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Abstract

In the realm of biomedical applications, the analysis of big data holds immense promise,
particularly in aiding medical practitioners with crucial interpretations. However, ensuring
the integrity of multi-dimensional datasets and achieving high classification accuracy are
paramount challenges. The quality of data sources presents a significant threat, with issues
like abnormal, random and biased sampling posing obstacles, especially in machine learning
contexts. Addressing these challenges is essential, particularly in biomedical applications
reliant on accurate classification and prediction, such as physiological signal analysis utilizing
Artificial Neural Networks (ANNs). This study proposes a novel approach, utilizing Principal
Component Analysis–Sample Reduction Process (PCA-SRP), to preprocess datasets and
enhance ANN model accuracy. We discuss the theoretical underpinnings of this methodology,
followed by empirical validation using publicly available physiological and L/R Motor Move-
ment (MM)EEG datasets. The analysis demonstrates the efficacy of PCA-SRP in cleansing
datasets and improving ANN classification performance, with significant enhancements
observed across various performance metrics. Notably, our approach achieves up to a 7%
increase in accuracy in classifying L/R motor movement EEG signals, as validated through
Python implementation.
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Chapter 1

Introduction

1.1 Introduction

A data explosion is currently underway, with projections indicating a fivefold increase to 160
ZB over the next five years. By 2025, we anticipate generating 130 ZB more data than in
2020, surpassing the cumulative data produced until 2019 [1]. This data surge would pose
significant challenges if not addressed effectively.

The growth in data is driven by various developments, both commercially and domesti-
cally. Numerous industries, including biomedical healthcare, education, government, finance,
and technology, are experiencing a massive increase in data volume, velocity, and variety. So-
cial media platforms like Facebook, Instagram, and Twitter, alongside platforms like Google
Cloud Public Datasets and Kaggle, are significant contributors to this data proliferation.

Efforts to manage data are concentrated at its source due to its widespread generation.
Many social media companies and collaborative platforms, as well as government entities
and institutions, share vast amounts of public and personal data online.

However, the integrity of data poses challenges. Acquisition and movement of data
require substantial resources, and data quality issues such as noise, inaccuracy, and bias are
prevalent. Like oil, data requires thorough refinement before utilization, as highlighted by
the phrase "Data is the new oil" [2].

This research leans more towards the interpretivist paradigm, emphasizing descriptive and
non-numeric methodologies [3]. It discusses technical challenges in maintaining extensive
information collection, cataloguing, and reporting projects, leveraging advancements in
computer and information science to address data-related issues.

Recent years have witnessed significant popularity in machine learning, particularly in
deep learning and neural networks [4]. This approach, inspired by the functionality of the
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human brain, employs both empirical and a priori methodologies to observe and analyze
complex systems.

In conclusion, while the data explosion presents opportunities, addressing data-related
challenges requires a multidisciplinary approach, incorporating technological advancements
and rigorous methodologies.

Fig. 1.1 Artificial Intelligence Popularity

Since the 1940s, as depicted in Figure 1.1, Artificial Neural Networks (ANNs) have
improved tremendously, with notable milestones including [5]:

• The perception of Minsky and Papert, pioneers of the Neural Network concept.

• The NYTimes video ’Thinking Machine’, which popularized the idea and gained mass
acceptance.

• The US Government’s DARPA (Defense Advanced Research Projects Agency) Initia-
tives played a central role in launching the Information Revolution.

• The US ALPAC and UK Lighthill Report, which marked the onset of the first AI winter
in the 1960s. These reports failed to fulfill the promises of AI, leading to a drastic
decline in research funding.
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• Hopfield’s paper in the 1980s, titled "Neural networks and physical systems with
emergent collective computational abilities," which laid the foundation for collective
computational properties in biological structures.

• John McCarthy’s invention of the LISP machine introduced the first AI programming
languages.

• Insufficient advancement in electronics hardware to support AI calculation led to the
second AI winter in the 1990s.

During this period, computational challenges were often addressed through backpropaga-
tion, the primary learning technique for artificial neural networks, sparking renewed interest
in the field. Researchers became more cautious following the lessons learned from the AI
winters, leading to a significant conservative shift in the late 1980s and early 1990s towards
established mathematical and statistics-based approaches. As a result, terms like "informat-
ics" or "analytics" were preferred over "AI" [6]. Thus, advancements in mathematics paved
the way for AI’s complex computation.

Another milestone was the development of electronic hardware supporting complex
computations, driven by Moore’s Law, which led to the widespread use of computers across
various industries, marking the beginning of the Era of Big Data. This era witnessed the
emergence of Autonomous Generation, combining technologies to automate various human
tasks, facilitating the gathering and acquisition of data.

Additionally, the conservative movement in AI led to the creation of public benchmark
datasets and related contests, serving as crucial tools for evaluating developments in AI
research. Notable benchmark datasets include:

• The Letter Dataset [7]
• Yale Face Database [8]
• MNIST dataset [9]
• Spambase Dataset [10]
• ISOLET Dataset [11]
• TIMIT [12]
• JARtool experiment Dataset [13]
• Solar Flare Dataset [14]
• EEG Database [15]
• BCI EEG Signal - Motor/Imagery [16]
• Breast Cancer Wisconsin (Diagnostic) Dataset [17]
• Liver Disorders Dataset [18]
• Thyroid Disease Dataset [19]
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• Abalone Dataset [20]
• UCI Mushroom Dataset [21]
• Heart Disease Dataset [22]
• Gender Voice Recognition Dataset [23]
• Breast Cancer Classification Dataset [24]
• Lung Cancer Patients Dataset [25]

Furthermore, Fei Fei Li’s promotion and development of large-scale databases like Ima-
geNet have enabled computers to process big data through machine learning [26]. However,
the excitement surrounding the attainment of human-level intelligence has led to exag-
gerations and media attention uncommon in other technological fields. Several crucial
considerations are necessary to prevent another AI winter, including addressing issues re-
lated to "dirty data," which encompasses low-quality data that may compromise research
outcomes [27]. AI still faces significant obstacles on the path to achieving Artificial General
Intelligence, necessitating solutions to address problems with significantly fewer data.

1.2 Motivation

Given the earlier-mentioned issues, providing researchers and non-professionals with a
common ground for comprehending the theoretical aspects of enhancing data-cleaning
capabilities in physiological datasets would be beneficial. This involves providing a method
for subject matter experts, such as data analysts, to derive meaningful information and data
in a manner conducive to data analysis and classification.

On the computing side, neural networks are often described as black boxes, as their model
structure and parameters are unknown, making it challenging to understand the rationale
behind certain decisions.

However, progress is being made in this research study, particularly in the selection of
training sets for Artificial Neural Networks (ANNs), which would benefit data analysts in the
fields of data cleansing and big data analytics if knowledge representation could align more
closely with advancements in data cleaning. Improved data cleansing has various practical
advantages, including identifying different classes of disorders, potentially improving data
quality, enhancing the performance of artificial neural networks to aid medical professionals
in interpreting patients’ medical results, and contributing to the accuracy of physiological
data acquisition.
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1.3 Problem Statements

Understanding data requires understanding its composition, which comprises valid and dirty
data. While accurate data contain reliable information with predictive power, dirty data
[28] contain misleading information, including noisy or random and erroneous data, such as
pragmatic contexts and semantic- and syntactic-biased errors shown in Figure 1.2.

Fig. 1.2 Dirty data.

Dirty and Imprecise Data. A collection of facts, including numbers, words, measure-
ments, observations, or descriptions, always contains erroneous data. It may also refer to data
that lacks coherence or is randomly generated. Data can be considered dirty and imprecise if
it includes:

• Misleading item data
• Duplicate data
• Incorrect data
• Inaccurate data
• Non-integrated data
• Data without standardized formatting
• Incorrectly punctuated or spelled data

Noisy data are small fluctuations considered unwanted, while random (abnormal)
data are disruptive, seemingly "good" data without predictive information that hinders
generalization across the dataset.

Data cleansing involves identifying and correcting errors in the data before modeling.
Common techniques include removing duplicates, irrelevant data, standardizing capitaliza-
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tion, converting data types, clearing formatting, fixing errors, searching for missing values,
and translating language.

Various industrial facts about data cleansing [29] [30] include:

• Over 25% of revenue reported being subjected to data quality issues.
• Data analysts spend over 50% of their time on data quality.
• It takes data analysts around 4 hours to detect a data quality issue.
• Data cleansing and organization occupy 60% of data scientists’ work.
• Data scientists spend approximately 80% of their time organizing and preparing data

for analysis, with data collection occupying the remaining 19%.
• Data preparation is viewed as the least enjoyable aspect of a data scientist’s job by

76% of respondents.
• Obtaining data sets is considered the least enjoyable aspect of a data scientist’s job,

while 57% find cleaning and organizing data to be the least pleasurable.

In recent decades, flexible and wearable body sensors have been developed for medical
applications, showing significant potential for future biomedical and healthcare applications.
However, data accuracy, sensitivity, selectivity, and data preparation play critical roles in
fulfilling clinical assessment needs or commercialization requirements in medical facilities.
Therefore, data cleansing techniques need improvement to address random data acquired via
biomedical sensors and human input errors.

While most data cleansing techniques help improve and minimize errors in gathered data,
they often fail to measure the predictive value of samples. To accurately analyze data and
determine predictive power, datasets need to be free from noise and random data, which
significantly impact classification, regression, and prediction tasks in Machine Learning.
Technological solutions [31] have highlighted relevant control algorithms statistically and
mathematically to address these challenges.

1.4 Dissertation Aim and Objectives

The dissertation aims to propose a mathematical model for handling general and raw signals
in Big Data, particularly in physiological datasets and motor movement EEG signals.

1. Identify the key components of multi-dimensional data and explore mathematical
equations to determine the magnitude of their predictive value.

2. Examine the proposed mathematical model using different classification metrics.
3. Evaluate the effectiveness of the proposed mathematical model in basic artificial neural

networks through model accuracy comparison, bootstrapping, and resilience testing.
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1.5 Contributions of the Dissertation

This dissertation focuses on reinforcing the ANN methodology using the Principal Compo-
nent Analysis - Sample Reduction Process (PCA-SRP) proposed herein to determine system
accuracy and performance with varying sizes of multidimensional biomedical datasets. Fur-
thermore, it investigates heart disease, voice and speech analysis for gender recognition,
breast cancer classification, cancer patient datasets, and EEG signals for BCI application to
demonstrate the versatility and flexibility of the proposed PCA-SRP data-cleansing technique.

The following aspects of the dissertation are believed to be original contributions:

1. The presentation of a mathematical model for data cleaning in Chapter 2.6, as depicted
in Figure 2.1.

2. The novel use of Principal Component Analysis as Sample Reduction Process (PCA-
SRP) in data cleaning for Artificial Neural Network classification problems in phys-
iological data analysis, discussed in Chapter 3.2, including the identification of the
Selectivity Threshold for highly predictive samples.

3. The application of the proposed mathematical model using PCA-SRP in Physionet’s
EEG Motor Movement (MM) Dataset as a data-cleaning process, presented in Chapter
5.

4. The bootstrapping process of ANN using the proposed mathematical model with PCA-
SRP in Physionet’s EEG Motor Movement (MM) dataset as a data-cleansing technique,
demonstrating a significant increase in model accuracy, as shown in Chapter 6.2.3.

5. The classification and identification of randomness and minority EEG samples in the
P300 Oddball Random Auditory Dataset in Physionet’s EEG Motor Movement (MM),
utilizing the proposed mathematical model with PCA-SRP as the data-cleaning process,
detailed in Chapter 6.

1.6 Dissertation Structure

The dissertation consists of eight chapters, covering eight research topics, excluding the
Introduction, Conclusion, and Future Works chapters. These chapters are:

• Chapter 2: Literature Review and Prior Works, discussing usability-related factors
investigated through an extensive systematic review of existing literature on Data
Cleaning, Taxonomy of Dirty Data, Machine Learning, and Mathematical Modelling.
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• Chapter 3: Methodology, explaining the data cleansing method, theoretical mathemat-
ics behind the proposed process, identification of the Selectivity Threshold, bootstrap-
ping, performance metrics, limitations, and interpretations.

• Chapter ??: Principal Component Analysis - Sample Reduction Process (PCA-
SRP) in Physiological Dataset, covering attributes of physiological datasets, perfor-
mance metrics, and results of PCA-SRP in various datasets.

• Chapter 4: Introduction and Previous Work on EEG Signal Acquisition and Anal-
ysis, discussing RAW signals, Feature Extraction and Classification, EEG applications,
tools, libraries, and current EEG-BCI challenges.

• Chapter 5: PCA-SRP Implementation on Physionet’s L/R EEG Motor Movement
(MM) Dataset, focusing on identifying anomalies in EEG signals, model accuracy,
and the impact of PCA-SRP on system performance.

• Chapter 6: PCA-SRP in Physionet’s L/R Motor Movement (MM) EEG Signals
with P300 Oddball Random Auditory Dataset, investigating randomness and mi-
nority samples in EEG datasets using PCA-SRP and analyzing performance metrics.

Figure 1.3 illustrates the thesis structure, with each chapter addressing related research
questions, and bold blocks indicating chapters containing original contributions.
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Fig. 1.3 Thesis Structure.

I I I I I I I 

Introduction 
" CHAPTER 1 
I 

" 

' 
I \ 

""'11111111 

Literature Review and Prior Works 
CHAPTER2 

,,, ,..., 

' I . u, .. 
--

- ,--
Introduction of Principal Component - ~ Application Tools used in EEG Signal 

Analysis - Sample Reduction Process and-
Acquisition, Analysis and Prior Works ,---r-

,ii ~ Performance Metrics 
CHAPTER 5 

-- CHAPTER3 
~ 

-""' -- I 
' I j I I I I I b 

11.L. I I I I I 
"l,_ 

,--

~ 
PCA-SRP Implementation on Physionet's ~ -~ 

EEG Motor Movement (MM) Dataset 
~ -~ 

Experimental Framework of PCA-SRP in CHAPTERS 
Physiological Dataset 

-~ ~ 

Findings and Results of PCA-SRP in ~ 
-- Physiological Dataset 

l\1 - CHAPTER4 ... 
-~ -

-~ I 
PCA-SRP in Physionet's EEG Motor 

Movement (MM) with P300 Oddball Random 
~ 

Auditory Dataset 
~ 

CHAPTER7 

\ 
J 

~ 

fM I I 
I I ~,.. 

- -
Conclusion and Future Works 

CHAPTERS 

J I I I 
I I I I I I I 





Chapter 2

Literature Review and Prior Work

This chapter reviews the industry perspective on data cleaning, existing taxonomies of dirty
data types from the literature, and data cleaning methodologies and approaches. This provides
the foundation for developing the proposed mathematical modeling for the data-cleaning
process reviewed in the final part of this chapter.

2.1 Data-Cleaning Industries Perception

The volume of data collected nowadays is vastly increasing, and since most data acquired are
polluted, the dependability of the data is declining. Various data-cleaning methodologies are
available to rectify this issue, but data cleansing still needs to be improved when working
with large data requirements. Data cleaning, also known as data cleansing, is no longer a
recent area of research. It aims to increase data quality by detecting and eliminating errors
and inconsistencies [32]. Meanwhile, due to the need for more confidence in collected data,
end users who rely on it must spend more time confirming its validity, further reducing speed
and productivity. When the number of dirty data rises, adding more manual procedures
causes an increase in errors, biased and discrepancies.

Data cleansing is a crucial part of the overall data management process and one of the core
components of data preparation work that readies data sets for use in business intelligence
(BI) and data science applications [33]. Furthermore, data cleansing is a critical step in
any data analysis project. It involves identifying and correcting errors in the data prior to
modelling, including, but not limited to, outliers, missing values, and much more. Data
cleansing improves data quality and helps provide more accurate, consistent, and reliable
information for decision-making in an organisation. Basic data cleaning operations should
always be performed on a dataset before jumping to more sophisticated methods.
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2.2 Taxonomy of Dirty Data

In practice, detecting and cleaning all the dirty data in all data sources is quite expensive
and unrealistic. The cost of cleaning dirty data needs to be considered for most enterprises.
This problem needs to attract more attention from researchers [34]. In order to understand
the data cleaning process, one needs a comprehension of the classification and taxonomy
of dirty data - to apprehend the existing framework for understanding how dirty data arise,
manifest themselves, and may be cleansed to ensure proper construction of data warehouses
and accurate data analysis.

Here are the current classifications or taxonomies of dirty data:

2.2.1 Müller and Freytag’s Data Anomalies

Müller and Freytag [35] described dirty data as anomalies that define a property of data
values that renders them a wrong representation. In the pre-defined data model prescribed
by the authors, data acquired that does not conform to the constraints of the data model is
considered a data anomaly and classified broadly data anomalies into three groups as follows:

• Syntactical Anomalies consider dirty data from data’s representation perspective.
There are three dirty data types: lexical errors, domain format errors and irregularities.
Lexical errors highlight the structural differences between the data items and the
specified format. Domain format errors indicate that the attribute value for an attribute
does not follow the expected domain format. The problem of non-uniform use of
values, units and abbreviations deals with irregularities.

• Semantic Anomalies are data that violate the integrity requirements and duplicate
data. Integrity constraints are used to specify the rules for representing knowledge
about the domain and the values allowed for representing certain facts. Duplicate data
here represents two or more tuples representing the same entity.

• Coverage Anomalies describe the dirty data due to missing values or tuples.

Table 2.1 shows the dirty data types classified in this work.
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Table 2.1 Müller and Freytag’s Dirty Data Taxonomy

Dirty Data Type
Lexical error
Domain format error
Irregularities error
Duplicate records
Missing values
Missing tuple
Invalid tuple

2.2.2 Rahm and Do’s Taxonomy of Data Quality Problems

"Dirty Data" has been replaced by "Data Quality Problem" by the authors in their defence
[36]; database systems enforce restrictions of the specific data model and application integrity
constraints. It was observed that data quality problems are divided into two categories –
single-source problems and multi-source problems, based on the plurality of their sources.

It mentioned the existence of overlapping data that causes the problem of duplicate
records within the multi-data sources and contradicting records among multiple data sources.
The "Data Quality Problem" Taxonomy, the authors introduced is shown in Table 2.2.
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Table 2.2 Rahm and Do’s Taxonomy of Data Quality Problem

Dirty Data Type
Illegal values due to invalid domain range
Violated attribute dependences at schema level
Uniqueness violation
Referential integrity violation
Missing values (null allowed)
Cryptic values, Abbreviations
Misspellings
Embedded values
Misfielded values
Violated attribute dependences at the instance level
Word transpositions
Duplicated records in single data source
Contradicting records in single data source
Wrong references
Naming conflicts
Structural conflicts
Data conflicts in multiple data sources
Duplicate records in multiple data sources
Contradicting records in multiple data sources

2.2.3 Kim et al.’s Taxonomy of Dirty Data

The authors defined and categorised the dirty data as either missing data, wrong data, or
non-standard representations [37], and put more distinction between different types of dirty
data. As shown in Table 2.3, within the three (3) categories, fourteen (14) dirty data types
have been added.

Classifying the given dirty data’s taxonomies seemed good, noisy and random data
samples were vague. However, this might identify in the following, but it is not quite clear
and defined:

1. Irregularities Error of Müller and Freytag’s Data Anomalies,

2. Referential Integrity Violation for Rahm and Do’s Taxomony of Data Quality Prob-
lems
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Table 2.3 Kim et al.’s taxonomy of dirty data

Category Dirty Data Type
Missing Data Missing data (null value allowed)

Use of wrong data type including value range
Dangling data
Violation of uniqueness constraint data
Mutually inconsistent data
Dirty data due to failure of transaction management facility
Wrong categorical data
Outdated temporal data
Inconsistent spatial data
Errorneous entry
Misspelling
Extraneous data
Entry into wrong fields
Wrong derived-field data from stored data

Not Missing,
but Wrong Data

Inconsistency across multiple tables/files due
to integration constraint problem
Different data for the same entity across multiple databases
Ambiguous data due to use of abbreviation
Ambiguous data due to incomplete context
Different representation for non-compound data
due to use of abbreviation
Different representation for non-compound data
due to use of Alias/ nickname
Different representation for non-compound data
due to encoding format
Different representation for non-compound data
due to different representations
Different representation for non-compound data
due to measurement units
Different representation for compound data due
to abbreviation
Different representation for compound data due
to use of special characters
Different representation for compound data due
to different ordering
Different representation for hierarchical data
due to abbreviation
Different representation for hierarchical data
due to use of special characters

Not Missing,
Not Wrong,

but Unusable Data

Different representation for hierarchical data
due to different ordering
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3. Mutually Inconsistent Data and Inconsistent Spatial Data for Kim et al’s Taxon-
omy of Dirty Data.

Among the given dirty data taxonomies, the authors classify more erroneous data and
barely hard to define the dirty data as seemingly good, noisy, and random data, which is
mathematically and statistically disruptive and least predictive. Generally, first thing to
solve the problem, knowing the problem, in a sense, hard to classify the random data,
and how much more to identify it, most likely hard to solve and remove it.

2.3 Big Data Cleansing Techniques

Data cleaning in the realm of big data is a crucial process aimed at enhancing data quality by
addressing the presence of dirty data. Dirty data, which is inevitable in big data environments,
can significantly impact data quality [38]. Various techniques and frameworks have been
proposed to tackle data cleaning challenges in big data. While specific field-oriented methods
exist, there is a recognized need for more general approaches to data cleaning in the context
of big data [39].

Currently, there are two classifications of data cleansing: traditional data cleansing and
data cleansing for big data. Traditional data cleansing techniques are so-called because
they are not used to manage massive volumes of data, such as Potter’s Wheel and Intelliclean
[40]. It is often assume that all data can be loaded into memory simultaneously, which is
impractical for big data due to its scale [41]. As the volume of data in big data continues
to grow rapidly, cleaning techniques face the challenge of scaling data capacities efficiently
[42]. Sampling methods have been explored to address the multi-class imbalance issue in big
data, with a focus on heuristic sampling methods and their impact on deep learning neural
networks [43].

One of the perennial problems in data analytics is identifying and restoring dirty data,
and failure to do so will result in faulty analytics and unreliable decisions. New abstractions
and scalability are among the various facets of this issue and the concern when developing
data-cleaning methods to cope with the amount and diversity of data [44–46]—see Table 2.5.
Given the significant amount of data, it needs time to be processed to be suitable for Big
Data Analysis and decision-making. The data’s volume, veracity and velocity (3Vs) must
also be considered when analysing the proposed approaches; however, the researcher [40]
mentioned that "Data analytics is not about having the information known, but about
discovering the predictive power behind the data collected".

In the context of security big data ecosystems, data cleaning techniques involve
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• Missing Data Handling: Big data often contains missing values due to various
reasons such as sensor failures, human errors, or data corruption during transmission.
Imputation techniques such as mean, median, mode imputation, or more advanced
methods like k-nearest neighbors (KNN) or regression imputation can be applied to fill
in missing values.

• Outlier Detection and Treatment: Outliers are data points that deviate significantly
from the rest of the dataset and can skew analysis results. In big data, identifying
outliers becomes more challenging due to the sheer volume of data. Statistical methods
like z-score, interquartile range (IQR), or machine learning algorithms like Isolation
Forest or Local Outlier Factor (LOF) can be employed to detect and handle outliers.

• Noise Reduction: Big data may contain noise introduced during data collection
or transmission. Noise reduction techniques such as smoothing, filtering, or data
transformation methods like Fourier Transform or Wavelet Transform can be applied
to mitigate noise and extract meaningful patterns from the data.

• Inconsistency Resolution: Inconsistencies in big data can arise from data integration
processes where data from multiple sources are combined. Cleaning inconsistencies
involves identifying and resolving conflicts in data values, formats, or representations
to ensure data consistency across the dataset.

• Normalization and Standardization: Data normalization and standardization tech-
niques are applied to scale the features of the dataset to a uniform range, making it
easier for machine learning algorithms to converge during model training. Normal-
ization methods include Min-Max scaling, z-score normalization, or robust scaling,
while standardization involves transforming data to have a mean of zero and a standard
deviation of one.

• Duplicate Detection and Removal: Big data often contains duplicate records due
to data entry errors or replication during data collection processes. Identifying and
removing duplicates is essential to maintain data quality and prevent redundancy in
analysis. Techniques such as hashing, record linkage, or similarity measures can be
employed to detect and eliminate duplicates efficiently.

• Data Type Conversion: Big data may contain heterogeneous data types that need to
be converted into a consistent format for analysis. Converting categorical variables into
numerical representations using techniques like one-hot encoding or label encoding, or
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parsing date and time data into a standardized format, are common data type conversion
tasks in big data cleaning.

• Data Validation: Data validation involves ensuring that the data adheres to predefined
quality constraints or business rules. Validation checks may include range validation,
format validation, or referential integrity checks to identify and correct erroneous data
entries.

• Data Deduplication: In addition to duplicate detection and removal, data dedupli-
cation involves identifying and eliminating redundant information within the dataset.
Deduplication techniques such as record linkage or entity resolution are used to merge
duplicate records and create a single, clean representation of the data.

• Text Preprocessing: In big data analytics, textual data is abundant, but it often
requires preprocessing to extract meaningful insights. Text cleaning techniques such
as tokenization, stop word removal, stemming, or lemmatization are applied to prepare
textual data for analysis tasks like sentiment analysis, text classification, or topic
modeling.

This big data cleaning techniques are quantifying the user-level error that has been
demonstrated through case studies[47], highlighting the importance of meticulous data
cleaning practices in big data scenarios. Meanwhile, the big data techniques in Table 2.4 such
as Cleanix [44], SCAREd [45], KATARA [48], and BigDansing [46] is explicitly developed
for big data [49]. Regarding the emerging trends in data-cleaning techniques, one of the new
challenges researchers face is scalability.

Table 2.4 Data-cleansing methods for big data. (Not Exhaustive List)

Methods Key Features Approach

Cleanix Scalability, unification, Rule Selection
and Usability

SCAREd Scalability Machine Learning
Technique

KATARA Easy Specification, Knowledge-base and
Pattern Validation Crowdsourcing
Data Annotation

BigDansing Efficiency, Scalability Rule Specification
and ease of use
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Cleanix, SCAREd, and BigDansing focus on the scalability issue in the data cleansing
process. Moreover, SCAREd and BigDansing do not require any human-domain expert
in the cleansing process. SCAREd needed an extensive set of rules to update the dataset;
however, no expert was present. Nevertheless, the process is expensive. If the administrator
fails to identify the correct fixes for the dirty dataset, it will result in the redundancy of
training data and a threshold machine learning parameter that is hard to set precisely [48].
Furthermore, BigDansing also requires a set of data-quality rules for optimization of the
cleansing process that requires too many regulations to calibrate and put into place before
the start of the cleaning process, as shown in Table 2.5 below; however, it needs no human-
domain expertise to monitor the whole process, although adjusting such parameters is
crucial in maintaining the essence of the information in the datasets [40]. These data-
cleansing techniques support various data-cleaning tasks such as abnormal value detection
and correction, incomplete data filling, de-duplication, and conflict resolution (Cleanix),
value modification (SCAREd), identification of correct and incorrect data and generating top-
k possible repairs for inaccurate data (KATARA), and rules into a series of transformations
that enable distributed computations and several optimizations (BigDansing).

Table 2.5 Currently used data-cleaning technique.

Volume Veracity Velocity
Cleaning No need for No need for
Technique Scalability Extensive Data Human Domain
Data Quality Rule Expert

Optimisation

Cleanix x
SCAREd x x
KATARA x x
BigDansing x x

There are two kinds of dirty data: erroneous and noisy or random—see Figure 1.2. The
current big-data-cleansing techniques—Cleanix SCAREd, KATARA [48], and BigDansing
—are focused chiefly on erroneous dirty data such as a solution in duplicate entries, missing
values, wrong values and wrong formats.

Cleanix, KATARA and BigDansing are not able to predict the significant sample values
and cannot determine how to eliminate the mixed random data; however, the SCAREd
technique, though constructed via machine learning, can only replace the missing values with
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the most precise value, but not when dealing with random data and knowing the predictive
power of the samples.

Overall, data cleaning in big data involves a range of methods and technologies, in-
cluding machine learning paradigms, continuous data cleaning approaches, and interactive
deterministic data cleaning processes [50] [51]. These techniques are essential for ensuring
high-quality data, which is fundamental for effective decision-making and analysis in the big
data domain. By leveraging advanced data cleaning methods, organizations can enhance the
accuracy and reliability of their data analytics processes, leading to more informed insights
and strategic outcomes.

2.4 The Concept of Data Minimization in the context of
Big Data

Artificial intelligence (AI) and Machine Learning (ML) have gained popularity in the com-
puter sector. It’s a branch of AI, that lets robots learn from data and decide without explicit
programming. Stated differently, through data analysis and pattern recognition, machine
learning algorithms may be trained to learn and get better over time. Any machine-learning
algorithm starts with training data. The system is trained to identify patterns and provide
predictions using the data. If the training data is biased or incomplete, the machine learning
algorithm will make inaccurate predictions. The correctness and dependability of the machine
learning algorithm are directly impacted by the caliber of the training samples.

For a variety of purposes, it can easily gather an increasing amount of data in any manner
imaginable. "The more, the merrier (better)", it is absolutely true, since we can at least obtain
what we would require. But at a certain point, having too much data becomes equivalent to
having none at all if there’s no practical way to retrieve it as a notion "More is less, and less
is more" comes into place [52]. Worse, as the data accumulated, more random data samples
was injected into the system as well.

In potraying a different route, Big Data is a methodology rather than a particular selection
of attribute in device. The objective is to find correlation of patterns that reveals its behaviour.
Moreover, the characteristics of Big Data (5 Vs) i.e., volume (large quantity), veracity (real-
time data), velocity (speed), variety (data fusion), and value (worth). it is more safe to define
Big Data as "Mixed Data" [53]. For example, extracting the brain wave signal in the subject
for particular mental action, but acquiring signals may include different mental action, that
poses security threat and privacy of an individual. Furthermore, Articles 5, 25, 47, and 89
of the 2018 General Data Protection Regulation (GDPR) prominently include the idea of
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data minimization . The idea itself is at the core of the regulation, serving as the regulatory
framework’s ethos and one of the seven fundamental data protection principles under EU data
protection law [GDPR, Chapter 2, Article 5 (1) (c)]. The GDPR of 2018 states that personal
data must be "adequate, relevant, and limited" to what is "necessary" for the "purposes"
for which it is processed (data minimization) [54]. In actuality, the data reduction notion
compels to be more deliberate about the acquired samples. Therefore, if the Big Data is
mixed in nature, requires us to be more conscious about the collected data , and yet "the
actual or quantifiable measurement of Big Data are still not yet known [55].

