestingly, the curve for the tuned AdaBoost model mirrors this behaviour, approaching the

y-axis closely before turning horizontal. Both models exhibit an AUC value of 0.98, suggesting

that their abilities to distinguish between positive and negative classes are almost impeccable

and identical. This proximity to a perfect classifier score is commendable. The almost indis-

tinguishable performance of the tuned and untuned AdaBoost classifiers on the OCT dataset

is evident from their ROC curves and AUC values. This near-perfect alignment towards the

top-left corner implies that both versions can achieve high Sen with minimal FPs, making them

effective for the OCT dataset. The surprising similarity in performance between the two might

suggest that the default AdaBoost classifier parameters were ideally suited for the OCT dataset,

the tuning didn’t substantially alter hyperparameters, or the dataset basically allows even basic

models to excel. In conclusion, the consistency in performance implies that, if pressed for time

or computational resources, the untuned model would be adequate. Yet, as the main aim is to

maximise efficiency, delving into considering extra features has the potential to enhance the

overall model’s performance.

Figure 5.23.c displays an impressive AP of 0.98 with a curve that remains largely flat at the

top, denoting consistent high precision across diverse recall levels, and signifying the untuned

AdaBoost model’s adeptness at differentiating between positive and negative classes. In con-

trast, Figure 5.23.d, while showcasing the same AP, reveals a slight decrease in precision as

the recall approaches 1, possibly pointing to a few FP predictions at high recall for the tuned

AdaBoost. Though both curves share an identical AP, indicating parallel overall efficacy, their

minute shape differences, particularly at high recall points, suggest variances in prediction ten-
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Figure 5.23: OCT AdaBoost ROC (a) PR (c) Curves without Hyperparameters Fine-tuning and
ROC (b) PR (d) Curves with Hyperparameters Fine-tuning.

dencies. Based on the graph shown in Figure 5.23.d, the tuning seems to have preserved the

aggregate performance but may have modified the model’s reactions at specific recall intervals.

It’s imperative to weigh the trade-offs when making determinations grounded on these curves.

The untuned XGBoost ROC curve (Figure 5.24.a) exhibits impressive performance, with

an AUC value of 0.98.

The AUC is a metric used to measure the overall performance of a classifier, with 1 indi-

cating perfect classification and 0.5 denoting performance no better than random classification.

An AUC of 0.98 suggests that the classifier is highly accurate in differentiating between the

positive and negative classes. Figure 5.24.b, representing the XGBoost OCT ROC curve post-

tuning, depicts an even more pronounced improvement. The AUC value here reaches 0.99,

indicating almost perfect classification capabilities. XGBoost, an AdaBoost technique, appears

to have enhanced the model’s performance by fine-tuning it, as evidenced by the increase in

AUC value from 0.98 to 0.99. While the OCT model without tuning already showcases strong
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Figure 5.24: OCT XGBoost ROC (a) PR (c) Curves without Hyperparameters Fine-tuning and
ROC (b) PR (d) Curves with Hyperparameters Fine-tuning.

classification performance with an AUC of 0.98, the application of the XGBoost algorithm

further refines its accuracy, increasing the AUC to a significant 0.99.

For the untuned XGBoost model, the PR curve (Figure 5.24.c) starts off with a high preci-

sion but experiences a gradual drop as recall increases, finally culminating in a lower precision

value as it approaches a recall of 1. The AP score for this curve is 0.98, which indicates a

high level of model performance, especially considering that an AP score of 1 would be per-

fect. On the other hand, the PR curve for the XGBoost-tuned (Figure 5.24.d) model appears to

maintain a consistently high precision for a larger span of recall values, eventually showing a

slight decrease towards the end of the curve. This model has an even better AP score of 0.99,

which signifies an improvement over the untuned model and is closer to optimal performance.

XGBoost-tuned model displays superior performance in terms of precision and recall as com-

pared to the untuned model, making it more reliable for predictions. The improvement in the

AP score from 0.98 to 0.99 further corroborates this observation.
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Figure 5.25: OCT HyBoost ROC (a) PR (c) Curves without Hyperparameters Fine-tuning and
ROC (b) PR (d) Curves with Hyperparameters Fine-tuning.

The ROC curve, shown in Figure 5.25.a, corresponds to the HyBoost model without tun-

ing. Upon examination, the ROC curve resulted an impressive AUC of 0.99. This indicates

that the HyBoost model in its original state already possesses a high degree of classification ca-

pability, making very few mistakes when differentiating between the two classes. The second

ROC curve (Figure 5.25.b) showcases the results after tuning the HyBoost model. Remarkably,

this curve achieves an AUC of 1.00, signifying that the tuned HyBoost model provides flawless

classification across all threshold levels. This perfect AUC indicates that with the tuning adjust-

ments, the HyBoost classifier has been optimised to the extent that it makes zero classification

errors, at least within the context of the data it was tested on. Both the untuned and tuned ver-

sions of the HyBoost model showcased exemplary performance in classifying the OCT data.

The tuning process further enhanced the classifier’s performance, achieving perfection as re-

flected in its ROC curve with an AUC of 1.00.

Confirming previous results, Figure 5.25.c showcases the PR curve of the untuned HyBoost
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with an AP of 0.99. The curve is very close to the top-right corner of the graph, indicating

a high level of precision throughout the range of recall values. However, there’s a noticeable

drop in precision as recall approaches 1.0, suggesting that while the model has an impressive

overall performance, there are specific scenarios where it may produce FPs. On the other hand,

Figure 5.25.d, presents a perfect AP of 1.00. The curve sits right at the top of the graph, mean-

ing that the model maintains a precision of 1.0 across all recall values. This suggests that the

tuned HyBoost model consistently produces accurate positive predictions, regardless of how

many actual positive samples are being identified. The noticeable improvement from an AP of

0.99 in the first image to an AP of 1.00 in Figure 5.25.d implies that tuning the HyBoost pa-

rameters had a significant positive impact on the model’s performance for the OCT dataset in

general, and DMO prediction in particular. While both models demonstrate commendable per-

formance, the tuned HyBoost model, as visualised in Figure 5.25.d, appears to provide perfect

precision across all levels of recall, indicating a likely superior and more reliable classification

performance for OCT results.

Validating a ML/DL model on an unseen dataset is of paramount importance, especially in

the medical field. Unlike other domains, where errors might be acceptable or less critical, in

medicine, even a slight misjudgement can have profound consequences on patient care, diag-

nosis, and treatment outcomes. Throughout the testing process, it became evident that different

models reacted uniquely to each dataset, underscoring the complex nature of ML in healthcare.

Each model, shaped by its underlying algorithms and architectures, showcased strengths and

weaknesses when confronted with diverse data distributions present in the medical datasets.

Some models that excelled with one dataset might have struggled with another, highlighting

the criticality of diverse validation. This variability in performance across datasets reinforces

the importance of the forthcoming X-ray dataset as the decisive stage. In fact, testing mod-

els on new, unseen data ensures that they are robust, generalisable, and can effectively handle

real-world scenarios rather than just memorising patterns from their training data. Moreover,

this validation acts as a rigorous filter to shortlist the most promising models. Only those that

demonstrate superior performance on this validation will advance to the next phase of testing.
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In this subsequent phase, the integration of demographic and physiological features will further

refine the models, aiming to enhance their accuracy and utility. Ensuring rigorous validation in

the preliminary stages guarantees that the foundation is strong before introducing these addi-

tional complexities.

X-ray Dataset Prediction Results

The results obtained by training the prediction models including and excluding the hyperparam-

eters fine-tuning on X-ray dataset are summarised in Tables 5.9 and 5.10. The untuned DT

classifier for X-ray data demonstrated an Acc of 72.21%, precision of 73.03%, recall of 96.11%,

and an F1-Score of 82.99%. Post-tuning, there was a marked improvement across metrics, with

accuracy increasing by approximately 7.72% to 79.93%, precision rising by around 7.23% to

80.26%, and the F1-Score augmenting by roughly 3.89% to 86.88%, despite a slight decrease

in recall to 94.70%. These enhancements are further confirmed by the confusion matrices from

both instances, which indicate an improvement in the counts of TPs and TNs, signalling supe-

rior classification performance. In summary, tuning has significantly enhanced the efficacy of

the DT classifier in analysing X-ray data.

Table 5.9: X-ray without Fine-tuning

Model Acc (%) Precision

(%)

Recall (%) F1-Score

(%)

LCE

XGBoost 95.61 96.89 96.89 96.89 0.3

RF 89.31 92.15 92.75 92.45 0.42

DT 72.21 73.03 96.11 82.99 0.5

AdaBoost 90.78 91.04 92.31 92.64 0.36

HyBoost 96.52 97.17 97.92 97.54 0.23
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Table 5.10: X-ray with Fine-tuning

Model Acc (%) Precision

(%)

Recall (%) F1-Score

(%)

LCE

XGBoost 94.76 96.75 95.74 96.24 0.32

RF 89.09 91.26 93.40 92.31 0.42

DT 79.94 80.27 94.70 86.89 0.47

AdaBoost 92.39 93.31 92.91 93.08 0.34

HyBoost 96.28 96.90 97.82 97.36 0.24

Without tuning, RF model’s performance led to an accuracy of approximately 89.31%,

precision of 92.15%, recall of 92.75%, and an F1-Score of 92.45%. However, with tuning

(RF), these figures changed resulting in an Acc of 89.09%, precision of 91.26%, recall of

93.40%, and an F1-Score of 92.31%. Comparatively, there was a marginal decrease in Acc by

0.22% after tuning. Precision declined by nearly 0.89%, while recall showed a boost of roughly

0.65%. The F1-score, which provides a balance between precision and recall, experienced

a minor decrease of 0.14% post-tuning. This suggests that while tuning enhanced recall, it

made slight compromises on precision and accuracy. The choice between tuned and untuned

models should be grounded in the analysis’s specific objectives, in this case minimising FNs or

positives. In addition, capturing a maximum number of TPs is pivotal, indicating a preference

for higher recall, where the tuned model is more suitable. Conversely, for a more harmonised

performance interplay between precision and recall, the untuned variant’s marginally superior

F1-score might be more appealing.

After hyperparameter tuning, the AdaBoost model showcased enhanced performance across

all metrics. Specifically, accuracy increased from 90.78% to 92.39%, precision showed a mod-

est rise from 91.04% to 93.31%, recall increased from 92.31% to 92.91%, and the F1-Score,

elevated from 92.64% to 93.08%. This progression underlines the value and benefits of tuning

in ML. To interpret, the elevated accuracy implies the model made more accurate predictions

post-tuning. The improvement in precision suggests a higher proportion of correctly identified
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positive cases, while the improvement in recall indicates the model’s enhanced ability to detect

authentic positives. Therefore, the tuning led the model to make better predictions, diminish

errors, and attain a more harmonised proficiency in detecting TP instances.

The XGBoost model, without tuning, accurately identifies both positive and negative classes

approximately 95.61% of the time, boasting a high precision and recall rate of 96.89%. How-

ever, it still faces the risk of misclassifying some instances, which in the context of medical

X-ray results can be crucial. Tuning, typically employed to enhance model performance via

hyperparameter adjustments, led to a slight decrease in precision in this case, with recall drop-

ping more substantially. This may indicate the post-tuned model’s cautious stance in predicting

positives, evident from the rise in FNs pre-tuning. Given the gravity associated with X-ray

classifications, any misclassification carries significant consequences. Thus, understanding the

balance between precision and recall is vital: while high precision supports for the reliability

of positive predictions, it might miss out on certain positive instances, and high recall, though

capturing most positives, may include some false ones. Selecting between the tuned and un-

tuned models should resonate with the diagnostic tool’s objectives, pneumonia, as an example.

If avoiding missed diagnoses is paramount, high recall should be prioritised. In addition, be-

cause ensuring the reliability of positive predictions is the goal, high precision should take

precedence.

Untuned HyBoost model showcase significant performance with implicit distinctions: the

untuned model slightly surpasses the HyBoost-tuned model with an Acc of 96.52% compared

to 96.28%, a precision of 97.17% versus 96.90%, and an F1-Score of 97.54% against 97.36%.

The recall values are nearly identical, with the non-tuned model marginally leading at 97.93%

against the tuned model’s 97.83%. These minor discrepancies suggest that, in this context,

the untuned model may already be optimised, with its default parameters fitting the task well.

Hence, the additional tuning didn’t yield significant enhancements.

The HyBoost model once again exhibits exceptional performance with the lowest LCE of

0.23, suggesting its innate efficiency in handling X-ray image data. XGBoost also demonstrates

strong performance with an LCE of 0.3. AdaBoost follows with an LCE of 0.36, and the RF
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model records an LCE of 0.42, indicating that while effective, it could potentially benefit from

further optimisation. The DT model presents the highest LCE at 0.5, which may reflect its

tendency towards overfitting or lack of complexity required for the task. Upon fine-tuning,

the results are somewhat unexpected; the XGBoost model’s LCE slightly increases to 0.32.

This could suggest overfitting during the fine-tuning process or that the initial parameters were

already close to optimal for the dataset. RF maintains an LCE of 0.42, showing no improvement

with fine-tuning, which might imply a limitation in the model’s structure concerning the X-ray

data. DT shows a slight improvement, reducing its LCE to 0.47, but still remains the highest

amongst the models. AdaBoost’s LCE decreases to 0.34, which is a positive indication of its

responsiveness to fine-tuning.

Following a rigorous critical evaluation and performance assessment across multiple datasets

during the training and validation stages of the initial scenario, it was determined that the DT

and RF models underperformed in terms of their performance capabilities. As a result, they

have been eliminated from consideration. This decision was reached upon contrasting their

outcomes with the superior results demonstrated by AdaBoost, XGBoost, and the innovative

hybrid model, HyBoost. Notably, the tuned AdaBoost, untuned XGBoost, and untuned Hy-

Boost models have been cherry-picked for progression into the subsequent testing phase. This

decision stemmed from the observation that both XGBoost and HyBoost, in their untuned

states, showcased commendable results, with only marginal enhancements observed in their

tuned iterations. However, in the case of AdaBoost, tuning made a monumental difference,

notably enhancing prediction results for DR, DMO, and pneumonia.

The upcoming section will delve deeper into a comprehensive evaluation of these selected

models. Herein, there will be an integration of both demographic and physiological features,

amalgamating them with HF and DHF features to train and validate the selected predictive

models. The crux of this analysis will revolve around each model’s performance for every

dataset, interpreted through their respective confusion matrices—a pivotal tool that offers a

holistic view of the TPs, FPs, TNs, and FNs, thereby granting a comprehensive understanding

of a model’s performance nuances. Furthermore, the section will present key metrics such
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as accuracy, Precision, Recall, Spe, and F1-score, providing a rounded perspective on each

model’s prowess. Concluding this section, a definitive decision will be made, spotlighting the

most adept model, which will then be benchmarked within the final framework, juxtaposed

against existing methodologies for a comprehensive comparison.

5.9.2 Enhanced Scenario Results: Validation on Selected Prediction Mod-

els

Prediction Performance of AdaBoost

The AdaBoost model applied to the Fundus dataset achieved an Acc of 78.5% in predicting

DR (Table 5.11). This indicates that it was able to determine the presence or absence of DR

correctly in about 78.5% of the examined instances, confirming the potential positive impact

of the integration of demographic and physiological features where the absence of the latter

features only achieved 63%. The model’s Sen suggests that it correctly identifies 78.6% of

all authentic positive cases against only 60.91% in the previous scenario. Conversely, its Spe

indicates that 73.5% of TN cases were detected accurately. A crucial aspect of the model’s

performance is precision, which shows that, of all cases flagged as positive (Figure 5.26.a),

around 71.1% truly were positive. The F1-score stands at 74.7%.

Table 5.11: AdaBoost Performance Metrics: Demographic and Physiological Features Case

Acc (%) Precision

(%)

Recall (%) Spe (%) F1-Score

(%)

Fundus 78.5 71.1 78.6 73.5 74.7

OCT 94.95 95.27 94.69 95.21 94.98

X-ray 93.9 94.9 93.2 94.6 94.03

This is a reasonable result, signifying a balanced handling of both FPs and FNs. This proves

the balance addition caused by the incorporation of extra features without which the harmony

between precision and recall was only around 62.40%. Although the AdaBoost model’s per-
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Figure 5.26: Confusion Matrix of AdaBoost for – (a): Fundus Dataset, (b): OCT Dataset and
(c): X-ray Dataset.

formance on the Fundus dataset is commendable, there is always room for enhancement, es-

pecially in a medical setting by, for example, trying out different modelling methodologies

leading to even better outcomes.

Delving into the OCT dataset, the AdaBoost model displayed some significant attributes

(Figure 5.26.b). The model does not show a bias in its predictions as the numbers of TNs and

TPs are fairly balanced, highlighting its well-adjusted nature. It’s reassuring to note that the

model registered a mere 94 FPs, indicating it does not rashly predict the disease’s presence.

This avoids unnecessary medical interventions that might otherwise be prescribed. However, a

point of concern is the 106 FNs, which in medical contexts, could mean overlooking a disease.

Such oversights might lead to severe repercussions, especially concerning DMO disease, which

can culminate in irreversible vision damage if undetected. Both the precision and recall rates

surpass 94% (Table 5.11), signifying both accurate and reliable predictions versus 93.31% and

92.9% in the previous scenario, respectively. Furthermore, the model presents an Acc slightly

shy of 95%. Such a high figure is praiseworthy, but even minor percentages of misdiagnoses in

medical scenarios can be consequential. Therefore, it’s crucial to scrutinise FNs and positives.

The performance showed by the AdaBoost on the OCT dataset overpassed the resulted metrics

values of the precedent scenario, confirming the impact of considering age, gender, diabetic

type, and blood pressure features when training the predictive model.

