
Improving the Security and Performance of

Ethereum Blockchain Transactions: A

Decentralised Autonomous Organisations

Model

Sepideh Mollajafari

University of Gloucestershire

Supervisor

Professor Kamal BECHKOUM

This dissertation is submitted for the degree of
Doctor of Philosophy

May 2024

1

Declaration

I hereby declare that this thesis is entirely my original work, except where otherwise

acknowledged. All sources used for this research have been properly cited and acknowledged.

This work has not been submitted for any other degree, or qualification, at the University of

Gloucestershire, or any other institution.

Sepideh Mollajafari

May 2024

doi:10.46289/ZFHX1698

2

Acknowledgements

First, I would like to express my sincere gratitude and Profound respect to my supervisor,

Professor Kamal Bechkoum for his unwavering support, guidance and encouragement

throughout my PhD journey. I am truly grateful for Professor Bechkoum’s mentorship,

willingness to share his expertise and insightful feedback that have significantly enriched the

quality and depth of this research and shaped my academic achievement.

Words cannot express the depth of my gratitude to my beloved parents, husband, sisters

and niece. Their endless encouragement and belief in my abilities have inspired me to

persevere through the completion of my doctorate.

Many thanks to my colleagues from the CyberTech at the University of Gloucestershire who

provided me with invaluable insight and support throughout my research endeavour.

Last, my sincerest thanks go to the Security Analyst and Solidity developers who evaluated

the proposed Genuine DAO and provided valuable feedback.

 3

Publications

 Mollajafari, S. and Bechkoum, K. (2023) ‘Blockchain Technology and Related Security
Risks: Towards a Seven-Layer Perspective and Taxonomy’, Sustainability, 15(18), p.
13401. doi: 10.3390/su151813401.

 Mollajafari, S. (2022) ‘Warning on Blockchain security risk!’, British Computer Society
(BCS). Available at: https://www.bcs.org/articles-opinion-and-research/warning-on-
Blockchain-security-risk/.

 Mollajafari, S. and Bechkoum, K. (2022) ‘An Overview of Blockchain Technology and
Security Risks: a layering perspective’, in. The British Blockchain Association - 4th
Blockchain International Scientific Conference. Available at:
file:///C:/Users/s2115469/Downloads/34726-conference-proceedings-of-4th-
Blockchain-international-scientific-conference-isc2022-2.pdf.

https://www.bcs.org/articles-opinion-and-research/warning-on-blockchain-security-risk/
https://www.bcs.org/articles-opinion-and-research/warning-on-blockchain-security-risk/

 4

Abstract

Blockchain technology has recently received a great deal of attention from industry and

academia due to its apparent benefits. From the initial foundation based on cryptocurrency

to the development of smart contracts, Blockchain technology continues to promise

significant business benefits for various industry sectors. Notwithstanding its known benefits,

and despite having some protective measures and security features, this technology still faces

significant security challenges within its different abstract layers. This work focuses on the

critical cybersecurity threats and vulnerabilities inherent to the different layers of the

Blockchain architecture, with a view to mitigate against the associated risks.

From the perspective of architectural layering, each layer of the Blockchain has its own

corresponding security issues. In this work, a seven-layer architecture is used, whereby the

various components of each layer are set out, highlighting the related security risks and

corresponding countermeasures. A taxonomy is then developed, that establishes the inter-

relationships between the vulnerabilities and attacks in a smart contract. A specific emphasis

is placed on the issues caused by centralisation within smart contracts, whereby a “one-

owner” controls access, thus threatening the very decentralised nature that Blockchain is

based upon. Smart contracts with centralised ownership pose major security issues and act

as a single point of failure, allowing single individuals, or teams, to have complete control over

the Blockchain network. To mitigate against the risks associated with centralised control,

decentralised autonomous organisations (DAOs) promote a decentralised decision-making

process whereby the power of decision-making is distributed and therefore preventing smart

contract ownership monopoly.

The main contribution of this thesis is the development of a novel automated decentralised

application, “Genuine DAO”, that promises to reduce security risks and improve the

performance of Blockchain networks. “Genuine DAO” achieves the reduction in security risks

by enforcing automated rules that are encoded in smart contracts thus reinforcing the

community-based governance and minimising the threats inherent to centralisation, which

can be caused by smart contracts’ owners/developers. Additionally, “Genuine DAO”

 5

strengthens the security of the network by guarding against the threats caused by

Frontrunning attacks.

Three further contributions emanate from this work. The first one is an improvement of the

overall performance of the Blockchain network, through gas optimisation, cost reduction, and

network throughput. This is achieved by using a Polygon layer 2 scaling solution built on the

Ethereum network. The second one is the development of a general taxonomy that compiles

the different vulnerabilities, the types of attacks, and the related countermeasures within

each of the seven layers of the Blockchain. The third one stems from a deep dive into one

layer of the Blockchain namely, the Contract Layer. A model application is developed

depicting, in detail, the security risks within the Contract Layer, while enlisting the best

practices and tools to adopt in order to mitigate against these risks. The understanding gained

from delving into the details of security risks within the Contract Layer reinforced the need

for developing countermeasures to alleviate the security risks and vulnerabilities inherent to

one-owner control in smart contracts, which ultimately led to the main contribution of this

work: Genuine DAO.

 6

TABLE OF CONTENTS

ABSTRACT .. 4

TABLE OF CONTENTS .. 6

LIST OF FIGURES ... 10

LIST OF TABLES .. 12

CHAPTER 1: INTRODUCTION .. 13

1.1 BACKGROUND ... 13
1.2 PROBLEM STATEMENT AND RESEARCH AIMS... 14
1.3 RESEARCH QUESTIONS ... 15
1.4 RESEARCH OBJECTIVES ... 15
1.5 KEY RESEARCH CONTRIBUTIONS ... 15
1.6 THESIS STRUCTURE .. 17
1.7 CODE REPOSITORY ... 18

CHAPTER 2: THE BLOCKCHAIN TECHNOLOGY AND ITS KEY FEATURES .. 19

2.1 INTRODUCTION ... 19
2.2 BLOCKCHAIN TECHNOLOGY.. 19
2.3 BLOCKCHAIN KEY FEATURES .. 19

2.3.1 Decentralised Distributed Ledger .. 20
2.3.2 Cryptography .. 20
2.3.3 Consensus Algorithms ... 24

2.4 THE ETHEREUM BLOCKCHAIN PLATFORM ... 25
2.5 SMART CONTRACTS ... 29
2.6 THE ARCHITECTURE OF BLOCKCHAIN TECHNOLOGY .. 30

2.6.1 Application Layer .. 30
2.6.2 Contract Layer ... 31
2.6.3 Incentive Layer .. 31
2.6.4 Consensus Layer .. 32
2.6.5 Network Layer ... 33
2.6.6 Data Layer ... 34
2.6.7 Physical Layer .. 35

2.7. SUMMARY .. 36

CHAPTER 3: SECURITY ANALYSIS WITHIN THE SEVEN LAYERS OF THE BLOCKCHAIN 37

3.1 INTRODUCTION ... 37
3.2 A SEVEN-LAYER BLOCKCHAIN ... 37
3.3 AN OVERVIEW OF VULNERABILITIES WITHIN A SEVEN-LAYER ETHEREUM BLOCKCHAIN ... 38
3.4 VULNERABILITIES/ATTACKS ON THE APPLICATION LAYER ... 39

3.4.1 Hot Wallet theft .. 39
3.4.2 Decentralised finance (DeFi) flash loan attack .. 40

3.5 VULNERABILITIES/ATTACKS ON CONTRACT LAYER .. 41
3.5.1 Re-entrancy Vulnerability .. 41
3.5.2 Parity Multi-Signature Wallet ... 42
3.5.3 Front Running/ Transaction-Ordering Dependence .. 44
3.5.4 Integer Overflow and Underflow .. 44
3.5.5 Timestamp dependence .. 45
3.5.6 Mishandled exceptions ... 46
3.5.7 DoS with Unexpected Revert ... 47

 7

3.5.8 Short Address – Parameter Attack .. 47
3.5.9 Denial of Service -Block Gas Limit ... 48
3.5.10 Tx.origin .. 48
3.5.11 Weak Randomness .. 49
3.5.12 Hash Collisions with Multiple Variable Length Arguments ... 50
3.5.13 One Owner control - Centralisation .. 50

3.6 VULNERABILITIES/ATTACKS ON THE INCENTIVE LAYER ... 68
3.6.1 Blockchain Denial of Service (BDoS) Attack... 68

3.7 VULNERABILITIES/ATTACKS ON THE CONSENSUS LAYER ... 69
3.7.1 Double-Spending Attack .. 69
3.7.2 51% Majority Attack ... 70
3.7.3 Selfish Mining Attack .. 71
3.7.4 Bribery Attack ... 71

3.8 VULNERABILITIES/ATTACKS ON THE NETWORK LAYER ... 73
3.8.1 DDoS Attack .. 73
3.8.2 Domain Name Service ... 73
3.8.3 Eclipse Attack .. 74
3.8.4 Sybil Attack.. 75
3.8.5 BGP Routing Attack ... 75
3.8.6 Replay Attack .. 76

3.9 VULNERABILITIES/ATTACKS ON DATA LAYER ... 77
3.9.1 Transaction Malleability Attack .. 77
3.9.2 Timejacking Attack .. 78
3.9.3 Quantum Attack .. 78

3.10 VULNERABILITIES/ATTACKS ON THE PHYSICAL LAYER .. 79
3.10.1 Cold Wallet Theft .. 79
3.10.2 Cryptojacking Malware ... 80

3.11 TOWARDS A CONCEPTUAL TAXONOMY AND CLASSIFICATION .. 82
3.12 CENTRALISATION RISKS: .. 82
3.13 SECURITY RISKS ASSOCIATED WITH SMART CONTRACTS IN THE CONTRACT LAYER ... 83
3.14 SUMMARY ... 85

CHAPTER 4: RESEARCH METHODOLOGY .. 87

4.1 INTRODUCTION ... 87
4.2 RESEARCH FOCUS: CENTRALISATION RISKS AND DAOS ... 87

4.2.1 Centralisation Risks Caused by Smart Contracts ... 87
4.2.2 Decentralised Autonomous Organisations (DAOs) ... 88
4.2.3 Research Hypothesis: The Use of DAOs in Mitigating Centralisation Risks ... 89

4.3 RESEARCH PHILOSOPHY .. 89
4.3.1 Positivism Philosophy .. 90
4.3.2 Realism Philosophy ... 90
4.3.3 Pragmatism Philosophy .. 90
4.3.4 Interpretivism/Constructivism Philosophy .. 91
4.3.5 The Adopted Research Philosophy .. 91

4.4 RESEARCH APPROACH .. 92
4.5 DATA COLLECTION AND ANALYSIS METHODS .. 93

4.5.1 Data Collection .. 93
4.5.2 Data Analysis .. 95

4.6 DESIGN OF THE GENUINE DAO APPLICATION .. 96
4.7 IMPLEMENTATION AND TESTING ... 96

4.7.1 Tools and Extensions ... 96
4.7.2 Implementation Process .. 96
4.7.3 Expert Evaluation .. 97

 8

4.8 EVALUATION CRITERIA .. 97
4.9 MAPPING THE METHODOLOGY AGAINST THE RESEARCH QUESTIONS ... 98
4.10 SUMMARY ... 99

CHAPTER 5: DESIGN AND IMPLEMENTATION OF THE DECENTRALISED APPLICATION: GENUINE DAO.......... 100

5.1 INTRODUCTION ... 100
5.2 DESIGN REQUIREMENTS OF THE GENUINE DAO .. 100

5.2.1. Decentralisation ... 100
5.2.2 Security.. 101

5.3 THE STRUCTURE OF GENUINE DAO .. 101
5.3.1 Motivation for Genuine DAO... 102
5.3.2 Architecture of Genuine DAO .. 102
5.3.3 Novelty of the Genuine DAO Application .. 103

5.4 SYSTEM ENVIRONMENT CONSTRUCTION AND CODE IMPLEMENTATION .. 104
5.4.1 The Flow to Develop Genuine DAO (Back-end and Front-end) ... 104
5.4.2 Development Tools and Frameworks .. 106
5.4.3 The Genuine DAO Back-end Implementation .. 109
5.4.4 Creating a Proposal ... 119
5.4.5 Voting for a Proposal .. 122
5.4.6 The Queue and Timelock ... 124
5.4.7 Executing a Proposal ... 126
5.4.8 The Front-end Genuine DAO Implementation ... 127

5.5 TESTING THE GENUINE DAO APPLICATION ... 131
5.5.1 Testing Requirement 1 (Distributed Decision-Making) and Requirement 2 (Elimination of Single
Points of Failure) .. 132
5.5.2 Testing of Requirement 3: Secure Smart Contract Execution.. 138

5.6 SUMMARY ... 140

CHAPTER 6: DISCUSSION AND EVALUATION .. 141

6.1 OVERALL EVALUATION APPROACH .. 141
6.2 PEER REVIEW .. 142
6.3 SMART CONTRACT GRAPHING CODE FLOW ANALYSIS ... 142
6.4 SECURITY ANALYSIS OF THE DEVELOPED DECENTRALISED APPLICATION (GENUINE DAO) .. 144

6.4.1 Enhancing Security by Minimising Centralisation Risks .. 144
6.4.2 Enhancing Security by Preventing Frontrunning Attacks .. 147

6.5 PERFORMANCE ANALYSIS OF THE DEVELOPED DECENTRALISED APPLICATION (GENUINE DAO) 153
6.5.1 Enhanced Performance by Using Polygon ... 153
6.5.2 Enhanced Performance Using Gas Optimisation .. 156

6.6 ISSUES AND CHALLENGES DURING THE DEVELOPMENT OF GENUINE DAO .. 158
6.7 EXPERT REVIEW .. 159

6.7.1 “Genuine DAO” as a Solution to Address Centralisation Risks .. 159
6.7.2 Implementation of security controls and countermeasures ... 160
6.7.3 Leveraging Layer 2 Scaling Solutions .. 162

6.8 SUMMARY ... 163

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS ... 164

7.1 THE MAIN ACHIEVEMENTS .. 164
7.2 RESEARCH LIMITATIONS .. 165
7.3 FUTURE WORK ... 166

REFERENCES ... 167

APPENDICES... 190

 9

APPENDIX A: QUESTIONNAIRE FOR EXPERTS’ FEEDBACK ... 190
Appendix A.1 - Participant 1 .. 190
Appendix A.2 - Participant 2 .. 192
Appendix A.3 - Participant 3 .. 194

 10

LIST OF FIGURES
Figure 1 - The Process of the Ethereum Address Generation (Adapted from Lone and Naaz, 2020;
Antonopoulos and Wood, 2018) ... 23
Figure 2 - Classification of Consensus Algorithms, (Adapted from Alsunaidi and Alhaidari, 2019; Zhu
et al., 2020; Chaudhry and Yousaf, 2018) ... 25
Figure 3 - Ethereum Block with a Block Header and Tries on a Peer to Peer Network (Adopted from
Bashir, 2020; Aini et al., 2022; Salomon, 2023). ... 35
Figure 4. Vulnerabilities and Related Attacks within Each Layer of the Ethereum Blockchain 39
Figure 5 Centralisation Risk When Using "onlyOwner" Modifier in Inari Smart Contract (Adopted
from Certik, 2021). .. 57
Figure 6 Solidity Code in a Centralised Vs Decentralised Application (Adopted from CertiK, 2021). .. 58
Figure 7 Centralisation Risks When Contract Owner Holds Authority Over the Functions, Adopted
from Certik, 2021 (Example 1). ... 58
Figure 8 Centralisation Risks When Contract Owner Holds Authority Over the Functions, Adopted
from Code4rena, 2023 (Example 2) .. 59
Figure 9 - Vulnerabilities, Attacks and Consequences: a Taxonomy for the 7-layer Architecture 82
Figure 10 - A Model Application for Best Practice Towards a More Secure Smart Contract 85
Figure 11 Research Methodology Approach and the Key Stages. .. 92
Figure 12 - Flowchart of Research Strategy Used for Articles and Reports Selection. 95
Figure 13 The Architecture of the Proposed Genuine DAO Application. ... 103
Figure 14 - A Proposal Cycle Within a Genuine DAO Structure. ... 111
Figure 15 - Age Contract with Main Functions. .. 114
Figure 16 - Transfer Ownership from AgeContract to GenuineDAOContract 114
Figure 17 - DAOLib Contract with Struct and Enum.. 115
Figure 18 - NFTContract with Override Functions. ... 117
Figure 19 - GenuineDStorage Contract – Mapping. .. 118
Figure 20 - GenuineD contract – Events. .. 119
Figure 21 - Create a proposal and check the proposal status. .. 120
Figure 22 - TestDAO.test.js- Timelock. .. 121
Figure 23 - Voting Process and Checking Conditions. ... 122
Figure 24 - GenuineD smart contract – Queue and Timelock. ... 124
Figure 25 - GenuineD smart contract - Execution Functions. ... 126
Figure 26 - Front-end - Hook Folder ... 129
Figure 27 - Contract’s Addresses for Ethereum Mainnet and Polygon. ... 129
Figure 28 - Genuine DAO - Home Page. .. 132
Figure 29 - Genuine DAO - Admin Page. ... 133
Figure 30 - Genuine DAO - Proposal Page... 133
Figure 31 - Genuine DAO - Vote Page. .. 133
Figure 32 - Deploy and Verify Age Contract .. 134
Figure 33 Deployed contract with available functions on Etherscan. .. 135
Figure 34 - Deployed Contract with One Owner Control to Change Transaction Rate Fee. 136
Figure 35 - Transfer Ownership by Owner/Developer to new Address with Centralised Control. 136
Figure 36 - Genuine DAO Ownership to Control the Decentralised Application (Polygon Network). 137
Figure 37 - Genuine DAO Ownership to Control the Decentralised Application (Sepolia Network). . 137
Figure 38 - The Graphical Code Flow of a GenuineD Contract. .. 143
Figure 39 - A Front-End Example Showing How Genuine DAO Prevents One Owner Control. 146

 11

Figure 40 - An Example, as captured in Polygonscan Amoy Testnet, Showing How Genuine DAO
Prevents One Owner Control. ... 147
Figure 41 - Transfer the Ownership from AgeContract to GenuineDAOContract. 149
Figure 42 - The Process of Frontrunning Attacks. ... 149
Figure 43 - Genuine DAO - Frontrunning Test Result. .. 150
Figure 44 Transaction receipt of the submitted original proposal, as displayed in Polygonscan Amoy
Testnet. ... 151
Figure 45 Transaction receipt of the submitted the frontrunner proposal, as displayed in Polygonscan
Amoy Testnet .. 152
Figure 46 Active state of the submitted frontrunner proposal (9) and original proposal (10) 152
Figure 47- Deploy AgeContract on Polygon in a Different Day/Time ... 155
Figure 48 - Output of Gas Optimisation of Genuine DAO - Hardhat Gas Reporter. 158

 12

LIST OF TABLES

Table 1 – A Seven-layer Blockchain System Architecture, (Adapted from Wen et al., 2021; Yang et al.,
2020; Homoliak et al., 2021; Deng, Huang and Wang, 2022; Huang et al., 2019; Chen et al., 2020). . 38
Table 2 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on the Application
Layer .. 41
Table 3 - Current Work on Vulnerabilities/Attacks and Related Counter-measures within the Contract
Layer .. 68
Table 4 - Vulnerabilities/Attacks and Related Counter-measures on Incentive Layer 69
Table 5 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Consensus
Layer .. 72
Table 6 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Network Layer
 .. 77
Table 7 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Data Layer 79
Table 8 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Physical Layer
 .. 81
Table 9 - Comparing Cost of AgeContract Deployment on Polygon vs. Ethereum. 156
Table 10 - Genuine DAO - Best Practices to Reduce Gas Consumption. .. 157

 13

Chapter 1: Introduction

1.1 Background
The notion of Blockchain technology was introduced by Nakamoto who published an article

about cryptocurrency in 2008, and in 2009 bitcoin became the first decentralised

cryptocurrency. This technology has, over the last few years, received a great deal of attention

from industry and academia due to its favourable characteristics such as decentralisation of

control, reliability and consistency of data and transactions, immutability and anonymity (Xiao

et al., 2020; Ul Hassan, Rehmani and Chen, 2020; Chen et al., 2020; Lin and Liao, 2017).

Since the first generation of Blockchain, based on bitcoin, developers started to believe that

a Blockchain could do more than simple currency transactions. The second generation of

Blockchain introduced Ethereum, an open and decentralised platform, which enables users

to develop smart contracts by using a programming language called Solidity (Chen et al.,

2020). With the introduction of smart contracts, Blockchain technology gained significant

attention, enabling mutually distrusted users to complete data exchange, or transactions,

without the need of intermediaries (Xiao et al., 2020).

The key features of Blockchain technology are described in detail in Chapter 2.

Notwithstanding its benefits for numerous business domains, and despite having some

protective measures and security features, the technology still faces significant security

challenges and vulnerabilities specifically within smart contracts, where a notable number of

issues remain unexplored. This statement is based on the detailed analysis of the existing

work, which is presented in chapter 3. While blockchain promotes decentralisation, smart

contracts can introduce centralisation risks. The centralisation within smart contracts

contradicts the fundamental principles of blockchain, creating a critical vulnerability.

A Decentralised Autonomous Organisation (DAO) model can significantly reduce

centralisation risks for smart contracts by distributing decision-making power, automating

execution, aligning incentives, decentralising development, and implementing fair conflict

 14

resolution mechanisms. These features collectively enhance the security, transparency, and

trustworthiness of smart contracts within blockchain ecosystems.

Despite DAO, smart contract developers, or contract owners, often have significant control

over the contract's functions, potentially creating single points of failure. If the blockchain is

not sufficiently decentralised, these centralisation points can be exploited, undermining the

security of the entire system.

It is within this area that this research falls, as outlined in the following section.

1.2 Problem Statement and Research Aims

While decentralisation is a key concept in Blockchain, paradoxically, centralisation is one of

the main vulnerabilities that raises security concerns in Blockchain transactions. These

centralisation risks emanate from different layers of the Blockchain. The main area of interest

of this research is the security of Blockchain transactions, with a particular focus on Ethereum

smart contracts within the Contract Layer. This special attention stems from the fact that,

although smart contracts are meant to be decentralised, developers can exploit the network

to inject centralisation into the smart contracts. This is the case because when digital assets

are in the control of developers/owners, and Blockchain is not sufficiently decentralised, the

risk moves to the smart contract itself. This makes smart contracts one of the major areas of

security concerns in Blockchain transactions (Chen et al., 2020, Xiao et al., 2020, Sai et al.,

2021; CertiK, 2022). A detailed examination of smart contracts’ security risks within the

Contract Layer can be found in Chapter 3 of this thesis. This examination reinforced the need

for developing countermeasures to mitigate the centralisation security risks, which are

caused by smart contracts. There is, therefore, a strong argument for further research to

develop and implement robust security protocols that guard against smart contracts’

vulnerabilities and ensure the true decentralisation and security of Blockchain transactions.

With the above-mentioned centralisation concerns in mind, this research aims to strengthen

smart contracts resilience against potential attacks, such as front-running attack, and to

 15

minimise centralisation risks using an automated approach based on the concept of

decentralised autonomous organisations (DAOs).

1.3 Research Questions
In working towards this aim, this research intends to answer the following research questions:

RQ1: What are the current security concerns in Ethereum Blockchain transactions?

RQ2: What types of vulnerabilities are inherent to smart contracts in Blockchain?

RQ3: How can a DAO-based framework enhance the decentralisation and security
of smart contracts?

1.4 Research Objectives
In order to achieve the research aims, and answer the research questions, the following

objectives have been identified:

RO1: To investigate current security concerns in Ethereum Blockchain transactions.

RO2: To systematically examine the various vulnerabilities in smart contracts.

RO3: To create a detailed taxonomy of security issues in Blockchain smart contracts.

RO4: To design a DAO-based framework that reinforces decentralisation and

enhances smart contract security.

RO5: To develop and implement a robust methodology to test and evaluate the

proposed framework.

1.5 Key Research Contributions

The main contribution of this thesis is the development of a novel automated decentralised

application, “Genuine DAO”, that promises to reduce security risks and improve the

performance of blockchain networks. “Genuine DAO” achieves the reduction in security risks

by minimising the threats inherent to centralisation, which can be caused by smart contracts’

owners/developers, and by guarding against Front-running attacks.

 16

Although the above is the main contribution, other significant contributions to knowledge in

the Blockchain field are summarised as follows:

Before delving into the Blockchain Contract Layer, which is the main focus of this

research, there was a need to develop a deeper and more comprehensive

understanding of the vulnerabilities that exist within each of the Blockchain layers. For

this, a seven-layer architecture is adopted leading to the development of a general

taxonomy (see Figure 10) that compiles the different vulnerabilities, the types of

attacks, and the related countermeasures within each of the seven layers of the

Blockchain.

A model application is developed depicting, in detail, the security risks within the

Contract Layer, while enlisting the best practices and tools to adopt in order to

mitigate against these risks, as shown in Figure 11. The understanding gained from

delving into the details of security risks within the Contract Layer reinforced the need

for developing countermeasures to alleviate the security risks and vulnerabilities

inherent to one-owner control in smart contracts, which ultimately led to the main

contribution of this work: Genuine DAO.

This research also identified the different types of vulnerabilities and attacks across

each layer of the Ethereum Blockchain and described the inter-relationships between

these vulnerabilities, attacks, and their related consequences. Additionally, a

systematic investigation was carried out into the existing tools and mechanisms

proposed by researchers and developers to detect and prevent these vulnerabilities

and attacks. The findings, summarised in Tables 2-8, detail the location of

vulnerabilities or attacks within the Blockchain, the nature of these

vulnerabilities/attacks, key related works by various authors, and the detection tools

or preventive techniques available.

Another contribution of this work is the enhancement of the overall performance of

the Blockchain network. This improvement is realised through gas optimisation, cost

 17

reduction, and increased network throughput. The enhancement is achieved by

utilising a Polygon layer 2 scaling solution built on the Ethereum network.

1.6 Thesis Structure
In addition to this Introduction Chapter, this thesis is organised as follows.

Chapter 2 covers the background information and some of the Blockchain principles and key

features used in this work. Such features include the architecture of Blockchain technology,

the abstract layers forming the Blockchain network and key components such as

cryptography, smart contracts and the Ethereum platform.

Chapter 3 describes the findings of a systematic literature review, which encompasses the

different vulnerabilities and attacks associated with each layer of a seven-layer Blockchain.

The review also highlights the potential consequences of these attacks and suggests

countermeasures yielding a taxonomy which outlines, within each layer, the inter-

relationships between the vulnerabilities, the attacks, and the corresponding potential

consequences.

Chapter 4 discusses the research methodology used to reduce centralisation risks and

enhance smart contracts’ security. An experiment-based approach is adopted, which is

supported by a mixture of qualitative and quantitative analysis. This chapter also presents the

research tools and techniques, including software experiments, which were applied in this

study.

Chapter 5 describes the technical architecture of the developed decentralised application,

“Genuine DAO”, whereby smart contracts are written in such a way to prevent one-owner

control, and to minimise the risks of Front-running attacks. This chapter is dedicated to

describing the design and implementation of the “Genuine DAO” framework covering

development and testing aspects. In this chapter, a description is given of the detailed

elements of test cases used, including how these test cases were designed and executed to

assess the functionality of the framework, its performance and its security. The results of

 18

software experiments and qualitative analysis conducted during this research can be found in

this chapter.

Chapter 6 discusses the key finding and provides an evaluation of the results, measured

against the research aims and objectives.

Concluding notes are to be found in Chapter 7, including recommendations for future work

and research limitations.

1.7 Code Repository
The code of the Genuine DAO application, back-end written with Solidity and front-end

written in JavaScript, is available on the GitHub repository https://github.com/Sepideh-M.

https://github.com/Sepideh-M

 19

Chapter 2: The Blockchain Technology and its Key Features

2.1 Introduction
This chapter covers the architecture of Blockchain technology and its key features, including

a description of the different layers of the Blockchain and some of the key mechanisms and

concepts used in blockchains, such as decentralisation, cryptography, the Ethereum platform

and smart contracts. This description is needed to set the scene for the literature review

chapter (Chapter 3), which focuses on the security issues and vulnerabilities associated with

the technology.

2.2 Blockchain Technology
Blockchain is a technology which is receiving a growing attention from many researchers,

scientists, and application developers. Data is stored in a transparent, shared distributed

ledger, which is verified and maintained by the nodes in a decentralised network. The data in

Blockchain are immutable as it is guarded by cryptography to ensure security, integrity and

privacy (Ul Hassan et al., 2020). This innovative tool promises a secure digital world, and

offers more reliable and convenient services. As a result, many organisations, from the private

and public sectors, are eagerly looking at this advanced technology to enable digital business

and implement innovative applications in diverse areas such as finance, IoT, cryptocurrency,

digital identity, real estate, social media, distributed cloud storage and healthcare. All of this

illustrates that this advanced technology has the potential to overtake several industrial

business models and change the way transactions are conducted in everyday life (Ul Hassan

et al., 2020). Nonetheless, and despite the fact that this advanced technology has great

benefits for businesses, it is facing a large number of security challenges which is hindering its

successful adoption (Wen et al., 2021).

2.3 Blockchain Key Features

Decentralised distributed ledger, cryptographic algorithms, consensus algorithms are

fundamental elements of Blockchain. Combining these elements, provide a reliable database

 20

for transparent and secure transactions (Raikwar, Gligoroski and Kralevska, 2019). The

sections below give a brief description of these key features.

2.3.1 Decentralised Distributed Ledger
Blockchain is a decentralised and distributed digital ledger, or a shared database that stores

data (blocks) and maintains the ledger in a decentralised way (Yap, Chin and Klemeš, 2023).

In Blockchain Peer to Peer (P2P) network, nodes communicate directly and all of them have

access to the shared ledger and keep the same copy of all valid transactions (Raikwar,

Gligoroski and Kralevska, 2019). This decentralised nature of the technology and its inherent

features of distribution and absence of a single point of failure makes Blockchain a technology

that promises a significant enhancement of data security and transparency

(Ahmadisheykhsarmast, et al., 2023). The security aspect is further strengthened by other

features such as cryptography.

2.3.2 Cryptography
Cryptography is one of the key features of Blockchain and is used to achieve four main security

goals namely, data confidentiality, integrity, authentication and privacy. Data confidentiality

and authenticity are achieved by using digital signature. Data integrity is achieved by

employing hash functions (Lone and Naaz, 2020). Data privacy is achieved by using zero

knowledge proof (Chi, Lu and Guan, 2023). These functions are described below.

2.3.2.1 Digital Signature
Most cryptographic systems typically rely on three key dimensions. 1) operations to convert

plaintext into ciphertext. These operations determine the encryption and decryption

processes. 2) the number of keys involved in cryptographic operations. 3) the algorithm

employed for processing plaintext. There are many different types of encryption algorithms.

Symmetric and asymmetric encryptions are the most common types of encryption. In a

symmetric encryption, known as a secret key, the same key is used for encrypting and

decrypting data. On the other hand, asymmetric encryption, referred to as public key, is a

safer method whereby a pair of keys is used, public key and private key (Lone and Naaz, 2020).

Ethereum uses Elliptic Curve Digital Signature Algorithm (ECDSA) for transaction signing and

 21

verification. Asymmetric encryption in Ethereum Blockchain is used to ensure authenticity,

integrity and non-repudiation of transactions (Lone and Naaz, 2020).

Decentralised authentication and authorisation mechanisms are critical to the security of

Ethereum Blockchain. Authentication is a process of validating user identities, whereas

authorisation determines what operations and functions users are permitted to perform once

they are successfully authenticated (Zhong et al., 2021; Ghaffari et al., 2020). In Ethereum

Blockchain, cryptography (digital signature) is used for data origin authentication. The user

creates a message called transaction and signs it digitally by its private key before

broadcasting the transaction to the network. The new transaction has a signature and a public

key of the user. The signing process is carried out in a client side through the user’s wallet and

proves that they are the rightful owner of the asset (Bashir, 2020). When a smart contract

receives the transaction, Ethereum Blockchain checks that transaction signature to verify if

the signature matches the public key of transaction. If it is not matched, the transaction fails.

If it is matched, the address of the user, which is derived from its public key, is put aside using

the “msg.sender” variable of the smart contract. In fact, a smart contract does not need any

authentication itself, the Ethereum Blockchain takes care of that. The sender of the

transaction is identified by the address stored inside the “msg.sender”. More importantly, the

private key of the user is not stored on the Blockchain and is stored in the user’s wallet. If

hackers managed to get into the user’s wallet, only the user’s private key is compromised and

other users’ keys remain secure. The authentication mechanism is completely different from

that of a web application or a centralised system where a hack of the centralised database

can compromise all users’ accounts (EatTheBlocks, 2019).

The authorisation mechanism is used to establish access to resources and handles user’s

privileges in the Blockchain network (Zhong et al., 2021). Writing the correct authorisation

control is significantly important when developing a smart contract. As part of the

authorisation mechanism, the visibility function is critical when users call the function. There

are four levels of accessibility for each function in a smart contract: public, external, internal,

and private, with the default visibility of a function being public. Therefore, the visibility

function plays a key role in the security of a smart contract, ensuring that the level of access

is limited (Adi, 2022).

 22

2.3.2.2 Hashing Functions
Kuznetsov, et al., (2024) explained a hash function as a mathematical algorithm that takes an

arbitrary length input x and produces a fixed-length output, typically referred to as the hash

value h, such as H(x)=h.

Cryptographic hash functions are used to create Merkle trees, generate Ethereum address

and message digest in digital signatures thus providing efficiency, security, and integrity of

large data (Bashir, 2020). Each transaction has a unique identifier called a transaction hash.

Each block of the Blockchain network has its own hash as well as the hash of the previous

block. The linking of blocks through the hashing functions provides immutability. The hash

function algorithm used in Bitcoin is SHA-2 and its variant SHA256, whereas Ethereum uses

Keccak-256, part of SHA-3, to create a chain, generate and verify digital signatures and create

Ethereum accounts (Raikwar, Gligoroski and Kralevska, 2019; Apriani and Sari, 2021).

Cryptography hash functions are critical in a) ensuring data integrity through the use of digital

signature (Saini et al., 2022) and 2) achieving collision resistance by making it hard to find two

different inputs x and x′ that produce the same output, H(x) = H(x′).

Antonopoulos and Wood (2018) explained that the Ethereum address (account) is derived

from a public key and uses the hashing function keccak256. The public key is derived from the

private key by using a hashing algorithm called Elliptic Curve Digital Signature (ECDSA), as

mentioned above. The private key is generated randomly. Ethereum software uses the

underlying operating system’s random number generators to generate 256 bits of entropy.

Figure 2 shows the process of the Ethereum address generation (Lone and Naaz, 2020;

Antonopoulos and Wood, 2018).

 23

Figure 1 - The Process of the Ethereum Address Generation (Adapted from Lone and Naaz, 2020;

Antonopoulos and Wood, 2018)

2.3.2.3 Zero-Knowledge Proofs (ZKPs)
Bashir (2020) stated that ZKP is a cryptographic protocol for proving that a prover possesses

a secret without revealing it to the verifier. Completeness, soundness and zero knowledge are

three properties that are required in the context of ZKPs.

Completeness Property ensures that a valid statement can be proven to be true.

Therefore, the prover can convince a verifier of the truth of a statement (Bashir, 2020).

The Soundness Property ensures that if an assertion is false, no malicious prover

would be able to convince the verifier that it is true (Bashir, 2020).

The Zero-knowledge Property prevents the verifier from learning any additional

knowledge about the prover’s secret and ensures that absolutely no information will

be revealed about the assertion except whether it is true or false (Chi, Lu and Guan,

2023; Bashir, 2020).

Zero-knowledge proofs are used to enhance the user’s privacy and provide secure

authentication, anonymous transactions within a Blockchain system (Chi, Lu and

Guan, 2023; Bashir, 2020).

 24

2.3.3 Consensus Algorithms
Bashir (2020) highlights the fact that Blockchain is a distributed system that relies on

consensus algorithms to guarantee the security and liveness of the network. Consensus

algorithms are protocols that force the consensus rules to ensure all nodes in a decentralised

network reach an agreement on the Blockchain data state (Antonopoulos and Wood, 2018).

Consensus algorithms are categorised into two types, proof-based and voting-based and are

utilised to ensure all nodes reach an agreement on the data validity of newly generated blocks

in the decentralised network (Wen et al., 2021; Xiao et al., 2020; Nguyenand Kim, 2018;

Alsunaidi and Alhaidari, 2019; Suresh et al., 2020). In Bitcoin, miners use a significant

computational power and compete to solve a cryptographic puzzle (Find a nonce value) to

verify transactions and add a new block. When cryptocurrency become more popular, more

computers join the network, driving up the network’s computing power. The greater the

number of people who join the network, the harder it becomes to mine. Eventually, users

start relying on Graphics Processing Units (GPUs) and then once those become insufficient,

miners have to start investing in an Application-Specific Integrated Circuit (ASIC) hardware.

Later miners find that joining a mining pool, combing individuals computing power, provides

a more stable hashrate for them and tremendously increases the probability of validating

blocks and earning rewards [Beikverdi and JooSeok 2015; Minima, 2022).

The Proof of Work (PoW) algorithm was firstly adopted for Ethereum to reach the consensus.

This algorithm requires a significant amount of computational powers and other resources,

such as huge electricity consumptions, to verify transactions and add a new block to the

ledger. It also takes a long time (roughly 10 minutes) to achieve data consistency.

Ethereum announced in September 2022 that it moved to Proof of Stake (PoS). With the PoS

mechanism, validators are responsible for block creation. In order to participate as a validator,

a user must hold 32 ETH and stake them (Ethereum, 2023). Therefore, Ethereum with PoS

relies on validators, not miners, to add new blocks to the chain (Elliott, 2022). Figure 3 depicts

the different types of consensus algorithms.

 25

Figure 2 - Classification of Consensus Algorithms, (Adapted from Alsunaidi and Alhaidari, 2019; Zhu

et al., 2020; Chaudhry and Yousaf, 2018)

2.4 The Ethereum Blockchain Platform
There are different Blockchain platforms such as Ethereum, Hyperledger, Corda, Quorum,

IBM Blockchain and many more that offer the necessary tools, protocols, and functionalities

to build and deploy Blockchain-based applications. According to (Gartner, 2023), the

Ethereum platform is the most used Blockchain platform. For this reason, this research uses

Ethereum as a platform.

Ethereum allows developers to create and deploy smart contracts on Blockchain network and

develop decentralised applications (Bashir, 2020). The core component of Ethereum is the

Ethereum Virtual Machine (EVM). The EVM provides a runtime environment to handle smart

contract development and execution (Antonopoulos and Wood, 2018; Marchesi et al., 2020).

The EVM operates as a virtual machine, similar to how a CPU executes machine code in

traditional computing. It is used by developers for creating and deploying smart contracts to

develop decentralised applications using, mainly, Solidity as the programming language.

Before being executed, within an Ethereum environment, the Solidity source code needs to

be compiled into the bytecode that EVM understands (Bashir, 2020).

There are several locations where the data is stored on Ethereum Blockchain. These include

storage (persistent memory to store smart contract state variables), memory (temporary data

 26

space to store data during the execution), stack (local computations data store in the EVM to

store data during contract execution) and call data (Read-only data for external function calls).

The EVM is a stack-based execution machine that stores data in the memory on a stack

(Marchesi et al., 2020).

Bashir, (2020) explained that Ethereum operates on the peer to peer network where nodes

contribute to the consensus mechanism, validate and verify transactions and contribute in

order to maintain the Blockchain. The native currency in the Ethereum network is called Ether

(ETH). Ether is used as "gas" to power transactions and execute smart contracts on the

Ethereum network. Every operation performed on the network, such as sending Ether or

interacting with a smart contract, requires a certain amount of gas, which is paid by whoever

sends the transaction (Marchesi et al., 2020).

To calculate the transaction fee, gas used should be multiplied by gas price. The more gas

indicates a higher transaction fee. Gas price is measured in gwei. Each gwei is equal to one-

billionth of an Eth (1gwei= 0.000000001 Eth or 10-9). Transaction costs can be estimated using

the following formula: (Bashir, 2020; Nico, 2024).

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝐸𝐸𝑇𝑇ℎ) = 𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑔𝑔𝑔𝑔 ∗ 𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔
𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇

1000000000
∗ 𝐸𝐸𝑇𝑇ℎ𝑔𝑔𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔 (£)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑔𝑔𝑔𝑔 ∗
𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

1000000000
∗ 𝐸𝐸𝑇𝑇ℎ𝑔𝑔𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔

According to Bashir, (2020) the gasPrice is set by the transaction originator as an incentive to

the validators for them to include a transaction in a block during block creation. The gasPrice

includes the base fee that is a value set by networks (Ethereum Mainnet and Polygon in this

research) and the priority fee, which is a value set by the user as an incentive to the validator

to include a transaction in a block (Nico, 2024). The base fee may increase due to the limitation

on the maximum throughput in the network per block when numerous users attempt to

interact simultaneously (Baldauf, Sonnleitner and Kurz, 2023).

 27

The gasUsed represents the total amount of gas that is used by the transaction during the

execution (Bashir, 2020). There is a gas limit in the Ethereum system, which refers to the

maximum amount of gas that the transaction originator is keen to consume on a transaction.