2.5 Data Cleansing and Machine Learning in Physiologi-
cal Data Analysis

Given all the above difficulty data-cleaning techniques and more conscious about the legality
as part of the discussion, removing the seemingly sound, noisy, random or samples (minority)
not part of the the dataset is called sample reduction. It holds a significant part that is
vital in biomedical data signal analysis acquired in wearable biomedical sensors due to its
subjectiveness in a different environment- often filled with varying sorts of noises, such
as thermal and acoustic noises and interference. When a sufficient amount is added to
the signals, even if it is a good signal, it can alter its totality. It can change its attributes
as well in seemingly significant sampled signals. Moreover, since most of the wearable
biomedical sensors are low-power, the unsupervised classification is ineffective under a low
signal to noise ratio (SNR) by suppressing these kinds of noises through signal processing by
applying the filtering threshold method. When the spectral characteristics of the noise are
so similar or near to that of the sensor-received signal, the detection performance may be
degraded [56]. In addition to that, in wearable biomedical sensors, physical sensor fitting
also affects the electrical properties of the electrodes in moving body parts. Furthermore,
electro-physiological data are seemingly random and vary differently from other individuals
electrically; and have difficulty in identifying which are those highly predictive and random
signals, just like samples in electroencephalogram (EEG) sensors.

Complicated and straightforward mistakes of low-quality data collection are unavoidably
present in data input and acquisition. Although much effort could be expended into this front-
end procedure to reduce entry mistakes, the truth remains that mistakes in massive datasets
are prevalent. Moreover, this rate still needs to be lowered, which might lead to erroneous
interpretation and decision-making [57]. Understanding the effects of these inconsistencies is
crucial because it helps with understanding various practical implications. When it applies to
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the classification problem of an artificial neural network (ANN), obtaining the correct values
through comprehensive and extensive quantisation in data-signal processing is essential. Still,
it is insufficient to identify which data is gathered without its predictive power. Seemingly
correct data values do not guarantee that it holds a valid value in predicting and summarising
the totality of multi-dimensional datasets [40]. Mining those data with predictive values is
integral to data mining in every Machine Learning and Big Data Analysis.

The current data-cleaning solutions need a more straightforward interface, and automatic
random detection will be an integrated approach that suggests the optimal stopping point
for the data to be cleaned. Moreover, methods that are based on the analysis of groups of
correlated fields (e.g., based on statistical correlation) should also prove powerful [58]. As
a result, practitioners rarely reach the equilibrium required to ensure the desired level of
clean data in the training set. The better approach in applications with Data Cleaning is
the aid of Mathematical Modelling of data visualisation for optimisation, and combining
data programming [59] intervention to address the identification, visualisation and their
suppression of random samples as well as to optimise the dataset in the training of the
machine learning.

2.6 Mathematical Modelling

Fig. 2.1 Mathematical Modelling.
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Mathematics is a crucial component in the modelling and design of control systems.
The mathematical model’s goal is to simplify the crucial elements of the system under
analysis by simulating reality in a reduced manner. Real-world occurrences are converted
into a conceptual universe through Mathematical Modelling as shown in Figure 2.1 [60].
This procedure is started by observing the phenomenon, modelling it mathematically, then
simulating its behaviour and predicting its behaviour through simulation.

There are two main categories of Mathematical Modelling [61]:

• Theoretical Modelling based on the equations drawn from science are used to explain
the system. A few simplifications must be used to model the system in this manner.
Systems modelled entirely based on physical principles (equations) are called white-
box models, in which the user has all the details concerning how the system works.

• Experimental Modelling, based on measurements, is known as system identification.
The system’s mathematical model is constructed from several sets of measurements,
each of which records the response (output) of the system to various stimuli and
disturbances (inputs). Black-box models are systems based on experimental data (input-
output measurements). It implies that while the user can observe the model’s reaction
(output) to a specific stimulus (input), they are unaware of the internal mechanism’s
(principles) workings.

The stages that follow establish a broad methodology for the mathematical modelling
process, even though situations may call for many varied approaches to the solution:

1. Define the problem and develop diagrams as needed.

2. Start with a basic model and state the presumptions on different phenomena’ facets.

3. Determine significant constants and variables and ascertain their interrelationships.

4. Create the equation(s) that represent the interactions between the constants and vari-
ables.

Table 2.6 shows the summary of the characteristics of each type of mathematical model
[61].

Mathematical modeling in the realm of machine learning and artificial intelligence (AI),
highlighting its importance in extracting insights, making forecasts, and optimizing complex
systems [62]. Mathematical modeling involves creating mathematical representations of
real-world phenomena to understand and analyze behavior, often using differential equations
to describe dynamic systems.
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Table 2.6 Summary of Mathematical Model

Model type Characteristics Examples

White-box governing physical laws know,
parameters know

linear/non-linear
differential equations

Light-gray-box

some of the physical governing
laws known,
model structure known,
parameters unknown

linear/non-linear
differential equations
transfer function
state-space model

Dark-gray-box

some of the physical governing
laws known,
model structure unknown,
parameters unknown

neuro-fuzzy models

Black-box model structure unknown,
parameters unknown artificial neural networks

In the context of machine learning, mathematical modeling finds applications in various
domains:

• Predictive Analytics: Developing algorithms for forecasting future outcomes based
on historical data, employing techniques like linear regression and decision trees.

• Optimization: Utilizing mathematical models such as linear programming to optimize
resource allocation and production processes.

• Neural Networks: Leveraging artificial neural networks, inspired by the human
brain’s structure, for analyzing complex patterns in large datasets.

• Natural Language Processing (NLP): Employing mathematical models like word
embeddings for sentiment analysis and language translation tasks.

• Recommender Systems: Using collaborative filtering and matrix factorization for
personalized recommendations.

• Image and Speech Recognition: Revolutionizing tasks like facial recognition and
speech-to-text systems through convolutional neural networks.

Mathematical modeling enhances AI algorithms’ performance by fine-tuning parameters,
improving accuracy, and enabling real-time decision-making capabilities. The integration of
mathematical modeling with cutting-edge algorithms drives innovation, transforming indus-
tries and enriching lives. Embracing mathematical modeling is essential for organizations
aiming to unlock the full potential of machine learning and AI in the digital age.
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2.7 Principal Component Analysis — Dimension Reduc-
tion in Artificial Neural Networks (ANNs)

Principal Component Analysis (PCA) is fundamental to studying multivariate data. Its
applications are usually used for data visualisation and dimension reduction. PCA converts
the features of datasets from high-dimensional data and can to low-dimensional data with
the aid of covariance, eigenvalues, and eigenvectors [63]. It is an instrument for identifying
high-dimensional data patterns and a feature extraction method. In addition, the components
of the transformed vector are arranged so that the first and second components have the
greatest and next most significant variance. It allows for extracting critical feature vectors
from multidimensional datasets to be more visualised.

The classification problem is based on the rating or measurement of objects, called
features or dimensions. The problem in multidimensional data in performing the classification
problem is having relatively few or high training samples available [64]. It is hard to pinpoint
if all features or dimensions are needed in classification or prediction. When using it as a pre-
processing method in a forecasting model, the paper explains particular aspects concerning
Principal Component Analysis (PCA). An effective used statistical technique for dimensional
reduction and the PCA to decorrelate the input data before a neural network architecture is
trained. This approach in the PCA transformation matrix shows essential regularities that
can enhance the entire Artificial Neural Networks (ANNs) model.

In often cases of the utilisation of PCA via biomedical sensors, most researchers use
principal component analysis, such as reduction in dimensionality or feature space [65–
69], feature extraction in different data visualisation [70–72], feature selection tools in the
machine and deep learning applications [73–77] for machine learning application.

In summary, the data modelling of the analysing the data shows in Figure 2.2. After
acquiring the data from sensors or surveys, then pre-processing, then data integration,
modelling, to post-processing - that includes the evaluation and interpretation of visualised
graphs and diagrams. PCA falls in the pre-processing section in data cleaning and reduction,
a vital part of data integration.

With the implementation of PCA in many fields, it is highly flexible. It continues to be
the subject of many studies, ranging from modern model-based methods from algorithmic
ideas to neural networks, while it is one of the earliest multivariate techniques. By training
a multilayer neural network with a small central layer to recreate high-dimensional input
vectors, the dimensions of datasets can be reduced, and high-dimensional data can be
transformed into low-dimensional codes [63]. Used during the pre-processing stage of
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Fig. 2.2 Data Modelling.

a machine learning endeavour, PCA allows for extracting crucial feature vectors from
multidimensional datasets and has been used extensively in machine learning.

PCA typically retains the first few components of the transformed vector, which make up
the original vector’s most significant variance. The results show a substantial decrease in
the input vector dimension if the original components are strongly correlated. The primary
strength of PCA on artificial neural networks is the acquisition of non-linear functions that
enable non-linear and multidimensional dependencies to be treated. Therefore, before adding
the inputs to the neural network, the use of PCA to reduce the input dimensions must be
introduced. Although there are a lot of significant articles stating that PCA-Dimension
Reduction gives a significant increase in quality or accuracy, it is conclusive. Nevertheless,
the pitfall of implementing PCA is that only the linear relationships between the input
vector components are considered if not adequately implemented and lose some crucial
information along the process [78]. In some cases, it could also contribute to the loss of
some non-linear information if the dimension of a vector using a linear transform decreases,
and independent samples become less interpretable dimensionally, which is a considerable
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disadvantage, primarily if it is used extensively in machine learning such as Artificial Neural
Networks(ANNs).

2.8 Recent Advancement in Principal Component Analy-
sis

Recent developments in PCA research have focused on improving the technique’s perfor-
mance and adaptability to different data types and structures, such as sparse PCA, which aims
to identify the most critical variables in a dataset while ignoring the noise [79]. The robust
PCA is designed to handle outliers and anomalies in the data. In addition, there has been
research on extending PCA to handle non-linear relationships between variables, resulting in
techniques such as kernel PCA [80]. PCA has several adjustments that make it practical for a
broad range of scenarios and data types in different fields, even though it is a frequently used
and flexible descriptive data analysis technique in its basic form.

There have been suggestions for PCA modifications for various data types, including
binary, ordinal, compositional, discrete, symbolic, and data with unique structures like time
series or datasets with similar covariance matrices. Other statistical techniques like linear
regression (including principle component regression) and even concurrent clustering of
persons and variables have significantly benefited from using PCA or PCA-related method-
ologies. However, as they are founded on factorial decompositions of specific matrices,
methods like correspondence analysis, canonical correlation analysis, and linear discriminant
analysis have a standard methodology with PCA[79]. The PCA literature is extensive and
cross-disciplinary. Applications, methodological innovations, and new adaptations continue
to emerge.

PCA has various applications in various fields, and new applications emerge as the
technique develops. Some of the emerging applications of PCA in research include:

• Healthcare: PCA reduces the dimensions of healthcare data, making it easier to
analyse and interpret. It can also identify patterns in patient data and improve diagnosis
and treatment.

• Image resizing: PCA can help resize an image by identifying the most critical features
and reducing the dimensionality of the picture [81].

• Finance: PCA is used to analyse stock data and forecast returns. It can also identify
patterns in financial data and improve investment strategies [81].
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• Data visualisation: PCA can visualise data in two or three dimensions by projecting
high-dimensional data onto the first few principal components. It can aid in locating
data patterns or clusters that may not have been visible in the initial high-dimensional
space [81].

• Noise reduction: By locating the underlying signal or pattern in the data, PCA can
also lessen the impacts of noise or measurement errors [81].

• Colour technology: PCA has been an essential mathematical tool in colour technology
since the 1960s. It is used to analyse colour data and identify patterns in colour images
[82].

PCA has various emerging applications in multiple fields; new applications will likely
occur in other areas as the technique develops.

Another recent development uses deep learning techniques to perform PCA, resulting in
processes such as deep PCA [83]. Deep PCA is an extension of traditional PCA that combines
deep learning techniques with PCA to learn non-linear mapping from high-dimensional data
to a lower-dimensional representation. Here is how Deep PCA works:

1. The input data is first transformed into a lower-dimensional space using a deep neural
network.

2. The principal components are then computed in the lower-dimensional space, which
captures the most variance in the data.

3. The principal components are transformed back into the original high-dimensional
space using the inverse of the deep neural network.

By leveraging the power of deep learning, Deep PCA can provide better representations
and capture more complex relationships between its features in the data compared to tra-
ditional PCA. It has shown promising results in tasks such as image compression, feature
extraction, and anomaly detection. However, most further studies and recent research re-
garding PCA are connected more to reducing, lowering, and selecting certain features
or dimensions. Discovering the potential of PCA by selecting the highly predictive sam-
ples and removing the randomness is still undiscovered and unexamined.. Figure 2.3
shows the general thought process in solving the data cleaning problem by introducing the
other attributes of Principal Component Analysis - Sample Reduction Process
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Fig. 2.3 Data Cleaning - Thought Process Paradigm

2.9 Findings

Data cleaning is widely acknowledged as a critical yet time-consuming task across industries,
requiring significant labor and consuming a substantial portion of data scientists’ time.
Identifying and classifying the types of dirty data within large datasets presents a formidable
challenge, particularly when dealing with massive volumes of data. The proliferation and
accessibility of data from diverse sources, facilitated by rapid advancements in electronics,
telecommunications, and the Internet, have exacerbated issues of unreliability and poor data
quality.

Therefore, the essence of data cleaning cannot be overstated in industries aiming to
minimize data discrepancies and ensure the reliability of analytical outcomes. This involves
quantifying the appropriate volume of data to be utilized, a task of paramount importance.
However, among the literature surveyed concerning data cleaning for big data and its ap-
plication in AI, a notable gap emerges: the absence of a quantifiable metric to assess the
predictive power of individual data points.

This gap can be addressed through the utilization of mathematical modeling, which
offers a solution to the complexity of data and its predictive potential. This is particularly
crucial in contexts such as the analysis of physiological datasets, where accurate classification
and prediction of physiological behavior are essential. The commercialization of wearable
biosensors, despite their cost-effectiveness, introduces challenges related to accuracy and
sensor fit, which can degrade the electrical attributes of acquired data. In such scenarios,
mathematical modeling plays a pivotal role in enhancing predictive accuracy and facilitating
informed decision-making in biomedical practices.
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Chapter 3

Methodology

The proposed framework addresses the limitations of the ANN in processing multidimen-
sional datasets through the use of PCA with the sample reduction process (PCA-SRP) [84].
PCA is used to analyse the multidimensional data and if a significant relationship exists be-
tween the features of a dataset. It is arranged from the most significant samples to the least to
be visualised and put the multidimensional data into perspective. It focuses on implementing
dimension reduction by removing data from the multidimensional dataset feature columns
that do not have high inter-feature covariance; however, the proposed framework using the
loading scores can dissect all the samples or rows in the multidimensional dataset. Figure
4.1a provides a graphical description of the proposed PCA-SRP-based ANN solution.

The PCA-SRP Python subprogram as shown in Appendix A - Subprogram - PCA -
SRP generates a new set of multidimensional data with fewer samples based on the screen
plot to identify the most significant samples. It is used in the Python ANN program as an
input to ensure correct classification.

For this research, it is more of light-grey box for the non-linearity attributes of the datasets
and black box for Artificial Neural Networks (ANN). The proposed Mathematical Model for
Data Cleaning approached in training the Artificial Neural Networks, as shown in Figure 3.1.

The best way to clean big data is to use a "Mathematical Model" by converting the
multidimensional data into one-dimensional metrics that generalize its features, then sort it
according to its importance and make a threshold bias that limits and removes the unnecessary
samples.
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Fig. 3.1 Proposed Mathematical Model for Data Cleaning of Artificial Neural Networks.

3.1 PCA-SRP and ANN Methodology

(a) Conceptual flowchart of the proposed approach.

(b) Detailed breakdown of the steps in PCA.

(c) Detailed breakdown of the steps in ANN.

Fig. 3.2 Procedural Conceptual Framework

Figures 4.1b and 4.1c show the algorithm used in Python to implement and analyse the
concept. The implementation starts by extracting the data in .csv format and injecting it
into the PCA-SRP process. Principal components are extracted through the abovementioned
threshold based on the input dataset, resulting in a new set of multidimensional datasets used
in ANN.

The proposed PCA-SRP utilised in the basic Feed Forward ANN model consists of two
hidden layers consisting of 32 neurons and 16 neurons, respectively. The learning rate was
set at 0.1 and trained for 100 epochs. The input parameters in PCA-SRP-based ANN are

Dataset Scores Sorted Scores 

~ - • Cleaning . SelAples. • 

f ~F~;~~ [ ! '"" ~ ~ t:::::J ~ ~ ~~, ~ B 
~ L J ~ Scores = _ = Artificial eural 

START 

PubliclyAvallable 
Biom&dica l DataS81 

ec, 
Sample reduction Process 

Gathered Data Set input pass_rate PCA Process 

Gathered Data Set 
input hyperparameter 

(epoch, iterations, 
learning rate, etc) 

Feedback 

Leaming Rate 
l hiddenlayers 

#hidden neurons 
activators per layer 

Artificia l Neural Network 
ClassilicationProblem 

Print Scree Plot and 
PCA graph 

ANN Process 

Sorting the 
loading score 

Print Prediction 
Classification 

Cut-off pass_rate 
loading score 

Prediction 
AcctJracy 

Plot Diagram, Histogram, 
Prediction, etc 

Networks 



3.1 PCA-SRP and ANN Methodology 33

Table 3.1 PCA-SRP and ANN parameters.

PCA- SRP and Values
ANN Parameters

Most significant > Sc× (PCASRP(M)max)
sample size
Learning rate 0.1%
Epochs 100
Number of ANN 2 hidden layers (32 and
neurons 16, respectively)
Activation functions ReLU in hidden layers
used SoftMax in final layer

shown in Table 4.1 and justified in Chapter 3.2. Then, the comparative performance of the
Accuracy of the PCA-SRP-based ANN against a model trained using ANN alone on different
datasets.

The ANN model is prescribed to be a basic Feed Forward ANN with 32 and 16 neurons,
respectively, using ReLU and SoftMax activators, RELU is conventionally used as an
activation function for the hidden layers in a deep neural network, and Softmax as output
activation [85]. A testing size of 20%, training size of 80%, it is described that the p≈ 0.8
is empirically the best division into the training and the testing test, due to the decreasing
p ˙(1− p) error measurement at p ≤ 0.8 [86]. Moreover, a learning rate of 10%, for this
reason, the loss starts decreasing significantly between LR 0.001 and 0.1 as shown in the
Figure 4.2 [87] . One hundred (100) epochs are chosen to visualise the gradual changes and
identify the behaviour of the performance metrics. Furthermore, Sc = 0.98 or PC1 of the
highest loading score will be used in PCA analysis.

The dissertation’s discourse to meet the objective is designed as follows as shown in
Figure 3.4:

1. Identify the mathematics that helps to solve the problem.

2. Utilize the mathematical modelling by incorporation of equation.

3. Validate the constructed mathematical model by the used of different small, publicly-
available physiological (raw) dataset.

4. Test using massive raw dataset with different metrics to quantify its measurement

5. Validate using mixed random/abnormal raw signals and test check its behaviour.
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Fig. 3.3 Typical Loss vs Learning Rate (LR) Behaviour.
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3.2 Principal Component Analysis—Sample Reduction Pro-
cess (PCA-SRP)

Principal Component Analysis (PCA) is usually utilised in dimension or feature reduction
and significantly increases accuracy and efficiency along with other machine learning tech-
niques in many applications aside from biomedical application [88–92] to a different field.
Nevertheless, some of the information is lost and needs to be recovered and reversed during
the process of dimension reduction [78].

This study used PCA, not as a dimension reduction, but as a sample reduction, to remove
the unwanted random samples in multidimensional datasets before fetching in machine
learning training processes, particularly in Artificial Neural Networks, by converting the high
dimension dataset to its PC major axis, it collectively transform into more graspable dataset.
Through this newly transform dataset, it can deliberately identify the predictive power values
of each sample. Furthermore, measuring and quantifying the predictive values is the main
criterion for sorting the samples based on the significance as a dataset. Hence, given these
existing gaps’ justification for using PCA as Sample Reduction Process (SRP) for the ANN
classification problem, additional efforts must be made and a systematic investigation of the
publicly available physiological datasets and the EEG mental activities.

Using publicly available physiological datasets, some of the benchmark example listed
in Chapter 1 provides qualitative analysis - by observing the training samples that fed on
the basic Feed Forward ANN and analysing its accuracy effect. Feed Forward ANN is used
for this because of its basic random function approximation. Moreover, most benchmark
datasets have been observed and analysed in complicated ANN classification models [93–96].
Testing the effectiveness of the classification in basic ANN Model such as Feed Forward
ANN might show and help significantly improve the previous literature with complicated
ANN structures by adding this concept in their research study.

The PCA reduces the dimensions or features vertically ; for the proposed methodology,
it reduces the random samples horizontally. It emphasises that extracting features, such
as covariance, eigenvalues, eigenvectors and dimension reduction is not a novel technique
[97]; instead, sample data reduction . The proposed implementation of a Sample Reduction
Process (SRP) [84] using Principal Component Analysis (PCA) in identifying the random
samples that cause irregularity in the multidimensional datasets and omitting or reducing
sample randomness of massive physiological dataset is the main focus of this study.

The observation and the application of the PCA - sample reduction process (SRP) in
this study are utilised for data cleansing of the dirty multidimensional datasets to identify
the behaviour of classification problems in Artificial Neural Networks (ANNs) and identify
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Fig. 3.5 Covariance Interpretations.

recommended threshold ranges are unique approach in data cleaning process. It discussed
a specific technique for qualitative random detection and the omission of such. These
techniques are explained with a motivating example highlighting artificial neural networks’
deep learning classification problems using publicly available physiological datasets in
biomedical applications [84]. The simplicity of this technique makes it portable and can
apply to various tasks for fast and accurate classification of typical or commonly used
artificial neural networks.

Principal Component Analysis (PCA) minimises the dimensionality of a dataset with
many connected variables while keeping as much variance as feasible. The conversion of the
new collection of uncorrelated variables known as principal components (PCs) preserves most
of the variance included in the original variables. A new set of dimensions or orthogonal
measurements are linearly independent and ranked according to the data covariance. It
means the more crucial principal axis occurs first (more important = more covariance/strong
relationship in other dimension). Understanding the PCA, variance, covariance, eigenvalues,
and eigenvectors is essential in this concept [98].

Figure 3.5 shows large positive covariance, which means that x and y are entirely related,
i.e., as x increases, y also increases. Negative covariance portrays the exact opposite relation.
Though zero covariance means x and y have no relation.

Visualisation of the data is an excellent approach to understanding the patterns in mul-
tidimensional datasets. When information is placed in the horizontal and vertical axis
(2-dimensional plane) as shown in Figure 3.6. Using PCA, it is straightforward to understand
and discern its pattern; however, the difficulty of conceiving it visually in multidimen-
sional data with many features to consider and performing the data analysis computation
becomes complex. Principal Component Analysis prerequisites require discovering patterns
between the datasets so that data are distributed across each dimension by first analysing
the contributions of each feature in providing information to the overall dataset through
eigenvector analysis. It then reduces dimension by keeping the feature columns with the
highest eigenvalues.
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The actual dataset has been shown in the Figure 3.6a in 2D space. Due to the PCA
implementation, it rotates the principal axes (PC1 and PC−2) in order to aligned the data
samples to visualized and interpret easier as shown in the Figure 3.6b, which projects
a set of multidimensional data onto a two-dimensional space, is used as an example to
demonstrate the efficacy of PCA. Due to the high dimensional nature of the data points, it
can be challenging to identify a linear correlation between them. as depicted in Figiure 3.6.
The points are represented as column vectors before being aggregated into a matrix X .

When X is rotated and scales, it turns into matrix M̂ as shown in Equation 3.1 with
corresponding eigenstructures such as eigenvalues U and eigenvector V .

X → M̂(U,V ) (3.1)

Given the PC space of the matrix X , when PCA is applied, it rotates the axis called PC1

and PC2 axes to where the most point samples that are covariant to each other lie.
When X(n,k) rotates to PC space, where matrix M̂ turns into matrix M.

X →M(ν ,λ ) (3.2)

Wherein, ν ∈V and λ ∈U . By definition of eigen-structure, eigenvalues λ is the scaling
of dimension, while eigenvectors ν is the direction that contains covariance

Furthermore, Equation 3.2 is utilised to have the desired highest PC that yields an eigen-
structure of λ and ν . νPC1 is generated using covariant eigenvector ν with the corresponding
top two eigenvalues in λ1,2, which best represent the data points, and are then selected before
plotting it as discussed and shown in the Figure 3.7 [99].

More discussion about basic knowledge of PCA and ANN in Appendix C.
The decomposition of the matrix X(n,k) into two matrices U(k,k) and V(n,k) are orthogonal -

which means if the product of a matrix and its transpose gives an identity value. The V is
usually the loading score matrix, and the U is the covariant dimension scores matrix. The
matrix U are defined as the weight for each original dimension in the principal component,
and the matrix V contains the covariant of original data in a rotated coordinate system.

The implementation of Principal Component Analysis to identify the principal axis PC1

and PC2. Then it generates the highest eigenvalue νPCA and with corresponding eigenvector
λPCA.

PCA(X)→ [νPCA,λPCA] (3.3)

The eigenvector νPCA is still unexplored and not much of the literature and its ap-
plication as discussed in Chapter 2.8.
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(a) 2-D Projection of data points.

(b) Newly constructed 2-D projection of data points.

Fig. 3.6 PCA 2D Data Reconstruction.
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Fig. 3.7 PCA and Eigenstructures.

VPCA−SRP = νPCA1 (3.4)

where VPCA−SRP is the loading score of each sample in dataset n in PC1 eigenvectors of
the samples in matrix X .

Appendix C.3.2 discusses that the explained variance ratio is equal to principal compo-
nents, and the cumulative sum of all PC equals 1. Furthermore, if the PC1 signifies a high
variance ratio, the samples in PC1 rank the highest in the order of importance. Therefore, it
is assumed that the first few PC can be a reference as the limiting threshold as Selectivity
(Sc) biased threshold.

S =

1 if VPCA−SRP ≥ Sc×max(VPCA−SRP)

0 otherwise
(3.5)

3.2.1 Software Tool Used

Regarding software implementation, developers and data engineers prefer Python program-
ming language. It is the best option for projects or programming involving AI and extensive
data analysis as Python is a simple language, the abundance of a mature and supportive
Python community, support from renowned corporate sponsors, an extensive and popular
selection of libraries and can work with heavy-hitting frameworks shown in Figure 3.8 [100]
such as the following:

• TensorFlow an end-to-end machine learning platform.
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Fig. 3.8 Python Programming Language and some supported libraries.

• Numpy is an open-source Python library that facilitates efficient numerical operations
on large quantities of data.

• Pandas Dataframe is a structure that contains nth-dimensional data and its corre-
sponding labels.

• MNE is an open-source Python package for working with EEG and MEG data.

• Sci-kit-learn or sklearn, is a Python library to implement machine learning models
and statistical modelling.

• OpenCV is a great tool for image processing and performing computer vision tasks.

• Keras is a powerful, easy-to-use free, open-source Python library for developing and
evaluating deep learning models.

• Matplotlib is a comprehensive library for creating static, animated, and interactive
visualisations in Python.

• and many more other libraries.
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Therefore, the maximum utilisation of Python Programming is the better choice for
implementing this research study for the reason given above.

3.3 Selectivity (Sc)

One of the challenges of the PCA is the identification of features; it reduces the dimension,
but knowing which of the features in the dataset is hard to find; although it pins down the
PC1 and PC2, it comprises different features. It is the same with the samples. It is hard to
identify which of the samples is good and random. Selectivity is the key to data cleaning;
since the data has randomness, it is difficult to assume the precise value of Selectivity (Sc)
but only the approximate value.

This section provides a hypothetical assumption of Sc and the validation if the assumption
is valid in Chapter 4.3.1. The accuracy testing was conducted for the specified dataset to
identify the recommended Sc and to maximise the number of samples of the cleaned set S
and maximise the number of samples of the removed set R in the PCA-SRP.

Assume two sets of data D—cleaned data S and R.

D = S+R (3.6)

%Random = R/S (3.7)

R = %Random×S (3.8)

Therefore,
D = S+%Random×S (3.9)

D = S× (1+%Random) (3.10)

The index of the samples are the location of the sample in the dataset, Indexing the
dataset D for identifier, where n is the number of cleaned data S. To identify the the known
cleaned samples to random samples.

D =

S if 0≤ index≤ n

R if n < index≤ n× (1+%Random)
(3.11)

S cleaned data and R randomness are randomly distributed in the dataset, only maintaining
its index as identification. Then, PCA—sample reduction process (SRP) is applied and sort it
based on the loading score through the concept of covariance, eigenvalues and eigenvectors
as discussed in Appendix C.2.
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Where Sc is the Selectivity of data in the Table 4.1 that is used as cut-off biased to
separate and find the True Positive (TP) and False Positive (FP) as well as True Negative
(TN) and False Negative (FN).

The accuracy of S and R is based on the Equation 3.12 and 3.13.

Saccuracy = Sset/n (3.12)

Raccuracy = Rset/(n×%Random) (3.13)

Therefore, in finding the most efficient Sc is where Saccuracy and RAccuracy lines meet.

3.3.1 Test Selectivity (Sctest and Recommended Selectivity (Sc)

Sctest is utilized to find the recommended Selectivity, which is vital and crucial that deter-
mined the efficiency of the dataset. The actual cleaned S set and random R set are needed
to identify the accuracy by identifying the Saccuracy and Raccuracy lines and applying the
Equation (3.14).

Sctest = index[max(Saccuracy×Raccuracy)] (3.14)

The minimum Sc is the Selectivity wherein all the S samples have been part of True
Positive, while the maximum Sc is no random R samples included in the process, as shown in
Figure 3.9. Nevertheless, this is the hard part to identify in the reality of the dataset. However,
using Performance Metrics and knowledge-based ideas might approximate the Selectivity
(Sc).

