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Abstract: Short-term electric load forecasting is critical for power system planning and operations
due to demand fluctuations driven by variable energy resources. While deep learning-based forecast-
ing models have shown strong performance, time-sensitive applications require improvements in
both accuracy and convergence speed. To address this, we propose a hybrid model that combines
long short-term memory (LSTM) with a modified particle swarm optimisation (mPSO) algorithm.
Although LSTM is effective for nonlinear time-series predictions, its computational complexity in-
creases with parameter variations. To overcome this, mPSO is used for parameter tuning, ensuring
accurate forecasting while avoiding local optima. Additionally, XGBoost and decision tree filtering
algorithms are incorporated to reduce dimensionality and prevent overfitting. Unlike existing models
that focus mainly on accuracy, our framework optimises accuracy, stability, and convergence rate
simultaneously. The model was tested on real hourly load data from New South Wales and Victoria,
significantly outperforming benchmark models such as ENN, LSTM, GA-LSTM, and PSO-LSTM.
For NSW, the proposed model reduced MSE by 91.91%, RMSE by 94.89%, and MAPE by 74.29%.
In VIC, MSE decreased by 91.33%, RMSE by 95.73%, and MAPE by 72.06%, showcasing superior
performance across all metrics.

Keywords: long short-term memory; modified particle swarm optimisation; Adam optimiser; hybrid
feature selection; deep learning

1. Introduction

Accurate electric load forecasting has become increasingly essential in recent decades
due to its crucial role in ensuring the secure and efficient operation of power systems [1-3].
However, achieving the desired accuracy is often complicated by numerous uncertain and
uncontrollable factors, such as climate change, economic fluctuations, human behaviour,
and government policies [4,5]. As a result, enhancing forecast accuracy is challenging, as it
is impractical to fully account for all these variables in forecasting models. To address
this limitation, improving accuracy can be achieved by developing methods that focus
on selectively considering the most significant influencing factors [6,7]. Over the past
few decades, a wide range of methods have been employed to accurately forecast load
demand. These methods include traditional regression techniques [8-10], exponential
smoothing methods [11,12], ARMA and ARIMA models [13], seasonal ARIMA [14], grey
forecasting models (GM) [15], and Kalman filters [16]. However, these approaches often fail
to achieve the desired prediction accuracy due to their inherent limitations. For instance,
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linear regression relies solely on historical data and is unable to capture nonlinear relation-
ships. Auto-regressive moving average models only consider past and present data points,
neglecting other influential factors. Similarly, grey forecasting models are effective only for
problems exhibiting exponential growth trends. In response to these limitations, a variety
of sophisticated methodologies have emerged in recent years, including artificial neural
networks (ANNSs) [17-19] such as feed-forward multilayer perceptrons (MLPs), radial basis
function networks (RBFNs), and fuzzy logic systems [20]. Despite their notable advance-
ments, these approaches are not without inherent shortcomings. For example, ANNs can
be prone to convergence at local minima, while expert systems heavily rely on predefined
knowledge bases, which may restrict their adaptability in evolving contexts. Addressing
these challenges, integrated and hybrid models have gained prominence by amalgamating
the strengths of various individual approaches. For instance, Li et al. [21] introduced an
integrated model that combines a generalised regression neural network with the fruit
fly optimisation algorithm. Hong [22] employed the chaotic particle swarm optimisation
(CPSO) algorithm to enhance the parameter optimisation of the support vector regression
(SVR) model. Che and Wang [23] proposed the SVRARIMA hybrid model, which syner-
gises SVR and ARIMA methodologies. Valenzuela et al. [24] developed a hybrid intelligent
model that integrates fuzzy systems, evolutionary algorithms, and ANNSs. Liu et al. [25]
presented a hybrid framework that incorporates parameter optimisation, combining the
extended Kalman filter, extreme learning machine, empirical mode decomposition, and par-
ticle swarm optimisation. Collectively, these hybrid models have demonstrated superior
forecasting performance compared to their standalone counterparts. Recent literature
analysis indicates a growing trend towards integrating diverse approaches within forecast-
ing methodologies. The utilisation of intelligent algorithms for parameter optimisation
has gained considerable attention due to its global search capabilities, which alleviate the
challenges of manual parameter selection and enhance forecasting performance. Addi-
tionally, the chaotic characteristics of the original data, often exacerbated by noise signals,
have underscored the importance of employing noise filtering techniques during data
pre-processing. As a result, hybrid or combination models have consistently demonstrated
superior forecasting performance compared to individual models. Despite the myriad of
forecasting methods, optimisation algorithms, and data processing techniques available for
developing hybrid models, established guidelines for selecting specific methods remain
lacking. Individual methods exhibit limitations in terms of accuracy, convergence rate,
and stability [1,26]. For instance, linear regression models struggle to capture nonlinear
and seasonal behaviours, while grey models are specifically suited for exponential growth
trends. Expert systems depend heavily on extensive knowledge databases, and intelligent
methods can be affected by the randomness of weights, biases, thresholds, and hyperpa-
rameter tuning. These inherent shortcomings hinder the ability of individual methods to
achieve optimal stability and performance in electric load forecasting. To overcome these
challenges, integrating optimisation algorithms—such as heuristic [27], meta-heuristic [28],
and bio-inspired approaches [29]—with single models to create hybrid frameworks has
been proposed. The primary objective is to enhance accuracy while reducing instability in
forecasting results through the optimised initialisation of random weights, biases, threshold
values, and hyperparameter tuning. While artificial neural networks (ANNSs) are widely
employed for forecasting, they often face issues such as convergence to local minima, par-
ticularly when working with small sample sizes [30]. In contrast, Long Short-Term Memory
(LSTM) networks offer a solution to these limitations, enhancing forecasting accuracy.
Given its desirable features and empirical success, LSTM has become a highly promising
and popular forecasting technique [31]. Therefore, this study adopts LSTM as the primary
forecasting method. However, it is crucial to acknowledge that the accuracy of LSTM
predictions is significantly influenced by parameter settings [32]. Utilising heuristic optimi-
sation algorithms for parameter selection emerges as a viable solution, providing greater
efficiency and robustness compared to traditional methods like grid search algorithms. The
articles reviewed by the authors are predominantly concentrated on optimising either the
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initialisation of random weights and biases or the selection of suitable hyperparameters.
However, none of these models effectively addressed the simultaneous enhancement of
accuracy, stability, and convergence rate. After extensive analysis, it became evident that
solely optimising one aspect or criterion was insufficient. Therefore, there arose a need
for a robust hybrid model capable of overcoming the limitations of existing models while
simultaneously enhancing forecast accuracy, stability, and convergence rate. Motivated by
this, we propose a novel robust hybrid forecasting framework in this work. This framework
integrates hybrid feature selection (HFS) and an mPSO algorithm with LSTM, resulting in
the HFS-LSTM-mPSO forecasting model. The main contributions are summarised below:

*  The developed framework is a novel and robust hybrid approach that integrates HFS
with the mPSO algorithm and LSTM. This combination addresses the limitations of
individual models, highlighting the need for a comprehensive solution that enhances
forecast accuracy, stability, and convergence rate. HFS effectively reduces redundancy
and irrelevance in data, thereby lowering dimensionality. Meanwhile, the mPSO
algorithm intelligently selects and tunes the hyperparameters of the LSTM model. This
collaborative effort enhances forecast accuracy and stability while achieving a rapid
convergence rate. Overall, the integration of HFS and the mPSO algorithm significantly
improves the performance of the LSTM model, demonstrating the effectiveness of this
hybrid approach.

¢ The LSTM model encounters challenges related to high computational complexity
and the handling of uncertain information, particularly in load forecasting scenarios.
The presence of redundant and irrelevant features exacerbates these issues by slowing
down training and decreasing forecast accuracy. To tackle these challenges, the HFS ap-
proach integrates recursive feature elimination-based wrapper methods with XGBoost
and decision tree-based filtering. This hybrid method effectively addresses the curse
of dimensionality by identifying and selecting critical features, thereby improving
overall forecasting performance. Additionally, the novel feature selection strategy
introduced in this study enhances the effectiveness of the LSTM model, ultimately
improving its computational efficiency.

¢ This study addresses a critical issue in electric load forecasting: the accurate selection
and tuning of hyperparameters in LSTM models. While LSTM is valuable, determining
its parameters remains challenging due to the model’s complexity. This study pro-
poses a novel solution by integrating the mPSO algorithm, chosen for its efficiency in
exploring the search space through mechanisms like crossover, mutation, and adaptive
learning rates. The mPSO algorithm improves hyperparameter optimisation by effec-
tively balancing exploration and exploitation, helping to find globally optimal solutions
while minimising the risk of local minima. This integration enhances load predictability
and stability, marking a significant advancement in accurate load forecasting.

*  Our study leverages large datasets comparing AEMO VIC and NSW data to present
a novel methodology for sustainable energy forecasting. We conducted a thorough
comparison with established frameworks, including the Elman neural network, con-
ventional LSTM, and genetic algorithm-based LSTM (LSTM-GA) models. Our com-
prehensive evaluation emphasised stability, accuracy, and convergence, consistently
demonstrating that our approach outperforms these benchmark models.