The minimum amount of gas that is set for an operation that affects the state of the EVM such

as transferring Ether between two accounts, is 21000 gas (Marchesi et al., 2020). The gas is

charged depending on the resources required for a particular operation and is determined by

the computational complexity. Operations such as deploying smart contracts, interacting with

different smart contracts, message calls, complex functions, storage operations (reading from

and writing to storage in smart contracts) can consume a huge amount of gas (Bashir, 2020;

Marchesi et al., 2020). EtherPrice is provided by Ethereum exchange and will change based

on the supply and demand. To calculate the current worth, the EtherPrice can be easily

converted to British Pound.

Marchesi et al. (2020) and Li. (2021) argued that gas fees have been a significant challenge

and have had obvious implication on the Ethereum network. There are many optimisation

tools and techniques to minimise the cost of gas. The transition from Ethereum 1.0 to

Ethereum 2.0 not only enhances the security, scalability and speed, it also reduces the

transaction cost. However, the Ethereum gas fee remains quite high even after the transition

to Ethereum 2.0 due to different factors, such as unfamiliarity of developers with smart

contract and EVM (Kong et al., 2022).

Marchesi et al. (2020) suggested 24 patterns with the aim of saving gas in designing and

developing smart contracts. The following are the five categories with solutions that have

been presented:

External transactions: a) use Proxy delegate patterns which are a set of smart

contracts working together to streamline the upgrading process of smart contracts. B)

For external systems requiring past event data, grant direct access to the Blockchain's

Event Log, avoiding smart contracts when unnecessary.

Storage: a) limit storage by using memory for temporary data and limiting storage

updates upon completing all computations. b) Packing variables and Booleans.

 28

Saving space: a) utilise unsigned integers of 128 bits when packing variables in one

slot, otherwise it is better to use uint256 variables. B) use mappings instead of arrays

to manage lists of data, c) minimise on-chain data in Storage variables.

Operations: a) Limit External Calls. b) use internal function calls rather than public

functions Whenever possible. c) make a balance with the function number with their

complexity (no many small functions and not too big functions). d) limit modifiers. e)

Avoid redundant operations and double checks.

Miscellaneous: a) freeing storage by deleting unnecessary variables when they are no

longer necessary and b) employing the Solidity Optimiser.

Li. (2021) collected data and combined knowledge from existing research resources to design

a list of general gas-saving best practices for enhancing developer’s knowledge. Kong et al.

(2022) analysed 160,000 smart contracts on the Ethereum network and found that 52.75% of

contracts contained at least one gas inefficiency. They presented an approach to detect and

optimise six inefficient patterns at the source code level, focusing on development issues

arising from developers. They proposed that conducting gas optimisation prior to smart

contract deployment could result in considerable cost savings.

The Ethereum ecosystem consists of the following components:

Cryptographic Keys and Ethereum addresses: these components represent

ownership and transfer ether. As we explained earlier in section 2.3.2.2, Private Key is

a randomly chosen 256-bit number that serves as the main identifier and secret piece

of information for an Ethereum account. The public key is derived from the private

key and it shared and used to verify digital signatures. An address is derived from the

public key and used for sending and receiving Ether and interacting with smart

contracts (Bashir, 2020).

Ethereum accounts: include externally owned accounts (EOAs) and contract accounts

(CAs). By having accounts in Ethereum, users can interact with Blockchain and

participate in decentralised applications. Each externally owned account has a unique

Ethereum address derived from a cryptographic key pair. The account holder

 29

maintains control over the private key associated with the EOA, which is used to sign

transactions and prove ownership. EOAs re responsible for initiating transactions,

interact with smart contracts. Smart accounts are responsible for executing Smart

Contracts, interacting with externally owned accounts, maintaining the state of a

smart contract by storing and updating the state as transactions (Bashir, 2020).

Ethereum Clients: Ethereum clients are software such as Geth that runs on nodes to

connect to the Ethereum network. it provides several functions such as validate

transactions, and maintain a copy of the Blockchain (Bashir, 2020).

2.5 Smart Contracts
According to Vivar et al. (2020) a smart contract is a computer program written using a

programming language, such as Solidity, that runs on a decentralised basis and the overall

state of the system is stored in a Blockchain. It can be written in various high-level

programming languages. Solidity is object-oriented programming language which is

influenced by C++, Python, and JavaScript languages. The Solidity language is most widely

used for writing smart contracts in Ethereum platforms and is compiled into a bytecode,

which is then executed by the EVM.

 Currently, there are several platforms that can support smart contracts such as Ethereum,

Hyperledger Fabric, Corda, Stellar, Rootstock, Polkadot, and Solana (Zheng et al., 2020). This

work is focused on Ethereum, one of the most popular smart contract platforms.

As smart contracts are automated and deployed on the decentralised ledger, they can

eliminate the need for a central entity, decrease the maintenance cost, enhance access

control mechanisms, and minimise the inherent threats to centralised systems (Ghaffari et

al., 2021). The user who deploys smart contracts on the Ethereum Blockchain has no

permission to change the smart contract. If developers want to correct a bug, the system

forces them to deploy a new smart contract with a new unique address. However, there is

the ownership of a smart contract which the system automatically assigns to the contract

creator at the time of deployment. The address of the owner will be stored on the Blockchain

 30

during the initialisation (Hooper Solorio and Kanna, 2019; Larson, 2022). This ownership poses

a threat to the concept of decentralisation on which the Blockchain technology is based.

2.6 The Architecture of Blockchain Technology
 Most researchers describe the architecture as a six-layer model. Examples of six-layer models

can be found in the work of Wen et al. (2021); Yang et al. (2020); Deng, Huang and Wang.

(2022). Others, like Homoliak et al. (2021) and Chen et al. (2021) condense the architecture

into a four-layer model (Homoliak et al., 2021; Chen et al., 2020). Huang et al. (2019) on the

other hand, use a seven-layer architecture, adding a physical layer to the six-layer model

(Huang et al., 2019). Having reviewed the literature, this research adopts a seven-layer

architecture as its conceptual framework. The rationale behind this choice is that a seven-

layer architecture provides a better granularity to account for all possible security risks. In

order to develop a more detailed understanding of the sources of vulnerabilities within each

of the seven layers of the Blockchain, an understanding of the role and components of each

layer is needed. For this, a brief description of each layer is provided below, highlighting some

of the key vulnerabilities that will be discussed in more detail in Chapter 3.

2.6.1 Application Layer
This layer comprises various forms of application scenes such as programmable currency,

programmable finance, and programmable society. The introduction of smart contracts,

instead of humans, to execute contracts provides a great opportunity to implement

Blockchain solutions for use across different applications and industries (Wen et al., 2021;

Ahmed and Kumar, 2019). Within this layer, threats are broad and can include internal and

external attackers, malicious exchanges/service providers, malware, design and configuration

(Homoliak et al., 2021). Users are using decentralised, centralised exchanges and different

platforms to exchange digital assets. Thus, these exchanges play an important role in the

development/adoption of Blockchain. Despite of numerous benefits offered by decentralised

exchanges such as better security, no middle man in the ownership and transfer of funds,

control over the assets and less transaction fees, users are using centralised exchanges which

come with “centralisation risks” (Annessi and Fast, 2021; Nathan Sexer ,2018). One of the

risks is that users’ assets can be controlled by the exchange operator (or malicious operator),

which provides full control over the funds on their servers (Annessi and Fast, 2021; Nathan

 31

Sexer ,2018). Another risk is that a centralised exchange acts as a centralised network owner,

which causes a single point of failure (Sai et al., 2021). Centralised exchanges are also

vulnerable to hacks through insider attacks or hardware failures (Nathan Sexer ,2018).

Currently, large centralised exchanges lead centralised staking activities. Therefore, large

companies will have the majority share of the network and make it more centralised (Jha,

2022). To eliminate the single point of failure, which emanates from centralisation (Homoliak

et al., 2021), it is important to use decentralised exchanges. However, they may contain some

vulnerabilities that come from smart contracts or other features of Blockchain.

2.6.2 Contract Layer
The contract layer contains components such as script codes, smart contracts and algorithms.

In order to run a smart contract, the codes should compile to the low-level bytecode that

executes in the Ethereum virtual machine (EVM). Once compiled, the smart contract deploys

on the Ethereum Blockchain and is identified by a unique contract address generated upon a

successful creation transaction (Antonopoulos and Wood, 2018; Destefanis et al., 2018).

Algorithms define the mechanism for all participating nodes to interact with each other and

set relative execution and data resource. When the pre-defined rules are met, the relative

operation will be performed in the network (Wen et al., 2021; DevCon, 2018). Through the

literature review, 13 vulnerabilities/attacks have been found within this layer. This research

is focused on “owner control” that poses a serious centralisation risk by enabling developers

and external attackers to exploit the Blockchain through contracts’ ownerships.

2.6.3 Incentive Layer
The incentive layer is responsible for providing some rewards and incentivise as many mining

and validating nodes as possible to become part of the network. This layer includes the issuing

and allocating mechanisms for issuance and the distribution of rewards (Huang et al., 2019;

Wen et al., 2021; Han et al., 2023).

To ensure security and decentralisation, the Blockchain system needs a large number of

honest nodes (greater than 50%) to verify and validate each transaction. Incentive

mechanisms are required to motivate nodes to participate in maintaining the safety of the

system (Han et al., 2023). Therefore, the incentive mechanism plays a vital role in the

 32

Blockchain system ensuring that the majority of the network is honest (Sai et al., 2021). On

the other hand, some researchers stated that incentive mechanisms would cause a

centralisation risk. To increase their chances of mining, individual miners use a mining pool to

increase the chance of getting any reward from block creation. This process leads toward a

centralised point that mining power and control over incentive distribution would be in the

hands of a few individuals in the Blockchain network (Han et al., 2023). Furthermore, if honest

nodes withdraw from being active miner, it will impact on the value of hashing power of the

network. As a result, the distribution of rewards can be skewed towards a few participants

(especially the small number of participants that are part of a mining pool) leading to

centralisation of hashing power of mining pool, reward centralisation and control over the

network (Sai et al., 2021; Leonardos, Leonardos and Piliouras, 2019). This may lead to a

decrease in participation due to unfair incentive distribution, to a reduced security due to

centralisation in mining pools, and to an increase in the threat of selfish mining and 51%

attack (Sai et al., 2021, Han et al., 2023).

There are some mining pools available such as PPLNS (Pay Per Last N Shares), PPS (Pay Per

Share), SMPPS (Shared Maximum Pay Per Share) and PROP (Proportional) that can be used in

distributing rewards based on mining pools protocol (Wen et al., 2021; Beikverdi and JooSeok

2015).

2.6.4 Consensus Layer
The consensus layer contains various algorithms that are utilised to ensure all nodes reach an

agreement on the data validity of newly generated blocks in the decentralised network (Wen

et al., 2021; Xiao et al., 2020). Initially, Ethereum used the PoW algorithm, then it moved to

PoS in 2022 (Ethereum, 2023). For mining process and block creation, a few individuals have

been joined to mining pools to combine their computational powers and control a large

portion of (hold 51%) hashrate on a Blockchain network. This process is going to greatly

damage the security and decentralisation of the network, as highlighted by (Han et al., 2023;

Beikverdi and JooSeok 2015; Minima, 2022). On the other hand, PoS promises to provide a

more energy-efficient, scalable mechanism that reduces the centralisation risk which leads to

greater decentralisation (Ethereum, 2023). However, there is still the risk of centralisation

 33

because the validation of blocks is controlled by validators who hold the majority of the token

(Xiao et al., 2020; Mollajafari, 2022).

The fact is that, lots of ETH holders (validators) have been staking their coins through large

centralised exchanges. It means that centralised entities become dominant holders and have

a majority share of network. Therefore, they have a much higher probability to add new

blocks to the chain and control the process of block creation (Elliott, 2022; Jha, 2022).

2.6.5 Network Layer
The network layer comprises transmission protocols, a propagation mechanism and a

verification mechanism. These protocols and mechanisms are deployed using a Peer to Peer

(P2P) network for data transmission and verification across the distributed nodes (Huang al.,

2021). It is worth emphasising the fact that there is no centralised node or hierarchical

structure in a P2P network (Yang et al., 2020; Huang al., 2021).

Transmission protocols allow Blockchain nodes to communicate directly with each other and

to synchronise data among them. Each node has the opportunity to broadcast blocks, or

transactions, in a shared ledger. Transmission protocols help nodes to be aware of all the data

and broadcast only valid data to the network (Huang al., 2021; Essaid et al., 2018; Xu, 2018;

Antonopoulos and Wood, 2018).

As part of communication between nodes on a peer to peer network, a node discovery

protocol is required. This protocol works based on DNS seed address that distributes the

address of other active nodes on the network (Sai et al., 2021). DNS itself is a week protocol

and relies on centralised network. It suffers from security and privacy issues due to a weak

verification mechanism. Blockchain-based DNS assists in minimising some of the security

concerns. Ethereum Name Service (ENS) contains critical information which is stored on smart

contracts to manage domain name ownership (Liu et al., 2019). Therefore, it may be

controlled, or manipulated by malicious developers or owners, and make it centralised.

 34

2.6.6 Data Layer
This layer acts as the Blockchain data structure. A block is a collection of valid transactions in

a shared ledger, made of a block header and a block body (Liang, 2020; Yang et al., 2020; Wen

et al., 2021). The first block in Blockchain network called Genesis block and it differs from

normal blocks primarily due to a unique block hash and the data it contains (Bashir, 2020).

Ethereum block includes the following components such as block number, timestamp, nonce,

difficulty, gas limit, gas used, parent hash, transactions (Min, 2023).

According to (Bashir, 2020; Min, 2023) the block header contains the metadata representing

the most detailed components within an Ethereum block. The followings are the elements of

a block header:

• Block number: the total number of previous blocks (Genesis block is block zero).

• Timestamp: the epoch Unix time, or time and date when the block was generated.

• Difficulty: a value that represents difficulty level of the current block.

• Nonce: A64-bit hash (random value) used to create a valid block.

• State root: contains of the Keccak256-bit hash of the root node of the state trie after

the execution of transactions in the block.

• Receipts root: contains of the Keccak256-bit hash of the root node of the transaction

receipt trie.

• Transaction root: contains of the Keccak256-bit hash of the root node of the

transaction trie (the root hash of the Merkle tree) which represents the list of

transactions in the block.

• Gas used: the maximum amount of gas consumed in executing transactions per block.

• Gas limit: a set value of gas to consume per block.

• Beneficiary: the 160-bit address of miners/validators who validate the block, receiving

the block reward.

• Extra data: arbitrary data that can be stored in the header.

• Parent hash: the Keccak256-bit hash of the previous block’s header.

• Logs bloom: a 256-bit bloom filter derived from the logs of all transactions included in

a block.

• Ommers hash: the Keccak256-bit hash of the ommers (uncles) block.

 35

Finally, the block body holds a long list of transactions and list of ommers (Bashir, 2020; Aini

et al., 2022; Salomon, 2023). The diagram in Figure 4 illustrates the Ethereum block structure

within the data layer.

Figure 3 - Ethereum Block with a Block Header and Tries on a Peer to Peer Network (Adopted from

Bashir, 2020; Aini et al., 2022; Salomon, 2023).

2.6.7 Physical Layer
The physical layer is the actual medium that transports the bits. The main components of this

layer are the IoT devices, which connect to the internet and act as nodes on the Blockchain

network. Smart contracts are responsible for the decentralisation of the Blockchain

translating the existing contractual clauses into embedded hardware and software (Choo,

Dehghantanha and Parizi, 2020). To establish a connection with a Blockchain-based system,

all IoT devices need to interact with smart contracts and perform the digital signature and

additional authentication processes (Yang et al., 2020; Edgcombe, 2016). Integration of IoT

devices with Blockchain enhances device security and data privacy.

 36

2.7. Summary
This chapter provided an overview of Blockchain’s key features, including decentralised

distributed ledger, cryptography (digital signature, hashing and zero knowledge proof) and

consensus algorithms. The Ethereum platform and smart contracts, being key elements of

this research, have been explained. The Blockchain architecture as a seven-layer model is

adopted which provides a better granularity to account for all possible security risks in each

layer. The role and components of each layer have been described. A seven-layer Blockchain

system architecture and the key vulnerabilities within each layer are discussed in more detail

in Chapter 3.

 37

Chapter 3: Security Analysis Within the Seven Layers of the

Blockchain

3.1 Introduction
This chapter provides a review of the different vulnerabilities and attacks associated with each

layer of a seven-layer Blockchain. The potential consequences of these attacks are

highlighted, yielding a taxonomy outlining, within each layer, the inter-relationships between

the vulnerabilities, attacks and the corresponding potential consequences and suggested

countermeasures.

3.2 A Seven-layer Blockchain
As highlighted above, the decentralised nature of Blockchain offers transparency, security,

and decentralised decision-making, which can be advantageous to address security

challenges. This will only work to deep dive into the architecture of Blockchain looking at each

component of a seven-layer Blockchain and put in place adequate measures to counter the

security vulnerabilities and threats. This section describes the initial research findings,

providing a comprehensive overview of the different vulnerabilities associated with each of

the seven layers.

In the current literature most Blockchain architectures are presented as comprising between

four to six layers. An exception is the work in Huang et al., (2019), as highlighted above. This,

poses a high risk of missing the source, and therefore understanding the nature of the security

threats. Having a more granular architecture enables a closer look at the components of the

Blockchain, and a more detailed examination of security risks and their location within the

architecture. Therefore, a more detailed architecture, comprising seven layers, was adopted

as depicted in Table 1.

 38

Table 1 – A Seven-layer Blockchain System Architecture, (Adapted from Wen et al., 2021; Yang et al.,
2020; Homoliak et al., 2021; Deng, Huang and Wang, 2022; Huang et al., 2019; Chen et al., 2020).

3.3 An Overview of Vulnerabilities within a seven-layer Ethereum
Blockchain
As Ethereum and smart contracts are not very mature, they add complexity to developing

non-vulnerable smart contracts. In the following sections, Ethereum vulnerabilities and

attacks are outlined based on their location. Their root causes and consequences are

analysed, and the possible detection tools and preventative techniques, drawn from the

literature, are discussed. Figure 5 provides a summary of attacks/vulnerabilities associated

with each of the seven layers of the Ethereum Blockchain, which are described in detail in

subsections 3.4 – 3.10. Existing works have been analysed and detection tools and preventive

techniques listed for each of the layers. This work is detailed in Tables 2-8.

These findings are used as a basis for developing a taxonomy of the Ethereum

vulnerabilities/attacks and their consequences, as discussed below. The basis of this

taxonomy, is shown in Figure 5, summarising for each of the seven layers, existing work on

detection tools and preventive techniques used for securing Ethereum systems. A fuller

 39

taxonomy depicting vulnerabilities, attacks and their consequences is later shown in Figure

10.

Figure 4. Vulnerabilities and Related Attacks within Each Layer of the Ethereum Blockchain

3.4 Vulnerabilities/Attacks on the Application Layer
3.4.1 Hot Wallet theft
A crypto wallet is used to store and manage the private keys. There are several crypto wallets

with different security levels, such as hot wallet, cloud wallet, paper wallet and hard wallet

(Rezaeighaleh and Zou, 2019). Ethereum remote clients (mobile wallets/browser wallet) are

able to manage private keys, broadcast transactions and interact with smart contracts but not

able to store the full Ethereum Blockchain like full node client (Antonopoulos and Wood,

2018). Since the cryptocurrency wallet is simply used for a key storage, when connecting to a

transaction network, it is vulnerable for a key theft. Researchers highlighted a number of

vulnerabilities in crypto wallets which cause private key leakage and loss of assets in wallets

(Zamani, He and Phillips, 2020; Sung, 2021). Hackers can use different techniques to exploit a

cloud server and steal and tamper with sensitive resources such as keys and transactions.

Hackers also can pose DoS attack on servers. In addition, there are some reports from

 40

cryptocurrency exchanges, such as Bilaxy exchange and AscendEX, that tokens were lost from

Ethereum via hot wallets (PARTZ, 2021; Thomas, 2021). Therefore, it is vital that exchanges

keep most funds in cold storage.

Zamani et al. (2020) explained that this vulnerability can be minimised by using cold storage,

offline wallets or even paper-based wallets documents and avoiding ‘hot’ wallets (Zamani, He

and Phillips, 2020). Sung. (2021) introduced the key protocol for key exchange agreement

between nodes which comprises a session key and Federated Byzantine Agreement (FBA) that

protects the cryptocurrency wallet key from theft (Sung, 2021).

3.4.2 Decentralised finance (DeFi) flash loan attack
DeFi relies on smart contracts and uses automated protocols to provide financial services

without intermediaries. A flash loan is uncollateralised and unsecured loan in DeFi system

that allows borrowers to take loans without needing upfront collateral and then repay the

loans with a single Blockchain transaction, guaranteed by a smart contract (Werapun et al.,

2022). DeFi poses security risks on the Ethereum Blockchain due to smart contract

weaknesses and new unsecure protocols suh as MakerDAO. Flash loan attacks can lead to:

• Data leakage via phishing: attackers attempt to trick users and direct them to a fake

website to access user’s sensitive data such as private key (Werapun et al., 2022).

• Market price manipulation: attacker borrows a large amount of digital assets via flash loan

and use that funds to manipulate the price of that specific assets on a certain DeFi

platform. Furthermore, malicious arbitrage or attacker create an arbitrage opportunity and

manipulate token price. If greedy arbitrageurs do not have large sums of tokens in their

wallet, they use flash loan service to borrow from a flash loan provider such as Aave to

leverage their trading position sizes and gain more profit (Werapun et al., 2022). There are

a number of DeFi attacks that happened in 2020 and 2021 (Qin et al., 2020; Thurman,

2021).

• Steal or redirect funds: smart contract plays crucial role in execution of transactions. Most

of DeFi platforms run on Ethereum Blockchain whereas trading rules are governed by the

underlying smart contract. Bugs or vulnerabilities within smart contract provide a great

opportunity for attackers to steal or redirect funds (Qin et al., 2020; Werapun et al., 2022).

 41

Researchers are using different analysers such as BLOCKEYE (Oracle analysis) to detect DeFi

attacks on the Ethereum Blockchain (Wang et al., 2021). Other researchers, Qin et al. (2021)

proposed a framework to optimise the action parameters. The optimisations that enhance

the ROI (return on investment) of loan-based attack (Qin et al., 2020). Furthermore, Werapun

et al. (2022) conducted the Flash loan Attack Analysis (FAA) framework to analyse DeFi attack

based on different factors such as flash loan sizes, the adjustable collateral ratio, and market

fluctuation (Werapun et al., 2022).

Vulnerabilities/

Attacks

Location

Typical

Vulnerabilities/Attacks

Authors

Of key Works

Detection Tools/ Preventive

Techniques

Application

Layer

Hot wallet theft Zamani et al. (2020)

Sung. (2021)

- Recommended use of cold

storage, offline wallets or paper-

based wallets.

- Wallet key protocol using session

key & Federated Byzantine

Agreement (FBA) for the key-

exchange agreement among users.

Flash loan/DeFi Qin et al. (2022)

Wang et al. (2021)

Werapun et al.

(2022)

- Proposed a framework to optimise

the action parameters.

- BLOCKEYE to detect DeFi attacks.

- Flash loan Attack Analysis (FAA)

framework.

Table 2 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on the Application
Layer

3.5 Vulnerabilities/Attacks on Contract Layer
3.5.1 Re-entrancy Vulnerability
One of the features of Ethereum smart contracts is their ability to call and utilise code from

other external contracts” (Antonopoulos and Wood, 2018 p.173). The attack happens when

attackers create a contract at an external address which contains malicious code in the

fallback function. As a result, attackers would be able to have control of this vulnerable

contract and call back into the original function, invoke the same function again continually

 42

before the state has been updated. As a consequence, attackers can drain the contract’s funds

and the honest accounts lose Ether. DAO is a sample of re-entrancy attack on Ethereum smart

contract which occurred in 2016 (Antonopoulos and Wood, 2018; Hooper Solorio and Kanna,

2019; Chen et al., 2020).

The most vulnerable built-in functions contain transfer(), call(), send(). Between these three

functions, call function is more vulnerable (Shahda, 2019). It is a good practice to identify

vulnerable functions and monitor the operations that change the state variables of the smart

contract. Furthermore, Antonopoulos and Wood. (2018) suggested to limit calls to external

contracts or make it the last operation during the code execution as well as using Mutex

(Antonopoulos and Wood, 2018). These solutions help to block malicious operations in the

transaction. They inform the smart contract owner by storing the attacker’s address in the

contract and avoid re-entrant calls (Antonopoulos and Wood, 2018; Alkhalifah et al., 2021).

Researchers (Alkhalifah et al., 2021; Khan and Siami, 2020; Feng, Torlak and Bodik, 2019)

suggested various security analysis tools such as static (Oyente, Teether, Gasper, Vandal,

Securify, smartcheck, Zeus), others, Khan and Siami (2020) proposed dynamic tolls such as

Vultron, Sereum, Regaurd. (Khan and Siami, 2020, Feng, Torlak and Bodik, 2019) presented

Fuzzing tool (ContractFuzzer). In addition, taint analysis and symbolic execution (OSIRIS,

EasyFlow, SmartScopy) have been discussed by (Khan and Siami, 2020; Feng, Torlak and Bodik,

2019). Fang et al. (2021) proposed dynamic path profiling solution (Jyane). Furthermore,

Sereum (Secure Ethereum) suggested to perform run-time monitoring of smart contract

execution (Khan and Siami, 2020).

3.5.2 Parity Multi-Signature Wallet
This is a wallet that is used to manage crypto assets by users. The vital data such as user’s

personal information and daily withdrawal limits are stored on wallets and users should have

multiple signatures, or multiple private keys, to own a multi-signature wallet to withdraw

crypto assets from the wallet (Praitheeshan et al. 2019).

Since parity multi signature wallet depends on the public library, the centralised setup of this

weak library coupled with the non-restricted calls to the external wallet library functions

made the parity multi signature wallet a target for attacks. Parity multi signature wallet was

 43

hacked twice in 2017, which caused loss of ether for around $31m (Praitheeshan et al. 2019;

Chen et al., 2020).

In the case of Parity, some of the essential functions and contract logic, such as withdraw

function, are implemented in a public library. In this library, functions have visibility specifiers

that regulate how a function can be called. With developer’s mistake not to make the

functions private or not forcing the function to be callable only within the contract itself, all

public functions are callable by everyone including “initwallet” that kill the owner’s right and

give the ownership right of an important contract to the attackers to take possession of its

ether. The vulnerable parity multi signature wallet was divided into two contracts library,

contract called “WalletLibrary and an actual “Wallet” contract to decrease the size of each

wallet and save gas (Antonopoulos and Wood, 2018; Praitheeshan et al. 2019; Chen et al.,

2020).

WalletLibrary contract contains functions (initWallet, changeOwner (with external visibility),

payable and withdraw (with external visibility) that allow anyone to deposit money into the

wallet, but only the owner can withdraw its funds or change the owner of the wallet.

However, Wallet contract (malicious contract) used delegatecall to call whatever function it

provides. When Delegatecall is used, the code is executed within the context of the caller

which allows a client contract to delegate the responsibility of handling a call to another

contract. Consequently, an attacker would be able to call any function as long as s/he provides

the signature of the function, and then changing the owner of the Wallet and withdraw funds.

Malicious contracts can receive ether but will also be able to freeze any ether and stop

transferring it to other accounts. This vulnerability has led to parity wallet attack (Wang et al.,

2020; Breidenbach et al., 2017).

A good practice for Solidity developers is to adopt the private modifier by default. This will

restrict the access for all contract functions and specify the visibility of all functions in a

contract and have proper access control of functions even if they are intentionally public.

Other measures to consider consists of adopting the private modifier by default (Praitheeshan

et al. 2019), avoiding using “delegateCall” as a catch-all forwarding mechanism (Goldberg,

2018), build stateless libraries (Chen et al., 2020), using static security analysis tools such as

 44

Oyente to detect bugs (Vivar et al., 2020) and using verification tool such as Artemis (Wang

et al., 2020).

3.5.3 Front Running/ Transaction-Ordering Dependence
Transaction ordering is a race condition attack whereby malicious nodes increase the

transaction gas price and try to select and execute own transactions first (Hooper Solorio and

Kanna, 2019). In Ethereum, miners can use their power to choose transactions and order

them based on the highest gas price to get more profit and pose frontrunning attacks

(Antonopoulos and Wood, 2018).

When a transaction broadcast to the Ethereum network, it goes to the Mempool. Then

Miners/validators choose the transaction, use consensus algorithm to mine/validate a block.

In this type of attack, malicious nodes observe transactions and all transaction details that are

visible in the Mempool. Attackers will then be able to control the order of transactions, they

will select their own transactions and frontrun orders with higher transaction fees to ensure

they are mined/validated and it is beneficial for them. As a result, high fees paid for priority

transaction ordering poses a security risk, including double spending attack (Daian et al.,

2019; Antonopoulos and Wood, 2018).

To mitigate against this vulnerability, it is better to minimise the miner’s power to arbitrarily

select transactions and put them in a queue (Eskandari, Moosavi and Clark, 2019). The other

option is to use a cryptographic commit-reveal scheme to hide transaction details, which are

visible on the Mempool (Eskandari, Moosavi and Clark, 2019). Finally, developers can enforce

rules such as first in first out (FIFO) to reduce this vulnerability in the network (Praitheeshan

et al. 2019; Najafi, 2020). Researchers suggested to monitor nodes’ behaviour on networks

by using Intrusion detection systems (IDS) and anomaly detection systems (ADS) and use

static security analysis tools such as Oyente, Securify, Mythril to detect relevant vulnerabilities

(Varun, Palanisamy and Sural, 2022; Praitheeshan et al. 2019, Mense and Flatscher, 2018).

3.5.4 Integer Overflow and Underflow
Each integer variable has a certain range of number of bits. The range of numbers that can be

represented is limited. Both Solidity and EVM support up to 256 bits. The Integer Overflow

 45

and Underflow vulnerability happens when the number gets incremented higher than the

maximum value or below the minimum value, respectively (Antonopoulos and Wood, 2018;

Ma et al., 2019). In 2018, BedToken faced integer overflow attack which cause of transferring

a huge of amount to malicious accounts (Gao et al., 2019).

There are some solutions to avoid under/overflow vulnerabilities which include: using the

“SafeMath” library that can handle arithmetic calculation that are offered by OpenZeppelin

(Ma et al., 2019), checking that the output of math is valid (Ma et al., 2019), creating

dedicated mathematical libraries instead of using the standard operators for addition,

subtraction and multiplication (Ma et al., 2019), using smart contract analysis automated

tools to detect the vulnerabilities from source codes such as static (Oyente, Zeus)

(Praitheeshan et al. 2019) and dynamic (Vultron) (Khan and Siami, 2020). Furthermore, other

researchers suggested to use taint analysis and symbolic execution such as OSIRIS, EasyFlow

(Khan and Siami, 2020; Gao et al., 2019).

3.5.5 Timestamp dependence
The block timestamp is a primary condition to run critical operations. In an Ethereum

network, miners have the ability to process transactions and adjust transaction timestamps

just for a few seconds, lock funds for period of times and entirely modify the output of the

contract (Praitheeshan et al. 2019). The timestamp is usually set to the system time of miner’s

computer. When a block is mined successfully, the miner has to provide the timestamp for

the block. The miner will check the timestamp of a new block after mining and carry out the

verification process to make sure that the timestamp of the new block is larger than the

timestamp of the last block and that the local machine timestamp is not greater than 900

seconds (Praitheeshan et al. 2019). The vulnerability happens in Ethereum when malicious

miners can adjust the timestamp of a new block slightly to manipulate the outcome of

timestamp dependent smart contracts (Praitheeshan et al. 2019; Antonopoulos and Wood,

2018; Hooper Solorio and Kanna, 2019). This vulnerability can increase the probability of

frontrunning attacks (Antonopoulos and Wood, 2018).

Another vulnerability, which is similar to timestamp dependency, is the block number

dependency, whereby the block number can be manipulated while it is used as part of critical

 46

operations in a smart contract (Jiang, Liu and Chan, 2018). This vulnerability can be avoided

by not using block timestamps and block number in contract (Antonopoulos and Wood, 2018)

or simply follow the 15 second rule (Hooper Solorio and Kanna, 2019). Developers should not

rely on block.timestamp or blockhash as a source of randomness and it is a good practice to

follow quality assurance test cases carefully before deploying a smart contract (Hooper

Solorio and Kanna, 2019). Furthermore, the latest version of Solidity complier alerts

developers of this vulnerability and uses state-reverting exceptions to handle errors

(Praitheeshan et al. 2019). Other researchers suggested to use static security analysis tools

such as static Oyente, Remix, Mythril, SmartCheck, Zeus (Praitheeshan et al. 2019; Khan and

Siami, 2020), Fuzzing tool such as ContractFuzzer (Jiang, Liu and Chan, 2018) and use of

SmartScopy as an attack synthesiser (Feng, Torlak and Bodik, 2019).

3.5.6 Mishandled exceptions
This Solidity vulnerability is known by other names in different literature, such as “Unchecked

send”, “Unchecked External Call”, and “Exception Disorders” (Khan and Siami, 2020). An

Ethereum smart contract performs an external call by using “call”, “transfer” and “send”

functions to fulfil the required functionalities. The exception handling is based on the

execution of callee contracts and the interaction between contracts (Khan and Siami, 2020;

Chen et al., 2020). Therefore, it is important how a function is called and how exceptions are

handled. Out-of-gas exception is one of the famous exceptions in the Ethereum. If an

exception occurs in the callee, it may or may not propagate to the caller. The calling

transaction will therefore terminate entirely and revert the state and all gas is lost

(Praitheeshan et al. 2019; Khan and Siami, 2020; Mosakheil, 2018).

Huang et al. (2019) and Ma et al. (2019) stated that a mishandled exception may cause Denial

of Service (DoS) attack on the on-going contract (Huang et al., 2019; Ma et al., 2019). As the

key problem is related to unchecked send errors, it is a good practice to handle the error

manually in the caller statement to prevent attackers from executing malicious codes into the

contract (Praitheeshan et al. 2019). Researchers suggested to use static security analysis tools

such as Oyente, Remix, Mythril, SmartCheck, Securify, GasFuzzer to detect this vulnerability

(Praitheeshan et al. 2019; Khan and Siami, 2020).

 47

3.5.7 DoS with Unexpected Revert
This issue appears when a transaction is reverted due to improper handling of an incomplete

transaction (Samreen and Alalfi, 2021). When ether is sent to a contract, the fallback function,

or other functions, should execute. If the execution of the caller contract fails, the contract’s

fallback function only performs the revert() function which can disrupt the execution of the

caller contract and cause a DoS state in the caller contract (Ma et al., 2019; Tikhomirov et al.,

2018).

There are some techniques that prevent DoS attacks through transaction revert. These

include using the withdraw design pattern, which places the responsibility of claiming and

withdrawing funds on the users, or making the recipient pull funds out rather than the sender

using push to send out funds (Ma et al., 2019; Tikhomirov et al., 2018). Another

countermeasure is to isolate if /for statements with an external function call in the condition

(Samreen and Alalfi, 2021). Samreen and Alalfi, (2021) proposed a framework called

SmartScan that combines static and dynamic analysis to identify vulnerable pattern and

detect DoS Unexpected revert vulnerability (Samreen and Alalfi, 2021).

3.5.8 Short Address – Parameter Attack
A weakness of the EVM is causing short address vulnerability which happens when a contract

receives encoded parameters that are shorter than the expected parameter length. If EVM

detects an underflow, it adds a zero to the end of the encoded parameters to make up the

expected length (256-bits). A malicious user can take advantage of this vulnerability by

removing the last zero from the ether (Antonopoulos and Wood, 2018; Sayeed, Marco-

Gisbert and Caira, 2020). This can be mitigated by checking the length of a transaction’s input

and validating all input parameters in the external application before sending them to the

network. Furthermore, as padding only happens at the end, parameter ordering in smart

contract can minimise this issue (Antonopoulos and Wood, 2018). Researchers suggested to

use a detecting system such as SmartScopy as an attack synthesiser to can automatically

synthesize adversarial contracts to protect smart contract (Wen et al., 2021; Feng, Torlak and

Bodik, 2019). Others recommended to use SmarCheck as static security analysis tool (Vivar et

 48

al., 2020) and Etherolic and SoliAudit as dynamic analysis tools to detect this vulnerability

(Kushwaha et al., 2022).

3.5.9 Denial of Service -Block Gas Limit
As mentioned earlier, Solidity uses send(), transfer() and call() functions to transfer ether to

Externally owned accounts (EOAs) or between smart contracts and a contract would receive

Ether by executing either the fallback or receive function fallback() external payable or

receive() external payable). The payable modifier used in solidity to ensure that function can

send and receive Ether (Samreen and Alalfi, 2021). EVM allocates gas at the start of execution.

Each block in the Ethereum has an upper limit on the amount of gas that can be spent for

computation. The gas limit per execution is 2300 and both send and transfer functions

forward 2300 gas to the receiving contract to complete operation. The block gas limit

prevents the security risk involved in executing expensive state changing code in the fallback

function of the contract receiving the ether. However, if the gas usage of a transaction

exceeds this limit, the transaction will collapse, which may lead to a DoS attack (Samreen and

Alalfi, 2021). Nonetheless, there is no gas limit associated with the “call” function, making it

more vulnerable (Samreen and Alalfi, 2021).

One way to counter this vulnerability is not to use loops over data structures (Chen et al.,

2020, keep track of the loop if it is necessary to use or Split the loop over multiple transactions

to alleviate the risk of an unbounded loop (Chen et al., 2020; Ghaleb, Rubin and

Pattabiraman,2022). Ghaleb et al. (2022) suggested to implement access control to restrict

the call of public functions to only the contract’s owner or specific addresses. It is important

to use function modifier to check the condition before function execution. They also proposed

a static analyser named eTainter to detect this this vulnerability based on taint tracking in the

bytecode of smart contract (Ghaleb, Rubin and Pattabiraman,2022). In addition, Grech et al.

(2018) designed a static analysis technique called MadMax to automatically detect gas-

focused vulnerabilities (Grech et al., 2018).

3.5.10 Tx.origin
Tx.origin is a global variable on Solidity which returns the address of account that sent the call

or transaction. Using tx.origin variable for authentication, makes the smart contract

 49

vulnerable to phishing attacks (Antonopoulos and Wood, 2018). A malicious contract can trick

the victim by sending Ether, when the victim sends transaction to a malicious contract, it will

invoke the “fallback” function and call the “withdraw” function of the phishable contract and

transfer all the funds belonging to another address to itself through wallet (Antonopoulos and

Wood, 2018).

Researchers argued strongly against using tx.origin for authentication and using msg.sender

instead (Antonopoulos and Wood, 2018; Chen et al., 2020). Another way is to use tx.origin ==

msg.sender which returns the user’s contract address instead of the original address of the

owner, thus preventing the external contract calls to the current contract (Antonopoulos and

Wood, 2018). Tikhomirov et al. (2018) suggested to use a static security analysis tool such as

SmartCheck to detect relevant bugs/vulnerabilities (Tikhomirov et al., 2018).

3.5.11 Weak Randomness
Blockchain uses randomness to process cryptographical task (Bouichou, Mezroui and

Oualkadi, 2020). Ethereum produces 256 random bits by using the underlying operating

system’s random number generator to create keys. Most of the Ethereum contracts are open

source and variables are public on Blockchain. Therefore, it is vital to find a secure source of

entropy or randomness to create keys otherwise attackers/malicious miners can easily

predict the generated random number (Huang et al., 2019). For example, malicious miners

can control block.timestamp, block.difficulty, blockhash and block.number (Swcregistry,

2020). As randomness plays vital role in many real-world contracts such as gambling, gaming

and when using proof of stake algorithm. A liable random number can be applied in proof-of-

stake protocols for randomly select the miner who gets to add the next block or randomly

choosing a subset of members for decentralise autonomous organisation to vote for every

decision that need to make (Chatterjee, Goharshady and Pourdamghani, 2019).

Several techniques/ approaches have been used to generate pseudorandom numbers that

can be used in Ethereum smart contract such as using block hash/timestamp as a seed, relying

on off-chain resource like an oracle, using Commitment Schemes (two steps approach),

RANDAO acts as a library (Chatterjee, Goharshady and Pourdamghani, 2019). Some of these

methods are vulnerable due to trusting either untrustworthy owner of oracle (an external

 50

provider) or miners and incentive for the participants to submit random numbers. These

issues can lead to centralisation risk (Chatterjee, Goharshady and Pourdamghani, 2019). Thus,

reliable random data generation method is very important to limit prediction of random

number (Chatterjee, Goharshady and Pourdamghani, 2019). Chatterjee et al. (2019) designed

a well-incentivised and unmanipulable approach which provides a trustworthy source of

randomness that is not rely on malicious miners or off-chain oracles. Amiet. (2021) suggested

to use a secure random number generator for smart contracts such as RANDAO (Amiet, 2021).