The cruciality of Selectivity, whether it loses or not important information as discussed in
Chapter C.3.2 - Explained Variance Ratio and F-Distribution in the Equation C.42 give
us an insight into how the PC’s arranged and sorted loading score in the dataset as shown in
the Figure 3.10.

So, in Figure 3.11, most of the high loading score samples are in PC1, sometimes also in
PC2.

Therefore, Equation 3.15 can be used as recommended Selectivity (Sc).

Screcommended = PC1 (3.15)
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Fig. 3.9 Sc—accuracy testing representation.

Fig. 3.10 Principal Component Representation in Loading Score.
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Fig. 3.11 Frequency Distribution Diagram
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Fig. 3.12 Cross Validation Approach.

3.4 Cross Validation

The statistical approach of cross-validation is used to measure the skill of machine learning
models. It is widely used in applied machine learning to compare and select a model for a
specific predictive modelling issue since it is simple to comprehend, implement, and produces
skill estimates with lower bias than other approaches. It may be used to estimate a classifier’s
performance and fine-tune the model parameters.

Suppose all accessible datasets are utilised for training the classifier during validation.
After that, it is put to the test on the same dataset. It is prone to over-fitting; as a result, the
classifier may perform well on current data but badly on future test data.

One particular solution method is the K-fold cross validation to overcome this drawback.
It is a procedure used to estimate the skill of the model on new data, as shown in figure
3.12. The available dataset is split into two sets in validation: one for training and the other
for testing the model, allowing the model to be tested on previously unknown data. The
outcomes of this method are significantly reliant on the training/test split used. Most common
K - fold cross-validation are 4-fold, 5-fold, and 10-fold cross-validation, which are 75/25%,
80/20%, and 90/10% train/test sample set, respectively.
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Fig. 3.13 Train - Test Dataset.

The test set’s occurrences may need to be more complex or easier to categorise, skewing
the findings. The cases in the test set, on the other hand, may be helpful in training, and
if they are left out, the prediction performance may decrease, resulting in skewed findings
shown in figure 3.13, so it is randomly selected in the dataset. Appendix A.1 shows the
sub-program for split cross validation using Python Implementation.

3.5 Classification Model Evaluation Metrics

Results must be presented consistently to enable understanding and comparison across many
research groups. Therefore, evaluation methods must be carefully chosen and specified.
Performance metrics, error estimates, and statistical significance testing are all part of
evaluating the classifier’s performance, including accuracy, error rating, and additional
measures derived from the Confusion Matrix, such as Recall, Specificity, Precision, and
False Omission Rate (FOR) shown in Figure 3.14 [101].
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Fig. 3.14 Confusion Matrix

Performance Measures

After the classification, the model’s performance should be evaluated using predefined
metrics. The first primary metric that comes to mind is accuracy. The fraction of correctly
identified cases is measured by accuracy. However, accuracy is only sometimes dependable
because it might be deceptive if the dataset is uneven. It describes other metrics on a table
called the confusion matrix similarly. The confusion matrix is a graphic representation of a
classifier’s performance shown in Figure 3.14. Each row of the matrix represents the actual
classes of the data, while each column represents the projected classes.

The confusion matrix displays the number of accurate and incorrect classifications, iden-
tifies the incorrectly classified class, and provides information about the different mistakes
made by the classifier (correct and incorrect predictions for each class). For reporting out-
comes in M-class classification, it is an excellent choice. The data, however, could be clearer
to contrast and analyse. It uses several parameters that were taken from the confusion matrix
instead.

Given the binary classification problem, it can define certain terms of the confusion
matrix as follows:

• True positives (TP) is an outcome where the model correctly predicts the positive
class.

• True negatives (TN) is an outcome where the model correctly predicts the negative
class.

• False positives (FP) is an outcome that indicates that the model predicts it has a
specific condition when it does not have the condition.

,-- -------- ,-- ----,--- --- ------------ - - ------- Predicted Class 

Positive Negative 
Precision 

Positive True Positives (TP) False Positives (FP) TP / (TP + FP) 

Negative False Negatives (FN) True Negatives (TN) 
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Fig. 3.15 Illustration of Confusion Matrix.

Fig. 3.16 Detailed Sensitivity vs specificity testing procedure.
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• False negatives (FN) is an outcome which wrongly indicates that a particular condition
or attribute is absent.

The most commonly used evaluation metrics are:

Accuracy

Measures the instances that are correctly classified. The chance of a proper classification
over a specific number of repeated measurements is known as accuracy. The likelihood that
an inaccurate classification was made is represented by the error rate, e = 1-p. It works well
if the classes are balanced or if there are an equal amount of samples in each class. However,
Accuracy and Error Rates do not consider whether or not the dataset is balanced. Even when
the categorisation is underperforming, the assessment may show a high accuracy rating if one
class happens more frequently. The quantity of classes and cases affects these parameters.
The probability level in a 2-class problem is 50%. However, the confidence level varies based
on the number of cases.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.16)

Precision (PPV)

A Positive Predicted Value (PPV) measures the proportion of correctly classified positive
cases. Precision, also known as Positive Predicted Value, is determined by a 1 - False
Detection Rate(F). The ratio of false positives to the total of both true and false positives is
known as the false detection rate. The percentage of accurate classifications is measured.
While accurate identification of positive samples is vital to the problem, Precision should not
be employed when the positive class is more significant (imbalanced dataset).

Precision =
T P

T P+FP
(3.17)

Sensitivity or hit rate (TPR)

Measures the proportion of the actual positives that are correctly classified. The True Positive
Rate (TPR) for defining the accuracy of categorisation findings is identified by Sensitivity,
also known as Recall. The ratio of correctly detected true positives to the total of true positives
+ false negatives is assessed. It gauges how frequently a classifier classifies a favourable
outcome in the correct category. However, when the positive class is more significant (an
unbalanced dataset), and the precise identification of positive samples is less crucial, the
Sensitivity/Recall should not be employed.
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Sensitivity =
T P

T P+FN
(3.18)

Negative Predictive Value (NPV)

It is a measure of the proportion of correctly classified negative cases.

NPV =
T N

T N +FN
(3.19)

Specificity (TNR)

Also known as True Negative Rate (TNR), it measures the proportion of the actual negatives
that are correctly classified. The capacity to recognise a real negative rate is known as
Specificity. It calculates the percentage of accurately determined true negatives relative to
the total of True Negatives (TNs) and false positives (FPs). Therefore, 1 - Specificity equals
the False Positive Rate (FPR). It gauges how frequently a classifier classifies a bad outcome
accurately. Nevertheless, because it only considers one class, it could be more objective
against that class.

Speci f icity =
T N

FP+T N
(3.20)

F1 - score or F - measure

The F1 score is a metric used to evaluate the performance of a classification model, partic-
ularly when dealing with imbalanced datasets. It combines both precision and recall into
a single metric. Precision is the ratio of true positive predictions to the total number of
positive predictions (true positives + false positives), while recall is the ratio of true positive
predictions to the total number of actual positives (true positives + false negatives).

The F1 score is calculated as the harmonic mean of precision and recall, and it is given
by the formula:

F = 2 · Precision ·Sensitivity
Precision+Sensitivity

=
T P

T P+ 1
2 · (FP+FN)

(3.21)

The F1 score ranges from 0 to 1, where 1 is the best possible score, indicating perfect
precision and recall, and 0 is the worst score. It’s a useful metric when you want to balance
both false positives and false negatives in your classification model evaluation.
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G-mean

is formulated as the geometric mean of Precision and Recall.

G =
√

Precision ·Sensitivity (3.22)

Cohen’s Kappa Statistics (κ)

For qualitative (categorical) items, Cohen’s kappa coefficient (κ) is a statistic used to assess
inter-rater reliability. It is a metric often used to assess the agreement between two raters.
Furthermore, it can be used to assess the performance of a classification model.

Kappa Statistic measures how well two nominal scales agree. This index gauges how
closely a genuine class matches a classifier’s output. A perfect agreement is a 1, while
a chance agreement is a 0. Cohen’s kappa provides the theoretical probability level of a
classifier. This metric accurately assesses the classifier. Even with high accuracy values, the
confusion matrix would be meaningless if k were to have a low value. Due to its usage of
the whole confusion matrix, this coefficient provides more details than simply percentages
of relationships. However, the correct interpretation of this coefficient is required. For a
minimally acceptable degree of agreement, indicating the bias and prevalence of the k value
and assessing the significance is essential.

Cohen’s kappa is defined as the equation 3.23 [102]:

κ =
Po−Pe

1−Pe
(3.23)

Where Po is the model’s overall accuracy and Pe is the measure of the agreement between
the model predictions and the actual class values as if happening by chance.

In a binary classification problem, Pe is the product of Pe1, which represents the likelihood
that predictions will coincide by chance with actual values from class 1 ("good"), and Pe2,
which represents the likelihood that predictions will coincide by chance with actual values
from class 2 ("bad"). These probabilities, Pe1 and Pe2, are derived by multiplying the
proportion of the actual class and the proportion of the expected class under the assumption
that the two classifiers - model predictions and actual class values are independent.

Pe = Pe1 +Pe2 = Pe1,actual×Pe1,pred +Pe2,actual×Pe2,pred (3.24)

Cohen’s kappa, which counts the number of predictions the classifier produces that cannot
be explained by a random guess, almost eliminates the likelihood of the classifier and a
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Table 3.2 Interpretation of Kappa value

κ Interpretation

< 0 No agreement
0 - 0.20 Slight
0.21 - 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 1.0 Perfect

random guess agreeing. Cohen’s kappa also attempts to eliminate the assessment bias by
accounting for the accurate categorisation made by chance.

Cohen’s Kappa formula may be stated as follows in the conventional 2x2 confusion
matrix used in machine learning and statistics to evaluate binary classifications:

κbinary =
2× (T P×T N−FN×FP)

(T P+FP)× (FP+T N)+(T P+FN)× (FN +T N)
(3.25)

Interrater reliability measures the degree to which different data collectors (raters) give
the same variable the same score. The following scale is used to interpret Kappa values [103],
shown in Table 3.2.

Receiver Operating Characteristic (ROC) Curve - Area Under the Curve (AUC)

A receiver operating characteristic curve (ROC) graph shows how well a model performs
across all classification thresholds. Two parameters are shown in Figure 3.18.

The Sensitivity plot of the ROC curve is a function of the false positive rate. The area
under the ROC curve measures how effectively a parameter can discriminate between a
genuinely positive and a true negative. It indicates how well the classifier performs at various
degrees of relevance. ROC is not advised when the negative class is smaller but more
significant. If the positive class is more remarkable in an unbalanced dataset, the Precision
and Recall will primarily represent the ability to predict the positive class.

• True Positive Rate (TPR), Sensitivity, or Saccuracy based on Equation 3.12

• False Positive Rate(FPR), (1−Speci f icity), or Raccuracy based on Equation 3.13

The TPR vs FPR axes at various classification thresholds are plotted on a curve and
constitute the ROC space representing the x-axis and y-axis, respectively. This graphic
demonstrates the relative trade-offs between real positive benefits and false favourable costs;
as the classification threshold is lowered, more items are classified as positive, increasing
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Fig. 3.17 ROC curve.

Fig. 3.18 ROC curve interpretation.
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both False Positives and True Positives. A prediction of the classifier is represented as a
point in the ROC space. A perfect classification would result in a point in the upper left
corner of the ROC space, or coordinate (0, 1), with 100% Sensitivity (no false negatives) and
100% Specificity (no false positives). A classifier that expects all instances to be harmful is
represented by the point (0, 0), whereas a classifier that predicts all cases to be positive is
represented by the point (1, 1). The ROC space is divided by a "Random Classifier" diagonal.
Generally, points above the diagonal indicate good classification results, whereas points
below the line indicate bad ones. We might assess a logistic regression model several times
with different classification criteria to compute the points on a ROC curve -that serves as a
basis to determine the improvement in classification problems. The more closes to perfect
classification, the better method to be used.

Other Performance Metrics

In machine learning and statistical inference, including Biostatistics, model selection is
frequently done using statistical performance metrics as listed in Appendix Table D.2 and
D.1. The model that performs the best in terms of a chosen performance criterion among
those trained with various sets of hyper-parameters and parameters is appropriately chosen.
For utilising the new model to classify untested data, it should increase its overall predictive
power by evaluating its performance using several criteria. When a machine learning model
is applied to new data, failing to properly evaluate it using a variety of performance measures
and relying simply on accuracy might result in inaccurate predictions. With supervised
models, always consider the concept of "cross-validation" as predicted values should ideally
originate from unseen training sets to avoid overestimating the prediction performance [104].

Here is the list of Biostatistics Performance Metrics used in classification aside from the
list given in the above section, some of the technical description is in the Appendix D.0.1
and D.0.2:

1. Error Rate (Errorrate)
2. Balanced Accuracy (BA)
3. F-score (F1)
4. Geometric Mean (Gmean)
5. Matthew’s Correlation Coefficient (MCC)
6. Fowles-Mallows Index (FM)
7. Informedness (BM)
8. Positive Likelihood Ratio (LPR)
9. Negative Likelihood Ratio (LNR)

10. Diagnostic Odds Ratio (DOR)
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11. False Positive Rate (FPR)
12. False Negative Rate (FNR)
13. False Omission Rate (FOR)
14. Prevalence (Prev)
15. Prevalence Threshold (PrevT)
16. Critical Success Index (CSI / TS)
17. Markedness (MK)

There are many classification performance metrics, and selecting the few important
metrics is enough based on the optimisation wanted to interpret. But for this scenario,
analysing the robustness and vulnerability of the given process, it needs to consider all
the classification metrics gathered in the literature and interpret it meticulously. So,
it can point down all the strengths and weaknesses of the said process. The function sub-
program to compute the classification performance metrics in Python as shown in Appendix
A.1.

3.6 Bootstrapping in Artificial Neural Networks (ANNs)

Bootstrapping statistics is a form of hypothesis testing that involves resampling a single
data set to create a multitude of simulated samples with repetition. These samples are used
for hypothesis testing, standard errors, and confidence interval calculations [105]. Compared
to the conventional method, it enables us to get a more precise sample from a smaller data
collection. The benefits of bootstrapping are that it is a convenient way to avoid the cost of
repeating the experiment to get other groups of sampled data, and it is an easy way to derive
estimates of accuracy, standard errors and confidence intervals.

After the training of the ANN, the samples are randomly selected in the dataset to test with
nth repetition, for this case, 2000 repetitions, and it is regardless of if the sample is repeatedly
selected and it is large enough to justify using the resampling technique to generalise the
PCA-SRP in ANN Model. Each group of samples passed through trained ANN and tested the
dataset, which computed the accuracy or mean square error (MSE). When all the accuracies
or MSEs are accumulated, it will visualise through a graph, which commonly resulting a
normal distribution curve as shown in Figure 3.19.

It highlights the attributes of the Central Limit Theorem in describing the spread of
deviation and normal distribution of averaging statistical estimators like Mean Square Error
(MSE) and model accuracy of ANN Bootstrapping as shown in Figure 3.20.

The model accuracy of the ANN Bootstrapping is the best avenue to interpret and discuss
since the whole discussion is the improvement of the incorporated process (PCA-SRP) in
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Fig. 3.19 ANN Bootstrapping

Fig. 3.20 Bootstrapping - Histogram
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Fig. 3.21 Injected Additional Random Samples

the basic Feed Forward ANN Model rather than Mean Square Error (MSE). Comparing the
central limit theorem that is normally distributed of its model accuracies from incorporated
PCA-SRP to ANN Model through interpretation of its skewness, shifting, spreads, and
amplitude are essential to this discussion. The Bootstrapping Python subprogram is in
Appendix A.2, A.2, and A.2 for training of Artificial Neural Network, Bootstrapping using
model accuracy or Mean Square Error (MSE), and visualization comparison between PCA-
SRP with ANN and ANN only, respectively.

3.7 Effect of Model Accuracy by Injected Additional Ran-
dom Samples

This validation testing aims to determine the behaviour of the Model Accuracy while in-
creasing the randomness in the dataset with different Selectivity (Sc). The randomness
is classified within the range on normal distribution of the dataset. It will show the how
PCA-SRP response shown in the Figure 3.21.

3.8 Conclusions and Contributions

This dissertation presents several key points and contributions to the field of data cleansing
and machine learning, particularly through the introduction and application of the Principal
Component Analysis - Sample Reduction Process (PCA-SRP). The significant conclusion
and contributions of this work are summarized below:

1. The introduction of the Sample Reduction Process using Principal Component Analysis
(PCA) as an effective data cleansing technique. This process leverages the PCA
framework to identify and eliminate less predictive samples, enhancing the overall
quality of the dataset used for training machine learning models.
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2. Demonstrating the potential of eigenvectors (ν) from PCA as loading scores to quantify
the predictive value of each sample. This approach provides a quantitative basis for
sample selection, which is crucial for improving model performance.

3. The integration of PCA-SRP into basic Artificial Neural Network (ANN) models for
classification problems. This technique, implemented prior to the training process,
complements existing literature and research by demonstrating its effectiveness in
simplifying and improving the training of more complex ANN models.

4. Introducing the concept of Selectivity (Sc) as a limiting threshold to determine which
samples to retain or remove. This concept utilizes the Sensitivity vs Specificity testing
procedure, providing a systematic way to enhance data quality.

5. Comprehensive testing of the proposed system using various classification performance
metrics. This testing process helps in interpreting the robustness and limitations of the
PCA-SRP technique, ensuring its reliability in practical applications.

6. Incorporating the basic ANN model into the resampling technique of bootstrapping for
2000 repetitions, using model accuracies to evaluate the effectiveness of the proposed
data cleaning technique. This method assesses the impact of PCA-SRP by comparing
the shifting skewness and spreads of the model’s performance.

7. Figure 3.4 illustrates the process of the mathematical model applied to two kinds of
datasets: general data and signal data. It also shows the evaluation and testing of
performance metrics, bootstrapping, and the effect of injecting additional linear (from
other datasets) and non-linear (random) datasets.

In summary, the implementation of PCA-SRP in data cleansing significantly enhances
the predictive quality of training datasets for ANN models. This work not only provides a
robust framework for data cleansing but also sets the stage for further research in optimizing
data preprocessing techniques for various machine learning applications. The flexibility
and effectiveness of PCA-SRP in improving model accuracy and robustness highlight its
potential for broader applications in different fields of science and technology.



Chapter 4

Principal Component Analysis - Sample
Reduction Process (PCA-SRP) in
Physiological Datasets

4.0.1 PCA-SRP Implementation in ANN

The proposed framework addresses the limitations of the ANN in processing multidimen-
sional datasets through the use of PCA with the sample reduction process (PCA-SRP) [84].
PCA is used to analyse the multidimensional data and if a significant relationship exists be-
tween the features of a dataset. It is arranged from the most significant samples to the least to
be visualised and put the multidimensional data into perspective. It focuses on implementing
dimension reduction by removing data from the multidimensional dataset feature columns
that do not have high inter-feature covariance; however, the proposed framework using the
loading scores can dissect all the samples or rows in the multidimensional dataset. Figure
4.1a provides a graphical description of the proposed PCA-SRP-based ANN solution.

The PCA-SRP Python subprogram as shown in Appendix A - Subprogram - PCA -
SRP generates a new set of multidimensional data with fewer samples based on the screen
plot to identify the most significant samples. It is used in the Python ANN program as an
input to ensure correct classification.
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4.1 PCA-SRP and ANN Methodology

(a) Conceptual flowchart of the proposed approach.

(b) Detailed breakdown of the steps in PCA.

(c) Detailed breakdown of the steps in ANN.

Fig. 4.1 Procedural Conceptual Framework

Figures 4.1b and 4.1c show the algorithm used in Python to implement and analyse the
concept. The implementation starts by extracting the data in .csv format and injecting it
into the PCA-SRP process. Principal components are extracted through the abovementioned
threshold based on the input dataset, resulting in a new set of multidimensional datasets used
in ANN.

The proposed PCA-SRP utilised in the basic Feed Forward ANN model consists of two
hidden layers consisting of 32 neurons and 16 neurons, respectively. The learning rate was
set at 0.1 and trained for 100 epochs. The input parameters in PCA-SRP-based ANN are
shown in Table 4.1 and justified in Chapter 3.2. Then, the comparative performance of the
Accuracy of the PCA-SRP-based ANN against a model trained using ANN alone on different
datasets.

The ANN model is prescribed to be a basic Feed Forward ANN with 32 and 16 neurons,
respectively, using ReLU and SoftMax activators, RELU is conventionally used as an
activation function for the hidden layers in a deep neural network, and Softmax as output
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Table 4.1 PCA-SRP and ANN parameters.

PCA- SRP and Values
ANN Parameters

Most significant > Sc× (PCASRP(M)max)
sample size
Learning rate 0.1%
Epochs 100
Number of ANN 2 hidden layers (32 and
neurons 16, respectively)
Activation functions ReLU in hidden layers
used SoftMax in final layer

Table 4.2 Datasets used and their metadata.

Datasets Number of Sample Target
Dimensions Size Classification

Heart Disease 14 301 2
Gender Voice Recognition 21 3167 2
Breast Cancer 31 568 2
Cancer Patients 24 1098 3

activation [85]. A testing size of 20%, training size of 80%, it is described that the p≈ 0.8
is empirically the best division into the training and the testing test, due to the decreasing
p ˙(1− p) error measurement at p ≤ 0.8 [86]. Moreover, a learning rate of 10%, for this
reason, the loss starts decreasing significantly between LR 0.001 and 0.1 as shown in the
Figure 4.2 [87] . One hundred (100) epochs are chosen to visualise the gradual changes and
identify the behaviour of the performance metrics. Furthermore, Sc = 0.98 or PC1 of the
highest loading score will be used in PCA analysis.

4.2 Multidimensional Physiological Datasets

The multidimensional, open-access, and publicly available physiological datasets for clas-
sification problems are tested under two layers of the basic Feed Forward Artificial Neural
Networks (ANNs) Model as described in Table 4.1. Noise and random data are added based
on a standard distribution added to the original dataset before training to simulate noisy data
samples. Figure 4.3 shows how a given multidimensional dataset is pre-processed and used
in the proposed PCA-SRP approach. Each multidimensional dataset or corpora has selected
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Fig. 4.2 Typical Loss vs Learning Rate (LR) Behaviour.

the variation of its dimensions, primarily sample sizes, and the number of classifications
shown in Table 4.2, with a reasonable amount of noise and random samples.
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Fig. 4.3 Pre-processing an application of multidimensional datasets in the proposed approach.

The different multidimensional datasets are shown in Table 4.2 and are acquired from
different scientific and medical laboratories [22–24, 106, 25]. Specifically, it is tested through
the procedure by different samples and dimensions, showing that the Python implementation
works with various dataset sizes. Moreover, this particular dataset is a benchmark of many
research, particularly in predicting certain diseases and recognising some attributes given the
different features; it is also subject to ample classification of random function approximation
through many complicated ANN models; this concept will supplement a data cleansing
technique for the pre-processing procedure before the training of complicated ANN Models
by incorporating this new concept in their study as discussed in Chapter 3.2.

Visualisation is one of the avenues to comprehend the dataset; through it and proper
evaluation of the performance metrics will identify the working functional attributes. So, this
chapter mains to understand the given datasets - its scatteredness and correlation with other
samples by quantifying its sample scores and the behaviour ANN Model by incorporating the
PCA-SRP concept in Model Accuracies and its resilience in injected additional randomness.
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Furthermore, its response to Receiver Operating Characteristic Curve - Area under the
Curve (ROC-AUC), which will be tested under the Figure ?? to evaluate the Sensitivity and
Specificity of the datasets through PCA-SRP.

4.2.1 Heart Disease Dataset

There are 76 features in this open access database, but all available studies mention using a
subset of 14. The Cleveland dataset, in specific, is the only one that ML scientists have used
to date. The field "target" relates to the patient’s presence of heart disease.

Experimenting with the Cleveland patients dataset, which is concentrated on simply
attempting to distinguish presence (values 1) from absence (values 0) to find any other trends
in heart data to predict certain cardiovascular events or find any clear indications of heart
health [22]. The following parameters are evaluated for each patient based on the following:

• age
• sex
• chest pain type (4 values)
• resting blood pressure
• serum cholesterol in mg/dl
• fasting blood sugar > 120 mg/dl
• resting electrocardiographic results (values 0,1,2)
• maximum heart rate achieved
• exercise-induced angina
• old peak = ST depression induced by exercise relative to rest
• the slope of the peak exercise ST segment
• number of major vessels (0-3) coloured by fluoroscopy
• that: 3 = normal; 6 = fixed defect; 7 = reversible defect

Figures 4.4 and Table 4.3 show the result of the scree plot based on the values indicating
the PCA value distributions of the features in the dataset and the Sc-threshold cut-off limit,
respectively. Based on the values, 78.48% of the top samples were selected in the training of
the ANN model for 98% Selectivity.

Table 4.3 Sorted loading scores of heart disease dataset.

Sample ID Loading Scores
278 0.057987
226 0.057981
2 0.057976
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45 0.057968
42 0.057961
... ...

147 0.003164
144 0.001178
138 0.000718
139 0.000605
327 0.000470

4.2.2 Gender Voice Recognition Dataset

The gender voice recognition dataset is based on acoustic properties of the voice and speech
to identify a voice as male or female. The dataset comprises 3167 recorded voice samples
collected from male and female speakers. The voice samples are pre-processed by acoustic
analysis in R using the Seewave and TuneR packages, with an analysed frequency range of
0–280 Hz (human vocal range) [23].

Each voice’s acoustic features are evaluated based on the following:

• mean frequency in kHz (meanfreq)
• standard deviation of frequency (sd)
• median frequency in kHz (median)
• first quantile in kHz (Q25)
• third quantile in kHz (Q75)
• nterquantile range in kHz (IQR)
• skewness (skew)
• kurtosis (kurt)
• spectral entropy (sp.ent)
• spectral flatness (sfm)
• mode frequency (mode)
• frequency centroid (centroid)
• average of fundamental frequency across acoustic signal (meanfun)
• minimum fundamental frequency across acoustic signal (minfun)
• maximum fundamental frequency across acoustic signal (maxfun)
• average of dominant frequency across acoustic signal (meandom)
• minimum of dominant frequency across acoustic signal (mindom)
• maximum of dominant frequency across acoustic signal (maxdom)
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Fig. 4.4 Scree plot of the heart disease dataset.

• range of dominant frequency across acoustic signal (dfrange)
• modulation index. Computed as the gathered absolute change among adjacent mea-

surements of fundamental frequencies divided by the frequency range (modindx)
• label: male or female

Fig. 4.5 Scree plot of gender voice recognition dataset.

Figures 4.5 and Table 4.4 show the threshold cut-off limit and the result of the scree plot
showing the PCA distributions of the features in the dataset, respectively. In training the
ANN model, the proposed method selected 23.82 % of the top samples from the dataset.

Table 4.4 Sorted loading scores of gender voice recognition dataset.

Sample ID Loading Scores
2462 0.019580
3121 0.019578
2729 0.019575
2022 0.019574
2711 0.019571

... ...
1601 0.000244
1626 0.000243
3259 0.000181

s,ree Plot 
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224 0.041996
438 0.041995
93 0.041995
... ...

580 0.001718
578 0.001383
594 0.000928
576 0.000828
595 0.000477

4.2.4 Lung Cancer Patients Dataset

The data comprise information about hundreds of cancer patients and their lifestyles. Based
on the cancer patients dataset consists of three classes (low, medium and high severity) based
on the cancer patients dataset [25].

Each lung cancer patient’s features are evaluated in accordance of:

• age
• gender
• air pollution
• alcohol intake
• dust allergy
• occupational hazards
• genetic risk
• chronic lung disease
• balanced diet
• obesity
• smoking
• passive smoking
• chest pain
• coughing of blood
• fatigue
• weight loss
• shortness of breath
• wheezing
• swallowing difficulty
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Table 4.7 Datasets sample status after PCA—sample reduction process.

Dataset Samples Used %Passrate

Heart Disease 259/330 78.48
Gender Voice Recognition 786/3300 23.82
Breast Cancer 562/600 93.67
Cancer Patients 499/1099 45.41

4.3 PCA - SRP Results in Physiological Datasets

Upon acquiring the given datasets, it is injected through the noise and random samples. By
definition, noise is the unwanted small form of energy or samples; on the other hand, random
samples are the unconscious and unspecified values within the range of expected values and
"seemingly" good data.

The datasets with noise and random samples are processed using PCA-SRP with 98%
Selectivity (Sc), shown in Table 4.7, then it is subjected to following tests:

• PCA-SRP + ANN accuracy testing to compare the validation model accuracy with and
without the PCA-SRP in an ANN.

• Sensitivity vs specificity testing is a diagnostic test to find the approximate Sc range
values (Sctest).

• Receiver operating characteristic (ROC) curve testing using methodology PCA-SRP in
different physiological datasets in terms of organisation and classification of samples.
Moreover, ROC curves also provide a practical evaluation of machine learning techniques.

• Accuracy vs additional random samples testing is a diagnostic test responding to the
sudden increase in noise and random sample spikes.

4.3.1 Sensitivity vs Specificity Testing

Sensitivity measures how many true positives remain in the S set, and it is described as a
sudden dip as the Sc increases. While Specificity measures how many true negatives remain
in the removed R set and increases while Sc increases. The evaluation is performed in added
10% randomness, so it will classify the good samples into random ones in identifying the
True Positive,(TP) True Negative(TN), False Positive(FP), and False Negative (FN).

The Figure 4.8 presented is the diagnostic testing of Sensitivity and Specificity Curve
Line with Screc = PC1, which aims the identification of Sc and draw a generalisation out of
the given physiological datasets.
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(a) Heart disease dataset. (b) Gender voice recognition dataset.

(c) Breast cancer classification dataset. (d) Cancer patients dataset.

Fig. 4.8 Sensitivity vs specificity diagram.
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Table 4.8 Sensitivity and Specificity Result.

Dataset Screc Sensitivity Specificity Sctest Sensitivity Specificity

Heart Disease 96 98.04 73.68 97 94.15 81.04
Gender Voice 80 88.75 22.87 90 53.08 84.103
Recognition
Breast Cancer 96 99.47 57.64 99 94.51 81.84
Cancer Patients 88 93.83 25.86 95 81.8 39.1

When Sctest ≥ Screc, wherein Sctest will have more R samples will introduce in the system.
Furthermore, if Screc ≥ Sctest , as the result in Table 4.8 - there is no conclusive evidence that
Sctest is better than Screc.