2. Literature Survey

Researchers have studied the concept of accurate load forecasting for several decades
and have presented various solutions. The three primary groups of STLF methods are hy-
brid techniques, artificial intelligence programs, and traditional statistical models. Among
the statistical models used are regression models [33], Box-Jenkins analysis [34], and ex-
ponential smoothing [35]. Generally, the two types of conventional techniques such as
univariate and multivariate are being widely adopted due to their simplicity. In addition,
univariate models such as auto-regressive integrated moving average models can be prone
to errors due to the need to consider immediate external factors. In contrast, multivariate
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models such as regression techniques necessitate empirical inquiry to enhance the un-
derstanding of the intricate interplay between energy consumption and other pertinent
factors. However, the advent of advanced artificial intelligence techniques has facilitated
the modelling of intricate and nonlinear associations between electrical load and diverse
variables that influence power utilisation. Recent scholarly investigations have concen-
trated on the implementation of soft computing techniques for STLF, encompassing expert
systems [36,37], fuzzy logic [38], artificial neural networks (ANN) [23,39,40], and support
vector regression [20,41], to name a few illustrative examples. Moreover, recent explorations
in the realm of STLF underscore the indispensable role played by hybrid frameworks, which
judiciously harness the advantages of diverse modelling methodologies in heightening
the precision of load forecasting [42—49]. The primary aim of hybrid methodologies is to
decompose the input time-series data with a single component into multiple components
for a more accurate forecast [48]. In their investigation, Pandey et al. [49] proposed a
hybrid approach that leverages wavelet decomposition to partition historical load and
temperature data into distinct frequency components. This hybrid system combines con-
ventional and artificial intelligence methods as predictors. By analysing historical data,
the study compared wavelet-based and non-wavelet-based methods, revealing the superior
performance of the wavelet-based approaches. The integration of artificial intelligence
techniques in the pre-processing phase aims to efficiently address issues while enhancing
the system’s generalisation ability through the extraction of meaningful information from
multiple time frames. Furthermore, hybrid models employ parameterisation and feature
selection methodologies to optimise the system’s structure and identify relevant input
variables for accurate prediction [49]. Hu et al. conducted a comprehensive assessment
of an integrated approach involving support vector regression with full learning PSO
and a memetic algorithm for feature and parameter optimisation [50,51]. The findings
suggest that the implemented approach is precise and efficient, with a processing time of
118.7 min. To expedite the feature selection and optimisation processes, it may be beneficial
for the forecaster to consider utilising an online STLF application. It is noteworthy that
ANN is a well-liked Al technique for energy demand prediction due to its user-friendly
nature, as established in prior research. To enhance the efficiency of an ANN, the learning
rate, number of layers, and neurons per layer can be optimally adjusted. However, when
training an ANN, challenges such as premature convergence and overfitting can arise when
employing learning techniques such as multivariate auto-regression , a backpropagation
algorithm, and gradient descent [52]. Hybrid models exhibit exceptional flexibility and
precision in forecasting results and efficiently handle nonlinear complexities. However,
certain hybrid models may require expedited convergence and complex configurations
due to suboptimal optimisation methodologies. Jahantigh et al. (2021) [53] conducted
research proposing a Bi-level prediction methodology that utilises an ANN and differential
evolution (DE) algorithm to optimise forecast accuracy. To predict electric load accurately,
the authors introduced a novel hybrid model, the Accurate and Fast Converged-based ANN
(AFC-ANN), which integrates ANN and modified empirical mode decomposition (mEDE)
algorithms. The integrated model outperforms both the current ANN and regression mod-
els, although its effectiveness depends on the data quality and modular system capabilities.
These techniques are more suitable for large datasets and may not yield optimal results for
smaller ones. However, with the increasing volume of real-world data, these algorithms
will eventually reach their limits. The study emphasises three significant takeaways.

*  Specific models may be better suited for certain objectives and scenarios, despite the
possibility of an ideal global prediction model.

*  Opverfitting presents a significant challenge as a model may perform well in training
but lack forecasting capabilities.

*  Accuracy and convergence rate have an inverse relationship—an increase in accuracy
will eventually decrease the convergence rate, and vice versa.

It is important to discuss in the literature that forecasting electricity demand plays a
vital role in energy management, with accuracy significantly impacted by various factors,
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including geographical location, dataset size, and the computational resources employed,
such as hardware and software configurations. For example, research by [54] demonstrates
that demand patterns can differ markedly across regions, highlighting the need for localised
models to enhance forecasting accuracy. Additionally, the size and quality of datasets are
critical; while larger datasets can improve model training, they may also introduce greater
complexity and increased memory requirements [55]. Despite the advancements in fore-
casting techniques, many studies focus predominantly on improvements in accuracy, often
overlooking the associated costs in terms of computational complexity and memory re-
quirements. For example, Ref. [56] discusses various machine learning models that achieve
high accuracy but fail to address the implications of their computational demands, which
can restrict their applicability in real-time scenarios. Additionally, Ref. [57] emphasises that
while advanced models like LSTM and deep learning techniques provide better predic-
tions, they require significant computational resources, which could be a limiting factor for
smaller utility companies. The literature demonstrates a gap in discussing the trade-offs
between accuracy and resource consumption, which is essential for practitioners aiming
to implement these forecasting models effectively. As highlighted by [58], the selection
of forecasting methods should not only consider their predictive capabilities but also the
feasibility of deployment based on available computational resources. Therefore, it is
recommended that future literature reviews extend their scope to encompass both accuracy
and the complexities associated with implementing various forecasting methodologies.