3.5.12 Hash Collisions with Multiple Variable Length Arguments
Hash Collision happens if two separate input strings of a hash function produce the same hash

output (Swcregistry, 2020). Data is encoded according to its type and Solidity provides some

global functions to encode various data types. Application Binary Interface encoding functions

(ABI) can be used to interact with contracts and the external contract call on Ethereum

(Chittoda, 2019). abi.encodePacked() function is non-standard packed mode that performs

packed encoding of the given arguments and returns the packed encoding of the data as bytes

(Chittoda, 2019; Solidity Team, 2023). This function can lead to hash collision in specific

situation whereas different parameters return the same value/encoding. Since the return

values are the same, the signature will still match, making the attacker an admin (Swcregistry,

2020; Zipfel, 2020). In a signature verification situation, an adversary can exploit this by

adjusting the position of elements in a previous function call to effectively bypass

authorisation (Swcregistry, 2020).

There are different methods to prevent this vulnerability. The first option is to ensure that a

matching signature cannot be achieved using different parameters. To do so, avoid using

abi.encodePacked()and alternatively use abi.encode() instead (Swcregistry, 2020).

3.5.13 One Owner control - Centralisation
As previously stated, smart contracts can be written in various programming languages, such

as Solidity for Ethereum, and deploy on the Blockchain. The combination of vulnerabilities in

both Ethereum and Solidity programming language poses security challenges for the security

checks in smart contracts development (Praitheeshan et al. 2019). One of the main challenges

within Ethereum Blockchain is centralisation/one owner control. The following will explain

 51

some key vulnerabilities, which may overlook the significance of addressing centralisation

risks during development.

Solidity is not designed with a permission-based security model in mind (Ghaleb, Rubin and

Pattabiraman, 2023). Lack of stable security mechanism such as access control makes smart

contracts vulnerable (Dai et al., 2019). Therefore, smart contract developers implement

access control checks based on their judgment and in an adhoc manner, which results in

several vulnerabilities, called access control vulnerabilities/bugs (Ghaleb, Rubin and

Pattabiraman, 2023).

The decentralised distributed nature of Blockchain enhances data privacy by removing third

parties and solves the single point of failure issue. Using Blockchain technology provides

opportunity to minimise centralised access control systems (Rouhani and Deters, 2019).

Access control is a security mechanism which is significantly important as part of security in

smart contracts and all applications. This mechanism is used to restrict access to certain

administrative functions, including who can view, or use, resources (Achour, Ayed and Idoudi,

2021). In traditional network applications, most of the access control solutions are deployed

on centralised systems whereby a central entity decides the user’s eligibility to access system

functions, depending on pre-specified rules. These access control procedures cause low

scalability, low fault tolerance and a lack of automation (Ghaffari et al., 2021).

According to Praitheeshan et al. (2019), smart contracts act as autonomous agents in critical

decentralised applications. Therefore, Blockchain, as a decentralised distributed ledger with

smart contracts functionality can be a game changing technology in access control. Smart

contracts can enforce access control rules through the use of cryptographic signatures (public

key and private key) and decide who can execute specific functions, and how the eligible

nodes can access specific transactions or data. however, smart contracts can be tailored

based on the reequipments and develop in a way that owners of the data, access critical

functions, perform sensitive operations and pose security risks (OpenZeppelin, 2022).

As we explained in section 2.5, the ownership of a smart contract, automatically will be

assigned to the contract creator by the system during deployment. The address of the

 52

owner/contract creator will be stored on the Blockchain during the initialisation (Hooper

Solorio and Kanna, 2019; Larson, 2022).

3.5.13.1 Current Methods to Implement Access Control
• Implement Access Control by Developer
This ownership of smart contracts is one of the most common forms of access control

(OpenZeppelin, 2022). The owner of a smart contract can set up administrative privileges

and defines access control rules (OpenZeppelin, 2022). Smart contract ownership can be

transferred to different addresses through the use of smart contract functions, such as

transferOwnership that transfer ownership to a new account and renounceOwnership,

which is responsible to renounce the ownership right of the owner and transfer it to

address (0) (Pierro and Tonelli, 2021; Mou, Coblenz and Aldrich, 2021). In order to provide

access control to the owner of contract, developers use a function modifier, which allows

them to apply a specific logic to any function that has this modifier. This modifier, called

"onlyOwner", is a common access control mechanism that can be used to restrict access

to certain functions or variables to the contract owner. It is also used to check if the

address that calls the function is equal to the owner’s address. Therefore, this makes the

smart contract such that only the owner can execute this function and prevent non-

owners from accessing specific functions on the smart contract (Hooper Solorio and

Kanna, 2019, Larson, 2022).

This “owner control” means that the contract which is stored on the Blockchain can be

accessed by any user provided they have the appropriate permissions. For example, if a

smart contract needs an owner, an administrator, or another privileged user, this way of

controlling access will be explicitly implemented by the developer (Ivanov and Yan, 2022).

With having admin permission, the admin user would have been able to perform certain

actions within a smart contract that are not available to other users such as modifying or

upgrading the contract, changing its parameters or rules, adding or removing users

(OpenZeppelin, 2022).

 53

• Implementing Access Control to a Contract Owner

Step 1: developer creates address variable, private and call it owner. This is state variable

which is stored inside the Blockchain (Larson, 2022).

address private owner;

Step 2: Creates a constructor and gives the initial value to the owner address variable.

Constructor will be executed when a smart contract is deployed. Basically, we assign the

address of sender of a transaction to the owner. In fact, this address is the address of

creator/owner who deployed smart contract on Blockchain (Larson, 2022).

constructor() {

 owner = msg.sender;

}

Step 3: Creates a function with external view and add access control on it. Use a require

statement to check if the “msg.sender” is the owner if contract. If the require statement

is passed, it will execute and owner can call “sepFunction1” otherwise transaction will

revert and displays an error message (EatTheBlocks, 2019).

In order to prevent repeating the required statement for each function, the function

modifier will be used. The developer defines a modifier called “onlyOwner” to restrict the

use of function to the owner. “onlyOwner” modifier attached to the function which allows

the owner of contract to call “sepFunction2” (Mou, Coblenz and Aldrich, 2021). Then use

the required statement and also add underscore placeholder inside a modifier to specify

when the function should be executed (Larson, 2022; EatTheBlocks, 2019).

As described previously, owner of contract can be transferred to different addresses

through the use of smart contract functions, such as transferOwnership and

renounceOwnership (Pierro and Tonelli, 2021; Mou, Coblenz and Aldrich, 2021).

 54

Mou et al., 2021 stated that the previous owner of contract can reclaim the ownership

unexpectedly due to access control bugs and unsecure smart contract configuration.

These researchers proposed an analysis tool called AccessLockDetector to identify a smart

contract with access control bugs (Mou, Coblenz and Aldrich, 2021). Using

renounceOwnership function and transfer the ownership to address (0) would minimise

the centralisation risk. However, the owner/developer can regain ownership after calling

renounceOwnership (Solidgroup, 2021).

With the access control in the “hands of the owner/developer” they would be able to

access critical functions, perform sensitive operations such as 'moderating smart

contract', 'minting tokens', ‘burning tokens, ‘transferring ownership’, ‘setting any address

as validator’, voting on proposals, freezing funds and many other operations

(OpenZeppelin, 2022; Code4rena, 2022). Access to these critical operations poses some

security risks caused by the centralised ownership of the smart contract. The kind of risks

and vulnerabilities that can be introduced by this centralised ownership include the

possibility of the owner acting maliciously or making errors that compromise the

contract's integrity. More details are given below.

• Implementing Access Control Using Openzeppelin

OpenZeppelin is an open-source framework for Ethereum Blockchain. It offers a set of

tested and audited reusable code to create a secure smart contract. Using this library

helps developers to save time and avoid code repetitions in creating Blockchain-based

projects (OpenZeppelin, 2023). However, it can pose security risks in a Blockchain system

through inexperienced developers who not fully understand the concept of decentralised

applications. Inheriting contracts from OpenZeppelin can introduce vulnerabilities if

developers use code without proper understanding, reviewing and testing. OpenZeppelin

code is available on GitHub repository with different directories. “Access” directory

includes different “AccessControl” contracts to provide a role-based access control

 55

mechanism and “Ownable” contract with a singer owner and the contract ownership

(OpenZeppelin, 2023). In this project, the “Ownable” contract which is an access control

contract imports from OpenZeppelin to offer ownership functionality.

3.5.13.2. Risks of Contract Ownership
In addition to the well-known vulnerabilities /attacks that are listed in the contract layer,

there are other security issues which pose centralisation risks caused by smart contracts.

Smart contracts with centralised ownership pose major security issues and act as a single

point of failure, which contradicts the very decentralised nature of Blockchain. The following

sections highlight contract ownership/centralisation risks.

• Centralisation/Ownership Control:
This happens when the contract owner has control over certain functions or variables. The

contract would become more centralised, which contradicts the decentralisation

paradigm in Blockchain and can lead to a single point of failure. This means that the power

of decision making is exclusively in the hands of owners or developers. For example, an

owner can abuse their power or act against the interests of the contract or its users.

Hence, the role of “onlyOwner” modifier is extremely important to provide an appropriate

access control to owners, developers and all nodes (Mou, Coblenz and Aldrich, 2021).

Blockchain security firms such as Certik, Skynet, and Code4rena work with security

experts, researchers, and developers to identify possible vulnerabilities in smart

contracts. They use AI-based scanning tool, advanced formal verification techniques,

static and dynamic analysis tools as well as performing manual (CertiK, 2023). Certik

auditors identified 286 discrete centralisation risks within a sample of 1,737 audits that

they performed (CertiK, 2022). Both Certik and Code4rena classified contract ownership

(or centralisation) as “high risk” yielding single points of failure that external attackers, or

malicious insiders, can exploit (Certik, 2021; Code4rena, 2022). Researchers and security

experts stated that centralisation is a major security issue which is caused by malicious

owners when acting maliciously, compromising the smart contract’s integrity by

controlling the entire contract balance and stealing all assets on that platform (Sai et al.,

2021; CertiK, 2022; Code4rena, 2022; Github, 2022).

 56

There have been many real-world examples that indicated of centralisation risks due to

owner control. in 2021, Certik perfumed a security review of the Inari Token, an Ethereum

based project. Audit reports contain information about security vulnerably on smart

contract. According to Certik’s report, four major centralisation risks detected on Inari

Token. Smart contract’s code is also available on Etherscan (Etherscan, 2021; CertiK,

2021).

The Inari contract includes some privileged functions that are restricted by modifiers such

as “onlyOwner”. Contract “Ownable” sets a specific owner who has special privileges and

control over the contract which is used through inheritance in this project. It uses

onlyOwner” to restrict use of functions to the owner. In Inari project, the owner of

“Ownable” contract has admin permission to control two functions “transferOwnership”

and “lock” (CertiK, 2021).

Furthermore, the owner has permission to control the following functions in Inari smart

contract (CertiK, 2021). It means that the “onlyOwner” modifier on following functions

allows only the owner of the wallet contract to call them. Hackers/ malicious insider can

manipulate this project through these functions that owner has authority over them. The

diagram in Figure 6 displays functions with owner control.

 57

Figure 5 Centralisation Risk When Using "onlyOwner" Modifier in Inari Smart Contract (Adopted from
Certik, 2021).

In addition, within the Inari project, tokens are minted to the centralised address

“msg.sender” which is the owner’s address. There is a possibility that owner can regain

the ownership of contract through unlock() function and transfer ownership to the

owner. Both Inari’s code and analysis report are available on Etherscan and Certik’s

website (Inari, 2021; CertiK, 2021). Figure 7 shows the vulnerable code, used by Inari

developers, and the suggested code by Certik.

 58

Figure 6 Solidity Code in a Centralised Vs Decentralised Application (Adopted from CertiK, 2021).

Another example is related to Vector Space AI project. Certik reported a major

centralisation risk related to centralisation privilege where the contract owner has the

authority over the functions. Certik recommended to minimise centralisation through

decentralise mechanism such as Timelock and DAOs and enhance the security and

minimise single point of failure via assigning privileged roles to multi-signature wallets

(Certik, 2021). The diagram in Figure 8 shows owner’s authority over the function.

Figure 7 Centralisation Risks When Contract Owner Holds Authority Over the Functions, Adopted
from Certik, 2021 (Example 1).

Code4rena analysed the Lybra Finance project which includes 21 smart contracts

written in the solidity. Code4rena categorised risks on high, medium, and low/non-

critical. Based on provided security analysis report, Lybra Finance project is vulnerable

for the role of onlyOwner, where control or decision-making authority is centralised

within contract creator or owner which pose high centralisation risk (Code4rena,

 59

2023). The diagram in Figure 9 shows another example of owner’s authority over the

functions.

Figure 8 Centralisation Risks When Contract Owner Holds Authority Over the Functions, Adopted
from Code4rena, 2023 (Example 2)

Blockchain security firms such as Certik, and Code4rena, have identified a major

vulnerability on smart contracts which pose major centralisation risks. They suggested

that appropriate measures should be implemented to minimise unnecessary control

by owner and mitigate centralisation risks effectively.

• Centralised Access controls
Authors in (Ghaffari et al., 2021; Ghaffari et al., 2020; Achour et al., 2021; Nakamura

et al., 2019) discussed Blockchain-based access control mechanisms are classified into

different categories such as Discretionary Access Control (DAC), Role-Based Access

Control (RBAC), Capability-based Access Control (CapBAC), and Attribute-Based

Access Control (ABAC).

• Discretionary Access Control (DAC): In this method the owner of object who

has the discretion to define access rules to resources that stored within the

smart contract. The owner of objects defines and modify access rules and

policies for the objects they own. As a result, smart contracts can be control

and govern by the owner/s (Ghaffari et al., 2020). The common example would

be "onlyOwner" modifier or pre-built implementations like Ownable that is

used by OpenZeppelin (Kuryłowicz, 2023; OpenZeppelin, 2023).

• Role-Based Access Control (RBAC): This approach manages access for subjects

based on their roles. This model works based on different components such as

 60

users, roles, operations and permission. In this centralised approach, access is

determined by roles and permissions are associated with each role which will

be grant and revoke to users (Achour et al., 202).

• Capability-based Access Control (CapBAC): Nakamura et al. (2019) proposed

CapBAC for Ethereum Blockchain. A specific capability can be implemented to

a user (subject) or group of users to access a certain resource (object). CapBAC

scheme stores the token delegation relationship among subjects. This scheme

allows object owners to verify the ownership and validate the tokens for access

control (Nakamura et al., 2019).

• Attribute-Based Access Control (ABAC): The researchers in (Ghaffari et al.,

2021; Achour et al., 2021) explained that ABAC model allows for more dynamic

and fine-grained access management. It allows the object owner define the

access rules based on the attribute of user (object), subject, the environment

and action attribute. There are four sets of attributes includes: Subject

Attributes (username, token), Object Attributes (resources), Environment

Attributes (time, location), and Action Attributes (read, write, execute).

3.5.13.3 Rug Pulls Scam
Rug pulls are a lucrative fraud in decentralised finance. Developers, or malicious owners, can

create new crypto tokens, list them with decentralised exchanges and market them to

investors to increase their value and overall liquidity (Maruf, 2022). They can manipulate

smart contracts by using pre-set malicious functions or change critical conditions of the sale

at any moment such as the price, the start time, the duration and the whole amount of tokens

that are allowed to be sold, lock the contract, freeze the funds, stop users to sell their tokens

and withdraw the funds from smart contracts (Code4rena, 2022; Huang et al., 2022). As a

result, malicious functions are performed to enable users to buy tokens but not sell their

tokens to decentralised exchange and only the token creator would be able to sell tokens or

drain funds and crash the token’s value to zero before disappearing with the cash. Developers

can remove all the cryptocurrencies (Ether) from the liquidity pool and make tokens

untradeable without economic value (Huang et al., 2022; Mazorra, Adan and Daza, 2022).

Based on Code4rena report, the centralisation risk happened due to admin privilege of

malicious owners. The owners would be able to carry out malicious operations to set address

 61

to mint any amount of ether, set any address as validator, take more ether than required, rug

all ether in the contract and drain all contract funds (Code4rena, 2022; Github, 2022).

Researchers stated that machine learning techniques can detect malicious, non- malicious

tokens and potential rug pulls before they happen (Mazorra, Adan and Daza, 2022).

3.5.13.4 Private Key Compromise
A digital signature is used to sign a transaction in Blockchain. The owner's private key is

required to access and modify certain functions or variables in the smart contract (Huang et

al., 2022). Losing the owner’s private key or gaining access to the owner’s private key through

hacking can create a serious security risk for the smart contract. When the owner's private

key is lost, the owner would not be able to control, or easily update, the contract. Thus, the

entire contract will fail to operate which poses the single point of failure (Code4rena, 2022;

Shanzson, 2022). When the owner’s account gets hacked, the new owner becomes malicious

and can control the contract and steal as much of the funds as possible (Code4rena, 2022).

For example, in April 2021, the DeFi protocol EasyFi was hacked due to key management

compromise. A hacker compromises the admin/owners MetaMask wallet and accesses the

keys, he took control over the smart contract and steal funds for a worth of $80M (Future

Learn, 2021).

3.5.13.5 Preventive Methods and Mitigation Steps
To mitigate centralisation risks, it is important to implement secure mechanisms and

additional layers of security to ensure decentralisation and no single point of failure within

the network.

Manual Analysis

There are different auditing tools that can be used to identify different vulnerabilities and

errors within the smart contracts. However, based on the findings from current academic

publications, searching on security audit websites and talking to experienced developers,

the researcher could not find any specific tools for identifying, or detecting, the owner

control vulnerability. This vulnerability can be detected by manual analysis through skilled

developers or auditors. It is important to review the code and functions line-by-line to

identify any bugs, or logic errors, risky functions, contract ownership and inconsistencies.

 62

For example, it is vital to carefully consider the use of the “onlyOwner” modifier and to

implement other mechanisms to reinforce decentralisation and therefore increase

security.

Implementing Decentralised Access Control Mechanisms

There have been many real-world attacks due to access control vulnerabilities/bugs.

Failing to implement appropriate access control may cause major security risk and

significant financial loss (Ghaleb, Rubin and Pattabiraman, 2023). For example, in May

2021, Value DeFi was hacked due to coding mistake in smart contract. The coding error

and lack of proper access control mechanism allowed a hacker to make themselves an

owner of contract, re-initialise a liquidity pool and drain the staked tokens for a worth of

$20M (Ghaleb, Rubin and Pattabiraman, 2023; Future Learn, 2021). Researchers proposed

different access control approach/framework to detect access control vulnerabilities.

Ghaleb et al. (2023) proposed a static analysis approach called AChecker to determine

access control checks in smart contract (Ghaleb, Rubin and Pattabiraman, 2023). Other

tools such as Mythril use different method such as symbolic execution to detect smart

contract bug including access control bugs. However, not all smart contract vulnerabilities

can be detected by available tools. They may detect vulnerabilities results in false

negatives (Ghaleb, Rubin and Pattabiraman, 2023).

Using a DAO Structure

Within the decentralised distributed organisation, power is distributed among the

members with no central entity holding the control and able to change the rules. All

decisions should be approved by most of the DAO members (Santana and Albareda,

2022).

Use Rug Checker Tools

There are some tools that are available at poocoin.app/rugcheck, rugscreen.com,

rugpulldetector.com, honeypot.is, solidityscan.com, rugdoc.io/honeypot to detect a rug

pull and minimise/avoid this scam (Shanzson, 2022).

 63

Set up Time-based Access Control on Privilege Operations

Implementing temporary lock feature helps to restrict access to a smart contract specifically

sensitive functions such as like transferring ownership or minting tokens. The state of the

smart contract would be locked for a specified length of time and delay the execution of

a transaction until predetermined amount of time has passed. Setting up a timelock allows

the owner relinquish ownership and prevent owner and anyone else from calling a

contract during this time (Mou, Coblenz and Aldrich, 2021; CertiK, 2021).

Multi-Signature Accounts

Private key as part of digital signature plays important role in Blockchain. A single

signature scheme allows only one user/owner to agree to a transaction whereas multi-

signature scheme allows several owners to validate and sign a transaction (Di Angelo and

Slazer, 2020; Han et al., 2021). Multi-signature adds an extra layer of security because it

requires a minimum number of addresses to sign a transaction before executing it. This

means assigning of privileged roles to multi-signature wallets helps to prevent a single

point of failure due to the private key, and even if one of the signatories is compromised,

the funds in the wallet are still safe, as the attacker would need to gain access to at least

one other signatory's private key in order to execute a transaction (CertiK, 2021). This

method would improve access control by handing over privileged roles to multi-signature

smart contracts (Le, Yang and Ghorbani, 2019; Destefanis et al., 2018; Di Angelo and

Slazer, 2020; Han et al., 2021). Li, Ma, and Luo (2022) proposed an efficient asymmetric

encryption scheme by combining homomorphic encryption and state-of-the-art multi-

signature key aggregation and non-interactive zero knowledge proof to preserve privacy

and verify valid transactions.

Vulnerabilities/

Attacks

location

Typical

vulnerabilities/Attacks

Authors

Of key Works

Detection Tools/

PreventiveTechniques

Contract Layer

Re-entrancy Antonopoulos and

Wood. (2018)

- limit calls to external contract.

- Mutex to lock some function

states.

 64

Hooper Solorio and

Kanna. (2019)

Shahda. (2019)

Alkhalifah et al.

(2021)

Khan and Siami.

(2020)

Feng et al. (2019)

Fang et al. (2021)

- Security analysis static tools such

as Oyente, Teether, Gasper,

Vandal, Securify, smartcheck,

Zeus.

- Security analysis dynamic tools

such as Vultron, Sereum, Regaurd.

- Fuzzing tool such as

ContractFuzzer.

- Use taint analysis and symbolic

execution such ad OSIRIS,

EasyFlow, SmartScopy.

- Sereum (Secure Ethereum) to

perform run-time monitoring of SC

execution.

- Jyane, a dynamic path profiling

solution for SC.

Parity multi signature

wallet

Praitheeshan et al.

(2019)

Vivar et al. (2020)

Chen et al. (2020)

Goldberg. (2018)

Antonopoulos and

Wood. (2018)

Wang et al. (2020)

- Adopt the private modifier by

default.

 - Avoid using “delegateCall” as a

catch-all forwarding mechanism.

- Build stateless libraries.

- Use static security analysis tools

such as Oyente.

- Use verification tool such as

Artemis.

Front

running/Transaction

ordering dependence

Praitheeshan et al.

(2019)

Eskandari et al.

(2019)

Najafi. (2020)

- Use cryptographic commit-reveal

scheme to limit visibility of

transaction details.

- Enforce rules such as first in first

out (FIFO) by adding a complex

consensus-based solution.

 65

Varun, Palanisamy

and Sural. (2022)

- Remove miner’s ability to

arbitrarily order transaction by

forcing queuing/ordering for the

transactions.

- Use static security analysis tools

such as Oyente, Securify, Mythril.

- Use IDS and ADS.

Integer

overflow/Underflow

Ma et al. (2019)

Praitheeshan et al.

(2019)

Khan and Siami.

(2020)

Gao et al. (2019)

- Create dedicated mathematical

libraries and use SafeMath.

- Check the validity of math output.

- Use static security analysis tools

such as Oyente, Zeus.

- Use dynamic security analysis

tools such as Vultron.

- Use taint analysis and symbolic

execution such ad OSIRIS,

EasyFlow.

Timestamp

dependence

Antonopoulos and

Wood. (2018)

Hooper, Solorio and

Kanna. (2019)

Praitheeshan et al.

(2019)

Jiang et al. (2018)

Feng et al. (2019)

Khan and Siami.

(2020)

- Use static security analysis tools

such as Oyente, Remix, Mythril,

SmartCheck, Zeus.

- Fuzzing tool such as

ContractFuzzer.

- Use SmartScopy as an attack

synthesiser.

- Use The 15-second Rule.

- Not rely on block.timestamp or

blockhash as a source of

randomness

- Avoid using block.number as a

timestamp.

 66

Mishandled exceptions Praitheeshan et al.

(2019)

Khan and Siami.

(2020)

- Use static security analysis tools

such as Oyente, Remix, Mythril,

SmartCheck, Securify, GasFuzzer.

- Handle the error manually in the

 caller contract and check the

 return value of functions.

DoS with unexpected

revert

Ma et al. (2019)

Samreen and Alalfi.

(2021)

- Propose a framework called

SmartScan that combines static

and dynamic analysis to identify

vulnerable pattern and detect.

- Isolate if /for statements with an

external function call.

Short address Wen et al. (2021)

Antonopoulos and

Wood. (2018)

Feng et al. (2019)

Vivar et al. (2020)

Kushwaha et al.

(2022)

- Use SmartScopy as an attack

synthesiser.

- Validate input parameters in

external applications before

sending them.

- Check parameter ordering.

- Dynamic analysis tool Etherolic

and SoliAudit.

- Use static security analysis tools

such as SmarCheck.

DoS- Block gas limit Chen et al. (2020)

Ghaleb et al. (2022)

Grech et al. (2018)

- Use static analyser tools MadMax,

eTainter.

- Avoid using loops over data

structures.

- Splitting the loop over multiple

transactions to alleviate the risk of

an unbounded loop.

- Implement access control to

restrict the call of the public

 67

function to only the owner of the

contract.

Tx.origin Antonopoulos and

Wood. (2018)

Chen et al. (2020)

Tikhomirov et al.

(2018)

- Check the authorisation of

ownership by using msg.sender' in

place of `tx.origin'.

- Use static security analysis tools

such as SmartCheck.

Weak randomness Amiet. (2021)

Chatterjee et al.

(2019)

- RANDAO, a secure random

number generator.

- Designed a well-incentivised and

unmanipulable approach which

provides a trustworthy source of

randomness that is not rely on

malicious miners or off-chain

oracles.

Hash Collisions with

Multiple Variable

Length Arguments

 Swcregistry. (2020) - Ensure matching signature cannot

be achieved using different

parameters.

- Avoid using

 abi.encodePacked()and

alternatively use abi.encode()

instead.

One owner control

(Centralised

Ownership)

Certik. (2022)

Mou et al. (2021)

Li et al. (2022)

CertiK. (2023)

Ghaffari et al. (2021)

CertiK. (2021)

Shanzson. (2022)

- Manual analysis

a. Check contract’s ownership

b. Correct permission to critical

functions.

c. Renounce the ownership /

never claim the privileged

roles.

d. Remove the risky functionality.

 68

- Implement multi signature

accounts, use an efficient

asymmetric encryption scheme by

combining homomorphic

encryption and state-of-the-art

multi-signature key aggregation

and non-interactive zero

knowledge proof to preserve

privacy and verify valid

transactions.

- Implement access control

mechanisms.

- Set up time-based access control

on privilege operations.

- Implement DAOs.

- Use rug checker tools.

Table 3 - Current Work on Vulnerabilities/Attacks and Related Counter-measures within the Contract
Layer

3.6 Vulnerabilities/Attacks on the Incentive Layer
3.6.1 Blockchain Denial of Service (BDoS) Attack
A BDoS attack is the main security risk at the level of the incentive layer. Blockchain Denial of

Service (BDoS) is an incentive-based attack, whereby the malicious actor manipulates the

incentive mechanism (Mirkin et al., 2020). The malicious attacker invests resources by

generating a block and only publishes a proof that s/he mined it, without publishing the block

itself. This, to the honest miners, is regarded as an advantage gained by the malicious actor,

which leads to reducing miners’ incentive to mine. As miners cease to mine, the entire

Blockchain can grind to a halt. Incentive-based attack can force a certain order of transactions

or transaction omission (Mirkin et al., 2020). Mirkin et al (2020) present a fuller description

of BDoS and its impact on the incentive mechanism and the Blockchain. They describe a

mathematical model that increases the threshold of a partial shutdown of the system (Mirkin

et al., 2020).

 69

A possible way to weaken this attack is to implement effective incentive mechanism and

change miner behaviour (Mirkin et al., 2020). Wang et al. (2018) designed a Blockchain-based

privacy-preserving incentive mechanism in crowdsensing applications by using signcryption

method to prevent malicious miners or attackers to pose privacy issue for users. Hou et al.

(2019) proposed a framework called SquiRL for using deep reinforcement learning (DRL) to

analyse attacks on Blockchain incentive mechanisms.

Vulnerabilities/

Attacks

location

Typical

vulnerabilities/Attacks

Authors

Of key Works

Detection Tools/ Preventive

Techniques

Incentive Layer

BDoS

Wang et al. (2018)

Hou et al. (2019)

- Blockchain-based privacy-

preserving Incentive mechanism

in crowdsensing applications by

using signcryption method to

prevent malicious miners or

attackers to pose privacy issue for

users.

- Proposed a framework called

SquiRL to analyse attacks on

Blockchain incentive mechanisms.

Table 4 - Vulnerabilities/Attacks and Related Counter-measures on Incentive Layer

3.7 Vulnerabilities/Attacks on the Consensus Layer
3.7.1 Double-Spending Attack
Double-spending refers to the risk of the cryptocurrency being spent twice. The attacker

would send a copy of the currency transaction to make it look legitimate, thus disrupting the

Blockchain network and, essentially, stealing the cryptocurrency. There are mainly three

different types of double-spending attacks: the Race, the Finney, and the Vector (Wen et al.,

2021).

 70

In a Race attack the malicious actor would send a token from their own address to the wallet

address of the potential victim user. Then the malicious actor sends the same token to

another of their own wallet address with higher transaction fees. The two transactions are

logged in two blocks. This leads to the transaction with higher fees to be confirmed and the

one sent to the victim to be orphaned and rolled back (Wen et al., 2021).

A Finney attack is a more complex version of the Race attack, where a miner is involved in the

transaction. In this case, the malicious actor, the miner, pre-mines a block with their payment

to the “intended victim user, but creates another transaction before the pre-mined block is

broadcast to the network, leading the network to reject the transaction sent to the victim

user (Wen et al., 2021).

A Vector attack is a combination of a Race attack and a Finney attack (Wen et al., 2021).

Wen et al. (2021) argue that the most effective and convenient way to prevent double-

spending attacks mostly race attack and vector 76 attack is by increasing the confirmation

times (Wen et al., 2021). As majority 51% attack has direct impact on double spending attack,

it is important to avoid forming large-scaled mining pools (Wen et al., 2021). Begum et al.

(2020) have developed a model based on a change in governance protocol. In addition to the

previous model which prevents double spending attacks with simple changing in governance

protocol. Chen. (2021) proposed Blockchain access restriction (BAR) as a prevention

mechanism to detect malicious behaviour and check the actual block request while

transaction is recorded on a specific block. BAR can protect miner’s privileges and provide

fairness (Xing and Chen, 2021).

3.7.2 51% Majority Attack
Here the malicious actor is in a position to control (at least) 51% of the computing power to

control the mining process (Wen et al., 202). They would create a chain of blocks that is fully

isolated from the real (honest) version of the chain. Using their 51% advantage they can

process their blocks faster, and with time the isolated (malicious) chain is established as a

genuine one. Many regards 51% majority as a form of double-spending (Wen et al., 2021).

Kitakami and Matsuoka devised an ‘agreement algorithm’ as a basis for a scheme to

strengthen resilience against 51% attacks (Kitakami and Matsuoka, 2018). Mirkin et al. (2020)

 71

stated that malicious miners can perform a full-fledged DoS attack through controlling a

majority of mining power, generate empty block and ignore other blocks (Mirkin et al., 2020).

Wen et al. (2021) argue that the most effective way to prevent this attack is avoiding forming

large-scaled mining pools to control mining process (Wen et al., 2021). Akbar et al. (2021)

suggested to combine two consensus algorithms PoW and PoS to provide a fair mining reward

to miners and validators (Akbar et al., 2021).

3.7.3 Selfish Mining Attack
Malicious miner can compromise Blockchain network to get higher block rewards (Saad et al.,

2019). One of the drawbacks of consensus mechanisms such as PoW, is that miners are able

to collaborate with each other, use a set of selfish strategies to gain more rewards than they

would otherwise do if they mine individually. Such miners are called selfish miners and their

“illegitimate” mining collaboration is called selfish mining. This is not fair for the other honest

miners who stick to the rules specified by the consensus mechanism used (Wen et al., 2021].

Wen et al. (2021) provided a good review of previous work to strengthen consensus

mechanisms against selfish mining. Saad et al. (2019) proposed an algorithm to enforce fair

mining. The proposed solution is able to detect the behaviour of selfish miners and encourage

the network to defence and disincentivises selfish miners (Saad et al., 2019).

3.7.4 Bribery Attack
Adversary misuses Blockchain protocol and obtains the majority of computational power and

to bribe miners in order to subvert the consensus agreement and achieve additional profits.

Attackers can increase the probability of double-spending by bribing other miners (Sun, Ruan

and Su, 2020). Several mechanisms for bribery have been proposed with various trust and risk

properties (Bonneau, 2016; Liao and Katz, 2017). The evaluation of these different bribery

mechanisms remains problematic due to the lack of systematic methods to quantify them.

Bonneau. (2016) presented a few schemes to render bribery attacks ineffective. Such

schemes, coupled with the fact that PoW makes it very costly for a bribery to be set, it will be

fair to say that bribery attacks are not the worst “headache” for the consensus mechanism.

Bonneau. (2016) stated that extra confirmation for large transaction make this attack difficult

to succeed because of increasing the number of blocks in the attempted fork and its impact

to increase the cost of bribe. Add block confirmation time would prevent double spending

 72

and bribery attacks (Bonneau, 2016; Wen et al., 2021). Wen et al. (2021) suggested to avoid

forming large-scaled mining pools (Wen et al., 2021).

Vulnerabilities/

Attacks

location

Typical

vulnerabilities/Attacks

Authors

Of key Works

Detection Tools/ Preventive

Techniques

Consensus

Layer

Double spending

• Race

• Vector 76

• Finney

Wen et al. (2021)

Xing and Chen.

(2021)

- Increase confirmation time.

- Blockchain access restriction

(BAR) prevention mechanism to

detect malicious behaviour and

check the actual block request

while transaction is recorded on a

specific block. BAR can protect

miner’s privileges and provide

fairness.

51% Majority (A) Wen et al. (2021)

Akbar et al. (2021)

- Avoid forming large-scaled mining

pools.

- Combine two consensus

algorithms PoW and PoS to

provide a fair mining reward to

miners and validators.

Selfish mining (A) Saad et al. (2019) - Algorithm to enforce fair mining.

Bribery (A) Bonneau. (2016)

Wen et al. (2021)

- Extra confirmation for large

transaction.

- Add block confirmation time.

- Avoid forming large-scaled mining

pools.

Table 5 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Consensus Layer

 73

3.8 Vulnerabilities/Attacks on the Network Layer
3.8.1 DDoS Attack
According to Saad et al. (2018) as with any network infrastructure, the Blockchain network

layer is vulnerable to Distributed Denial of Service (DDoS) attacks. Such attacks can impact

the memory pools (repository of unconfirmed transactions) and cause massive transaction

backlog and trap users to pay higher mining fees. Saad and co-authors proposed two methods

to optimise the mempool size and counter DDoS attacks on the Blockchain network layer by

using a fee-based and an age-based methods. Saad et al. (2018) stated that the fee-based

design is more suitable when the attack is not severe. This techniques filters spam

transactions and reduce the size of mempool. On the other hand, if the attack is severe, the

age-based design would be more useful. This technique rejects unconfirmed transactions that

generated by attackers and accept the transactions of honest users by the mempool. This

method increases the cost of attack and reduces the time window for a successful attack

(Saad et al., 2018).

3.8.2 Domain Name Service
The Domain Name System (DNS) plays a vital role in the internet. Nodes on peer to peer

network are communicating with other contributors to transmit data through node discovery

protocol. This protocol works based on DNS seed address that distribute the address of other

active nodes on the network (Sai et al., 2021). Researchers explained that the current DNS

system is vulnerable to many attacks such as eclipse attack, DDOS attack, cache poisoning

attack, single point of failure and centralisation (Li et al., 2021).

Current DNS suffer security and privacy issues due to poor process of node discovery protocol,

weak verification mechanism which leads to the cache poisoning attack and makes domain

owners to observe nodes on network, claim their domain ownership and change the IP

addresses of their domains. As Secure DNS are not yet in place, this would move ownership,

control of the authentication keys to the user's security domain and poses centralised DNS

services that can act as a single point of failure which makes legacy DNS vulnerable to DDoS

attacks (Ren et al., 2019; Li et al., 2021). Blockchain-based DNS assist to minimise some of the

security concerns. Blockchain-based ENS which is a distributed, decentralised naming system

built on the Ethereum Blockchain, provides a decentralised ownership. However, because

 74

Ethereum Name Service (ENS) is stored on smart contract and ENS registry contains a list of

domain names, subdomains, important information about owner of domain name, the

resolver of the domain and the caching time for all records under the domain (Liu et al., 2019).

ENS relies on smart contract to manage domain name ownership (Liu et al., 2019). Therefore,

it may be controlled/manipulated by a malicious developer/owner or attacker.

Researchers suggested different techniques to counter this vulnerability. Jin et al. (2021)

proposed a Blockchain based naming service called DNSonChain. This technique works based

on majority vote mechanism to validate the domain ownership in a decentralised manner

which solve the DNS privacy issue (Jin et al., 2021). The other researchers introduced

Blockchain based domain name system called B-DNS which offers better protection against

the DDoS attack and the cache poisoning attack (Li et al., 2021). Ren et al. (2019) presented

Blockchain-based decentralised naming system called blockDNS which enhances domain

name ownership and data authenticity through a verification mechanism that helps to solve

the centralisation issue (Ren et al., 2019). Others suggested having a better node discovery

protocol and encrypting DNS traffic will help with privacy issues (Jin et al., 2021; Li et al., 2021;

Sai et al., 2021).

3.8.3 Eclipse Attack
In an eclipse attack the malicious actor attempts to own a plenty of IP addresses to take

control of all honest node’s connections. Adversary node isolates a node and manipulates it

into illegitimate action. Attackers typically use botnet to compromise the node and seal it off.

The victim node is isolated within an environment that is completely separate from the actual

network activity. Because the attack relies heavily on exploiting the victim’s neighbouring

nodes, its success will depend on the structure of the Blockchain network (Wen et al., 2021).

Xu et al. (2020) proposed a detection model called ETH-EDS. This Ethereum detection model

works based on random forest classification algorithm to detect malicious actor with high

probability (Xu et al., 2020). Wen et al. (2021) gathered countermeasures and tools that

suggested by other researchers to detect and prevent this attack (Wen et al., 2021).

 75

3.8.4 Sybil Attack
In a Sybil attack, the malicious actor(s) can take over the entire network. Attackers may then

be able to out-vote the honest nodes if they create multiple fake identities (or Sybil identities).

They can then control the reception and transmission of blocks, effectively blocking other

honest users from the network (Wen et al., 2021). Malicious pool operator can add a large

number of miners with zero power into mining pool and run sybil attack. These miners cannot

mine any blocks, they can participate in data propagation for malicious user and stop

propagating of honest user’s data. therefore, only attacker’s block would add to the network

and attacker get higher rewards and decrease the throughput of network (Swathi, Modi and

Patel, 2019). This attack may lead to several attacks like DoS, DDoS and 51% majority (Swathi,

Modi and Patel, 2019). Swathi et al. (2019) proposed a solution to monitor the behaviour of

each node, detect sybil nodes within the network and notify them to honest nodes (Swathi,

Modi and Patel, 2019). Siddiqi and Ali. (2022) proposed a prevention technique that generate

node’s id, timestamp, password and encryption code which code uses RSA mechanism for

node authentication. By using this technique, nodes would be identifying sybil nodes via data

transmission process. Thus, this method helps to increase the throughput and improves

network performance (Siddiqi and Ali, 2022).

3.8.5 BGP Routing Attack
The Border Gateway Protocol (BGP) is a routing protocol used to exchange routing

information (IP packets) among autonomous systems (ASes) on the Internet (Saad et al.,

2022). BGP routing attack known as BGP hijacks or prefix hijack. This attack can happen when

a malicious AS broadcasts fake IP prefix announcement, propagate wrong routing

information. Thus, attacker can split the network into two or more disjoint components,

controlling communication within components and outside of them, reroute the traffic and

forks Blockchain into parallel chains (Wen et al., 2021; Saad et al., 2022).

Xing, et al. (2018) designed a system called BGPcoin which controls by a set of smart contracts

to manage internet number resource (Internet address (IP) and autonomous system number

(ASN)). This system authorises autonomous systems and provides a reliable origin

advertisement/authentication source for BGP system (Xing, et al., 2018). Apostolaki, et al.

 76

(2019) built SABRE as a secure and scalable bitcoin relay network, which relays blocks

worldwide through a set of connections that are resilient against BGP routing attacks. Saad,

et al. (2022) proposed a secure Blockchain-based BGP routing system named RouteChain. This

technique provides a temper proof route management through Blockchain validation source

for all BGP announcements and use of consensus algorithms to achieve agreement between

ASes over the prefix nature (Saad et al., 2022).

3.8.6 Replay Attack
Replay attack happens more likely happens during a hard fork when the Blockchain is split

into two when a malicious actor spoofs the communication between two valid nodes and

gains access to the hashkey (Antonopoulos and Wood, 2018). Adversary captures a signed

message and attempts to delay or retransmit data as a valid user to subvert the receiver (Hu

et al., 2019). One way to counter this attack, is an account nonce which is a transaction counter

in each account and cannot be used again (Antonopoulos and Wood, 2018). Ramanan and

Gebraeel. (2022) developed a Blockchain-based framework that relies on Bayesian inference

to detect replay attack with full data privacy.