Note: Giving priority on the Sensitivity is more desirable because it is more S sam-
ples is part of the system than Specificity that removing more S samples in the system.

A high Sc value loses information and true positives in the S set but increases the
Specificity of the dataset; however, a low value of Sc adds noise and random samples that
yield fewer true negatives and increase Sensitivity. Careful adjustment of Sc will vouch for a
good result as a cleaning agent in the system.

In ANN applications need high predictive samples [40], Equation 3.15 is still valid
(Screc = PC1).

4.3.2 Receiver Operating Characteristic (ROC) Curve Testing

As observed in Figure 4.9, receiver operating characteristic (ROC) shows that the datasets
have an organisation of the random samples. The larger the area under the curve (AUC), the
better the classifier methodology for the True Positive Rate (Sensitivity) vs True Negative
Rate (1— Specificity) diagram, as seen in Figure 3.18. Ideally, the objective is the perfect
classifier; nevertheless, above the random classifier line would allow us to conclude that the
methodology is acceptable.

Given all the datasets, the cancer patients dataset has fewer AUC but still acceptable
results.

4.3.3 PCA-SRP + ANN Comparison Accuracy Testing

We compared the validity model accuracy using the PCA-SRP in ANN classification problem as
suggested by the results presented in Figure ?? and determined its effect upon being subject to
noise and random samples. Tables 4.10 and 4.11 display the validation accuracy using ANN +
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(a) Heart disease dataset. (b) Gender voice recognition dataset.

(c) Breast cancer classification dataset. (d) Cancer patients dataset.

Fig. 4.9 Receiver operating characteristic (ROC) curve.
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Table 4.9 Area under the Dataset’s Curve (AUC).

Dataset AUC

Heart Disease 89.9
Gender Voice Recognition 84.87
Breast Cancer 90.05
Cancer Patients 84.139

PCA-SRP and ANN only, showing a significant increase as shown in Figure 4.10 for both noise
and random samples.

Table 4.10 Dataset noise sample accuracy.

Dataset ANN ANN %
Only with SRP Increase

Heart Disease 76.19 79.89 3.7
Gender Voice Recognition 90.6 93.29 2.69
Breast Cancer 90.49 92.36 1.86
Cancer Patients 79.82 83.27 3.45

The difference between dataset accuracy subjected to noise and random samples is the
definition of the accuracy curve line between ANN + PCA-SRP to ANN only, even though
both significantly increase accuracy. The accuracy of datasets under the influence of random
samples swings and deviates more and less defined in comparison with accuracy with noise
samples.

Table 4.11 Dataset random sample accuracy.

Dataset ANN ANN %
Only with SRP Increase

Heart Disease 73.69 81.76 8.07
Gender Voice Recognition 85.72 91.2 5.42
Breast Cancer 83.3 86.46 3.12
Cancer Patients 80.90 88.81 7.91
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(a) Heart disease dataset
with noise samples.

(b) Heart disease dataset
with random samples.

(c) Gender voice recognition dataset
with noise samples.

(d) Gender voice recognition dataset
with random samples.

(e) Breast cancer classification dataset
with noise samples.

(f) Breast cancer classification dataset
in random samples.

(g) Cancer patients dataset
with noise samples.

(h) Cancer patients dataset
with random samples.

Fig. 4.10 Validation model accuracy of given datasets.
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4.3.4 Model Accuracy vs Injected Additional Random Samples Testing

Since the cancer patients dataset shows the least-effective classifier, as shown in Figure 4.9, it
was tested for its response to the injection of the sudden spike of additional random samples
up to 100%.

This test is show the responsiveness of the PCA-SRP in increasing randomness of the
data and its effect in model accuracy.Figure 4.11 presents the validation accuracy of both
ANN + PCA(SRP) and ANN only to additional noises up to 150% with Selectivity (Sc) of
88% and 98%, respectively. It has also shown a reasonable increase in accuracy using 98%
Selectivity (Sc) instead of 88%.

The high-valued data have been preserved and maintained their accuracy until a specific
additional noise point. Nevertheless, the predictive power remained intact until that point,
even though some data were lost.

The ANN +PCASRP maintains the highest performance of cancer patient classifications
with high Sc values. The methodology allows for a significant advantage by gradually
slackening the decrease in classification problem accuracy over the sudden increase in noise
in the system.

The ANN classification problem requires strong training sets, which requires a lot of high
Sc while disregarding the low ones; based on the observation in both Figures 4.11 ScANN is
better as described in Equation 3.15

4.4 Contributions and Conclusions

The material presented in this paper shows a significant improvement in the accuracy of an
ANN in classification problems with the aid of the Principal Component Analysis—Sample
Reduction Process (PCA-SRP). The ANN cast-off 10% of the learning rate, two (2) layers
with 32 and 16 hidden neurons, respectively, ReLU activators in hidden layers and SoftMax in
output activators with 100 epochs or iterations, as shown in Table 4.1 based on the PCA-SRP
and ANN Python implementation program implemented on the gathered multidimensional
datasets, namely heart disease, gender voice recognition, breast cancer classification and
cancer patients dataset provided in Table 4.2. These datasets were then used to test the
PCA-SRP + ANN accuracy comparison testing, Sensitivity vs Specificity testing, Receiver
operating characteristic (ROC) curve testing and accuracy vs additional random samples
testing; the results show significant improvements.

To aid the PCA-SRP, removing the dirty and imprecise dataset is achieved based on the
results shown in Table 4.7, which allowed us to reduce the number of samples in the process
and allowed for a significant increase in accuracy, as shown in Tables 4.10 and 4.11. Further,
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(a) Heart Disease dataset (Sc = 88%) (b) Heart Disease dataset (Sc = 98%)

(c) Gender Voice dataset (Sc = 88%) (d) Gender Voice dataset (Sc = 90%)

(e) Breast Cancer dataset (Sc = 88%) (f) Breast Cancer dataset (Sc = 98%)

(g) Cancer Patient dataset (Sc = 88%) (h) Cancer Patient dataset (Sc = 98%)

Fig. 4.11 ANN accuracies in additional (+)%Randomness Response
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Principal Component Analysis - Sample Reduction Process (PCA-SRP) in Physiological

Datasets

we also determined the recommended Sc range values for standard cleaning and the ANN
classification problem.

Here is the following contributions of this said chapter:

1. Scree plot visualisation is essential in identifying the most highly explained variance
samples.

2. The intersection between Sensitivity and Specificity lines is approximately balanced
Selectivity Sc, which equals PC1 of the PCA of explained variance. Moreover, it is the
point wherein the balanced Sensitivity and Specificity have maximum acquired good
samples and minimum acquired bad samples.

3. Using PCA-SRP in incorporating the filtered training set into the ANN model will help
to increase the Model accuracy of the given datasets.

4. Also, the visualization through PCA-SRP in the event of injecting more randomness
in the ANN Model, which the the response of the deteriorating model accuracies was
slowing gradually.

Future research will further investigate the performance of massive physiological datasets
and determine how to load them into PCA-SRP cleansing agents; one of the suggestions
is loading through batch processing. Furthermore, an investigation into various field ap-
plications to explore incorporating the investigated cleaning techniques, such as real-time
biomedical automation, image-based medical diagnosis classification and human thought
processes [107–113] could be a desirable research avenue.

The proposed methodology can be applied to a wearable EEG or similar device in order
to extract brainwave signal that seems non-deterministic, stochastic, nonstationary, noisy,
non-linear, and non-unified reference base signal as well. in a given brain wave activity
that limits and remove the unwanted signal in the brain and increase the accuracy of Neural
Network classification model.



Chapter 5

Introduction and Previous Work on EEG
Signal Acquisition and Analysis

Electroencephalography (EEG) is a non-invasive data-collection technology that monitors the
brain’s electrical activity along the scalp. Because EEG records the voltage variations caused
by an ionic current within the brain’s neurons, it may be used to assess some of the brain’s
intrinsic properties [114]. Monitoring the electroencephalographic signals of animals (rabbits’
and monkeys’ brains, in 1890) was one of the first explorations into brain-related processes
[115]. German scientist and psychiatrist Hans Berger (1873–1941) captured the first human
EEG signal in 1924. Since then, EEG has often been used for clinical purposes, and through
time, the EEG has evolved into a helpful tool for identifying brain disorders (epileptic
seizures, for instance) [116] [117]. There are several important questions concerning EEG,
but afraid of the answer [118]. It is more complicated because the human brain is a complex
non-linear system showing convoluted emergent properties, including consciousness, which
the EEG signal describes as having 5 Ns in nature:

• Noisy,
• Non-deterministic and stochastic,
• Non-linear,
• Non-stationary, and
• Non-unified reference base signal.
Given the EEG undesired characteristics, the physiological variations between human

brains’ EEG readings may make it hard to identify which signal attributes and properties
correspond to its different mental activities.
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5.1 Brain - Computer Interface (BCI)

A thorough study of the brain’s electrical and physiological properties and acquiring its parts’
behaviour are avenues to understanding its peripherals, such as the limbs’ motor action,
mental imagery, and other mental activities. Nevertheless, they could be more adaptable and
precise outside a controlled laboratory setting.

The development of new applications bridging brains with machines, known as Brain-
Computer Interface (BCI) technology, was facilitated by recent advancements in neuroscience
and engineering. The first BCI devices were created in the 1960s, most notably the implanted
chip that could both transmit and receive electrical impulses from the brain [119]. This
allowed the patient to walk around freely while being stimulated by radio waves in the brain.
A few years later, studied the implementation of a straightforward, non-invasive BCI based
on "visually evoked potentials" using scalp-recorded brain signals in people [120].

These studies paved the way for the creation of non-invasive BCI paradigms using neu-
roimaging methods like electroencephalography (EEG), magnetoencephalography (MEG),
functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy
(fNIRS) [121]. Indeed, BCI enables controlling external devices with the brain, such as a
computer, a robot, or an exoskeleton by converting the recorded neural activity into digital
commands via mathematical and AI methods [122]

Conventional medical and research-grade EEG devices have been effectively utilised for
various brain state estimations. There are differences between consumer and medical systems
in terms of the number of electrodes, the complexity of processing, and the ability to remove
noise. More design convenience for "real world" occupational application may be seen in
inexpensive EEG headsets, like :

• Neurosky
• Mindwave
• InterAxon
• Muse
• Emotiv Epoc
• OpenBCI.
Open-source software, however, and professional development may eventually increase

these systems’ capacities. This adaptability is advantageous to developing countries, small
businesses, and hobbyist users, but the choice of the best models and algorithms will
ultimately be highly context-specific.

BCI frameworks may often be divided into several classes . The three classification
schemes—dependability, recording methodology, and mode of operation—are shown in
Figure 5.1 [123] .
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Fig. 5.1 Branches of BCI.
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Fig. 5.2 10-20 System.

5.1.1 10-20 System

The figure above shows one of the EEG wearable sensors e.g. EMOTIV Epoch+, with 14
channels. It is a 10–20 system, also known as the International 10–20 system. It is a way
of describing and applying the position of scalp electrodes in an EEG test for voluntary lab
research.

The "10" and "20" correspond that the actual distances between neighbouring electrodes
are 10% and 20% of the entire front-back or right-left distance (nasion to inion) of the skull,
respectively. as shown in Figure 5.1.1 [124]. This standard approach was developed to ensure
that the results of a subject’s study (clinical or research) could be obtained, duplicated, and
properly analysed and compared with other studies. The method is based on the idea that
an electrode’s location is related to the area of the brain beneath it, particularly the cerebral
cortex.

The letters designated to each electrode implantation position to denote which lobe or
region of the brain it is reading from are pre-frontal (Fp), frontal (F), temporal (T), parietal
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(P), occipital (O), and central (C). There are (Z) sites. A "z" (zero) site is an electrode that
is positioned on the midline plane of the skull (Fpz, Fz, Cz, Oz), and it is typically used as
a reference or measuring point. It is also widely used as "grounds" or "references." On the
right side of the head are even-numbered electrodes (2, 4, 6, 8), whereas on the left side of
the brain are odd-numbered electrodes (1, 3, 5, 7).

Table 5.1 Brain’s Anatomy - Lobes and its Function

Lobes Functions

Frontal lobe
Planning, Problem Solving, Motivation, Judgement,
Decision Making, Impulse Control, Social Behavior,
Personality, Memory, Learning, Reward, Attention, Movement

Parietal lobe

Touch, Pain, Temperature, Pressure, Vibration,
Analyzing, Recognizing, Memory of Somatic Sensations,
Coordination of Visual, Auditory, and Somatosensory Stimuli,
Spacial and Body Awareness

Occipital lobe
Seeing Objects/Stimuli,
Analyzing, Recognizing and Memory of Visual Stimuli,
Shapes, Colors, Sizes

Temporal lobe
Hearing Sounds, Pitch, Frequency,
Analyzing, Recognizing Memory of Auditory Stimuli

5.1.2 EEG Frequency Bands

Obtaining raw data in the time domain from the specified electrodes of EEG sensors and
translating it into the frequency domain with corresponding Power Spectrum Distribution
(PSD) signal energy. The brainwaves are divided into four sub-frequency bands, namely, as
follows.

Table 5.2 EEG Frequency Bands and its corresponding Activities

Band Frequency Activity
Delta (δ ) 1- 4 Hz Deep Sleep
Theta (θ ) 4 - 8 Hz Drowsiness, Light Sleep
Alpha (α) 8 -13 Hz Relaxed
Beta (β ) 13 - 30 Hz Active thinking, Alertness, Hyperactivity

These frequency bands are carried along the pink noise, 1/ f req, as shown in Figure 5.4.
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Fig. 5.3 Brain Lobes Anatomy.

Fig. 5.4 EEG Signal - Spectral Waveform
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5.1.3 EEG Signal Analysis

Electroencephalography (EEG) analysis with Computer technology and mathematical signal
analysis processes are used in electroencephalography (EEG) analysis to extract information
from EEG data. To enhance brain-computer interface (BCI) technologies, help researchers
better understand the brain, and aid doctors in making diagnoses and treatment decisions.
EEG analysis techniques may be broadly categorised in a different methodology. The
approach can be characterised as parametric and non-parametric. Most EEG analysis methods
have traditionally been classified into one of four categories: time domain, frequency domain,
time-frequency domain, or non-linear methods. Several more current methods exist as
follows:

1. Preprocessing.

The EEG signal is weak and needs to be amplified to be brought to a range acceptable
for pre-processing.

• Artifact Removal

Unwanted signals from both physiological and non-physiological artefacts were
frequently detected in EEG readings. Physical artefacts include eye movement
artefacts (also known as Electrooculography artefacts) and muscle movement
artefacts (also known as Electromyography (EMG) artefacts) (EOG). Moreover,
additional artefacts are produced by heart activity and are called electrocardio-
grams (ECG). Non-physiological artefacts are caused by interference from nearby
wires and electrical devices. Conventional filters like high pass and low pass
filters eliminate the EEG data’s low frequency and high frequency. Moreover, var-
ious cutting-edge filters have been utilised that aim to increase the signal-to-noise
ratio and enhance the quality of EEG information in the signal, including:

– Finite Impulse Response (FIR)

– Infinite Impulse Response (IIR)

– Principal Component Analysis (PCA) – Dimension Reduction

– Independent Component Analysis (ICA)

– Empirical Mode Decomposition

• Time Epoch - Segmentation ts

The EEG signal is a non-stationary signal by nature; hence its values might
change from one location to another. EEG signal segmentation may be used to
find a sequence. Moreover, segmentation is crucial for the application of feature
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Fig. 5.5 Time Epoch or Sweeping

extraction and classification. EEG segmentation might range from one second to
many minutes depending on the intended use, sometimes called epoch or time
sweeping.

Time Segmentation ts is a general term for tuning the scope in desired time to
examine the signals, so it is dividing the signal in a series of times and converting
it into samples as shown in Figure 5.5.

It is the pre-processing part of the EEG signal before it employs in the Power
Spectrum Distribution (PSD). The sub-function Python implementation below is
the example of transforming the continuous data into wavelet data of 1 second
time sweeping.

Appendix A.1 shows the Python sub-program for generating the time sweeping
or epoch from the EEG time raw data.

2. Features Extraction.

Different methods to extract EEG features vary from simple features like mean or
standard deviation to complicated features in the time or frequency domain or non-
linear features; a wide range of EEG data may be retrieved.

• Time domain characteristics including Zero crossing (ZC), Mean absolute value
(MAV), Slope sign change (SSC), and Waveform Length (WL).

• Wavelet Transformation

• Hilbert Huang Transformation

• Auto-Regressive (AR) parameters,

• Power Spectral Density (PSD) using Welch-Simpson Estimation will dis-
cussed in the next section.

20 t1 

10 

QJ 
Cl 

~ 0 
.~ 

-10 

-20 

0 1000 

t2 t3 

2000 3000 4000 
Time 

tn 

5000 6000 7000 8000 



5.2 Power Spectrum Distribution (PSD) 87

3. Classification.

Several algorithms are employed to categorise various mental states in EEG readings.
Various applications call for various changes and algorithms. Depending on the desired
application, the classification methods can be either supervised or unsupervised as
follows:

• Fuzzy Logic

• Logistic Regression

• Decision Tree

• Random Forest

• Support Vector Machine (SVM)

• K – Nearest Neighbor

• Naives Bayes

• Genetic Algorithm

• Particle Swarm Optimisation (PSO)

• Artificial Immune System (AIS)

• Artificial Neural Networks (ANNs)

5.2 Power Spectrum Distribution (PSD)

Power Spectral Distribution (PSD) measurement describes the power per unit area per unit
wavelength and the measurement of a signal’s power content vs frequency. Typically, a PSD
is used to describe random broadband signals in spectral resolution to digitise the signal and
normalises the PSD’s amplitude. The Power Spectral Density is a characteristic of the EEG
signal often used. Its feature is computed chiefly using the Fourier Transform (FT) of the
time-domain signal, which displays the signal’s spectral density distribution in the frequency
domain. However, it is possible to compute the PSD from the time domain series directly.

A signal consisting of the same subcarriers has a constant power spectral density (PSD)
over its bandwidth and the total signal power shown in Equation 5.1 [125]. The average
power P of a signal a( f ) over time is therefore given by the following time average, where
the bandwidth BW is centred about some arbitrary frequency f = f c.

P = lim
BW→∞

1
BW

∫ fc+BW
2

fc−BW
2

a( f )2 d f (5.1)
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Fig. 5.6 Power Spectrum Distribution (PSD).

Using the transformation, the extract and filter the typical EEG frequency signal band
before it is processed in PSD through Fourier Transformation:

• Delta (∆) (0.5−4Hz)

• Theta (θ) (4−8Hz)

• Alpha (α) (8−12Hz)

• Beta (β ) (12−30Hz)

This function at Appendix A.1 provides the band PSD of each band for every 1 second
and converts it into a data frame in . a CSV file for easy manipulation and data storage.

5.2.1 Short-Time Fourier Transform (STFT) Analysis - Amplitude vs
Frequency

The Fourier Transform in the data is linear and stationary or strictly periodic, using uniform
trigonometric functions sine and cosine. However, unsteady data or non-uniform and non-
linear data, or deformed signals generally require additional harmonics. Moreover, the energy
spreads across spurious harmonics. Also, it has a non-physical representation of data.
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Fig. 5.7 Extraction and Filtering of EEG Signal Bands

It is about a signal added to another signal to generate seemingly complicated signals.
Unfortunately, the complicated calculations to decompose the periodic signal xt in terms of
an infinite sum of sines and cosines [126]. Fourier series using the equation:

xt =
1
2
·a0 +

∞

∑
k=1

(ancos(ωkt)+bnsin(ωkt)) (5.2)

The Fourier Transform is about circular paths (not 1-D sinusoids), and Euler’s formula
shown in Equation 5.3 shown in Figure 5.8

e jωkt = cos(ωkt)+ sin(ωkt) (5.3)

will become

Xk =
T−1

∑
t=0

xn · e− jωkt (5.4)

From Discrete Fourier Transform, the Continuous Fourier Transform is used to transform
a signal from the time domain to frequency domain Fk where ω = 2π f

Fk =
∫ +∞

−∞

xn · e−2k jπ f tdt (5.5)

The sub-function shown in Appendix A.1 is the Python implementation of plotting the
signal above Figure 5.9 for visualising it in amplitude concerning the frequency domain, that
library spectrogram has a Fourier Transformation Function which automatically generates its
amplitude corresponding to its frequency.
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Fig. 5.8 Euler’s Diagram

5.2.2 Simpson’s Estimation Method and Welch’s PSD Calculation

Simpson’s Estimation Method

Simpson’s rule is a method for approximating definite integrals of functions. It is precise
for linear and quadratic functions and typically (but not always) more accurate than approx-
imations made using Riemann sums or the trapezium rule. According to Simpson’s Rule,
the error in estimating a four-times-differentiable function’s integral is proportional to the
function’s fourth derivative at some point in the interval.

Suppose that f (x) is defined on the range [a,b]. The definite integral of f (x) on the
interval is therefore approximated by Simpson’s rule on the interval by the following formula.

∫ b

a
f (x)dx≈ b−a

6

(
f (a)+4 f

(
a+b

2

)
+ f (b)

)
. (5.6)

When applying Simpson’s rule, the interval is often divided into N equal-sized subinter-
vals, where N is an even integer, and the integral over each pair of adjacent subintervals is
approximated using the abovementioned estimate.
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Fig. 5.9 Amplitude vs Frequency Domain of a signal.
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Welch’s PSD Calculation

Welch’s method—known as the periodogram method—estimates power spectra. Breaking
the temporal signal into sequential blocks, creating a periodogram for each block, and then
averaging.

Using the signal x, denote the mth windowed, zero-padded frame by

xm(n), w(n)x(n+mR), n = 0,1, . . . ,M−1,m = 0,1, . . . ,K−1 (5.7)

K represents the number of accessible frames, and R is the window hop size. The
periodogram for the mth block is thus provided by

Pxm,M (ωk) =
1
M

∣∣FFTN,k (xm)
∣∣2 , 1

M

∣∣∣∣∣N−1

∑
n=0

xm(n)e− j2πnk/N

∣∣∣∣∣
2

(5.8)

The same way it was previously and the Welch estimate of the power spectral density is
provided by

ŜW
x (ωk),

1
K

K−1

∑
m=0

Pxm,M (ωk) (5.9)

In other words, it is simply a time-averaged periodogram. The periodograms are created
from non-overlapping sequential data blocks where w(n) is the rectangular window. Other
window kinds generally have their analysis frames overlapped.

The Appendix A.2 shows the Python subprogram for calculating the Simpson Methond
and Welch PSD Approximation.

5.3 EEG Applications, Tools, and Libraries

In recent years, many libraries and tools have been developed to advance the study and
research of EEG brainwave signals. In parallel, it has been significantly applied with
different implementations, from clinical evaluation to medical analysis and brain-computer
interface (BCI) applications, as shown in the Figure 5.10. These libraries are used to visualise,
analyse, and evaluate EEG brainwave signals.

Some EEG Applications, Tools, and Libraries (not exhaustive list)

Typical analysis tools and libraries commonly used in EEG Brainwave Analysis Visualization
and Evaluations:
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Fig. 5.10 EEG Applications, Tools, and Libraries and its Timeline
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• EEGLab [127] 2004
• BioSig [128] 2008
• Brainstorm [129] 2011
• FieldTrip [130] 2011
• SPM8 [131] 2011
• PyEEG [132] 2011
• NUTMEG [133] 2011
• MNE [134, 135] 2013
• BCILab [136] 2013
• ProNTo [137] 2013
• Wyrm [138] 2014
• PyRiemann [139] 2015
• CoSMoMVPA [140] 2016
• BEAPP [141] 2018
• MOABB [142] 2018
• Gumpy [143] 2018
• VisBrain [144] 2019
• NeuroRA [145] 2020
• TensorPac [146] 2020
• FitGrid [147] 2021
• Dyconnmap [148] 2021
• BioPyC [149] 2021
• EEGLib [150] 2021
• NeuXus [151] 2022
• MVPALAB [152] 2022

EEG Brainwave Visualization, Analysis, and Evaluation Techniques

• Statistical Analysis

– Covariance
– Correlation
– Regression
– ANOVA
– Normality
– Sphericity
– T-test
– F-test
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– Multivariate

• Time Series Analysis
• Frequency Analysis
• Power Spectral Density (PSD) Analysis
• Event-Related Potentials (ERP)
• Topological Mapping (2D and 3D)
• Event-Related Potentials (resting and activity)
• Functional Connectivity Analysis
• Synchronisation Analysis
• Confusion Matrix Analysis
• Receiver Operating Characteristic Curve Analysis
• Area Under the Curve (AUC)
• Classification Accuracy
• Loss Estimation Analysis
• Principal Component Analysis (PCA) Dimension Reduction
• Independent Component Analysis (ICA)
• Riemannian Potato
• SPM reconstruction
• Cosine Similarity
• Space Sensor Analysis
• Region of Interest Analysis (ROI)
• Hilbert-Huang transformation
• Autoregressive Transformation
• Wavelet Transformation

5.4 EEG -BCI Current Challenges

Much BCI research has been done recently to develop potential assistive technologies. The
market has already seen the release of a few commercial BCI appliances. A noteworthy
undertaking, the BNCI Horizon 2020 project [153], has put up a BCI future agenda. However,
some crucial issues and challenges exist in every component of the BCI paradigm, which has
been addressed in the BCI community [154].

Some of the BCI issues have been addressed:

• Data fusion, in particular, how the data from multiple electrodes are merged to lessen
the data dimensionality and improve the classification results.



96 Introduction and Previous Work on EEG Signal Acquisition and Analysis

• Issues with EEG headsets, the quality of EEG data for BCI application mainly
depends on the EEG headset and whether the electrode types (wet and dry) offer
identical signal properties.

• Eletrodes standard, the number of electrodes (1, 3, 4, 8, 14, 16, 20, 24, 32, or 64) and
the differences between these headsets are substantial and are incompatible. Thus, it is
essential to standardise the minimal number of electrodes for various EEG modalities.

• Lack of ideal Data Analysis Methods, some focused on detection, removal of arte-
facts, or accuracy enhancement, and some feature extraction technique is only suitable
to specific mental activity, which is not feasible for specific applications.

• Commercialisation of EEG-Based BCI Technology. A trend in Lab-Based BCI
Technology leads to a BCI device due to the production of low-quality brain signals.
One of the major issues with BCIs is that practically all BCI tests have been done in a
controlled lab, independent of the realistic surroundings of the intended users.

Moreover, adding to the dilemma, the anomaly of the EEG signals is the ununified
base signal for every specific task, which differs from device to device and subject to
subject.

Another issue arises from the research perspective, communicated with the Emotiv
spokesperson shown in the conversation in Figure 5.11. The integrity of EEG data passed
through Emotiv’s cloud system can not be manipulated and does not introduce random
signals. At the same time, the limited access to good quality data to investigate and work on
it due to restrictions put by the EEG devices provider to protect its data centre. So it will
be hard for the researchers to isolate and evaluate the authenticity of the process. Another
option is to find an EEG database large enough and with many subjects involved to
test the proposed technique.

Since the irregularity of EEG headsets, data fusion with different electric biases, and
commercialisation of EEG leads to low-quality signals, mathematical intervention and
improvement, in general, approached data analysis methodology might help the problem,
especially in the part of the removal of artefacts and data cleansing. Given the technical BCI
current challenges, the proposed data cleansing technique (PCA-SRP) will be an avenue to
solve some integral parts of the challenges [117].



5.5 Summary 97

Fig. 5.11 Emotiv spokesperson conversation.

5.5 Summary

This chapter involves the knowledge of Electroencephalography (EEG) Technology, its
biological anatomy of the brain and its function, EEG frequency bands, commonly used EEG
signal analysis, feature extraction, tools, software application, visualisation techniques, and
current EEG-BCI challenges; it provides a basic understanding that supports to comprehend
the concepts that will introduce in the following few chapters of this study regarding EEG-
BCI technology.

Furthermore, this chapter also supports the determination of EEG datasets, their EEG
inconsistencies and anomalies through the explained EEG analysis, feature extraction, and
visualisation techniques in this chapter, and the evaluation to be used.
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Chapter 6

PCA-SRP Implementation on
Physionet’s EEG Motor Movement
(MM) Dataset

This chapter summarises the experiment protocols and methods for acquiring and pre-
processing EEG signals. It visually and mathematically evaluates the effect of the proposed
Principal Component Analysis - Sample Reduction Process through the following testing
visually and mathematically by reducing the least predictive samples based on the criteria of
PCA-SRP in training the simple Artificial Neural Network (ANN).

6.0.1 EEG Motor Movement (MM) Dataset

The researchers used a separate EEG sensor headset to produce the PhysioNet’s Motor
Movement (MM) - Left and Right (L/R) Hands and Feet Movement EEG signals [16], which
included RAW EEG data with various labels and data standards stated in their descriptions.
The dataset used in this study was made available to the public, and the characteristics of
these databases are detailed in depth. Therefore, these details may depend on the following
experimental analysis in the ensuing chapters.

Experimental Protocol

The EEG L/R Motor Movement (MM) Dataset was provided by the developers of the
BCI2000 instrumentation device (http://www.bci2000.org). The headset has 43 electrode
positioning systems and 64 wet sensors with a sampling rate of 160 Hz (10-10 System).
Figure 6.1 shows a placement plan for the electrodes as discussed in Chapter 5.1.1 (10 – 20
System).
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Fig. 6.1 EEG Standard 64 Channel Electrodes Positioning Notation.

The Montage of EEGs was recorded using 64 electrodes per the international 10-10
system standard (apart from electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9,
and P10). The numbers behind each electrode name represent the order in which they occur
in the data, considering that signals in the records are numbered from 0 to 63, whereas the
numbers in the graphic range from 1 to 64.

Furthermore, more than 1500 one- and two-minute EEG recordings comprise this collec-
tion belonging to 109 subjects. Each participant conducted 14 experimental runs, comprising
three two-minute runs for each of the four activities described below:

1. A target appears on the screen’s left or right side. The subject opens and closes the
corresponding fist until the target disappears. Then the subject relaxes.

2. A target appears on the screen’s left or right side. The subject imagines opening and
closing the corresponding fist until the target disappears. Then the subject relaxes.

® 
® 0 © 

CD 
0 

0 G) 

To .. 



101

3. A target appears on either the screen’s top or bottom. The subject opens and closes
fists (if the target is on top) or both feet (if the target is on the bottom) until the target
disappears. Then the subject relaxes.