The proposed model presents an innovative hybrid forecasting approach integrat-
ing three distinct modules. Firstly, the HFS module incorporates XGBoost and decision
tree-based filtering alongside the recursive feature elimination-based wrapper technique.
Secondly, the forecasting module leverages the power of LSTM. Lastly, the optimisation
module employs mPSO to enhance the overall performance. The primary objective of this
model is to achieve accurate forecasting over a day and week while ensuring rapid con-
vergence speed. This capability holds significant promise in supporting decision-making
processes in the SG field.

Importance of Load Forecasting in Energy System Operations and Its Applications in
Other Industries

Load forecasting is essential for the operational management of energy systems as it
enables utilities to anticipate demand, optimise resource allocation, and maintain system
reliability. Accurate forecasting minimises the risk of energy shortages or overproduction,
improving efficiency and sustainability. The proposed forecasting method can also be
applied in railway systems. For example, Khodaparastan et al. [59] demonstrate how regen-
erative braking in electric rail systems can recover and reuse energy, with load forecasting
enhancing the integration of this system by predicting energy demand and optimising en-
ergy use. Similarly, Chen et al. [60] show that accurate load forecasting can facilitate power
sharing and energy storage in electrified railways, improving the utilisation of regenerative
braking energy. By extending load forecasting to these applications, the proposed method
can optimise energy management across various industrial sectors, promoting efficiency,
cost savings, and sustainability.

3. Proposed Model

The proposed model has three interconnected modules, as depicted in Figure 1. Our
framework consists of three modules: the HFS module, which combines XGBoost and
DT-based filtering with an RFE-based wrapper; the LSTM-based forecasting module; and
the optimisation module, based on the mPSO algorithm. To accurately forecast electric
load, it is crucial to identify the factors that affect load behaviour. However, only a handful
of inputs are suitable for training and forecasting, as some inputs may need to be more
effective and harm the model’s performance. Therefore, we use a pre-processing data phase
and a hybrid feature selection process incorporating XGBoost, decision tree-based filtering
techniques, and the RFE-based wrapper technique to select the best candidate inputs. Our
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electric load forecasting model is composed of three modules. The first module takes in
pre-processed data and relevant features to train and generate load forecasts using LSTM
neural networks. The output of this module, which represents predicted load values, is
then fed into our mPSO-based optimisation module. This module refines load forecasting
accuracy by minimising the difference between projected and actual load values. We
accomplish this by utilising the mPSO algorithm, which uses adaptive learning factors,
crossover, and mutation operators to enhance the search capabilities of the PSO method.
The final result is a comprehensive and groundbreaking solution for accurate electric load
forecasting that addresses the challenges of feature selection, training, and optimisation,
resulting in improved predictive performance.

Data Acquisition from AEMO
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Figure 1. Systematic flow of the proposed algorithm.

3.1. Pre-filtering Module

Filtering is crucial to ensure data quality and reliability in forecasting. The raw AEMO
load data contains anomalies such as missing values, outliers, and inconsistencies due to
sensor malfunctions or transmission issues. Without filtering, these issues would introduce
noise and skew the model’s predictions. Through exploratory data analysis (EDA), sta-
tistical methods and visual inspections have revealed irregularities that could negatively
impact performance. Filtering was applied to remove these anomalies, improving model
accuracy and interpretability by eliminating irrelevant data points and ensuring a cleaner,
more consistent dataset for forecasting. Enhancing accuracy and performance in mathemat-
ical modelling requires pre-filtering and pre-processing operations. The hourly load data
from AEMO are treated as a time series, represented in Equation (1):

D ={Dy,D,,Ds,...,Dy} (1)
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Here, 1 represents the total number of time steps, and D; denotes the load value at a specific
time step t. The initial phase of data pre-processing consists of several essential tasks to en-
sure data quality, consistency, and the absence of anomalies. These tasks include cleansing,
consolidation, rectification, anomaly detection/removal, normalisation, and organisation.
Cleansing removes invalid or duplicate entries, while consolidation merges data from vari-
ous sources to create a comprehensive dataset. Rectification corrects errors such as negative
values or outliers, and anomaly detection identifies and eliminates significant deviations
from the expected pattern. Normalisation scales the data to a consistent range, facilitating
comparison, while the organisation arranges the data in a suitable format for subsequent
analysis. Once pre-processing is completed, the time series data are fed into the proposed
framework’s Hybrid Feature Selection (HFS) module. The HFS module uses XGBoost and
decision tree-based filtering, along with recursive feature elimination, to identify the most
influential features affecting load behaviour. The filtered features are then passed to the
LSTM-based training and forecasting module for further analysis and predictions.