Vulnerabilities/

Attacks

location

Typical

vulnerabilities/Attacks

Authors

Of key Works

Detection Tools/ Preventive

Techniques

Network Layer

DDoS Saad et al. (2018) - Filter and reject unconfirmed

transactions generated by

attackers.

o the fee-based design

o the age-based design

DNS/ ENS Ownership

(Centralisation)

Sai et al. (2021)

Jin et al. (2021)

Li et al. (2021)

Ren et al. (2019)

- Encrypt DNS traffic.

- Enhance node discovery protocol.

- DNSonChain (Blockchain based

naming system).

- B-DNS (secure and efficient

Blockchain-based DNS).

 77

- BlockDNS (Blockchain-based

decentralised naming system).

Eclipse (A) Xu et al. (2020)

Wen et al. (2021)

- Detection model called ETH-EDS.

- Enforce an upper limit on the

number of TCP connection.

- ADvISE, behavior detection tool.

Sybil Swathi et al. (2019)

Siddiqi and Ali.

(2022)

- Monitor node’s behaviour and

detect sybil nodes.

- Node authentication mechanism

and detect sybil nodes.

BGP routing Saad et al. (2022)

Xing et al. (2018)

- Secure Blockchain-based BGP

routing system called

RouteChain.

- BGPcoin, BGP Security Solution.

Replay Antonopoulos and

Wood. (2018)

Ramanan and

Gebraeel. (2022)

- Blockchain-based framework that

relies on Bayesian inference to

detect.

- Use an account nonce.

Table 6 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Network Layer

3.9 Vulnerabilities/Attacks on Data Layer
3.9.1 Transaction Malleability Attack
This is an attack that can be associated with either, or both, the Network layer and the Data

layer (Wen et al., 2021). A transaction consists of data that stored on Blockchain. To protect

this data, Blockchain is using cryptography (hashing algorithm and digital signature).

Transaction ID (TXID) or transaction hash is given to every transaction that is verified and

added to the chain. It is an illegitimate modification to a transaction that is being broadcast,

prior to being accepted in a block. In a Blockchain peer-to-peer network, transactions get

passed from one node to another. A malicious node receives the transaction and creates a

modified version of signature, by altering the transaction identifier (TXID), before passing it

to other nodes in the Blockchain (Wen et al., 2021; Sward, Vecna and Stonedahl, 2018). The

 78

consequence of a successful transaction malleability attack can result in additional attack such

as double-spending (Khan, Arshad and Khan, 2020). Sward et al. (2018) proposed a method

that increases the cost to the malicious author, thus making it a less attractive option to gain

financial rewards (Sward, Vecna and Stonedahl, 2018). Ubaidullah et al. (2018) suggested a

solution to detect transaction malleability attempts. The solution is to combine hash of

transaction script without the signature (i.e. scriptSig) and the hash of the final transaction

should be used as a transaction ID during the verification (Ubaidullah Rajput, Fizza Abbas,

Heekuck, 2018).

3.9.2 Timejacking Attack
Timejacking happens due to the vulnerability of timestamp processing in a Blockchain. All

participant nodes in a Blockchain network internally maintain a time counter, which displays

the network time. Hackers can add multiple sybil nodes to the network and alter the node

time at the same time. This can slow down the median time of the targeted node by sending

inaccurate timestamps as well as splitting the network into several parts and isolate the

targeted node from the network (Wen et al., 2021). Thus, miners are wasting computational

powers on stale block and network suffers of fake transactions (Sigurdsson, Giaretta and

Dragoni, 2020). This issue can be prevented by using node’s system time, instead of network

time, to determine the upper limit of block timestamps, tighten the acceptable time ranges,

use the median Blockchain time during block validation, use only trusted nodes (Conti et al.,

2018; Sigurdsson, Giaretta and Dragoni, 2020). Ma et al. (2019) suggested an optimised

timestamp protocol to reach a consensus through (trusted) third party timestamp services

(Ma et al., 2019).

3.9.3 Quantum Attack
Attackers can launch a quantum attack on the cryptographic part of Blockchain to calculate

the private key from public key by using Shor’s algorithm. The level of the risk in Ethereum is

high and quantum attackers can lunch this attack to do hash collision. They can take complete

control of an account and drain all funds (Wen et al., 2021). Researchers are working on post-

quantum cryptography to protect Blockchain systems against quantum attack (Kearney and

Perez-Delgado, 2021; Khalifa, Bahaa-Eldin and Sobh, 2019). Furthermore, Vitalik Buterin

Proposed Hard fork strategy alongside with applying Winternitz signatures scheme and zero-

 79

knowledge proofs to improve the security of transactions and protect against quantum attack

on Ethereum network (Swayne, 2024).

Vulnerabilities/

Attacks

location

Typical

vulnerabilities/Attacks

Authors

Of key Works

Detection Tools/ Preventive

Techniques

Data Layer

Transaction

Malleability

Ubaidullah et al.

(2018)

- Combine hash of transaction

script without the signature (i.e.

scriptSig) and the hash of the

final transaction should be used

as a transaction ID during the

verification.

Timejacking Conti et al.

(2018)

Sigurdsson et al.

(2020)

- Use system time, and narrow

time range, use the median

Blockchain time during block

validation.

 - Use only trusted nodes, using

 node’s system time, instead of

 network time.

Quantum Kearney and

Perez-Delgado.

(2021)

Khalifa et al.

(2019)

Swayne. (2024)

- Use appropriate postquantum.

- Use secure digital signature

schemes.

- Hard fork strategy, Winternitz

signatures scheme and zero-

knowledge proofs.

Table 7 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Data Layer

3.10 Vulnerabilities/Attacks on the Physical Layer
3.10.1 Cold Wallet Theft
With the interest of using hot wallets on portable devices, attackers attempt to use different

techniques to disrupt confidentiality, integrity and availability of valuable assets on wallets.

 80

As the software wallets store the keys on a computer or smartphone, there are more

vulnerable to security breach. Therefore, the alternative option, which is an offline wallet or

cold wallet, is introduced to users. A hardware wallet, which is a more secure wallet, has no

internet connection and transfers keys and transactions through a USB stick, Bluetooth device

or smart card with special embedded software to do cryptography functions (Conti et al.,

2018). However, hardware wallets are suffering from lack of a secure and convenient backup

and recovery process of private keys. For example, a cold wallet can be vulnerable to Man-In-

The-Middle attack. Some of the cold wallets use a terminal like a smartphone or a computer

to communicate with the user. Therefore, hackers can capture NFC wireless communication

or install malware on the terminal and make a Man-In-The-Middle attack. Another

vulnerability would be a brute force attack. Hackers can use a brute force attack to work out

what the passphrase is (Rezaeighaleh and Zou, 2019). Moreover, wallets are hosted in an

operating system and the running environment may be exploited, hence the security threat

posed to the crypto wallet (Hu et al., 2021).

Rezaeighaleh and Zou (2019) proposed a secret sharing mechanism, multi signature and a key

agreement protocol (Elliptic-Curve Diffie-Hellman) for secure backup and recovery

(Rezaeighaleh and Zou, 2019). Due to the vulnerabilities in both wallets and operating

environment, it is important to use multi factor authentication, update the operating system,

antivirus, antimalware as well as enhancing the security awareness (Saleh, 2022).

3.10.2 Cryptojacking Malware
Cybercriminals employ various techniques to hijack the computational resources of target

devices to mine cryptocurrency. Attackers use two types of cryptojacking malware. They can

install an application on a target device (executable-type cryptojacking) that computes hashes

secretly or they use browser-based cryptojacking. In this case, users visit the infected website

and provide their CPU power to compute hashes. Thus, mining happens within the client

browser (Tanana, 2020).

To minimise this security risk, Saad et al. (2019) analysed the static, dynamic, and economic

aspects of browser-based cryptojacking and suggested a detection method and some

countermeasures such as monitoring the usage of CPU, using malware scanner, using browser

 81

extensions to block cryptominers and avoiding suspicious websites (Saad, Khormali and

Mohaisen, 2019). Carlin et al. (2018) offered a technique to detect browser-based

cryptojacking using dynamic opcode analysis that uses the random forest machine learning

algorithm. In contrast, Tanana. (2020) proposed a detection technique based on CPU load by

an application that would be able to deal with both executable (type and browser-based)

cryptojackers (Tanana, 2020).

Vulnerabilities/

Attacks

location

Typical

vulnerabilities/Attacks

Authors

Of key Works

Detection Tools/ Preventive

Techniques

Physical Layer

Cold wallet theft Rezaeighaleh and

Zou. (2019)

Saleh. (2022)

- Use multi signature and a key

agreement protocol.

- Use multi factor authentication,

update the operating system,

antivirus, antimalware.

Cryptojacking Saad, Khormali

and Mohaisen.

(2019)

Tanana. (2020)

Carlin et al.

(2018)

- Browser-based cryptojacking

detection technique, monitoring

the usage of CPU, using malware

scanner, using browser

extensions to block cryptominers

and avoiding suspicious

websites.

- Use of dynamic opcode analysis

to detect browser-based

cryptojacking with Technique

based on CPU load by an

application that would be able to

deal with both executable-type

and browser-based cryptojacker.

Table 8 - Current Work on Vulnerabilities/Attacks and Related Counter-measures on Physical Layer

 82

3.11 Towards a Conceptual Taxonomy and Classification

Sections 3.4 – 3.10 provided a comprehensive overview of the different vulnerabilities and

attacks associated with each layer of a seven-layer Blockchain. For each vulnerability, an

explanation is given about how it is exploited and the potential consequences of such

exploitations. Defensive methods are described and countermeasures proposed. An overview

of vulnerabilities, attacks and their consequences is depicted in the taxonomy shown in Figure

10.

Figure 9 - Vulnerabilities, Attacks and Consequences: a Taxonomy for the 7-layer Architecture

3.12 Centralisation Risks:
Findings from existing works confirmed that centralisation risk is one of the major security

concerns that recently raised in Blockchain. Centralisation risks emanate from a different

layer of Blockchain. As explained in section 1.5, centralisation risks exist in five layers of

Blockchain, such as the application layer, with centralised end user applications which are

provided by centralised organisations known as exchanges (Sai et al., 2021). Centralisation

 83

also poses a risk within the consensus and incentive layers, which control the consensus

power and incentive distributions, which can cause 51% attack and selfish mining (Sai et al.,

2021; Xiao et al., 2020). Even in the network layer, centralised DNS services control DNS seed

addresses and can cause an eclipse attack (Sai et al., 2021; Li et al., 2021). Centralisation risks

also affect the contract layer with “owner control” whereby developers and external

attackers can exploit Blockchain through contract’s ownerships (Sai et al., 2021; CertiK, 2022).

For smart contracts written in Solidity, although they are meant to be decentralised,

developers can exploit the network to inject centralisation into the smart contract. This is the

case because when digital assets are in the control of developers/owners, and Blockchain is

not sufficiently decentralised, the risk moves to the smart contract itself. This makes smart

contracts one of the major areas of security concerns in Blockchain transactions (Xiao et al.,

2020; Sai et al., 2021; CertiK, 2022).

3.13 Security Risks Associated with Smart Contracts in the Contract
Layer
Considering the prevalence of smart contracts and their related security risks, and taking

account of the vulnerabilities and attacks within each layer, as outlined in Section 2.7 above,

the contract layer is, arguably, the most vulnerable layer in a Blockchain architecture. This is,

in part, a consequence of the fact that smart contracts are prone to security vulnerabilities

due to the high dependence on programmers and exposure to bugs (Hooper Solorio and

Kanna, 2019).

A Smart contract, which runs on Ethereum Blockchain, enhances trust in Blockchain

technologies, for it delivers higher trust in the decentralised ledger where data cannot be

altered or deleted. Paradoxically, smart contracts are prone to security vulnerabilities due to

high dependence on programmers and exposure to bugs (Ma et al., 2019; Rezaeighaleh and

Zou, 2019). Based on the nature of Blockchain-based programs, once smart contracts are

deployed, they cannot be modified. Therefore, it is vital that developers be familiar with

secure coding and best practices, testing tools to enhance the code before deploying smart

contract on Ethereum network. It is argued, therefore, that particular attention should be

paid to security risks emanating from smart contracts. This section provides a detailed

account of current work on security risks and countermeasures associated with smart

 84

contracts. This is then used as a basis for developing a more detailed model application for

smart contract security risks within the contract layer. The model is described here outlining

the best practice towards developing more secure smart contracts.

As smart contracts are still recent, new bugs and security risks are constantly being

discovered. This led to developers using several smart contract security tools to check and

validate the code and detect some of the vulnerabilities. As described in Section 3.5 above,

the literature review revealed that different techniques, or tools, exist to detect

vulnerabilities within the contract layers.

To alleviate the risks associated with smart contracts, recommendations include manual code

review to detect bugs, check access control to critical functions and the flow of function calls.

Researchers also suggested to use testing frameworks like foundry and hardhat to run tests

and debug solidity code (Sm4rty, 2022). Source code metrics can be used for quality assurance

and performance of Blockchain oriented software (e.g., measure complexity, calculate smart

contract resource consumption such as gas in the Ethereum system) (Ajienka, Vangorp and

Capiluppi, 2020). SWC Registry provided smart contract weakness classification which

includes real-world smart contracts as test cases for each vulnerability (SWC, 2020). It is vital

that developers, researchers, and auditors use best practices for secure coding throughout

the development process and use available techniques/tools, remediation steps, as suggested

by CWE (SWC, 2020), ConsenSys and Mastering Ethereum (Antonopoulos and Wood, 2018)

to avoid erroneous implementations and major/critical vulnerabilities.

From the analysis of the work in (Antonopoulos and Wood, 2018; SWC, 2020, and ConsenSys,

no date) and the related literature cited in Table 3 above, a model application is developed

depicting, in more detail, the security risks within the contract layer. For each vulnerability,

the model proposes a best practice to adopt when writing the Solidity Code, best practice to

be adopted by developers in general, and suggested analysis tools to use. This model is

presented in Figure 11.

 85

Figure 10 - A Model Application for Best Practice Towards a More Secure Smart Contract

3.14 Summary

This chapter provides a comprehensive overview of the security threats and vulnerabilities

associated with each layer of a seven-layer blockchain architecture. The inter-relationships

between these vulnerabilities, their exploitation and the related consequences are described,

with a particular focus on the case of Ethereum Blockchain. With the research questions in

mind, a systematic investigation is carried out, covering the mechanisms proposed by

researchers to detect/prevent the vulnerabilities and attacks. The outcome of this

investigation is summarised in a taxonomy for a seven-layer Blockchain architecture,

describing the inter-relationships between vulnerabilities, attacks and the related

consequences. Of the seven layers, particular attention is given to the Contract Layer, and

more specifically the vulnerabilities associated with how smart contracts are written. A model

is proposed to enhance the security of smart contracts, while enlisting the best practices and

tools to use.

 86

The security impact of centralisation on the Blockchain is discussed. Major security risks

caused by centralisation, particularly within five specific layers of the Blockchain, are

identified. An area of continuing interest is related to the potential centralisation that can be

caused by smart contracts. Smart contracts with centralised ownership pose major security

issues and act as a single point of failure, which contradicts the very decentralised nature of

Blockchain. To mitigate against the risks associated with centralised control, decentralised

autonomous organisations (DAOs) promise to alleviate some of these risks, by enforcing

automated rules that are encoded in smart contracts thus reinforcing the community-based

governance. With creating a decentralised decision-making process, the power of decision-

making will be distributed and therefore preventing smart contract ownership and ensuring

that no single individual, or team, has complete control over the network. For this research,

the next step is to develop a method whereby smart contracts are written in such a way to

prevent one-owner control and therefore enabling genuine DAO. The next chapter will

explain the role of DAOs to reduce the centralisation risks.

 87

Chapter 4: Research Methodology

4.1 Introduction

This chapter presents the research methodology employed in this study, focusing on the

centralisation risks associated with smart contracts within Blockchain technology and

exploring the merits of Decentralised Autonomous Organisations (DAOs) as a potential

solution. The methodology outlined here builds on the research objectives discussed in earlier

chapters and provides a detailed explanation of the methods used to design, implement, and

test the "Genuine DAO" application. This chapter also sets out the key requirements that will

be used to assess the success of this research, ensuring that the objectives are met through a

rigorous and systematic approach.

4.2 Research Focus: Centralisation Risks and DAOs

Centralisation within Blockchain networks, particularly in the context of smart contracts,

poses significant security risks that can undermine the very decentralisation that Blockchain

aims to achieve. As discussed in previous chapters, smart contracts with centralised

ownership act as a single point of failure, which contradicts the distributed nature of

Blockchain. This research is focused on addressing these centralisation risks by leveraging the

concept of DAOs, which decentralise decision-making and governance.

4.2.1 Centralisation Risks Caused by Smart Contracts

The inherent risks of centralisation within Blockchain technology, particularly at the Contract

Layer, require careful monitoring, detection, and mitigation. Smart contracts, which are

supposed to operate autonomously, often suffer from centralised control due to the way they

are deployed and managed. Centralised ownership of smart contracts not only poses a

security risk but also contradicts the fundamental principle of decentralisation. This research

aims to address these issues by proposing a method to write smart contracts in a way that

prevents one-owner control, thereby fostering a truly decentralised environment.

 88

4.2.2 Decentralised Autonomous Organisations (DAOs)

DAOs offer a promising solution to the centralisation risks posed by smart contracts. A DAO

is a self-governed, decentralised organisation encoded in smart contracts and deployed on a

Blockchain. This self-governed organisation is encoded in smart contracts, deployed, and

executed on Ethereum Blockchain (Singh and Kim, 2019). Autonomous governance of DAOs

leveraged by automated rules coded within smart contract agreements to facilitate

automated and transparent execution. This enhances efficiency and security (Santana and

Albareda, 2022).

DAOs tend to differ from existing centralised organisational structures in several aspects. This

is mainly due to the fact that DAOs distribute the power of decision-making among all

participants with minimum central overall control. All decisions should be approved by most

of the DAO members (Santana and Albareda, 2022). DAOs elements are described below.

By distributing decision-making power among all participants, DAOs reduce the risks

associated with centralised control and enhance the security, transparency, and efficiency of

the system.

• DAO Rules: These are the protocols and guidelines encoded in smart contracts that

govern the operations of the DAO. They include conditions for membership, decision-

making processes, token management, and voting mechanisms, ensuring that the

DAO operates transparently and securely.

• Tokens: DAO tokens represent ownership or membership in the organisation. They

grant holders the right to participate in governance and decision-making, thereby

decentralising control within the organisation.

• DAO Members: Members of the DAO, represented by tokens, have the right to vote

on proposals and contribute to decision-making processes, ensuring that power is not

concentrated in the hands of a few.

• DAO Smart Contracts: These are the backbone of the DAO, encoding the governing

rules and automating operations in a decentralised manner, thereby eliminating the

need for a central authority.

 89

4.2.3 Research Hypothesis: The Use of DAOs in Mitigating Centralisation Risks

Based on the literature review and the identified centralisation risks in smart contracts, the

following hypothesis is formulated:

“The centralisation risks associated with smart contracts can be mitigated by adopting

a DAO-based governance model.”

By transferring decision-making authority from a centralised entity to a diverse group of users,

DAOs ensure that no single individual or team has complete control over the network.

Numerous studies have explored vulnerabilities within Ethereum and smart contracts in

particular (see Chapter 3 above). Furthermore, and over the last three to four years, there

have been a great number of works dedicated to examining DAOs. However, there are limited

studies that pay particular attention to centralisation risks in DAOs. At the time of writing, the

existing literature lacked any work showing how using DAOs would minimise centralisation

risks on smart contracts. Therefore, there is a need to delve into the centralisation risks with

particular focus on risks related to owner control. In this thesis a decentralised application

that is governed by DAOs is proposed. “Genuine DAO” is a decentralised application that has

the potential to offer transparency, security, and decentralised decision-making.

In the main, two methods are suggested to minimise centralisation risks, a) hand over

privileged roles to multi-signature smart contracts, and b) implementing DAOs whereby the

project will be managed by the community that actively participates in it (Kuryłowicz, 2023;

Certik, 2021; Code4rena, 2023).

This research proposes the development of a decentralised application called "Genuine DAO,"

which aims to provide a transparent, secure, and decentralised decision-making process,

thereby reducing the risks of centralisation in smart contracts.

4.3 Research Philosophy
Research philosophy encompasses the researcher’s beliefs and assumptions about the nature

of knowledge creation and the techniques and methods that are used to collect and analyse

data (Saunders et al., 2020). Research philosophy deals with the sources of knowledge, its

 90

development, and the nature of that knowledge. Knowledge can develop in a particular field

and can come from answering a specific problem in a certain context (Collins, 2019).

Al Zefeiti and Mohamad. (2015) believe that every view of research philosophy will then come

with a different set of assumptions that are attached to it. With regards to the research onion,

they stated that several of the philosophies described in the research onion model require a

set of assumptions with different ontology, epistemology and axiology. Of these varying

philosophies, positivism, realism, interpretivism and pragmatism are considered to be the

most important, which the following section explains in more detail.

4.3.1 Positivism Philosophy
The positivism philosophy is founded on the belief that all knowledge stems from human

experiences (Collins, 2019). It is because of this idea that it is also believed that positivism

refers to a researcher’s own philosophical viewpoint and position. The researcher must be

aware of his or her own philosophical beliefs. Saunders et al. (2020) state that it requires

working with an observable social reality, so that the final result of this type of research can

be the creation of law-like generalisations derived from our own experiences. With this type

of research philosophy, there is a need to evaluate results with statistical methods. In general,

positivists believe in a single and measurable reality (Patel, 2015). Therefore, the main focus

with this type of philosophy is on quantifiable observations and quantitative methods.

4.3.2 Realism Philosophy
The realism philosophy is based on the separation of reality from the human mind (Saunders

et al., 2020). The belief is that something can exist even in the absence of us thinking about

them. With this philosophy, there is a common understanding and belief that the

development of knowledge requires a scientific approach. Realism is often divided into two

groups, which are direct and critical. Direct realism believes that what you see is in fact in

existence, whereas critical realism believes in certain fixed and set philosophical positions

Saunders et al., 2020).

4.3.3 Pragmatism Philosophy
This philosophy believes in using different ways and methods to solve a problem. With a

pragmatic philosophy, the researcher is looking for the best possible way to solve the

problem. Therefore, a pragmatic researcher may use mixed methods and techniques

associated with qualitative and quantitative research (Saunders et al., 2020).

 91

4.3.4 Interpretivism/Constructivism Philosophy
According to Saunders et al. (2020, p. 168), in an interpretivist philosophy “the researcher

needs to make sense of subjective and socially constructed meaning expressed about the

phenomenon being studied”.

Interpretivism has a conceptual relationship to the philosophical position of idealism and is a

term that unites a range of approaches, including social constructivism (Collins, 2019). With

the interpretivism philosophy, the main focus is on qualitative results. Interpretivists believe

that there is no single reality or truth, and therefore reality needs to be interpreted (Patel,

2015). With this type of research philosophy, the research will be highly dependent on the

researcher to observe and interpret a subject or event. It requires good training in overcoming

biases and in observational methodology. In interpretivism, common methodologies include

observations and interviews.

4.3.5 The Adopted Research Philosophy

The research philosophy underpinning this study is pragmatism, which supports the use of a

combination of quantitative and qualitative methods. Pragmatism allows for a flexible

approach to research, enabling the researcher to choose the methods that best suit the

research problem and objectives.

• Positivism: This perspective is applied during the experimental phase of the research,

where quantitative methods are used to test hypotheses and collect empirical

evidence. The positivist approach is essential for evaluating the outcomes of the

"Genuine DAO" application in a systematic and measurable way.

• Interpretivism: This perspective is applied during the qualitative phase of the

research, where the focus is on understanding the subjective experiences and insights

of experts in the field. Interpretivism is crucial for gathering and interpreting the

qualitative feedback that informs the development and refinement of the "Genuine

DAO" application.

By combining these perspectives, the research can address both the technical and human

aspects of the problem, providing a comprehensive understanding of the centralisation risks

and the effectiveness of the proposed solution.

 92

4.4 Research Approach

The research approach adopted in this study is deductive, aligning with the goals of scientific

research. The deductive approach involves starting with a hypothesis based on existing

knowledge and then systematically testing this hypothesis through experiments and data

analysis.

• Formulating Hypothesis: Based on the literature review and the identified

centralisation risks in smart contracts, a hypothesis is formulated regarding the

potential effectiveness of the "Genuine DAO" in mitigating these risks.

• Testing Hypothesis: The hypothesis is tested through a combination of quantitative

experiments (e.g., testing the smart contracts within the "Genuine DAO") and

qualitative evaluations (e.g., expert feedback).

• Data Analysis: The data collected from the experiments and evaluations are analysed

to determine whether the hypotheses are supported or refuted. This approach

ensures that the research findings are based on solid empirical evidence.

Figure 11 illustrates a flowchart depicting the research methodology and the detailed

steps and key stages involved in conducting the research and achieving the research

objectives

Figure 11 Research Methodology Approach and the Key Stages.

 93

4.5 Data Collection and Analysis Methods

The methodology for data collection and analysis in this study is guided by the Research Onion

Model, which provides a systematic framework for selecting and implementing research

methods.

4.5.1 Data Collection

The data collection process in this study involves both secondary and primary sources, using

a mixed-method approach.

• Secondary Data: A systematic literature review (SLR) was conducted to gather

information on Blockchain technology, smart contracts, DAOs, and centralisation risks.

The review involved analysing 502 academic papers, conference proceedings,

technical reports, and other relevant publications. After applying inclusion and

exclusion criteria, 315 articles were selected for detailed analysis, focusing on

vulnerabilities, attacks, and preventive techniques related to centralisation in

Blockchain.

• Primary Data: Primary data was collected through the development and testing of the

"Genuine DAO" application. This involved coding smart contracts, deploying them in

a test environment, and gathering feedback from experts. The experts' feedback was

collected through structured questionnaires and interviews, providing qualitative data

that complements the quantitative analysis.

The steps used in the overall research strategy adopted for selecting the right publications

are shown in Figure 12.

Some of the articles within the short list were excluded because they focused on a layering

architecture or security threats within platforms other than Ethereum environments. The key

inclusion and exclusion criteria are listed in below.

 94

Inclusion criteria:

• The paper must be peer-reviewed and published in research databases.

• The technical report must be reviewed by reputable Blockchain security analysis

companies.

• The paper must contain information associated with Blockchain technology or

related to Blockchain layering, key components, vulnerabilities and attacks on

Ethereum.

Exclusion criteria:

• Papers focusing on business or legal impacts of Blockchain applications.

• Papers focusing on other Blockchain platforms other than Ethereum.

• Papers written in a language other than English.

A thematic analysis was adopted in the identification of meaningful patterns linking threats

to each of the Blockchain layers. Although no specific coding was used, the thematic analysis

approach was supported by a content analysis, yielding a classification of the key categories

around threats, attacks, countermeasures and how they are related to each layer. All data

extracted helped to develop a more comprehensive and an in-depth classification of security

threats and attacks within the different layers of Blockchain. A complete classification of the

available detection tools and preventive techniques was provided for each vulnerability. The

main factors that caused centralisation risks are also identified.

 95

Figure 12 - Flowchart of Research Strategy Used for Articles and Reports Selection.

4.5.2 Data Analysis

The data analysis process in this study involves both quantitative and qualitative methods,

ensuring a comprehensive evaluation of the research findings.

• Quantitative Analysis: The quantitative analysis focuses on the outcomes of the

"Genuine DAO" application, particularly its effectiveness in preventing centralisation

in smart contracts. Metrics such as the distribution of decision-making power, the

security of smart contracts, and the transparency of governance processes are used

to evaluate the application.

• Qualitative Analysis: The qualitative analysis involves thematic analysis of the

feedback provided by experts. This analysis identifies patterns and insights that inform

the refinement of the "Genuine DAO" application, ensuring that it meets the needs of

users and addresses the identified centralisation risks.

 96

4.6 Design of the Genuine DAO Application

The data analysis phase informs the design phase, setting out the requirements for the

Genuine DAO application and the architecture to adopt in order to address the identified

centralisation risks. The focus in this phase is on the design requirements, architecture, and

novel aspects of the system. The Genuine DAO is designed to address the centralisation risks

associated with smart contracts by enforcing a decentralised governance model and

enhancing security through innovative design features. The design is based on this research

hypothesis that “The centralisation risks associated with smart contracts can be mitigated

by adopting a DAO-based governance model: Genuine DAO”.

4.7 Implementation and Testing

The implementation phase of the research involves the development and testing of the

"Genuine DAO" application. This phase is critical for demonstrating the practical applicability

of the proposed solution and for validating the research findings.

4.7.1 Tools and Extensions

The development of the "Genuine DAO" application involved the use of various Open-Source

tools and platforms. GitHub and Etherscan were used to collect and manage the smart

contracts' source code, while other tools were used for coding, deployment, and testing.

4.7.2 Implementation Process

The implementation process involved several key steps:

• Designing the Smart Contracts: The smart contracts were designed to enforce

decentralised decision-making, with specific measures to prevent one-owner control.

• Deploying the Smart Contracts: The smart contracts were deployed in a test

environment within the Ethereum Blockchain, allowing for controlled

experimentation and testing.

 97

• Testing the Application: The application was tested for its ability to meet the security,

transparency, and decentralisation requirements. This involved both functional

testing (to ensure the smart contracts work as intended) and security testing (to

identify and mitigate potential vulnerabilities).

4.7.3 Expert Evaluation

Once the testing phase was completed, the "Genuine DAO" application was evaluated by

experts in the field of Blockchain and smart contracts. The experts were selected based on

their experience and expertise, ensuring that the feedback provided was both relevant and

insightful.

• Feedback Collection: Feedback was collected through structured questionnaires,

focusing on the effectiveness of the application, potential improvements, and any

observed weaknesses.

• Analysis of Feedback: The feedback was analysed to identify common themes and

insights, which were then used to refine the "Genuine DAO" application.

4.8 Evaluation Criteria

The success of the "Genuine DAO" application is evaluated based on the following criteria:

• Decentralisation: The degree to which the application prevents one-owner control in

smart contracts, ensuring that decision-making is distributed among participants.

• Security: The effectiveness of the application in mitigating security risks associated

with centralisation, such as single points of failure and susceptibility to attacks.

• Expert Feedback: The insights and suggestions provided by experts during the

evaluation phase, which will be used to assess the practicality and usability of the

application.

These criteria are used to measure the effectiveness of the "Genuine DAO" application and

to determine whether the research objectives have been met.

 98

4.9 Mapping the Methodology Against the Research Questions

The research methodology applied in this study is designed to comprehensively address the

key research questions outlined in Chapter 1. Below is a detailed explanation of how the

methodology aligns with each research question.

• RQ1: What are the current security concerns in Ethereum Blockchain transactions?

To address this question, a systematic literature review (SLR) was conducted, focusing

on the existing security concerns within Ethereum Blockchain transactions. The SLR

involved analysing a wide range of peer-reviewed articles, technical reports, and other

relevant sources published between 2015 and 2024. By reviewing and synthesizing the

findings from these sources, the study identified the most pressing security issues,

such as transaction malleability, double-spending, and vulnerabilities in consensus

protocols. The deductive approach used in this study enabled the formulation of

hypotheses related to these security concerns, which were then tested through

empirical research.

• RQ2: What types of vulnerabilities are inherent to smart contracts in Blockchain?

This research question was addressed by further extending the systematic literature

review to focus specifically on the vulnerabilities inherent in smart contracts within

Blockchain technology. The review identified various types of vulnerabilities, including

re-entrancy attacks, integer overflow/underflow, and logic errors within the contract

code. Additionally, the study examined how these vulnerabilities can be exacerbated

by centralised control, making them critical targets for the proposed solutions. The

deductive research approach facilitated the testing of these identified vulnerabilities

through the development and analysis of smart contracts within the "Genuine DAO"

application, allowing for a detailed examination of how these issues can be mitigated.

• RQ3: How can a DAO-based framework enhance the decentralisation and security

of smart contracts?

To explore this question, the research focused on designing, implementing, and

evaluating a DAO-based framework, specifically the "Genuine DAO" application. The

methodology involved both quantitative and qualitative approaches. Quantitatively,

 99

the application was tested for its ability to decentralise decision-making processes

and enhance security by preventing one-owner control and reducing centralisation

risks. Qualitatively, expert feedback was gathered to assess the effectiveness of the

DAO-based framework in real-world scenarios. The insights gained from this

feedback were instrumental in refining the application and validating its potential to

enhance both decentralisation and security in smart contracts.

These methodological steps ensured that each research question was addressed

systematically, providing a comprehensive understanding of the security issues within

Ethereum Blockchain, the vulnerabilities inherent to smart contracts, and the potential of

DAO-based frameworks to mitigate these challenges.

4.10 Summary

This chapter has outlined the research methodology used in this study, focusing on the

development of a decentralised application ("Genuine DAO") to mitigate centralisation risks

in Blockchain technology. The methodology combines quantitative and qualitative

approaches, guided by a pragmatic research philosophy, to ensure a comprehensive and

effective investigation. The next chapter will present the detailed implementation steps and

the results of the testing and evaluation phases, demonstrating the application’s ability to

enhance the security and transparency of Blockchain systems.

 100

Chapter 5: Design and Implementation of the Decentralised

Application: Genuine DAO

5.1 Introduction
This chapter presents the design, implementation environment, and testing of the "Genuine

DAO" application, a novel approach to mitigating centralisation risks in smart contracts on the

Ethereum Blockchain. Drawing on the findings from the literature review and the

methodology outlined in Chapter 4, this chapter details the design requirements and the

architecture of the Genuine DAO. The design emphasises decentralisation, and security while

providing a robust framework for decentralised governance. The chapter also presents an in-

depth analysis of system components (front-end and back-end interactions) of the developed

application. The end of the chapter is dedicated to describing how the developed application

is tested against the design requirements.

5.2 Design Requirements of the Genuine DAO
Starting from the hypothesis that “The centralisation risks associated with smart contracts

can be mitigated by adopting a DAO-based governance model: Genuine DAO” the design of

the Genuine DAO application is based on a set of critical requirements that stem from the

core principles of Blockchain technology decentralisation, security, and transparency. These

requirements are designed to address the centralisation risks associated with smart contracts

and to provide a robust framework for decentralised governance.

5.2.1. Decentralisation
Requirement 1: Distributed Decision-Making

The application must ensure that decision-making authority is distributed among a broad and

diverse group of users, preventing any single individual or entity from exerting undue control.

This decentralised governance is essential to maintaining the integrity and democratic nature

of the Blockchain, as it mitigates the risks associated with centralised ownership of smart

contracts. The architecture of Genuine DAO ensures, through a voting system, that no single

party can make unilateral decisions. This ensures that the decision-making authority is

 101

distributed among a diverse group of users, preventing any single individual or entity from

exerting undue control. This is crucial to maintaining the decentralised nature of the

Blockchain and mitigating the risks associated with centralised ownership of smart contracts.

Requirement 2: Elimination of Single Points of Failure

The design must eliminate any single points of failure within the system. A single point of

failure, such as a centralised control point in a smart contract, can compromise the security

or functionality of the DAO, potentially leading to catastrophic consequences for the entire

network. To prevent this, the ownership and governance of smart contracts must be

distributed across multiple participants. This decentralisation of power ensures that the

system remains resilient even if one or more participants attempt to act maliciously.

This includes the decentralisation of smart contract ownership and the distribution of

governance responsibilities across multiple participants.

5.2.2 Security
Requirement 3: Secure Smart Contract Execution

The application must ensure that all smart contracts are executed securely, with rigorous

mechanisms in place to prevent vulnerabilities such as one owner control, double proposals

and front-running attacks. Front-running, where malicious actors exploit the timing of

transactions to gain an unfair advantage, is a significant threat in Blockchain systems. The

Genuine DAO design integrates time-based mechanisms to thwart such attacks, ensuring that

transactions are executed as intended without interference.

5.3 The Structure of Genuine DAO
Based on the three requirements above, the Genuine DAO application is designed to address

the centralisation risks identified in Chapter 3 by enforcing a decentralised governance model

through the use of DAOs. This section describes the architecture of the Genuine DAO,

highlighting how the design meets the requirements outlined above. The implementation

environment is described in detail in section 5.4.

 102

5.3.1 Motivation for Genuine DAO
With the research hypothesis in mind, the development of the Genuine DAO was motivated

by the need to mitigate the risks associated with centralised control in Blockchain-based

systems. Centralised smart contracts pose significant security risks, acting as single points of

failure and contradicting the decentralised ethos of Blockchain technology. To address these

issues, the Genuine DAO was designed to ensure that smart contracts are managed through

a distributed decision-making process, where power is shared among users and no single

entity can dominate the system.

5.3.2 Architecture of Genuine DAO
The architecture of the Genuine DAO is depicted in Figure 13, which illustrates how the

application is implemented on the Ethereum network. The architecture is designed to enforce

decentralisation and enhance security by integrating the following components:

• Smart Contracts: The core of the Genuine DAO is a set of smart contracts that encode

the rules and governance processes of the DAO. These contracts are designed to

prevent single-owner control, ensuring that all decisions are made collectively by the

DAO members.

• Governance Mechanism: The governance mechanism of the Genuine DAO is based

on a voting system, where members (represented by tokens) can submit proposals

and vote on them. The voting process is transparent and recorded on the Blockchain,

ensuring accountability.

• Preventing Front Running Attacks: To further enhance security, the Genuine DAO

detect and prevent front-runners from attempting to prioritise their transactions over

other users’ transactions and gaining advantage by doing so.

 103

Figure 13 The Architecture of the Proposed Genuine DAO Application.

5.3.3 Novelty of the Genuine DAO Application
The Genuine DAO application introduces two novel elements that distinguish it from existing

DAO implementations:

• Enforced Decentralisation: Unlike many existing DAOs that still allow for some degree

of centralised control, the Genuine DAO is designed to enforce decentralisation by

preventing single-owner control of smart contracts. This is achieved through a

combination of multi-signature mechanisms and a distributed governance model.

• Transparent and Auditable Governance: All governance processes within the

Genuine DAO, from proposal creation to voting and execution, are transparent and

recorded on the Blockchain. This level of transparency is essential for maintaining trust

and ensuring the integrity of the DAO.

• Focus on Security: The Genuine DAO places a strong emphasis on security, integrating

features such as preventing frontrunning attacks commonly found in smart contracts.

This focus on security ensures that the DAO is more resilient to attacks and other

threats.

 104

5.4 System Environment Construction and Code Implementation
This section introduces the implementation environment that was used to develop and test

the Blockchain-based DAO application “Genuine DAO”. This environment includes a number

of tools and platforms that are described below.

The operating environment for developing and testing “Genuine DAO” consists of 16G

memory, 11th Gen Intel core i7 processor, and the Microsoft Windows operating system. The

proposed decentralised application “Genuine DAO” used Visual Studio Code software as the

development environment and the Solidity programming language to write smart contracts

for the back-end. The smart contracts are tested using the Hardhat Framework. In addition,

JavaScript programming language is utilised within the same development environment for

writing the front-end components.

5.4.1 The Flow to Develop Genuine DAO (Back-end and Front-end)
This section describes the steps, the specific tools and the extensions that were used to

develop the back-end and the front-end for the proposed blockchain-based DAO application

and to enable interaction between them.

5.4.1.1 Develop Genuine DAO Smart Contracts (Back-end)
a. Install required software and extensions such as Visual Studio, IDE and Solidity, and

Hardhat extensions.

b. Define the Smart Contract requirements such as data structures, functions, and logic for

writing back-end of “Genuine DAO”.

c. Use Solidity compiler to compile smart contracts code into bytecode, which generates

the ABI in JSON format.

d. Set up Ethereum network such as web3.js and connect “Genuine DAO” to the Sepolia

and Mumbai/Amoy testnets.

e. Deploy the “Genuine DAO” smart contracts on both Ethereum mainnet network

(Sepolia testnet) and Polygon network (Mumbai and Amoy testnets).

f. Test and debug “Genuine DAO” smart contracts.

 105

5.4.1.2 Develop Genuine DAO Application (Front-end Interface)

a. Install Node.js extensions to create the back-end environment to interact with front-

end.

b. Install web3.js library in the Node.js environment to interact with the deployed

Genuine DAO smart contracts.

c. Install Tailwind CSS to easily style and design the user interface.

d. Install MetaMask wallet for developing and testing transaction flow of Genuine DAO

smart contract as well as creating accounts to interact with the Genuine DAO

application (DApp).

e. Write JavaScript functions to interact with the deployed smart contracts.

f. Create functions in the back-end that use web3.js to read and write data from/to the

Genuine DAO smart contracts.

g. Develop Front-end (decentralised application) using JavaScript, React and Tailwind

CSS.

h. Set up web3.js to enable communication between the Genuine DAO application

(DApp) with the deployed Genuine DAO smart contracts. When the front-end sends

data requests to the Genuine DAO smart contracts or makes a transaction, the back-

end (Genuine DAO smart contracts) will handle the request using web3.js and

response to the front-end (Genuine DAO application). (web3.js retrieves data from the

deployed Genuine DAO smart contracts).

i. Set up, or import, the API of Genuine DAO smart contracts into the front-end code to

enable the Genuine DAO application to interact with the Genuine DAO smart

contracts.

j. Use Wagmi, a Design System, to facilitate interactions with the MetaMask wallet and

Genuine DAO smart contracts.

k. Deploy and host the front-end on Ethereum network (Sepolia testnet) and Polygon

network (Mumbai/ Amoy testnets).

g. Test Genuine DAO to ensure that the front-end communicates with the back-end

correctly through the defined API endpoints and Genuine DAO functions as expected.