4. A target appears on either the screen’s top or bottom. The subject imagines opening
and closing either fists (if the target is on top) or both feet (if the target is on the bottom)
until the target disappears. Then the subject relaxes.

In summary, the experimental runs were:

• Runs 1: Baseline, eyes open

• Runs 2: Baseline, eyes closed

• Runs 3, 7, and 11: Task 1- Motor Action (open and close left or right fist)

• Runs 4, 8, and 12: Task 2- Imagery Action (imagine opening and closing left or right
fist)

• Runs 5, 9, and 13: Task 3 – Motor Action (open and close both fists or both feet)

• Runs 6, 10, and 14: Task 4 – Imagery Action (imagine opening and closing both fists
or both feet)

Each annotation includes one of three codes (T0, T1, or T2):

• T0 corresponds to the rest

• T1 corresponds to the onset of motion (real or imagined) of the left fist (in runs 3, 4, 7,
8, 11, and 12) and both fists (in runs 5, 6, 9, 10, 13, and 14)

• T2 corresponds to the onset of motion (real or imagined) of the right fist (in runs 3, 4,
7, 8, 11, and 12) and both feet (in runs 5, 6, 9, 10, 13, and 14)

These comments are stored as 0, 1, or 2 in the "target" state variable in the BCI2000-
format versions of these files [155]. Furthermore, the dataset is configured by combining the
same channel of the subject (1-109) as shown in Figure 6.2.

This EEG dataset is classified as non-invasive according to recording, spontaneous
according to EEG signal, and a motor imagery dataset as described in Figure 5.1. Due to its
benchmark EEG dataset as stated in Chapter 1.1, large enough as discussed in Chapter5.4,
and the ample research study [156–158] about complicated ANN classification models using
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Fig. 6.2 MM/I Experimental Dataset.

this dataset as a supplement approach in improving those prior research studies from the past
literature as stated in Chapter 3.2.

Furthermore, the said EEG dataset is chosen for the unbiased and the actual authenticity
of how the data is actually gathered clinically by the medical expert.

6.1 Experimental Framework

The experiment is set up in a way that involves the Physionet’s L/R Motor Movement EEG
signal. Conventionally, the EEG signals are sampled through epochs and analysed in the
time-frequency domain, which is also part of the procedure. As shown in Figure 6.2, each
subject’s EEG data has been concatenated to analyse according to EEG channels. As de-
scribed in Chapter 4, EEG signals have been characterised as noisy, non-deterministic,
non-linear, non-stationary, and non-unified reference base signal, which is understand-
ably incomprehensible data - the EEG signals.

Figure 6.3 shows the Experimental Framework that meticulously evaluates the time
domain - EEG signal acquired in the datasets - (L/R MM) is converted to the frequency
domain by Fast Fourier Transformation, and the Power Spectral Density calculated
through Simpson’s and Welch Approximation Calculation in EEG band signal through a
bandpass filter (∆, Θ, α , and β ) as described in Chapter 5.2.
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Fig. 6.3 Experimental Structured Framework

Fig. 6.4 MM - EEG Signal Visualisation

These techniques of EEG feature extraction (frequency domain) and approxima-
tion in EEG motor and imagery dataset is implemented due to its being standard ex-
traction and analysis [159] and concluded as described as best feature extraction for
MI-based application, in real time [160]. Although another feature extraction tech-
niques have been introduced but still under further research and study.

Furthermore, the implementation of Principal Component Analysis - Sample Reduction
Process (PCA-SRP) mathematically in the dataset as discussed in Chapter 3 with given
Selectivity (Sc = PC1) based in the Equation 3.4. The filtered EEG dataset trains the basic
Feed Forward ANN Model, specified in Table 4.1.
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6.1.1 EEG Datasets Comparative Visualization

Understanding the EEG datasets needs a visualise it from different perspectives to compre-
hend the behaviour of its attributes and response to different changes. As well as to figure
out the characteristic of each sample.

In the following graphs, MNE [161, 135] EEG Python processes describe and summarise
the EEG L/R Motor Movement (MM) Paradigm Dataset. The combined 109 subjects – EEG
channels datasets have been assessed with different visualisation plots as shown in Figure
6.4 as follows:

1. Signal Waveform Diagram that shows the Amplitude vs continuous time visualisa-
tion diagram of the EEG signal waveform of the particular electrodes concerning its
EEG channel/s; it identifies the signal amplitude peaks and can compare it to other
channels as shown in Figure 7.3. The basic visualisation of a signal-time domain;
identifies which of the electrodes have a different biased, reference signal, or anomaly
in calibration. It might also identify if the signal is a good EEG signal, uses a different
sensor, or is from a different subject.

The Appendix A.2 shows the Python Implementation for plotting the EEG raw data in
the time domain.

2. Power Spectrum Density (PSD) Diagram, which shows the power in dB for the
inclusion of EEG bands (0 – 50Hz) of each channel as shown in Figure 7.4. This
visualisation is viewed in the frequency perspective or frequency domain; it will
identify if the signal is an EEG signal and which frequency band is responsible for
specific mental actions.

The Appendix A.2 depicts the Python Implementation for plotting the EEG raw data
in the frequency domain.

3. The Event - Epoch ID Diagram shows and visualises the time and epoch wherein
the activity has been made as shown in Figure 7.5. Using this visualisation separates
the time limits of each sample and the corresponding events that occur and is also
responsible for dividing the signals into different samples or epochs.

Python Implementation for visualising the EEG events shows in Appendix A.2.

4. Epoch/Channel – Time Signal Intensity Plot – to visualise the signal intensity in
respect of time as zero time is the actual time of motor movement event (Left / Right
Hand and Feet movement). This visualisation is responsible for identifying the specific
part of the brain and epoch for certain actions induced electrically.
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The Python Implementation for Visualising the Epoch-Time Signal Intensity Plot
shows in the Appendix A.2.

5. Cranial Topography Plot – to visualise the signal intensity Localisation of the brain’s
cognitive activity at a specific point in time. Moreover, Cranial Butterfly Plot is a
plot of superimposed sensor time series, the negative and positive ongoing traces in an
interesting period via a highlighted parameter. Cross-reference the electrical intensity
to some areas of the brain, which can identify the epoch and subject differently from
the rest of the samples.

For visualising the Cranial Topography and Butterfly Plot in Python Implementation at
the Appendix A.2

6. 3D Scatter Plot to visualize in 3-dimension, the two EEG datasets which capture even
more variance. This visualisation is the scatteredness of the sample according to its
target events or the identification of simulated controlled randomness in the PC space.

Here is Python Implementation for visualising plot the 3-D Scatter Plot and Cranial
Localization Sensor Visualization shown in Appendix A.2 and A.2, respectively.

7. Parallel Coordinates Plot to determine the overall path of each sample in features
of two EEG datasets either or different mental actions or good. This visualisation is
responsible for knowing the dataset s response of different samples - target events or
identifying the simulated controlled randomness to its featured dimensions.

The Appendix A.2 depicts the Python Implementation for visualising plot the Parallel
Coordinates Plot.

8. Scatter Matrix Plot to generalise the relation of the samples between the two EEG
datasets in their featured - EEG signal bands. It is a grid (or matrix) of scatter plots
used to visualise bivariate relationships between combinations of featured dimensions
such as Delta (∆), Theta (Θ), Alpha (α), and Beta (β ). Each scatter plot in the matrix
visualises the relationship between a pair of dimensions, allowing many relationships
to be explored in one chart.

ThePython Implementation for visualising plot the Scatter Matrix Plot shown in the
Appendix A.2.
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Fig. 6.5 Subject 40 - Left-Right Side Motor Movement: Signal Channel Plot

Fig. 6.6 Subject 40 - Left-Right Side Motor Movement: Event-ID Plot

6.2 Discussion and Result

This section involves the human brain’s electrical activity of moving the left or right either
hands and feet, the Principal Component Analysis - Sample Reduction Process (PCA-SRP)
’s visual result, and its effect on basic Artificial Neural Networks (ANN) Model through
bootstrapping analysis.

6.2.1 Brain’s Electro-physiological Behaviour

The epoch is one of the suitable parameters to consider for holding a single event of mental
action. subject 40 is chosen example due to normal occurrences of the subject’s brain
activity electric response in doing the motor movement action.
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Fig. 6.7 Subject 40 - Left-Right Side Motor Movement: PSD Plot

This Motor Movement EEG of subject 40, shown in Figure 6.5 - describes how the time
signal is divided per epoch or samples. Moreover, the Figure 6.6, there are approximately
370 seconds of EEG recording for 64 channels at 160 Hz sampling frequency, which gives
off 45 epochs entirely or approximately 8.2 seconds or 1315 samples each epoch and the
respective sample event ID: zero (0) signifies the left-side motor movement, and one (1) the
right-side motor movement of the hand and foot.

Figure 6.7 of subject 40 shows the typical response of Power Spectral Densities (PSD)
through a pink noise ( 1

f req ) frequency domain response of all the channels electrodes.
As observed in Figure 6.8, it shows the left side body motor movement of hands or feet

mental activity in the following specific Region of Interest (ROI) of the brain - Left, Mid-line,
and Right Side Hemisphere. An upward deflection is surface negative, and a downward
deflection is surface positive signal intensities., which the cranial serves as the reference
neutral. It is also indicated that the Frontal Lobes are responsible for motor activities, as
discussed in Table 5.1 - Brain’s Anatomy - Lobes and its Functions.
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(a) Left-side Brain Channels

(b) Mid-side Brain Channels

(c) Right-side Brain Channels

Fig. 6.8 Subject 40: Region of Interest (ROI)- Signal Intensity Plot
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(a) F7: Left-side Motor Movement (b) F7: Right-side Motor Movement

(c) F8: Left-side Motor Movement (d) F8: Right-side Motor Movement

Fig. 6.9 Subject 40- Left-Right: Epoch-Time Signal Intensity at Channel F7 (29) and F8 (37)

Figure 6.9 shows the intensity level in both F7 and F8 channels - Frontal Lobes. When
the left hand and foot move, F7 gives positive signal intensities, and the F8 channel shows
negative intensities and vice versa in the movement of the right hand and foot.

Furthermore, a 0.0 ms timeline signifies the actual start of the movement occurs, but it
shows some delays after 300 ms, approximately before the brain recognises it. Figure 6.10 is
the average intensities of left and right hand and feet motor movement at F7 and F8 EEG
channels, that there is a shift of polarity (negative to positive or vice versa) when changing to
the movement from left to right or vice versa for channel F7 and F8.
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(a) F7 Channel - Average Signal Intensity (b) F8 Channel - Average Signal Intensity

Fig. 6.10 Subject 40 - Left-Right: Average Signal Intensity Plot

Figure 6.11 shows that subject 40 is more positive deflection for most of the channels
but is more positive at channel 29 (F7). However, channel 37 (F8) shows more negative. It
depicts that these two specific regions are more responsible for motor movement among the
other EEG electrodes for subject 40.

Fig. 6.11 Subject 40 - Left-Right: Channel Signal Intensity Plot
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(a) Left-side Motor Movement

(b) Right-side Motor Movement

(c) Left - Right (difference) Motor Movement

Fig. 6.12 Subject 40: Cranial Topography and Butterfly Signal Intensity Plot
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EEG Electro-physiological Anomalies

Among the 109 subjects, there are some constitute an unusual and considered anomaly, like
subject 83, which shows very high positive intensities in Frontal Lobes for both L/R Motor
Movement as shown in Figure 6.14; the causes are unknown due to lack of supporting data
provided. Another unusual EEG signal shown in Figure 6.15 is that parts of the Central Lobe
of subject 109 acted with different signal waves than the rest of the channels. That might
cause by sensor-biased problems or electrode fixture misalignment.

Furthermore, combining the same channel of all 109 subjects, as shown in Figure 6.2,
with different reference-biased conditions and the unique wiring of the individual’s brain,
led to seemingly stochastic data that alter the training structure of ANN’s random function
approximation.
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(a) Left-side Motor Movement

(b) Right-side Motor Movement

(c) Left - Right (difference) Motor Movement

Fig. 6.14 Subject 83: Cranial Topography and Butterfly Signal Intensity Plot
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(a) Left-side Motor Movement

(b) Right-side Motor Movement

(c) Left - Right (difference) Hands and Foot

Fig. 6.15 Subject 109: Cranial Topography and Butterfly Signal Intensity Plot
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Fig. 6.16 MM Dataset Scatter Plot

6.2.2 PCA - SRP in L/R Motor Movement (MM)

This section describes the effect of PCA in the Motor Movement EEG Dataset, particularly in
the L/R motor movement. Figure 6.16 shows the PC space of the dataset; blue represents the
left-side motor movement, while yellow represents the right-side movement. Visualizing the
PC space of the L/R movement, it is difficult to grasp the general distribution of PC points,
due to the low loading scores tends to diverge near to [0,0,0] PC space.

The sample epochs have been converted from 4 dimensions (∆, Θ, α , and β ) to 3
dimensions (PC1, PC2, PC3) to properly grasp visually the dataset. As observed in the L/R
MM Dataset Scatter Plot, most of the samples are near to [0,0,0] PC space, which means
the majority of the samples are close to each other concerning its variance in a sense, it is
difficult to identify a Selectivity (Sc) threshold. The closer the samples to [0,0,0] PC space,
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the sample is the less variance it is. However, by the concept of this experiment, the good
and bad samples are unidentified, and the previous experiment in Chapter 3 at Equation 3.15
hypothesised that recommended Selectivity is approximately equal to the first Explained
Variance Ratio (PC1).

Even the Figure 6.17 - L/R MM Dataset Continuous Parallel Plot indicates the path of
each sample in the EEG Frequency Band and shows some degree of difficulty in concluding
the path relation between movement in left-side over ride-side motor movement. Hence, hard
to identify the relationship between the seemingly random samples.

As the Principal Component Analysis - Sample Reduction Process (PCA-SRP) took place
with Selectivity (Sc) Threshold with Sc = PC1 indicated in each channel in Figure 6.18a,
showing that the lowest Sc is in the region of Occipital and Parental Lobes and the highest Sc
is in Frontal and Pre-Frontal Region of the brain. Hence, as observed in Figure 6.18b, more
samples have been removed in the Parental and Occipital Lobe of the Brain. The least are in
the channels of the Pre-Frontal and Frontal lobes out of the 109 subjects, with approximately
45 epochs or events per subject and approximately 4927 samples.

As the implementation of the basic Feed Forward ANN Model is shown as described in
Table 4.1 that has two (2) hidden layers (32 and 16 neurons) with four (4) input nodes and
one (1) output node. The EEG dataset will be divided in 80/20 % for training the ANN and
testing the ANN through Cross Validation Approach shown in Figure 3.12, then calculate
the accuracy and loss through the Equation C.61 and C.62, respectively. Furthermore, the
comprehensive details are in the Appendix D.3.

Table 6.1 is the summary of the accuracy of using PCA-SRP in ANN in comparison to
ANN alone; it shows in Figure 6.19 the accuracy of each EEG channel, which increases by
up to 7% more. As observed in Figure 6.19, all the model accuracies in all channels in the
ANN alone give approximately the same value (45 - 46%). Moreover, it signifies that all the
channels’ EEG bands behave without PCA-SRP but with slightly different model accuracy
magnitudes. Compared to the ANN using PCA-SRP, it removed different samples for each
channel.

6.2.3 Artificial Neural Networks (ANNs) Bootstrapping

The ANN bootstrapping histogram in Figure 6.20, 6.21, 6.22, 6.23, 6.24, 6.25, 6.26, and 6.27
with 2000 repetitions shows a comparison of the accuracy of using Principal Component
Analysis -Sample Reduction Process (PCA-SRP) in the L/R Motor Movement and Imagery
(MM) EEG dataset, in comparison without said data cleaning process. It also shows and
follows the normal distribution graph as discussed in Chapter 3.6.
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Fig. 6.17 L/R MM Dataset Continuous Parallel Plot

(a) Selectivity (Sc = PC1)

(b) Samples Removed (n = 4927 samples/epochs)

Fig. 6.18 Selectivity (Sc) and Number of samples Removed (%)
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Table 6.1 ANN Model Validation Accuracy Increase (PCASRP +ANN vs ANN only)

EEG Channels Accuracy Increased, % EEG Channels Accuracy Increased, %
FC5 4.197260737 F1 4.153579473
FC3 6.17916286 Fz 4.152211547
FC1 4.989714563 F2 5.860487133
FCz 7.119411051 F4 4.766735435
FC2 6.566733539 F6 4.431143552
FC4 4.142445326 F8 4.319307208
FC6 5.039774299 FT7 3.224786758
C5 6.042835116 FT8 3.159430444
C3 5.573186278 T7 3.509591162
C1 4.563970447 T8 2.025477767
Cz 4.70906496 T9 6.055517554
C2 3.732252121 T10 5.225346655
C4 2.840468049 TP7 4.341462255
C6 3.690856695 TP8 3.763192892

CP5 4.567917407 P7 1.3353616
CP3 3.680548072 P5 0.4189103842
CP1 3.185558677 P3 3.620776534
CPz 4.513214469 P1 5.008283257
CP2 3.879412055 Pz 2.058451056
CP4 4.963226676 P2 4.295582741
CP6 5.461275101 P4 4.766735435
Fp1 4.603221178 P6 2.95721209
Fpz 4.156173319 P8 4.826191068
Fp2 5.250675708 PO7 4.749322653
AF7 3.114949018 PO3 4.766735435
AF3 3.418233395 POz 4.827937484
AFz 2.779981494 PO4 5.307840109
AF4 2.251111269 PO8 4.440101981
AF8 4.257216692 O1 1.797038347
F7 1.073241234 Oz 2.816486359
F5 3.319072723 O2 6.264250249
F3 3.928747773 Iz 4.685722709

I I 
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(a) EEG Channels: ANN Model Validation Accuracy(PCA-SRP)+ANN VS ANN only

(b) EEG Channels: ANN Model Validation Accuracy Increased

Fig. 6.19 MM Dataset - EEG Channels: ANN Model Validation Accuracy Increased

MM/I EEG Dataset· ANN Validation Accuracy of PCA + ANN and ANN only 

- ANNonly 

=======aaaaomm=======~••==---~~gnNNNffira==nnn===~~~nN~M~M-=---mmm, 
EEG Chann~I• 

MM/I EEG Dataset• increase ANN Val idation Accuracy (PCA + ANN vs ANN only) 
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As observed, for example, in Figure 6.20b, the dataset used by PCA-SRP was tilted to the
right, which means the majority of the 2000 repetitions, the Model Accuracy is higher than
with the incorporation of PCA-SRP. However, Figure 6.27a appears that ANN Bootstrapping
results have no apparent skewness either to left or right, which signifies that PCA-SRP has
such a minimal impact on the ANN. Moreover, Figure 6.26h manifests a minimal skewness
to the left that signifies a negative Model Accuracy with the incorporation of PCA-SRP.

ANN Bootstrapping results show that most of the EEG channels are skewed to the right,
which signifies the increase in accuracy using PCA-SRP compared to not using it. Only PO7

shows skewed to the left or negative ANN Bootstrapping result, while some Central, Parental,
Temporal, and Occipital Lobes electrodes (C4,CP3,CP4,CP5,T10,T P7,P2, P3,P4,P5,P7, P8, PO3,
01, and Iz) manifest without any changes in the ANN Bootstrapping result, and the rest of the
electrodes appear skewed to the right or positive ANN Bootstrapping Accuracy results.

Since the discussion is about the L/R Motor Movement EEG dataset, the region respon-
sible is the Frontal and Pre-frontal Lobes of the brain; it shows significant improvement in
ANN bootstrapping Model accuracy results with the utilisation of PCA-SRP.
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(a) Channel 1 FC5 (b) Channel 2 FC3

(c) Channel 3 FC1 (d) Channel 4 FCz

(e) Channel 5 FC2 (f) Channel 6 FC4

(g) Channel 7 FC6 (h) Channel 8 C5

Fig. 6.20 Bootstrapping - Accuracy: Channel 1 to 8
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(a) Channel 9 C3 (b) Channel 10 C1

(c) Channel 11 Cz (d) Channel 12 C2

(e) Channel 13 C4 (f) Channel 14 C6

(g) Channel 15 CP5 (h) Channel 16 CP3

Fig. 6.21 Bootstrapping - Accuracy: Channel 9 to 16
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(a) Channel 17 CP1 (b) Channel 18 CPz

(c) Channel 19 CP2 (d) Channel 20 CP4

(e) Channel 21 CP6 (f) Channel 22 Fp1

(g) Channel 23 Fpz (h) Channel 24 Fp2

Fig. 6.22 Bootstrapping - Accuracy: Channel 17 to 24
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(a) Channel 25 AF7 (b) Channel 26 AF3

(c) Channel 27 AFz (d) Channel 28 AF4

(e) Channel 29 AF8 (f) Channel 30 F7

(g) Channel 31 F5 (h) Channel 32 F3

Fig. 6.23 Bootstrapping - Accuracy: Channel 25 to 32
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(a) Channel 33 F1 (b) Channel34 Fz

(c) Channel 35 F2 (d) Channel 36 F4

(e) Channel 37 F6 (f) Channel 38 F8

(g) Channel 39 FT7 (h) Channel 40 FT8

Fig. 6.24 Bootstrapping - Accuracy: Channel 33 to 40
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(a) Channel 41 T7 (b) Channel 42 T8

(c) Channel 43 T9 (d) Channel 44 T10

(e) Channel 45 TP7 (f) Channel 46 TP8

(g) Channel 47 P7 (h) Channel 48 P5

Fig. 6.25 Bootstrapping - Accuracy: Channel 41 to 48
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(a) Channel 49 P3 (b) Channel 50 P1

(c) Channel 51 Pz (d) Channel 52 P2

(e) Channel 53 P4 (f) Channel 54 P6

(g) Channel 55 P8 (h) Channel 56 PO7

Fig. 6.26 Bootstrapping - Accuracy: Channel 49 to 56
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(a) Channel 57 PO3 (b) Channel 58 POz

(c) Channel 59 PO4 (d) Channel 60 PO8

(e) Channel 61 O1 (f) Channel 62 Oz

(g) Channel 63 O2 (h) Channel 64 Iz

Fig. 6.27 Bootstrapping - Accuracy: Channel 57 to 64
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Fig. 6.28 Cranial Topography - ANN Bootstrapping Result

6.3 Conclusion

In this work, the impact of cognitive mental activity - Motor Movement and Imagery (Left -
Right Hands and Feet Movement) on the performance of basic Feed Forward ANN Model
using Fast Fourier Transform (FFT), Power Spectral Densities (PSD) by Simpson - Welch
Rule Approximation and pass through a bandpass filter of EEG frequency bands (δ , θ , α ,
and β ).Hence, the Principal Component Analysis - Sample Reduction Process (PCA-SRP)
has been implemented to remove the least predictive samples.

The work has investigated the electrical physiological lobotomy attributes of the L/R
MM dataset and the impact of PCA-SRP for training and testing the networks. Here are the
findings of this chapter:

• Skewed to 
the Right 

Remain 

0 Skewed to 
the Left 



6.3 Conclusion 131

• It verifies that the left and right hemispheres of the brain control the ’opposite’ side of
the body.

• The anomalies are imminent in EEG signals, just like unexpected signal responses
due to an individual’s unique brain wiring and electrical reaction and electrode fixture
misalignment.

• The Motor Movement EEG Datasets shows non fully deterministic, some subjects
imply different mental electrical cognition, and every sensor has non-unified reference
base signal. Mixing the same activity but different epochs characteristics may alter
the weight of nodes in the ANN during the training process.

• In PC space, samples are distributed near [0,0,0] regardless of their motor movement,
which means their variance is very low, showing that some samples have the slightest
relationship with other samples.

• Using Sc = PC1 based in the Equation 3.4, filtered the least predictive samples below
the PC1. Moreover, it increased the accuracy by up to 7% as shown in Figure 6.19.

• By comparing the ANN Bootstrapping Model Accuracies incorporation of PCA-SRP, it
shows the majority of the region of the brain shows significant improvement, especially
the region responsible for L/R Motor Movement such as Pre-Frontal and Frontal Lobes.

The overall conclusion is that there is a substantial increase in accuracy in using Principal
Component Analysis - Sample Reduction Process (PCA-SRP) to cleanse the Motor Move-
ment EEG dataset for training the basic Feed Forward ANN model. The flexibility of the
proposed mathematical method through proper choice of Selectivity (Sc) and its variation
depends on the quality of predictive samples included. It also provides the automatic selection
of highly predictive samples that could result in systems that are easier to develop, deploy
and use in various applications.

Future work will be focused on evaluating the robustness of this approach when collecting
data mixed with different mental EEG signals from low-cost EEG sensors and quantifying
the amount of randomness that make the PCA-SRP feasible is not yet identified.





Chapter 7

PCA-SRP in Physionet’s EEG L/R
Motor Movement (MM/I) with P300
Oddball Random Auditory Dataset

This chapter involves the two EEG datasets with different mental activities – L/R Motor
Movement and Imagery (MM/I) and P300 Oddball Datasets [162] as a random EEG dataset,
to remove outliers and to detect the presence of P300 waves and if the Principal Component
Analysis – Sample Reduction Process (PCA-SRP) works mathematically and observing the
behaviour using standard Classification Performance Metrics. This chapter concerns only the
Motor Movement and Imagery (MM/I) Dataset (Left – Right Hands and Feet Movement)
– the thorough evaluation of the EEG subject samples and their brain behaviour—and the
effect of PCA-SRP in training the simple Artificial Neural Network.

7.1 Experimental Framework

The experimental framework included in the thesis is presented in this chapter. The publicly
available EEG datasets are described in Section 1, the random EEG dataset is in Section 2,
and Section 3 is the comparative visualisation diagram of the datasets in Sections 1 and 2,
respectively. The evaluation methods are introduced in Section 4, followed by a discussion
of the results.

7.1.1 EEG L/R Motor Movement and Imagery (MM/I) Dataset

Given in the Chapter 5 – dataset Section 6.0.1. The PhysioNet EEG Motor and Imagery
dataset – Left / Right Hands and Feet Movement was used, with 109 subjects, 1500 (one to
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two minutes EEG recordings) across 64 channels based on 10-20 Systems. Moreover, all
109 subjects combined their EEG signal dataset to its corresponding 64 EEG channels, as
shown in Figure 6.2.

7.1.2 P300 Oddball Paradigm EEG Dataset

The P300 event-related brain potential ERP was elicited with auditory stimuli in two
tasks. The oddball paradigm presented both target and standard stimuli; the single-stimulus
paradigm presented a target but no standard tone stimulus, with the inter-target interval the
same as that for the oddball condition.

Examining the brain activity of comatose people is one of the auditory p300’s most
intriguing uses. When conducting this experiment on an unconscious person and displaying
a variation of the p300 signal in their EEG, it is very suggestive that they may be able to be
awakened. Hence, the experiment is called the "Consciousness Detector" [163] [164].

This EEG dataset has used randomness due to audio disruption that occurs in
the individual brain signal while performing an L/R Motor Movement and Imagery
(MM/I) by combining these two EEG signals; and the different brain response of this
EEG dataset to motor movement (MM) because of the different branch as shown in
the Figure 5.1. Motor movement is Spontaneous, while P300 is in the branch of Evoked
Potential, according to the recording.

Experimental Protocol

In reaction to a sensory, cognitive, or motor event, the P300 signal is an event-related potential
(ERP), appearing on an EEG as a quick single potential shift. The signal’s peak of the P300
since it typically occurs 300 milliseconds after the stimulus as shown in Figure 7.2 [162].
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Fig. 7.1 P300 Oddball Experimental Setup.

• Digit Targets (default). Two blocks were run, each with 40 trials (32 control, eight
target/oddball trials). The stimulus set is the digits 1-5, spoken aloud. The stimulus
duration is 800 ms, with 1000 ms between stimulus offset and subsequent stimulus
onset.

• Tone Targets. This configuration uses the same conditions, timing, and trial counts as
the default. However, the stimulus set is a set of five sine wave tones ranging in pitch
from 200 to 2000 Hz.

~ 
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Fig. 7.2 P300 Event-Related Potentials.

In the following graphs, MNE [161] EEG Python processes describe and summarise the
EEG L/R Motor Movement or Imagery (MM/I) and P300 Oddball Paradigm Dataset.

1. Signal Waveform Diagram that shows the Amplitude vs continuous time visualisation
diagram of the EEG signal waveform of the particular electrodes concerning its EEG
channel/s; it identifies the signal amplitude peaks and can compare it to other channels
as shown in Figure 7.3. It appears that both signals have different reference signals
and are biased.

2. Power Spectrum Density (PSD) Diagram, which shows the power in dB for the
inclusion of EEG bands (0 – 50Hz) of each channel as shown in Figure 7.4. That
manifested that both signals are different in the frequency response domain. Moreover,
one of the frontal electrodes has a dissimilar and divergent frequency response from
the rest of the other sP300 Oddball EEG signals.

3. The Event - Epoch ID Diagram shows and visualises the time and epoch wherein
the activity has been made as shown in Figure 7.5. It conveys a different epoch time
window between L/R Motor Movement (MM) to P300 Oddball Dataset.

As shown in the Figures 7.4, 7.4, and 7.5 reveal that L/R Motor Movement (MM) and
P300 Auditory EEG signals have different signal time and frequency signal responses, with
the same time the epoch - time windowing.

The researcher chose the mixing of two different EEG signals for removing the
other EEG signal (P300 Oddball Auditory) that has been tagged as "random" rather
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(a) MM/I Signal Waveform Diagram.

(b) P300 Oddball Auditory EEG Signal.

Fig. 7.3 Signal Waveform: L/R Motor Movement (MM) and Oddball EEG Signals
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(a) L/R Motor Movement EEG Signal.

(b) P300 Oddball Auditory EEG Signal.

Fig. 7.4 Power Spectral Density (PSD): L/R Motor Movement (MM) and Oddball EEG
Signals
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than acquiring an EEG signal through actual EEG data gathering with ample sub-
jects. Due to the time constraint, since the focus of this research is the cleaning of
huge amounts of data is one of the difficulties that the researcher must have to resolve
without sacrificing the proof of concept of the research study.

7.1.3 Experimental Procedure

Figure 7.6 shows the methodology of the experiment to determine the viability and effective-
ness of the concept - Principal Component Analysis - Sample Reduction Process (PCA-SRP)
in EEG datasets.