Switching focus to the X-ray validation dataset, the AdaBoost model showcased exemplary
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performance in predicting pneumonia (Figure 5.26.c). With an overall accuracy achieved at

93.9% (Table 5.11), the model could correctly predict the disease’s presence or absence in

most cases. The model’s Sen, standing at 93.2%, indicates that when pneumonia is genuinely

present, it’s detected most of the time, unlike the case of the absence of demographic and

physiological features in the predictive model training. On the other hand, the model’s Spe of

94.6% suggests a reliable prediction when the disease isn’t present. Precision, another pivotal

metric, sits at 94.9%, meaning that the majority of cases tagged as positive indeed are. The

model also shines in its negative predictive value, correctly identifying 92.9% of authentic

negative cases.

Despite these outstanding figures, there are areas of potential improvement. The FPR of

5.4% indicates occasional overdiagnosis, while the 6.8% FN rate suggests missed detection

in certain instances. Despite these concerns, it is clear that there is a great improvement in

minimising FP and FN rates compared to values of 6.5% and 7.1%, respectively where extra

features are not considered. Both these figures, while relatively low, carry significant weight in

medical contexts. Therefore, the model, while performing admirably, should be continuously

refined to further pare down these errors.

Prediction Performance of XGBoost

The XGBoost model’s performance on the Fundus images (Figure 5.27.a), primarily used for

predicting DR, is quite satisfactory, achieving an accuracy slightly beyond 78% (Table 5.12).

Precision and recall, both crucial metrics in clinical scenarios, show good values. Precision is

an indication of how many of the positive predictions were actually correct, while recall (or Sen)

indicates how many actual positive cases were identified correctly. When both these metrics

show reasonable values, it means the model is striking a good balance between identifying true

cases and avoiding false alarms, which was missing in previous tests done without considered

demographic and physiological features in the training process. An F1-score, a harmonic mean

of precision and recall, also points towards a solid balance between these two metrics. A higher

F1-score indicates fewer FPs and negatives.
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Figure 5.27: Confusion Matrix of XGBoost for – (a): Fundus Dataset, (b): OCT Dataset and
(c): X-ray Dataset.

Table 5.12: XGBoost Performance Metrics: Demographic and Physiological Features Case

Acc (%) Precision

(%)

Recall (%) Spe (%) F1-Score

(%)

Fundus 78.16 75.72 79.54 77.01 77.59

OCT 96.61 95.77 96.65 95.78 96.2

X-ray 96.93 97.38 96.56 97.32 96.97

Despite these commendable metrics, there are areas of concern. The 542 FPs indicate in-

stances where the model mistakenly predicted the presence of DR. The 435 FNs, on the other

hand, are cases where DR went undetected. Both errors are concerning in a clinical setting,

considering the significant implications of misdiagnosis. The choice between minimising FNs

or FPs depends largely on the medical condition in question. In the case of DR, missing a

diagnosis can have severe consequences, emphasising the importance of recall. This might ne-

cessitate adjustments to the model to enhance its recall, even if it comes at the cost of precision.

On the other side, the performance of the XGBoost model on the OCT dataset (Figure

5.27.b), used for detecting DMO disease, is impressive, with an accuracy close to 96.61% (Ta-

ble 5.12), overpassing the accuracy achieved without the integration of extra features to reach

only 93.63%. Sen or recall, which is approximately 96.65%, suggests the model’s commend-

able ability to identify actual positive DMO cases. Such high recall is paramount in a clinical
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setting where missing out on actual positive cases can have adverse patient outcomes. A Spe of

95.78% denotes the model’s capability to correctly identify the negative cases or those without

DMO. Precision, standing at around 95.77%, indicates that the vast majority of the model’s

positive predictions are indeed accurate. A FPR of 4.33% also means that out of 100 negative

cases, the model mistakenly flags about four as positive. This confirms the impact of adding

extra features into the training process where FPR was 5.46% also means that out of 100 neg-

ative cases the model wrongly flags more than 5 have DMO. The model’s effectiveness isn’t

only restricted to accuracy. A well-balanced F1-score of 94.33% (versus 93.04%), suggests

an equilibrium between precision and recall, essential for a reliable diagnostic tool. While the

metrics suggest a robust model, real-world clinical scenarios demand a consideration of the tan-

gible implications of FPs and negatives. The metrics should always be contextualised within

the clinical utility and potential harm of misdiagnosis.

In the case of its application on the X-ray dataset, for model validation purpose, the XG-

Boost model shines here as well (Figure 5.27.c), showing an accuracy of approximately 96.93%

(Table 5.12), versus only 95.61%. This high accuracy underscores the model’s robust predic-

tive capability for this task. The model’s Sen/recall is around 96.56%, highlighting its efficacy

in identifying true pneumonia cases. Such high recall is crucial to ensure patients with pneumo-

nia are correctly diagnosed and receive appropriate treatment promptly. With a Spe of 97.32%,

the model proves its mettle in identifying patients without pneumonia, ensuring that those who

are disease-free aren’t subjected to unnecessary treatments or interventions, unlike the previous

scenario results where extra features were not taken into consideration imposing more FPs. In

turn, this reduced the model’s Spe. A precision of 97.38% is indicative of the model’s robust-

ness. This means that when pneumonia is predicted, it is correct in about 97.38 cases out of

100, proving an enhancement of about 0.49%. The balanced F1-score of 96.97% is again a

testament to the model’s balanced diagnostic capabilities, balancing both precision and recall

effectively. The XGBoost model’s robustness on the X-ray dataset makes it a promising tool

for pneumonia diagnosis.
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Figure 5.28: Confusion Matrix of HyBoost for (a): Fundus Dataset, (b): OCT Dataset and (c):
X-ray Dataset.

Prediction Performance of HyBoost

On examining the results from the Fundus dataset, the hybrid predictive model (HyBoost)

yields an impressive accuracy of approximately 96.66% (Table 5.13). Such a high accuracy

underscores the model’s adeptness in discerning between instances of DR and its absence.

Moreover, the model’s low FP count is commendable, as over diagnosis can often lead to un-

necessary medical procedures and treatments, potentially burdening patients both financially

and psychologically. The model’s conservative approach in predicting positive cases ensures

that unwarranted interventions are minimised. The results appear promising, where the Hy-

Boost model addressed the FNs imperatively (Figure 5.28.a). In fact, the precision, recall,

F1-score have risen by 33.6%, 38.85%, and 33.4%, respectively with a Spe score achieving

97.73%.

Table 5.13: HyBoost Performance Metrics: Demographic and Physiological Features Case

Acc (%) Precision

(%)

Recall (%) Spe (%) F1-Score

(%)

Fundus 96.66 97.78 96.49 97.73 97.12

OCT 98.33 99.45 97.29 99.43 98.35

X-ray 98.2 98.1 98.6 98.1 98.3

Transitioning to OCT dataset, the model stands out with a laudable Acc of 98.33% (Ta-
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ble 5.13). Such a score indicates its proficiency in detecting DMO disease compared to only

96.28%. A closer inspection of the results illuminates the model’s strengths, notably its high

Sen of 97.29%. Sen holds particular gravitas in medical diagnostics, as the consequences of

missing an authentic positive case can be severe. That said, a 2.71% chance of overlooking

positive cases cannot be ignored (Figure 5.28.b), however, remaining better than the case of

exclusion of extra features. On the Spe front, a score of 99.43% emphasises the model’s finesse

in reducing false alarms versus only 91.02%. The model’s precision of 99.45% further instils

confidence in its predictions, particularly when compared with only 91.04% resulted from pre-

vious scenario. With a nominal FPR, the model effectively limits misdiagnoses. In summation,

the HyBoost model’s performance on the OCT dataset is sterling. It appears poised to be a

valuable ally in diagnosing DMO disease, but it’s paramount to juxtapose its results with other

diagnostic methodologies.

Delving into the X-ray validation dataset, the model continues to display prowess, boasting

an Acc of 98.2% (Table 5.13) compared to only 96.52%. The precision and recall, standing

at 98.1% and 98.6% respectively, further attest to the model’s balanced performance. The

near-equivalent values of precision and recall underscore the model’s uniformity in predicting

both positive and negative cases (Figure 5.28.c). The F1-score, harmonising both metrics,

echoes this sentiment with a score of 98.3%. However, medical diagnostics is an arena where

even minute discrepancies carry weight. The model’s 16 FNs, while modest in comparison

to the total sample size, underline a critical shortcoming. Overlooking authentic pneumonia

cases can potentially deprive patients of essential care. The 22 FPs, on the other hand, may

subject patients to superfluous treatments or tests, which can have psychological, physical, and

financial ramifications.

Conclusively, while the HyBoost model exhibits commendable proficiency on the X-ray

dataset in predicting pneumonia, the significance of even a handful of misdiagnoses cannot be

understated. It’s indispensable to continually monitor and validate the model’s performance

against fresh datasets and consider it in tandem with other diagnostic measures. In its entirety,

the HyBoost predictor showcases the potential to be an instrumental tool in medical diagnos-
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tics. Its results across the three datasets are promising, and with continuous refinements and

validations, it can be a cornerstone in healthcare imaging analysis. However, it’s essential to

recognise that no model is flawless, and its integration should be done judiciously, keeping

patient well-being at the forefront. Given its outperforming results compared to AdaBoost and

XGBoost, the proposed hybrid predictive model will be considered as the final model for the

suggested predictive framework to be then tested against state-of-the-art works (benchmark-

ing).

5.9.3 Benchmarking: Comparative and Critical Discussion

Benchmarking and rigorous testing against established methods are critical for validating the

efficacy and innovation of a proposed method within a research context. By engaging in com-

parative analysis with a range of notable approaches detailed in the literature review, researchers

can demonstrate where their proposed method stands in the existing hierarchy of solutions, and

identify specific areas of improvement or novelty. The discussed related works are going to

be used in the following benchmarking process. The proposed method, which stands on the

precipice of these diverse and powerful architectures, is meticulously designed to not only

draw lessons from these preceding models but to also forge ahead with unique innovations. It

is through this rigorous benchmarking process, placing the proposed framework in the crucible

against the high-performing architectures mentioned, providing the ability to truly measure and

articulate its contribution to the field—whether it be in enhancing accuracy, efficiency, gener-

alisability, or computational cost-effectiveness. The ultimate aim is to provide a compelling

case for the proposed solution by quantitatively and qualitatively demonstrating its superior

and specialised performance on the same tasks used by the referenced works.

In this benchmarking study, the proposed method will be rigorously tested across three dis-

tinct datasets including Fundus, OCT and X-ray, to comprehensively evaluate its adaptability,

scalability, and generalisability. This approach enables an assessment of the model’s perfor-

mance not only on datasets that align with the original modality types of the benchmarking

methods but also on those that introduce new modality challenges. By including cases where
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the dataset size differs significantly from the original training conditions of the benchmarking

methods, the study aims to further validate the robustness and versatility of the proposed model.

This thorough evaluation is intended to demonstrate the model’s ability to maintain outstand-

ing performance across various medical imaging modalities and varying dataset sizes, thereby

establishing its superiority in the field of medical image analysis.

In the experiments conducted, a 10-fold cross-validation was meticulously applied, ensur-

ing the robustness and credibility of the prediction results. Employing 10-fold cross-validation

is paramount in the world of ML/DL, as it systematically divides the datasets into ten distinct

subsets, using nine for training and one for testing in every iteration. This procedure is repeated

ten times, ensuring that each subset is used for validation precisely once. Such a comprehensive

approach minimises the risk of overfitting and enhances the generalisability of the model, mak-

ing the results more reliable and less susceptible to data biases. In the forthcoming performance

evaluation, the analysis will extend beyond conventional metrics to embrace a holistic view of

model efficacy. accuracy, precision, recall, specificity and F1-score will serve as the founda-

tional metrics resulted from PMM, capturing the essence of each model’s predictive power.

Complementing these, the processing time will be scrutinised, acknowledging that practical

deployment of these algorithms demands not just precision but also efficiency.

Benchmarking Results Using Fundus Dataset

The Fundus dataset serves as a critical benchmark for evaluating the performance of various DL

models in medical image analysis. The comparative analysis of different methods, including

the proposed approach, reveals key insights into the strengths and weaknesses of each model,

particularly in terms of accuracy, efficiency, and overall effectiveness as shown in Table 5.14.
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Table 5.14: Benchmarking Results Using Fundus Dataset

Method Processing

time (h:m:s)

Acc

(%)

Precision

(%)

Recall

(%)

Spe

(%)

F1-score

(%)

(Alryalat et al.,

2022)

01:45:46 89.7 85.3 83.2 88.06 84.2

(Li et al., 2022a) 01:03:43 84.1 81.4 83.8 83 82.5

(Wahab Sait,

2023)

01:00:53 85.78 84.02 82 84.35 82.99

(Paul and

Talukder, 2023)

01:10:00 80.1 78.13 79.9 79.98 79

(Sharma and

Guleria, 2023b)

01:00:12 81.03 80.1 79.5 80.63 79.79

(Shimpi and

Shanmugam,

2023)

00:56:42 69.73 63.2 64 65.06 63.5

(Vetrithangam et

al., 2023)

00:56:42 69.73 63.2 64 65.06 63.5

Proposed

Method

00:52:25 96.66 97.78 96.49 97.73 97.12

Alryalat et al.’s method demonstrates a respectable balance across all performance metrics,

achieving an F1-score of 84.2% (Alryalat et al., 2022). The close alignment between precision

(85.3%) and recall (83.2%) indicates a reasonable trade-off, suggesting that the model is well-

calibrated for the task at hand. However, the major drawback of this approach is its significant

processing time, which exceeds one and a half hours. This long duration may severely limit

its practical applicability in real-world, time-sensitive environments, such as clinical settings

where rapid diagnostics are essential. While the model’s reliability is evident, there is a clear

need for optimisation to enhance its efficiency without compromising accuracy.
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The (Alryalat et al., 2022) method was originally developed and tested on a significantly

smaller dataset consisting of OCT images. The original high accuracy (95.9%) reflects the

model’s optimisation for this specific modality. However, when applied to the Fundus dataset,

which is larger and of a different modality, the accuracy drops to 89.7%, with a substantial

processing time of over one and a half hours. The noticeable drop in accuracy and prolonged

processing time indicates a lack of adaptability when transitioning from OCT to Fundus im-

ages. The model, while effective in its original domain, struggles to maintain the same level

of performance when faced with a different imaging modality. The increased dataset size from

3,000 to 18,615 images exacerbates the model’s inefficiencies, particularly in terms of process-

ing time. This suggests that the method may not scale well with larger datasets. The significant

decline in accuracy and F1-score highlights the model’s limited generalisability. It was likely

overfitted to the specific features of OCT images, which do not translate effectively to the dif-

ferent characteristics of Fundus images.

On the other hand, Li et al.’s method shows a moderate performance across all metrics (Li

et al., 2022a), with a notable improvement in processing time compared to (Alryalat et al.,

2022), reducing it to just over an hour. However, this gain in efficiency comes at the cost of

lower accuracy (84.1%) and a reduced F1-score (82.5%). The method’s precision (81.4%) and

recall (83.8%) are balanced, but the trade-off in accuracy raises concerns about its applicability

in medical image analysis, where precision is often more critical than speed. While the method

offers better efficiency, the drop in overall performance may not be justifiable, particularly in

scenarios where high accuracy is paramount.

The (Li et al., 2022a) method was originally designed for Fundus images, similar to the

dataset used in this benchmarking study. Despite this alignment in modality, the accuracy

drops significantly from the original 99.2% to 84.1% when tested on the larger Fundus dataset.

Although the method is tested on the same modality (Fundus), the drop in accuracy suggests

that it may not adapt well to datasets that are larger or more diverse than what it was originally

trained on. The method was originally tested on a smaller dataset, and the significant perfor-

mance decline when applied to the larger 18,615 image dataset indicates poor scalability. The
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model may be overfitted to the specific characteristics of the original dataset. In addition, the re-

duced performance demonstrates limited generalisability, even within the same modality. This

suggests that the method may be overly reliant on the specific data distribution of its original

training set, struggling to maintain performance across different subsets of Fundus images.

Wahab Sait’s method improves upon the balance of accuracy, precision, and recall com-

pared to (Li et al., 2022a), with an accuracy of 85.78% and a precision of 84.02% (Wahab Sait,

2023). The processing time is further reduced to approximately one hour, enhancing its practi-

cality for real-time applications. However, despite these improvements, the method still trails

behind the proposed approach in all major performance metrics. The proposed method not only

surpasses this model in terms of accuracy and F1-score but also achieves a shorter processing

time, indicating that (Wahab Sait, 2023) could benefit from further optimisation, particularly in

computational efficiency.

This method was originally designed for Fundus images, similar to the benchmark dataset,

but with a smaller size. The accuracy decreases from 98% to 85.78% when tested on a larger

Fundus dataset. The method shows a reasonable level of adaptability since it operates within

the same modality. However, the drop in accuracy suggests that while the method is somewhat

adaptable, it is not robust enough to handle the increased complexity or diversity of the larger

dataset. The transition from 5,590 to 18,615 images leads to a decline in performance, indicat-

ing that the method struggles with scalability. The model may not be effectively managing the

larger, more varied data. Moreover, the moderate decline in accuracy and F1-score indicates

limited generalisability. The model may be overfitted to the specific subset of Fundus images

used in the original study, leading to decreased performance when applied to a broader dataset.

Conversely, Paul and Talukder’s method records the lowest performance among the evalu-

ated models, with an Acc of 80.1% and an F1-score of 79% (Paul and Talukder, 2023). The

significant drop in both precision (78.13%) and recall (79.9%) raises serious concerns about the

reliability and robustness of this model, particularly in critical diagnostic settings where accu-

racy is very important. Additionally, the processing time of over one hour does not compensate

for its lower performance, suggesting that the model requires substantial methodological revi-
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sions. The combination of low accuracy and relatively long processing time makes this method

less competitive compared to others in the study.

Similar to (Wahab Sait, 2023), this method was also originally trained on a smaller Fundus

dataset. However, it shows a more significant drop in performance when applied to the larger

Fundus dataset, with an accuracy decrease from 97.78% to 80.1%. The significant drop in

accuracy and F1-score suggests a lack of adaptability, even within the same modality. The

model fails to generalise effectively to the larger dataset. The method’s poor performance

on a larger dataset highlights its scalability issues. It likely struggles with the increased data

diversity and volume, leading to a marked decline in performance. Additionally, the drastic

reduction in performance underscores the method’s limited generalisability. It appears to be

highly specialised for the smaller, original dataset and does not perform well when applied to a

broader or more complex set of Fundus images.