To check if Genuine DAO handles user input securely and prevent common

vulnerabilities.

 106

5.4.2 Development Tools and Frameworks
For the development of the Genuine DAO decentralised application, the following tools and

frameworks were used.

5.4.2.1 Programming Languages
• Solidity to write Genuine DAO smart contracts (back-end)

Solidity is a programming language similar to JavaScript, C++ Python. It is the most

widely used language for Ethereum smart contract (Solorio et al., 2019). There are three

types of variables in solidity that hold values in a program namely, local variable, global

variable and state variable. Local variables store temporary data and hold the values

during the function execution whereas state variables hold the values permanently,

which are stored in smart contracts’ storage. State variables have four possible states

of visibility (public, private, internal, and external) to access functions and read the value

of the state variable. Global variables are accessible from any function within the

contract (in the global namespace) and holds specific information about transaction and

block such as block number, block timestamp (Bashir, 2020). In this work, the back-end

code is written in a Solidity language using Web3.js, ABI and Hardhat.

• JavaScript for building Genuine DAO Application (Front-end)

Javascript is known for being the programming language of choice for web

development. The combination of JavaScript and Web3 provides the opportunity for

developers to build decentralised applications on the Ethereum Blockchain. To create

the Genuine DAO application (DApp), JavaScript was used with help of some libraries

and frameworks such as React, web3.js, Node.js, Hardhat and other supporting

extensions (Mendes, 2023).

5.4.2.2 Tools and Libraries
A variety of tools and libraries have been used for testing and interacting with Ethereum and

Blockchain networks.

Web3.js

 107

Web3.js is a collection of libraries that provides an interface that developers can

interact with smart contracts on the Ethereum Blockchain using JavaScript Node.js

(Kenneth, 2019). Web3 contains of module constructors such as web3-eth, web3-shh,

web3-bzz, web3-net and web3-utils that have specific functionalities to allow users to

interact with Ethereum Blockchain and smart contract. Behind the system, Web3 uses

JSON-RPC for encoding data, making it easily readable and interoperable across

different programming languages and platforms (Solorio et al., 2019; Infura, 2023).

JSON-RPC is a remote procedure call mechanism that uses of JSON (JavaScript Object

Notation) data format to encode its calls. It allows Blockchain based application

interact with smart contracts and Blockchain nodes (Bashir, 2020).

When a developer creates a new contract object, they can provide it with the JSON

interface of the respective smart contract. By doing so, Web3.js gains an

understanding of the contract's structure and can interpret its functions and data. By

passing the JSON interface to Web3.js, it becomes aware of the contract's ABI

(Application Binary Interface). This ABI defines the contract's functions, events, and

data structures. With this knowledge, Web3.js is able to automatically handle the

conversion of high-level function calls into low-level ABI calls over RPC.

This allows developers to enable the library to understand the contract's structure and

automatically handle the necessary ABI conversions for function calls in order to build

an efficient and robust Blockchain based applications. The Web3.js library can be

installing through Node Package Manager (npm)and use “npm install web3” command

on terminal console (Kenneth, 2019).

Ethers.js

Ethers.js is a JavaScript library like Web3.js that offers Ethereum interface providers

with four modules (Ethers.provider, Ethers.contract, Ethers.utils and Ethers.wallets).

These modules interact with Ethereum nodes smart contracts and Ethereum network

through JSON-RPC, Alchemy, Etherscan and MetaMask (Ethers, 2023; Infura, 2023).

 Node.js

Node.js is a well-known JavaScript runtime environment that can be used in

conjunction with Ethereum development to create decentralised applications. There

 108

are several Node.js - related extensions available in the Visual Studio Code, which can

be used to improve the development workflow and enables efficient interaction with

the Ethereum network (Nguyen, 2023).

 React

React is a JavaScript library for building user interfaces (UIs) for decentralised

applications. The front-end communicates with the back-end (smart contracts) using

the Ethereum Virtual Machine (EVM) and the Application Binary Interface (ABI)

(Solorio et al., 2019; MetaOpenSource, 2023).

The ABI acts as a communication bridge between the front-end application and the

smart contract. It defines the structure, functions, and events of the contract and how

data is read and returned. ABI also specifies the encoding and decoding rules for

converting data between the contract's internal representation and external formats,

such as bytes or JSON (Hoang Minh, 2022).

Tailwind CSS

This is a popular CSS framework that provides a set of pre-designed low-level utility

classes for developers to build modern and responsive user interfaces faster and

easier (Ukey, 2022). This CSS framework has gained popularity among front-end

developers for its flexibility, reliability, simplicity and ability to speed up the

development process by writing less code (Tailwindcss, 2023).

Wagmi

Wagmi is a collection of React Hooks that are used to build a fully functional front-end

using React to interact with Ethereum Blockchain. It offers an easy and efficient way

to facilitates interactions with crypto wallets and smart contracts and allows to access

real-time data updates on changes in the wallet, block and Ethereum network (Wagmi,

2022; QuickNode, 2023).

Chai.js

Chai.js is an assertation library that used for unit testing for any JavaScript testing

framework like Hardhat. It provides a set of plugins, functions and methods that allow

developers to test the behaviour of code in small, independent units. Chai comes with

 109

different assertion styles such as should, assert and expect. To install Chai in Node.js

project, the researcher has used npm and has written the following command “npm

install chai” (Chai Assertation library, 2023).

5.4.2.3 MetaMask Wallet to Interact and Deploy Genuine DAO
The MetaMask wallet is a Chrome browser extension that provides the ability for users to

create accounts to interact with Blockchain based applications through Json- RPC (JavaScript

Object Notation-Remote Procedure Call). MetaMask, enables users to store their digital

assets and cryptographic keys, allowing them to securely sign transactions and authenticate

their identity when interacting with decentralised applications (Solorio et al., 2019).

MetaMask wallet uses the ChainList to connect to the EVM powered networks and Alchemy

website to receive Ethereum Sepolia and Polygon Mumbai and Amoy Faucets.

5.4.3 The Genuine DAO Back-end Implementation
5.4.3.1 Setting the Scene for the Back-end
The function visibility is a crucial part in the development of a secure smart contract.

Functions in smart contracts can be accessible externally, internally, privately and publicly.

Public functions can be called both internally within the contract or from outside. External

functions are visible to other smart contracts and external accounts (EOAs) via transactions.

Private functions are only visible within the same contract that defined them. Internal

functions are accessible within the contract and any other smart contracts that inherit from

it. In addition to visibility, solidity offers function modifiers such as pure, view, payable and

constant to enforce specific restrictions on how functions can be accessed within a smart

contract. The view modifier disables any modifications to state and allows the function reads

the contract's state (Read-only access and returns values). The pure modifier executes locally

and prohibits reading and modifying the state (returns calculations). Payable functions allow

the function receives and manages Ether with a call. Finally, the Constant Modifier is similar

to the View Modifier which disallows access or modification to the state (Bashir, 2020). As a

result, functions and variables can be restricted with some “key words” and change the rules

of scope to implement access control mechanism to enhance security, improve code’s clarity

and reduce gas consumption for read-only operations (gas efficiency).

 110

After Installing the necessary software, tools and extensions, the new project directory has

been created on Visual Studio Code, called Genuine DAO Contracts. Figure 16 depicts the

proposal structure that is developed by Genuine DAO smart contracts.

This project implemented an application based on a DAO structure where rules are

established within the smart contracts. Back-end includes five smart contracts named Age.sol,

DAOLib.sol, NFTContract.sol, GenuineD.sol and GenuineDStorage.sol.

• Age.sol is a contract to set the proposal’s transaction fees that will be controlled by

the contract owner.

• DAOLib.sol is a contract that responsible to provides “structs” and “enums” for

GenuineD smart contract.

• NFTContract.sol is responsible for creating and minting tokens for users and give them

permission to contribute to voting process.

• GenuineD.sol is the main contract that includes creating proposal, voting, timelock

and execution process.

• GenuineDStorage.sol is interacting with GenuineD contract for managing proposals

and checking the state of each proposal.

The above five smart contracts are described in more detail in Section 5.5.2 below. With the

implementation of a decentralised governance model (DAO), decisions are made by a group

of participants rather than a central authority which minimises centralised ownership

structure. Governance rules are coded into smart contracts that enforce automated and

transparent process. This project, not only has added DAO structure to the Blockchain based

application, it is developed in a way that transfers control of smart contracts from contract

creator/owner to another smart contract to mitigate one owner control and centralisation

risks. More importantly, time-based security feature (timelock) has been implemented in this

project. As we explained in chapter 3, section 3.5.13.5, implementing time-based mechanism

adds an extra layer of security, temporary locks feature helps to restrict access to a smart

contract specifically sensitive functions (Mou, Coblenz and Aldrich, 2021, CertiK, 2021).

 111

The following figure 14 illustrates the process of the proposal’s completion within the

proposed decentralised application “Genuine DAO”.

Figure 14 - A Proposal Cycle Within a Genuine DAO Structure.

After developing, adding all rules and terms and conditions and deploying the “Genuine DAO”

on Ethereum networks (Ethereum Mainnet and Polygon), the decentralised application is

ready to broadcast messages, mint tokens and create proposals for different projects.

The key part is the ownership of the deployed decentralised application which by default

would be the contract developer or whoever has deployed it. In the “Genuine DAO”

decentralised application, there is a contract called “Age” which includes onlyOwner modifier

for a function that changes the transaction rate fee. If the owner is the contract developer

who deployed the smart contract onto the network, or someone else who received ownership

rights, they would be able to control the system and change the transaction rate fee. To

mitigate against the one owner control and minimise the risk of enforced centralisation, this

 112

decentralised application is designed in a way to transfer ownership to the “GenuineDAO”.

Therefore, the system automatically enforces “GenuineDAO” as an owner to change the

transaction rate fee through a fairer voting process.

The following steps explain the voting process within “Genuine DAO”, a process which

participants need to follow in order to change the transaction rate fee for each project. A

time-based restriction is placed on the voting period and applies from the time the proposal

starts until voting ends. Each proposal will expire after 200 blocks. It means that the proposal

is expected to go through its lifecycle within a maximum of 200 blocks. If the proposal process

takes longer than 200 blocks, it will be deactivated automatically.

Process of Working with Genuine DAO

• Connect the crypto wallet, MetaMask to Genuine DAO DApp

• Mint a token for voting on a proposal as a decision-making capability is powered by

a native token within the DAO.

• Create a proposal: participants or token holders need to submit their proposals to

change the transaction rate fee for a specific project. They have to wait until the

status of created proposal become active from pending.

• Delegate: participants or token holders have the option to delegate their voting

power to another address before starting voting process. Voting delay will apply for

five blocks from creating a proposal until to start voting.

• There are three options to cast votes which include “for”, “against” and “abstain”.

Voting delay will apply for five blocks during the voting until queueing starts.

• Voting ends by one of two options, “succeed” or “defeated”.

• Successful proposal moves into the queue step and will be queued in the timelock.

• A proposal can be executed after the Timelock waiting period has elapsed and all

conditions are met.

• The proposal will be terminated after 200 blocks.

• The suggested transaction rate fee will be accepted after voting process and

execution.

• Any change in the transactions rate fee will require the submission of a new proposal.

 113

5.4.3.2 Key Components (Smart Contracts) to Enhance Security and Minimise Centralisation
The following sections explain the most important functions of five smart contracts named

Age, DAOLib, NFTContract, GenuineD, GenuineDStorage, which are written to enhance

security and minimise centralisation.

 Age.sol
This contract is responsible to change the transaction rate fee in this project. It includes Age

or fee variable which by default is 0. There are two functions getFee and setFee that are

responsible to return fee and change fee respectively. OnlyOwner modifier has been used in

setFee function. It means only the owner/developer can change this value (fee).

In this smart contract, the Ownable feature imports from OpenZeppelin for implementing

ownership of all smart contracts. Based on available code in this contract, the owner of

ownable contract is the account that deployed this blockchain-based application on Ethereum

networks (Ethereum Mainnet and Polygon) which would be able to control the decentralised

application by changing the ownership, and the value of transaction rate, creating and minting

tokens.

With this contract, the owner can abuse the power to control the system and adjust

transaction fees. Manipulating fees, not only discourage participation in the network, also

may cause centralised risk. The figure 15 shows two mains function within Age contract.

 114

Figure 15 - Age Contract with Main Functions.

To mitigate this risk, this program is written in a way that not only use DAO structure, also

enforces to transfer the ownership of this contract to Genuine DAO contract after deploying

it on Sepolia and Polygon networks. it means the “Genuine DAO” take the ownership control

(one owner control) from developer/owner and transfer it to another smart contract to

ensure the decentralised structure of Blockchain.

The following figure 16 shows how the ownership from “AgeContract”” would transfer to

“GenuineDAOContract”. It means after transferring the ownership, the developer or anyone

who deployed AgeContract is not the owner anymore and will not be able to change the

transaction rate fee. GenuineDAOContract takes the ownership control and would be able to

change the transaction rate fee through voting process.

Figure 16 - Transfer Ownership from AgeContract to GenuineDAOContract

 115

 DAOLib.sol
This contract includes “struct” and “enum” and is that responsible to represent a data structure and

create a set of named values that restrict a variable to have only one predefined value which enhance

code readability and maintainability. The “struct Proposal” represents a data structure and hold

multiple variables with different data types related to a proposal. The “struct Receipt” holds a voter’

receipt for voting on a proposal. To check if a vote has been cast, if the voter supports the proposal or

not and checking the number of votes.

“enum ProposalState” represents a set of possible proposal states such as “pending”, “active”,

“cancelled”, “defeated”, “succeeded”, “queued”, “expired”, “executed” and “voted” that can be used

for managing and tracking the state of specified proposal with its proposal Id. Figure 17 represents

“struct” and “enum” for GenuineD smart contract.

Figure 17 - DAOLib Contract with Struct and Enum.

 116

NFTContract.sol
This contract is responsible for creating and minting tokens for users and gives them

permission to contribute to voting process. As part of DAO structure, voters need to have

token to participate in the decision-making process.

This contract imports contracts from OpenZeppelin that are extensions of the standard ERC20

token to create and manage ERC20 token for staking and voting rights.

There are some keywords in solidity that can be used of contract inheritance such as

“override”.

“_beforeTokenTransfer” and “_afterTokenTransfer”, “mint” functions include the override

keyword which represent they are inheriting the IERC20, ERC20Snapshot and ERC20Votes

contracts. These functions are intended to override a function in parent contracts with

internal access level. It means the function can only be called from within the current contract

(NFTContract) and its derived contracts. Figure 18 represents the NFTContract with functions

that are inherited from other smart contracts.

 117

Figure 18 - NFTContract with Override Functions.

GenuineDStorage.sol
This contract works as a data storage for the main GenuineD contract. It is interacting with

GenuineD contract for managing proposals and checking the state of each proposal. It also

contains various functions such as setter and getter functions, state variables related to the

storage and management of data.

Getter functions are used to retrieve the value of state variables directly from storage where

as setter functions are used to update or modify the values of state variables in a smart

contract (Ethereum.org Team, 2023). Mappings are used to store data as key-value pairs that

allow efficient data retrieval based on a specific key. Each key is associated with a single value

(Academy, 2023).

 118

Figure 19 shows mappings that are used in GenuineDStorage smart contract.

Figure 19 - GenuineDStorage Contract – Mapping.

The proposals mapping stores details about proposals based on their unique IDs. Users can

use the proposal ID to retrieve details about a specific proposal.

The second mapping helps users to find the ID from the most recent proposal they submitted.

The receipts mapping keeps track of users' voting states (receipts) for different proposals.

Lastly, the queuedTransactions mapping is used to identify transactions that are ready to be
executed.

GenuineD.sol
This contract is the main contract that includes creating proposals, voting, timelock and

execution process. It starts with three “events” that used to log specific occurrences within

the smart contract. Event is an inheritable member of a contract and essential mechanism to

communicate with external application or user interfaces. Events can be call just like functions

and the “emit” keyword is used to call/dispatch events. This allow developers to observe

when an event or function is being called and being informed about important state changes.

In addition, events like functions accept arguments. However, arguments are stored in the

transaction’s log that is not accessible to smart contracts whereas functions store data in the

smart contract. The EVM has a logging function that is used to store the data emitted by

events which makes it accessible to external applications or user interfaces (Alchemy, 2022).

Event “ProposalCreated” emitted when a new proposal is created. It includes ID (identifier of

the newly created proposal within the smart contract) and address of proposer (the Ethereum

address of the account that created the proposal). This event notifies external application

when a new proposal is created in the smart contract.

 119

Event “VoteCast” emitted when a vote has been cast on a proposal. It includes three

parameters such as proposal ID which is unique identifier of a proposal, voter parameter that

stores the Ethereum address of the account that cast the vote and support is a parameter

used to count votes. It represents as 0 for against vote and 1 for vote and 2 for Abstain. As a

result, users can monitor the voting activities and outcomes via this event.

Event “ProposalQueued” emitted when a proposal has been queued in the Timelock. It

includes two parameters ID which is used to store the identifier of the queued proposal and

eta (Estimated Time of Arrival) that represents a timestamp when the proposal is expected to

be executed or processed. Therefore, users can monitor the status of queued proposal. Figure

20 shows available events that are written in GenuineD contract.

Figure 20 - GenuineD contract – Events.

5.4.4 Creating a Proposal
The following explains the process of a proposal creation to make changes in the value of

transaction rate per a project. Each proposal has its own unique ID which help with tracking

the status of a proposal.

The GenuineDAO as an owner would assign a specific value for a transaction rate.

Participants/proposers will submit their proposals about changing the transaction rate. This

will go through voting process to accept to reject the proposal. The voters need to mint tokens

first in order to be able to contribute to voting process.

 120

The system automatically checks the state of the latest proposal by the proposer’s address,

msg.sender, to ensure that the current address has not an active and pending proposal. Then

the system let the current address to create a proposal. The codes are available in figure 21.

Figure 21 - Create a proposal and check the proposal status.

In Genuine DAO DApp, Timelock has been implemented which introduces delays in different

steps of voting process. This mechanism is explained below.

Genuine DAO – Timelock

• votingDelay, a delay between the proposal creation and the actual start of the

 voting period.

• votingPeriod, a delay when the proposal starts until voting ends.

• delay, is the time between the end of proposal (the voting period for a proposal

 ends) and the start of queuing the transaction.

 121

By specifying an “Timelock” for certain critical functions including fund transfers or significant

governance decisions, a delay time between the submission of the action and its execution

provides the opportunity for token holders/participants to review their actions and exit the

system if they are not agreed with the decision before it is executed. Timelock adds an

additional layer of security for any malicious activities such as rug pull (Shevko et al., 2023;

Traore, 2023).

For the purpose of this research, VotingDelay and Delay have been set to 5 blocks and

votingPeriod have been set to 15 blocks which are available in figure 22.

Figure 22 - TestDAO.test.js- Timelock.

Each proposal has its own start time and end time which will be calculated by block numbers.

The proposal start time includes the current block number plus the voting delay.

𝑔𝑔𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑔𝑔 = 𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑔𝑔𝑇𝑇 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔𝑉𝑉𝑔𝑔𝑃𝑃𝑇𝑇𝑔𝑔

𝑔𝑔𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝐸𝐸𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑃𝑃𝑔𝑔 = 𝑔𝑔𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑔𝑔𝑇𝑇 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔

• ProposalStartTime is the timestamp when the proposal starts.

• ProposaEndTime is the time the vote for a proposal will get close.

• CurrentBlockNumer is the number of the current block which will be available on

“GenuineDAO” from Etherscan Testnet.

• ProposalStartBlockNumber is the block number when the proposal starts.

• VotingDelay is the delay before the proposal starts being voted on. It sets for 5 blocks in

this project.

• VotingPeriod is a delay when proposal starts until voting ends. It sets for 15 blocks in this

project.

• Delay is the time when proposal ends to start queuing. It sets for 5 blocks in this project.

 122

 E.g., if the current block number is 10, and voting delay is 5 blocks, then start block for this

proposal is block 16.

5.4.5 Voting for a Proposal
For the voting process, the “Genuine DAO” checks the following conditions and if all

conditions are met, the system will let the voter starts voting process for a period of time.

• The validation of proposal ID

• The block numbers (the block numbers and delay time explained in section 5.4.4)

• The state of proposal to ensure if the created proposal is in an active state or pending

• The voter has already voted or not

The next step is to mint a token if voters/token holders do not already have it to be able to

participant in voting process.

Figure 23 shows voting functions include Function castVote which is an external function and

can be called by voters to cast their votes on a specific proposal. Voters can delegate their

vote internally by using castVoteInternal.

Figure 23 - Voting Process and Checking Conditions.

 123

As part of a time-based mechanism, different delays implemented to offer opportunity to

participants with a window of time to buy tokens, delegate their vote and review proposals

during voting process.

There are setter and getter functions that are written in “GenuineDStorage” smart contract.

These functions are used to set the value and retrieve the values of variables stored in a smart

contract.

Setter functions such as setLatestProposalIds, setDelay, setVotingDelay, setVotingPeriod and

getter functions including getLatestProposalIds, getDelay, getVotingDelay, getVotingPeriod.

including setVotingDelay and getVotingDelay are written in “GenuineDStorage” smart

contract.

Example 1, setVotingDelay function updates the votingDelay parameter in the

“GenuineDStorage” contract. It takes a new value for votingDelay as an argument and assigns

it to the votingDelay state variable. After updating, the function returns true to indicate a

successful update. getVotingDelay function is a public view function. It is designed to return

the value of the votingDelay variable, which represents the delay period used in the

GenuineDAO's voting mechanism.

Example 2, setVotingPeriod function updates the votingPeriod parameter in the

“GenuineDStorage” contract. It takes a new value for votingPeriod as an argument and

assigns it to the votingPeriod state variable. After updating, the function returns true to show

a successful update. getVotingPeriod function is a public view function. It is designed to return

the value of the votingPeriod variable.

As part of voting process, the system checks the number of votes per proposal during the

voting time. If a proposal has maximum votes to pass the proposal (forVotes > againstVotes),

the state of proposal will be changed to “succeeded” otherwise it shows “defeated”. The

succeeded proposal is ready to move into the queue step.

 124

5.4.6 The Queue and Timelock
After a proposal has succeeded, it is moved into the queue and timelock step, where there is

delay running a certain functionality of a smart contract until a specific amount of time has

passed. The proposal state will be changed to queue.

Functions in figure 24 are written for Queuing step and Timelock. Function Queue checks the

proposal ID and the state if proposal to ensure it is succeeded. Function queueTransaction is

responsible for queuing a proposal for future execution at a specified time (eta).

getDelay() from GenuineDStorageContract, estimated time of arrival (eta) and require

statements.

ProposalQueued event is emitted and indicate that a proposal has been successfully queued

for the execution.

Figure 24 - GenuineD smart contract – Queue and Timelock.

 125

Queue function is marked as “external” which can be called from outside the contract. It

checks the state of the proposal with the given ID, if the proposal has been succeeded. As part

of the GenuineDAO system, a proposal can be queued if it is succeeded. Then retrieves the

details of a proposal and calculates the proposal’s eta. It followed by “require” statement that

checks if the condition of proposed proposalID is met otherwise display the error message

“proposal can only be queued if it is succeeded”. Eta introduces a time delay before the

proposal can be executed and can be calculated based on the current block number

(block.number) to the delay value obtained from GenuineDStorageContract.getDelay().

Within the loop, each address from proposal.targets is used to generate a unique identifier

(hash) for the proposed transaction using the keccak256 hash function. The identifier includes

both the target address and the eta value calculated earlier. This loop also calls

“DStorageContract.getQueuedTransaction” to check whether the proposed transaction with

the given identifier or targets has already been queued or not. Then If the transaction has not

been queued, the function queueTransaction is called to queue the transaction.

The “queueTransaction” function is a public function that anyone can call it and take two

parameters target (the address of account to execute the transaction) and eta. The “require”

statement checks if the estimated execution block number (eta) is equal to the current block

number plus the delay value obtained from GenuineDStorageContract.getDelay(). “Genuine

DAO” enforces the time delay to ensure that transaction cannot be executed before the

specified ETA. Otherwise it displays an error message “Estimated execution block must satisfy

delay”.

The KWccak256 hash function has been used to create the hash of transaction (combination

of target address and ETA) and update the GenuineDStorage contract.

As explained the time-based mechanism has been implemented in different steps including

queuing. Both queue() and queueTransaction() functions have used ‘getDelay’.

It is notable that only successful proposals can be queued. When a transaction is in queue

stage, ETA is zero.

 126

5.4.7 Executing a Proposal
During the execution step, two functions executeTransaction and execute have been designed

to execute transactions associated with a queued proposal if certain conditions have been

met. The code is shown in figure 25. The “executeTransaction” function is callable externally

and takes a _proposalId as an argument. It retrieves the details of proposal by using

GenuineDStorageContract.getProposal(_proposalId). Then it checks the state of queued

proposal and if the current block number is within the grace period for execution (200 blocks),

eta, targets and signatures. After that, it calls the “execute” function to execute the

transactions. The “execute” function can only be called from within the smart contract. It

takes the target address, signatures, and eta as parameters and generates a transaction hash

based on the target and eta. It again checks if the transaction is queued by calling

GenuineDStorageContract.getQueuedTransaction(txHash). If the transaction is queued, it

attempts to execute the transaction by invoking the GenuineD contract using

mainContract.call which reviews the success of the transaction execution and returns true if

it is successful.

Figure 25 - GenuineD smart contract - Execution Functions.

 127

5.4.8 The Front-end Genuine DAO Implementation
This section focuses on the comprehensive development process and implementation of the

front-end of Genuine DAO application. It delves into the intricacies of using Visual Studio Code

and JavaScript to develop a decentralised application. Creating the front-end of a

decentralised application with Visual Studio Code and JavaScript allows the researcher to

create a user-friendly, and dynamic interface that interact with Ethereum Blockchain and host

Genuine DAO application and all data/transactions on decentralised storage system securely.

It also gets benefit of Blockchain network to enhance transparency, user autonomy and

efficiency. The following explains the process of implementing front-end of “Genuine DAO”.

The following sections explain the main files and folders that are used to implement the front-

end of Genuine DAO application.

• Node_modules

It is a directory that contains all the dependencies such as installed required libraries. It is

commonly linked with projects that use JavaScript-based package managers, such as npm or

Yarn.

• Public

It is a directory in a React project that store static files such as images and fonts that do not

change during the application’s runtime.

• Src

In a React project, this directory contains the front-end source code that use to be modified

during the coding process. It is where all of JavaScript code exist to control behaviour of

decentralised application. This folder includes the entry point for Genuine DAO application,

such as JavaScript files, index.js, CSS files, ABI and other essential information to develop

front-end application.

• Package.json

It is a file that is used with Node.js and npm to manage the project's dependencies, scripts,

project’s name and version and other relevant information.

 128

5.4.8.1 Front-end Source Code in “src” Folder
As part of all the folders explained above, the focus lies on the “src” folder, mainly because it

stores front-end source code which includes the following parts.

• Assets

This folder used to organise static files such as images, fonts, audio files that are used in this

project (Kumar, 2021).

• Components

This folder contains reusable atomic and molecular components that encapsulate specific

functionality and split the user interface into independent. Each component folder represents

a specific part of the user interface which make it more organised to manage and maintain

code (Kumar, 2021; React, 2023).

• Layouts

This folder used to store any layout components which can be used to define the structure of

each page and organise the layout-related components and files (Onyeije, 2023).

• Views

Components in this folder are responsible for fetching data, managing state, and rendering

the layout of the page. They can also be used to define the overall structure of a page, such

as the header, main content, and footer sections.

• App.tsx

It is the main react component of the application. It represents the top-level component of

application (Pagan, 2021).

• Index.tsx

In a React project, it is the entry point file. It is the first file that will be executed when the

application starts. Index.tsx and is responsible for rendering the App component (the root

component) of application (Pagan, 2021).

• Hooks

in a React project, hooks are JavaScript functions to build user interface to connect to back-

end (smart contracts). It provides functionality to work with stateful logic in functional

components (React, 2023). The following shows the Hooks folder structure.

 129

5.4.8.2 Front-end Source Code in “Hooks” Folder

Figure 26 - Front-end - Hook Folder

Abi.js

ABI stands for Application Binary Interface. Abi.js is a JavaScript file and contains the contract

functions, their inputs and outputs, and contract’s addresses that are necessary for

interacting decentralised application with smart contracts. The following figure displays

important contract’s addresses that used in this project with both Ethereum mainnet and

Polygon networks.

Figure 27 - Contract’s Addresses for Ethereum Mainnet and Polygon.

 130

CastVote.jsx

Contains the function that handles casting a vote for a specific proposal. As part of

decentralised governance process, voters need to have tokens to be able to participant in

voting process. Having tokens ensures that participants have a stake in the organisation’s

success, encourages them to participant actively, enhances security of decision making and

prevents attacks such as Sybil attacks (creating fake identities).

ChangeFee.jsx

Includes function that change the transaction rate fee. If the owner is developer on anyone

who deployed the smart contracts on Blockchain but not the GenuineD contract. Therefore,

the owner/developer would be able to change the transaction rate fee.

Contracts.js

Contains combination of smart contracts that will be used by hooks functions.

CreateProposal.jsx

Contains function that makes changes in the smart contract such as proposal fee which can

be changed by voting.

Delegate.jsx

Includes a function that delegate vote of the user. Token holders can delegate their voting

powers to another address to participate in voting process for specific proposals. The voting

powers can be tracked via checkpoints which keeps the history of each account.

Execute.jsx file

Contains functions for executing proposals. This function can be called by any Ethereum

address.

GetAllProposals.jsx

Provides a view of all created proposals on the website.

GetBlockNumber.jsx

Is a function that fetches the current block number.

 131

GetCurrentFee.jsx

Includes function that returns the transaction rate fee that can be changed by DAO proposals.

GetCurrentOwner.jsx

Returns the owner of the smart contract.

 GetLatestProposalIds.jsx

Returns the created proposals of a specific voter based on the address.

 GetNFTBalance.jsx

Returns the token value of a specific voter based on the address.

GetProposalCount.jsx

Includes a function that returns total number of proposals.

GetProposalStatus.jsx

Returns the status of given proposal.

GetProposersLatestProposalState.jsx

Returns the state of the latest proposal.

GetReceipt.jsx

Returns information of each proposal.

MintNFT.jsx

Is responsible for minting NFT token for participants (voters).

Queue.jsx

Is responsible for queuing proposals for specific period of time.

TransferOwnership.jsx

Includes a function that responsible to change the ownership of smart contract.

5.5 Testing the Genuine DAO Application
After writing front-end code, the next step includes interacting with the back-end smart

contracts that deployed on Blockchain by using Web3 library. Smart contracts are deployed

on both Ethereum network (Sepolia testnet) and Polygon network (Mumbai and Amoy

testnets) using MetaMask wallet. Blockchain testnets offer a safe environment to test the

 132

“Genuine DAO” DApp and ensure that the integration between the front-end and back-end

functions correctly.

5.5.1 Testing Requirement 1 (Distributed Decision-Making) and Requirement 2
(Elimination of Single Points of Failure)

The following steps explain how the “Genuine DAO” DApp transfers the ownership to a new

contract, and how the GenuineD contract takes the control from developer/owner and

change the transaction fee via the voting process.

The Genuine DAO DApp boots up by using the Command “npm start” in Command Prompt.

Then the development server is launched, and the home page of Genuine DAO DApp appears.

This decentralised application includes four pages.

1. Home page that shows current fees, the address of current owner, the address of DAO

owner, total proposal numbers, token numbers for a specific participant, block

number which will get it from Ethereum mainnet and Polygon testnets.

Figure 28 - Genuine DAO - Home Page.

2. Admin page to change the transaction rate fee and transfer ownership of smart
contracts.

 133

Figure 29 - Genuine DAO - Admin Page.

3. Proposal page is where users can create a proposal with suggested transaction rate
fee and submit it on Blockchain network.

Figure 30 - Genuine DAO - Proposal Page.

4. Vote page is where voters would be able to mint a token to be able to delegate and
vote for a proposal.

Figure 31 - Genuine DAO - Vote Page.

 134

The first step is to deploy the smart contract on Ethereum testnet, connect MetaMask wallet

and interact between front-end and back-end. The most important part is the person who

deployed the smart contract(s) and interacts with front-end. Usually, a developer who

deploys smart contract(s) are referred to as the owner. The decentralised application

operates and governs by the predefined rules and logic on the smart contract’s code. Once

the smart contract is deployed on the Blockchain, it will become immutable, and the

developer cannot change/modify the functions and logic directly. However, it can be possible

to update data state over time or the developer/owner can implement certain mechanisms

or have a specific access to the functions to affect the transaction process indirectly and may

cause centralisation risks. Here, we demonstrate with our Genuine DAO, how we take the

control from developer/owner and transfer it to Genuine DAO smart contract with the aim to

avoid one owner control.

In deploying and verifying smart contracts on different testnets the first step is to get an API

key from Etherscan and Polygonscan then add both to Hardhat config. The next step is to add

the Sepolia testnet and Polygon Mumbai and Amoy testnets into Hardhat config. Use

JSON_RPC URL Alchemy to connect to the networks. The following step is to get some Sepolia

Faucet/Mumbai and Amoy Faucets from Alchemy.

• Using Hardhat deploy plugin to deploy smart contract (deploy.Age) by using the

following command in terminal: “npx hardhat run scripts/deployAge.js –network

Sepolia / Mumbai”. Deployed contract address:

0xDD135B67D2882D2d41f15f6Dc1cF925CB6911a7E

• Verify the deployed smart contract by using the contract address on testnet and type

the following command on terminal: “npx hardhat verify –contract

contracts/Utils/Age.sol:Age 0xDD135B67D2882D2d41f15f6Dc1cF925CB6911a7E”

Figure 32 - Deploy and Verify Age Contract

 135

• Check the verification of the deployed contract on Sepolia Etherscan website or

Polygonscan, paste the contract address on the search bar and check if the contract is

verified. By clicking on “read contract” There are two functions (getFee and owner). In

“write contract” section, renounceOwnership, setFee and transferOwnership are

available. Currently, the developer is the owner because developer deployed the

contract on Ethereum network for the first time.

After connecting the contract to Web3 through MetaMask wallet, the owner of contract

would be able to control functions such as “set the transaction fee” or “transfer the ownership

to any addresses”. This gives the owner control over critical functions, which poses a

centralisation threat leading to security issues.

Figure 33 displays the verified Age contract on Etherscan with available functions.

Figure 33 Deployed contract with available functions on Etherscan.

As explained above, Abi.js includes contract’s addresses. There are few steps to follow in

order to replace the address of deployed contract (contract creator) and view the address of

the new owner (Genuine DAO).

1- Open abi.js on Visual Studio Code, paste the address of deployed contract (deployAge) in

front of “ageContractAddress”.

The current owner is the one who deployed the smart contract for the first time (typically

the developer). The current owner has permission to change the transaction rate fee and

transferring ownership to any addresses which cause major security risks. Figure 34 shows

that the address of current owner is different from the address of the Genuine DAO

 136

contract. The current address is the address of the developer who deployed the contract

with having control over critical functions. The current owner modified the transaction

rate fee from %0 to %15.

Figure 34 - Deployed Contract with One Owner Control to Change Transaction Rate Fee.

Figure 35 shows that the current owner has permission to transfer ownership with any

addresses with centralised control.

Figure 35 - Transfer Ownership by Owner/Developer to new Address with Centralised Control.

 137

2- To prevent the centralisation risk associated with smart contracts being controlled only

by the owner/developer. The contract address of GenuineDContractAddress is available

in abi.js. it should be copied and pasted in Admin page in front of transfer ownership. Then

the ownership will be transferred to GenuineD contract. This helps to minimise the control

of the system from one owner/developer and use a DAO structure (democratic

governance model) and voting process for changing transaction rate fee and making

decisions in a decentralised form.

Figures 36 and 37 show that the ownership of the smart contract has been transferred to

GenuineD contract with specific contract addresses (GenuineDContractAddress) that are

highlighted in figure 27. Figures 36 (Sepolia network) and 37 (Polygon Network) signify the

transfer of control and authority from the one owner to a new owner which is a smart

contract that is developed with DAO rules. It is evident that the address of the current owner

and the GenuineD contract are the same, indicating that both belong to Genuine DAO

whereas in figure 34, addresses are different.

Figure 36 - Genuine DAO Ownership to Control the Decentralised Application (Polygon Network).

Figure 37 - Genuine DAO Ownership to Control the Decentralised Application (Sepolia Network).

 138

This transaction highlights Genuine DAO’s role as the owner of the smart contract to mitigate

against one owner control and centralisation risks. The Genuine DAO distributes decision-

making power among nodes, to ensure a more decentralised and resilient system. By

implementing the appropriate logic and access controls within the GenuineD contract, a

transparent application is developed that maintains the decentralised nature of the

application, allowing it to operate autonomously and independently with reducing control of

one owner/developer. This preventive method minimises the centralisation risks and

promotes the security of the system. This speaks directly to Requirement 1 (Distributed

Decision-Making) and Requirement 2 (Elimination of Single Points of Failure).

The Genuine DAO application with decentralised control is ready for participants to create

their proposals and suggest transaction rate fees. Submitted proposals will continue through

the voting process. Voters should submit their vote for each proposal. The transaction rate

fee from a successful proposal with enough votes would be recorded on the blockchain

network. Participants/users would then be able to make secure transactions on a

decentralised distributed ledger. This provides transparency and increases users’ trust in a

system that allows them to contribute to decision-making based on DAO rules, rather than

depending on the chosen decisions of particular individuals or groups.

5.5.2 Testing of Requirement 3: Secure Smart Contract Execution

This research focuses on preventing frontrunning attacks to enhance the security of smart

contract execution. There are several testing frameworks such as Hardhat, Foundry, Brownie

and Truffle for smart contract development and auditing. For the purpose of this research,

the Hardhat has been used which is not only a development framework but also includes a

built-in testing framework.

Hardhat offers the opportunity to write tests for smart contracts using JavaScript testing

libraries, which completely suit the purpose of this research. It is a development framework

for Ethereum network. Hardhat offers wide range of tools, plugins, and features to build

decentralised applications on Ethereum network. developers can use Hardhat to

development process and testing (Hardhat, 2023). The researcher installed Hardhat using

 139

Node.js package manager (npm) and use commands “npm install” and “npx hardhat” to test

front running process on the Genuine DAO. It automatically checks codes for bugs and

mistakes, runs a test of frontrunning attack to detect and prevent frontrunners from

attempting to prioritise their transactions over other users’ transactions and gaining

advantage by doing so.

All tools and libraries that were used to test the frontrunning process have been outlined in

section 5.3. The frontrunning test code is located in the Genuine DAO,

Contract/TestFrontRunning.js path. Libraries such as Hardhat and Chai are imported to assist

with the testing process. Hardhat contains Ethers that are used to work with contracts. The

expect function is imported from Chai library to define assertions in the test case. Variables

are defined to store users, smart contracts and blockchain information such as transactions,

block number, proposal state. The time-based access control is implemented. The

beforeEach() function is used to get addresses from ethers, deploy and initialise smart

contracts including main contract, AgeContract and other contracts NFTContract,

GenuineDAOContract and GenuineDStorageContract.

• Deploy AgeContract to change the transaction rate fee by the owner.

• Deploying NFTContract to create and mint tokens for users to contribute in voting

process.

• Deploying GenuineDAOContract to create proposals and voting process to change the

transaction rate fee.

• Deploying GenuineDStorageContract that plays the role of data storage for the main

GenuineDAOContract.

Once the ownership from AgeContract to GenuineDAOContract is enforced, as shown in

figure 42, it is not possible for the contract creator/owner to control critical functions or

change the transaction rate fee. GenuineDAOContract takes control of the system and the

transaction rate fee can only be decided through a voting process.

Samples of code used for testing is shown in the next chapter whereby an evaluation of the

effectiveness of this implementation is discussed in relation to the objectives of this research.

 140

5.6 Summary

As underlined in Chapter 3, smart contracts with centralised ownership pose major security

issues and act as a single point of failure, which contradicts the very decentralised nature of

Blockchain. To mitigate against the risks associated with centralised control, a decentralised

application with an enhanced DAO structure is proposed and developed. This application

enforces automated rules that are encoded in smart contracts and enforces a decentralised

decision-making process. The power of decision-making will be distributed and therefore

preventing smart contract developers from manipulating the network through one owner

control. Furthermore, the developed decentralised application, “Genuine DAO “, added an

additional security level to prevent one-owner control by developing a contract called

GenuineD as an owner to control critical functions. Genuine DAO is written in a way that not

only minimises the risks of single point of failure and one owner control, but also prevents

Frontrunning attacks, which will be discussed in the next chapter alongside the evaluation of

the developed decentralised application.

 141

Chapter 6: Discussion and Evaluation

This chapter delves into the effectiveness of the chosen methodology, analyses the developed

decentralised application and assesses the overall contribution of this study.