By mixing randomly distributed two different EEG signals and then extracting the
features - (δ , θ , α , and β ) using Fast Fourier Transform (FFT) in the conversion from time to
frequency (t→ s) domain, Simpson’s Estimation Method by easy approximating the definite
integrals of different EEG signal bands, and lastly Welch’s PSD calculation- to estimate the
power spectra have been conferred in Chapter 5.2.

Employing the PCA-SRP, it will observe the behaviour of the said methodology in the
given EEG dataset and yield some evaluation parameters such as True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN).

The Performance Evaluation Metrics estimates as discussed in Chapter 3.5 - Classification
Model Evaluation Metrics; so, the significance classification is essential to test accuracy
values that greatly exceed predetermined levels, theoretical levels of random categorisation
are used as approaches and to give a complete description and behaviour of the PCA-SRP in
randomly mixed distributed of the given EEG datasets.

7.2 Result and Discussion

This section discussed the result of the experiment by using and varying the Selectivity (Sc)
in mixed EEG signal- L/R Motor Movement (MM) and P300 Oddball datasets. Table 7.1
conveys the combined FC5 of all the 109 subjects as an example, it shows the epoch ID
and its corresponding loading scores based on the computed Principal Component Analysis
- Sample Reduction Process (PCA-SRP), and having a biased threshold - Selectivity (Sc)
determine which samples will be in part of the train set.
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Table 7.1 FC5: Sorted Loading Score of MM/I and P300 Oddball (Random) Datasets

Sample / Epoch ID Loading Scores
1688 0.014709
416 0.014709

4047 0.014709
2589 0.014709
234 0.014709
... ...
... ...
... ...

4509 0.000364
4664 0.000330
4371 0.000250
4436 0.000090
4571 0.000073

7.2.1 Evaluation by Visualization

One way to describe and verify the changes and behaviour of the dataset in an event is the
complete depiction visually through PC Space Scatter Plot. Figure 7.7 shows a scatter plot
in relation to its variance and scattering of the samples (both L/R Motor Movement and P300
Oddball randomness) in PC spaces (PC1, PC2, and PC3).

It also reveals its response in different Selectivity (Sc) in Principal Component Analysis -
Sample Reduction Process (PCA-SRP) at Sc = 0 (without PCA-SRP), PC1, 99%, and 99.85%.
The blue dots signify the good samples (4358 L/R Motor Movement epoch samples), and
the yellow ones are the random sample (approximately 436 P300 Oddball Auditory epoch
samples). Most of the "random" samples are close to [0,0,0] space as expected because their
variances are smaller than L/R Motor Movement epoch samples. The point of perspective
revolves around different Sc due to the change of principal axes (PC1, PC2, and PC3).

It has been observed that the different Selectivity (Sc) used in selecting the samples in
the dataset changes the orientation and rotation of the Principal Component (PC) spaces.
However, the location of each sample in the PC spaces has not changed relative to each
distance from its neighbouring samples. It only means the PC1, PC2, ..., and PCn change
their rotational orientation in PC space depending on the general variance of each sample.
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As the Selectivity increases in PCA-SRP, the number of epoch samples decreases for both
EEG datasets. However, more epoch samples are removed in the P300 Oddball Auditory
than in L/R Motor Movement EEG datasets. The first ones to fall short are the P300 Oddball
samples, as observed in Figure 7.7 and 7.8.

The Parallel Coordinate Plot shows in Figure 7.8 that the general connection of the
samples to its features - EEG Frequency Bands (∆, Θ, α , and β ) and direction and magnitude
of each sample. As observed, as the Sc increases, some of the L/R MM and P300 Oddball
samples are lost in the dataset, but some MM/I samples also recovered.

The Scatter Matrix Plot shown Figure 7.9 verifies it by observing that most P300
Oddball random samples are concentrated in specific locations (approximately lower left of
the scatter matrix) shown in Figure 7.7 that correspond in very low variance - nearly close to
(0,0,0) in PC space, and also decreasing as the Sc increases.

PC space Scatter Plot, Parallel Coordinate Plot, and Scatter Matrix Plot is utilized
to clearly define the two EEG datasets (Motor Movement and P300 auditory dataset)in
different perspective such as in PC space, the feature’s general connection to its sample
and concentration of low variance sample in PC space.
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(a) EEG Datasets - Scatter Plot (without
PCA-SRP).

(b) EEG Datasets - Scatter Plot (Sc =
PC1)

(c) EEG Datasets - Scatter Plot (Sc =
99%).

(d) EEG Datasets - Scatter Plot (Sc =
99.85%).

Fig. 7.7 FC5: Scatter Plot with Different Selectivity (Sc).

7.2.2 Confusion Matrix Table -TP, FP, FN, and TN Evaluation

This Confusion Matrix Table for the increasing Selectivity (Sc) shows how the behaviour of
True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) by the
random distribution of both MM/I (4358 epoch samples) and 10% P300 Oddball random
datasets (435 epoch samples).

By observation, as the Sc increases, the number of P, TP, and FP decreases abruptly, and
the number of FN, TN, and N increases steeply, nearly or approaching 100 % Sc. At 91 %
Selectivity, FN samples start accumulating, and in 100 %

The proper choice of Selectivity is crucial and also depends on the priority:

.. 
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• minimise the number of FP - means avoiding random data injected in the dataset and
maximising the FN.

• minimise the number of FN - means including all good samples in the dataset and
maximising the FP.

Therefore, Sc will be in the range of 94 to approximately 100%.

94≤ Sc≤ 100 (7.1)

Table 7.2 Confusion Matrix Table Vs Increasing Sc (with 10% Randomness - 435 samples)

Sc P TP FP FN TN N
0 4793 4358 435 0 0 0
1 4793 4358 435 0 0 0
2 4793 4358 435 0 0 0
3 4791 4358 433 0 2 2
4 4787 4358 429 0 6 6
5 4784 4358 426 0 9 9
6 4784 4358 426 0 9 9
7 4784 4358 426 0 9 9
8 4784 4358 426 0 9 9
9 4783 4358 425 0 10 10
... ... ... ... ... ... ...
... ... ... ... ... ... ...
... ... ... ... ... ... ...
91 4649 4358 291 1 143 144
92 4641 4358 283 1 151 152
93 4635 4357 278 2 156 158
94 4586 4317 269 42 165 207
95 4518 4259 259 100 175 275
96 4438 4188 250 171 184 355
97 4299 4067 232 292 202 494
98 4094 3888 206 471 228 699
99 3673 3494 179 865 255 1120
100 1 1 0 4358 434 4792
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Performance Metrics

"All models are wrong, but some are useful", George Box

A supervised machine learning task known as classification aims to predict the category
or class to which one or more observations belong. Evaluating the model’s performance is
a crucial step in any machine-learning process. Labelled data is used as the trained set to
predict previously unobserved. Then, for classification, quantify these model predictions of
how much is correctly identified.

As discussed in Chapter 5.2 - Classification Model Evaluation Metrics, Figure 7.10
shows the behaviour of classification accuracy in the increasing injected randomness at the
first additional 10% of P300 Oddball to MM/I dataset. Moreover, after that, it will dive
decreasingly as more random datasets are involved.

In practical classification problems, a model can only be partially accurate. So, it is
essential to understand how "right" a model was and how "wrong" it was. Furthermore,
accuracy is the evaluation that commonly to is used alone since it can be pretty deceptive
when applied to imbalanced data. It has one class that is significantly bigger than another.

"RIGHTNESS" Classification Metric Evaluation

Figure 7.11 shows the decreasing of the Positive Predictive Value (PPV) and True Positive
Rate (TPR) for all the EEG channels (64 channels) as the increasingly adding more random
samples (P300 Oddball dataset) in the system. It depicted that PPV and TPR are losing
their positive samples - L/R MM samples relative to the total number of samples, which is
somehow not pleasing by interpretation. The accuracy drop implies the increase of FP in the
cleaned data.
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(a) Precision (PPV) vs increasing randomness
(b) True Positive Rate (TPR) vs increasing random-
ness

Fig. 7.11 "Rightness" Evaluations - PPV and TPR (Sc = PC1)

"WRONGNESS" Classification Metric Evaluation

However, Figure 7.12 shows the increasing False Positive Rate and False Detection Rate
for all the EEG channels (64 channels). This means increasing the P300 oddball random
samples in the system. It evaluated that FPR and FDR are identifying more false positive
samples added, which is undesirable for the classification training set.

PPV VS incre asing RANDOMNESS for MM/I and P300 Oddba ll Datasets 
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(a) False Positive Rate (FPR) vs increasing Ran-
domness (Sc = PC1)

(b) False Detection Rate (FDR) vs increasing Ran-
domness (Sc = PC1)

Fig. 7.12 "Wrongness" Evaluations - FPR and FDR (Sc = PC1)

Even though losing some of the positive samples (L/R MM) increases the additional
random (P300 Oddball) samples as a drawback, the identification of negative samples is
increasing, which might constitute a benefit or advantage; on the other hand, up until it meets
the 20% additional random set.

Combined "Rightness" and "Wrongness" Classification Metric Evaluation

A machine learning assessment statistic called the F1 Score assesses a model’s accuracy. It
combines a Model’s Precision and recalls ratings. Precision measures the correctness of the
"positive" predictions; Recall measures the number of positive samples in the dataset that
was identified correctly.

Ideally, both of the models identify all of our positive cases (Precision), and that is, at
the same time, identify only positive cases (Recall) are necessarily called Precision-Recall
Tradeoff.

FPR VS increasing RANDOMNESS for MM/I and PJOO Oddbal l Datasets 
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Fig. 7.13 F-Score Rate (F1) vs increasing Randomness (Sc = PC1)

As Figure 7.13 shows, the quite increase in Precision-Recall tradeoff up until 10%
increase of random samples, more than that gives us a decreasing tradeoff.
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Fig. 7.14 Geometric Mean (Gmean) Rate vs Selectivity (Sc)

Using the Geometric Mean (gmean), it measures tries to maximise the accuracy on
each of the classes while keeping these accuracies balanced as the Figure 7.14 provides that
the Selectivity range wherein Gmean max is identified at Sc = 79% in different additional
random samples in the system and theoretical Sc = PC1 that sets the standard limit of Sc.

As the increasing of random samples, Gmean behaves as the Figure 7.15, it shows that
the Gmean peaked at 20% additional randomness and deteriorated afterwards for most of the
EEG channels.
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Fig. 7.15 Geometric Mean (Gmean) Rate vs increasing Randomness (Sc = PC1)

By definition, Cohen’s Kappa Statistic is a quantitative measure of reliability for two
raters (positives and negatives) that are rating the same thing, corrected for how often the
raters may agree by chance. It measures the number of predictions it produces that is not
explicable by a random guess and eliminates the chance of the classifier and a random guess
agreeing. Additionally, Cohen’s kappa tries to correct the evaluation bias by considering the
correct classification by a random guess.

It shows peaks at moderation agreement at 10% additional randomness, in a limit of
approximately 0.18 to 0.55 for all the EEG channels. There is a sudden increase in Cohen’s
Kappa Statistic as it reaches the additionally injected 10 % randomness, which means the
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agreement between the positives and negatives in random guessing is improving until 10
% and decreases afterwards. It is bearable to assume that it is acceptable up until a 15 %
increase in randomness.

Fig. 7.16 Cohen’s Kappa Statistic Rate (khat) vs increasing Randomness (Sc = PC1)

As shown in Table 7.3, Frontal Lobe channels, especially FP1 EEG channel and some
Parental Lobe Channels show best (in most of the Performance Metric Evaluation) and the
Occipital Lobe channels, especially O2 channels mentioning the least

Note: Remaining of the Classification Metrics Evaluation Result, please see Ap-
pendix B
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Table 7.3 MM/I and P300 Oddball Random Datasets - Performance Metrics Table Summary

Maximum MinimumPerformance Metric EEG Channel Value (%) EEG Channel Value (%)
Accuracy FC5 87.48 O2 70.297
Error Rate O2 29.7 FP1 21.7718
Precision / PPV FP1 76.011 O2 73.19
Recall / Sensitivity / TPR FP1 76.011 O2 73.19
Specificity / TNR FP1 92.59 O2 54.103
Balanced Accuracy FP1 84.301 O2 63.64
F-score FP1 85.5397 O2 80.123
Gmean FP1 82.35 O2 59.84
Cohen Kappa (Khat) FP1 38.38 O2 18.62
MCC FP1 47.616 O2 21.92
FMI FP1 76.011 O2 73.19
BMI FP1 68.698 O2 27.294
LPR PO7 150.184 FP1 109.63
LNR O2 34.0686 FP1 2.88
NPV FP1 92.597 O2 54.103
FPR AF8 195.58 PO8 148.61
FNR O2 8.2 FP1 0.599
FDR O2 26.809 FP1 23.988
FOR O2 45.896 FP1 7.402
Prevalence FP1 89.725 PO8 84.792
Prevalence Threshold AF3 59.82 PO8 56.426
CSI FP1 75.459 O2 67.319
MK FP1 68.608 O2 27.294
ROC-AUC FP1 68.608 O2 27.294

Best
Worst
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7.2.3 Receiver Operating Characteristic - Area Under The Curve (ROC-
AUC)

Receiver operating characteristic (ROC) curve for hypothetical data is shown in Figure 7.17
showing the Receiver Operating Characteristic - Area under the Curve (ROC-AUC) -
performance of a classification model at all classification thresholds - Selectivity (Sc) with
sensitivity and false-positivity (1 — Specificity). A plot of these values yielded this ROC
curve. The values represent the cut-off value(Sc) that each point on the curve corresponds to.

Fig. 7.17 Reciever Operation Characteristic - Area Under the Curve (ROC-AUC) Rate (Sc =
PC1)
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As observed, all the channels move from sensitive to more specific as Selectivity (Sc)
increases but never crosses down the diagonal discriminant cut-off, and the channels all
passed the ROC-AUC requirements above the diagonal line, as shown in Figure 3.18.

ROC curves also permit a numeric assessment of the overall performance of diagnostic
tests. This is done by estimating the area under (i.e., to the right of and beneath) the curve
and is expressed as a proportion of the total area of the square in which the curve is drawn. A
test with higher sensitivity and specificity would reach closer to the left upper corner and
have a higher area under the curve. The comparison of the EEG channels is also shown,
which perform well.

7.3 Conclusion

In this work, the impact of the Principal Component Analysis - Sample Reduction Process
(PCA-SRP) of MM/I EEG Dataset mixed by foreign randomness samples (P300 Oddball
Auditory dataset) in the selecting of training sets for the performance of Artificial Neural
Networks (ANN) - Model Accuracy using Power Spectrum Distribution with the aid of
Simpson’s and Welch Estimation has been explored. The work has investigated the impact
of a controlled randomness sample(P300 Oddball Paradigm dataset) in the L/R Motor
Movement (MM) dataset through Data Visualization, Confusion Matrix, some classification
and performance metrics evaluations.

Here are the findings of this chapter:

• As Selectivity (Sc) increases, some positive and negative samples are removed from
the dataset.

• Selectivity (Sc) Threshold is described as 94≤ Sc < 100 in the Equation 7.1, as shown
also in Figure 7.18.

• In selecting Sc is based on the priority, either sensitive (having all the good ones) or
selective (removing all the bad ones). The higher the Selectivity (Sc) the curve moves
from sensitive to selective.

• The FP1 EEG channel performs better in most Performance Metric Evaluations, and
O2 shows the least one.

• It is limited only up to 15-20% additional randomness, more than compromising its
effectiveness as shown in Figure 7.19.
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Overall, there is substantial flexibility in using PCA-SRP on the MM/I dataset for training
ANN systems. The work has also been viable from different types of mental activity that
may be aggregated to provide more robust system training.

Future work will be focused on the internal interference of EEG signal if it will isolate
minority mental activity in the EEG dataset, furthermore, by evaluating the robustness of this
approach when collecting data with long time intervals between training and testing as well
as data from low-cost EEG sensors.

Fig. 7.19 Additional Randomness Threshold by Metric Evaluations
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(a) L/R Motor Movement EEG Signal.

(b) P300 Oddball Auditory EEG Signal.

Fig. 7.5 Event ID Diagram : L/R Motor Movement (MM) and Oddball EEG Signals

Fig. 7.6 Experimental Methodological Procedure.
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(a) EEG Datasets - Parallel Coordinate Plot (without PCA-SRP) .

(b) EEG Datasets - Parallel Coordinate Plot (Sc = PC1) .

(c) EEG Datasets - Parallel Coordinate Plot (Sc = 99%).

(d) EEG Datasets - Parallel Coordinate Plot (Sc = 99.85%).

Fig. 7.8 EEG Datasets - Parallel Coordinate Plot with Different Selectivity (Sc).
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(a) EEG Datasets - Scatter Matrix Plot (without PCA-SRP).

(b) EEG Datasets - Scatter Matrix Plot (Sc = PC1).

(c) EEG Datasets - Scatter Matrix Plot (Sc = 99%).

(d) EEG Datasets - Scatter Matrix Plot (Sc = 99.85%).

Fig. 7.9 EEG Datasets - Scatter Matrix Plot with Different Selectivity (Sc)
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Fig. 7.10 Accuracy Rate vs increasing Randomness (Sc = PC1)
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Fig. 7.18 Selectivity Threshold by Metric Evaluations
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Chapter 8

Conclusion and Future Work

This chapter provides a summary of the work presented in this dissertation, highlighting the
significant contributions to the research and discussing suggestions for future work regarding
the use of Principal Component Analysis - Sample Reduction Process (PCA-SRP) as a data
cleansing agent.

8.1 Contribution

This section highlights the contributions of this dissertation, which are detailed in the
respective chapters. The key contributions are as follows:

• A novel application of PCA-SRP in data cleaning for Big Data.

– Development of a mathematical model for standard data cleaning methodology.

– Introduction of a novel feature for cleansing large and highly dimensional physi-
ological datasets.

– Proposal of a new pre-processing scheme for selecting and sorting training sample
sets for basic Artificial Neural Network (ANN) models.

– Investigation of classification performance metrics for physiological datasets,
identifying the limits of the proposed data cleaning process, such as its biased
threshold - Selectivity (Sc) - and its effect on injecting increasing randomness
into the dataset.

– Analysis of the effect of the data cleaning process as a training set for ANNs.

• Implementation of PCA-SRP as a data cleaning technique for L/R Motor Movement
(MM) EEG datasets.
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– Identification of anomalies using different data visualizations of EEG signals.

– Proposal of a new data cleansing scheme for selecting time epochs in EEG data
for training basic ANN models.

– Development of a bootstrapping process for basic ANN models for each EEG
channel, evaluating the effectiveness of PCA-SRP through ANN model accuracy.

– Presentation of a thorough approach and interpretation of different classification
performance metrics in creating a confusion matrix with increasing injected
randomness in different EEG channels.

– Identification of the maximum limitation of increasing injected randomness
through the L/R Motor Movement (MM) EEG dataset.

– Demonstration that PCA-SRP achieves state-of-the-art results in cleaning training
sample sets of the L/R Motor Movement (MM) EEG dataset.

8.2 Discussion and Conclusions

The application of Principal Component Analysis - Sample Reduction Process (PCA-
SRP) as a data cleansing agent has shown significant improvements in the classification
performance of physiological datasets using ANNs. The evaluations used in this dissertation
include:

• Accuracy testing, including the observation of parameters with increasing randomness
injected into the system.

• ANN bootstrapping using model accuracy parameters of different EEG channels.

• Classification performance metrics (Confusion Metrics, Sensitivity, Specificity, ROC-
AUC, etc.).

In accuracy testing, there is a notable increase in the accuracy of simple ANN models by
up to 7

This study also examines the impact of cognitive mental activity—Motor Movement
and Imagery (Left-Right Hands and Feet Movement)—on the performance of simple ANNs
using Fast Fourier Transform (FFT), Power Spectral Densities (PSD) by Simpson-Welch
Rule Approximation, and bandpass filtering of EEG frequency bands (δ , θ , α , and β ). Using
eigenvectors, PCA-SRP effectively removes the least predictive samples.

Given the variability in EEG signals among subjects, some individuals exhibit unique
electro-physiological attributes that can cause different interpretations in ANN classification
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due to the non-deterministic and non-stationary nature of brainwave signals and sensor biases.
Bootstrapping, a statistical procedure that resamples a dataset to create simulated samples,
was used to calculate ANN model accuracy. The results indicate increased accuracy in most
EEG channels.

The Motor Movement EEG Datasets show non-fully deterministic behavior, with different
mental electrical cognition among subjects and non-unified reference base signals for each
sensor. Mixing epochs with different characteristics can alter the weight of nodes in the ANN
during training.

Visualizing EEG signals in PC space reveals that most random signals are near the origin
[0,0,0], indicating poor covariance or loading scores, which are easily removed from the
training set. However, some random signals with similar loading scores to cleaned EEG
datasets, especially those with the same motor action, pose challenges.

Selecting the Selectivity (Sc) parameter is based on priority, either sensitivity (retaining
all good samples) or selectivity (removing all bad samples). Higher Selectivity (Sc) shifts the
focus from sensitivity to selectivity.

The proposed mathematical method, with proper choice of Selectivity (Sc), offers flex-
ibility and automatic selection of highly predictive samples, resulting in systems that are
easier to develop, deploy, and use in various applications.

The PCA-SRP method, tested by injecting foreign randomness samples (P300 Oddball
Auditory dataset) into the training sets for ANN performance, demonstrates significant
improvement in classification metrics and ANN model accuracy.

Overall, PCA-SRP provides substantial flexibility for training basic Feed Forward ANN
models on the L/R MM EEG dataset, identifying the most and least predictive samples.

8.3 Future Work and Limitations

This dissertation introduces a novel data cleaning technique using PCA through Sample
Reduction Process (SRP) for sorting and selecting training sample datasets in ANN models.
While the methods demonstrate significant improvement, further investigation is warranted.
The limitations of this research study include:

• The datasets are limited to physiological data such as heart disease, voice and speech
analysis for gender recognition, breast cancer classification, cancer patient data, and
EEG motor and imagery for BCI applications. Future research could explore other
applications, such as real-time biomedical automation, image-based medical diagnosis
classification, and other scientific fields.
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• The acquired EEG signal is limited to the benchmark EEG dataset (L/R Motor Move-
ment and Imagery (MM/I)), due to time constraints. While it is a standard EEG dataset,
the sample size may be insufficient to fully justify the study’s objectives. Some EEG
sensor providers do not allow manipulation and injection of random and noise data into
their systems due to cloud database integrity. Future research could involve acquiring
a larger EEG data repository.

• The EEG feature extraction is limited to Power Spectrum Density (PSD) in the follow-
ing bands: Delta (δ ), Theta (θ ), Alpha (α), and Beta (β ). Future research could explore
other feature extraction methods such as Wavelet Transformation or Hilbert-Huang
Transformation.

• This research focuses on the classification problem of basic Feed Forward Artificial
Neural Network Models, as justified in Chapter 3.2. Future studies could apply this
data cleaning technique to other machine learning models such as Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), Graph Neural Networks (GNN),
or Generative Models.

• The study is also viable for different types of mental activities, which could provide
more robust system training using low-cost wearable EEG or similar devices to extract
brainwave signals, along with other biomedical equipment such as Electrocardiogram
(ECG), Electromyogram (EMG), and Electrooculogram (EOG).

8.4 Published Paper

• Adolfo, C. M. S., Chizari, H., Win, T. Y., and Al-Majeed, S. (2021). Sample
Reduction for Physiological Data Analysis Using Principal Component Analysis
in an Artificial Neural Network. Applied Sciences, 11(17), 8240.
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Principal Component Analysis - Sample Reduction Process
(PCASRP)

NOTE: This is Python 3 code and was tested with matplotlib v. 2.1.0
Import packages that we will be working with.

import os
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn import preprocessing
import matplotlib.pyplot as plt
import tensorflow as tf
optim = tf.keras.optimizers.Adam()

PCA-SRP Generation Code Dataset I/O Directory

filename = "11 heart"
file_loc = "/content/gdrive/MyDrive/Colab Notebooks/
Neural Network Program Python/"
file_loc_input = open( file_loc + filename + ".csv","r")
file_loc_input_new = file_loc + filename + " new.csv"
load_score_loc = file_loc + filename + " sorted loading
scores.csv"

Dataset Classification Column Name and Data extraction in CSV UTF-8 file

target = ’target’
data = pd.read_csv( file_loc_input)
print( data )
print( data.describe(include=’all’)) # Print data descriptions
maxsample = data[target].count() # get the number of samples

Perform PCA on the dataset

scaled_data = preprocessing.scale(data.T) # First center and transpose the data
pca = PCA() # create a PCA object and do the math
pca.fit(scaled_data) # scale and fit the data
pca_data = pca.transform( scaled_data) # get PCA
coordinates for scaled_data
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The following code constructs the Scree plot

print( pca.explained_variance_)
per_var = np.round( pca.explained_variance_ratio_* 100,
decimals = 5)
labels = [’PC’ + str(x) for x in range( 1, len( per_var) + 1)]
plt.bar( x = range( 1, len(per_var) + 1), height = per_var,
tick_label = labels)
plt.ylabel( ’Percentage of Explained Variance’ )
plt.xlabel( ’Principal Component’ )
plt.title( ’Scree Plot’ )
plt.show()

The following code makes a fancy looking plot using PC1 and PC2

pca_df = pd.DataFrame( pca_data, columns = labels)
plt.scatter( pca_df.PC1, pca_df.PC2)
plt.title( ’My PCA Graph’ )
plt.xlabel( ’PC1 - {0}%’.format(per_var[0]) )
plt.ylabel( ’PC2 - {0}%’.format(per_var[1]) )

Plot the PC1 and PC2

for sample in pca_df.index:
plt.annotate( sample, ( pca_df.PC1.loc[sample], pca_df.PC2.loc[sample] ) )

plt.show()

Generating Parameters

print( ’list of PC variance: \n ’, per_var )

Generating loading score of every sample in PC1 Sort the loading scores based on their
magnitude Print the top samples and their scores (and +/- sign)

loading_scores = pd.Series(pca.components_[0])
sorted_loading_scores = loading_scores.abs().sort_values( ascending=False )

Save in .csv and record the sorted loading scores of every samples

temp = sorted_loading_scores
temp.to_csv( load_score_loc, index=True )
print( temp)
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Determining the Sc - min, test, max

Sc_min = 2 * per_var[0] - 100 # from equation 25

Sc ranges

print( Sc_min, " > Sc > ", Sc_max, ", for recommended normal cleaning")
print( Sc_max, " > Sc > 1.00, for recommended ANN
app cleaning")

Input Selectivity (% Sc)

Sc = Sc_max / 100

Cleaning Process

sorted_loading_scores.drop( sorted_loading_scores[sorted_loading_scores <
Sc * sorted_loading_scores.max()].index, inplace = True )
passrate = ( len( sorted_loading_scores ) / maxsample * 100)
maxtopsamples = int( maxsample * passrate / 100 )
print("\n", len( sorted_loading_scores ), " / ", maxsample )

Removing the unwanted samples

new_sorted_loading_scores = sorted_loading_scores
[ 0 : maxtopsamples ]
print( new_sorted_loading_scores )

Get the indexes of the cleaned samples

top_samples = new_sorted_loading_scores.index.
sort_values( ascending = True )

Getting the data of the top samples from original

data_new = []
for i in range( maxtopsamples ) :

n = top_samples[i]
data_new.append( ( data.iloc[n] ) )

Append and save in csv file

data_new = pd.DataFrame( data_new )
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Save the new file

data_new.to_csv( file_loc_input_new, index = False )
print( ’\n new sorted loading dataset generated as’,
file_loc_input_new )

PCA-SRP Simplified

def PCA_SRP(data, file_loc, f_name):

maxsample = len(data.index)
scaled_data = preprocessing.scale(data.T)
# First, centre and transpose the data
pca = PCA() # Create a PCA object and do the math
pca.fit(scaled_data) #scale and fit the data
pca_data = pca.transform(scaled_data)
# get PCA coordinates for scaled_data

loading_scores = pd.Series(pca.components_[0]).abs()
#generating the loading score of every sample in PC1
per_var = np.round(pca.explained_variance_ratio_* 100, decimals=5)
# generated pca_variance
Sc = (per_var[0] + per_var[1])/100 # selectivity (Sc) parameter FORMULA

result = pd.concat([data, loading_scores], axis=1)
# concatinate the data and its respective loading scores
sorted_loading_scores = loading_scores.abs().sort_values(ascending=False)
# Sorting the PCA result in descending order based on its loading scores.
threshold = sorted_loading_scores.iloc[int(Sc * maxsample)]
# Setting the threshold based on the Selectivity (Sc)

min_drop = 0 #value of the drop samples
result = result.where(result.iloc
[ :, len(data.columns)] >= threshold, other= min_drop)
# dropping all samples below the threshold

del result[0]
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#deleting the last column (loading score)

passrate = (len(result[result.iloc
[ :, len(data.columns)-1 ] != min_drop])) / maxsample*100

# compute the passing rate
#print(passrate, " %")
# printing the passing rate

result.to_csv(file_loc + f_name + " new.csv", index=False)
# save the generated PCA-SRP result to CSV
#print(result)
# printing the result dataset
#print("PCA-SRP done \n")
return pass rate

A.1 Cross-Validation Split

Setting the test size for cross-validation.

size_test = 0.2

Here is the command to separate them into [X, Y]. Where our target labels are ’Y’, and
’X’ is our training data.

Y = data_old.target.values
X = data_old.drop([class_name], axis = 1)
print( ’\n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n’)

Now split to train/test, where cross-validation split took place.

X_train, X_test, Y_train, Y_test = train_test_split
( X, Y, test_size = size_test, random_state = 42 )
print( ’\n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n’)

Artificial Neural Network (ANN) Testing

NOTE: This was tested with matplotlib v. 2.1.0 and Google Colab
Import packages that we will be working with.
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import os
import math
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn import preprocessing
import matplotlib.pyplot as plt
import tensorflow as tf
optim = tf.keras.optimizers.Adam()
from pandas.plotting import scatter_matrix
from keras.layers import Dense
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
#from tensorflow.python.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,
accuracy_score
from sklearn.preprocessing import MinMaxScaler
from scipy.interpolate import UnivariateSpline
import timeit

Setting the time

start = timeit.default_timer()

Setting ANN hyperparameters

target = ’target’
class_name = target
learning_rate = 0.1
epoch = 100
size_test = 0.2

Creating a dataframe

data = pd.DataFrame()

Setting Data and File Directory
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file_loc = "/content/gdrive/MyDrive/Colab Notebooks/
Neural Network Program Python/"
filename = "16 cancer patient"
other = " random"

Getting the CSV file

file_loc_input = ( file_loc + filename + ".csv")
data = pd.read_csv( file_loc_input)
data_old = data

ANN Part
Input of number of input column and output classification

input_column = len( data_old.columns) - 1
output_class = len( data_old.groupby( class_name).size() )

At this moment we have a dataframe that contains all of the dataframe .csv data. However
we need to separate them to [X, Y].