Contrarely, Sharma and Guleria’s method is noteworthy for its short processing time of

about one hour (Sharma and Guleria, 2023b). However, this efficiency comes with a trade-off

in performance, as evidenced by its accuracy of 81.03% and an F1-score of 79.79%. While

the model offers a commendable speed advantage, it does so at the expense of accuracy and

reliability, making it less suitable for critical medical applications where precision is crucial.

The trade-off between speed and accuracy is evident, and while the method may be suitable

for less critical applications, it falls short when compared to the proposed method in both

performance and overall effectiveness.

Originally developed for X-ray images, this method faces a significant challenge when

applied to Fundus images, resulting in a notable drop in Acc from 93% to 81.03%. The method

demonstrates limited adaptability, struggling to transition from X-ray to Fundus images. The

performance decline indicates that the model is heavily tailored to the specific characteristics of

X-ray images and does not transfer well to other modalities. While the original and benchmark

datasets are relatively similar in size, the drop in performance suggests that the method may not

scale effectively across different data modalities. The considerable decrease in accuracy and

F1-score highlights the model’s lack of generalisability. It is not versatile enough to generalise
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across different types of medical images, performing poorly outside its original domain.

Shimpi and Shanmugam’s method exhibits outstanding results with an accuracy of 93.7%

and an F1-score of 80.51%, suggesting a robust model that performs well across various metrics

(Shimpi and Shanmugam, 2023). However, it still lags behind the proposed method in overall

performance and processing time. The model’s longer processing time of approximately 1 hour

and 28 minutes indicates potential inefficiencies in its computational approach, which could be

a limiting factor in its practical application. While the model is strong in accuracy, the need for

optimisation to improve efficiency and reduce processing time is apparent.

This method, originally designed for Fundus images with a dataset size close to the bench-

mark dataset, shows a smaller drop in performance, with accuracy decreasing from 95.56%

to 93.7%. The method demonstrates relatively good adaptability within the same modality,

maintaining a high level of performance despite the larger dataset. The performance stability

suggests that the method scales reasonably well from 10,000 to 18,615 images, though there

is a slight efficiency issue, as indicated by the longer processing time. The small decline in

accuracy and F1-score indicates strong generalisability within the Fundus modality. The model

can generalise effectively to a larger and potentially more diverse dataset, maintaining high

performance.

Vetrithangam et al.’s method stands out for its exceptionally short processing time of less

than one minute, the shortest among all the methods. However, this speed comes at a sig-

nificant cost to performance, as the model achieves the lowest Acc (69.73%) and F1-score

(63.5%) in the study. The trade-off between speed and performance is particularly pronounced

here, suggesting that the model sacrifices too much in terms of accuracy to achieve its rapid

processing time. In critical applications, such as medical diagnostics, this trade-off is unlikely

to be acceptable, as it undermines the reliability and validity of the results.

Originally designed for a much smaller X-ray dataset, this method exhibits a drastic drop

in performance when applied to the significantly larger and different Fundus dataset, with ac-

curacy plummeting from 99.77% to 69.73%. The method shows a severe lack of adaptability,

struggling to transition from X-ray to Fundus images. The significant decline in accuracy and
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F1-score indicates that the model is not versatile and cannot effectively handle different imaging

modalities. The substantial increase in dataset size from 1,485 to 18,615 images overwhelms

the model, highlighting its poor scalability. The method appears optimised for small-scale

datasets and cannot scale to handle larger, more complex data. The model’s inability to gener-

alise across different modalities and larger datasets is evident from the significant performance

decline. It is highly specialised for the specific, small X-ray dataset it was originally trained on

and does not perform well outside that narrow scope.

The proposed method sets a new benchmark for both performance and efficiency, achieving

the highest Acc (96.66%) and F1-score (97.12%) among all the evaluated models. The method

demonstrates an excellent balance between precision (97.78%) and recall (96.49%), indicating

its robustness and reliability across various metrics. Furthermore, the processing time of just

under one hour is the shortest among all the methods, highlighting the advanced optimisation

techniques employed. The proposed method outperforms all other models, not only in terms

of accuracy but also in computational efficiency, making it a significant advancement over

the existing methods. This balance between high performance and speed marks the proposed

method as a superior solution in the field of medical image analysis, capable of handling the

demands of real-world applications effectively.

The proposed method consistently outperforms all the benchmarking methods across the

Fundus dataset, achieving the highest Acc (96.66%) and F1-score (97.12%). This performance,

coupled with the shortest processing time, highlights the method’s superior adaptability, scala-

bility, and generalisability. The proposed method demonstrates exceptional adaptability, main-

taining top-tier performance across a different range of dataset sizes and modality types. Unlike

other methods, it is not constrained by the specific characteristics of its training data, showcas-

ing its versatility across varied imaging modalities. The method scales effectively from smaller

to larger datasets without a significant loss in performance or efficiency. Its robust design en-

sures that it can handle large and diverse datasets, which is a critical requirement for real-world

applications in medical imaging. The proposed method exhibits outstanding generalisability,

maintaining high accuracy and F1-score across different datasets and modalities. Its ability
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to generalise well across a wide range of Fundus images, regardless of size or complexity,

positions it as a highly reliable tool for medical image analysis.

When comparing the benchmarking methods to each other and to the proposed method, it

is clear that while some methods offer competitive accuracy (e.g., Shimpi and Shanmugam,

2023), they often do so at the expense of processing time, limiting their practical applicability.

On the other hand, methods that prioritise efficiency, such as (Sharma and Guleria, 2023b) and

(Vetrithangam et al., 2023), suffer from significant drops in accuracy, making them less reliable

for critical applications.

The proposed method, in contrast, successfully balances both performance and efficiency,

setting a new standard in the field. It addresses the limitations of the benchmarking methods

by offering a model that is not only highly accurate but also efficient, making it well-suited for

a wide range of medical imaging tasks where both speed and precision are essential. The com-

prehensive evaluation highlights the proposed method’s superiority in terms of generalisability

and adaptability, as it outperforms existing methods across all key metrics, making it a valuable

contribution to the advancement of medical image analysis.

Benchmarking Results Using X-ray Dataset

The X-ray dataset serves as a vital benchmark for evaluating the adaptability, scalability, and

generalisability of different DL models in medical image analysis. This section provides a

detailed comparison of various benchmarking methods, critically evaluating their performance

against each other and the proposed method as shown in Table 5.15.

Table 5.15: Benchmarking Results for X-ray Dataset

Method Processing

time (h:m:s)

Acc

(%)

Precision

(%)

Recall

(%)

Spe

(%)

F1-score

(%)

(Alryalat et al.,

2022)

01:53:10 88.00 85.2 86.9 87.3 86.00

Continued on next page
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Table 5.15: Benchmarking Results for X-ray Dataset (Continued)

Method Processing

time (h:m:s)

Acc

(%)

Precision

(%)

Recall

(%)

Spe

(%)

F1-score

(%)

(Li et al., 2022a) 01:15:00 82.30 80.1 81.42 82.0 80.75

(Wahab Sait,

2023)

01:03:32 86.30 84.8 85.07 85.5 84.93

(Paul and

Talukder, 2023)

01:35:00 71.04 70.3 68.5 70.8 69.3

(Sharma and

Guleria, 2023b)

00:50:12 87.00 85.8 86.03 87.6 85.91

(Shimpi and

Shanmugam,

2023)

02:02:00 76.91 73.4 75.0 76.1 74.19

(Vetrithangam et

al., 2023)

00:57:42 80.03 67.9 69.0 79.8 68.4

Proposed

Method

00:23:40 98.20 98.1 98.6 98.1 98.3

The method from (Alryalat et al., 2022) demonstrates strong performance across all metrics

with an F1-score of 86%, indicating a well-balanced model in terms of precision (85.2%) and

recall (86.9%). However, the significant processing time of over one and a half hours limits

its practical applicability, especially in scenarios where rapid diagnosis is critical. The method

shows reasonable adaptability in transitioning from OCT to X-ray images, maintaining strong

performance. However, the high processing time suggests that the model may not be optimised

for efficiency when handling different modalities. While the accuracy remains high, the pro-

cessing time indicates potential scalability issues, especially when applied to larger datasets

or in time-sensitive environments. Additionally, the model generalises well from OCT to X-

ray images, but the extended processing time highlights a need for optimisation to improve
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efficiency while maintaining accuracy.

This work in (Li et al., 2022a) achieves a slightly lower Acc of 82.3% and an F1-score of

80.75% compared to (Alryalat et al., 2022). The processing time is shorter, which improves

efficiency, but this comes at the cost of lower accuracy and F1-score, which may not be ac-

ceptable in scenarios where high precision is critical. The method shows limited adaptability,

struggling to maintain high performance when transitioning from Fundus to X-ray images. The

reduction in accuracy suggests that the method may not scale well when applied to datasets

of a different modality or larger size. Moreover, the method generalises less effectively than

(Alryalat et al., 2022), indicating that it may be too specialised for its original modality, making

it less versatile across different types of medical images.

(Wahab Sait, 2023) strikes a good balance between accuracy, precision (84.8%), and recall

(85.07%), surpassing (Li et al., 2022a) in overall performance. The processing time is also

reduced, making it more practical for real-world use. However, it still trails behind the pro-

posed method in all metrics. The method shows good adaptability, transitioning relatively well

from Fundus to X-ray images, though not as effectively as the proposed method. While pro-

cessing time is improved, the method still does not achieve the highest performance, indicating

that further optimisation is needed for better scalability. Additionally, the model generalises

well across different modalities, but its performance, while solid, does not match the proposed

method, suggesting that its generalisability could be further enhanced.

The method in (Paul and Talukder, 2023) records the lowest Acc (71.04%) and F1-score

(69.3%) among the benchmarks, raising significant concerns about its applicability in critical

diagnostic settings. Despite having a relatively short processing time, the low performance

suggests a need for substantial revisions to the model. The significant drop in performance

indicates poor adaptability when transitioning from Fundus to X-ray images, suggesting that

the model is not versatile enough to handle different modalities effectively. The method’s low

performance even on a smaller dataset suggests scalability issues, likely due to its over-reliance

on the specific characteristics of its original dataset. The work generalises poorly to X-ray

images, making it unsuitable for broader applications in medical image analysis where diverse
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data types are encountered.

The proposed work in (Sharma and Guleria, 2023b) offers the shortest processing time

among the benchmarks, which is advantageous. However, the trade-off is a reduction in Acc

(87%) and F1-score (85.91%), making it less competitive with the proposed method. The

method is relatively well-adapted to its original modality (X-ray), but the trade-off in accuracy

for speed suggests that it may not be as versatile when higher accuracy is required. The short

processing time indicates good scalability in terms of efficiency, but the reduction in accuracy

suggests that the method may not scale well in terms of performance. Add to that, the model

generalises well within the X-ray modality, but its performance still falls short of the proposed

method, indicating room for improvement in balancing speed with accuracy.

(Shimpi and Shanmugam, 2023)’s work achieves reasonable Acc (76.91%) and F1-score

(74.19%), indicating a robust model. However, the processing time is the longest among the

benchmarks, which could limit its practical application. The method shows moderate adapt-

ability but struggles with the transition from Fundus to X-ray images, as evidenced by the

drop in performance and increased processing time. The method’s long processing time indi-

cates scalability issues, particularly when handling larger datasets or when efficiency is critical.

Moreover, it generalises reasonably well, but the drop in performance and efficiency suggests

that it may not be as robust across different modalities as the proposed method.

The last benchmarking method shows the lowest Acc (80.03%) and F1-score (68.4%)

among the X-ray benchmarks, which, coupled with a moderate processing time, suggests that

the model sacrifices too much in terms of performance for the sake of efficiency (Vetrithangam

et al., 2023). The significant drop in accuracy and F1-score indicates poor adaptability, espe-

cially given that the original dataset was of the same modality (X-ray) but much smaller. The

method struggles to scale from a smaller dataset to a larger one, leading to a noticeable de-

cline in performance, which highlights its limitations in handling more extensive and complex

datasets. Add to that, their method generalises poorly, particularly when moving to a larger

dataset of the same modality, indicating that it is highly specialised and lacks the robustness

needed for broader applications.
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Contrarely, the proposed method achieves the highest Acc (98.2%) and F1-score (98.3%)

among all benchmarks. It also has the shortest processing time, making it highly efficient

and suitable for real-world applications. The proposed method shows exceptional adaptability,

maintaining superior performance across different modalities, including X-ray images. Its abil-

ity to handle different types of medical images without significant loss in performance demon-

strates its versatility. The method scales effectively from smaller to larger datasets, maintaining

high accuracy and efficiency. This scalability is crucial for practical applications where datasets

can vary in size. Moreover, it exhibits outstanding generalisability, performing consistently

well across various datasets and modalities. Its robustness makes it a reliable tool for medical

image analysis, capable of delivering accurate results in diverse clinical scenarios.

Benchmarking Results Using OCT Dataset

The robustness and versatility of various DL architectures are often gauged by their perfor-

mance on standardised datasets, providing a common ground for comparison. In this context,

the OCT dataset emerges as a significant benchmarking asset due to its complex, real-world

medical imaging data. Each of the works under consideration has been meticulously tested

against this OCT dataset. By evaluating these varied architectures on the OCT dataset, it pro-

vides the opportunity to draw comprehensive comparisons, assessing not only the models’ ac-

curacy and efficiency but also their ability to handle the intricacies of medical imaging data.

The proposed method joins this line-up, having been subjected to the same rigorous testing

regime on the OCT dataset, thereby ensuring that this research’s findings and conclusions are

grounded in a consistent and challenging real-world application. This comparative testing is

not just a measure of performance but a testament to the advancements in the field and the

potential of the proposed method to contribute meaningfully to medical image analysis.

For the top three performing methods, the inclusion of SHAP values will unveil the decision-

making dynamics, clarifying which features most significantly sway the models’ predictions.

This dual approach, where performance metrics intersect with explainability analysis via SHAP,

will provide a comprehensive understanding of the models’ operational characteristics. The in-
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sights gleaned will not only benchmark the models against the current state-of-the-art but will

also illuminate the path forward for algorithmic refinement and application in real-world sce-

narios. Table 5.16 summarises the obtained results.

Table 5.16: Benchmarking Results Using OCT Dataset

Method Processing

time (h:m:s)

Acc

(%)

Precision

(%)

Recall

(%)

Spe

(%)

F1-score

(%)

(Alryalat et al.,

2022)

1:31:40 89.34 86.98 85.55 87.04 86.25

(Li et al., 2022a) 01:10:55 83.77 84.04 83.11 85.00 83.57

(Wahab Sait,

2023)

01:02:40 85.67 86.00 84.97 87.09 85.47

(Paul and

Talukder, 2023)

01:21:33 77.65 79.50 76.00 78.46 79.50

(Sharma and

Guleria, 2023b)

1:00:34 80.40 82.73 79.03 81.20 80.83

(Shimpi and

Shanmugam,

2023)

1:30:10 93.53 94.65 90.18 94.34 92.35

(Vetrithangam et

al., 2023)

00:57:60 69.66 71.60 68.00 72.40 69.75

Proposed

Method

00:50:09 98.33 99.45 97.29 99.43 98.35

Starting with (Alryalat et al., 2022), their model exhibits a respectable balance across all

metrics with an F1-score of 86.25%. The precision and recall are fairly close, indicating a

reasonable trade-off between the two. However, a significant processing time of over one and a

half hours may limit practical applicability in time-sensitive environments. Their model appears

to be reliable, but there may be a need for optimisation to improve efficiency where time could
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be a bottleneck for time-sensitive applications.

The work in (Li et al., 2022a) shows a reasonable performance, but their metrics are out-

performed by other methods. They also exhibit a shorter processing time than (Alryalat et al.,

2022), which indicates better efficiency, but this comes at the cost of lower accuracy and an

F1-score. Although their processing time is reduced, the trade-off for accuracy may not be

justified in medical image analysis where precision is paramount. The work in (Wahab Sait,

2023) demonstrates an improved balance of accuracy, precision, and recall over research in

(Li et al., 2022a), though still trailing behind the proposed method. Their model also achieves

a notable decrease in processing time. The method proposed in (Paul and Talukder, 2023)

records the lowest accuracy and F1-score, which raises concerns about the reliability of their

model, especially in critical diagnostic settings. Their processing time does not compensate for

the lower performance, suggesting a need for a substantial methodological review. Authors in

(Sharma and Guleria, 2023a) proposed a method that offers a promising processing time, the

best among the related works, which is commendable. Nevertheless, the corresponding per-

formance metrics, while fair, are not competitive with the proposed method. The approach in

(Shimpi and Shanmugam, 2023) shows outstanding results compared to the related works with

high accuracy and an excellent F1-score, suggesting a robust model. Yet, they are still eclipsed

by the proposed method in overall performance and slightly in processing time, hinting at po-

tential inefficiencies in their computational approach. The work in (Vetrithangam et al., 2023)

has the shortest processing time, which is impressive. However, this comes at the expense of

all performance metrics, with their method showing the lowest accuracy and F1-score. This

indicates a significant trade-off between processing time and performance, which might not be

acceptable in critical applications.

The proposed method demonstrates superior performance across all metrics with an im-

pressive Acc of 98.33% and an F1-score of 98.35%, suggesting an excellent balance between

precision and recall. Moreover, the processing time is the shortest among all the methods,

which not only makes it highly efficient but also suggests the use of advanced optimisation

techniques. The critical review of the related works centers around the need to balance pro-
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Figure 5.29: SHAP Values Explainer for (a): (Alryalat et al., 2022), (b): (Shimpi and Shan-
mugam, 2023), (c): Proposed Method.

cessing time with performance metrics—efficiency cannot come at the cost of effectiveness.