6.1 Overall Evaluation Approach
A comprehensive evaluation of the developed "Genuine DAO" application is carried out to

assess the effectiveness of the application against the three key requirements namely:

• Distributed decision-making

• Elimination of single points of failure

• Secure smart contract execution

The evaluation is conducted through a multi-faceted approach:

1. Peer Review: The research findings, particularly the conceptual taxonomy of

vulnerabilities, attacks, and consequences within a seven-layer blockchain system

architecture, underwent a rigorous peer review process. The feedback from experts

in Blockchain technology, obtained through journal publication, was instrumental in

refining the design and enhancing the overall work.

2. Smart Contract Graphing Code Flow Analysis: The Solidity Visual Developer tool was

utilised to audit the smart contract code, focusing on the interaction between

contracts and identifying potential vulnerabilities. This analysis provided insights into

the Genuine DAO application’ behaviour, ensuring that access control and

communication between contracts are secure and efficient.

3. Security Analysis: Various mechanisms were implemented to perform a security

analysis of the Genuine DAO application, evaluating its effectiveness in preventing

centralisation risks, by enforcing distributed decision-making, and enhancing security

by eliminating single points of failure and reducing the risks of frontrunning attacks.

4. Performance Analysis: The performance of the Genuine DAO application was

evaluated in terms of scalability, throughput, and transaction cost. This involved

comparing the application’s deployment on both Ethereum and Polygon networks,

 142

highlighting the benefits of using Layer-2 scaling solutions to optimise performance

and reduce costs.

5. Expert Review: Finally, a qualitative analysis was conducted through feedback from

Blockchain security experts. Their insights validated the effectiveness of the proposed

security controls and the overall design of the Genuine DAO application in addressing

centralisation risks and improving performance.

6.2 Peer Review
As mentioned earlier, one of the contributions of this work is the design of a conceptual

taxonomy involving vulnerabilities, attacks and their consequences within a seven-layer

blockchain system architecture. A model application for best practice towards a more secure

smart contract is designed and preventive tools and techniques are suggested for each

vulnerability/attack within the seven layers. The research findings, related to this taxonomy,

were reviewed and critically evaluated through a peer review process by several experts in

the field of Blockchain technology as part of a journal paper submission. Following a robust

and thorough review process the paper was accepted for publication (Mollajafari and

Bechkoum, 2023). The peer reviewers' feedback, was used by the researcher to further

enhance this work.

6.3 Smart Contract Graphing Code Flow Analysis
Auditing is important in smart contract development for improving the quality of smart

contract code and for identifying and addressing potential vulnerabilities before deployment.

One of the powerful tools to audit smart contracts is Solidity Visual Developer, which

integrates into the Visual Studio Code (VSCode) extension. This auditing tool provides great

features such as visualising the dependencies and interactions between contracts within a

codebase. Graphing code flow assisted the researcher to gain insights into Genuine DAO

program behaviour, to identify potential vulnerabilities by using an inheritance graphical

representation such as access control issues and how contracts communicate and share data

with each other.

For the purpose of auditing the code and interaction between the smart contracts, Solidity

Visual Developer is installed in the Extension view in VS Code. The graphical code flow

 143

includes cycles and lines which represent functions and the interaction between functions

respectively. Figure 38 shows the functionality and the interaction within the GenuineD

contract. The Internal calls are shown with a green line, External calls with a white line

Figure 38 - The Graphical Code Flow of a GenuineD Contract.

 144

6.4 Security Analysis of the Developed Decentralised Application
(Genuine DAO)

The evaluation of the developed applications is based on the fact that current

implementations and existing projects, as found by the systematic literature review, do have

serious centralisation and security concerns. This evaluation, therefore, attempts to show the

effectiveness of Genuine DAO and the extent to which the hypothesis is confirmed. This is

done by running specific tests, on the Genuine DAO application platform and Polygonscan

Amoy testnet, to ascertain the fulfilment of the requirements defined at the design stage.

6.4.1 Enhancing Security by Minimising Centralisation Risks
 This section presents the evaluation of Requirements 1 and 2, pertaining to the claim that

Genuine DAO ensures that decision-making is distributed, and single individuals or entities

are prevented from exerting undue control. Security analysis for the proposed decentralised

tendering application is outlined showing how the system enhances security by addressing

these centralisation risks. The researcher conducted a review of Ethereum vulnerabilities,

various attacks and techniques and tools to detect and mitigate them. By minimising this

centralised control trust increases for participant as they will be involved in any decision-

making process through a decentralised voting system.

Authentication and Access control to prevent One Owner Control

Authentication includes verifying the identity or authorising users and entities interacting

with a system. Digital signatures are used in Blockchain to verify the authenticity and integrity

of transactions. A private key and a public key are used to ensure that only authorised users

can interact with smart contracts and execute transactions.

As discussed in section 3.5.13, access control mechanisms can be implemented on smart

contracts to specify which addresses have permission to perform certain actions. It includes

function modifiers that are used to restrict the access and execution of specific functions

within the contract. This process can enforce authentication requirements and increase the

security of smart contracts against unauthorised access. However, it can cause a

 145

centralisation risk as mentioned earlier. The owner of a smart contract can set up

administrative privileges and defines access control rules. Smart contract ownership can be

transferred to different addresses through the use of smart contract functions. with the help

of function modifier, the contract developer/owner can restrict access to certain functions.

Therefore, this makes the smart contract such that only the contract creator/owner can

execute critical functions and prevent non-owners from accessing specific functions.

With identifying the one owner control risk, the proposed blockchain-based DAO system,

Genuine DAO, is developed in a way to minimise this risk. The developed Genuine DAO

implements additional security levels to prevent one-owner control and its access to critical

functions, perform sensitive operations such as moderating smart contract, transaction rate

fee, minting tokens, transferring ownership, setting any address as validator, and voting on

proposals. The “Genuine DAO” does this by enforcing automated rules that are encoded in

smart contracts to follow a decentralised decision-making process and transfer the ownership

of system to a contract address called GenuineD contract to control critical functions. Figure

39 below, shows how the new owner, which is a GenuineD contract, would not be able to

change a critical function such as the transaction rate fee. The application enforces

participants to create a proposal and follow the decentralised voting process. The successful

proposal with recommended transaction rate fee will be applied to the system without any

control from individuals or entities.

The transfer of ownership to the GenuineD contract means that this contract would take

control of all critical functions within the developed application. Developers of new contracts

are not allowed to change any critical functions. This is achieved by transferring the ownership

to the GenuineD contract, which is decentralisation-enforcing and uses a DAO structure and

a voting process for making any decisions for all submitted proposals. Without GenuineD, any

developer would simply be able to change a critical function and therefore gain unfair

advantage.

 146

Figure 39 - A Front-End Example Showing How Genuine DAO Prevents One Owner Control.

To evaluate this decentralisation approach further, the Genuine DAO ownership has been

tested through Polygonscan (Amoy testnet). The figure 40 shows how the system prevents

changing the transaction rate fee after transferring the ownership to the GenuineD contract.

This confirms that the Genuine DAO is successful in preventing any developer from changing

the transaction rate fee without going through a voting process.

 147

Figure 40 - An Example, as captured in Polygonscan Amoy Testnet, Showing How Genuine DAO
Prevents One Owner Control.

The above shows that Genuine DAO makes a significant contribution to enforcing

decentralisation and therefore preventing related security risks associated with lack of

distributed decision-making (Requirement 1) and single point of failure (Requirement 2).

6.4.2 Enhancing Security by Preventing Frontrunning Attacks
One of the security issues, and a notorious heist within the contract layer on an Ethereum

platform, is the frontrunning attack which is discussed in section 3.5.3. In brief, Frontrunning

is the act of placing a transaction in a queue with the knowledge of a future transaction

(Varun, Palanisamy and Sural, 2022). Frontrunning has become prevalent in finance markets,

where brokers with privileged access to insider knowledge regarding their clients’ trading

decisions may prioritise their own trading actions over those of their clients. This unethical

 148

practice allows them to potentially gain additional profits. The development of a

decentralised application with blockchain and DAO prevents the central authorities from

regulating frontrunning.

In this research a solution is proposed during the development of Genuine DAO to reduce the

risk of frontrunning. This is achieved by making the transaction non-profitable to the

frontrunners. Furthermore, duplicated proposals are avoided by defining an incremental

counter inside the smart contract. Therefore, each proposal would have its unique ID that is

produced by smart contracts. The proposalId is generated by hashing the proposal data

(targets, values, calldatas, signatures). To prevent duplicated proposals, the system checks if

the proposalId exists. Furthermore, it checks the last proposalId, that is provided by

msg.sender, and its state.

If a frontrunner attempts to replicate a proposal with the same data, it would result in a

distinct proposalId. Consequently, a frontrunner would not be able to take any benefit from

this frontrunning action. The effectiveness of the proposed solution is analysed through

experiments which are discussed in detail below.

All tools and libraries that were used to test the frontrunning process have been outlined in

section 5.4. The frontrunning test code is located in the Genuine DAO,

Contract/TestFrontRunning.js path. Libraries such as Hardhat and Chai are imported to assist

with the testing process. Hardhat contains Ethers that are used to work with contracts. The

expect function is imported from Chai library to define assertions in the test case. Variables

are defined to store users, smart contracts and blockchain information such as transactions,

block number, proposal state. The time-based access control is implemented. The

beforeEach() function is used to get addresses from ethers, deploy and initialise smart

contracts including main contract, AgeContract and other contracts NFTContract,

GenuineDAOContract and GenuineDStorageContract.

• Deploy AgeContract to change the transaction rate fee by the owner.

• Deploying NFTContract to create and mint tokens for users to contribute in voting

process.

 149

• Deploying GenuineDAOContract to create proposals and voting process to change the

transaction rate fee.

• Deploying GenuineDStorageContract that plays the role of data storage for the main

GenuineDAOContract.

The important action of transferring the ownership from AgeContract to

GenuineDAOContract is shown in figure 41. As a result, the contract creator/owner would not

be able to control critical functions or change the transaction rate fee. GenuineDAOContract

will take control of the system and would decide about transaction rate fee through a voting

process.

Figure 41 - Transfer the Ownership from AgeContract to GenuineDAOContract.

The process of frontrunning attacks is illustrated in figure 42:

Figure 42 - The Process of Frontrunning Attacks.

 150

Submitted proposals with different proposalIds with any suggested transaction rate fee will

go through the voting process. Voters need to submit their votes for each proposal. The

successful proposal with maximum votes, moves into the queue and execution steps. Time-

based access control (Timelock) is implemented from the creation of a proposal until it gets

executed. The proposed solution not only transfers ownership from the contract

creator/owner to the GenuineDAOContract but also prevents double proposals by generating

unique proposalIds. As a result, this front-running attack becomes an unprofitable action for

the attacker as any proposal should go through a voting process for acceptance or rejection

by participants.

Figure 43 shows the result of frontrunning test runs by Hardhat.

The above is further illustrated in Figure 44, 45 and 46, which show the same results of

frontrunning test runs by Genuine DAO through Polygonscan (Amoy testnet).

(1) The proposer sends the transaction and submits “the original proposal” with a unique

ProposalId submitted with suggested transaction rate fee

(2) All pending transactions are visible in the Mempool

(3) Frontrunners monitor all transactions, identify the transaction, and its associated

“original proposal”

(4) The frontrunner creates a new proposal, using the same data, and prioritises the

transaction by offering a higher gas fee.

Figure 43 - Genuine DAO - Frontrunning Test Result.

 151

(5) Both proposals will be validated with different ProposalIds and will go through the voting

process.

(6) The transaction with higher gas fee will be validated first.

(7) Both proposals may receive enough votes to be successful. However, since the

frontrunner’s proposal uses the same data as the original, both proposals suggest the

same transaction rate fee (%5 as shown in figure 46). As a result, if both proposals pass

the voting process, the final transaction fee remains unchanged. This frontrunning

activity does not financially benefit the frontrunner. This is how Genuine DAO makes it

non-profitable for frontrunners.

Figure 44 Transaction receipt of the submitted original proposal, as displayed in Polygonscan Amoy
Testnet.

 152

Figure 45 Transaction receipt of the submitted the frontrunner proposal, as displayed in Polygonscan
Amoy Testnet

Figure 46 Active state of the submitted frontrunner proposal (9) and original proposal (10)

This section has shown that the developed application, Genuine DAO, makes a significant

contribution towards enforcing decentralisation through a distributed decision-making

process and a mechanism that prevents one-owner control. The evaluation phase has also

confirmed that the application contributes to a more secure execution of smarts contracts,

 153

through reducing the risks of frontrunning attacks that, otherwise, would give frontrunners

an unfair advantage, which poses a significant threat to the Blockchain system.

6.5 Performance Analysis of the Developed Decentralised Application
(Genuine DAO)

As mentioned earlier, this study uses the Ethereum network, which stands as the most

prevalent and largest Turing-complete blockchain by market capitalisation. Therefore, the

Ethereum network can get congested if many users seek to interact with the network

concurrently due to the maximum throughput limit. Moreover, given the elevated price of

Ether, the resulting total cost could exceed initial expectations.

Initial development of the Genuine DAO decentralised application utilised the Sepolia testnet.

Sepolia uses the PoS consensus mechanism and provides an opportunity for developers to

deploy their contracts on Ethereum’s mainnet environment. However, in an attempt to

enhance scalability and reduce transaction cost, Genuine DAO was migrated to the Polygon

network, Matic/Amoy testnets. The following sections discuss the enhancement of the

system performance when integrating a Polygon network within Ethereum.

6.5.1 Enhanced Performance by Using Polygon
Ethereum operates as a layer 1 Blockchain, where transactions are processed directly on the

mainnet. It has faced challenges with throughput, latency, storage and cost (Hafid et al.,

2020). Ethereum can be costly and slow during period of high network traffic and running

complex operations. To address this, a Layer-2 scaling solution such as Polygon was

introduced and integrated within an Ethereum network. This solution has already been

identified as having the potential to empower decentralised applications to access the

Ethereum network while significantly enhancing scalability and transaction throughput by

using Rollups technology (Neiheiser et al., 2023). Polygon uses a Zero- Knowledge rollups (ZK

rollups) with the aim to bolster throughput and enhance scalability of Ethereum without

compromising decentralisation. ZK rollups are designed to process transactions of-chain,

alleviating the computation on the base layer (Alchemy and Werkheiser, 2022).

 154

• Storage: Amount of data stored on Ethereum increases rapidly due to having more

transactions, deploying more DApps and updating the state of every smart contract. This

growth creates a great demand on storage and can lead to longer transaction processing

times. Polygon reduces the storage challenges by processing transactions through layer 2

solutions (Hafid et al., 2020).

• Throughput: Due to throughput limitation, not all pending transactions will be promptly

confirmed and be part of a block. Therefore, the higher the gas fee users are willing to pay

for their transactions, the more likely that their transaction will be included in a block. This

combination of throughput constraints and high demand for network transactions compels

users to pay elevated transaction fees (Neiheiser et al., 2023).

According to Arthur (2024) Ethereum can only process around 20-30 transactions per

second. On the other hand, Polygon claims to have faster transaction speed and achieve

up to 7,000 transactions a second. At the moment of writing, Polygon has an average block

time of 2.1 and a gas limit per block of 30 millions (Polygon, 2024). The following

calculations can be used to find out information about the Polygon, based on data available

on Polygon network (Sguanci et al., 2021).

𝐴𝐴𝐴𝐴𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑔𝑔𝑇𝑇 𝐶𝐶𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃 𝐶𝐶𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇

𝐴𝐴𝐴𝐴𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔 𝑔𝑔𝑇𝑇𝑇𝑇 𝑃𝑃𝑔𝑔𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑔𝑔𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶 𝑔𝑔𝑇𝑇𝑇𝑇 𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇

𝐴𝐴𝐴𝐴𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑔𝑔𝑇𝑇 𝐶𝐶𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶

𝑇𝑇ℎ𝑇𝑇𝑇𝑇𝐶𝐶𝑔𝑔ℎ𝑃𝑃𝐶𝐶𝑇𝑇 =
𝐴𝐴𝐴𝐴𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑔𝑔𝑇𝑇 𝐶𝐶𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶

𝐴𝐴𝐴𝐴𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑔𝑔 𝐶𝐶𝑃𝑃𝑇𝑇𝑇𝑇𝐶𝐶 𝑇𝑇𝑇𝑇𝑃𝑃𝑔𝑔

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑔𝑔𝑔𝑔 ∗
𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔

1000000000
∗ 𝐸𝐸𝑇𝑇ℎ𝑔𝑔𝑇𝑇/𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔

Cost: An essential consideration in any network is network congestion, which can

significantly affect transaction fees. The level of congestion would vary throughout the day

for both Ethereum and Polygon. The fluctuation and detailed graphs of gas prices can be

found on Etherscan and Polygon website (Etherscan, 2024; Polygon, 2024), resulting in the

same transaction costs and less during certain times. Notably, contract deployment,

interacting with different smart contracts, executing complex functions, storage

operations have massive impact on the gas fee.

 155

• For example, AgeContract has been deployed on Polygon network, Amoy testnet in a

different day/time, resulting in different gas usage, gas fee, and transaction fee.

Figure 47- Deploy AgeContract on Polygon in a Different Day/Time

According to the current information available on Coinbase, price of Matic (Polygon

network) is £ 0.58 whereas Ether price is £ 2,567.74 (Coinbase, 2024). This makes Polygon

an attractive option for users and developers to access faster and cheaper transactions

compared to the Ethereum Mainnet.

Table 9 illustrates the transaction cost of deploying an AgeContract on both networks,

Ethereum mainnet and Polygon. The gas used is very similar to the gasUsed in Gas

optimisation on figure 48. It is slightly different due to network congestion and time of

deployment. The transaction costs are calculated according to the formula explained in

section 2.4.

Platform Smart

Contract
Gas Used Gas Fee (Gwei) Total Gas Fee (Eth/Matic) Exchange

Rate
(GBP)

Total
Cost

(GBP)
Ethereum AgeContract 217,764 2.281722781 0.000496877079681684

ETH
2567.74 1.2758

 156

Polygon AgeContract 217,764 30.000000015 0.00653292000326646
MATIC

0.58 0.0038

Table 9 - Comparing cost of AgeContract Deployment on Polygon vs. Ethereum.

6.5.2 Enhanced Performance Using Gas Optimisation
As mentioned in Section 2.4, researchers like (Marchesi et al., 2020; Li, 2021; Bashir, 2020)

claimed that gas fees have been a significant challenge and have had obvious implications on

the Ethereum network. The transition from Ethereum 1.0 to Ethereum 2.0 not only enhances

the security, scalability and speed, it also reduces the transaction cost. However, the

Ethereum gas fee remains quite high even after the transition to Ethereum 2.0 due to

different factors, such as unfamiliarity of developers with smart contracts and EVM (Kong et

al., 2022). Same researchers suggested optimisation tools and patterns at the source code

level to minimise the cost of gas which are explained in Section 2.4.

Writing efficient and optimised code plays a crucial role in reducing gas consumption and

transaction cost. The model application presented in Section 3.13 exemplifies the best

practice to develop a secure smart contract. This model can aid to reduce the gas

consumption.

This work attempts to use gas saving best practice and patterns that are recommended by

researchers (Marchesi et al., 2020; Baldauf, Sonnleitner and Kurz, 2023) to develop Genuine

DAO to decrease interaction costs. The techniques that have been used in development of

smart contracts in Genuine DAO are depicted in Table 10.

Best Practices to Reduce Gas Consumption

 Name Description

Simplicity over complex

contracts

Create clear and simple smart contracts to improve security,
save gas and easier to detect bugs.

Code quality
Use graphing code Flow analysis and reviewing the code by

security analyser and experienced programmer.

Code reuse Import code from trusted libraries such as OpenZeppelin.

Robust testing
Use of Hardhat to test smart contract and test over multiple

stages on Ethereum and Polygon testnets.

 157

Solidity optimiser Use of optimiser with the default settings of 200 runs.

Limit storage
store state variable as a local variable in memory to save gas for

multiple calls.

Packing variables Use of struct to pack variables together to use less storage

Use of external function

Use of external function when it is intended to be called
externally. The external function is Read Only and is stored in
Calldata memory, which is cheaper than the public function
that is stored in memory.

Mapping Use of mapping for efficient data access to optimise storage
operations

Table 10 - Genuine DAO - Best Practices to Reduce Gas Consumption.

Gas optimisation is crucial for reducing deployment and execution costs for the end users. In

this work, Solidity optimiser has been turned on and the created contracts are optimised for

200 runs by applying various optimisation techniques. The number of runs roughly indicates

the frequency of execution for each opcode in the deployed code throughout the contract's

lifetime. Figure 48 illustrates the experimental result of gas consumption of numerous

operations within Genuine DAO as indicated in “Avg” column. The figure is generated using

Hardhat Gas Reporter. The report indicates that contract deployment and all executions have

been optimised, with the average gas consumption below the maximum allowable limit.

There is no doubt that implementing gas saving best practices and utilising Solidity optimiser,

can lead to the development of optimised smart contracts that reduce gas usage and overall

transaction costs.

 158

Figure 48 - Output of Gas Optimisation of Genuine DAO - Hardhat Gas Reporter.

6.6 Issues and Challenges During the Development of Genuine DAO

There have been a number of technical challenges faced when developing, and deploying, the

Genuine DAO application and when interacting with it on different testnets. Some of these

challenges are summarised below.

• Writing smart contracts requires a full understanding of Solidity programming

language, Ethereum virtual machine, tools and libraries. Not only there is a

requirement to write a secure, user-friendly decentralised application but also the gas

optimisation strategy added complexity to the whole development. The researcher

had to complete a few training courses and get feedback from experienced developers

who have been working on Blockchain and are familiar with its environment.

• Deploying smart contracts on different Testnets required setting up a development

environment and a network configuration. Receiving Testnet Ether or Matic (Sepolia,

 159

Mumbai/Amoy) tokens can be challenging. Although these tokens are provided for

free by faucet services, such as Alchemy, to allow developers to deploy and interact

with smart contracts on testnets, testnets can become inaccessible or leave the

developer with insufficient amount of token for interacting with decentralised

applicationThis is due to different reasons such as network congestion, network

upgrade or closing a faucet. This work started by working on an Ethereum Testnet

called Goerli. After closing this faucet, the interaction was taking place on the Sepolia

network. At the same time, for migration to a Polygon network, Mumbai faucet was

used. Later, with closing this faucet, Amoy Testnet had been replaced.

All these challenges required collaboration with other researchers and developers in this field,

experimentation, and continuous learning in the rapidly evolving blockchain ecosystem.

6.7 Expert Review
Once the implemented Genuine DAO was tested and validated by the Researcher, a

qualitative analysis was carried out to ascertain the effectiveness of the proposed solution.

As stated in Section 4.7.3, the analysis involved gathering experts’ reviews through a

questionnaire. Three experts were judiciously chosen from industry, based on their

knowledge and experience working in the field of blockchain security. The full questionnaire

and responses can be found in Appendix A. Below is a description of the analysis of feedback

received from the participants.

6.7.1 “Genuine DAO” as a Solution to Address Centralisation Risks
Blockchain Security Analysts and Developers were asked to confirm whether the proposed

Genuine DAO application does assist with reducing the security concerns of one owner

control and centralisation risks. Participant 1 explained how the proposed “Genuine DAO”

addresses potential centralisation risks, such as concentration of power, control, or decision-

making authority:

“In this DAO model, the ownership of the smart contracts is not owned by a wallet

address and the ownership is transferred to the DAO smart contract so any change in

the smart contract main functions and rules can only be executed by DAO members

with the power of voting. This point resolves the centralised management issues of

smart contracts”. [Participant 1]

 160

The ‘centralisation risks’ were emphasised by the other two participants in the context of

DAO structure, decision making with voting process, and transferring the ownership to a

contract address would have great impact to minimise centralisation risks.

“Implementing a DAO structure that involves community participation in decision-

making rather than relying on a single entity or an owner with elevated privilege would

enhance security. Taking control off the developer and transferring the ownership to

the DAO contract for critical functions is beneficial to reduce centralisation risks”

[Participant 2].

The other expert focused on highlighting the risks of centralisation in blockchain-

based applications, particularly emphasising their significance in DeFi projects. This

participant stated:

“Centralisation is a significant risk factor in Blockchain-based projects especially in

DeFi. It can expose protocols to single points of failure, making them susceptible to

attacks or manipulation. Emphasising decentralisation and community governance

helps distribute decision-making power and ensures no single entity holds excessive

control. Active participation by a diverse group of stakeholders in protocol governance

fosters transparency, reduces conflicts of interest, and promotes the adoption of risk-

mitigating measures. Genuine DAO with DAO structure reduces the centralisation risks

by transferring the ownership address to the contract address and other security

measures in place” [Participant 3].

The responses highlighted that minimising the control over critical functions from contract

creator/owner, transferring ownership to a contract without centralised control, and

promoting decentralised structure (DAO) will have a significant impact in terms of mitigating

centralisation risks.

6.7.2 Implementation of security controls and countermeasures
One Participant articulated the importance of implementing security controls and

countermeasures to mitigate against one owner control risks. They stated that the

implemented security features such as access control to critical functions and timelock would

 161

assist in avoiding risk of the ownership of smart contracts and enhance the security of the

decentralised application.

“We see some features in the DAO smart contract that actually have significant effect

on the ownership improvements, such as the proposed changes by creating proposals,

and voting to the proposals in the specific period of time. We can consider these

changes as main improvements to avoid risks of the ownerships of smart contracts”

[Participant 1].

“Limiting the access control to critical function by implementing features such as

contract ownership would enhance the security. In addition, having timelock at

different stages of the proposal creation and voting process would improve the

security” [Participant 2].

Participant 3 provided information on the effectiveness of the implemented security

measures in Genuine DAO and highlighted the importance of mitigating centralisation

risks by mentioning an example where a protocol was exploited due to such risks. The

Participant stated:

“Security measures that have been taken in Genuine DAO would definitely enhance

the security and reduce risk of ownership. MGold rug pull is an example of

centralisation where founders used the private keys to drain the contracts of all funds.

The founders decided to take the money and run, which is only possible due to the

centralisation privilege of them holding the private keys. Having security measures like

what have been implemented in Genuine DAO, such as timelock and DAO structure

alongside with a multi signature wallet, would avoid this risk” [Participant 3].

The responses from, and reactions of, the experts that took part in this feedback evaluation

process indicate that implementing security controls as proposed in Genuine DAO would

minimise centralisation risks. By implementing security measures, Genuine DAO can reduce

the likelihood of centralisation through contract creator/owner or an entity. These measures

guard against potential threats and attacks and enhance users’ trust in the system.

 162

6.7.3 Leveraging Layer 2 Scaling Solutions
To evaluate the effectiveness of migrating Genuine DAO from Ethereum mainnet (Sepolia)

testnet to Polygon (Mumbai/Amoy) testnets, the participants were asked to answer the

following question:

How effective is the proposed “Genuine DAO” in leveraging layer 2 scaling solutions to

enhance scalability and throughput and to minimise cost on Polygon network?

The participants confirmed the importance of scalable network for blockchain transactions

which can be achieved by using layer 2 scaling solutions. They stated:

“What layer 2 solutions offer is more about taking the responsibly of the execution

tasks from layer 1 and storing data in the layer 1. So, layer 2 solutions increase the

scalability and decrease the fee at the same time of being secure and rely on layer 1.

Therefore, Polygon as a layer 2 Blockchain offers lower fee because of the execution

optimisations and better scalability”. [Participant 1]

“Layer 2 solutions provide a more scalable network as by processing transactions off-

chain. This technology enables faster transaction confirmation times and decreases

transaction cost by reducing the computational and storage costs. Many developers

and users prefer to use layer 2 solutions over Ethereum mainnet” [Participant 2].

“Scalability, throughput and cost are key factors in any network. Introducing layer 2

scaling would help with these challenges that Ethereum has faced” [Participant 3].

The Feedback received from these Security Analysts and Developers points to a clear

advocacy to using Polygon, instead of Ethereum mainnet, with layer 2 scaling solution built

on Ethereum. They seem to agree that layer 2 scaling solutions, such as Polygon, employ

techniques that provide a more scalable network, as well as enhance throughput and reduce

transaction cost.

Although this feedback is by no means a scientific evidence of the effectiveness of the

proposed Genuine DAO, it does provide added confidence in the validity of the results of the

work carried out in this thesis.

 163

6.8 Summary

This chapter focused on the evaluation of the developed Genuine DAO and the effectiveness

of the proposed security controls and countermeasures to minimise centralisation risks. The

evaluation approach used is described along three main axes.

The first axis described the evaluation of the proposed seven-layer blockchain architecture,

the designed conceptual taxonomy involving vulnerabilities, attacks and their consequences

and the model application for best practice towards developing a more secure smart contract.

These foundational components of this research were critically evaluated through a peer

review process by several experts in the field of Blockchain technology as part of an academic

paper publication.

Along the second axis lies the main contribution of this work, the proposed Genuine DAO

application. The security controls and performance-enhancing practices of the developed

application have been validated and tested as part of the evaluation process. This evaluation

provides a thorough assessment of the Genuine DAO application, confirming its potential as

a more secure, decentralised solution for managing smart contracts on the Blockchain.

Lastly, the third axis involved feedback evaluation from judiciously chosen experts. These

independent experts were selected based on their knowledge and expertise in the Blockchain

field.

Whilst the initial peer review gave confidence in the validity of the foundational pillars of this

work, leading to implementing the Genuine DAO application, the experts’ responses

reinforced this Researcher’s view that the proposed decentralised application, Genuine DAO,

can contribute to enhancing security, scalability, throughput and cost. Security is enhanced

by reducing centralised control, enforcing distributed decision-making, and preventing

potential attacks such as frontrunning attacks, while scalability, throughput and cost are

enhanced through a migration to a Polygon network.

 164

Chapter 7: Conclusion and Recommendations

7.1 The Main Achievements
This research attempts to develop a better understanding of the vulnerabilities that exist

within each of the Blockchain layers. This work adopted a seven-layer Blockchain architecture

to understand the nature of the security vulnerabilities/threats within each layer. After

carrying out a systematic investigation into existing vulnerabilities and attacks, this research

suggested, for each of the seven layers of the Blockchain, a table detailing the location, the

nature of vulnerabilities/attacks, the authors of key related works, and the detection tools or

preventive techniques. The outcome of this investigation is summarised in a taxonomy for a

seven-layer Blockchain architecture, describing the inter-relationships between

vulnerabilities, attacks and the related consequences. This detailed investigation has exposed

the contract layer as, arguably, the most vulnerable layer in a Blockchain architecture.

To enhance the security of blockchain transactions, a novel automated decentralised

application, “Genuine DAO”, is proposed. This decentralised application has the potential to

reduce security risks and improve the performance of blockchain networks. “Genuine DAO”

achieves the reduction in security risks by minimising the threats inherent to centralisation,

which can be caused by smart contracts’ owners, or developers, and by guarding against

Frontrunning attacks. A robust procedure has been implemented to test and validate the

developed “Genuine DAO” with the Hardhat framework and Polygonscan Amoy Testnet.

In addition, the “Genuine DAO” has been developed with the aim to improve the performance

of the Blockchain network and reduce the cost. This is achieved through gas optimisation

using a Polygon layer 2 scaling solution built on the Ethereum network.

Once testing and validation of the developed application were completed successfully, views

from independent experts were sought to gain an external expert view on the effectiveness

of the proposed solution. The feedback received from these experts provides an additional

validation of the results, confirming that “Genuine DAO”, and the proposed security controls

and countermeasures to minimise centralisation risks and prevent frontrunning attacks,

 165

provides an alternative solution for enhancing Blockchain security and performance within an

Ethereum platform.

7.2 Research Limitations
Despite the above achievements this work is not without limitations. In addition to the

challenges outlined in Chapter 6, most of the limitations of this research fall within the

implementation phase of the work. In particular:

• Run on Testnets Rather Than Real-World Mainnets

While testnets provide a valuable environment for the development and experimentation

of decentralised application, developers are facing a number of challenges in using

testnets effectively. Developers and researchers often encounter challenges such as

network congestion, transaction execution delays and shortages of test tokens during

deployment which can slow than the testing process. Furthermore, it has been a challenge

testing how developed decentralised application interacts with various type of user

inputs. Therefore, inadequately tested smart contracts can compromise the performance

and security of blockchain. In addition, testnets can pose security risks that may not be

apparent until deployment of smart contracts on a real-world mainnets (Habic, 2024).

• Solidity Programming Language
Solidity is part of a rapidly evolving environment and the most popular language to write

smart contracts on the Ethereum blockchain. There are a range of tools, libraries and

frameworks available for development, debugging and test. However, it is not as mature

a language as the more established programming languages. Discovered vulnerabilities

and threats within the smart contracts, highlights developers need to implement robust

testing practices and enhance their knowledge of Solidity's features to alleviate potential

security risks. Therefore, writing a secure decentralised application which can withstand

scrutiny from security analysers is no simple task.

• Involvement of independent experts in the evaluation phase

Although using the three experts, who participated in the evaluation of the proposed

solution, was of an immense value to this work, and is fit for the purposes for which it was

used, involving a greater number of experts and users will definitely add value to

 166

identifying further areas for improvements. This is particularly important for future

research.

7.3 Future Work
Although the proposed “Genuine DAO” fulfils the research aims and provides an enhanced

security and performance for Ethereum Blockchains, more work is needed in this area.

One area that may need particular attention is to make implementing Blockchain applications

more accessible to developers than it currently is. As far as the focus of this research is

concerned, and to build on what has been achieved and advance the current research further,

a couple of areas can be considered for further development:

• Use zero knowledge proof to enhance the user ‘privacy and secure authentication,

• Apply a multi signature wallet to minimise even further the potential for a single point

of failure yielding additional enhancement to the security of the Blockchain network.

• Use the taxonomy developed as part of this work to implement security enhancement

solutions for each of the seven layers of the Blockchain. Can the taxonomy be used for

a wholistic enhancement solution?

• With the advent of Large Language Models there is an opportunity to focus on the

integration of artificial intelligence techniques and tools and the “Genuine DAO” to

analyse smart contract’s behaviour and data transactions.

 167

References

1. Academy, S. (2023) Solidity Data Storage and Management Strategies. Available at:

https://medium.com/coinmonks/solidity-data-storage-and-management-strategies-

811700abda8a. (Accessed: 10 December 2023).

2. Achour, I., Ayed, S. and Idoudi, H. (2021) ‘On the Implementation of Access Control in

Ethereum Blockchain’, in 2021 International Conference on Innovation and Intelligence

for Informatics, Computing, and Technologies (3ICT). IEEE, pp. 483–487. doi:

10.1109/3ICT53449.2021.9581591.

3. Adi, S. H. (2022) How to Secure a Smart Contract through Solidity Visibility Modifiers?

Available at: https://www.bluelabellabs.com/blog/secure-smart-contract-solidity-

visibility-modifiers/ (Accessed: 5 January 2023).

4. Ahmadisheykhsarmast, S., Senji, S. G. and Sonmez, R. (2023) ‘Decentralized tendering

of construction projects using Blockchain-based smart contracts and storage systems’,

Automation in Construction, 151, p. 104900. doi: 10.1016/j.autcon.2023.104900.

5. Ahmed, K. B. and Kumar, D. (2019) ‘Blockchain use Cases in Financial Services for

Improving Security’, in 2019 Third International Conference on Inventive Systems and

Control (ICISC). IEEE, pp. 220–224. doi: 10.1109/ICISC44355.2019.9036406.

6. Aini, Q. et al. (2022) ‘Security Level Significance in DApps Blockchain-Based Document

Authentication’, Aptisi Transactions on Technopreneurship (ATT), 4(3), pp. 292–305. doi:

10.34306/att.v4i3.277.

7. Ajienka, N., Vangorp, P. and Capiluppi, A. (2020) ‘An empirical analysis of source code

metrics and smart contract resource consumption’, Journal of Software: Evolution and

Process, 32(10). doi: 10.1002/smr.2267.

8. Akbar, N. A. et al. (2021) ‘Distributed Hybrid Double-Spending Attack Prevention

Mechanism for Proof-of-Work and Proof-of-Stake Blockchain Consensuses’, Future

Internet, 13(11), p. 285. doi: 10.3390/fi13110285.

9. Alchemy (2022) ‘Learn Solidity: What are events?’ Available at:

https://www.alchemy.com/overviews/solidity-events (Accessed: 3 January 2023).

https://medium.com/coinmonks/solidity-data-storage-and-management-strategies-811700abda8a
https://medium.com/coinmonks/solidity-data-storage-and-management-strategies-811700abda8a
https://www.bluelabellabs.com/blog/secure-smart-contract-solidity-visibility-modifiers/
https://www.bluelabellabs.com/blog/secure-smart-contract-solidity-visibility-modifiers/
https://www.alchemy.com/overviews/solidity-events

 168

10. Alchemy and Werkheiser, B. (2022) Polygon ZK Rollups: Everything You Need to Know.

Available at: https://www.alchemy.com/overviews/polygon-zk-rollups. (Accessed: 10

February 2023).

11. Alkhalifah, A. et al. (2021) ‘A Mechanism to Detect and Prevent Ethereum Blockchain

Smart Contract Reentrancy Attacks’, Frontiers in Computer Science, 3. doi:

10.3389/fcomp.2021.598780.

12. Alsunaidi, S. J. and Alhaidari, F. A. (2019) ‘A Survey of Consensus Algorithms for

Blockchain Technology’, in 2019 International Conference on Computer and Information

Sciences (ICCIS). IEEE, pp. 1–6. doi: 10.1109/ICCISci.2019.8716424.

13. Amiet, N. (2021) ‘Blockchain Vulnerabilities in Practice’, Digital Threats: Research and

Practice, 2(2), pp. 1–7. doi: 10.1145/3407230.

14. Annessi, R. and Fast, E. (2021) ‘Improving Security for Users of Decentralized Exchanges

Through Multiparty Computation’, in 2021 IEEE International Conference on Blockchain

(Blockchain). IEEE, pp. 229–236. doi: 10.1109/Blockchain53845.2021.00038.

15. Antonopoulos, A. and Wood, G. (2018) Mastering Ethereum: Building Smart Contracts

and DApps. O’Reilly Media.

16. Apostolaki, M. et al. (2019) ‘SABRE: Protecting Bitcoin against Routing Attacks’, in

Proceedings 2019 Network and Distributed System Security Symposium. Reston, VA:

Internet Society. doi: 10.14722/ndss.2019.23252.

17. Apriani, M. and Sari, R. F. (2021) ‘Performance Comparison of Spongent and Photon

Hashing Algorithms in Ethereum-based Blockchain System’, in 2021 7th International

Conference on Electrical, Electronics and Information Engineering (ICEEIE). IEEE, pp.

564–569. doi: 10.1109/ICEEIE52663.2021.9616831.

18. Arthur, V. (2024) ‘Polygon vs Ethereum: Which Offers Better Scalability?’ Available at:

19. https://coinwire.com/polygon-vs-ethereum/#:~:text=Polygon offers faster transaction

speeds, faster than the Ethereum blockchain (Accessed: 10 April 2024).

20. Baldauf, M., Sonnleitner, E. and Kurz, M. (2023) ‘Exemplary Ethereum Development

Strategies Regarding Security and Gas-Saving’, Electronics, 13(1), p. 117. doi:

10.3390/electronics13010117.

21. Bartoletti, M.; Carta, S.; Cimoli, T.; Saia, R. Dissecting Ponzi Schemes on Ethereum:

Identification, Analysis, and Impact. Futur. Gener. Comput. Syst. 2020, 102, 259–277.

https://doi.org/10.1016/j.future.2019.08.014.

https://www.alchemy.com/overviews/polygon-zk-rollups
https://coinwire.com/polygon-vs-ethereum/%23:%7E:text=Polygon%20offers%20faster%20transaction%20speeds,%20faster%20than%20the%20Ethereum%20blockchain
https://coinwire.com/polygon-vs-ethereum/%23:%7E:text=Polygon%20offers%20faster%20transaction%20speeds,%20faster%20than%20the%20Ethereum%20blockchain
https://doi.org/10.1016/j.future.2019.08.014

 169

22. Bashir, I. (2020) Mastering Blockchain. 3rd edn. Packt Publishing.

23. Begum, A. et al. (2020) ‘Blockchain Attacks, Analysis and a Model to Solve Double

Spending Attack’, International Journal of Machine Learning and Computing, 10, pp.

352–357.

24. Beikverdi, A. and JooSeok Song (2015) ‘Trend of centralization in Bitcoin’s distributed

network’, in 2015 IEEE/ACIS 16th International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). IEEE, pp.

1–6. doi: 10.1109/SNPD.2015.7176229.

25. Bhutta, M. N. M. et al. (2021) ‘A Survey on Blockchain Technology: Evolution,

Architecture and Security’, IEEE Access. doi: 10.1109/ACCESS.2021.3072849.

26. Bonneau, J. (2016) ‘Why buy when you can rent? Bribery attacks on Bitcoin-style

consensus’, in Security, I. C. on F. C. and D. (ed.). International Conference on Financial

Cryptography and Data Security, pp. 19–26. Available at:

https://jbonneau.com/doc/B16a-BITCOIN-why_buy_when_you_can_rent.pdf

(Accessed: 3 April 202).

27. Bouichou, A., Mezroui, S. and Oualkadi, A. El (2020) ‘An overview of Ethereum and

Solidity vulnerabilities’, in 2020 International Symposium on Advanced Electrical and

Communication Technologies (ISAECT). IEEE, pp. 1–7. doi:

10.1109/ISAECT50560.2020.9523638.