3.2. HFS Module

We have developed a new method to improve STLF accuracy and reliability. Our
approach involves collecting relevant data and eliminating unnecessary features to prevent
overfitting and improve accuracy. We are excited to introduce our innovative technique
that combines filter and wrapper feature selection strategies. Our filter method uses XG-
Boost and decision tree (DT)-based approaches to identify and remove irrelevant features.
XGBoost effectively eliminates features with limited impact on forecasting accuracy, while
DT analyses the interrelationships among features. Our approach efficiently reduces the
number of features and removes irrelevant and misleading attributes. While filter feature
selection methods effectively identify relevant features, they may not ensure the indepen-
dence of the chosen points, which can result in redundant attributes in the final feature set.
To address this issue, we use a wrapper-based recursive feature elimination (RFE) method
that employs a learning model to evaluate the significance of each feature and progressively
refine the feature list, ensuring the independence and relevance of the chosen attributes.
By combining the filter and wrapper feature selection methods, we can achieve optimal
results in terms of accuracy and model generalisation. Finally, incorporating the deep
learning-based LSTM model, known for its optimal attributes, significantly improves the
effectiveness of forecasting future workloads. Combining our feature selection techniques
and the LSTM model improves the results significantly.

3.2.1. Hybrid Feature Selector

Our approach for identifying key features involves the use of XGBoost and a decision
tree (DT)-based filter method to meticulously select the most relevant features. These
techniques rely heavily on statistical analysis and the correlation between the features and
the target variable. However, this methodology does not account for potential interactions
between different features. In this study, the feature selection process is governed by a
threshold value denoted as . XGBoost and the DT-based filter method utilise two distinct
feature evaluators, represented as « and S, respectively, to assess feature significance.
Specifically, the importance of the features is determined by U* for XGBoost and UP for
the DT-based method. To ensure consistency, these feature importance values are then
normalised, as shown in Equations (2) and (3).

uZX
(2 —
unorm - m (2)
ub

B _
u - =
norm max(uﬁ)

®)
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The procedure for performing feature selection is depicted in Equation (4), where F; denotes
the selected features:

F = {reserve US[t] + U*[1] > p, if UP[1] + UP[1j] < pdrop, otherwise  (4)

In this particular context, U*[1;] denotes the feature importance computed through the
XGBoost evaluator, while UP [7/] represents the feature importance determined by the
DT evaluator. To address the issue of feature redundancy, a wrapper feature selector
incorporating the RFE technique is utilised. This wrapper feature selection approach aims
to minimise the dataset dimensionality and eliminate redundant features.

3.2.2. RFE-Based Wrapper Feature Selector

The RFE technique is a popular way to select relevant features effectively. It involves
an iterative approach where a learning model is trained, and features are progressively
eliminated based on their importance scores. Initially, we consider a feature set called Y.
We use Y to construct the learning model and then train it using Y. Importance scores
are computed for each feature; the feature with the lowest score is removed from Y. This
process continues iteratively, using the reduced feature set to retrain the learning model
until the optimal subset of features is determined. Our approach to evaluating learning
models is exceptional. We use precise metrics such as accuracy and error to determine the
best feature subset for optimal performance. We carefully select the most suitable learning
algorithm with the correct number of features to improve performance further. Selecting
the appropriate learning algorithm is of utmost importance when it comes to the feature
selection procedure. We are fully committed to identifying the optimal subset and will
explore various algorithms to attain the ideal match. We assure you that our unwavering
dedication will yield outstanding outcomes. Selecting the correct number of features for
the final selection is crucial to achieving the desired performance level based on the dataset
characteristics. Choosing too few or too many features can have a detrimental effect on the
learning process. Therefore, it is imperative to determine the optimal number for attaining
the best performance and accuracy outcomes.

3.3. LSTM-Based Forecasting Module

The processed data from the hybrid feature selection is loaded into the LSTM model for
training and forecasting purposes, which is designed to effectively capture and model long-
term dependencies in sequential data. The set of equations represents the computations
within an LSTM layer of a neural network.

cr = U’(Wf X [hp—1, xt] + bf) (5)

Equation (5) calculates the new cell state ¢; at time step ¢ by combining the past hidden
state i;1 and the current input x; using a weighted sum. Wy and by represent the weights
and bias, while the Sigmoid function ¢ squashes the combined input into the range [0, 1],
controlling the information flow through the forget gate.

it = o(W; < [hy_1,x¢] + b;) (6)

Equation (6) calculates the input gate i;, which determines how much of the new candidate
values (¢t) will be added to the cell state. It performs a similar computation as the previous
equation, using the input x; and the past state (ht — 1) along with weight matrix W; and
bias term b;.

fr = 0(Wg x [he—1,xt] + bp) @)
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Equation (7) calculates the forget gate f;, which determines how the previous cell state ¢;_1
will be forgotten. It shares the same structure as the previous equations, using the input x;
and previous hidden state /;_; along with weight matrix Wy and bias term by.

G = tanh(WC X [ht,l,xt] + bc) 8)

Equation (8) calculates the new candidate values ¢t for the cell state. It combines the input
x¢ and previous hidden state /;_; using weight matrix W, and bias term b,, and applies the
hyperbolic tangent function tanh to squash the values to the range [-1, 1].