Additionally, models must aim for a higher Spe without sacrificing Sen to be truly useful in

varied operational scenarios. The proposed method sets a benchmark for both performance

and efficiency, marking a significant advancement over the related works. It becomes a model

example, showing that high accuracy and speed are achievable in concert.

To validate the obtained results analysis of SHAP values has taken place. Figure 5.29.a, c,

and b show the SHAP values of related works (Alryalat et al., 2022), (Shimpi and Shanmugam,

2023), and the proposed method, respectively. Each figure shows the features importance of

the first three folds for prediction.

As showing in Figure 5.28.a. in the first fold, Feature_2095 emerges as the primary driver

with a predominantly positive influence on the model’s output, as indicated by its largely pos-
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itive SHAP values, suggesting that higher values of this feature push the model’s prediction

upward. Other features largely hover around a SHAP value of zero, implying minimal indi-

vidual contribution to the model’s predictions, with a uniform colour distribution indicating

no dominant feature value affecting the impact. In the second fold, the scenario repeats with

Feature_2095 maintaining its status as the most impactful feature, while other features show

a negligible effect, although with a slight variability shown by the spread of SHAP values.

The colour distribution remains consistent, showing no clear trend in feature values influenc-

ing the model. The third fold reiterates the pattern, with Feature_2095 again standing out for

its positive impact, while the SHAP values for other features remain close to zero, reinforc-

ing the minimal contribution narrative. The colour gradient holds steady, suggesting no direct

correlation between the magnitude of feature values and their predictive impact.

Across all folds, the dominant influence of Feature_2095 positions it as a key predictor,

while the lack of SHAP value variation for the other features points to their limited individual

effect, raising the question of their overall importance or whether their potential effects are

eclipsed by the predominant Feature_2095. The prediction model appears to have overlooked

HF features, which might embody complex abstractions or data combinations potentially more

predictive of outcomes, suggesting a missed opportunity for improving performance. This ab-

sence in significant SHAP value positions hints at a lack of comprehensive feature engineering

that could have unveiled nuanced data patterns, possibly pointing to an overly simplistic model.

Even with consistent SHAP value distributions across folds, the expected regularity in the sig-

nificance of HF features is lacking, signifying underfitting. Moreover, the model’s potential

failure to capture interactions between features, particularly if HF features were designed to

encapsulate such interactions, could limit its ability to exploit the data’s full structure. The

prominence of a single feature across folds raises concerns about bias and over-reliance on this

feature, possibly compromising model robustness. Additionally, the model’s generalisability

could be questioned, as HF features are often key to adapting to new data variations. Lastly,

the proximity of most features to zero in SHAP values suggests a potential redundancy or noise

within the feature set, implying that the model might benefit from discarding these less infor-
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mative features in favour of more impactful, high-level ones.

The analysis of the SHAP value plots reveals some critical insights into the model trained

on OCT images by (Shimpi and Shanmugam, 2023). Directionality stands out as the most

influential feature, exerting a strong positive influence on the model’s predictions, as seen by the

concentration of dots on the far right (Figure 5.29.b). This is followed by Feature_2253, which,

although significant, displays more variability in its effect on the model’s output, indicating

that the model’s response to this feature can vary. Mean_values_colour is also recognised as

an important feature, but like Feature_2253, it shows a varied impact on the predictions. The

spread of SHAP values across zero for each feature suggests that a feature’s value could either

increase or decrease the model output, with the specific effect dependent on the interplay with

other features. Texture Energy, while having a less pronounced effect, shows a consistent and

positive influence across all folds.

In terms of model understanding and diagnostics, it becomes evident that the model consid-

ers Directionality, Feature_2253, and Mean_values_colour as important features, as indicated

by their prominence in the SHAP summary plot. The model demonstrates consistency in the

impact of these features across different folds, which points to the stability of the model’s be-

haviour and suggests that it is not overly sensitive to the specific data subset on which it is

trained. Additionally, the varied distribution of SHAP values for certain features suggests com-

plex interactions that could be influencing the model’s predictions, highlighting the need for a

nuanced understanding of how different features contribute to the model’s decisions.

The reliance of the model on mean_values_colour for the OCT dataset raises concerns while

the images are indeed grey-scale based. In such images, colour information, typically spread

across RGB channels, should be non-existent, making colour a seemingly irrelevant feature for

the model to focus on. This situation suggests that there might have been an oversight during

the feature extraction and engineering phase; the colour feature should have been either re-

moved or properly processed during the pre-processing stage. As a result, the model is likely to

benefit from a feature selection approach that prioritises attributes more pertinent to grey-scale

images, such as texture, edges, and contrast. This unexpected emphasis on colour also puts a
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spotlight on the data pre-processing procedures, indicating that the colour feature warrants a

closer review and potentially should be excluded from the dataset to ensure it does not intro-

duce meaningless information. Additionally, this reliance on an ostensibly irrelevant feature

could be a sign of overfitting, implying that the model might not generalise well to new, unseen

data because it could be learning from noise instead of extracting significant patterns necessary

for robust predictions.

The proposed model exhibits noteworthy consistency in the impact of the top features across

all three folds, with ’Feature_30’, ’Feature_4863’, ’Feature_4885’, and ’Feature_502’ showing

a high impact on the model output, suggesting that the method used for feature extraction and

selection is stable and reliable (Figure 5.28.c). In the field of ’Directionality’ and ’Texture

Energy’, the features, particularly ’Feature_30’, have a strong positive SHAP value, implying

they significantly contribute to the positive class predictions in the model, indicative of key

characteristics in the OCT images relevant for the task at hand. The distribution of SHAP values

indicates that the model is capturing a diverse array of effects from the features, with high-

density regions in the figures denoting areas where features have a more uniform impact on the

model output, and the sparser regions may represent more complex, non-linear relationships.

The ’Texture Contrast’ features show varied influence on model predictions, with some having

positive and others negative SHAP values, reflecting a sophisticated model that accounts for

different types of textures in OCT images, crucial for accurate diagnostics.

The clarity in the visualisation of SHAP values aids in understanding the decision-making

process of the ML model, reinforcing the credibility and transparency of the analytical ap-

proach. Moreover, the method’s ability to discern important features from an OCT dataset,

which often contains complex and high-dimensional data, speaks to the effectiveness of the

feature engineering and selection process utilised in the methodology. Overall, the results sug-

gest that the model and methodology employed are capturing essential patterns and details in

the data, vital for the accurate prediction of outcomes, and the consistency and depth of the

SHAP analysis across all folds are particularly praiseworthy, demonstrating the reliability and

potential clinical applicability of the approach in the analysis of OCT images.
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5.10 Conclusion

The culmination of this research with the DenCeption feature extraction framework and the

HyBoost hybrid predictive model has led to a significant advancement in the analytical capa-

bilities for medical images interpretation, to include Fundus, OCT, and X-ray. The DenCeption

framework has proved to be a robust method for feature extraction, ensuring consistent impact

from the top features across different data folds, thereby affirming its stability and reliability.

The extracted features have exhibited strong positive SHAP values, demonstrating their sub-

stantial contribution to the predictive prowess of the HyBoost model. The hybrid nature of

HyBoost has allowed for the effective utilisation of various analytical strengths, capturing a

wide spectrum of effects from the medical imaging datasets as evidenced by the distribution

of prediction values. This diversity in feature influence is crucial for the nuanced understand-

ing of those medical images, which are often characterised by complex textures and patterns.

The positive and negative SHAP values for particular features, reflect the model’s sophisticated

handling of varying features, underlining its diagnostic precision.

Moreover, the clear visualisation of predictive values has not only facilitated a deeper under-

standing of the decision-making process inherent in the HyBoost model but has also strength-

ened its credibility and transparency. This interpretability is essential for clinical applications

where practitioners’ trust in automated systems is paramount. The effectiveness of DenCeption

in high-dimensional data processing further underscores the utility of our feature engineering

in refining the quality of inputs for superior outcomes. In conclusion, the DenCeption and Hy-

Boost tandem have collectively shown promising results, capturing essential data patterns that

are crucial for the accurate prediction of clinical outcomes based on different tested medical im-

ages types. The reliability and interpretability of the results, coupled with strong performance

metrics, pave the way for their potential clinical applicability.
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Chapter 6

Conclusion and Future Work

In the field of medical image processing, traditional techniques have traditionally been the foun-

dation, although with limitations in automation, responsiveness, and reliability. These manual

and semi-automated methodologies demand significant human intervention, often leading to

inconsistencies in interpretation and analysis. As the medical field gravitates towards more au-

tomated solutions, ML and DL have emerged as promising avenues. However, these advanced

techniques are not without their challenges. Interpretability, scalability, and adaptability remain

critical hurdles, particularly given the complex nature of medical imaging data, which varies

dramatically with each disease type. Furthermore, the lack of a standardised evaluation mech-

anism for ML and DL models in image processing exacerbates these challenges, coupled with

the validation obstacles posed by the insufficiency of comprehensive datasets.

In response to these prevalent issues, the medical imaging community has witnessed a shift

towards hybrid models that combine the strengths of various computational approaches to en-

hance classification and prediction capabilities. Yet, despite these advancements, the inter-

pretability and scalability of such models remain in question. The alteration of algorithms and

model architectures has not been paralleled by a comprehensive revision of the foundational

framework supporting these models, leaving a significant gap in the pursuit of an effective

solution.
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6.1 Performance Overview of the Research Contributions

Addressing these gaps, the DenCeption model was designed as part of this thesis. DenCep-

tion represents a significant advancement, transcending the limitations of existing ML and DL

methodologies by offering a versatile and robust framework mainly tested and validated for

medical image processing. The rigorous evaluation of DenCeption, through extensive training

and testing phases, has uniquely demonstrated its superior performance across a multitude of

metrics. Achieving an unprecedented Acc of 91.3%, DenCeption sets a new paradigm in the

efficiency and effectiveness of hybrid models in tackling complex classification tasks. Its vari-

ants, including DenCeption-201, DenCeption-161, and DenCeption-121, further underscore

the model’s flexibility, each delivering commendable accuracies around 89%. In stark contrast,

state-of-the-art models such as the ResNet-Inception lag significantly behind, with an Acc of

only 73.4%.

One of the remarkable aspects of DenCeption is its nuanced Sen, especially evident in the

DenCeption-201 variant, which boasts a 90% Sen rate. This adaptability in recognising posi-

tive instances, although slightly lower than DenCeption’s peak Sen of 93%, is a testament to

the model’s refined predictive capabilities. Conversely, the DenCeption-HTB-NInC variant il-

lustrates the criticality of integrating InC modules within the HTB structure, a modification that

significantly enhances the model’s ability to detect positive cases, underscoring the importance

of architectural innovation in improving model performance.

Furthermore, DenCeption’s precision rate of 94% and the highest F1-score of 93.4% high-

light its unparalleled capacity in accurately identifying and classifying instances, reaffirming

its status as a benchmark in medical image analysis. The precise fine-tuning of DenCeption’s

architecture, particularly the strategic incorporation of InA and InB modules within the HDB

block, has been pivotal in optimising its feature extraction and representation capabilities.

The transition from training and testing to the validation phase marked a critical stage in

this research, rigorously assessing DenCeption’s generalisability, robustness, and practical ap-

plicability. This validation process, through a thorough examination of errors, computational
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complexity, and scalability, was instrumental in establishing DenCeption’s viability for real-

world applications. This phase solidified DenCeption’s role as a pivotal influence in the field of

medical image analysis, positioned to address the complex challenges of disease classification

with newfound precision and reliability.

The work conducted this thesis signifies a pivotal advancement in the domain of medical im-

age processing, particularly addressing the critical aspect of features extraction. A thorough in-

vestigation into current methodologies unveiled a significant reliance on traditional techniques

and a growing interest in automated ML and DL models. However, these approaches often

fall short in terms of responsiveness, reliability, interpretability, scalability, and adaptability,

especially when faced with the multifaceted nature of medical images. The essence of features,

HF or DHF, plays a transformative role in the efficacy of classification and prediction models.

Their quality, quantity, and nature not only influence a model’s performance but also its ability

to remain unbiased among diverse and sometimes imbalanced datasets.

Addressing these challenges, the research introduced a ground-breaking features extrac-

tion framework that inventively combines both HF and DHF. This framework, powered by the

novel DenCeption model, signifies an advancement towards automating the feature extraction

process, ensuring a high performance of medical analysis with an optimised set of features. The

importance of this approach becomes even more pronounced in the context of manual features

extraction – a task that demands considerable time and expertise, especially when dealing with

complex grey-scale and coloured medical images like MRIs and Fundus images.

The DenCeption, GLCM, Tamura, RF, CHKM backed with MRF-EPM for segmentation

framework emerged from a comprehensive analysis and rigorous testing across a spectrum

of experiments, designed to evaluate the effectiveness of various features combinations. This

thorough approach resulted an adaptive and scalable framework which is capable of select-

ing the most conducive features combination tailored to the specific requirements of the input

dataset. Such an endeavour was not only theoretical; it was substantiated through experimenta-

tion evidence showcasing the framework’s capability in handling both labelled and unlabelled

datasets, achieving an impressive 97% Acc for the Texture-Shape-DHF combination and an
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unprecedented 98.9% for the Texture-Shape-Colour-DHF combination.

These accomplishments underscore not only the technical relevancy of the proposed frame-

work but also its practical implications in enhancing the responsiveness and reliability of med-

ical image analysis. By minimising FPs and negatives, the framework promises a new era of

precision in disease classification and diagnosis, potentially revolutionising the way medical

imaging is approached.

This thesis, therefore, is presented as a testament to the potential of integrating HF and

DHF in a consistent and optimised manner, leveraging the strengths of the DenCeption model

to redefine the standards of features extraction in medical image processing. Delving into the

contemporary landscape of medical research, it becomes apparent that DL’s role in diagnosing

and predicting diseases is both significant and expanding. Yet, despite the promising advance-

ments, the reviewed literature highlights areas requiring further exploration and refinement.

The application of advanced ML and DL methodologies in understanding complex medical

imagery has indeed revolutionised diagnostic precision, enriching our comprehension of dis-

eases and tailoring treatment pathways more effectively.

DL and ML methodologies are increasingly recognised for their superiority over tradi-

tional diagnostic methods, heralding a new epoch in medical science. Nonetheless, the highly

achieved accuracy rates presented by numerous studies require a critical and deeper exami-

nation. accuracy metric, while important, occasionally obscures underlying model biases or

overfitting, particularly with datasets lacking in diversity.

The discussion around model reproducibility and scalability underscores a critical concern

presented by the presumption that these models will exhibit similar efficacy across heteroge-

neous medical contexts is optimistic. However, real-world healthcare settings challenged with

disparities in technology, patient demographics, and image quality, would potentially decrease

a model’s performance outside controlled research environments.

Furthermore, an overemphasis on technical capabilities may dominate essential aspects of

diagnostics like the clarity of a model’s rationale and its pertinence to clinical settings. The

adoption of models in clinical practice is contingent not just on their diagnostic accuracy but
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also on their explainability, without which clinicians may hesitate to rely on them for critical

health decisions. Additionally, the need for advanced model architectures must also balance

with practical concerns of sustainability and computational requirements. In fcat, advanced

DL models often require substantial computational resources which is inconvenient in case of

under-resourced settings.

To address these critical challenges, this thesis introduces a novel predictive framework

integrating the newly designed HyBoost hybrid model. This innovative model employs the

strengths of AdaBoost and XGBoost within a comprehensive feature extraction framework

mainly through the DenCeption model. This integration has resulted a substantial increase in

medical image analysis, extending its capability to encompass diverse imaging types such as

Fundus, OCT, and X-ray images. The DenCeption framework distinguishes itself as an adaptive

feature extraction mechanism, ensuring the pivotal features’ consistent influence across varied

data scenarios, thereby certifying its robustness and dependability. The identified features,

showcasing strong positive SHAP values, highlight their essential contribution to enhancing

the predictive Acc of the HyBoost model.

The hybrid nature of HyBoost enables the combination of distinct analytical strengths. This

feature diversity is pivotal in deconstructing the complex textures and patterns within medical

images for prediction purposes. The prediction framework’s precision highlights the efficient

management of features usage. Furthermore, the transparent representation of predictive values

not only deepens the understanding of HyBoost’s decision-making but also enhances its scal-

ability and adaptability. Additionally, the introduction of the PMM matrix as a novel tool for

performance evaluation marks a strategic advance, customising the assessment of the models

to the nuanced requirements of specific medical imaging data and diagnostic tasks in question.

6.2 Research Contributions Against Chosen Datasets

This section provides a comprehensive comparison of the performance of all contributions

across the chosen datasets (summary provided in Table 6.1), offering a high-level overview of
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the contributions while highlighting their strengths and areas for improvement. Each contribu-

tion addresses specific gaps in medical image processing, and their combined impact offers a

holistic solution to the challenges faced in this field.

6.2.1 Contribution 1: Design of a Novel DL-Based Hybrid Model (Den-

Ception) Against MRI Dataset

The BRATS MRI dataset, known for its complexity in brain tumour segmentation, served as a

robust testing ground for DenCeption model as part the first contribution. DenCeption demon-

strated high performance, achieving superior accuracy (91.3%), sensitivity (93%), specificity

(93.7%), precision (94%), F1-score (93.4%), and a low MAE (0.2), indicating its effectiveness

in handling the variability inherent in brain tumour images.

• Positive Influence: The complexity and unlabelling of the BRATS dataset provided a

rigorous environment for testing DenCeption, allowing it to showcase its advanced fea-

ture extraction capabilities and robustness. The inclusion of patient-specific data, such

as age and resection status, further validated the model’s relevance in real-world clinical

settings.

• Negative Influence: Despite these positive outcomes, the dataset’s focus on a single

medical condition (brain tumours) may limit the generalisability of the results. The

improvements observed, while significant, are incremental when compared to existing

models like DenseNet-121. This suggests that while DenCeption offers advantages, par-

ticularly in complex medical image classification, further testing on diverse datasets is

necessary to fully exploit its potential.