28. Breidenbach, L. et al. (2017) An In-Depth Look at the Parity Multisig Bug. Available at:

https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/ (Accessed: 11

March 2022).

29. Carlin, D. et al. (2018) ‘Detecting Cryptomining Using Dynamic Analysis’, in 2018 16th

Annual Conference on Privacy, Security and Trust (PST). IEEE, pp. 1–6. doi:

10.1109/PST.2018.8514167.

30. CertiK (2021) Inari Token. Available at: https://www.certik.com/projects/inaritoken

(Accessed: 10 May 2023).

31. Certik (2021) The State of DeFi Security 2021. Available at: https://certik-

2.hubspotpagebuilder.com/the-state-of-defi-security-2021 (Accessed: 8 May 2023).

32. Certik (2021) Vectorspace AI. Available at:

https://skynet.certik.com/projects/vectorspace-ai (Accessed: 10 April 2023).

https://jbonneau.com/doc/B16a-BITCOIN-why_buy_when_you_can_rent.pdf
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://www.certik.com/projects/inaritoken
https://certik-2.hubspotpagebuilder.com/the-state-of-defi-security-2021
https://certik-2.hubspotpagebuilder.com/the-state-of-defi-security-2021
https://skynet.certik.com/projects/vectorspace-ai

 170

33. CertiK (2022) ‘What is Centralization Risk?’ Available at:

https://certik.medium.com/what-is-centralization-risk-41cf848f5a74. (Accessed: 10

March 2023).

34. CertiK (2023) Better security for Blockchains and smart contracts. Available at:

https://www.certik.com/products/formal-verification (Accessed: 12 January 2024).

35. CertiK. 2021. What is a Timelock? Available at:

https://www.certik.com/resources/blog/Timelock (Accessed: 10 October 2023).

36. Chai Assertation library (2023) ‘Chai assertion styles’. Available at:

https://www.chaijs.com/guide/styles/ (Accessed: 10 December 2023).

37. Chatterjee, K., Goharshady, A. K. and Pourdamghani, A. (2019) ‘Probabilistic Smart

Contracts: Secure Randomness on the Blockchain’, in 2019 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC). IEEE, pp. 403–412. doi:

10.1109/BLOC.2019.8751326.

38. Chaudhry, N. and Yousaf, M. M. (2018) ‘Consensus Algorithms in Blockchain:

Comparative Analysis, Challenges and Opportunities’, in 2018 12th International

Conference on Open Source Systems and Technologies (ICOSST). IEEE, pp. 54–63. doi:

10.1109/ICOSST.2018.8632190.

39. Chen, H. et al. (2020) ‘A Survey on Ethereum Systems Security’, ACM Computing

Surveys, 53(3), pp. 1–43. doi: 10.1145/3391195.

40. Chi, P.-W., Lu, Y.-H. and Guan, A. (2023) ‘A Privacy-Preserving Zero-Knowledge Proof for

Blockchain’, IEEE Access, 11, pp. 85108–85117. doi: 10.1109/ACCESS.2023.3302691.

41. Chittoda, J. (2019) ‘Mastering Blockchain Programming with Solidity: Write production-

ready smart contracts for Ethereum Blockchain with Solidity’, in. Packt Publishing.

42. Choo, K.-K. R., Dehghantanha, A. and Parizi, R. M. (2020) Blockchain Cybersecurity, Trust

and Privacy. Cham: Springer International Publishing (Advances in Information

Security). doi: 10.1007/978-3-030-38181-3.

43. Code4rena (2022) Badger Citadel contest Findings & Analysis Report. Available at:

https://code4rena.com/reports/2022-02-badger-citadel/#severity-criteria (Accessed:

10 January 2024).

44. Code4rena (2022) Frax Ether Liquid Staking contest Findings & Analysis Report - Centra.

Available at: https://code4rena.com/reports/2022-09-frax/#m-01-centralization-risk-

admin-have-privileges-admin-can-set-address-to-mint-any-amount-of-frxeth-can-set-

https://certik.medium.com/what-is-centralization-risk-41cf848f5a74
https://www.certik.com/products/formal-verification
https://www.certik.com/resources/blog/Timelock
https://www.chaijs.com/guide/styles/
https://code4rena.com/reports/2022-02-badger-citadel/#severity-criteria
https://code4rena.com/reports/2022-09-frax/#m-01-centralization-risk-admin-have-privileges-admin-can-set-address-to-mint-any-amount-of-frxeth-can-set-any-address-as-validator-and-change-important-state-in-frxethminter-and-withdraw-fund-from-frcethminter-
https://code4rena.com/reports/2022-09-frax/#m-01-centralization-risk-admin-have-privileges-admin-can-set-address-to-mint-any-amount-of-frxeth-can-set-any-address-as-validator-and-change-important-state-in-frxethminter-and-withdraw-fund-from-frcethminter-

 171

any-address-as-validator-and-change-important-state-in-frxethminter-and-withdraw-

fund-from-frcethminter- (Accessed: 11 January 2024).

45. Code4rena (2023) Lybra Finance Findings and Analysis Report. Available at:

https://code4rena.com/reports/2023-06-lybra#overview (Accessed: 11 January 2024).

46. Coinbase (2024) ‘Ethereum price’. Available at: https://www.coinbase.com/en-

gb/price/ethereum (Accessed: 20 April 2024).

47. Coinbase (2024) Polygon Price. Available at: https://www.coinbase.com/en-

gb/price/polygon (Accessed: 20 April 2024).

48. Collins, H. (2019) Creative research: the theory and practice of research for the creative

industries. Second edn. London, UK: Bloomsbury Visual Arts, Bloomsbury Publishing Plc.

49. ConsenSys (no date) Ethereum Smart Contract Best Practices- Known Attacks. Available

at: https://consensys.github.io/smart-contract-best-practices/ (Accessed: 20 June

2023).

50. Conti, M. et al. (2018) ‘A Survey on Security and Privacy Issues of Bitcoin’, IEEE

Communications Surveys & Tutorials, 20(4), pp. 3416–3452. doi:

10.1109/COMST.2018.2842460.

51. Core, T. Moving from Admin Key to DAO — Tellor’s Parachute Smart Contract. 2021.

https://medium.com/tellor/moving-from-admin-key-to-dao-tellors-parachute-smart-

contract-aba4cc9d71fb (Accessed: 21 December 2023).

52. Creswell, J. W. (2007) Qualitative Inquiry& Research Design. Thousand Oaks. CA: Sage.

53. Dai, W. et al. (2019) ‘Blockchain-Based Smart Contract Access Control System’, in 2019

25th Asia-Pacific Conference on Communications (APCC). IEEE, pp. 19–23. doi:

10.1109/APCC47188.2019.9026509.

54. Daian, P. et al. (2019) ‘Flash Boys 2.0: Frontrunning, Transaction Reordering, and

Consensus Instability in Decentralized Exchanges’. Available at:

http://arxiv.org/abs/1904.05234 (Accessed: 19 April 2023).

55. Deng, W., Huang, T. and Wang, H. (2022) ‘A Review of the Key Technology in a

Blockchain Building Decentralized Trust Platform’, Mathematics, 11(1), p. 101. doi:

10.3390/math11010101.

56. Destefanis, G. et al. (2018) ‘Smart contracts vulnerabilities: a call for Blockchain

software engineering?’, in 2018 International Workshop on Blockchain Oriented

Software Engineering (IWBOSE). IEEE, pp. 19–25. doi: 10.1109/IWBOSE.2018.8327567.

https://code4rena.com/reports/2022-09-frax/#m-01-centralization-risk-admin-have-privileges-admin-can-set-address-to-mint-any-amount-of-frxeth-can-set-any-address-as-validator-and-change-important-state-in-frxethminter-and-withdraw-fund-from-frcethminter-
https://code4rena.com/reports/2022-09-frax/#m-01-centralization-risk-admin-have-privileges-admin-can-set-address-to-mint-any-amount-of-frxeth-can-set-any-address-as-validator-and-change-important-state-in-frxethminter-and-withdraw-fund-from-frcethminter-
https://code4rena.com/reports/2023-06-lybra#overview
https://www.coinbase.com/en-gb/price/ethereum
https://www.coinbase.com/en-gb/price/ethereum
https://www.coinbase.com/en-gb/price/polygon
https://www.coinbase.com/en-gb/price/polygon
https://consensys.github.io/smart-contract-best-practices/
https://medium.com/tellor/moving-from-admin-key-to-dao-tellors-parachute-smart-contract-aba4cc9d71fb
https://medium.com/tellor/moving-from-admin-key-to-dao-tellors-parachute-smart-contract-aba4cc9d71fb
http://arxiv.org/abs/1904.05234

 172

57. Destefanis, G. et al. (2018) ‘Smart contracts vulnerabilities: a call for Blockchain

software engineering?’, in 2018 International Workshop on Blockchain Oriented

Software Engineering (IWBOSE). IEEE, pp. 19–25. doi: 10.1109/IWBOSE.2018.8327567.

58. DevCon, G. (2018) What are Blockchain Protocols and How Do they Work? Available at:

https://medium.com/@genesishack/draft-what-are-Blockchain-protocols-and-how-

do-they-work-94815be5efa7 (Accessed: 12 September 2022).

59. Di Angelo, M. and Slazer, G. (2020) ‘Wallet Contracts on Ethereum’, in 2020 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, pp. 1–2. doi:

10.1109/ICBC48266.2020.9169467.

60. EatTheBlocks (2019) ‘Access Control with Solidity & OpenZeppelin | Authorization’.

Available at:

https://www.google.com/search?q=access+control+issue+by+using+solidity&rlz=1C1G

CEA_enGB971GB974&ei=jioHZJ30KYTGgQbu2wM&oq=access+control+issue+by+using

&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQAxgAMgUIIRCgATIFCCEQoAEyCAghEBYQHhAdMggIIR

AWEB4QHTIICCEQFhAeEB0yCAghEBYQHhAd (Accessed: 20 May 2023).

61. Edgcombe., J. (2016) So, you want to connect your IoT device to the Blockchain?

Available at: https://www.cambridgeconsultants.com/insights/so-you-want-to-

connect-your-iot-device-to-the-b)lockchain (Accessed: 2 July 2022).

62. Elliott, S. (2022) Has Proof of Stake Made Ethereum More Centralized? Available at:

https://decrypt.co/111485/has-proof-of-stake-made-ethereum-more-centralized

(Accessed: 20 April 2023).

63. Eskandari, S., Moosavi, S. and Clark, J. (2019) ‘SoK: Transparent Dishonesty: front-

running attacks on Blockchain’. Available at: http://arxiv.org/abs/1902.05164

(Accessed: 2 June 2022).

64. Essaid, M. et al. (2018) ‘Network Usage of Bitcoin Full Node’, in 2018 International

Conference on Information and Communication Technology Convergence (ICTC). IEEE,

pp. 1286–1291. doi: 10.1109/ICTC.2018.8539723.

65. Ethereum (2023) ‘Proof-of-stake (PoS)’. Available at:

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/ (Accessed: 20

December 2023).

66. Ethereum.org Team (2023) Visibility and Getters. Available at:

https://docs.soliditylang.org/en/latest/contracts.html (Accessed: 1 December 2023).

https://medium.com/@genesishack/draft-what-are-blockchain-protocols-and-how-do-they-work-94815be5efa7
https://medium.com/@genesishack/draft-what-are-blockchain-protocols-and-how-do-they-work-94815be5efa7
https://www.google.com/search?q=access+control+issue+by+using+solidity&rlz=1C1GCEA_enGB971GB974&ei=jioHZJ30KYTGgQbu2wM&oq=access+control+issue+by+using&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQAxgAMgUIIRCgATIFCCEQoAEyCAghEBYQHhAdMggIIRAWEB4QHTIICCEQFhAeEB0yCAghEBYQHhAd
https://www.google.com/search?q=access+control+issue+by+using+solidity&rlz=1C1GCEA_enGB971GB974&ei=jioHZJ30KYTGgQbu2wM&oq=access+control+issue+by+using&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQAxgAMgUIIRCgATIFCCEQoAEyCAghEBYQHhAdMggIIRAWEB4QHTIICCEQFhAeEB0yCAghEBYQHhAd
https://www.google.com/search?q=access+control+issue+by+using+solidity&rlz=1C1GCEA_enGB971GB974&ei=jioHZJ30KYTGgQbu2wM&oq=access+control+issue+by+using&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQAxgAMgUIIRCgATIFCCEQoAEyCAghEBYQHhAdMggIIRAWEB4QHTIICCEQFhAeEB0yCAghEBYQHhAd
https://www.google.com/search?q=access+control+issue+by+using+solidity&rlz=1C1GCEA_enGB971GB974&ei=jioHZJ30KYTGgQbu2wM&oq=access+control+issue+by+using&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQAxgAMgUIIRCgATIFCCEQoAEyCAghEBYQHhAdMggIIRAWEB4QHTIICCEQFhAeEB0yCAghEBYQHhAd
https://www.cambridgeconsultants.com/insights/so-you-want-to-connect-your-iot-device-to-the-b)lockchain
https://www.cambridgeconsultants.com/insights/so-you-want-to-connect-your-iot-device-to-the-b)lockchain
https://decrypt.co/111485/has-proof-of-stake-made-ethereum-more-centralized
http://arxiv.org/abs/1902.05164
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://docs.soliditylang.org/en/latest/contracts.html

 173

67. Ethers (2023) ‘What is Ethers?’ Available at: https://docs.ethers.org/v5/ (Accessed: 1

December 2023).

68. Etherscan (2021) Inari Token Smart Contract. Available at:

https://etherscan.io/address/0xca75c43f8c9afd356c585ce7aa4490b48a95c466#code

(Accessed: 15 December 2023).

69. Etherscan (2024) ‘Etherscan gas tracker’. Available at: https://etherscan.io/gastracker

(Accessed: 15 April 2024).

70. Fang, Y. et al. (2021) ‘Jyane: Detecting Reentrancy vulnerabilities based on path profiling

method’, in 2021 IEEE 27th International Conference on Parallel and Distributed Systems

(ICPADS). IEEE, pp. 274–282. doi: 10.1109/ICPADS53394.2021.00040.

71. Feng, Y., Torlak, E. and Bodik, R. (2019) ‘Precise Attack Synthesis for Smart Contracts’.

Available at: http://arxiv.org/abs/1902.06067 (Accessed: 18 May 2022).

72. Future Learn (2021) 4 of the top DeFi cybersecurity risks. Available at:

https://www.futurelearn.com/info/courses/defi-exploring-decentralised-finance-with-

Blockchain-technologies/0/steps/256219 (Accessed: 2 March 2023).

73. Gao, J. et al. (2019) ‘EASYFLOW: Keep Ethereum Away from Overflow’, in 2019

IEEE/ACM 41st International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion). IEEE, pp. 23–26. doi: 10.1109/ICSE-

Companion.2019.00029.

74. Gartner (2023) Blockchain platforms reviews and ratings. Available at:

https://www.gartner.com/reviews/market/blockchain-platforms (Accessed: 6 January

2024).

75. Ghaffari, F. et al. (2020) ‘Authentication and Access Control based on Distributed Ledger

Technology: A survey’, in 2020 2nd Conference on Blockchain Research & Applications

for Innovative Networks and Services (BRAINS). IEEE, pp. 79–86. doi:

10.1109/BRAINS49436.2020.9223297.

76. Ghaffari, F. et al. (2021) ‘A Novel Access Control Method Via Smart Contracts for

Internet-Based Service Provisioning’, IEEE Access, 9, pp. 81253–81273. doi:

10.1109/ACCESS.2021.3085831.

77. Ghaleb, A., Rubin, J. and Pattabiraman, K. (2022) ‘eTainter: detecting gas-related

vulnerabilities in smart contracts’, in Proceedings of the 31st ACM SIGSOFT International

https://docs.ethers.org/v5/
https://etherscan.io/address/0xca75c43f8c9afd356c585ce7aa4490b48a95c466#code
https://etherscan.io/gastracker
http://arxiv.org/abs/1902.06067
https://www.futurelearn.com/info/courses/defi-exploring-decentralised-finance-with-blockchain-technologies/0/steps/256219
https://www.futurelearn.com/info/courses/defi-exploring-decentralised-finance-with-blockchain-technologies/0/steps/256219
https://www.gartner.com/reviews/market/blockchain-platforms

 174

Symposium on Software Testing and Analysis. New York, NY, USA: ACM, pp. 728–739.

doi: 10.1145/3533767.3534378.

78. Ghaleb, A., Rubin, J. and Pattabiraman, K. (2023) ‘AChecker: Statically Detecting Smart

Contract Access Control Vulnerabilities’, in 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE). IEEE, pp. 945–956. doi:

10.1109/ICSE48619.2023.00087.

79. Github (2022) ‘Centralization risk: admin have privileges’. Available at:

https://github.com/code-423n4/2022-09-frax-findings/issues/107 (Accessed: 20

March 2023).

80. Github (no date) Ethereum/devp2p: Ethereum peer-to-peer networking. Available at:

https://github.com/ethereum/devp2p (Accessed: 22 March 2023).

81. Goldberg, O. (2018) How to Not Destroy Millions in Smart Contracts. Available at:

https://hackernoon.com/how-to-not-destroy-millions-in-smart-contracts-pt-2-

85c4d8edd0cf (Accessed: 18 May 2022).

82. Grech, N. et al. (2018) ‘MadMax: surviving out-of-gas conditions in Ethereum smart

contracts’, Proceedings of the ACM on Programming Languages, 2(OOPSLA), pp. 1–27.

doi: 10.1145/3276486.

83. Habic, B. (2024) Public testnets are a threat to the development of dapps. Available at:

https://blockworks.co/news/public-testnets-threat-development-dapps (Accessed: 15

March 2024).

84. Hafid, A., Hafid, A. S. and Samih, M. (2020) ‘Scaling Blockchains: A Comprehensive

Survey’, IEEE Access, 8, pp. 125244–125262. doi: 10.1109/ACCESS.2020.3007251.

85. Han, J. et al. (2021) ‘An efficient multi-signature wallet in Blockchain using bloom filter’,

in Proceedings of the 36th Annual ACM Symposium on Applied Computing. New York,

NY, USA: ACM, pp. 273–281. doi: 10.1145/3412841.3441910.

86. Han, R. et al. (2023) ‘How Can Incentive Mechanisms and Blockchain Benefit with Each

Other? A Survey’, ACM Computing Surveys, 55(7), pp. 1–38. doi: 10.1145/3539604.

87. Hardhat (2023) ‘Hardhat, Ethereum development environment for professionals’.

Available at: https://hardhat.org/tutorial/setting-up-the-environment (Accessed: 11

January 2024).

88. He, D. et al. (2020) ‘Smart Contract Vulnerability Analysis and Security Audit’, IEEE

Network, 34(5), pp. 276–282. doi: 10.1109/MNET.001.1900656.

https://github.com/code-423n4/2022-09-frax-findings/issues/107
https://github.com/ethereum/devp2p
https://hackernoon.com/how-to-not-destroy-millions-in-smart-contracts-pt-2-85c4d8edd0cf
https://hackernoon.com/how-to-not-destroy-millions-in-smart-contracts-pt-2-85c4d8edd0cf
https://blockworks.co/news/public-testnets-threat-development-dapps
https://hardhat.org/tutorial/setting-up-the-environment

 175

89. Hoang Minh. (2022) Building a Front-end Decentralized Application with ReactJS.

Available at: https://techfi.tech/building-a-front-end-decentralized-application-with-

reactjs/ (Accessed: 20 March 2023).

90. Homoliak, I. et al. (2021) ‘The Security Reference Architecture for Blockchains: Toward

a Standardized Model for Studying Vulnerabilities, Threats, and Defenses’, IEEE

Communications Surveys and Tutorials. doi: 10.1109/COMST.2020.3033665.

91. Hooper, D., Solorio, K. and Kanna, R. (2019) Hands-On Smart Contract Development with

Solidity and Ethereum: From Fundamentals to Deployment Paperback. O’Reilly Media.

92. Hou, C. et al. (2019) ‘SquirRL: Automating Attack Analysis on Blockchain Incentive

Mechanisms with Deep Reinforcement Learning’. Available at:

http://arxiv.org/abs/1912.01798 (Accessed: 20 March 2022).

93. Hsieh, Y.-Y.; (JP) Vergne, J.-P.; Wang, S. The Internal and External Governance of

Blockchain-Based Organizations. In Bitcoin and Beyond; Routledge: London, 2017; pp

48–68. https://doi.org/10.4324/9781315211909-3.

94. Salomon, H. (2023) Ethereum Block (PoS). Available at:

https://inevitableeth.com/home/ethereum/blockchain/block (Accessed: 18 December

2023).

95. Hu, B. et al. (2019) ‘A Collaborative Intrusion Detection Approach Using Blockchain for

Multimicrogrid Systems’, IEEE Transactions on Systems, Man, and Cybernetics: Systems,

49(8), pp. 1720–1730. doi: 10.1109/TSMC.2019.2911548.

96. Hu, Y. et al. (2021) ‘Security Threats from Bitcoin Wallet Smartphone Applications’, in

Proceedings of the Eleventh ACM Conference on Data and Application Security and

Privacy. New York, NY, USA: ACM, pp. 89–100. doi: 10.1145/3422337.3447832.

97. Huang, J. et al. (2019) ‘Survey on Blockchain Incentive Mechanism’, in 2018 12th

International Conference on Open Source Systems and Technologies (ICOSST). IEEE, pp.

386–395. doi: 10.1007/978-981-15-0118-0_30.

98. Huang, J. et al. (2021) ‘Blockchain Network Propagation Mechanism Based on P4P

Architecture’, Security and Communication Networks, 2021. doi:

10.1155/2021/8363131.

99. Huang, Y. et al. (2019) ‘Smart Contract Security: A Software Lifecycle Perspective’, IEEE

Access, 7, pp. 150184–150202. doi: 10.1109/ACCESS.2019.2946988.

https://techfi.tech/building-a-front-end-decentralized-application-with-reactjs/
https://techfi.tech/building-a-front-end-decentralized-application-with-reactjs/
http://arxiv.org/abs/1912.01798
https://doi.org/10.4324/9781315211909-3
https://inevitableeth.com/home/ethereum/blockchain/block

 176

100. Huang, Y. et al. (2022) ‘Deep Smart Contract Intent Detection’. Available at:

http://arxiv.org/abs/2211.10724.

101. Inari (2021) Inari Contract Source Code. Available at:

https://etherscan.io/address/0xca75c43f8c9afd356c585ce7aa4490b48a95c466#code

(Accessed: 18 January 2024).

102. Infura (2023) ‘Ethereum JavaScript Libraries: web3.js vs. ethers.js’. Available at:

https://blog.infura.io/post/ethereum-javascript-libraries-web3-js-vs-ethers-js-part-i

(Accessed: 15 February 2024).

103. Ivanov, N. and Yan, Q. (2022) ‘Decentralization Paradox: A Study of Hegemonic and

Risky ERC-20 Tokens’. Available at: http://arxiv.org/abs/2209.08370.

104. Javaid, M. et al. (2021) ‘Blockchain technology applications for Industry 4.0: A

literature-based review’, Blockchain: Research and Applications, p. 100027. doi:

10.1016/j.bcra.2021.100027.

105. Jha, P. (2022) Ethereum at the center of centralization debate as SEC lays claim.

Available at: https://cointelegraph.com/news/ethereum-at-the-center-of-

centralization-debate-as-sec-lays-claim (Accessed: 20 January 2024).

106. Jiang, B., Liu, Y. and Chan, W. K. (2018) ‘ContractFuzzer: fuzzing smart contracts for

vulnerability detection’, in Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering. New York, NY, USA: ACM, pp. 259–269. doi:

10.1145/3238147.3238177.

107. Jin, L. et al. (2021) ‘DNSonChain: Delegating Privacy-Preserved DNS Resolution to

Blockchain’, in 2021 IEEE 29th International Conference on Network Protocols (ICNP).

IEEE, pp. 1–11. doi: 10.1109/ICNP52444.2021.9651951.

108. Kearney, J. J. and Perez-Delgado, C. A. (2021) ‘Vulnerability of Blockchain technologies

to quantum attacks’, Array. doi: 10.1016/j.array.2021.100065.

109. Kenneth, H. (2019) Web3.js Ethereum Javascript API. Available at:

https://medium.com/coinmonks/web3-js-ethereum-javascript-api-72f7b22e2f0a

(Accessed: 18 December 2023).

110. Khalifa, A. M., Bahaa-Eldin, A. M. and Sobh, M. A. (2019) ‘Quantum attacks and defenses

for proof-of-stake’, in Proceedings - ICCES 2019: 2019 14th International Conference on

Computer Engineering and Systems. doi: 10.1109/ICCES48960.2019.9068181.

http://arxiv.org/abs/2211.10724
https://etherscan.io/address/0xca75c43f8c9afd356c585ce7aa4490b48a95c466#code
https://blog.infura.io/post/ethereum-javascript-libraries-web3-js-vs-ethers-js-part-i
http://arxiv.org/abs/2209.08370
https://cointelegraph.com/news/ethereum-at-the-center-of-centralization-debate-as-sec-lays-claim
https://cointelegraph.com/news/ethereum-at-the-center-of-centralization-debate-as-sec-lays-claim
https://medium.com/coinmonks/web3-js-ethereum-javascript-api-72f7b22e2f0a

 177

111. Khan, K. M., Arshad, J. and Khan, M. M. (2020) ‘Simulation of transaction malleability

attack for Blockchain-based e-Voting’, Computers & Electrical Engineering, 83, p.

106583. doi: 10.1016/j.compeleceng.2020.106583.

112. Khan, Z. A. and Siami Namin, A. (2020) Ethereum Smart Contracts: Vulnerabilities and

their Classifications, 2020 IEEE International Conference on Big Data (Big Data). IEEE.

doi: 10.1109/BigData50022.2020.9439088.

113. Kim, S. K.; Mason, J.; Ma, Z.; Miller, A.; Murali, S.; Bailey, M. Measuring Ethereum

Network Peers. In Proceedings of the ACM SIGCOMM Internet Measurement

Conference, IMC; Association for Computing Machinery, 2018; pp 91–104.

https://doi.org/10.1145/3278532.3278542.

114. Kitakami, M. and Matsuoka, K. (2018) ‘An Attack-Tolerant Agreement Algorithm for

Block Chain’, in 2018 IEEE 23rd Pacific Rim International Symposium on Dependable

Computing (PRDC). IEEE, pp. 227–228. doi: 10.1109/PRDC.2018.00041.

115. Kong, Q.-P. et al. (2022) ‘Characterizing and Detecting Gas-Inefficient Patterns in Smart

Contracts’, Journal of Computer Science and Technology, 37(1), pp. 67–82. doi:

10.1007/s11390-021-1674-4.

116. Kumar, V. (2021) ‘Finally a better react.js folder structure’. Available at:

https://medium.com/@kumarvinoth/finally-a-better-react-js-folder-structure-

821a2210835 (Accessed: 22 December 2023).

117. Kuryłowicz, P. 2023. The Role of Access Control in Solidity Smart Contracts. Available at:

https://composable-security.com/blog/the-role-of-access-control-in-solidity-smart-

contracts/ (Accessed: 25 January 2024).

118. Kushwaha, S. S. et al. (2022) ‘Systematic Review of Security Vulnerabilities in Ethereum

Blockchain Smart Contract’, IEEE Access, 10, pp. 6605–6621. doi:

10.1109/ACCESS.2021.3140091.

119. Kuznetsov, O. et al. (2024) ‘Merkle Trees in Blockchain: A Study of Collision Probability

and Security Implications’. doi: https://doi.org/10.48550/arXiv.2402.04367.

120. Larson, S. (2022) Creating an Ownable Smart Contract in Solidity for Ethereum. Available

at: https://grizzlypeaksoftware.com/articles?id=6NvaOcWdWhwGEKbILwVUKr

(Accessed: 12 January 2024).

https://doi.org/10.1145/3278532.3278542
https://medium.com/@kumarvinoth/finally-a-better-react-js-folder-structure-821a2210835
https://medium.com/@kumarvinoth/finally-a-better-react-js-folder-structure-821a2210835
https://composable-security.com/blog/the-role-of-access-control-in-solidity-smart-contracts/
https://composable-security.com/blog/the-role-of-access-control-in-solidity-smart-contracts/
https://grizzlypeaksoftware.com/articles?id=6NvaOcWdWhwGEKbILwVUKr

 178

121. Le, D.-P., Yang, G. and Ghorbani, A. (2019) ‘A New Multisignature Scheme with Public

Key Aggregation for Blockchain’, in 2019 17th International Conference on Privacy,

Security and Trust (PST). IEEE, pp. 1–7. doi: 10.1109/PST47121.2019.8949046.

122. Leonardos, N., Leonardos, S. and Piliouras, G. (2019) ‘Oceanic Games: Centralization

Risks and Incentives in Blockchain Mining’. doi: 10.1007/978-3-030-37110-4_13.

123. Li, C. (2021) ‘Gas Estimation and Optimization for Smart Contracts on Ethereum’, in

2021 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, pp. 1082–1086. doi: 10.1109/ASE51524.2021.9678932.

124. Li, X., Ma, Z. and Luo, S. (2022) ‘Blockchain-Oriented Privacy Protection with Online and

Offline Verification in Cross-Chain System’, in 2022 International Conference on

Blockchain Technology and Information Security (ICBCTIS). IEEE, pp. 177–181. doi:

10.1109/ICBCTIS55569.2022.00048.

125. Li, Z. et al. (2021) ‘B-DNS: A Secure and Efficient DNS Based on the Blockchain

Technology’, IEEE Transactions on Network Science and Engineering, 8(2), pp. 1674–

1686. doi: 10.1109/TNSE.2021.3068788.

126. Liang, Y.-C. (2020) ‘Blockchain for Dynamic Spectrum Management’, in, pp. 121–146.

doi: 10.1007/978-981-15-0776-2_5.

127. Liao, K. and Katz, J. (2017) ‘Incentivizing double-spend collusion in bitcoin’. Available at:

https://www.semanticscholar.org/paper/Incentivizing-Double-Spend-Collusion-in-

Bitcoin-Liao-Katz/81eeb6553790e81c183c7798672bd82df957ff68 (Accessed: 10 June

2022).

128. Lin, I.-C. and Liao, T.-C. (2017) ‘A Survey of Blockchain Security Issues and Challenges’,

International Journal of Network Security, 19, pp. 653–659. doi:

10.6633/IJNS.201709.19(5).01.

129. Liu, Y. et al. (2019) ‘A Comparative Study of Blockchain-Based DNS Design’, in

Proceedings of the 2019 2nd International Conference on Blockchain Technology and

Applications. New York, NY, USA: ACM, pp. 86–92. doi: 10.1145/3376044.3376057.

130. Lone, A. H. and Naaz, R. (2020) ‘Demystifying Cryptography behind Blockchains and a

Vision for Post-Quantum Blockchains’, in 2020 IEEE International Conference for

Innovation in Technology (INOCON). IEEE, pp. 1–6. doi:

10.1109/INOCON50539.2020.9298215.

https://www.semanticscholar.org/paper/Incentivizing-Double-Spend-Collusion-in-Bitcoin-Liao-Katz/81eeb6553790e81c183c7798672bd82df957ff68
https://www.semanticscholar.org/paper/Incentivizing-Double-Spend-Collusion-in-Bitcoin-Liao-Katz/81eeb6553790e81c183c7798672bd82df957ff68

 179

131. Ma, R. et al. (2019) Fundamentals of Smart Contract Security Kindle Edition. Kindle

Edition.

132. Marchesi, L. et al. (2020) ‘Design Patterns for Gas Optimization in Ethereum’, in 2020

IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE).

IEEE, pp. 9–15. doi: 10.1109/IWBOSE50093.2020.9050163.

133. Maruf O Abubakar (2022) Rug-Pull: How to Spot the Fraud Easily via Smart Contract

Codes. Available at: https://coinsbench.com/rug-pull-how-to-spot-the-fraud-easily-via-

smart-contract-codes-39e69160d009 (Accessed: 18 June 2023).

134. Mazorra, B., Adan, V. and Daza, V. (2022) ‘Do Not Rug on Me: Leveraging Machine

Learning Techniques for Automated Scam Detection’, Mathematics, 10(6), p. 949. doi:

10.3390/math10060949.

135. Mazorra, B., Adan, V. and Daza, V. (2022) ‘Do not rug on me: Zero-dimensional Scam

Detection’. doi: doi.org/10.48550/arXiv.2201.07220.

136. Mendes, C. (2023) JavaScript and Web3: Building decentralized applications with the

most popular language. Available at: https://blog.bepro.network/javascript-and-web3-

build-dapps (Accessed: 10 January 2024).

137. Mense, A. and Flatscher, M. (2018) ‘Security Vulnerabilities in Ethereum Smart

Contracts’, in Proceedings of the 20th International Conference on Information

Integration and Web-based Applications & Services. New York, NY, USA: ACM, pp. 375–

380. doi: 10.1145/3282373.3282419.

138. MetaOpenSource (2023) React. Available at: https://react.dev/learn/describing-the-ui

(Accessed: 18 January 2024).

139. Min, T. (2023) Ethereum Structure. Available at:

https://medium.com/@feelwjd/ethereum-structure-836215125df8 (Accessed: 14

December 2024).

140. Minima (2022) Is Bitcoin incentivizing its own centralization? Available at:

https://www.minima.global/post/is-bitcoin-incentivizing-its-own-centralization

(Accessed: 18 November 2023).

141. Mirkin, M. et al. (2020) ‘BDoS: Blockchain Denial-of-Service’, in Proceedings of the ACM

Conference on Computer and Communications Security. doi:

10.1145/3372297.3417247.

https://coinsbench.com/rug-pull-how-to-spot-the-fraud-easily-via-smart-contract-codes-39e69160d009
https://coinsbench.com/rug-pull-how-to-spot-the-fraud-easily-via-smart-contract-codes-39e69160d009
https://blog.bepro.network/javascript-and-web3-build-dapps
https://blog.bepro.network/javascript-and-web3-build-dapps
https://react.dev/learn/describing-the-ui
https://medium.com/@feelwjd/ethereum-structure-836215125df8
https://www.minima.global/post/is-bitcoin-incentivizing-its-own-centralization

 180

142. Modiri, N. The ISO Reference Model Entities. IEEE Netw. 1991, 5 (4), 24–33.

https://doi.org/10.1109/65.93182.

143. Mollajafari, S. (2022) Warning on Blockchain security risk. Available at:

https://www.bcs.org/articles-opinion-and-research/warning-on-Blockchain-security-

risk/ Accessed: 10 October 2023).

144. Mollajafari, S. and Bechkoum, K. (2023) ‘Blockchain Technology and Related Security

Risks: Towards a Seven-Layer Perspective and Taxonomy’, Sustainability, 15(18), p.

13401. doi: 10.3390/su151813401.

145. Monteiro, A. P. C. A Study of Static Analysis Tools for Ethereum Smart Contracts. 2019.

146. Mosakheil, J. H. (2018) Security Threats Classification in Blockchains. Available at:

https://www.semanticscholar.org/paper/Security-Threats-Classification-in-

Blockchains-Mosakheil/91bbbb31101cbc2e803726d7210b4100f7b09ac5. (Accessed: 3

January 2022).

147. Mou, T., Coblenz, M. and Aldrich, J. (2021) ‘An Empirical Study of Protocols in Smart

Contracts’. doi: https://doi.org/10.48550/arXiv.2110.08983.

148. Najafi, S. (2020) Front-Running Attacks on Blockchain. Available at:

https://medium.com/codechain/front-running-attacks-on-Blockchain-1f5ba28cd42b

(Accessed: 1 July 2022).

149. Nakamura, Y. et al. (2019) ‘Capability-Based Access Control for the Internet of Things:

An Ethereum Blockchain-Based Scheme’, in 2019 IEEE Global Communications

Conference (GLOBECOM). IEEE, pp. 1–6. doi: 10.1109/GLOBECOM38437.2019.9013321.

150. Nathan Sexer (2018) Decentralized Exchanges vs. Centralized Exchanges: Overview.

Available at: https://consensys.net/blog/news/decentralized-exchanges-overview-

benefits-and-advantages-over-centralized-exchanges/ (Accessed: 10 January 2022).

151. Neiheiser, R. et al. (2023) ‘Practical Limitations of Ethereum’s Layer-2’, IEEE Access, 11,

pp. 8651–8662. doi: 10.1109/ACCESS.2023.3237897.

152. Nguyen, G.-T. and Kim, K. (2018) ‘A Survey about Consensus Algorithms Used in

Blockchain’, Journal of Information Processing Systems, 14. doi: 10.3745/JIPS.01.0024.

153. Nguyen, T. (2023) Top 10 Popular Node JS Blockchain Frameworks for Building dApps.

Available at: https://www.front-endmag.com/insights/node-js-Blockchain-

frameworks/ (Accessed: 23 January 2024).

https://doi.org/10.1109/65.93182
https://www.bcs.org/articles-opinion-and-research/warning-on-Blockchain-security-risk/
https://www.bcs.org/articles-opinion-and-research/warning-on-Blockchain-security-risk/
https://www.semanticscholar.org/paper/Security-Threats-Classification-in-Blockchains-Mosakheil/91bbbb31101cbc2e803726d7210b4100f7b09ac5
https://www.semanticscholar.org/paper/Security-Threats-Classification-in-Blockchains-Mosakheil/91bbbb31101cbc2e803726d7210b4100f7b09ac5
https://medium.com/codechain/front-running-attacks-on-blockchain-1f5ba28cd42b
https://consensys.net/blog/news/decentralized-exchanges-overview-benefits-and-advantages-over-centralized-exchanges/
https://consensys.net/blog/news/decentralized-exchanges-overview-benefits-and-advantages-over-centralized-exchanges/
https://www.frontendmag.com/insights/node-js-blockchain-frameworks/
https://www.frontendmag.com/insights/node-js-blockchain-frameworks/

 181

154. Nico (2024) Gas and fees. Available at: https://ethereum.org/en/developers/docs/gas/

(Accessed: 15 April 2024).

155. Oates, B. J. (2006) Researching information systems and computing. London: SAGE

Publications.

156. Onyeije, P. (2023) ‘React’s Layout Component’s Concept’. Available at:

https://blog.openreplay.com/reacts-layout-components-concept/ (Accessed: 18

February 2024).

157. OpenZeppelin (2022) Access Control. Available at:

https://docs.openzeppelin.com/contracts/4.x/access-control (Accessed: 18 October

2023).

158. OpenZeppelin (2023) Access Control Contracts. Available at:

https://github.com/OpenZeppelin/openzeppelincontracts/tree/master/contracts/acce

ss (Accessed: 18 January 2024).

159. OpenZeppelin (2023) The standard for secure Blockchain applications. Available at:

https://www.openzeppelin.com/ (Accessed: 18 January 2024).

160. Pagan, M. (2021) ‘Getting Started with React and TypeScript’. Available at:

https://www.thisdot.co/blog/getting-started-with-react-and-typescript/ (Accessed: 10

December 2023).

161. PARTZ, H. (2021) Bilaxy exchange suspends website after ERC-20 hot wallet hack.

Available at: https://cointelegraph.com/news/bilaxy-exchange-suspends-website-

after-erc-20-hot-wallet-hack (Accessed: 18 May 2022).

162. Patel, S. (2015) The research paradigm – methodology, epistemology and ontology –

explained in simple language. Available at: https://salmapatel.co.uk/academia/the-

research-paradigm-methodology-epistemology-and-ontology-explained-in-simple-

language/ (Accessed: 14 January 2022).

163. Pierro, G. A. and Tonelli, R. (2021) ‘Analysis of Source Code Duplication in Ethereum

Smart Contracts’, in 2021 IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER). IEEE, pp. 701–707. doi: 10.1109/SANER50967.2021.00089.

164. Polygon (2024) ‘Polygon gas tracker’. Available at:

https://polygonscan.com/gastracker#gasguzzler (Accessed: 18 April 2024).

165. Polygon (2024) ‘Polygon PoS Chain Average Block Time Chart’. Available at:

https://polygonscan.com/chart/blocktime (Accessed: 18 April 2024).

https://ethereum.org/en/developers/docs/gas/
https://blog.openreplay.com/reacts-layout-components-concept/
https://docs.openzeppelin.com/contracts/4.x/access-control
https://github.com/OpenZeppelin/openzeppelincontracts/tree/master/contracts/access
https://github.com/OpenZeppelin/openzeppelincontracts/tree/master/contracts/access
https://www.openzeppelin.com/
https://www.thisdot.co/blog/getting-started-with-react-and-typescript/
https://cointelegraph.com/news/bilaxy-exchange-suspends-website-after-erc-20-hot-wallet-hack
https://cointelegraph.com/news/bilaxy-exchange-suspends-website-after-erc-20-hot-wallet-hack
https://salmapatel.co.uk/academia/the-research-paradigm-methodology-epistemology-and-ontology-explained-in-simple-language/
https://salmapatel.co.uk/academia/the-research-paradigm-methodology-epistemology-and-ontology-explained-in-simple-language/
https://salmapatel.co.uk/academia/the-research-paradigm-methodology-epistemology-and-ontology-explained-in-simple-language/
https://polygonscan.com/gastracker#gasguzzler
https://polygonscan.com/chart/blocktime

 182

166. Polygon (2024) ‘Polygon PoS Chain Average Gas Limit Chart’. Available at:

https://polygonscan.com/chart/gaslimit (Accessed: 18 April 2024).