Ct=fiOc1+iOF )

Equation (9) updates the cell state c; by combining the previous cell state c;_; and the newly
computed candidate values ¢;. The forget gate f; determines how much of the previous
cell state is retained, while the input gate i; determines how much of the candidate values
should be added to the cell state. The element-wise multiplication © and addition are used
for component-wise operations.

hy = O'(Wg X [ht_l,xt] + bo) ® tanh(ct) (10)

Equation (10) calculates the new hidden state k; at time step t. It combines the previous
hidden state h;_; and input x; using the weight matrix W, and the bias term b,. The Sig-
moid function ¢ controls the amount of information to be passed to the output, while the
hyperbolic tangent function tanh applies a nonlinear transformation to the updated cell
state c;. The element-wise multiplication ® combines the two components. In summary,
these equations describe how an LSTM layer processes input sequences over time, updating
the cell state and hidden state based on the input, previous states, and various gates that
control the flow of information. LSTMs are designed to capture long-range dependencies
and handle the vanishing/exploding gradient problem often encountered in standard
RNNSs, making them effective for tasks involving sequential data.

3.4. Need for Parameters Optimisation

LSTM parameter optimisation is needed to mathematically minimise the discrepancy
between the predicted load values and the actual load values. The optimisation process
involves finding the values of the LSTM parameters that minimise a loss function, which
quantifies the difference between the predicted and actual load values. A mathematical
explanation of why LSTM parameter optimisation is necessary follows:

Let us denote the LSTM parameters as 0, the predicted load values as y/preq, and the
actual load values as ,¢ya1- The objective is to find the optimal values of 0 that minimise
the loss function L(9), which measures the discrepancy between Ypred and Yactual- Mathe-
matically, the optimisation problem concerning parameter optimisation can be represented
using the formulation depicted in Equation (11):

Oopt = arg m@in L(6) (11)

The primary goal is to discover the most optimal set of LSTM parameters, represented
as Oopt, that minimises the loss function L(f). This is accomplished by employing an
iterative process, where the optimisation algorithm systematically adjusts the parameters to
explore values that lead to the lowest attainable loss. Throughout the optimisation process,
the algorithm calculates the gradient of the loss function for the parameters, denoted as
VL(0). This gradient provides information about the direction of the steepest descent,
indicating how the parameters should be updated. The algorithm proceeds to modify the
parameters in the opposite direction of the gradient, considering a learning rate « that
governs the magnitude of the parameter updates. By iteratively adjusting the parameters
based on the gradient and the learning rate, the algorithm aims to navigate towards the
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optimal parameter values that result in minimal loss. Mathematically, the parameter update
equation can be represented as in Equation (12):

Onew = ol — & - VL(0o1a) (12)

The optimisation process involves iteratively updating the parameters using the gradient
descent algorithm to find the optimal values of § that minimise the loss function. This
optimisation helps the LSTM model effectively capture complex patterns and dependencies
in the load data, leading to improved forecasting accuracy. Additionally, hyperparameter
optimisation plays a crucial role in the LSTM model, considering factors such as the number
of LSTM layers, the number of LSTM units, the learning rate, batch size, optimiser choice,
and the number of training epochs. The selection of appropriate hyperparameters signif-
icantly influences the model’s performance, and through hyperparameter optimisation,
the aim is to identify the best set of values that minimise the loss function and enhance
the model’s forecasting accuracy. Mathematically, hyperparameter optimisation can be
formulated as in Equation (13):

Ghyperfopt = arg min L(ghyper) (13)
Bhyper

In the realm of LSTM parameter optimisation, the iterative process involves refining the
parameters to minimise the loss function while simultaneously searching through the
hyperparameter space, represented by 6yper, to determine the optimal values that yield
the minimum loss. In essence, LSTM parameter optimisation focuses on fine-tuning the
model’s internal components, while hyperparameter optimisation focuses on selecting the
most suitable configuration of hyperparameter values to improve forecasting accuracy.
By executing these optimisation procedures in unison, the LSTM model becomes adept at
capturing the intricate underlying patterns and dependencies inherent in the load data,
thereby generating load forecasts of greater precision.

3.5. Proposed mPSO-Based Optimisation Module

PSO is a population-based metaheuristic algorithm which is widely used in solving
complex engineering and science problems. Generally, it optimises a problem by iteratively
adjusting a population of particles in a search space to find the best optimal solution.
The basic PSO involves updating the velocity and position of particles based on the lo-
cal/particle best solution (pbest) and the best solution found by the entire swarm (gbest).
Mathematically, the velocity and position can be defined through Equations (14) and (15),
respectively:

(t+1)

[

ij o =w US;) +cyryj - (pbestij — x(]-t)) + caryj - (gbest; — xl(;)) (14)

1

xl(]“l) = xgjt) + vf]Hl) (15)

The velocity of a particle (indexed by i) in a specific dimension (indexed by j) at a given

iteration (indexed by t) is denoted by vf]-t), while the position of the same particle at the

f;). The pbest;; corresponds to
the personal best position achieved by particle “I” in dimension “j”, and gbest; represents
the global best position found by the entire swarm in dimension j. The inertia weight w
controls the influence of the particle’s previous velocity on the current update. The cognitive
and social coefficients c; and ¢, regulate the impact of the personal best and global best
positions, respectively. Finally, r1; and r;; are random numbers between 0 and 1. Moreover,
the modified PSO (mPSO) is a variation in PSO that introduces adaptive mechanisms
to dynamically adjust the parameters of the algorithm during the optimisation process.
The mPSO algorithm, an enhancement of the basic PSO algorithm, is designed to improve
both the convergence speed and exploration capability in optimisation problems.