• Critical Insight: The development of DenCeption addresses key gaps in feature ex-

traction and model robustness. However, its generalisability to other medical imaging

modalities remains untested at Chapter 3 stage. Hence, Future research done in Chapter

4 and 5 involveed validating DenCeption across a broader range of datasets to confirm

its applicability in diverse medical conditions.
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6.2.2 Design of an Adaptive and Scalable Features Extraction Frame-

work Against MRI and Retinal Datasets

The second contribution focuses on a hybrid feature extraction framework that combines HF

and DHF features to improve medical image classification accuracy and reliability. This frame-

work was validated using two datasets: MRI BRATS and Retinal, demonstrating notable per-

formance improvements across all metrics. The results reveal that the framework outperforms

traditional methods, achieving high accuracy (up to 98.9% in the Retinal dataset, Case 4) and

low MAE (0.01), while dynamically adjusting to different imaging conditions and data com-

plexities.

• Positive Influence: The diverse nature of these datasets underscores the versatility of

the proposed framework. The MRI BRATS dataset tested its ability to handle complex

3D data, while the Retinal dataset evaluated its performance in detecting retinal diseases.

The adaptability and scalability of the framework were clearly demonstrated, ensuring

its reliability across different medical imaging scenarios.

• Negative Influence: Despite the promising results, the Retinal dataset’s relatively small

size (1,000 images) may affect the reliability of the findings. The framework’s perfor-

mance might be overestimated due to the limited variety of the Retinal dataset compared

to larger datasets. Additionally, the increased processing time observed in certain cases

(e.g., 14:10:00 in Case 4 - DHF for the BRATS dataset) may limit its real-time applica-

bility, a crucial factor in clinical settings where timely diagnosis is essential.

• Critical Insight: The framework’s adaptability across both MRI and Retinal datasets is

promising, but the results should be interpreted with caution, particularly given the small

size of the Retinal dataset. Expanding the testing to include larger and more diverse

retinal datasets would provide a more comprehensive evaluation of the framework’s ef-

fectiveness. Hence, a larger Fundus dataset was considered in Chapter 5. The trade-off

between accuracy and computational efficiency remains a key consideration, especially
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in clinical environments.

6.2.3 Design of a Novel Evaluation Mechanism for DL Models Against all

Datasets

This contribution introduces a novel evaluation mechanism designed to enhance the reliabil-

ity and validity of DL model assessments, particularly in the medical imaging domain. The

mechanism incorporates correlation operations and random weight assignments to provide a

systematic and objective approach to selecting evaluation metrics.

• Positive Influence: The mechanism’s validation on diverse datasets (BRATS MRI, Reti-

nal, Fundus, OCT, X-ray) highlights its potential in tailoring evaluation metrics to spe-

cific problem domains. This approach ensures that the most relevant metrics are identi-

fied, leading to more accurate assessments of model performance.

• Negative Influence: The generalisability of the evaluation mechanism depends on the

diversity and quality of the datasets used. If the datasets are not representative of the

wide range of medical imaging scenarios, the mechanism’s effectiveness could be com-

promised.

• Critical Insight: The evaluation mechanism is a significant contribution to medical

imaging, where accurate model assessment is crucial. However, further testing across

more diverse datasets and application areas is necessary to fully validate its effective-

ness. While the mechanism provides a structured approach to evaluating DL models,

additional empirical evidence across various domains would strengthen the claim of its

broad applicability.
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6.2.4 Design of an Intelligent and Robust Predictive Framework Against

Fundus, OCT and X-ray Datasets

This proposed predictive framework addresses the limitations of traditional predictive models

by incorporating DenCeption, HyBoost, as well as vital patient demographic and physiolog-

ical data, leading to significant performance improvements across various datasets, including

Fundus, OCT, and X-ray.

• Positive Influence: The large size and diversity of the Fundus (18,615 images) and OCT

(25,197 images) datasets provide a robust evaluation platform for the predictive frame-

work. The inclusion of demographic and physiological data further enhances the model’s

predictive accuracy, making it highly relevant for real-world clinical applications. The

results indicate that HyBoost outperforms existing models with accuracy rates reaching

98.33% for OCT and 98.2% for X-ray scans.

• Negative Influence: The X-ray dataset, while useful for extending the research into

pulmonology, is relatively small (5,467 images), which might limit the reliability of the

results. The framework’s performance on X-ray data may not be as robust as on the

larger Fundus and OCT datasets. Additionally, the increased complexity of the model

may present challenges in terms of interpretability and computational efficiency.

• Critical Insight: The predictive framework shows significant promise across a range of

datasets, particularly in ophthalmology and pulmonology. However, the varying sizes

and complexities of the datasets mean that the results should be interpreted with some

caution. Further testing on larger and more diverse X-ray datasets would provide a more

complete picture of the framework’s generalisability. The use of SHAP explainability

analysis is a strong point, as it provides transparency in the model’s decision-making

process, which is crucial for practical adoption in clinical settings.

The diverse range of datasets used in this research, from the complex BRATS MRI dataset

to the more varied Fundus and OCT datasets, demonstrates the adaptability and scalability of
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the proposed models and frameworks. However, the varying sizes and complexities of these

datasets introduce challenges which were considered when interpreting the results in all chap-

ters of this research. By integrating these contributions, the thesis provides a robust framework

for advancing medical image processing, with each contribution complementing the others to

address the multifaceted challenges in this field. The performance metrics and detailed analy-

sis presented offer significant advancements in medical diagnostics, while also recognising the

areas where further validation and refinement are needed.

6.3 Limitations and Challenges

Throughout this thesis, several significant challenges were encountered, each posing a unique

barrier to the research progress and the practical application of the findings. These challenges

reflect broader issues within the field of DL and medical image processing, underscoring the

complex compromise between technological capabilities, data availability, and expert valida-

tion in advancing healthcare innovations.

Firstly, the need for powerful hardware to conduct image training processes cannot be over-

stated. DL models, particularly those designed for medical image analysis, require substantial

computational resources to process and learn from large datasets. The limitation in hardware

capabilities directly impacted the scope and speed of this research. High-performance GPUs

are essential for training DL models efficiently. However, the accessibility and cost associated

with such advanced hardware often pose significant problems, potentially impacting research

progress and limiting the complexity of models that can be explored.

Secondly, the availability of clinical medical data represents a critical challenge. Access to

diverse and extensive clinical datasets is crucial for training robust models capable of generalis-

ing well to real-world scenarios. However, ethical considerations, privacy concerns, and logis-

tical issues often restrict the availability of such data. Most clinical datasets are guarded due to

patient confidentiality agreements, making it difficult for researchers to obtain varied and repre-

sentative samples. This research relied on publicly available medical imaging datasets, which,
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while invaluable, may not fully capture the diversity and complexity of real-world clinical data.

The discrepancy between publicly available datasets and the various conditions encountered in

clinical practice limits the validation and applicability of the proposed frameworks and models,

potentially affecting their performance in real-world settings. This limitation also raises con-

cerns about the generalisability of the models when deployed in diverse clinical environments,

where patient demographics, imaging equipment, and protocols vary significantly.

Lastly, the absence of expert validation for the proposed framework poses a significant lim-

itation. Expert insights, especially from medical professionals familiar with the nuances of

disease diagnosis and medical imaging, are crucial for validating and refining computational

models. Without validation from clinicians, the clinical relevance and trustworthiness of the

models remain uncertain. This lack of validation could hinder the adoption of the models in

real-world clinical settings, where trust in the technology is paramount. Moreover, the chal-

lenge of data availability indirectly impacted the possibility of expert validation, as clinicians

typically require access to comprehensive and representative datasets to provide meaningful

feedback. Despite the accurate results provided by the proposed solution, further accuracy and

reliability can only be endorsed by medical professionals in regular clinical settings, where

the models would need to demonstrate consistent performance across a range of real-world

conditions.

6.4 Future Work

The future directions outlined in this thesis underscore a strategic roadmap towards refining and

actualising the research into practical, impactful applications within the medical field. Each

step is carefully designed to bridge the gap between theoretical models and their deployment

in healthcare environments, focusing on enhancing the reliability and effectiveness of medical

image analysis through DL.

The first initiative involves the continuation and expansion of the collaboration with the

NHS Trust Gloucestershire research group. This partnership is pivotal for several reasons. Ac-
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cess to a broader and more varied range of medical imaging data, specifically Fundus and OCT

datasets, is crucial for the advancement of this research. The related diseases will then be the

main focus of future works in order to further enhance the RASR related criteria of the proposed

solution. Such datasets are invaluable for training more robust and accurate models by expos-

ing them to a wider array of pathological conditions and imaging variances. The collaboration

aims not only to secure these datasets but also to encourage an exchange of knowledge and

expertise that can drive the refinement of the proposed DL frameworks. This collaboration is

essential for addressing the limitation of expert validation, as it would provide the opportunity

for medical professionals to rigorously test the models, offer feedback, and validate their effec-

tiveness in real-world clinical scenarios. This would not only enhance the models’ reliability

and clinical relevance but also build trust among clinicians who are critical to the successful

integration of these technologies into everyday medical practice.

The validation of the proposed solutions on these acquired datasets represents the next

critical step. Validation is essential for assessing the models’ performance and generalisability

to real-world clinical scenarios. It involves a rigorous examination of the models’ diagnostic

accuracy, Sen, Spe, and other relevant metrics against a clinically sourced data. This process

will address the current limitation of not being validated by any medical expert or in real clinical

settings. By engaging clinicians in the validation process, the models can be refined to meet the

practical needs of healthcare providers, ensuring that they are not only technically sound but

also applicable and trustworthy in clinical environments. This iterative process of validation

and refinement is fundamental to achieving a solution that is both scientifically robust and

clinically relevant.

Finally, the deployment of the proposed framework in real-world clinical settings is the

ultimate goal of this research. Transitioning from research prototypes to operational medical

tools involves navigating a complex landscape of regulatory compliance, ethical considerations,

and integration challenges. The deployment would require a comprehensive evaluation of the

framework’s compatibility with existing medical IT infrastructures, its adaptability to different

clinical workflows, and its usability for healthcare professionals. Achieving successful deploy-

376



ment would also necessitate ongoing collaboration with clinicians and healthcare organisations

to ensure that the technology meets the needs of both patients and providers. By addressing

the current limitations through real-world testing and expert validation, this research aims to

develop models that are not only accurate and efficient but also practical and reliable in diverse

clinical settings.
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Table 6.1: Summary Table of Contributions Performance Against Chosen Datasets
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Appendix A

Appendices: Algorithms

I declare that these algorithms are my own work.
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A.1 Algorithm 1 - Texture Features Extraction

Algorithm 5: Texture Features Extraction
Data: RoIs (Region of Interests)
Result: fASM, fE , fC, fH , fCoaZ,BEST , fDir

1 n ⇐ number of levels
2 M ⇐ n2 > 0
3 for i ∈ {0, . . . ,n} do
4 for j ∈ {0, . . . ,n} do
5 for k ∈ {0, . . . ,M} do
6 GLCM f (i, j)⇐ 2

M ∑occ(i, j)
7 fASM ⇐ ∑∑GLCM f (i, j)2

8 fE ⇐−∑∑GLCM f (i, j)∗ log(GLCM f (i, j))
9 fC ⇐ ∑∑(i, j)2 ∗GLCM f (i, j)

10 fH ⇐ ∑∑
GLCM f (i, j)

1+| j−i|

11 pix(i, j)⇐ intensity value of the pixel at location (i, j)
12 SZ ⇐ 22Z where Z ∈ [0 : 5]
13 N ⇐ normalisation factor
14 θ ⇐ quantisation angular position
15 m ⇐ number of peaks
16 ψk ⇐ angles window associated with the kth peak.
17 HDir ⇐ edge histogram
18 Mw ⇐ measurement window
19 for i, j ∈ {0, . . . ,n} do
20 for k = i−2Z−1 −1 to i+2Z−1 do
21 for k = j−2Z−1 −1 to j+2Z−1 do
22 CoaZ ⇐ ∑

pix(i, j)
Mw

23 AZ,V (i, j)⇐|CoaZ,V (i, j+2Z−1)−CoaZ,V (i, j−2Z−1) |
24 AZ,H(i, j)⇐|CoaZ,H(i+2Z−1, j)−CoaZ,H(i−2Z−1, j) |
25 if AZ,V (i, j)> AH,V (i, j) then
26 SZ,BEST (i, j)⇐ SZ,V

27 fCoaZ,V ⇐ CoaZ,V
SZ,BEST

28 else
29 SZ,BEST (i, j)⇐ SZ,H

30 fCoaZ,H ⇐ CoaZ,H
SZ,BEST

31 for k = 1 to m do
32 for each angle θ ∈ ψk do
33 ρ ⇐ ∑(θ −θk)

2 ∗HDir(θ)

34 fDir ⇐ 1−N ·m ·ρ
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A.3 Algorithm 3 - Optimal Performance Evaluation Metrics

Algorithm 7: Optimal Performance Evaluation Metrics
Input: C(x1,x2),C(x1,x3),C(x2,x3): set of evaluation metrics for each dimension
Output: PMMoptimal

1 W ⇐ weight assignment function
2 n ⇐ total number of metrics
3 c ⇐ performance metric
4 x1 ⇐ problem specification
5 x2 ⇐ task identification
6 x3 ⇐ data characteristics
7 C(x1,x2) ⇐ [c121,c122, ...,c12n] : set of performance metrics for dimension (x1,x2)

8 C(x1,x3) ⇐ [c131,c132, ...,c13n] : set of performance metrics for dimension (x1,x3)

9 C(x2,x3) ⇐ [c231,c232, ...,c23n] : set of performance metrics for dimension (x2,x3)

10 D12,D13,D23 ⇐ 2D matrix of (x1,x2), (x1,x3), and (x2,x3) dimensions, respectively
11 Step 1:
12 for i ∈ {1, . . . ,n} do
13 WC12[i]⇐W (C12[i])

14 Step 2:
15 for i ∈ {1, . . . ,n} do
16 for j ∈ {1, . . . ,n} do
17 if i == j then
18 WC12ii ⇐ corrcoe f (C12i,C12i)

19 D12[i, i]⇐WC12ii

20 else
21 WC12i j ⇐ corrcoe f (C12i,C12 j)

22 D12[i, j]⇐WC12i j

23 Repeat Step 1 and 2 for D13 and D23

24 for i ∈ {1, . . . ,n} do
25 for j ∈ {1, . . . ,n} do
26 if i == j then
27 PMM[i, j]⇐ max(D12[i, i],D13[i, i],D23[i, i])

28 else
29 PMM[i, j]⇐ max(D12[i, j],D13[i, j],D23[i, j])

30 for i ∈ {1, . . . ,n} do
31 for j ∈ {1, . . . ,n} do
32 if PMM[i, j]> 0 then
33 PMMoptimal[i]⇐ PMM[i, j]

34 else
35 Continue

36 return PMMoptimal
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A.4 Algorithm 4 - Algorithm for HyBoost Hybrid Predictive

Model
Algorithm 8: Algorithm for HyBoost Hybrid Predictive Model

Data: Dtrain = {(xi,yi)}N
i=1, Dtest =

{
x j
}M

j=1, Mxgb (XGBoost model), Mab (AdaBoost
model), Hxgb, Hab, K, T , α ∈ [0,1]

Result: Y ∗
f inal (final best prediction)

1 Initialisation:
2 ŷxgb ⇐ Mxgb’s residuals (predictions)
3 ŷab ⇐ Mab’s predictions
4 Yf inal ⇐ final prediction prior to optimisation
5 Step 1: HyBoost Training Phase
6 Step 1.1: Train XGBoost
7 for k ∈ {1, . . . ,K} do
8 Obi ⇐ ∑

N
i=1 l

(
yi, ŷ

(k−1)
i + fk(xi)+Ω( fk)

)
9 gi ⇐ ∂

∂ ŷ(k−1)
i

l
(

yi, ŷ
(k−1)
i

)
10 hi ⇐ ∂ 2

∂ (ŷ(k−1)
i )2

l
(

yi, ŷ
(k−1)
i

)
11 ŷ(k)i ⇐ ŷ(k−1)

i +η fk(xi)

12 Mxgb(xi)⇐ XGBoost(Dtrain,Hxgb)

13 residuals ⇐ yi − ŷxgb

14 Step 1.2: Train AdaBoost
15 for t ∈ {1, . . . ,T} do
16 αt ⇐ 1

2 ln
(

1−εt
εt

)
17 wi,t+1 ⇐ wi,t ∗ exp(−αtyiht(xi))

18 Mab(xi)⇐ AdaBoost(Dtrain, residuals,Hab)

19 Step 2: HyBoost Prediction Phase
20 for j ∈ {1, . . . ,N} do
21 ŷ f inal j ⇐ α ∗ ŷxgb j +(1−α)∗ ŷab j

22 Step 3: Tuning and Optimisation
23 Optimise (Hxgb,Hab,α) with cross-validation
24 Step 4: Optimal Parameters Selection
25 H∗

xgb,H
∗
ab,α

∗ ⇐ argmaxHxgb,Hab,α CrossValidationScore(Dtrain,Hxgb,Hab,α)

26 Step 5: Re-training Phase
27 for j ∈ {1, . . . ,M} do
28 Y ∗

f inal j
⇐ α∗ ∗M∗

xgb(x j)+(1−α)∗M∗
ab(x j)
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Appendix B

Appendices: Code

B.1 Pre-processing and Segmentation - Features Extraction

Framework

1 import numpy as np

2 import cv2

3 from skimage.restoration import estimate_sigma

4 import bm3d

5 from SimpleITK import N4BiasFieldCorrection , GetArrayFromImage ,

GetImageFromArray

6 from sklearn.mixture import GaussianMixture

7

8 class PreprocessAndSegment:

9 def __init__(self , image_path , ground_truth_path):

10 self.image_path = image_path

11 self.ground_truth_path = ground_truth_path

12

13 def ground_truth_extraction(self):

14 image = cv2.imread(self.image_path)

15 ground_truth = cv2.imread(self.ground_truth_path ,

cv2.IMREAD_GRAYSCALE)
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16 _, binary_mask = cv2.threshold(ground_truth , 127, 255,

cv2.THRESH_BINARY)