167. Praitheeshan, P. et al. (2019) ‘Security Analysis Methods on Ethereum Smart Contract

Vulnerabilities: A Survey’, pp. 1–21. Available at: http://arxiv.org/abs/1908.08605.

168. Qin, K. et al. (2020) ‘Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit’.

Available at: http://arxiv.org/abs/2003.03810.

169. QuickNode (2023) How to Build a React Front-end with wagmi. Available at:

https://www.quicknode.com/guides/ethereum-development/dapps/building-dapps-

with-wagmi#:~:text=wagmi is an open-source,using React%2C Viem and Bootstrap.

170. Raikwar, M., Gligoroski, D. and Kralevska, K. (2019) ‘SoK of Used Cryptography in

Blockchain’, IEEE Access, 7, pp. 148550–148575. doi: 10.1109/ACCESS.2019.2946983.

171. Ramanan, P., Li, D. and Gebraeel, N. (2022) ‘Blockchain-Based Decentralized Replay

Attack Detection for Large-Scale Power Systems’, IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 52(8), pp. 4727–4739. doi: 10.1109/TSMC.2021.3104087.

172. React (2023) ‘Rules of Hooks’. Available at: https://legacy.reactjs.org/docs/hooks-

rules.html (Accessed: 10 February 2024).

173. Ren, S. et al. (2019) ‘BlockDNS: Enhancing Domain Name Ownership and Data

Authenticity with Blockchain’, in 2019 IEEE Global Communications Conference

(GLOBECOM). IEEE, pp. 1–6. doi: 10.1109/GLOBECOM38437.2019.9013817.

174. Rezaeighaleh, H. and Zou, C. C. (2019) ‘New Secure Approach to Backup Cryptocurrency

Wallets’, in 2019 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6.

doi: 10.1109/GLOBECOM38437.2019.9014007.

175. Rouhani, S. and Deters, R. (2019) ‘Blockchain based access control systems: State of the

art and challenges’, in IEEE/WIC/ACM International Conference on Web Intelligence.

New York, NY, USA: ACM, pp. 423–428. doi: 10.1145/3350546.3352561.

176. Saad, M. et al. (2019) ‘Countering Selfish Mining in Blockchains’, in 2019 International

Conference on Computing, Networking and Communications (ICNC). IEEE, pp. 360–364.

doi: 10.1109/ICCNC.2019.8685577.

177. Saad, M. et al. (2022) ‘RouteChain: Towards Blockchain-based secure and efficient BGP

routing’, Computer Networks, 217, p. 109362. doi: 10.1016/j.comnet.2022.109362.

178. Saad, M., Khormali, A. and Mohaisen, A. (2019) ‘Dine and Dash: Static, Dynamic, and

Economic Analysis of In-Browser Cryptojacking’, in 2019 APWG Symposium on

https://polygonscan.com/chart/gaslimit
https://legacy.reactjs.org/docs/hooks-rules.html
https://legacy.reactjs.org/docs/hooks-rules.html

 183

Electronic Crime Research (eCrime). IEEE, pp. 1–12. doi:

10.1109/eCrime47957.2019.9037576.https://doi.org/10.1109/eCrime47957.2019.903

7576.

179. Saad, M., Thai, M. T. and Mohaisen, A. (2018) ‘POSTER’, in Proceedings of the 2018 on

Asia Conference on Computer and Communications Security. New York, NY, USA: ACM,

pp. 809–811. doi: 10.1145/3196494.3201584.

180. Sai, A. R. et al. (2021) ‘Taxonomy of centralization in public Blockchain systems: A

systematic literature review’, Information Processing & Management, 58(4), p. 102584.

doi: 10.1016/j.ipm.2021.102584.

181. Saini, K., Sharma, S. and Sarkar, U. (2022) ‘Blockchain and Cryptography’, in 2022 4th

International Conference on Advances in Computing, Communication Control and

Networking (ICAC3N). IEEE, pp. 1863–1868. doi:

10.1109/ICAC3N56670.2022.10074345.

182. Salah, K.; Rehman, M. H. U.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review

and Open Research Challenges. IEEE Access 2019, 7, 10127–10149.

https://doi.org/10.1109/ACCESS.2018.2890507.

183. Saleh, L. (2022) Cold Wallets, Hot Wallets: The Basics of Storing Your Crypto Securely.

Available at: https://www.mcafee.com/blogs/internet-security/cold-wallets-hot-

wallets-the-basics-of-storing-your-crypto-securely/ (Accessed: 11 July 2023).

184. Salomon, H. (2023) Ethereum Block (PoS). Available at:

https://inevitableeth.com/home/ethereum/blockchain/block (Accessed: 24 December

2023).

185. Samreen, N. F. and Alalfi, M. H. (2021) ‘SmartScan: An approach to detect Denial of

Service Vulnerability in Ethereum Smart Contracts’, in 2021 IEEE/ACM 4th International

Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE,

pp. 17–26. doi: 10.1109/WETSEB52558.2021.00010.

186. Santana, C. and Albareda, L. (2022) ‘Blockchain and the emergence of Decentralized

Autonomous Organizations (DAOs): An integrative model and research agenda’,

Technological Forecasting and Social Change, 182, p. 121806. doi:

10.1016/j.techfore.2022.121806.

https://doi.org/10.1109/eCrime47957.2019.9037576
https://doi.org/10.1109/eCrime47957.2019.9037576
https://doi.org/10.1109/ACCESS.2018.2890507
https://www.mcafee.com/blogs/internet-security/cold-wallets-hot-wallets-the-basics-of-storing-your-crypto-securely/
https://www.mcafee.com/blogs/internet-security/cold-wallets-hot-wallets-the-basics-of-storing-your-crypto-securely/
https://inevitableeth.com/home/ethereum/blockchain/block

 184

187. Santana, C.; Albareda, L. Blockchain and the Emergence of Decentralized Autonomous

Organizations (DAOs): An Integrative Model and Research Agenda. Technol. Forecast.

Soc. Change 2022, 182, 121806. https://doi.org/10.1016/j.techfore.2022.121806.

188. Saunders, M. N. K., Lewis, P. and Thornhill, A. (2020) ‘Research Methods for Business

Students, 8th edition’, in. Pearson.

189. Sayeed, S., Marco-Gisbert, H. and Caira, T. (2020) ‘Smart Contract: Attacks and

Protections’, IEEE Access, 8, pp. 24416–24427. doi: 10.1109/ACCESS.2020.2970495.

190. Sguanci, C., Spatafora, R. and Vergani, A. M. (2021) ‘Layer 2 Blockchain Scaling: a

Survey’. Available at: http://arxiv.org/abs/2107.10881 (Accessed: 10 March 2024).

191. Shahda, W. (2019) Protect Your Solidity Smart Contracts from Re-entrancy Attacks.

Available at: https://medium.com/coinmonks/protect-your-solidity-smart-contracts-

from-reentrancy-attacks-9972c3af7c21 (Accessed: 11 July 2022).

192. Shanzson (2022) Smart Contract Auditor Tools and Techniques. Available at:

https://github.com/shanzson/Smart-Contract-Auditor-Tools-and-Techniques

(Accessed: 12 July 2023).

193. Shevko, M., Yanovich, Y. and Zhukova, D. (2023) ‘Demo: Decentralized Autonomous

Organization with Centralized Crisis Resolution’, in 2023 IEEE 43rd International

Conference on Distributed Computing Systems (ICDCS). IEEE, pp. 1005–1008. doi:

10.1109/ICDCS57875.2023.00112.

194. Siddiqi, A. ud din and Ali, Z. (2022) ‘The Sybil Attack Prevention Algorithm’, International

Journal of Advance Sciences and Computing, 1. Available at:

http://ijasc.com/index.php/ijasc/index (Accessed: 8 March 2023).

195. Sigurdsson, G., Giaretta, A. and Dragoni, N. (2020) ‘Vulnerabilities and Security Breaches

in Cryptocurrencies’, in, pp. 288–299. doi: 10.1007/978-3-030-14687-0_26.

196. Singh, M. and Kim, S. (2019) ‘Blockchain technology for decentralized autonomous

organizations’, in, pp. 115–140. doi: 10.1016/bs.adcom.2019.06.001.

197. Sm4rty (2022) Smart Contract Audit Methodology & Tips. Available at:

https://sm4rty.medium.com/smart-contract-audit-methodology-tips-6e529a3f3435

(Accessed: 11 May 2023).

198. Solidgroup (2021) ‘New Security Vulnerability: How owners can mint tokens AFTER

renouncing ownership’. Available at: https://solidgroup-68170.medium.com/new-

https://doi.org/10.1016/j.techfore.2022.121806
http://arxiv.org/abs/2107.10881
https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://github.com/shanzson/Smart-Contract-Auditor-Tools-and-Techniques
http://ijasc.com/index.php/ijasc/index
https://sm4rty.medium.com/smart-contract-audit-methodology-tips-6e529a3f3435
https://solidgroup-68170.medium.com/new-security-vulnerability-how-owners-can-mint-tokens-after-renouncing-ownership-f3f2af13b5f6

 185

security-vulnerability-how-owners-can-mint-tokens-after-renouncing-ownership-

f3f2af13b5f6 (Accessed: 25 July 2023).

199. Solidity Team (2023) Contract ABI Specification. Available at:

https://docs.soliditylang.org/en/v0.8.11/abi-spec.html (Accessed: 15 December 2023).

200. Sun, H., Ruan, N. and Su, C. (2020) ‘How to Model the Bribery Attack: A Practical

Quantification Method in Blockchain’, in, pp. 569–589. doi: 10.1007/978-3-030-59013-

0_28.

201. Sung, S. (2021) ‘A new key protocol design for cryptocurrency wallet’, ICT Express, 7(3),

pp. 316–321. doi: 10.1016/j.icte.2021.08.002.

202. Suresh, A. et al. (2020) ‘A Hybrid Proof based Consensus Algorithm for Permission less

Blockchain’, in 2020 Second International Conference on Inventive Research in

Computing Applications (ICIRCA). IEEE, pp. 707–713. doi:

10.1109/ICIRCA48905.2020.9183109.

203. Sward, A., Vecna, I. and Stonedahl, F. (2018) ‘Data Insertion in Bitcoin’s Blockchain’,

Ledger, 3. doi: 10.5195/ledger.2018.101.

204. Swathi, P., Modi, C. and Patel, D. (2019) ‘Preventing Sybil Attack in Blockchain using

Distributed Behavior Monitoring of Miners’, in 2019 10th International Conference on

Computing, Communication and Networking Technologies (ICCCNT). IEEE, pp. 1–6. doi:

10.1109/ICCCNT45670.2019.8944507.

205. Swayne, M. (2024) Vitalik Buterin Proposes Hard-Fork Strategy to Protect Ethereum

From Quantum Attacks. Available at:

https://thequantuminsider.com/2024/03/11/vitalik-buterin-proposes-hard-fork-

strategy-to-protect-ethereum-from-quantum-attacks/ (Accessed: 12 March 2024).

206. SWC (2020) Smart Contract Weakness Classification and Test Cases. Available at:

https://swcregistry.io/ (Accessed: 11 June 2022).

207. Swcregistry (2020) Hash Collisions With Multiple Variable Length Arguments. Available

at: https://swcregistry.io/docs/SWC-133.

208. Swcregistry (2020) Weak Sources of Randomness from Chain Attributes. Available at:

https://swcregistry.io/docs/SWC-120 (Accessed: 11 June 2023).

209. Tailwindcss (2023) Get started with Tailwind CSS. Available at:

https://tailwindcss.com/docs/installation (Accessed: 8 January 2024).

https://solidgroup-68170.medium.com/new-security-vulnerability-how-owners-can-mint-tokens-after-renouncing-ownership-f3f2af13b5f6
https://solidgroup-68170.medium.com/new-security-vulnerability-how-owners-can-mint-tokens-after-renouncing-ownership-f3f2af13b5f6
https://docs.soliditylang.org/en/v0.8.11/abi-spec.html
https://thequantuminsider.com/2024/03/11/vitalik-buterin-proposes-hard-fork-strategy-to-protect-ethereum-from-quantum-attacks/
https://thequantuminsider.com/2024/03/11/vitalik-buterin-proposes-hard-fork-strategy-to-protect-ethereum-from-quantum-attacks/
https://swcregistry.io/
https://swcregistry.io/docs/SWC-120
https://tailwindcss.com/docs/installation

 186

210. Tanana, D. (2020) ‘Behavior-Based Detection of Cryptojacking Malware’, in 2020 Ural

Symposium on Biomedical Engineering, Radioelectronics and Information Technology

(USBEREIT). IEEE, pp. 0543–0545. doi: 10.1109/USBEREIT48449.2020.9117732.

211. Tapsell, J.; Naeem Akram, R.; Markantonakis, K. An Evaluation of the Security of the

Bitcoin Peer-To-Peer Network. In 2018 IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE

Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData); IEEE,

2018; pp 1057–1062. https://doi.org/10.1109/Cybermatics_2018.2018.00195.

212. Taylor, P. J.; Dargahi, T.; Dehghantanha, A.; Parizi, R. M.; Choo, K.-K. R. A Systematic

Literature Review of Blockchain Cyber Security. Digit. Commun. Networks 2020, 6 (2),

147–156. https://doi.org/10.1016/j.dcan.2019.01.005.

213. Tenkhoff, C. (2023) That’ll be the DAO: an overview of the structure and status of

decentralised autonomous organisations under English law. Available at:

https://www.taylorwessing.com/en/insights-and-events/insights/2023/04/that-will-

be-the-dao (Accessed: 18 February 2024).

214. Thomas, D. (2021) AscendEX Hacked, $77.7M Lost From Hot Wallets. Available at:

https://beincrypto.com/ascendex-hacked-77-7m-lost-from-hot-wallets/.

215. Thurman, A. (2021) Cream Finance Exploited in Flash Loan Attack Netting Over $100M.

Available at: https://www.coindesk.com/business/2021/10/27/cream-finance-

exploited-in-flash-loan-attack-worth-over-100m (Accessed: 15 July 2022).

216. Tikhomirov, S. et al. (2018) ‘SmartCheck:Static analysis of ethereum smart contracts’, in

Proceedings of the 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain. New York, NY, USA: ACM, pp. 9–16. doi:

10.1145/3194113.3194115.

217. Traore, P. (2023) Timelock: Achieving Security for Decentralized Projects. Available at:

https://blog.hashex.org/timelock-achieving-security-for-decentralized-projects-

62216b1f6f7d (Accessed: 10 February 2024).

218. Ubaidullah Rajput, Fizza Abbas, Heekuck. O. (2018) ‘A Solution towards Eliminating

Transaction Malleability in Bitcoin’, Journal of information processing system, 14. doi:

doi.org/10.3745/JIPS.03.0101.

https://doi.org/10.1109/Cybermatics_2018.2018.00195
https://doi.org/10.1016/j.dcan.2019.01.005
https://www.taylorwessing.com/en/insights-and-events/insights/2023/04/that-will-be-the-dao
https://www.taylorwessing.com/en/insights-and-events/insights/2023/04/that-will-be-the-dao
https://www.coindesk.com/business/2021/10/27/cream-finance-exploited-in-flash-loan-attack-worth-over-100m
https://www.coindesk.com/business/2021/10/27/cream-finance-exploited-in-flash-loan-attack-worth-over-100m
https://blog.hashex.org/timelock-achieving-security-for-decentralized-projects-62216b1f6f7d
https://blog.hashex.org/timelock-achieving-security-for-decentralized-projects-62216b1f6f7d

 187

219. Ukey, U. (2022) Why you should use TailwindCSS in your ReactJS project. Available at:

https://dev.to/kunalukey/why-you-should-use-tailwindcss-in-your-reactjs-project-

51kf#:~:text=In conclusion%2C TailwindCSS is a,reduce your CSS file size.

220. Ul Hassan, M., Rehmani, M. H. and Chen, J. (2020) ‘Differential privacy in Blockchain

technology: A futuristic approach’, Journal of Parallel and Distributed Computing, 145,

pp. 50–74. doi: 10.1016/j.jpdc.2020.06.003.

221. Usman, T. A.; Selcuk, A. A.; Ozarslan, S. An Analysis of Ethereum Smart Contract

Vulnerabilities. In 2021 International Conference on Information Security and

Cryptology (ISCTURKEY); IEEE, 2021; pp 99–104.

https://doi.org/10.1109/ISCTURKEY53027.2021.9654305.

222. Varun, M., Palanisamy, B. and Sural, S. (2022) ‘Mitigating Frontrunning Attacks in

Ethereum’, in Proceedings of the Fourth ACM International Symposium on Blockchain

and Secure Critical Infrastructure. New York, NY, USA: ACM, pp. 115–124. doi:

10.1145/3494106.3528682.

223. Vivar, A. L. et al. (2020) ‘An analysis of smart contracts security threats alongside

existing solutions’, Entropy. doi: 10.3390/e22020203.

224. Wagmi (2022) Wagmi React Hooks for Ethereum. Available at: https://wagmi.sh/

(Accessed: 19 December 2023).

225. Wang, A. et al. (2020) ‘Artemis: An Improved Smart Contract Verification Tool for

Vulnerability Detection’, in 2020 7th International Conference on Dependable Systems

and Their Applications (DSA). IEEE, pp. 173–181. doi: 10.1109/DSA51864.2020.00031.

226. Wang, B. et al. (2021) ‘BLOCKEYE: Hunting for DeFi Attacks on Blockchain’, in 2021

IEEE/ACM 43rd International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion). IEEE, pp. 17–20. doi: 10.1109/ICSE-

Companion52605.2021.00025.

227. Wang, G.; Li, J.; Wang, X.; Li, J.; Yuan, Y.; Wang, F.-Y. Blockchain-Based Crypto

Management for Reliable Real-Time Decision-Making. IEEE Trans. Comput. Soc. Syst.

2022, 1–10. https://doi.org/10.1109/TCSS.2022.3211331.

228. Wang, J. et al. (2018) ‘A Blockchain Based Privacy-Preserving Incentive Mechanism in

Crowdsensing Applications’, IEEE Access, 6, pp. 17545–17556. doi:

10.1109/ACCESS.2018.2805837.

https://doi.org/10.1109/ISCTURKEY53027.2021.9654305
https://wagmi.sh/
https://doi.org/10.1109/TCSS.2022.3211331

 188

229. Wen, Y. et al. (2021) ‘Attacks and countermeasures on Blockchains: A survey from

layering perspective’, Computer Networks, 191, p. 107978. doi:

10.1016/j.comnet.2021.107978.

230. Werapun, W. et al. (2022) ‘The Flash Loan Attack Analysis (FAA) Framework—A Case

Study of the Warp Finance Exploitation’, Informatics, 10(1), p. 3. doi:

10.3390/informatics10010003.

231. Xiao, Y. et al. (2020) ‘A Survey of Distributed Consensus Protocols for Blockchain

Networks’, IEEE Communications Surveys and Tutorials, 22(2), pp. 1432–1465. doi:

10.1109/COMST.2020.2969706.

232. Xing, Q., Wang, B. and Wang, X. (2018) ‘BGPcoin: Blockchain-Based Internet Number

Resource Authority and BGP Security Solution’, Symmetry, 10(9), p. 408. doi:

10.3390/sym10090408.

233. Xing, Z. and Chen, Z. (2021) ‘A Protecting Mechanism Against Double Spending Attack

in Blockchain Systems’, in 2021 IEEE World AI IoT Congress (AIIoT). IEEE, pp. 0391–0396.

doi: 10.1109/AIIoT52608.2021.9454224.

234. Xu, G. et al. (2020) ‘Am I eclipsed? A smart detector of eclipse attacks for Ethereum’,

Computers & Security, 88, p. 101604. doi: 10.1016/j.cose.2019.101604.

235. Xu, Y. (2018) ‘Section-Blockchain: A Storage Reduced Blockchain Protocol, the

Foundation of an Autotrophic Decentralized Storage Architecture’, in 2018 23rd

International Conference on Engineering of Complex Computer Systems (ICECCS). IEEE,

pp. 115–125. doi: 10.1109/ICECCS2018.2018.00020.

236. Yang, J. et al. (2020) ‘A Survey on Blockchain: Architecture, Applications, Challenges,

and Future Trends’, in Proceedings - IEEE Congress on Cybermatics: 2020 IEEE

International Conferences on Internet of Things, iThings 2020, IEEE Green Computing

and Communications, GreenCom 2020, IEEE Cyber, Physical and Social Computing,

CPSCom 2020 and IEEE Smart Data, SmartD. doi: 10.1109/iThings-GreenCom-CPSCom-

SmartData-Cybermatics50389.2020.00129.

237. Yap, K. Y., Chin, H. H. and Klemeš, J. J. (2023) ‘Blockchain technology for distributed

generation: A review of current development, challenges and future prospect’,

Renewable and Sustainable Energy Reviews, 175, p. 113170. doi:

10.1016/j.rser.2023.113170.

 189

238. Yin, R. K. (2014). Case study research: design and methods, 5th edn. Thousand Oaks,

CA: Sage Publications (Applied social research methods series, 5).

239. Zamani, E., He, Y. and Phillips, M. (2020) ‘On the Security Risks of the Blockchain’,

Journal of Computer Information Systems, 60(6), pp. 495–506. doi:

10.1080/08874417.2018.1538709.

240. Zefeiti, S. M. B. Al and Mohamad, N. A. (2015) ‘Methodological Considerations in

Studying Transformational Leadership and its Outcomes’, International Journal of

Engineering Business Management, 7, p. 10. doi: 10.5772/60429.

241. Zheng, Z. et al. (2020) ‘An overview on smart contracts: Challenges, advances and

platforms’, Future Generation Computer Systems, 105(2), pp. 475–491. doi:

10.1016/j.future.2019.12.019.

242. Zhong, Y. et al. (2021) ‘Distributed Blockchain-Based Authentication and Authorization

Protocol for Smart Grid’, Wireless Communications and Mobile Computing. Edited by S.

H. Islam, 2021, pp. 1–15. doi: 10.1155/2021/5560621.

243. Zhu, X. et al. (2020) ‘An Improved Proof-of-Trust Consensus Algorithm for Credible

Crowdsourcing Blockchain Services’, IEEE Access, 8, pp. 102177–102187. doi:

10.1109/ACCESS.2020.2998803.

244. Zipfel, K. (2020) New Smart Contract Weakness: Hash Collisions With Multiple Variable

Length Arguments. Available at: https://medium.com/swlh/new-smart-contract-

weakness-hash-collisions-with-multiple-variable-length-arguments-dc7b9c84e493

(Accessed: 17 October 2022).

https://medium.com/swlh/new-smart-contract-weakness-hash-collisions-with-multiple-variable-length-arguments-dc7b9c84e493
https://medium.com/swlh/new-smart-contract-weakness-hash-collisions-with-multiple-variable-length-arguments-dc7b9c84e493

 190

APPENDICES

Appendix A: Questionnaire for Experts’ Feedback

Appendix A.1 - Participant 1

Questionnaire

Inquiries: PhD Research on Blockchain Security

Email:

Dear respondents,

You are kindly requested to participate in the research questions conducted by Sepideh
Mollajafari, a Cyber and Technical Computing Lecturer at the University of Gloucestershire.
This questionnaire is supported by the School of Business, Computing and Social Sciences,
University of Gloucestershire. Your participation is voluntary, and your identity will be kept
anonymous. Be assured that your responses to the questions are for research purposes only
and will not be used outside of this study. Finally, we appreciate your participation in this
study. If you would like to receive the results of this research, we will be happy to send these
to you in due course.

Overview of Blockchain Technology and the Problem at Hand

This research focuses on smart contracts’ centralised ownership, which pose major security
issues and act as a single point of failure, thus contradicting the very decentralised nature of
blockchain. To mitigate against the risks associated with centralised control, a decentralised
application with DAO structure is developed. the developed “Genuine DAO “, implemented a
smart contract to control critical functions and prevent one-owner control by
developer/owner. In addition, this program is developed in a way to prevent Frontrunning
attack. The code of Genuine DAO, both the backend and frontend, is available on the GitHub
repository https://github.com/Sepideh-M/Genuine-DAO--Contracts.

Your kind cooperation is highly appreciated in this regard.

https://github.com/Sepideh-M/Genuine-DAO--Contracts

 191

Sincerely,

Sepideh Mollajafari

SECTION A: Please complete all following questions by inserting a tick mark (√) in the boxes
or by writing in the spaces provided.

1. Your gender: Male Female

2. How many years of experience do you have as a Solidity Developer or Security
Analyser?
 <3 years 3-5 years More than 5 years

SECTION B: Please answer the following questions.

`

1. In your view, how does the proposed “Genuine DAO” address potential centralisation
risks, such as concentration of power, control, or decision-making authority?

ANSWER: In this DAO model, the ownership of the smart contracts is not owned by a
wallet address and the ownership is transferred to the DAO smart contract so any
change in the smart contract main functions and rules only can be executed by DAO
members with the power of voting. This point solves the centralised management issues
of the smart contracts.

2. How effective are the implemented security controls and countermeasures to mitigate
against one owner control risks?

ANSWER: We see some features in the DAO smart contract that actually have
significant effect on the ownership improvements, such propose changes by creating
proposals, and voting to the proposals in the specific period of time. So, we can consider
these solutions as main improvements to avoid risks of the ownerships of the smart
contracts.

3. How effective is the proposed “Genuine DAO” in leveraging layer 2 scaling solutions
to enhance scalability and throughput and to minimise cost on Polygon network?

ANSWER: What layer2 solutions offer is more about the taking the responsibly of the
execution tasks from layer one and storing data in the layer1. So, layer 2 solutions
increase the scalability and decrease the fee at the same time of being secure and relied
one layer1. Therefore, polygon as a layer2 blockchain offers lower fee because of the
execution optimisations and better scalability.

 192

4. In your opinion, what are the most critical centralisation risks or vulnerabilities that
should be addressed by future research and development?

ANSWER: One of the most import points about blockchain technology that makes that
interesting is about trust and privacy. We still have some problems about privacy that
can be solved by blockchain, like proof and verification related actions in the economic
actions. One of the new technologies that can make some solutions about this challenge
is zero knowledge proof that I suggest to involve that in your research.

5. What specific part, if any, of the proposed “Genuine DAO” needs particular attention
for improvement?

ANSWER: You can decrease functions to have shorter process for proposals to be
finalised and users can run this process in the faster time.

Thank You Very Much for Your Precious Time

Appendix A.2 - Participant 2

Questionnaire

Inquiries: PhD Research on Blockchain Security

Email:

Dear respondents,

You are kindly requested to participate in the research questions conducted by Sepideh
Mollajafari, a Cyber and Technical Computing Lecturer at the University of Gloucestershire.
This questionnaire is supported by the School of Business, Computing and Social Sciences,
University of Gloucestershire. Your participation is voluntary, and your identity will be kept
anonymous. Be assured that your responses to the questions are for research purposes only
and will not be used outside of this study. Finally, we appreciate your participation in this

 193

study. If you would like to receive the results of this research, we will be happy to send these
to you in due course.

Overview of Blockchain Technology and the Problem at Hand

This research focuses on smart contracts’ centralised ownership, which pose major security
issues and act as a single point of failure, thus contradicting the very decentralised nature of
blockchain. To mitigate against the risks associated with centralised control, a decentralised
application with DAO structure is developed. the developed “Genuine DAO “, implemented a
smart contract to control critical functions and prevent one-owner control by
developer/owner. In addition, this program is developed in a way to prevent Frontrunning
attack. The code of Genuine DAO, both the backend and frontend, is available on the GitHub
repository https://github.com/Sepideh-M/Genuine-DAO--Contracts.

Your kind cooperation is highly appreciated in this regard.

Sincerely,

Sepideh Mollajafari

SECTION A: Please complete all following questions by inserting a tick mark (√) in the boxes
or by writing in the spaces provided.

3. Your gender: Male Female

4. How many years of experience do you have as a Solidity Developer or Security
Analyser?
 <3 years 3-5 years More than 5 years

SECTION B: Please answer the following questions.

`

6. In your view, how does the proposed “Genuine DAO” address potential centralisation
risks, such as concentration of power, control, or decision-making authority?

ANSWER: implementing DAO structure that involve community participation in
decision-making rather than relying on a single entity or an owner with elevated
privilege would enhance the security. Taking control of developer and transferring the
ownership to DAO contract for critical functions is beneficial to reduce the
centralisation risks.

7. How effective are the implemented security controls and countermeasures to mitigate
against one owner control risks?

https://github.com/Sepideh-M/Genuine-DAO--Contracts

 194

ANSWER: limiting the access control to critical function by implementing features such
as contract ownership would enhance the security. In addition, having timelock at
different stage of proposal creation and voting process would improve the security.

8. How effective is the proposed “Genuine DAO” in leveraging layer 2 scaling solutions
to enhance scalability and throughput and to minimise cost on Polygon network?

ANSWER: layer 2 solutions provide a more scalable network as by processing
transactions off-chain. This technology enables faster transaction confirmation times
and decreases transaction cost by reducing the computational and storage costs. Many
developers and users prefer to use layer 2 solutions over Ethereum Mainnet.

9. In your opinion, what are the most critical centralisation risks or vulnerabilities that
should be addressed by future research and development?

ANSWER: one area that needs to be checked as part of centralisation risks would be
the owner’s privilege to control over minting functions.

10. What specific part, if any, of the proposed “Genuine DAO” needs particular attention
for improvement?

ANSWER: Techniques such as zero-knowledge proofs or homomorphic encryption can
be applied to enhance confidentiality and privacy and overall security.

Thank You Very Much for Your Precious Time

Appendix A.3 - Participant 3

Questionnaire

Inquiries: PhD Research on Blockchain Security

Email:

 195

Dear respondents,

You are kindly requested to participate in the research questions conducted by Sepideh
Mollajafari, a Cyber and Technical Computing Lecturer at the University of Gloucestershire.
This questionnaire is supported by the School of Business, Computing and Social Sciences,
University of Gloucestershire. Your participation is voluntary, and your identity will be kept
anonymous. Be assured that your responses to the questions are for research purposes only
and will not be used outside of this study. Finally, we appreciate your participation in this
study. If you would like to receive the results of this research, we will be happy to send these
to you in due course.

Overview of Blockchain Technology and the Problem at Hand

This research focuses on smart contracts’ centralised ownership, which pose major security
issues and act as a single point of failure, thus contradicting the very decentralised nature of
blockchain. To mitigate against the risks associated with centralised control, a decentralised
application with DAO structure is developed. the developed “Genuine DAO “, implemented a
smart contract to control critical functions and prevent one-owner control by
developer/owner. In addition, this program is developed in a way to prevent Frontrunning
attack. The code of Genuine DAO, both the backend and frontend, is available on the GitHub
repository https://github.com/Sepideh-M/Genuine-DAO--Contracts.

Your kind cooperation is highly appreciated in this regard.

Sincerely,

Sepideh Mollajafari

SECTION A: Please complete all following questions by inserting a tick mark (√) in the boxes
or by writing in the spaces provided.

5. Your gender: Male Female

6. How many years of experience do you have as a Solidity Developer or Security
Analyser?
 <3 years 3-5 years More than 5 years

SECTION B: Please answer the following questions.

`

11. In your view, how does the proposed “Genuine DAO” address potential centralisation
risks, such as concentration of power, control, or decision-making authority?

https://github.com/Sepideh-M/Genuine-DAO--Contracts

 196

ANSWER: Centralisation is a significant risk factor in Blockchain-based projects
especially in DeFi. It can expose protocols to single points of failure, making them
susceptible to attacks or manipulation. Emphasising decentralisation and community
governance helps distribute decision-making power and ensures no single entity holds
excessive control. Active participation by a diverse group of stakeholders in protocol
governance fosters transparency, reduces conflicts of interest, and promotes the
adoption of risk-mitigating measures. Genuine DAO with DAO structure reduces the
centralisation risks by transferring the ownership address to the contract address and
other security measures in place.

12. How effective are the implemented security controls and countermeasures to mitigate
against one owner control risks?

ANSWER: Security measures that have been taken in Genuine DAO would definitely
enhance the security and reduce risk of ownership. MGold rug pull is an example of
centralisation where founders used the private keys to drain the contracts of all funds.
The founders decided to take the money and run which is only possible due to the
centralisation privilege of them holding the private keys. Having security measures like
what have been implemented on Genuine DAO such as time-lock and DAO structure
alongside with a multi signature wallet would avoid this risk.

13. How effective is the proposed “Genuine DAO” in leveraging layer 2 scaling solutions
to enhance scalability and throughput and to minimise cost on Polygon network?

ANSWER: scalability, throughput and cost are ley factors in any network. Introducing
layer 2 scaling would help with these challenges that Ethereum has faced.

14. In your opinion, what are the most critical centralisation risks or vulnerabilities that
should be addressed by future research and development?

ANSWER: There are many examples of scams and exploits that have taken advantage
of centralisation risks. bZx protocol was exploited for more than $55 million as a result
of private key mismanagement. They did not have a multi-signature wallet on their
contract private keys. The attacker gained control of the private keys through a phishing
email. This is a type of centralisation risk that allowed the attacker to take full control
of all contracts that the keys managed. In the case of bZx, once the attacker was able to
take control of the contracts, they removed tokens from both the Polygon and BSC
deployments. Having multi signature wallet would add a layer of security in Genuine
DAO.

15. What specific part, if any, of the proposed “Genuine DAO” needs particular attention
for improvement?

ANSWER: The Genuine DAO enhances security of blockchain transaction. We
recommend to design smart contracts and voting structures in a way to limit the power
of large token holders. As a result, avoid a few accounts holding the vast majority of
tokens and prevent centralisation and manipulation by insiders.

	Abstract
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1.1 Background
	1.2 Problem Statement and Research Aims
	1.3 Research Questions
	1.4 Research Objectives
	1.5 Key Research Contributions
	1.6 Thesis Structure
	1.7 Code Repository

	Chapter 2: The Blockchain Technology and its Key Features
	2.1 Introduction
	2.2 Blockchain Technology
	2.3 Blockchain Key Features
	2.3.1 Decentralised Distributed Ledger
	2.3.2 Cryptography
	2.3.2.1 Digital Signature
	2.3.2.2 Hashing Functions
	2.3.2.3 Zero-Knowledge Proofs (ZKPs)

	2.3.3 Consensus Algorithms

	2.4 The Ethereum Blockchain Platform
	2.5 Smart Contracts
	2.6 The Architecture of Blockchain Technology
	2.6.1 Application Layer
	2.6.2 Contract Layer
	2.6.3 Incentive Layer
	2.6.4 Consensus Layer
	2.6.5 Network Layer
	2.6.6 Data Layer
	2.6.7 Physical Layer

	2.7. Summary

	Chapter 3: Security Analysis Within the Seven Layers of the Blockchain
	3.1 Introduction
	3.2 A Seven-layer Blockchain
	3.3 An Overview of Vulnerabilities within a seven-layer Ethereum Blockchain
	3.4 Vulnerabilities/Attacks on the Application Layer
	3.4.1 Hot Wallet theft
	3.4.2 Decentralised finance (DeFi) flash loan attack

	3.5 Vulnerabilities/Attacks on Contract Layer
	3.5.1 Re-entrancy Vulnerability
	3.5.2 Parity Multi-Signature Wallet
	3.5.3 Front Running/ Transaction-Ordering Dependence
	3.5.4 Integer Overflow and Underflow
	3.5.5 Timestamp dependence
	3.5.6 Mishandled exceptions
	3.5.7 DoS with Unexpected Revert
	3.5.8 Short Address – Parameter Attack
	3.5.9 Denial of Service -Block Gas Limit
	3.5.10 Tx.origin
	3.5.11 Weak Randomness
	3.5.12 Hash Collisions with Multiple Variable Length Arguments
	3.5.13 One Owner control - Centralisation
	3.5.13.1 Current Methods to Implement Access Control
	3.5.13.2. Risks of Contract Ownership
	3.5.13.3 Rug Pulls Scam
	3.5.13.4 Private Key Compromise
	3.5.13.5 Preventive Methods and Mitigation Steps

	3.6 Vulnerabilities/Attacks on the Incentive Layer
	3.6.1 Blockchain Denial of Service (BDoS) Attack

	3.7 Vulnerabilities/Attacks on the Consensus Layer
	3.7.1 Double-Spending Attack
	3.7.2 51% Majority Attack
	3.7.3 Selfish Mining Attack
	3.7.4 Bribery Attack

	3.8 Vulnerabilities/Attacks on the Network Layer
	3.8.1 DDoS Attack
	3.8.2 Domain Name Service
	3.8.3 Eclipse Attack
	3.8.4 Sybil Attack
	3.8.5 BGP Routing Attack
	3.8.6 Replay Attack

	3.9 Vulnerabilities/Attacks on Data Layer
	3.9.1 Transaction Malleability Attack
	3.9.2 Timejacking Attack
	3.9.3 Quantum Attack

	3.10 Vulnerabilities/Attacks on the Physical Layer
	3.10.1 Cold Wallet Theft
	3.10.2 Cryptojacking Malware

	3.11 Towards a Conceptual Taxonomy and Classification
	3.12 Centralisation Risks:
	3.13 Security Risks Associated with Smart Contracts in the Contract Layer
	3.14 Summary

	Chapter 4: Research Methodology
	4.1 Introduction
	4.2 Research Focus: Centralisation Risks and DAOs
	4.2.1 Centralisation Risks Caused by Smart Contracts
	4.2.2 Decentralised Autonomous Organisations (DAOs)
	4.2.3 Research Hypothesis: The Use of DAOs in Mitigating Centralisation Risks

	4.3 Research Philosophy
	4.3.1 Positivism Philosophy
	4.3.2 Realism Philosophy
	4.3.3 Pragmatism Philosophy
	4.3.4 Interpretivism/Constructivism Philosophy
	4.3.5 The Adopted Research Philosophy

	4.4 Research Approach
	4.5 Data Collection and Analysis Methods
	4.5.1 Data Collection
	4.5.2 Data Analysis

	4.6 Design of the Genuine DAO Application
	4.7 Implementation and Testing
	4.7.1 Tools and Extensions
	4.7.2 Implementation Process
	4.7.3 Expert Evaluation

	4.8 Evaluation Criteria
	4.9 Mapping the Methodology Against the Research Questions
	4.10 Summary

	Chapter 5: Design and Implementation of the Decentralised Application: Genuine DAO
	5.1 Introduction
	5.2 Design Requirements of the Genuine DAO
	5.2.1. Decentralisation
	5.2.2 Security

	5.3 The Structure of Genuine DAO
	5.3.1 Motivation for Genuine DAO
	5.3.2 Architecture of Genuine DAO
	5.3.3 Novelty of the Genuine DAO Application

	5.4 System Environment Construction and Code Implementation
	5.4.1 The Flow to Develop Genuine DAO (Back-end and Front-end)
	5.4.1.1 Develop Genuine DAO Smart Contracts (Back-end)
	5.4.1.2 Develop Genuine DAO Application (Front-end Interface)

	5.4.2 Development Tools and Frameworks
	5.4.2.1 Programming Languages
	5.4.2.2 Tools and Libraries
	5.4.2.3 MetaMask Wallet to Interact and Deploy Genuine DAO

	5.4.3 The Genuine DAO Back-end Implementation
	5.4.3.1 Setting the Scene for the Back-end
	5.4.3.2 Key Components (Smart Contracts) to Enhance Security and Minimise Centralisation
	Age.sol
	DAOLib.sol
	NFTContract.sol
	GenuineDStorage.sol
	GenuineD.sol

	5.4.4 Creating a Proposal
	5.4.5 Voting for a Proposal
	5.4.6 The Queue and Timelock
	5.4.7 Executing a Proposal
	5.4.8 The Front-end Genuine DAO Implementation
	5.4.8.1 Front-end Source Code in “src” Folder
	5.4.8.2 Front-end Source Code in “Hooks” Folder

	5.5 Testing the Genuine DAO Application
	5.5.1 Testing Requirement 1 (Distributed Decision-Making) and Requirement 2 (Elimination of Single Points of Failure)
	5.5.2 Testing of Requirement 3: Secure Smart Contract Execution

	5.6 Summary

	Chapter 6: Discussion and Evaluation
	6.1 Overall Evaluation Approach
	6.2 Peer Review
	6.3 Smart Contract Graphing Code Flow Analysis
	6.4 Security Analysis of the Developed Decentralised Application (Genuine DAO)
	6.4.1 Enhancing Security by Minimising Centralisation Risks
	6.4.2 Enhancing Security by Preventing Frontrunning Attacks

	6.5 Performance Analysis of the Developed Decentralised Application (Genuine DAO)
	6.5.1 Enhanced Performance by Using Polygon
	6.5.2 Enhanced Performance Using Gas Optimisation

	6.6 Issues and Challenges During the Development of Genuine DAO
	6.7 Expert Review
	6.7.1 “Genuine DAO” as a Solution to Address Centralisation Risks
	6.7.2 Implementation of security controls and countermeasures
	6.7.3 Leveraging Layer 2 Scaling Solutions

	6.8 Summary

	Chapter 7: Conclusion and Recommendations
	7.1 The Main Achievements
	7.2 Research Limitations
	7.3 Future Work

	References
	APPENDICES
	Appendix A: Questionnaire for Experts’ Feedback
	Appendix A.1 - Participant 1
	Appendix A.2 - Participant 2
	Appendix A.3 - Participant 3