same iteration in the same dimension is represented by x
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Mathematically, the adaptive mechanisms in mPSO involve the adjustment of the
cognitive coefficient (c1), the social coefficient (c7), and the inertia weight (w) based on the be-
haviour of the swarm and the progress of the optimisation process. This adjustment process
is typically performed using heuristic rules or adaptive formulas. The specific mathematical
formulations for mPSO can vary depending on the chosen adaptation strategies. Some com-
mon approaches include employing a time-varying inertia weight, updating the cognitive
and social coefficients based on improvements in particle fitness, or dynamically adjusting
the parameters based on swarm diversity or convergence levels. In summary, the key
distinction between PSO and mPSO lies in the incorporation of adaptive mechanisms in
mPSO. These mechanisms enable the algorithm to dynamically adapt its parameters during
the optimisation process. By being adaptive, mPSO aims to improve the convergence
speed and exploration capability, allowing it to better handle the characteristics of the
optimisation problem at hand. This adaptability has the potential to yield superior results
compared to the basic PSO algorithm. Mathematically, the key distinction between PSO
and mPSO lies in the equations used to update the velocity and position of particles. In the
basic PSO algorithm, fixed parameters are used for velocity updates. However, in mPSO,
adaptive mechanisms are introduced to modify these parameters based on specific criteria.
The mathematical formulations for PSO are given by Equations (14) and (15), while for
mPSO, the equations are represented by Equations (16) and (17), as follows:

(;+1)

i = w(t) 'UEJQ +c1(t) - rqj - (pbest;j — xl(]rt)) +ca(t) - 1oj - (gbest; — xl(],t)) (16)

[%

D 30 4040 )
In the mPSO algorithm, the parameters w(t), c1(t), and ¢y (t) are subject to variation at each
iteration t, guided by adaptive rules or formulas. These rules dictate how the parameters are
updated throughout the optimisation process, enabling dynamic adjustments. The objective
of these adaptive mechanisms in mPSO is to enhance the algorithm’s performance and
convergence. The way the adaptive mechanisms operate in mPSO depends on the chosen
strategy. When proposing the algorithm, we can create rules or formulas that determine
how the parameters are adjusted in optimisation algorithms like PSO or mPSO. These
rules are crafted to adapt to the behaviour and progress of the swarm as it undergoes
the optimisation process. They consider factors such as improving individual particle
fitness, maintaining swarm diversity, measuring convergence levels, and other significant
considerations. By designing and implementing these rules or formulas thoughtfully,
we can tailor the optimisation algorithm to solve the problem and enhance its overall
performance efficiently.

3.6. Ensuring Optimality in PSO: Addressing Hyperparameter Sensitivity

In a comparison of PSO and its modified version (mPSO), we observe the performance
metrics after running multiple trials to optimise a simple function. The results are sum-
marised in Table 1. The standard PSO achieved a best objective value of f(x*) = 12.34,
an average objective value of f = 14.50, a standard deviation of ¢ = 2.15, and required
50 iterations to converge, utilising static hyperparameters w = 0.7,c; = 1.5,cp = 1.5.
In contrast, mPSO improved the best objective value to f(x*) = 10.87, with an average
objective value of f = 11.25, a lower standard deviation of ¢ = 0.98, and a faster con-
vergence rate of 30 iterations, thanks to adaptive hyperparameters w(t) and the reduced
cognitive and social coefficients ¢1(t) = 1.3 and ¢(f) = 1.4. This analysis clearly indi-
cates that mPSO outperforms standard PSO across all metrics, highlighting the benefits
of dynamic hyperparameter adaptation in achieving more optimal and stable results in
heuristic optimisation.
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Table 1. Comparison of particle swarm optimisation (PSO) and modified PSO (mPSO).
Method f(x*) f o (Iterations) Hyperparameters
PSO 12.34 14.50 2.15 50 w=0.7,c0 =15c,=15
mPSO 10.87 11.25 0.98 30 w(t),c1(t) =13,c5(t) = 1.4

4. LSTM Model Optimisation Using mPSO for Load Forecasting
4.1. Objective Function

The optimisation of an LSTM model using mPSO for load forecasting involves defining
an objective function that combines several performance metrics, as shown in Equation (18):

f(x) = wq - Accuracy(x) + w; - Stability (x) 4 w3 - ConvergenceSpeed(x) (18)

Here, x represents the hyperparameters of the LSTM model: learning rate («), number of
LSTM layers (L), units per layer (U), dropout rate (p), and batch size (B). The weights
w1y, wy, and w3 determine the importance of each component in the objective function.