Where our target labels are ’Y’, and ’X’ is our training data.

Y = data_old.target.values
X = data_old.drop([class_name], axis = 1)

Now split to train/test

X_train, X_test, Y_train, Y_test = train_test_split
( X, Y, test_size = size_test, random_state = 42 )

Define a Neural Network Model

def NN_model( learning_rate ):
model = Sequential()
model.add(Dense( 32, input_dim = input_column,
kernel_initializer = ’normal’, activation = ’relu’))

model.add( Dense( 16, kernel_initializer = ’normal’,
activation = ’relu’))

model.add( Dense( output_class, activation = ’softmax’))
#Adam( lr = learning_rate)
model.compile( loss = ’sparse_categorical_crossentropy’,
optimizer = ’Adam’, metrics = [’accuracy’] )

return model
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Build a NN-model, and start training

model = NN_model( learning_rate )
print(model.summary() )
history = model.fit( X_train, Y_train, validation_data =
( X_test, Y_test), epochs = epoch, batch_size = 16,
verbose = 0)

Calculate the accuracy and classification report

predictions = np.argmax( model.predict( X_test ), axis = 1 )
model_accuracy = accuracy_score( Y_test, predictions )
* 100
print( "Model Accuracy: ", model_accuracy )

Appending the accuracy

ModAcc = ModAcc.append( { ’Model Accuracy’ :
model_accuracy }, ignore_index = True )

T, F, P, TP, FP, FN, TN, and N Tally

T = int(n_events)
F = int(add_events)

new_sorted_loading_scores=sorted_loading_scores
new_sorted_loading_scores.drop(new_sorted_loading_scores
[new_sorted_loading_scores > threshold].index, inplace=True)
FN_TN = new_sorted_loading_scores.count()
new_sorted_loading_scores.drop(new_sorted_loading_scores
[new_sorted_loading_scores.index > T -1].index, inplace=True)

FN = new_sorted_loading_scores.count()
TN = FN_TN - FN
TP = T - FN
FP = F - TN
P = TP + FP
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N = FN + TN
data = [(T, F, P, TP, FP, FN, TN, N )]

Confusion Matrix Generation

def confusion_matrix_parameters( df, file_loc, fname, nchannel):

parameter = pd.DataFrame()
for n in range(100):

T, F, P, TP, FP, FN, TN, N = df.iloc[n]
data = T, F, P, TP, FP, FN, TN, N
data = pd.DataFrame(data).transpose()

conf_param = confusion_matrix_param(T, F, P, TP, FP, FN, TN, N)
conf_param = pd.DataFrame(conf_param).transpose()

temp = pd.concat([data , conf_param], axis=1)

parameter = pd.concat([parameter, temp], axis=0,ignore_index=True)

parameter.columns = ["T", "R", "P" , "TP", "FP", "FN", "TN", "N",
"Acc", "Error_rate", "PPV", "TPR", "TNR", "BA", "F1", "Gmean",
"khat", "MCC", "FM", "BM", "LRP", "LRN", "DOR", "NPV", "FPR",
"FNR", "FDR", "FOR", "Prev", "PrevT", "TS", "MK", "AUC_ROC"]

#print(parameter)
parameter.to_csv(file_loc + fname + str(nchannel +1) + "
Confusion_Matrix_Summary.csv", index=False)
print( " saved")

return

Classification Performance Metric Computation

def confusion_matrix_param(T, F, P, TP, FP, FN, TN, N):
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if FN == 0:
FN = 0.00000001

else:
FN=FN

Acc = (TP+TN)/(P+N) # accuracy
Error_rate = (FP + FN) / (P + N) #Error Rate
PPV = TP /(TP+FP) # precision / positive predictive value
TPR = TP/P # sensitivity / recall / hit rate / true positive rate (TPR)
TNR = TN/N # specificity / true negative rate
BA = (TPR+TNR)/2 # balanced accuracy
F1 = 2*TP/(2*TP+FP+FN) # harmonic mean of precision and sensitivity
Gmean = math.sqrt(TPR * TNR) #G-mean
khat = (2* (TP *TN - FN * FP))/ ((TP + FP)*(FP+TN) + (TP +FN)*(FN+TN))
# K-hat or Cohen’s Kappa Coefficient
MCC = ((TP*TN)-(FP*FN))/math.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
# phi coefficient / matthews correlation coefficient

FM = math.sqrt(PPV*TPR) # Fowlkes-mallows index
BM = TPR+TNR -1 # informedness / bookmaker informedness
FPR = FP/N # fall-out / false positive rate
FNR = FN/P # miss rate / false negative rate
LRP = TPR/FPR # positive likelihood ratio
LRN = FNR/TNR # negative likelihood ratio
DOR = LRP/LRN # Diagnostic odd ratio
NPV = TN/(TN+FN) # negative predictive value
FDR = FP/(FP+TP) # false detection / discovery rate
FOR = FN/(FN+TN) # false omission rate
Prev = P/(P+N) # Prevelence
PrevT = (math.sqrt(TPR*FPR) - FPR)/(TPR-FPR) # prevelence threshold
TS = TP/(TP+FN+FP) # Threat Score / critical sucess index / jaccard index
MK = PPV+NPV - 1 # markedness / deltaP
AUC_ROC = PPV + NPV -1 # Area under the Curve / Receiver
Operating Characteristic Curve

params = Acc, Error_rate, PPV, TPR, TNR, BA, F1, Gmean, khat, MCC, FM, BM,
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LRP, LRN, DOR, NPV, FPR, FNR, FDR, FOR, Prev, PrevT, TS, MK, AUC_ROC
return params

Random Signal Generator

def coh_signal_gen():
rand = np.random.RandomState(43)
"""Generate an oscillating signal.

Returns
-------
signal : ndarray

The generated signal.
"""
t_rand = 0.001 # Variation in the instantaneous frequency of the signal
std = 0.1 # Std-dev of the random fluctuations added to the signal
base_freq = 10. # Base frequency of the oscillators in Hertz
#n_times = len(times)
n_times = len(times) + t_noise * sf
# Generate an oscillator with varying frequency and phase lag.
signal = np.sin(2.0 * np.pi * ((stop_time + t_noise) * sf +
np.cumsum(t_rand * rand.randn(n_times))))

# Add some random fluctuations to the signal.
signal += std * rand.randn(n_times)

# Scale the signal to be in the right order of magnitude (~100 nAm)
signal *= 100e-10
#print("noise generation done \n")
return signal

Epoch generator

def psd_signal_gen(EEG_raw, EEG_channel, sf, time_limit,
file_loc, fname):
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#looping to get the wavelet every second (s)
for n in range(0, time_limit):

stop_time = n + 1
# setting the stop time
start_time = n
# let n as start time
Tstart, Tstop = EEG_raw.time_as_index([start_time, stop_time])
# identifying the start and stop time in the EEG RAW data
data_raw, times = EEG_raw[EEG_channel-1:EEG_channel,
Tstart : Tstop]
# extracting from EEG RAW to EEG dataset

data_raw = data_raw.transpose()
# transpose the EEG dataset

samples = int(sf*(stop_time - start_time) )
# compute the number of samples in each second (s)
data_eegband = data_raw.reshape((samples,))

#reshaping the EEG dataset

PSD Signal Computation

def psd_signal_gen(EEG_raw, EEG_channel, sf, file_loc, fname, z):

PSD_EEG = pd.DataFrame() # creating a empty dataframe for PSD_EEG

band_delta= 0.5,4 # setting the delta band
band_theta = 4,8 # setting the theta band
band_alpha = 8,12 # setting the alpha band
band_beta = 12,30 # setting the beta band

#looping to get the PSD every second (s)
for n in range(0, len(events)+ add_events):
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if n == 0:
start_time = 0

else:
start_time = events_test[n -1,0]/sf # let n as start time

stop_time = events_test[n,0]/sf # setting the stop time

Tstart, Tstop = EEG_raw.time_as_index([start_time, stop_time])
# identifying the start and stop time int he EEG RAW data
data_raw, times = EEG_raw[EEG_channel-1:EEG_channel, Tstart : Tstop]
# extracting from EEG RAW to EEG dataset

data_raw = data_raw.transpose()
# transpose the EEG dataset
data_eegband = data_raw.reshape((len(data_raw),))

delta = bandpower(data_eegband, sf, band_delta, window_sec=None,
relative=False) # getting the PSD delta band
theta = bandpower(data_eegband, sf, band_theta, window_sec=None,
relative=False) # getting the PSD theta band
alpha = bandpower(data_eegband, sf, band_alpha, window_sec=None,
relative=False) # getting the PSD alpha band
beta = bandpower(data_eegband, sf, band_beta, window_sec=None,
relative=False) # getting the PSD beta band

PSD_EEG = PSD_EEG.append([[delta, theta, alpha, beta]], ignore_index=True)
# append the bands (delta, theta, alpha, beta)

PSD_EEG.columns = [’DELTA’, ’THETA’, ’ALPHA’, ’BETA’]
# labelling the PSD dataset
PSD_EEG.to_csv(file_loc + fname+ "channel_" + str(z+1)+ ".csv", index=False)
# convert PSD dataset to CSV

return PSD_EEG
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Fourier Transformation Visualization

def specgram2d(y, srate=44100, ax=None, title=None):
if not ax:

ax = plt.axes()
ax.set_title("Amplitude vs Frequency")
spec, freqs, t, im = ax.specgram(y, Fs=fs, scale=’dB’, vmax=0)
ax.set_xlabel(’time (s)’)
ax.set_ylabel(’frequencies (Hz)’)
cbar = plt.colorbar(im, ax=ax)
cbar.set_label(’Amplitude (dB)’)
cbar.minorticks_on()
return spec, freqs, t, im

A.2 Simpson’s Estimation Method and Welch PSD Calcu-
lation

def bandpower(data, sf, band, window_sec=None, relative=False):
"Compute the average power of the signal x in a
specific frequency band.

Parameters
----------
data : 1d-array

The input signal in the time domain.
SF : float

The sampling frequency of the data.
band : list

Lower and upper frequencies of the band of interest.
window_sec : float

Length of each window in seconds.
If None, window_sec = (1 / min(band)) * 2

relative : boolean
If True, return the relative power (=
divided by the total power of the signal).
If False (default), return the absolute power.
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Return
------
bp : float

Absolute or relative band power.
"""
from scipy.signal import welch
from scipy.integrate import simps
band = np.asarray(band)
low, high = band

# Define window length
if window_sec is not None:

nperseg = window_sec * sf
else:

nperseg = (2 / low) * sf

# Compute the modified periodogram (Welch)
freqs, psd = welch(data, sf, nperseg=nperseg)

# Frequency resolution
freq_res = freqs[1] - freqs[0]

# Find the closest indices of the band in the frequency vector
idx_band = np.logical_and(freqs >= low, freqs <= high)

# Integral approximation of the spectrum using Simpson’s rule.
bp = simps(psd[idx_band], dx=freq_res)

if relative:
bp /= simps(PSD, dx=freq_res)

return bp

Performance Metrics Graph Generation

def graph_visualization_PM1(file_location, data_frame, a, x, y):
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# construct some data like what you have:

ch_name = [’FC5’, ’FC3’, ’FC1’, ’FCz’, ’FC2’, ’FC4’, ’FC6’, ’C5’, ’C3’,
’C1’, ’Cz’, ’C2’, ’C4’, ’C6’, ’CP5’, ’CP3’, ’CP1’, ’CPz’, ’CP2’, ’CP4’,
’CP6’, ’Fp1’, ’Fpz’, ’Fp2’, ’AF7’, ’AF3’, ’AFz’, ’AF4’, ’AF8’, ’F7’, ’F5’,
’F3’, ’F1’, ’Fz’, ’F2’, ’F4’, ’F6’, ’F8’, ’FT7’, ’FT8’, ’T7’, ’T8’, ’T9’,
’T10’, ’TP7’, ’TP8’, ’P7’, ’P5’, ’P3’, ’P1’, ’Pz’, ’P2’, ’P4’, ’P6’, ’P8’,
’PO7’, ’PO3’, ’POz’, ’PO4’, ’PO8’, ’O1’, ’Oz’, ’O2’, ’Iz’]

folder_file = file_location + str(task[x]) + "_data/Diagram/
Performance Metrics Test 1/ " + (str(a+1).zfill(2)) + " " +
str(P_metric[a]) + "_" + str(mental_action[x])

############################

data = pd.DataFrame()
df = pd.DataFrame(x for x in range(1, 101))

data = pd.concat([df, data_frame.iloc[:,0] ], axis = 1)
data.columns = ["x", "y"]
ax1 = data.plot( x="x", y = "y", kind=’scatter’, figsize = (12,12),
s = 8, ylabel = (str(P_metric[a])), xlabel = ("increasing Random samples"),
xlim = (0,100), ylim = (0,1), title = (str(P_metric[a]) +
" VS increasing RANDOMNESS for MM/I and P300 Oddball Datasets"))

for nchannel in range (1,64):
data = pd.DataFrame()
data = pd.concat([df , data_frame.iloc[:, nchannel] ], axis = 1)
data.columns = ["x", "y"]
data.plot(x="x", y = "y", kind = "scatter", ax = ax1, s = 8,
ylabel = (str(P_metric[a])), xlabel = ("increasing Random samples"),
c = (’#%02X%02X%02X’ % (random.randint(0,255),
random.randint(0,255),random.randint(0,255))))
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############################
plt.legend(ch_name, ncol = 3)

# create stacked errorbars:

plt.savefig( folder_file + ".png")
plt.show()
print("file saved")
return

ROC - AUC Graph Generation

def graph_visualization_PM5(file_location, data_frame1, data_frame2, x, y):

mental_action = [ "motor action", "motor imagery"]
noise_random = ["noise", "random"]
ch_name = [’FC5’, ’FC3’, ’FC1’, ’FCz’, ’FC2’, ’FC4’, ’FC6’, ’C5’,
’C3’, ’C1’, ’Cz’, ’C2’, ’C4’, ’C6’, ’CP5’, ’CP3’, ’CP1’, ’CPz’,
’CP2’, ’CP4’, ’CP6’, ’Fp1’, ’Fpz’, ’Fp2’, ’AF7’, ’AF3’, ’AFz’,
’AF4’, ’AF8’, ’F7’, ’F5’, ’F3’, ’F1’, ’Fz’, ’F2’, ’F4’, ’F6’, ’F8’, ’FT7’,
’FT8’, ’T7’, ’T8’, ’T9’, ’T10’, ’TP7’, ’TP8’, ’P7’, ’P5’, ’P3’, ’P1’, ’Pz’,
’P2’, ’P4’, ’P6’, ’P8’, ’PO7’, ’PO3’, ’POz’, ’PO4’, ’PO8’, ’O1’, ’Oz’,
’O2’, ’Iz’, ’MEAN’]

folder_file = file_location + str(task[x]) + "_data/Diagram/
Performance Metrics Test 5/ROC_" + str(mental_action[y])

data = pd.DataFrame()

data = pd.concat([data_frame1.iloc[:,0],data_frame2.iloc[:,0] ], axis = 1)
data.columns = ["x", "y"]
ax1 = data.plot( x = "x", y = "y", kind=’scatter’, figsize = (12,12),
s = 8, xlabel = ("1 - Specificity (%)"), ylabel = ("Sensitivity"),
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xlim = (0,1), ylim = (0,1), title = ("Receiver Operating Curve (ROC)
of increasing RANDOM samples for " + str(task[x]) + "-" +
str(mental_action[y]) + " PhysioNET EEG Dataset"))

for nchannel in range (1,64):
data = pd.DataFrame()
data = pd.concat([data_frame1.iloc[:,nchannel],data_frame2.
iloc[:,nchannel] ],
axis = 1)

data.columns = ["x", "y"]
data.plot(x = "x", y = "y", kind = "scatter", ax = ax1, s = 8,
xlabel = ("1 - Specificity (%)"), ylabel = ("Sensitivity"),
c = (’#%02X%02X%02X’ % (random.randint(0,255),random.randint(0,255),
random.randint(0,255))))

data = pd.DataFrame()
data = pd.concat([data_frame1.iloc[:,64],data_frame2.iloc[:,64] ], axis = 1)
data.columns = ["x", "y"]
data.plot(x = "x", y = "y", kind = "line", ax = ax1,
xlabel = ("1 - Specificity (%)"), ylabel = ("Sensitivity"),
c = ’black’, lw = 4)

plt.legend(ch_name, ncol = 3)

plt.savefig( folder_file + "_79%.png")
plt.show()
print("file saved")

return

PCA – 3D Scatter Plot Visualisation
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import plotly.express as px
from sklearn.decomposition import PCA

X = dirtyset[[’DELTA’, ’THETA’, ’ALPHA’, ’BETA’]]

pca = PCA(n_components=3)
components = pca.fit_transform(X)

total_var = pca.explained_variance_ratio_.sum() * 100

fig = px.scatter_3d(
components, x=0, y=1, z=2, color=dirtyset[’TR’],
title=f’Total Explained Variance: {total_var:.2f}%’,
labels={’0’: ’PC 1’, ’1’: ’PC 2’, ’2’: ’PC 3’}, width=1200, height=1000)

fig.show()

Parallel Coordinate Plot Visualisation

import plotly.express as px

fig = px.parallel_coordinates(dirtyset, color="TR",
labels={"TR",’DELTA’, ’THETA’, ’ALPHA’, ’BETA’, },
color_continuous_scale=px.colors.diverging.Tealrose,
color_continuous_midpoint=2)
fig.show()

Scatter Matrix Plot Visualisation

import plotly.express as px
fig = px.scatter_matrix(dirtyset,
dimensions=[’DELTA’, ’THETA’, ’ALPHA’, ’BETA’], color="TR")
fig.show()
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ANN Model Accuracy Comparison Visualisation

df1 = pd.read_csv( file_location + "MMI_PSD channel_ACC1.csv")
df2 = pd.read_csv( file_location + "MMI_PSD channel_ACC2.csv" )

sumdf1 = df1.sum(axis=0)
sumdf2 = df2.sum(axis=0)

ch_name = [’FC5’, ’FC3’, ’FC1’, ’FCz’, ’FC2’, ’FC4’, ’FC6’, ’C5’, ’C3’,
’C1’, ’Cz’, ’C2’, ’C4’, ’C6’, ’CP5’, ’CP3’, ’CP1’, ’CPz’, ’CP2’, ’CP4’, ’CP6’,
’Fp1’, ’Fpz’, ’Fp2’, ’AF7’, ’AF3’, ’AFz’, ’AF4’, ’AF8’, ’F7’, ’F5’, ’F3’, ’F1’,
’Fz’, ’F2’, ’F4’, ’F6’, ’F8’, ’FT7’, ’FT8’, ’T7’, ’T8’, ’T9’, ’T10’, ’TP7’,
’TP8’, ’P7’, ’P5’, ’P3’, ’P1’, ’Pz’, ’P2’, ’P4’, ’P6’, ’P8’, ’PO7’, ’PO3’,
’POz’, ’PO4’, ’PO8’, ’O1’, ’Oz’, ’O2’, ’Iz’]

dframe = pd.DataFrame({’ANN only’: sumdf1,
’PCA+ANN’: sumdf2 }, index=ch_name)

ax = dframe.plot.bar(rot=0, figsize = (25, 10), ylim = (40, 55),
ylabel = ("Validation Accuracy, %"), xlabel = ("EEG Channels"),
title = ("MM/I EEG Dataset - ANN Validation Accuracy of PCA + ANN
and ANN only"))

ax = inc_accuracy.plot.bar(figsize = (25, 10), x=’index’,
y=0, rot=0, ylabel = ("increase Validation Accuracy, %"),
xlabel = ("EEG Channels"),
title = ("MM/I EEG Dataset - increase ANN Validation Accuracy
(PCA + ANN vs ANN only)"), color = [’orange’])

EEG Channel SC Visualisation

ax = summary.plot.bar(figsize = (25, 10), y = ’n_samples removed, %’,
x = ’EEG channel’, ylim = (5, 20), ylabel = ("n samples removed, %"),
xlabel = ("EEG Channels"),
title = ("MM/I EEG Dataset - Samples Removed After PCA-SRP
(n = 4927)"), color = ’maroon’)
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ax = summary.plot.bar(figsize = (25, 10), y = ’Sc’, x = ’EEG channel’,
ylim = (0.8, 1.0), rot=0, ylabel = ("Selectivity (Sc), %"),
xlabel = ("EEG Channels"), title = ("Selectivity per EEG Channel"))

MNE Library Import Requirements

!pip install mne
import mne.channels
from mne import EpochsArray
from mne.channels import make_standard_montage
from mne.epochs import concatenate_epochs
from mne import create_info, find_events, Epochs
#from mne.viz.topomap import _prepare_topo_plot, plot_topomap
from mne.decoding import CSP
from mne import find_events, Epochs, compute_covariance, make_ad_hoc_cov
from mne.datasets import sample
from mne.simulation import (simulate_sparse_stc, simulate_raw,
add_noise, add_ecg, add_eog)
from numpy.ma.core import shape

Motor Movement and Imagery (MM/I) Data Extraction

#runs = [5, 9, 13] # motor action: hands vs feet
#runs = [6, 10, 14] # motor imagery: hands vs feet
runs = [3, 7, 11] # motor action: left vs right hand
#runs = [4, 8, 12] # motor imagery: left vs right hand

n_subjects = 109
subject = 40

raw_fnames = eegbci.load_data(subject, runs)
raw = concatenate_raws([read_raw_edf(f, preload=True) for f in raw_fnames])

eegbci.standardize(raw) # set channel names
montage = make_standard_montage(’standard_1005’)
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raw.set_montage(montage)

Time Signal Plot Visualisation

raw.describe()
raw.plot(duration=60.0, start=0.0, n_channels=64);

PSD Plot Visualisation

raw.compute_psd(fmax=50).plot()
raw.plot(duration=5, n_channels=64)
print(raw.info)

Event - Epoch ID Visualisation

events, _ = events_from_annotations(raw, event_id=dict(T1=0, T2=1))
event_ids = {"left": 0, "right": 1}
epochs = mne.Epochs(raw, events, event_id=event_ids)
mne.viz.plot_events(events[:]);print(events)

Epoch Time Signal Intensity Visualisation

epochs.plot();
epochs[’left’]
epochs[’right’]
epochs.info
epochs[’left’].plot_image(picks=[29]);
epochs[’left’].plot_image(picks=[37]);
epochs_for_tfr = mne.Epochs(raw, events,
tmin=-.5, tmax=1.5, preload=True) # need longer data segment

epochs_for_tfr.plot( scalings = ’auto’, n_channels=64);
epochs.get_data().shape
left = epochs[’left’].average()
right = epochs[’right’].average()
epochs.get_data().shape
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epochs[’left’].get_data().shape

Carnial Topography and Butterfly Plot Visualization

left.plot();
left.plot_topomap(times = [0.1, 0.2, 0.3, 0.4, 0.5]);
left.plot_joint(times = [0.1, 0.2, 0.3, 0.4, 0.5]);

right.plot();
right.plot_topomap(times = [0.1, 0.2, 0.3, 0.4, 0.5]);
right.plot_joint(times = [0.1, 0.2, 0.3, 0.4, 0.5]);

diff = mne.combine_evoked((left, -right), weights=’equal’)
diff.plot_joint(times=[0.1, 0.2, 0.3, 0.37, 0.5]);
diff.plot_image();

Region of Interest Visualization

rois = mne.channels.make_1020_channel_selections(diff.info, midline="z12")
diff.plot_image(group_by=rois, show=False, show_names="all");
mne.viz.plot_compare_evokeds({"right": right,

"left": left}, picks=[29]);
mne.viz.plot_compare_evokeds({"right": right,

"left": left}, picks=[37]);
left.plot_topo(color = ’orange’);
right.plot_topo();

Cranial Localization Sensor Visualization

right.plot_sensors(show_names = True);

Bootstrapping -Training the Artificial Neural Network

start = time.time()
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=30)
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model = tf.keras.models.Sequential([
tf.keras.layers.Dense(32, activation=’relu’),
tf.keras.layers.Dense(16, activation=’relu’),
tf.keras.layers.Dense(1, activation=’softmax’)])

model.compile(optimizer=’adam’, loss=’mse’, metrics=[’mse’])
model.fit(x_train,y_train, epochs=300, batch_size = 16, verbose = 0)
model.evaluate(x_test,y_test)[1]

end = time.time()
print((end - start)/60.0, "min elapsed.")

Bootstrapping of the dataset (either by accuracy or Mean
Square Error (MSE))

start = time.time()
N = 2000
bootstrap_mse = []
for i in range(N): # 100 Bootstrap samples

if (i % 200 == 0):
print("Iteration", i)

idx = np.random.choice(np.arange(len(x_test)), len(x_test), replace=True)

x_test = pd.DataFrame(x_test).to_numpy()
y_test = pd.DataFrame(y_test).to_numpy()

x_sample = x_test[idx]
y_sample = y_test[idx]

bootstrap_mse.append(model.evaluate(x_sample, y_sample, verbose = 0)[1])
end = time.time()
print((end - start)/60.0, "min elapsed.")
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Bootstrapping - Histograph visualisation comparison of PCA-
SRP with ANN and ANN only

plt.figure(figsize=(10,6))
plt.xlabel(’Accuracy’)
plt.ylabel(’Frequency’)
plt.hist(data1, bins = 80, histtype = ’step’, lw = 2, color = ’blue’,
density = True, label=’ANN only’)
plt.hist(data2, bins = 80, histtype = ’step’, lw = 2, color = ’orange’,
density = True, label=’PCA+SRP in ANN’)
plt.title("Bootstrapping - Accuracy: Channel "+ str(EEG_channel +1) +
": "+ str(EEG_ch_names[EEG_channel]))

plt.legend()
plt.savefig( "/content/gdrive/MyDrive/Colab Notebooks/MMI/Diagram/
Bootstrapping - Accuracy: Channel "+ str(EEG_channel +1)+ " "
+ str(EEG_ch_names[EEG_channel]) + ".png")
plt.show()
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Fig. B.1 Accuracy vs increasing Randomness (Sc = PC1)

Fig. B.2 Error Rate vs increasing Randomness (Sc = PC1)
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Fig. B.3 PPV vs increasing Randomness (Sc = PC1)

Fig. B.4 TPR vs increasing Randomness (Sc = PC1)
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Fig. B.5 True Negative Rate (TNR) vs increasing randomness

Fig. B.6 Balanced Accuracy (BA) Rate vs increasing Randomness (Sc = PC1)
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Fig. B.7 F-score vs increasing Randomness (Sc = PC1)

Fig. B.8 G-mean vs increasing Randomness (Sc = PC1)

Fl VS increasing RANDOMNESS for MM/I and P300 Oddball Datasets 

11111111 Iii ill nu iii 111·1 
I II 11 11 1111 ltlllft1!1ttt1111 I 

I " I 111,111111mm1r11111111111mi 

FCS Fpz 
FC3 Fp2 

K, 

K2 

Ko 

C5 

" C, 

a>, 
0'2 

" " 

"°' 
"°' 

increasing Random samples 

l'liiiii'iiillllilliiii 

Gmean vs increasing RANDOMNESS for MM/I and P300 Oddball Datasets 

increasing Random samples 



208 Classification Performance Metrics Graph

Fig. B.9 Cohen’s Kappa Statistics vs increasing Randomness (Sc = PC1)

Fig. B.10 Matthew’s Correlation Coefficient (MCC) vs increasing Randomness (Sc = PC1)
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Fig. B.11 Fowles - Mallows (FM) Index vs increasing Randomness (Sc = PC1)

Fig. B.12 Bookmaker (BM) Informedness Rate vs increasing Randomness (Sc = PC1)
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Fig. B.13 Positive Likelihood Ratio vs increasing Randomness (Sc = PC1)

Fig. B.14 Negative Likelihood Ratio vs increasing Randomness (Sc = PC1)
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Fig. B.15 Negative Predictive Value (NPV) vs increasing randomness

Fig. B.16 False Positive Rate (FPR) vs increasing randomness
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Fig. B.17 False Negative Rate (FNR) vs increasing Randomness (Sc = PC1)

Fig. B.18 False Detection Rate (FDR) vs increasing Randomness (Sc = PC1)
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Fig. B.19 False Ommission Rate (FOR) vs increasing Randomness (Sc = PC1)

Fig. B.20 Prevalence (Prev) Rate vs increasing Randomness (Sc = PC1)
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Fig. B.21 Prevalence Threshold (PrevT) Rate vs increasing Randomness (Sc = PC1)

Fig. B.22 Critical Success Rate (CSI) Rate vs increasing Randomness (Sc = PC1)
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Fig. B.23 Markedness (MK) Rate vs increasing Randomness (Sc = PC1)

Fig. B.24 AUC-ROC vs increasing Randomness (Sc = PC1)
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Appendix C

PCA and ANN Supplementing
Mathematical Discussion

C.1 Mathematics of Principal Component Analysis (PCA)

This chapter presents the mathematical concepts that helped the readers to understand the
study quickly. The first section contains the basic idea of Principal Component Analysis
(PCA) as dimension reduction and its mathematical concepts, followed by Artificial Neural
Networks (ANNs).

Analysing complex real-world data, e.g. multi-dimensional data, takes much work by
plotting the information and discovering the different patterns used to train some machine
learning models. One way of discerning those patterns in dimensions is to assume that data
point and regard this data point as a physical object in such a way that the dimensions are
solely viewed where the data is located when it is displayed from a horizontal axis to the
vertical axis. It only applies to not more than 3-dimensional data; more than that, and it is
not easy to visualise and comprehend human perceptions.

Furthermore, the challenge of analysing trend patterns in multi-dimensional data with
several parameters led to high computational costs to improve the understanding of the
information dimensions using Principal Component Analysis. So, decreasing an information
size, removing redundant dimensions and keeping only the most significant dimensions are
the solution to the problem of underfitting the neural network machine learning and avoiding
its overfitting.