17 binary_mask = binary_mask // 255

18 return binary_mask

19

20 def image_denoising(self , image):

21 sigma_est = np.mean(estimate_sigma(image , multichannel=True))

22 denoised_image = bm3d.bm3d(image , sigma_est)

23 return denoised_image

24

25 def bias_field_correction(self , image):

26 sitk_image = GetImageFromArray(image)

27 corrector = N4BiasFieldCorrection ()

28 corrected_image = corrector.Execute(sitk_image)

29 corrected_image = GetArrayFromImage(corrected_image)

30 return corrected_image

31

32 def mrf_em_segmentation(self , image):

33 gray_image = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

34 gmm = GaussianMixture(n_components =2, covariance_type=’tied’,

max_iter =100, random_state =42)

35 reshaped_image = gray_image.reshape ((-1, 1))

36 gmm.fit(reshaped_image)

37 em_segmented =

gmm.predict(reshaped_image).reshape(gray_image.shape)

38

39 mask = np.zeros(gray_image.shape , np.uint8)

40 mask[em_segmented == 1] = 1

41 bgdModel = np.zeros ((1, 65), np.float64)

42 fgdModel = np.zeros ((1, 65), np.float64)

43 mask , bgdModel , fgdModel = cv2.grabCut(image , mask , None ,

bgdModel , fgdModel , 5, cv2.GC_INIT_WITH_MASK)

44
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45 mrf_segmented = np.where((mask == 2) | (mask == 0), 0,

1).astype(’uint8’)

46 return mrf_segmented

47

48 def execute(self):

49 ground_truth_mask = self.ground_truth_extraction ()

50 image = cv2.imread(self.image_path)

51 denoised_image = self.image_denoising(image)

52 corrected_image = self.bias_field_correction(denoised_image)

53 segmented_image = self.mrf_em_segmentation(corrected_image)

54

55 return segmented_image , ground_truth_mask

B.2 High Level Features Extraction: Texture, Shape, Colour

Features

1 import numpy as np

2 import cv2

3 from sklearn.cluster import KMeans

4

5 class HighLevelFeaturesExtractor:

6 def __init__(self , n_levels , n_clusters):

7 self.n_levels = n_levels

8 self.n_clusters = n_clusters

9

10 def texture_features_extraction(self , roi):

11 n = self.n_levels # Number of levels

12 M = n ** 2 # Number of gray levels in the image

13

14 # Initialize matrices to store feature calculations

15 GLCMf = np.zeros ((n, n))

16 fASM = fE = fC = fH = 0
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17

18 # Step 1: Compute GLCM and derive texture features

19 for i in range(n):

20 for j in range(n):

21 for k in range(M):

22 occ = np.sum(roi == k)

23 GLCMf[i, j] = (2 / M) * occ # GLCM calculation

24

25 # Feature calculations

26 fASM += GLCMf[i, j] ** 2

27 fE += GLCMf[i, j] * np.log(GLCMf[i, j] + 1e-10) # Add

small constant to avoid log (0)

28 fC += (GLCMf[i, j] ** 2) * GLCMf[i, j]

29 fH += GLCMf[i, j] / (1 + abs(i - j))

30

31 # Initialize other required variables

32 SZ = [2 ** z for z in range (6)]

33 SZ_BEST = np.zeros_like(roi)

34 fCoaZ_BEST = 0

35

36 # Step 2: Compute coarseness (CoaZ)

37 pix = roi # Assuming roi is the pixel intensity map

38 m, n = roi.shape

39

40 # Initialize arrays for directional coarseness

41 CoaZ_V = np.zeros_like(roi)

42 CoaZ_H = np.zeros_like(roi)

43 AZ_V = np.zeros_like(roi)

44 AZ_H = np.zeros_like(roi)

45

46 for i in range(m):

47 for j in range(n):

48 for k in range(1, len(SZ)):
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49 CoaZ_V[i, j] = np.sum(pix[max(0,

i-SZ[k]//2):min(m, i+SZ[k]//2) , j]) / SZ[k]

50 CoaZ_H[i, j] = np.sum(pix[i, max(0,

j-SZ[k]//2):min(n, j+SZ[k]//2) ]) / SZ[k]

51

52 AZ_V[i, j] = np.abs(CoaZ_V[i, j] -

CoaZ_V[i+SZ[k]//2, j]) if i+SZ[k]//2 < m else 0

53 AZ_H[i, j] = np.abs(CoaZ_H[i, j] - CoaZ_H[i,

j+SZ[k]//2]) if j+SZ[k]//2 < n else 0

54

55 if AZ_V[i, j] > AZ_H[i, j]:

56 SZ_BEST[i, j] = CoaZ_V[i, j]

57 fCoaZ_V = CoaZ_V[i, j] / SZ_BEST[i, j]

58 else:

59 SZ_BEST[i, j] = CoaZ_H[i, j]

60 fCoaZ_H = CoaZ_H[i, j] / SZ_BEST[i, j]

61

62 # Step 3: Compute directional features

63 fDir = 0

64 N = 1 # Normalization factor

65 m = 1 # Number of peaks , assuming m = 1 for simplicity here

66 theta = 0 # Assuming an initial angle theta = 0, can be

adjusted based on the specific problem

67

68 for k in range(1, m+1):

69 for angle in range(0, 180, 45): # Adjust angles as needed

70 rho = np.sum(( theta - angle) ** 2) * fDir

71 fDir = 1 - N * m * rho

72

73 return np.array([fASM , fE, fC , fH , fCoaZ_BEST , fDir])

74

75 def shape_and_colour_features_extraction(self , rois):

76 # Step 1: Calculate Region Focus Shape Features

77 A = len(rois) # Area of the region (number of pixels)
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78 x_sum = y_sum = 0

79

80 for (x, y) in rois:

81 x_sum += x

82 y_sum += y

83

84 x_bar = x_sum / A # Centroid x

85 y_bar = y_sum / A # Centroid

86

87 f_RF = np.array([x_bar , y_bar])

88

89 # Step 2: Calculate Colour Histogram using K-means Clustering

90 N = len(rois) # Total number of pixels

91

92 # Assuming each pixel in ‘rois ‘ has an associated color in RGB

format (3 channels)

93 colors = np.array([roi [2] for roi in rois]) # Extracting

color information

94

95 # Applying K-means clustering on the color data

96 kmeans = KMeans(n_clusters=self.n_clusters , random_state =42)

97 kmeans.fit(colors)

98 labels = kmeans.labels_

99

100 # Calculate f_CHKM , the proportion of pixels in each cluster

101 f_CHKM = np.zeros(self.n_clusters)

102

103 for k in range(self.n_clusters):

104 Nk = np.sum(labels == k) # Number of pixels in cluster k

105 f_CHKM[k] = Nk / N # Proportion of pixels in this cluster

106

107 return f_RF , f_CHKM

108

109 def extract(self , segmented_image):
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110 texture_features =

self.texture_features_extraction(segmented_image)

111 shape_features , color_features =

self.shape_and_colour_features_extraction(segmented_image)

112

113 high_level_features = np.concatenate (( texture_features ,

shape_features , color_features))

114 return high_level_features

B.3 Deep Hidden Features Extraction: DenCeption Model

1 import tensorflow as tf

2 from tensorflow.keras.layers import Conv2D , MaxPooling2D ,

AveragePooling2D , GlobalAveragePooling2D , Dense , Input , Concatenate

3 from tensorflow.keras.models import Model

4

5 class LowLevelFeaturesExtractor:

6 def __init__(self , input_shape , classes):

7 self.model = self.build_denception(input_shape , classes)

8

9 def build_denception(self , input_shape , classes):

10 # Define the InA module with dynamic filters

11 def InA_module(x, n, l, t, k):

12 branch1x1 = Conv2D(n, (1, 1), padding=’same’)(x)

13

14 branch3x3 = Conv2D(l, (1, 1), padding=’same’)(x)

15 branch3x3 = Conv2D(l, (3, 3), padding=’same’)(branch3x3)

16

17 branch3x3dbl = Conv2D(t, (1, 1), padding=’same’)(x)

18 branch3x3dbl = Conv2D(t, (3, 3),

padding=’same’)(branch3x3dbl)

19 branch3x3dbl = Conv2D(t, (3, 3),

padding=’same’)(branch3x3dbl)
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20

21 branch_pool = AveragePooling2D ((3, 3), strides =(1, 1),

padding=’same’)(x)

22 branch_pool = Conv2D(k, (1, 1),

padding=’same’)(branch_pool)

23

24 return Concatenate ()([branch1x1 , branch3x3 , branch3x3dbl ,

branch_pool ])

25

26 # Define the InB module with dynamic filters

27 def InB_module(x, n, l, t, k, j):

28 branch1x1 = Conv2D(n, (1, 1), padding=’same’)(x)

29

30 branch7x7 = Conv2D(l, (1, 1), padding=’same’)(x)

31 branch7x7 = Conv2D(l, (7, 1), padding=’same’)(branch7x7)

32 branch7x7 = Conv2D(l, (1, 7), padding=’same’)(branch7x7)

33

34 branch7x7dbl = Conv2D(t, (1, 1), padding=’same’)(x)

35 branch7x7dbl = Conv2D(k, (7, 1),

padding=’same’)(branch7x7dbl)

36 branch7x7dbl = Conv2D(j, (1, 7),

padding=’same’)(branch7x7dbl)

37

38 branch_pool = AveragePooling2D ((3, 3), strides =(1, 1),

padding=’same’)(x)

39 branch_pool = Conv2D(j, (1, 1),

padding=’same’)(branch_pool)

40

41 return Concatenate ()([branch1x1 , branch7x7 , branch7x7dbl ,

branch_pool ])

42

43 # Define the dense block function with different filter numbers

44 def hybrid_dense_block(x, block_number):

45
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46 # Define the basic sequence of layers

47 def add_basic_sequence(x, n, l, t, k):

48 x = Conv2D (64, (3, 3), padding=’same’)(x)

49 x = InA_module(x, n, l, t, k)

50 x = Conv2D (64, (3, 3), padding=’same’)(x)

51 x = Conv2D (64, (3, 3), padding=’same’)(x)

52 x = InB_module(x, inb_n , inb_l , inb_t , inb_k , inb_j)

53 x = Conv2D (64, (3, 3), padding=’same’)(x)

54 return x

55

56 if block_number == 1:

57 n, l, t, k = 24, 48, 8, 24

58 inb_n , inb_l , inb_t , inb_k , inb_j = 24, 48, 8, 24, 48

59 x = add_basic_sequence(x)

60 elif block_number == 2:

61 n, l, t, k = 128, 128, 96, 64

62 inb_n , inb_l , inb_t , inb_k , inb_j = 128, 128, 96, 64,

96

63 for _ in range (2):

64 x = add_basic_sequence(x)

65 elif block_number == 3:

66 n, l, t, k = 256, 256, 64, 128

67 inb_n , inb_l , inb_t , inb_k , inb_j = 256, 256, 64, 128,

192

68 for _ in range (5):

69 x = add_basic_sequence(x)

70 x = Conv2D (64, (3, 3), padding=’same’)(x)

71 x = Conv2D (64, (3, 3), padding=’same’)(x)

72 elif block_number == 4:

73 n, l, t, k = 256, 256, 256, 128

74 inb_n , inb_l , inb_t , inb_k , inb_j = 256, 256, 256,

128, 192

75 for _ in range (5):

76 x = add_basic_sequence(x)
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77 x = Conv2D (64, (3, 3), padding=’same’)(x)

78 x = Conv2D (64, (3, 3), padding=’same’)(x)

79 else:

80 raise ValueError(f"Block number {block_number} is not

valid.")

81

82

83 # Define the transition block (remains unchanged)

84 def hybrid_transition_block(x, block_number):

85 # Define the filter numbers according to the RA table

provided

86 if block_number == 1:

87 ra_n , ra_l , ra_m , ra_k = 64, 48, 64, 24

88 elif block_number == 2:

89 ra_n , ra_l , ra_m , ra_k = 224, 128, 256, 64

90 elif block_number == 3:

91 ra_n , ra_l , ra_m , ra_k = 320, 256, 512, 128

92 else:

93 raise ValueError(f"Block number {block_number} is not

valid for RA.")

94

95 # Define the filter numbers according to the RB table

provided

96 if block_number == 1:

97 rb_n , rb_l , rb_m , rb_k = 128, 128, 128, 96

98 elif block_number == 2:

99 rb_n , rb_l , rb_m , rb_k = 256, 256, 256, 128

100 elif block_number == 3:

101 rb_n , rb_l , rb_m , rb_k = 320, 512, 512, 256

102 else:

103 raise ValueError(f"Block number {block_number} is not

valid for RB.")

104
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105 # Define the filter numbers according to the InC table

provided

106 if block_number == 1:

107 inc_n , inc_t , inc_l , inc_k = 256, 192, 8, 24

108 elif block_number == 2:

109 inc_n , inc_t , inc_l , inc_k = 512, 256, 32, 32

110 elif block_number == 3:

111 inc_n , inc_t , inc_l , inc_k = 512, 256, 128, 128

112 else:

113 raise ValueError(f"Block number {block_number} is not

valid for InC.")

114

115 # Composition of layers in the transition block

116 x = RA_module(x, ra_n , ra_l , ra_m , ra_k)

117 x = Conv2D (64, (3, 3), padding=’same’)(x)

118 x = RB_module(x, rb_n , rb_l , rb_m , rb_k)

119 x = InC_module(x, inc_n , inc_t , inc_l , inc_k)

120 x = AveragePooling2D ((2, 2), strides =(2, 2), padding=’same’)(x)

121 return x

122

123 # DenCeption Model definition

124 inputs = Input(shape=input_shape)

125

126 # Initial Convolution and Pooling

127 x = Conv2D (64, (7, 7), strides =(2, 2), padding=’same’)(inputs)

128 x = MaxPooling2D ((3, 3), strides =(2, 2), padding=’same’)(x)

129

130 # Stacking Hybrid Dense Blocks and Transition Blocks

131 x = hybrid_dense_block(x, block_number =1)

132 x = hybrid_transition_block(x, block_number =1)

133 x = hybrid_dense_block(x, block_number =2)

134 x = hybrid_transition_block(x, block_number =2)

135 x = hybrid_dense_block(x, block_number =3)

136 x = hybrid_transition_block(x, block_number =3)
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137 x = hybrid_dense_block(x, block_number =4)

138

139 # Global Average Pooling and Output

140 x = GlobalAveragePooling2D ()(x)

141 outputs = Dense(classes , activation=’softmax ’)(x)

142

143 denception_model = Model(inputs , outputs)

144 return denception_model

145

146 def extract(self , image):

147 return self.model.predict(np.expand_dims(image , axis =0))

B.4 Features Weighting

1 from minisom import MiniSom

2

3 class FeatureWeighting:

4 def __init__(self , som_shape =(10, 10)):

5 self.som_shape = som_shape

6

7 def weight_features(self , high_level_features , low_level_features):

8 som = MiniSom(self.som_shape [0], self.som_shape [1],

high_level_features.shape [1] + low_level_features.shape [1],

sigma =0.5, learning_rate =0.5)

9 som.train_random(np.hstack ([ high_level_features ,

low_level_features ]), 100)

10 weights = som.get_weights ()

11 return weights

B.5 Features Fusion
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1 from sklearn.neural_network import MLPClassifier

2

3 class FeaturesFusion:

4 def __init__(self):

5 pass

6

7 def fuse_and_update(self , features , weights):

8 combinations = [

9 (0, 1), (0, 2), (1, 2), # texture -shape , texture -colour ,

shape -colour

10 (0, 1, 2) # texture -shape -colour

11 ]

12

13 best_score = -np.inf

14 best_combination = None

15

16 for comb in combinations:

17 selected_features = features[:, comb]

18 weighted_sum = np.dot(selected_features , weights[comb])

19 ann = MLPClassifier(hidden_layer_sizes =(100 ,),

random_state =42)

20 ann.fit(selected_features , weighted_sum)

21 score = ann.score(selected_features , weighted_sum)

22 if score > best_score:

23 best_score = score

24 best_combination = comb

25

26 return best_combination , ann

27

28 def combine_features_and_update(self , high_level_features ,

low_level_features , best_combination , ann_weights):

29 combined_features = np.hstack ([ high_level_features [:,

best_combination], low_level_features ])
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30 ann = MLPClassifier(hidden_layer_sizes =(100 ,), random_state =42)

31 ann.fit(combined_features , ann_weights)

32 return ann

B.6 Classification Block

1 from sklearn.neural_network import MLPClassifier

2

3 class ClassificationBlock:

4 def __init__(self):

5 pass

6

7 def classify(self , final_weights):

8 classifier = MLPClassifier(hidden_layer_sizes =(100 ,),

random_state =42)

9 classifier.fit(final_weights , np.ones(final_weights.shape [0]))

# Assuming binary classification for simplicity

10 return classifier

B.7 Proposed Features Extraction Framework: Full Pipeline

Execution

1 # Full Pipeline Execution

2 image_path = ’path_to_image_dataset ’

3 ground_truth_path = ’path_to_ground_truth_mask ’

4

5 # Preprocess and Segment

6 preprocessor = PreprocessAndSegment(image_path , ground_truth_path)

7 segmented_image , ground_truth_mask = preprocessor.execute ()

8

9 # High -Level Features Extraction
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10 high_level_extractor = HighLevelFeaturesExtractor(n_levels=8,

n_clusters =5)

11 high_level_features = high_level_extractor.extract(segmented_image)

12

13 # Low -Level Features Extraction

14 low_level_extractor =

LowLevelFeaturesExtractor(input_shape=segmented_image.shape ,

classes =2)

15 low_level_features = low_level_extractor.extract(segmented_image)

16

17 # Feature Weighting using SOM

18 feature_weighting = FeatureWeighting(som_shape =(10, 10))

19 weights = feature_weighting.weight_features(high_level_features ,

low_level_features)

20

21 # High -Level Features Fusion and ANN -based Weight Update

22 features_fusion = FeaturesFusion ()

23 best_combination , ann_weights =

features_fusion.fuse_and_update(high_level_features , weights)

24

25 # Combine High -Level and Low -Level Features and Update Weights

26 final_ann =

features_fusion.combine_features_and_update(high_level_features ,

low_level_features , best_combination , ann_weights)

27

28 # Classification

29 classifier_block = ClassificationBlock ()

30 classifier = classifier_block.classify(final_ann.coefs_)

B.8 Image Pre-processing: Prediction Framework

1 import cv2

2 import numpy as np
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3 import matplotlib.pyplot as plt

4 from skimage import exposure

5

6 class ImagePreprocessor:

7 def __init__(self , image_path):

8 self.image_path = image_path

9 self.image = cv2.imread(image_path , cv2.IMREAD_GRAYSCALE)

10

11 def display_image(self , title , img):

12 plt.imshow(img , cmap=’gray’)

13 plt.title(title)

14 plt.axis(’off’)

15 plt.show()

16

17 def resize_image(self , width =256, height =256):

18 self.image = cv2.resize(self.image , (width , height))

19 self.display_image(’Resized Image’, self.image)

20 return self.image

21

22 def noise_reduction(self , kernel_size =(5, 5)):

23 self.image = cv2.GaussianBlur(self.image , kernel_size , 0)

24 self.display_image(’Noise Reduced Image’, self.image)

25 return self.image

26

27 def adjust_contrast(self):

28 self.image = cv2.equalizeHist(self.image)

29 self.display_image(’Contrast Adjusted Image ’, self.image)

30 return self.image

31

32 def crop_image(self , x=64, y=64, w=128, h=128):

33 self.image = self.image[y:y+h, x:x+w]

34 self.display_image(’Cropped Image’, self.image)

35 return self.image

36
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37 def normalize_image(self):

38 self.image = cv2.normalize(self.image , None , 0, 255,

cv2.NORM_MINMAX)

39 self.display_image(’Normalized Image’, self.image)

40 return self.image

41

42 def resample_image(self , downscale_size =(64, 64),

upscale_size =(128 , 128)):

43 downscaled_image = cv2.resize(self.image , downscale_size)

44 self.image = cv2.resize(downscaled_image , upscale_size)

45 self.display_image(’Resampled Image’, self.image)

46 return self.image

47

48 def preprocess(self):

49 self.display_image(’Original Image’, self.image)

50 self.resize_image ()

51 self.noise_reduction ()

52 self.adjust_contrast ()

53 self.crop_image ()

54 self.normalize_image ()

55 self.resample_image ()

56 return self.image

B.9 Proposed HyBoost Predictive Model

1 import numpy as np

2 from sklearn.neural_network import MLPClassifier

3 from xgboost import XGBRegressor

4 from sklearn.ensemble import AdaBoostRegressor

5 from sklearn.model_selection import cross_val_score , GridSearchCV ,

train_test_split

6

7 class HighLevelFeaturesExtractor:
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8

9 class LowLevelFeaturesExtractor:

10

11 class FeaturesFusion:

12

13

14 class HyBoostModel:

15 def __init__(self):

16 pass

17

18 def hyboost_predictive_model(D_train , y_train , D_test , H_xgb , H_ab , K,

T, alpha):

19 # Step 1: HyBoost Training Phase

20 # Step 1.1: Train XGBoost

21 M_xgb = XGBRegressor (** H_xgb)

22 M_xgb.fit(D_train , y_train)

23 y_xgb_pred = M_xgb.predict(D_train)

24

25 # Residuals from XGBoost

26 residuals = y_train - y_xgb_pred

27

28 # Step 1.2: Train AdaBoost on residuals

29 M_ab = AdaBoostRegressor(base_estimator=None , n_estimators=T,

random_state =42, **H_ab)

30 M_ab.fit(D_train , residuals)

31 y_ab_pred = M_ab.predict(D_train)

32

33 # Step 2: HyBoost Prediction Phase

34 # Prediction on training set

35 y_final_train = alpha * y_xgb_pred + (1 - alpha) * y_ab_pred

36

37 # Prediction on test set

38 y_xgb_test_pred = M_xgb.predict(D_test)

39 y_ab_test_pred = M_ab.predict(D_test)

401



40 y_final_test = alpha * y_xgb_test_pred + (1 - alpha) *

y_ab_test_pred

41

42 # Step 3: Tuning and Optimization

43 def objective_function(alpha):

44 return -np.mean(cross_val_score(M_xgb , D_train , y_train , cv=5,

scoring=’neg_mean_squared_error ’)) + \

45 -np.mean(cross_val_score(M_ab , D_train , residuals ,

cv=5, scoring=’neg_mean_squared_error ’))

46

47 # Grid Search for alpha optimization

48 grid_params = {’alpha ’: np.linspace(0, 1, 10)}

49 grid_search = GridSearchCV(estimator=object ,

param_grid=grid_params , scoring=objective_function , cv=5)

50 grid_search.fit(D_train , y_train)

51 best_alpha = grid_search.best_params_[’alpha’]

52

53 # Re -train with best alpha

54 M_xgb.fit(D_train , y_train)

55 y_xgb_final_pred = M_xgb.predict(D_train)

56 M_ab.fit(D_train , y_train - y_xgb_final_pred)

57 y_ab_final_pred = M_ab.predict(D_train)

58

59 y_final_optimized_train = best_alpha * y_xgb_final_pred + (1 -

best_alpha) * y_ab_final_pred

60

61 # Final prediction on the test set

62 y_final_optimized_test = best_alpha * M_xgb.predict(D_test) + (1 -

best_alpha) * M_ab.predict(D_test)

63

64 return y_final_optimized_test

65

66 high_level_features = HighLevelFeaturesExtractor

67 low_level_features = LowLevelFeaturesExtractor
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68

69 fusion_model = FeaturesFusion ()

70 best_combination , ann =

fusion_model.fuse_and_update(high_level_features , np.random.rand (3))

71 combined_features , ann_weights =

fusion_model.combine_features_and_update(high_level_features ,

low_level_features , best_combination , ann.coefs_ [0])

72

73 # Features and weights are now defined as:

74 features = combined_features # Combined high and low -level features

75 weights = ann_weights # Resulted ANN weights from

combine_features_and_update

76

77 # Step 2: Split the combined features into training and testing

datasets

78 D_train , D_test , y_train , y_test = train_test_split(features ,

np.random.rand(features.shape [0]), test_size =0.2, random_state =42)

79

80 # Step 3: HyBoost model training and prediction

81 H_xgb = {

82 ’max_depth ’: 3,

83 ’learning_rate ’: 0.1,

84 ’n_estimators ’: 100,

85 }

86

87 H_ab = {

88 ’n_estimators ’: 50,

89 ’learning_rate ’: 0.1,

90 }

91

92 K = 100

93 T = 50

94 alpha = 0.5

95
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96 # Execute the HyBoost model with the split data

97 y_final = hyboost_predictive_model(D_train , y_train , D_test , H_xgb ,

H_ab , K, T, alpha)

98 print("Final Predictions on Test Data:", y_final)

B.10 Performance Measurement Matrix

1 import numpy as np

2

3 class OptimalPerformanceMetricMatrix:

4 def __init__(self):

5 pass

6

7 def weight_assignment_function(self , metric):

8 """

9 Assigns a weight to a given metric.

10 Modify this function to implement the specific weight

assignment logic as per your requirements.

11 """

12 return np.random.random () # For simplicity , returning a

random weight

13

14 def correlation_coefficient(self , x, y):

15 """

16 Computes the correlation coefficient between two arrays x and

y.

17 """

18 return np.corrcoef(x, y)[0, 1]

19

20 def optimal_performance_evaluation(self , C12 , C13 , C23):

21 """

22 Evaluates the optimal performance metric matrix given the

correlation matrices C12 , C13 , and C23.
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23 Returns the optimal performance metrics.

24 """

25 n = len(C12)

26

27 # Initialize matrices and vectors

28 WC12 = np.zeros(n)

29 D12 = np.zeros((n, n))

30 D13 = np.zeros((n, n))

31 D23 = np.zeros((n, n))

32 PMM = np.zeros((n, n))

33 PMM_optimal = np.zeros(n)

34

35 # Step 1: Calculate weighted performance metrics for C12

36 for i in range(n):

37 WC12[i] = self.weight_assignment_function(C12[i])

38

39 # Step 2: Populate D12 , D13 , D23 matrices

40 for i in range(n):

41 for j in range(n):

42 if i == j:

43 WC12ii = self.correlation_coefficient(C12[i],

C12[i])

44 D12[i, j] = WC12ii

45 else:

46 WC12ij = self.correlation_coefficient(C12[i],

C12[j])

47 D12[i, j] = WC12ij

48

49 # Repeat the same steps for D13 and D23

50 for i in range(n):

51 for j in range(n):

52 if i == j:

53 WC13ii = self.correlation_coefficient(C13[i],

C13[i])
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54 D13[i, j] = WC13ii

55 else:

56 WC13ij = self.correlation_coefficient(C13[i],

C13[j])

57 D13[i, j] = WC13ij

58

59 for i in range(n):

60 for j in range(n):

61 if i == j:

62 WC23ii = self.correlation_coefficient(C23[i],

C23[i])

63 D23[i, j] = WC23ii

64 else:

65 WC23ij = self.correlation_coefficient(C23[i],

C23[j])

66 D23[i, j] = WC23ij

67

68 # Step 3: Calculate PMM matrix

69 for i in range(n):

70 for j in range(n):

71 if i == j:

72 PMM[i, j] = max(D12[i, i], D13[i, i], D23[i, i])

73 else:

74 PMM[i, j] = max(D12[i, j], D13[i, j], D23[i, j])

75

76 # Step 4: Determine the optimal performance metrics

77 for i in range(n):

78 for j in range(n):

79 if PMM[i, j] > 0:

80 PMM_optimal[i] = PMM[i, j]

81

82 return PMM_optimal
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B.11 SHAP Analysis

1 import shap

2

3 def shap_analysis(self , M_xgb , M_ab , D_train , D_test):

4 # SHAP analysis for XGBoost

5 explainer_xgb = shap.Explainer(M_xgb)

6 shap_values_xgb = explainer_xgb(D_test)

7 print("SHAP Analysis for XGBoost:")

8 shap.summary_plot(shap_values_xgb , D_test)

9

10 # SHAP analysis for AdaBoost

11 explainer_ab = shap.Explainer(M_ab , D_train)

12 shap_values_ab = explainer_ab(D_test)

13 print("SHAP Analysis for AdaBoost:")

14 shap.summary_plot(shap_values_ab , D_test)
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Miljković, D. (2017). ‘Brief review of self-organizing maps’. 2017 40th international con-

vention on information and communication technology, electronics and microelectronics

(MIPRO). IEEE, pp. 1061–1066.

Mingqiang, Y., Kidiyo, K., Joseph, R., et al. (2008). ‘A survey of shape feature extraction

techniques’. Pattern recognition, 15.(7), pp. 43–90.

423



Mishra, N. and Singh, A. (2022). ‘A Deep Learning Approach for Detecting Diabetic Macu-

lar Edema through Analyzing Retinal Images’. Mathematical Statistician and Engineering

Applications, 71.(3s), pp. 233–242.

Mishra, S. P. and Rahul, M. R. (2021). ‘A comparative study and development of a novel deep

learning architecture for accelerated identification of microstructure in materials science’.

Computational Materials Science, 200, p. 110815.

Montazer, G. A., Giveki, D., Karami, M., and Rastegar, H. (2018). ‘Radial basis function neural

networks: A review’. Comput. Rev. J, 1.(1), pp. 52–74.

Mooney, P. T. (2018a). Chest X-Ray Pneumonia. https://www.kaggle.com/datasets/paultimothymooney/

chest-xray-pneumonia. Accessed: April 2024.

Mooney, P. T. (2018b). Kermany2018: OCT and Chest X-Ray Images for Classification. https:

//www.kaggle.com/datasets/paultimothymooney/kermany2018. Accessed: April 2024.

Mukherjee, N. and Sengupta, S. (2023). ‘Application of deep learning approaches for classi-

fication of diabetic retinopathy stages from fundus retinal images: a survey’. Multimedia

Tools and Applications, pp. 1–61.

Mukhlif, A. A., Al-Khateeb, B., and Mohammed, M. A. (2023). ‘Incorporating a novel dual

transfer learning approach for medical images’. Sensors, 23.(2), p. 570.

Mushtaq, G. and Siddiqui, F. (2021). ‘Detection of diabetic retinopathy using deep learning

methodology’. IOP Conference Series: Materials Science and Engineering. Vol. 1070. 1.

IOP Publishing, p. 012049.

Mutlag, W. K., Ali, S. K., Aydam, Z. M., and Taher, B. H. (2020). ‘Feature extraction methods:

a review’. Journal of Physics: Conference Series. Vol. 1591. 1. IOP Publishing, p. 012028.

Nakayama, Y., Lu, H., Li, Y., and Kamiya, T. (2020). ‘WideSegNeXt: semantic image segmen-

tation using wide residual network and NeXt dilated unit’. IEEE Sensors Journal, 21.(10),

pp. 11427–11434.

424



Nazir, T. et al. (2021). ‘Detection of diabetic eye disease from retinal images using a deep

learning based CenterNet model’. Sensors, 21.(16), p. 5283.

Ngo, T. A., Lu, Z., and Carneiro, G. (2017). ‘Combining deep learning and level set for the

automated segmentation of the left ventricle of the heart from cardiac cine magnetic reso-

nance’. Medical image analysis, 35, pp. 159–171.

Nixon, M. S. and Aguado, A. S. (2019). Feature Extraction and Image Processing for Computer

Vision. Academic Press.

Noriega, A. et al. (2021). ‘Screening diabetic retinopathy using an automated retinal image

analysis system in independent and assistive use cases in Mexico: randomized controlled

trial’. JMIR formative research, 5.(8), e25290.

O’shea, K. and Nash, R. (2015). ‘An introduction to convolutional neural networks’. arXiv

preprint arXiv:1511.08458,

Painuli, D., Bhardwaj, S., and köse, U. (2022). ‘Recent advancement in cancer diagnosis using

machine learning and deep learning techniques: A comprehensive review’. Computers in

Biology and Medicine, 146, p. 105580.

Panayides, A. S. et al. (2020). ‘AI in medical imaging informatics: current challenges and future

directions’. IEEE journal of biomedical and health informatics, 24.(7), pp. 1837–1857.

Pang, S. and Yang, X. (2016). ‘Deep convolutional extreme learning machine and its application

in handwritten digit classification’. Computational intelligence and neuroscience, 2016.(1),

p. 3049632.

Paul, L. and Talukder, K. H. (2023). ‘Blindness Risk Prediction caused by Diabetic Retinopathy

from Retinal Image’. 2023 International Conference on Electrical, Computer and Commu-

nication Engineering (ECCE). IEEE, pp. 1–6.

Pawar, S. P. and Talbar, S. N. (2022). ‘Two-Stage Hybrid Approach of Deep Learning Networks

for Interstitial Lung Disease Classification’. BioMed Research International, 2022.(1), p. 7340902.

425



Peng, H. and Long, F. (2001). ‘A Bayesian learning algorithm of discrete variables for automat-

ically mining irregular features of pattern images’. Proceedings of the Second International

Conference on Multimedia Data Mining, pp. 87–93.

Pleiss, G., Chen, D., Huang, G., Li, T., Maaten, L. van der, and Weinberger, K. Q. (2017).

‘Memory-efficient implementation of densenets’. arXiv preprint arXiv:1707.06990,

Pratella, D., Ait-El-Mkadem Saadi, S., Bannwarth, S., Paquis-Fluckinger, V., and Bottini, S.

(2021). ‘A survey of autoencoder algorithms to pave the diagnosis of rare diseases’. Inter-

national journal of molecular sciences, 22.(19), p. 10891.

Qaid, T. S., Mazaar, H., Al-Shamri, M. Y. H., Alqahtani, M. S., Raweh, A. A., and Alakwaa,

W. (2021). ‘Hybrid deep-learning and machine-learning models for predicting COVID-19’.

Computational Intelligence and Neuroscience, 2021.

Qin, X. and Wang, Z. (2019). ‘Nasnet: A neuron attention stage-by-stage net for single image

deraining’. arXiv preprint arXiv:1912.03151,

Raaj, R. S. (2023). ‘Breast cancer detection and diagnosis using hybrid deep learning architec-

ture’. Biomedical Signal Processing and Control, 82, p. 104558.

Rahmani, A. M. et al. (2021). ‘Machine learning (ML) in medicine: Review, applications, and

challenges’. Mathematics, 9.(22), p. 2970.

Rajesh, G, Raajini, X. M., Sagayam, K. M., and Dang, H. (2020). ‘A statistical approach for

high order epistasis interaction detection for prediction of diabetic macular edema’. Infor-

matics in Medicine Unlocked, 20, p. 100362.

Ramraj, S., Nagamalai, D, Pandian, S, and Vimala, J (2016). ‘Experimenting XGBoost algo-

rithm for prediction and classification of different datasets’. International Journal of Con-

trol Theory and Applications, 9.(40), pp. 651–662.

426



Rasti, R. et al. (2020). ‘Deep learning-based single-shot prediction of differential effects of

anti-VEGF treatment in patients with diabetic macular edema’. Biomedical optics express,

11.(2), pp. 1139–1152.

Ravì, D. et al. (2016). ‘Deep learning for health informatics’. IEEE journal of biomedical and

health informatics, 21.(1), pp. 4–21.

Razzak, M. I., Naz, S., and Zaib, A. (2018). ‘Deep learning for medical image processing:

Overview, challenges and the future’. Classification in BioApps, pp. 323–350.

Rokh, B., Azarpeyvand, A., and Khanteymoori, A. (2023). ‘A comprehensive survey on model

quantization for deep neural networks in image classification’. ACM Transactions on Intel-

ligent Systems and Technology, 14.(6), pp. 1–50.

Ronneberger, O., Fischer, P., and Brox, T. (2015). ‘U-net: Convolutional networks for biomedi-

cal image segmentation’. International Conference on Medical image computing and computer-

assisted intervention. Springer, Cham, pp. 234–241.