In understanding the PCA, standard deviation (σ ), variance, (var) covariance (σxy), cor-
relation (ρ), standardization (Ẋ), determinant, and eigenstructures (λ , ν) have an important
role in this concept.
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C.1.1 Standard Deviation (σ or SD)

The standard deviation measures a collection of values’ variance or dispersion. A low
standard deviation implies that the values are near the set’s mean (the expected value),
whereas a high standard deviation shows that the values are spread out over a more extensive
range.

Equation C.1 is used for the sample standard deviation.

σsample =

√
∑(xi− x̄)2

n−1
(C.1)

C.1.2 Variance (var(X)) and Covariance (cov(xy))

Variance is a measure of variability or how to spread the dataset. Mathematically, it is the
average squared deviation from the mean score. The following Equation C.2 to compute
variance var(X).

var(X)sample =
∑(xi− x̄)2

n−1
(C.2)

Covariance measures the extent to which corresponding elements from two sets of ordered
data move in the same direction. The above formula is denoted by cov(x,y) as the covariance
of x and y. Here, xi is the value of x in ith dimension. x and y denote the corresponding mean
values. One way to observe the covariance (cov(xy)) is how interrelated two data sets are
using this Equation (C.3).

cov(xy)sample =
∑(xi− x̄)(yi− ȳ)

n−1
(C.3)

A positive covariance means X and Y are positively related, i.e. as X increases, Y also
increases. Negative covariance depicts the exact opposite relation. However, zero covariance
means X and Y are not related. Data analysis requires finding patterns among the data sets, so
we want the data spread across each dimension. If data has high covariance when represented
in some n number of dimensions, then replace those dimensions with a linear combination of
those n dimensions. That data will only depend on a linear combination of those related n
dimensions. (related = have high covariance)
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Table C.1 Covariance vs Correlation.

Covariance Correlation

Indicates the DIRECTION Indicates both the STRENGTH
of linear relationship between variables and DIRECTION of linear relationship

between variables

Covariance values are not standard Correlation values are standardised

Positive number being positive relation 1 being strong positive correlation
Negative number being negative relation -1 being strong negative correlation

Values between positive infinity to negative infinity value is strictly between -1 to 1

C.1.3 Correlation (ρ)

Correlation means association - more precisely, it measures the extent to which two variables
are related, including the strength of association or relationship between variables and their
direction.

ρ =
covxy

σxσy
(C.4)

Table C.1 shows the difference between correlation and covariance.

C.1.4 Standardization (Ẋ)

Standardisation should be done before doing PCA because the data of different scales will
get misleading components. Before using any normalising approach, feature visualisation is
a crucial step. Features should be shown in Equation C.5 to verify how feature values are
distributed. The following characteristics were standardised for this study:

Ẋ =
X− X̄

σ
(C.5)

X is the original feature value, the set’s mean, and its standard deviation, and Ẋ is the
normalised feature value, respectively. Mathematically, it can be done by subtracting the
mean and dividing it by the standard deviation for each variable’s value. Where X is the
mean of matrix X and σ is the standard deviation of the matrix X .
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C.1.5 Determinant and Generalized Variance

A determinant is an alternate measure of the total variance suggested to account for cor-
relations between pairs of variables. When there is little connection between the several
variables, this metric has a high value. If the variables, whether positive or negative, have
a robust association with one another, this measure, however, only takes a little value. The
determinant is also called generalised variance, a specific measure of dispersion.

The determinants are the mathematical method that is very useful in analysing and solving
systems of linear equations or matrices. By definition of determinant and eigenstructure, de-
terminant is the sample of variance-covariance matrix for observation of multivariate
vector sometimes called generalised variance.

C.2 Ideas about Principal Component Analysis

It defines the goal of PCA -

• Find linearly independent dimensions (or basis of views) to represent the data points
more clearly.

• Those newly found dimensions should allow us to predict/reconstruct the original
dimensions. The reconstruction/projection error should be minimised.

To understand the projection error. Suppose to transform a two-dimensional represen-
tation of data points into a one-dimensional representation. We will find a straight line
and project data points on them. (A straight line is one-dimensional). There are many
possibilities for selecting a straight line. There are two possibilities, as shown in Figure 3.6 -
the line traverse line will be our new dimension by rotating to create one dimension, i.e. the
perpendicular distance of each data point from the straight line is the projection error. The
sum of the error of all data points will be the total projection error. Our new data points will
be the projections of those original data points. The transformed two-dimensional data points
to one-dimensional data points by Projecting them on one-dimensional Space, i.e. a straight
line. That traverse straight line is called the principal axis. Since the Projection to a single
dimension only has one principal axis.

The second choice of the straight line is better because -

• The projection error is less than that in the first case.

• Newly projected points are more widely spread than in the first case. i.e. more variance.



C.2 Ideas about Principal Component Analysis 221

The two points mentioned above are related, i.e. to minimise the reconstruction error, the
variance will increase. The calculation of the covariance matrix of the original data set matrix
A by transforming the original data points such that the covariance matrix of transformed
data points is diagonal.

The determinant of a square symmetric matrix An,n whose diagonal elements Dn (λ ) are
sample variances and whose off-diagonal elements are sample covariances. Symmetry means
that the matrix and its transpose are identical.

A dimension reduction technique finds the variance-maximising directions to project the
data as shown in Figure 3.6a and 3.6b.

A =


Da Ca,b Ca,c Ca,d Ca,e

Ca,b Db Cb,c Cb,d Cb,e

Ca,c Cb,c Dc Cc,d Cc,e

Ca,d Cb,d Cc,d Dd Cd,e

Ca,e Cb,e Cc,e Cd,e De

 (C.6)

where D is the diagonal; C(a,b)→ covariance along dimension a and b

C.2.1 Eigenvalue (λ ) and Eigenvector (ν)

Given a symmetric matrix A ∈ Rn×n, a real scalar λ is said to be an eigenvalue of A if there
exists a non zero vector ν ∈ Rn called eigenvector, such that we have :

Aν = λν (C.7)

The vector ν is then referred to as an eigenvector associated with the eigenvalue λ . The
eigenvector ν is said to be normalized if |νT ν |= 1 = I, so

ν
T Aν = λν

T
ν = Iλ (C.8)

The eigenvector ν refers to the direction along A in the scalar multiplication of eigenvalue
λ . The eigenvalues λ of the matrix A employs characteristic equation, to find the eigenvalues
λ1,2,3,...,n

det(λ I−A) = 0 (C.9)

Note: From the fundamental theorem of algebra, any polynomial of degree n has n
(possibly not distinct) complex roots. The eigenvalues are real for symmetric matrices since
λ = νT Aν when Aν = λν , and u is normalised.
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C.2.2 Spectral Theorem

The spectral theorem, also known as the symmetric eigenvalue decomposition (SED) theorem,
is a critical finding in linear algebra that states that for any symmetric matrix, there are precise
and possibly not distinct n real eigenvalues that the associated eigenvectors can be chosen to
form an orthonormal basis. The outcome provides a straightforward method for decomposing
the symmetric matrix into its parts.

Theorem: Let any symmetric A ∈ Rn×n, then A is diagonalized by a real orthogonal
matrix U ∈ Rn×n (that is, UTU =UUT = In). Then

A =
n

∑
i=1

λiνiν
T
i =UΛUT ,λ = diag(λ1,λ2,λ3, ...,λn) (C.10)

Remarks: The eigenvector associated with the largest eigenvalue is the principal eigen-
vector of matrix A.

By using the principal eigenvector of PCA, it rotates the figure C.1a shows the 3-D
example of datasets before the PCA process to figure C.1b, so it is easy to visualise the nth

dimension dataset.

C.3 PCA Algorithm

The Principal Component Analysis (PCA) procedure is a dimension reduction technique that
projects the data on k dimensions by maximising the variance of the data as follows:

Step 1: Normalise the data with a mean of zero (0) and a standard deviation of 1.

x(i)j ←
x(i)j − x̄ j

σ j
(C.11)

where

x̄ j =
1
m

m

∑
i=1

x(i)j (C.12)

and

σ
2 =

1
m

m

∑
i=1

(x(i)j − x̄ j)
2 (C.13)

Step 2: Compute ∑ = 1
m ∑

m
i=1 x(i)j x(i)

T

j ∈ Rn×n, which is symmetric with real eigenvalues.
Step 3: Compute ν1,ν2, ...,νk ∈ Rn the k orthogonal principal eigenvectors i.e., the k

largest eigenvalues.
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(a) Projection of data points in 3 dimensions.

(b) Projection of data points in newly constructed 3-dimensions.

Fig. C.1 PCA in 3-Dimensional Space
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Step 4: Project the data on span ν1,ν2, ...,νk. It maximises the variance among all
k-dimensional spaces.

C.3.1 Procedure in Performing PCA - Example

Principal Component Analysis (PCA) finds a new set of dimensions (or a set of the basis
of views) such that all the dimensions are orthogonal (and hence linearly independent) and
ranked according to the variance of data along them. It means a more important Principal
axis occurs first (more important = more variance/more spread out data [165].

1. Standardization of matrix A

Assume the matrix A,

A =



y1 y2 y3 y4

1 2 3 4
5 5 6 7
1 4 2 3
5 3 2 1
8 1 2 2


(C.14)

It needs to standardise the matrix, using the equation C.5, resulting to mean Ā and
standard deviation σ in equation C.15 and C.16, respectively, before standardisation Ȧ.

X̄ =

[
y1 y2 y3 y4

4 3 3 3.4

]
(C.15)

σ =

[
y1 y2 y3 y4

3 1.58114 1.73205 2.30217

]
(C.16)

The matrix A has been transformed as:

Ẋ =



y1 y2 y3 y4

−1 −0.63246 0 0.26062
0.3333 1.26491 1.73205 1.56374
−1 0.63246 −0.57735 −0.17375

0.3333 0 −0.57735 −1.04249
1.3333 −1.26491 −0.57735 −0.60812


(C.17)



C.3 PCA Algorithm 225

Calculate the covariance matrix A of data points by equation C.23.

The covariance matrix A (cov(Ȧ)) will be calculated as,

cov(Ẋ) =


y1 y2 y3 y4

y1 var(y1) cov(y1,y2) cov(y1,y3) cov(y1,y4)

y2 cov(y2,y1) var(y2) cov(y2,y3) cov(y2,y4)

y3 cov(y3,y1) cov(y3,y2) var(y3) cov(y3,y4)

y4 cov(y4,y1) cov(y4,y2) cov(y4,y3) var(y4)

 (C.18)

cov(Ẋ) =


y1 y2 y3 y4

y1 0.8 −0.25298 0.03849 −0.14479
y2 −0.25298 0.8 0.51121 0.4945
y3 0.03849 0.51121 0.8 0.75236
y4 −0.14479 0.4945 0.75236 0.8

 (C.19)

2. Calculate eigenvectors and corresponding eigenvalues. When that linear transfor-
mation is performed to a nonzero vector, an eigenvector is a vector that changes by a
scalar amount. The matching eigenvalue determines the eigenvector’s scaling factor to
satisfy the eigenstructure through the equation C.20 where cov(Ȧ) is a square matrix,
λ is an eigenvalue, and ν is an eigenvector.

[cov(Ȧ)] · [ν ] = [λ ] · [ν ] (C.20)

where identity matrix In as shown below

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (C.21)

(cov(Ȧ)−λ · I)[ν ] = 0 (C.22)

Furthermore, if the determinant of the (square) matrix is precisely zero, the matrix is
said to be singular, and it has no inverse as shown in Equation C.23.

det(cov(Ȧ)−λ · I) = 0 (C.23)
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then,

0 =


0.8−λ −0.25298 0.03849 −0.14479
−0.25298 0.8−λ 0.51121 0.4945
0.03849 0.51121 0.8−λ 0.75236
−0.14479 0.4945 0.75236 0.8−λ

 (C.24)

we get,

λ = 2.51579324,1.0652885,0.39388704,0.02503121 (C.25)

Equation C.22 is used to find the ν with different λ values.


0.8−λ −0.25298 0.03849 −0.14479
−0.25298 0.8−λ 0.51121 0.4945
0.03849 0.51121 0.8−λ 0.75236
−0.14479 0.4945 0.75236 0.8−λ

×


ν1

ν2

ν3

ν4

= 0 (C.26)

Using Kramer’s Rule, the highest λ (λ1 = 2.51579324):

ν1 = 0.16195986

ν2 =−0.52404813

ν3 =−0.58589647

ν4 =−0.59654663

(C.27)

We solved for other λn, commonly known as Principal Component (PCn), and got
eigenvectors ν and loading scores.


λ1 λ2 λ3 λ4

0.16195986 −0.917059 −0.307071 0.196162
−0.52404813 0.206922 −0.817319 0.120610
−0.58589647 −0.320539 0.188250 −0.720099
−0.59654663 −0.115935 0.449733 0.654547

 (C.28)

3. Sort the eigenvectors according to their eigenvalues in decreasing order. Choose
the first k eigenvectors, the new k dimensions.

Since choosing the highest eigenvalues λ with corresponding its eigenvectors ν ,
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
λ1 λ2

0.16195986 −0.917059
−0.52404813 0.206922
−0.58589647 −0.320539
−0.59654663 −0.115935

 (C.29)

4. Transform the original n dimensional data points into k dimensions.

Feature matrix * top k eigenvectors = Transformed Data


−1 −0.6325 0 0.2606

0.3333 1.2649 1.7321 1.5637
−1 0.6325 −0.5774 −0.1738

0.3333 0 −0.5774 −1.0425
1.3333 −1.264 −0.5774 −0.6081

×


0.16196 −0.9171
−0.5240 0.2069
−0.5859 −0.3205
−0.5965 −0.1159

 (C.30)

=


−0.0140 0.7560
2.5565 −0.7804

0.05148 1.2531
−1.01415 0.00024
−1.5799 −1.2289

 (C.31)

Therefore, the principal Component is the eigenvectors |νPC| with the highest eigen-
value λPC, which is the loading scores.

|νPC|=


0.16196
0.52409
0.5859
0.5965

 (C.32)

C.3.2 Explained Variance Ratio and F-Distribution

Given the definition of variance (S2) in the Equation C.2 and F- Distribution (F) formula, PC
is the distribution of the samples in PC spaces, so F = PC.

F =
S2

1
S2

2
(C.33)
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By the definition of eigenvalues (λ ),

S2 = λ (C.34)

Then, from the Equation C.9.

det(λ I−Amxn) = 0 (C.35)

So,

n

∑
1

λk = λ1 +λ2 + ...+λn (C.36)

Furthermore,

1 =
λ = λ1 +λ2 + ...+λn

∑
n
1 λk

(C.37)

s2
T =

n

∑
1

λk;s2
1 = λ1;s2

2 = λ2; ....;s2
n = λn (C.38)

Moreover,

1 =
λ1

∑
n
1 λk

+
λ2

∑
n
1 λk

+ ...+
λn

∑
n
1 λk

(C.39)

1 =
S2

1
S2

T
+

S2
2

S2
T
+ ...+

S2
n

S2
T

(C.40)

Therefore,

1 = F1 +F2 + ...+Fn−1 +Fn (C.41)

which F1 serves as the first explained variance ratio, F2 serves as the second explained
variance ratio, then so on and so forth. By definition, F-distribution is the number of
frequencies or samples in the different distribution of dimension.

So,

1 = PC1 +PC2 + ...+PCn−1 +PCn (C.42)

As described in Figure C.2.

1≤ F1 ≤ F2 ≤ ...≤ Fn−1 ≤ Fn ≤ 0 (C.43)
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Fig. C.2 Frequency Distribution Diagram
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C.3.3 PCA Typical Python Implementation

Here is the Python implementation of typical PCA using the sklearn library by solving for
transformed data and its loading scores νPC. Moreover, Figure C.3 shows the implementation
output.

import numpy as np
import pandas as pd
from sklearn.decomposition import PCA

A = np.matrix ([[1, 2, 3, 4],
[5, 5, 6, 7],
[1, 4, 3, 2],
[5, 3, 2, 1],
[8, 1, 2, 2]])
df = pd.DataFrame(A, columns = [ ’f1’, ’f2’, ’f3’, ’f4’])
df_std = (df - df.mean()) / (df.std())
n_components = 2
pca = PCA(n_components = n_components)
principalComponents = pca.fit_transform (df_std)
principal = pd.DataFrame(data = principalComponents,
columns = [ ’nf’ + str (i+1) for i in range (n_components)])
print(principalDF)

loading_scores = pd.Series(pca.components_[0]).abs()
print(loading_scores )

The following shows the generation of explained variance ratio.

print(’list of PC variance: \n ’, per_var)
per_var_passingrate = per_var[0]
passrate = per_var_passingrate

Also shows the generation of the PCA Scree Plot.

per_var = np.round(pca.explained_variance_ratio_ * 100, decimals = 5)
labels = [’PC’ + str(x) for x in range(1, len(per_var)+1)]
plt.bar(x = range (1, len(per_var) + 1),
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Fig. C.3 Example output of the PCA Implemenattion

Fig. C.4 Example Explained Variance Ratio

height = per_var, tick_label = labels)
plt.ylabel(’Percentage of Explained Variance’)
plt.xlabel(’Principal Component’)
plt.title(’Scree Plot’)
plt.show()

And the following code makes a fancy-looking plot using PC1 and PC2.

pca_df = pd.DataFrame(pca_data, columns = labels)
plt.scatter(pca_df.PC1, pca_df.PC2)
plt.title(’My PCA Graph’)
plt.xlabel(’PC1 - {0}%’.format(per_var[0]))
plt.ylabel(’PC2 - {0}%’.format(per_var[1]))

for sample in pca_df.index:
plt.annotate(sample, (pca_df.PC1.loc[sample], pca_df.PC2.loc[sample]))

plt.show()

#generating parameters

[➔ transformed data: 
nfl nf2 

0 -0.014003 0.755975 
1 2.556534 -0.780432 
2 0.051480 1.253135 
3 -1.014150 0.000239 
4 -1.579861 -1.228917 

loading score: 
0 0.161960 

1 0.524048 
2 0.585896 
3 0.596547 
dtype: float64 

list of PC variance: 
[7.067842e+Ol 2.925465e+Ol 6.693000e-02 O.OOOOOOe+OO] 
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Fig. C.5 Example Scree Plot

Fig. C.6 Example PCA 2D Space Graph
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print(’list of PC variance: \n ’,per_var)
per_var_passingrate = per_var[0]
#per_var_passingrate = per_var[0]
passrate = per_var_passingrate
print(’recommended Sc: ’, per_var_passingrate, " %")

C.4 Artificial Neural Network (ANN).

Artificial Neural Networks (ANNs) are machine learning models built with layers. An ANN
learning algorithm is an attribute that adjusts ANN weights to achieve the required output(s)
for the specified input(s) with adaptivity and capability to cope with deviations in the situation.
It relates to ANN retraining when an available new information set has been introduced.

A graph that cannot learn (or be corrected by its weights) cannot be listed as an ANN,
as it cannot hold the adaptation property. Moreover, when ANN sets in a change in the
environment, there is no need to construct a new ANN model with the improved new data
once an ANN model is created.

Training data is essential for neural networks to develop and enhance their accuracy over
time. Nonetheless, these learning algorithms become practical tools in computer science and
artificial intelligence if they are adjusted for accuracy, enabling us to categorise and cluster
data quickly.

Artificial Neural Networks are used in a wide range of applications, including image
recognition, machine translation, medical diagnosis, and most typical random function
approximation, which is an ability to work with incomplete knowledge or information.

ANN is said to be if it has:

• Start Element (SE), A input node in a directed graph in Start Element (SE) k is, which
gets an input Ii j from the input matrix I = Ii j; i = 1, 2, 3, . . . ,n; j = 1, 2, 3, . . . ,m of n
features of m independent accounts, and beginning of the flow in the graph.

• End Element (EE), A output node in a directed graph in End Element (EE) i is which
produces an output Oi j from the output matrix O = Oi j; i = 1, 2, 3, . . . ,n; j = 1, 2, 3,
. . . ,m of n desired outputs of m independent input accounts and ends a flow in the
graph.

• Processing Element (PE), namely weights, summing function, activation function,
output and bias,

• Nodes use as Processing Elements (PEs), excluding the start and end nodes,
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Fig. C.7 Artificial Neural Network

• A state variable ni connected with each node i,

• weight wki is a real-valued connected with each link (ki) to node i from node k

• bias bi is a real-valued linked with each node i,

• a learning algorithm that supports to model of the anticipated output for the given
input,

• a flow on each link (ki) to node i from node k, that transmits precisely the same flow
which the same to nk by the output of node k,

• Each start node is linked to a minimum of one end node, and each end node is associated
with a minimum of one start node.

• no parallel edges (each link (ki) to node i from node k is unique)

C.4.1 Mathematical Derivation of Artificial Neural Network

To generate a neural network needs the following:

• input set (1,2, ...,n−1,n) (i1, i2,i3, . . . , in−1, in)
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• output set (1,2, ...,m−1,m) (o1,o2,o3, . . . , on−1, on)

• at least one hidden layers

• at least one neuron in each hidden layer

Optional properties:

• Each neuron has a bias in the hidden layer(s) (b1,b2) and output layer (b3 , b4)

• Bias’s weight in the hidden layer(s) (v11, v12) and in output layer (v21, v22)

• Weights connecting neurons (w1 w2 - for input to hidden, w3 - for hidden to output)

In a neural network, the weights are informed to minimise the error between the inputs
and outputs as it is trained. Therefore, the weights are repetitively updated by specifying the
starting weights regardless, providing a starting point for final weight values. It can be noted
that the bias (bi) and also its weight/s are non-compulsory; due to differentiation, it does not
hinge on anything and is evaluated to 0.

C.4.2 Feed Forward Neural Network

Given the network N, it has two (2) inputs (i1, i2), one (1) hidden layer with one (1) neuron
(h1 ), one (1) bias (b1) and 1 output (o1).

Calculate the value of h1.

Fig. C.8 One Layer Neural Network.

In Figure 1, h1 hinge on i1, with weight w1, i2 is with weight w2, and b1 with weight v1.
To compute the net value of h1. Multiply the cost of the neuron and its weight. It can be
expressed by,
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n

∑
m

imwm +bkvk (C.44)

Therefore,
h1 = i1w1 + i2w2 +b1v1 (C.45)

The value of h1 can be activated with functions like sigmoid, RELU (Rectified Linear
Unit), tanh, SoftMax, etc., shown in Figure C.9. However, in this example, Sigmoid Function
is used.

A sigmoid neuron outputs a continuous plane range of values between 0 and 1. As expo-
nential functions are like to handle mathematically and since learning algorithms comprise a
great deal of differentiation, selecting a correct function that is computationally inexpensive
to handle is excellent. The function is well-defined to be:

sig(x) =
1

1+ e−x (C.46)

Therefore, the output of h1 is

sig(h1) =
1

1+ e−h1
(C.47)

Work out for sig(x) for o1, the results for o1 are as follows:

sig(o1) =
1

1+ e−o1
(C.48)

It can be noted that with the use of the sigmoid value of o1→ sig(o1), we can use the
Euclidean Norm in working out the total error, that is

Etotal =
1
2

n

∑
1
(target(ok)− sig(ok))

2 (C.49)

Therefore, our Total Error is:

Etotal =
1
2
(target(ok)− sig(ok))

2 (C.50)

The effect of sig(o1) on the total error using partial differentiation. From Etotal , it
depends on 2 arguments, target (o1) and sig(o1). Compute for the partial derivative means
differentiation on only one variable, but not all.

The sig(o1) affects the total error on the equation for Etotal .
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∂Etotal

∂ sig(o1)
= sig(o1)− target(o1) (C.51)

Calculate using partial differentiation and the chain rule to get from

∂Etotal

∂ sig(o1)
=

∂
1
2 (target(o1)− sig(o1))

2

∂ sig(o1)
= sig(o1)− target(o1) (C.52)

∂
1
2 (target(o1)− sig(o1))

2

∂ sig(o1)

→ 2∗ 1
2
(target(o1)− sig(o1))

2−1 ∗ ∂ (target(o1)− sig(o1))

∂ sig(o1)

→ 1∗ (target(o1)− sig(o1))∗ (−1)

→ sig(o1)− target(o1)
(C.53)

C.4.3 Back Propagation

Backpropagation is a method to update the weights in the ANNs by considering the actual
and desired outputs. The derivative concerning top weights w is computed using Chain Rule.

The aim is to know how the weights affect the total error. In w1, to calculate

∂Etotal

∂w1
(C.54)

Etotal depends on sig(o1), sig(o1) depends on net(o1), net(o1) depends on w1. So Etotal

does depend on w1.
Therefore, in getting Etotal depends on w1 the partial derivative can be expressed in:

∂Etotal

∂w1
=

∂Etotal

∂ sig(o1)
∗ ∂ sig(o1)

∂ net(o1)
∗ ∂ net(o1)

∂w1

∂Etotal

∂ sig(o1)
= sig(o1)− target(o1)

(C.55)

To know how sig(o1) depends on net(o1), express the partial derivative in sigmoid
function

sig(o1) =
1

1+ e−net(o1)
(C.56)

Then,
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Fig. C.10 Deriving the Total error

∂ sig(o1)

∂ net(o1)
= sig(o1)∗ (1− sig(o1)) (C.57)

To find how net(o1) depends on w1 and b1 using the partial derivative from

net(o1) = i1w1 + i2w2 +b1v1

∂ net(o1)

∂w1
= i1

∂ net(o1)

∂b1
= v1

(C.58)

where v1 = 1 because it is said to be a biased line weight.
Looking back at the definition of net(o1).

∂Etotal

∂w1
=

∂Etotal

∂ sig(o1)
∗ ∂ sig(o1)

∂ net(o1)
∗ ∂ net(o1)

∂w1

∂Etotal

∂w1
= (sig(o1)− target(o1))∗ sig(o1)∗ (1− sig(o1))∗ i1

(C.59)

Observe that the calculated w1 affects the total error in the network.
The w1 successfully linked the sigmoid value of neuron h1 to neuron o1. The new value

of w1, w11 , is now (w10 is the old value)

w11 = w10−η
∂Etotal

∂w10

(C.60)

sig (h1) 
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The η is an "eta" signifying the learning rate, indicating how the weights update. It can
be fixed or adaptively changed. The most popular method is called "Adam Optimizer", which
is a method that adapts the learning rate. The larger the learning rate, the quicker the neural
network will lessen the accuracy of the error to get close to the output. Though, the neural
network will need to be more accurate.

For the calculation of ANN accuracy, it uses the formula:

Accuracy =
numbero f correct predictions
totalnumbero f predictions

(C.61)

Cross-entrophy Loss is also known as loss function. It is a measure from the field of
information theory, building upon entropy and generally calculating the difference between
two probability distributions and the performance of a classification model whose output is a
probability value between 0 and 1. It can be computed through the:

In binary classification, where the number of classes (M = 2)

L =−[y log(z)+(1− y) log(1− z) (C.62)

If M > 2 (i.e. multiclass classification), we calculate a separate loss for each class (c)
label per observation (o) and sum the result.

L =−
M

∑
c=1

y(o,c) log(p(o,c)) (C.63)

where:
M - number of classes
y - binary indicator (0 or 1) if class label c is the correct classification for observation o
p - predicted probability observation o is of class c

C.4.4 Artificial Neural Network - Python Implementation

Given the Artificial Neural Network (ANN) concept above Section 2, it is the typical example
of 2 hidden layers - Artificial Neural Network shown in Table C.2.

#Import packages
import os
import math
import pandas as pd
import numpy as np
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Table C.2 ANN parameters.

PCA- SRP and Values
ANN Parameters

Learning rate (η ) 0.1%
Epochs 100
Number of ANN 2 hidden layers (32 and
neurons 16, respectively)
Activation functions ReLU in hidden layers
used SoftMax in final layer

from sklearn.decomposition import PCA
from sklearn import pre-processing
import matplotlib.pyplot as plt
import tensorflow as tf
optim = tf.keras. optimisers.Adam()
from pandas.plotting import scatter_matrix
from keras.layers import Dense
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
#from tensorflow.python.keras. optimisers import Adam
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,
accuracy_score
from sklearn. pre-processing import MinMaxScaler
from scipy.interpolate import UnivariateSpline
import timeit

Setting the time

start = time it.default_timer()

Setting ANN hyperparameters

target = ’target’
class_name = target
learning_rate = 0.1
epoch = 100
size_test = 0.2
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Creating a data frame

data = pd.DataFrame()

Setting Data and File Directory

file_loc = "/content/gdrive/MyDrive/Colab Notebooks/
Neural Network Program Python/"
filename = "16 cancer patient"
other = " random"

Getting the CSV file

file_loc_input = ( file_loc + filename + ".csv")
data = pd.read_csv( file_loc_input)
data_old = data

ANN Part
The number of input columns and output classification

input_column = len( data_old.columns) - 1
output_class = len( data_old.groupby( class_name).size() )

We now have a data frame containing all of the data frame .csv data. However, we need
to separate them into [X, Y].

Where our target labels are ’Y’, and ’X’ is our training data.

Y = data_old.target.values
X = data_old.drop([class_name], axis = 1)

Now split to train/test

X_train, X_test, Y_train, Y_test = train_test_split
( X, Y, test_size = size_test, random_state = 42 )

Define a Neural Network Model

def NN_model( learning_rate ):
model = Sequential()
model.add(Dense( 32, input_dim = input_column,
kernel_initializer = ’normal’, activation = ’relu’))

model.add( Dense( 16, kernel_initializer = ’normal’,
activation = ’relu’))
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model.add( Dense( output_class, activation = ’softmax’))
#Adam( lr = learning_rate)
model.compile( loss = ’sparse_categorical_crossentropy’,
optimizer = ’Adam’, metrics = [’accuracy’] )

return model

Build an NN model, and start training

model = NN_model( learning_rate )
print(model.summary() )
history = model.fit( X_train, Y_train, validation_data =
( X_test, Y_test), epochs = epoch, batch_size = 16,
verbose = 0)

Calculate the accuracy and classification report

predictions = np.argmax( model.predict( X_test ), axis = 1 )
model_accuracy = accuracy_score( Y_test, predictions )
* 100
print( "Model Accuracy: ", model_accuracy )

Appending the accuracy

ModAcc = ModAcc.append( { ’Model Accuracy’ :
model_accuracy }, ignore_index = True )





Appendix D

Relevant Tables and Figures
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