Rundo, L. et al. (2019). ‘HaraliCU: GPU-powered Haralick feature extraction on medical im-

ages exploiting the full dynamics of gray-scale levels’. International Conference on Parallel

Computing Technologies. Springer, pp. 304–318.

Rundo, L. et al. (2021). ‘A CUDA-powered method for the feature extraction and unsupervised

analysis of medical images’. The Journal of Supercomputing, 77.(8), pp. 8514–8531.

Samee, N. A. et al. (2022). ‘Classification framework for medical diagnosis of brain tumor with

an effective hybrid transfer learning model’. Diagnostics, 12.(10), p. 2541.

Savchenko, A. V. (2019). ‘Probabilistic neural network with complex exponential activation

functions in image recognition’. IEEE transactions on neural networks and learning sys-

tems, 31.(2), pp. 651–660.

Sevinç, E. (2022). ‘An empowered AdaBoost algorithm implementation: A COVID-19 dataset

study’. Computers & Industrial Engineering, 165, p. 107912.

427



Shakeri, E., Crump, T., Weis, E., Mohammed, E., Souza, R., and Far, B. (2023). ‘Explaining

eye diseases detected by machine learning using shap: A case study of diabetic retinopathy

and choroidal nevus’. SN Computer Science, 4.(5), p. 433.

Sharma, S. and Guleria, K. (2023a). ‘A Deep Learning-based model for the Detection of Pneu-

monia from Chest X-Ray Images using VGG-16 and Neural Networks’. Procedia Computer

Science, 218, pp. 357–366.

Sharma, S. and Guleria, K. (2023b). ‘A deep learning model for early prediction of Pneumonia

using VGG19 and neural networks’. Mobile Radio Communications and 5G Networks:

Proceedings of Third MRCN 2022. Springer Nature Singapore, pp. 597–612.

Sharma, S. and Guleria, K. (2023c). ‘A systematic literature review on deep learning ap-

proaches for Pneumonia detection using chest X-ray images’. Multimedia Tools and Ap-

plications, pp. 1–51.

Sharp, G. et al. (2014). ‘Vision 20/20: perspectives on automated image segmentation for ra-

diotherapy’. Medical physics, 41.(5), p. 050902.

Shi, H., Lu, L., Yin, M., Zhong, C., and Yang, F. (2023). ‘Joint few-shot registration and seg-

mentation self-training of 3D medical images’. Biomedical Signal Processing and Control,

80, p. 104294.

Shimpi, J. K. and Shanmugam, P. (2023). ‘Multiclass Adaptive Boosting Approach for Diabetic

Retinopathy Prediction Using Diabetic Retinal Images’. Traitement du Signal, 40.(3).

Shinde, P. P. and Shah, S. (2018). ‘A review of machine learning and deep learning appli-

cations’. 2018 Fourth international conference on computing communication control and

automation (ICCUBEA). IEEE, pp. 1–6.

Siddique, N., Paheding, S., Elkin, C. P., and Devabhaktuni, V. (2021). ‘U-net and its variants

for medical image segmentation: A review of theory and applications’. IEEE access, 9,

pp. 82031–82057.

428



Simonyan, K. and Zisserman, A. (2014). ‘Very deep convolutional networks for large-scale

image recognition’. arXiv preprint arXiv:1409.1556,

Siradjuddin, I. A. and Muntasa, A. (2021). ‘Faster region-based convolutional neural network

for mask face detection’. 2021 5th International Conference on Informatics and Computa-

tional Sciences (ICICoS). IEEE, pp. 154–159.

Siuly, S. and Zhang, Y. (2016). ‘Medical big data: neurological diseases diagnosis through

medical data analysis’. Data Science and Engineering, 1, pp. 54–64.

Sohn, I. (2021). ‘Deep belief network based intrusion detection techniques: A survey’. Expert

Systems with Applications, 167, p. 114170.

Srikantamurthy, M. M., Rallabandi, V. S., Dudekula, D. B., Natarajan, S., and Park, J. (2023).

‘Classification of benign and malignant subtypes of breast cancer histopathology imaging

using hybrid CNN-LSTM based transfer learning’. BMC Medical Imaging, 23.(1), p. 19.

Su, Z. et al. (2021). ‘Pixel difference networks for efficient edge detection’. Proceedings of the

IEEE/CVF international conference on computer vision, pp. 5117–5127.

Sun, L., Zhang, L., and Zhang, D. (2019). ‘Multi-atlas based methods in brain MR image

segmentation’. Chinese Medical Sciences Journal, 34.(2), pp. 110–119.

Sun, Y., Wang, X., and Tang, X. (2013). ‘Hybrid deep learning for face verification’. Proceed-

ings of the IEEE international conference on computer vision, pp. 1489–1496.

Sun, Z., Yang, D., Tang, Z., Ng, D. S., and Cheung, C. Y. (2021). ‘Optical coherence tomogra-

phy angiography in diabetic retinopathy: an updated review’. Eye, 35.(1), pp. 149–161.

Sunkari, S., Sangam, A., Suchetha, M, Raman, R., Rajalakshmi, R., Tamilselvi, S, et al. (2024).

‘A refined ResNet18 architecture with Swish activation function for Diabetic Retinopathy

classification’. Biomedical Signal Processing and Control, 88, p. 105630.

429



Surya, J., Kashyap, H., Nadig, R. R., and Raman, R. (2023). ‘Developing a Risk Stratification

Model Based on Machine Learning for Targeted Screening of Diabetic Retinopathy in the

Indian Population’. Cureus, 15.(9).

Syed, S. R. and MA, S. D. (2023). ‘A diagnosis model for detection and classification of di-

abetic retinopathy using deep learning’. Network Modeling Analysis in Health Informatics

and Bioinformatics, 12.(1), p. 37.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2017). ‘Inception-v4, inception-resnet

and the impact of residual connections on learning’. Proceedings of the AAAI conference

on artificial intelligence. Vol. 31. 1.

Szegedy, C. et al. (2015). ‘Going deeper with convolutions’. Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 1–9.

Tajbakhsh, N. and Suzuki, K. (2018). ‘A comparative study of modern machine learning ap-

proaches for focal lesion detection and classification in medical images: BoVW, CNN and

MTANN’. Artificial Intelligence in Decision Support Systems for Diagnosis in Medical

Imaging, pp. 31–58.

Tajbakhsh, N. et al. (2016). ‘Convolutional neural networks for medical image analysis: Full

training or fine tuning?’ IEEE transactions on medical imaging, 35.(5), pp. 1299–1312.

Tan, M. and Le, Q. V. (2019). ‘Efficientnet: Rethinking model scaling for convolutional neural

networks’. International conference on machine learning. PMLR, pp. 6105–6114.

Tan, M. and Le, Q. V. (2021). ‘Efficientnetv2: Smaller models and faster training’. International

conference on machine learning. PMLR, pp. 10096–10106.

Tan, M., Pang, R., and Le, Q. V. (2020). ‘Efficientdet: Scalable and efficient object detec-

tion’. Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-

tion, pp. 10781–10790.

430



Tang, F. et al. (2021). ‘A Multitask Deep-Learning system to classify diabetic macular edema

for different optical coherence tomography devices: a multicenter analysis’. Diabetes Care,

44.(9), pp. 2078–2088.

Tanlikesmath (2019). Diabetic Retinopathy Resized. https : / / www . kaggle . com / datasets /

tanlikesmath/diabetic-retinopathy-resized. Accessed: April 2024.

Thanki, R. (2023). ‘A deep neural network and machine learning approach for retinal fundus

image classification’. Healthcare Analytics, 3, p. 100140.

Ting, D. S. W. et al. (2019). ‘Artificial intelligence and deep learning in ophthalmology’. British

Journal of Ophthalmology, 103.(2), pp. 167–175.

Trombini, M., Solarna, D., Moser, G., and Dellepiane, S. (2023). ‘A goal-driven unsuper-

vised image segmentation method combining graph-based processing and Markov random

fields’. Pattern Recognition, 134, p. 109082.

Tsai, H.-Y., Zhang, H., Hung, C.-L., and Min, G. (2017). ‘GPU-accelerated features extraction

from magnetic resonance images’. IEEE Access, 5, pp. 22634–22646.

Tsiknakis, N. et al. (2021). ‘Deep learning for diabetic retinopathy detection and classification

based on fundus images: A review’. Computers in biology and medicine, 135, p. 104599.

Umamaheswari, C, Bhavani, R, and Sikamani, D. K. T. (2018). ‘Texture and Color Feature

Extraction from Ceramic Tiles for Various Flaws Detection Classification’. International

Journal on Future Revolution in Computer Science & Communication Engineering, 4.(1),

pp. 169–179.

Usman, T. M., Saheed, Y. K., Ignace, D., and Nsang, A. (2023). ‘Diabetic retinopathy detec-

tion using principal component analysis multi-label feature extraction and classification’.

International Journal of Cognitive Computing in Engineering, 4, pp. 78–88.

431



Varadarajan, A. V. et al. (2020). ‘Predicting optical coherence tomography-derived diabetic

macular edema grades from fundus photographs using deep learning’. Nature communica-

tions, 11.(1), p. 130.

Vasudeva, R and Chandrashekara, S. (2023). ‘An Image Classification and Retrieval Hybrid

Model for Larger Healthcare Datasets using Deep Learning’. Indian Journal of Science

and Technology, 16.(35), pp. 2796–2806.

Verma, B., McLeod, P., and Klevansky, A. (2009). ‘A novel soft cluster neural network for

the classification of suspicious areas in digital mammograms’. Pattern Recognition, 42.(9),

pp. 1845–1852.

Vetrithangam, D, SATVE, P. P., KUMAR, J. R. R., Anitha, P, Vidhya, S, and SAINI, A. K.

(2023). ‘prediction of pneumonia disease from x-ray images using a modified resnet152v2

deep learning model’. Journal of Theoretical and Applied Information Technology, 101.(17).

Wahab Sait, A. R. (2023). ‘A Lightweight Diabetic Retinopathy Detection Model Using a

Deep-Learning Technique’. Diagnostics, 13.(19), p. 3120.

Wang, J. et al. (2020). ‘Deep high-resolution representation learning for visual recognition’.

IEEE transactions on pattern analysis and machine intelligence, 43.(10), pp. 3349–3364.

Wang, J., Li, X., and Cheng, Y. (2023). ‘Towards an extended EfficientNet-based U-Net frame-

work for joint optic disc and cup segmentation in the fundus image’. Biomedical Signal

Processing and Control, 85, p. 104906.

Wang, S., Zhang, Y., Guo, C., Wang, C., Ji, H., and Liu, Z. (2021). ‘A crop image segmentation

and extraction algorithm based on mask RCNN’. Entropy, 23.(9), p. 1160.

Wieser, W., Biedermann, B. R., Klein, T., Eigenwillig, C. M., and Huber, R. (2010). ‘Multi-

megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per sec-

ond’. Optics express, 18.(14), pp. 14685–14704.

432



Xia, L. et al. (2022). ‘3D vessel-like structure segmentation in medical images by an edge-

reinforced network’. Medical Image Analysis, 82, p. 102581.

Xiao, K., Liang, A. L., Guan, H. B., and Hassanien, A. E. (2013). ‘Extraction and application

of deformation-based feature in medical images’. Neurocomputing, 120, pp. 177–184.

Xiao, Z., Ding, Y., Lan, T., Zhang, C., Luo, C., and Qin, Z. (2017). ‘Brain MR image classifi-

cation for Alzheimer’s disease diagnosis based on multifeature fusion’. Computational and

mathematical methods in medicine, 2017.

Xie, H., Fu, C., Zheng, X., Zheng, Y., Sham, C.-W., and Wang, X. (2023a). ‘Adversarial

co-training for semantic segmentation over medical images’. Computers in biology and

medicine, 157, p. 106736.

Xie, L. et al. (2023b). ‘Deep label fusion: A generalizable hybrid multi-atlas and deep con-

volutional neural network for medical image segmentation’. Medical image analysis, 83,

p. 102683.

Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. (2020). ‘Self-training with noisy student im-

proves imagenet classification’. Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pp. 10687–10698.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). ‘Aggregated residual transformations

for deep neural networks’. Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 1492–1500.

Xie, X., Pan, X., Zhang, W., and An, J. (2022). ‘A context hierarchical integrated network for

medical image segmentation’. Computers and Electrical Engineering, 101, p. 108029.

Xu, F. et al. (2022). ‘Prediction of the short-term therapeutic effect of anti-VEGF therapy for

diabetic macular edema using a generative adversarial network with OCT images’. Journal

of Clinical Medicine, 11.(10), p. 2878.

433



Xu, W., Fu, Y.-L., and Zhu, D. (2023). ‘ResNet and its application to medical image processing:

Research progress and challenges’. Computer Methods and Programs in Biomedicine, 240,

p. 107660.

Yadav, S. S. and Jadhav, S. M. (2019). ‘Deep convolutional neural network based medical

image classification for disease diagnosis’. Journal of Big data, 6.(1), pp. 1–18.

Yala, A., Lehman, C., Schuster, T., Portnoi, T., and Barzilay, R. (2019). ‘A deep learning

mammography-based model for improved breast cancer risk prediction’. Radiology, 292.(1),

pp. 60–66.

Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K. (2018). ‘Convolutional neural net-

works: an overview and application in radiology’. Insights into imaging, 9, pp. 611–629.

Yang, C, Lan, H, Gao, F, and Gao, F (2020). ‘Deep learning for photoacoustic imaging: A

survey’. arXiv preprint arXiv:2008.04221,

Yang, Y. et al. (2021). ‘A comparative analysis of eleven neural networks architectures for

small datasets of lung images of COVID-19 patients toward improved clinical decisions’.

Computers in Biology and Medicine, 139, p. 104887.

Yasashvini, R, Panjanathan, R, Graceline, J. S., and Jani Anbarasi, L (2022). ‘Diabetic retinopa-

thy classification using CNN and hybrid deep convolutional neural networks’. Symmetry,

14.(9), p. 1932.

Yi, R., Tang, L., Tian, Y., Liu, J., and Wu, Z. (2023). ‘Identification and classification of Pneu-

monia disease using a deep learning-based intelligent computational framework’. Neural

Computing and Applications, 35.(20), pp. 14473–14486.

You, A. et al. (2022). ‘Application of generative adversarial networks (GAN) for ophthalmol-

ogy image domains: a survey’. Eye and Vision, 9.(1), p. 6.

434



Yousaf, F., Iqbal, S., Fatima, N., Kousar, T., and Rahim, M. S. M. (2023). ‘Multi-class dis-

ease detection using deep learning and human brain medical imaging’. Biomedical Signal

Processing and Control, 85, p. 104875.

Zewail, R. and Hag-ElSafi, A. (2017). ‘Appearance-based Salient Features Extraction in Medi-

cal Images Using Sparse Contourlet-based Representation’. International Journal of Image,

Graphics and Signal Processing, 9.(9), p. 1.

Zhang, C., Lu, W., Wu, J., Ni, C., and Wang, H. (2024). ‘SegNet Network Architecture for Deep

Learning Image Segmentation and Its Integrated Applications and Prospects’. Academic

Journal of Science and Technology, 9.(2), pp. 224–229.

Zhang, J. and Feng, Z. (2019). ‘Inception DenseNet With Hybrid Activations For Image Clas-

sification’. 2019 6th International Conference on Systems and Informatics (ICSAI). IEEE,

pp. 1295–1301.

Zhang, S., Li, Z., Zhou, H.-Y., Ma, J., and Yu, Y. (2023). ‘Advancing 3D medical image analy-

sis with variable dimension transform based supervised 3D pre-training’. Neurocomputing,

529, pp. 11–22.

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). ‘Shufflenet: An extremely efficient convolu-

tional neural network for mobile devices’. Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 6848–6856.

Zhang, X. et al. (2021). ‘Automated detection of severe diabetic retinopathy using deep learning

method’. Graefe’s Archive for Clinical and Experimental Ophthalmology, pp. 1–8.

Zhang, Y. et al. (2022). ‘Prediction of visual acuity after anti-VEGF therapy in diabetic macular

edema by machine learning’. Journal of Diabetes Research,

Zhao, P., Li, C., Rahaman, M. M., and Xu, H. (2022). ‘A comparative study of deep learning

classification methods on a small environmental microorganism image dataset (EMDS-6):

435



from convolutional neural networks to visual transformers’. Frontiers in Microbiology, 13,

p. 792166.

Zhao, T., Hoffman, J., McNitt-Gray, M., and Ruan, D. (2019). ‘Ultra-low-dose CT image de-

noising using modified BM3D scheme tailored to data statistics’. Medical physics, 46.(1),

pp. 190–198.

Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., and Fan, Y. (2018). ‘A deep learning model

integrating FCNNs and CRFs for brain tumor segmentation’. Medical image analysis, 43,

pp. 98–111.

Zhao, Y., Wang, X., Che, T., Bao, G., and Li, S. (2023). ‘Multi-task deep learning for med-

ical image computing and analysis: A review’. Computers in Biology and Medicine, 153,

p. 106496.

Zheng, J., Liu, H., Feng, Y., Xu, J., and Zhao, L. (2023). ‘CASF-Net: Cross-attention and cross-

scale fusion network for medical image segmentation’. Computer Methods and Programs

in Biomedicine, 229, p. 107307.

Zhong, G., Ding, W., Chen, L., Wang, Y., and Yu, Y.-F. (2023). ‘Multi-scale attention genera-

tive adversarial network for medical image enhancement’. IEEE Transactions on Emerging

Topics in Computational Intelligence,

Zhou, Q., Wang, Q., Bao, Y., Kong, L., Jin, X., and Ou, W. (2022). ‘LAEDNet: a lightweight at-

tention encoder–decoder network for ultrasound medical image segmentation’. Computers

and Electrical Engineering, 99, p. 107777.

Zhu, F., Wang, S., Li, D., and Li, Q. (2023). ‘Similarity attention-based CNN for robust 3D

medical image registration’. Biomedical Signal Processing and Control, 81, p. 104403.

436