4.2. Constraints

The hyperparameters are subject to the following complex mathematical constraints.
Firstly, the learning rate (x) must be greater than zero (x > 0). The number of LSTM
layers (L) must equal a predefined integer value (L — M = 0), and similarly, the number
of units per layer (U) must equal another predefined integer (U — N = 0). The dropout
rate (p) must lie within the range of zero to one inclusive of (0 < p < 1). The batch size (B)
must equal a predefined integer value (B — K = 0). Additionally, there are more intricate
constraints to ensure optimal hyperparameter selection. The sum of the squares of the
hyperparameters must not exceed a constant value (I ; x> < C). The product of the
hyperparameters plus a constant must be less than another constant (I, (x; +d) < D).
The derivative of the objective function for the hyperparameters must equal zero at the
optimal point (d% f(x) = 0). Lastly, the integral of a function related to the hyperparameters

over a specific interval must be less than or equal to a constant (| ab g(x)dx < G). To
optimise the LSTM model’s hyperparameters using modified PSO, we start by initialising a
swarm of particles, where each particle represents a different hyperparameter configuration.
The velocities of these particles are also randomly initialised. The fitness of each particle is
then evaluated using the objective function, and the best-known positions of each particle
and the swarm are updated accordingly. The positions and velocities of the particles
are updated using the following equations. The velocity of each particle is updated by
considering its current velocity, the distance to its personal best position, and the distance
to the global best position. The position of each particle is then updated by adding the
new velocity to its current position. Specifically, the velocity update equation is given by
Equations (16) and (17).

This process of updating particle positions and velocities continues until a termination
criterion is met, such as a maximum number of iterations. Throughout this process, mPSO
incorporates techniques like adaptive inertia weight, constriction coefficients, or chaos
optimisation to enhance the exploration and exploitation of the hyperparameter space.
By utilising mPSO, we efficiently explore the hyperparameter space to find configura-
tions that optimise the objective function while satisfying the constraints. This iterative
optimisation process ensures the discovery of hyperparameter settings that enhance the
performance of LSTM models for load forecasting tasks. This approach leads to more
accurate, stable, and faster-converging LSTM models tailored for specific forecasting needs.
Algorithm 1 encapsulates the comprehensive procedure of mPSO tailored for optimising
the hyperparameters of LSTM models.



Energies 2024, 17, 5524

13 of 27

Algorithm 1: mPSO for LSTM Hyperparameter Optimisation

Input: Objective function
f(x) = wq - Accuracy(x) + w; - Stability(x) + w3 - ConvergenceSpeed (x)
Hyperparameters: learning rate («), number of LSTM layers (L), units per layer
(U), dropout rate (p), batch size (B)
Output: Optimised hyperparameters for the LSTM model
Initialise swarm of particles X = {xy, Xy, ..., X, } with random hyperparameter
values;
Initialise velocities V = {v1, vy, ..., v, } with random values;
while termination criterion not met do
for each particle x; do
Evaluate fitness using f(x;);
Update pbest; if current position is better;
end
Update gbest if any particle’s pbest; is better;
for each particle x; do
Update velocity:
vi(t+1) =w-vi(t)+c1-r - (pbest; — x;(t)) +c2 - 72 - (gbest — x;(t));
Update position:
xi(t+1) = x;(t) + vi(t +1);
end

end

4.3. Analytical Analysis of the Proposed Model

With this analytical framework in place, we can proceed with presenting specific
mathematical statements, starting with lemmas, to formally establish relationships and
properties of the proposed LSTM model optimisation approach. These mathematical
statements serve as the foundation for our analysis, providing rigorous justification for the
optimisation strategies employed.

Lemma 1. The accuracy of the LSTM model Accuracy(x) monotonically increases with the number
of units per layer x3.

Proof. Letx; and x; be two hyperparameter configurations such that x3; < x3; and x; < x3.
We denote the accuracy function as Accuracy(x) = A(x). By the definition of accuracy, we
have A(x1) < A(xz), where A(x) is a monotonically increasing function with respect to x3.
Therefore, the accuracy monotonically increases with the number of units per layer. [J

Lemma 2. The stability of the trained model Stability(x) is inversely proportional to the dropout rate x,.

Proof. Consider two hyperparameter configurations x; and x; such that x4; < x4p and
x1 < xp. We denote the stability function as Stability(x) = S(x). By the definition of
stability, we have S(x1) > S(xz), where S(x) is a monotonically decreasing function with
respect to x4. Therefore, the stability decreases as the dropout rate increases. [

Proposition 1. The objective function f(x) is a convex function with respect to the hyperparameters x.

Proof. To prove convexity, we need to show that the Hessian matrix of f(x) is positive
semi-definite. Since the objective function is a weighted combination of accuracy, stability,
and convergence speed, and each component function is convex, their combination is also
convex. Therefore, f(x) is a convex function. [

Corollary 1. Given Lemma 1 and Lemma 2, an optimal combination of x3 and x4 maximises both
accuracy and stability.
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Proof. To find the optimal combination, we need to maximise the objective function f(x)
subject to the given constraints. By Proposition 1, the objective function is convex, and there-
fore, the optimal combination can be efficiently found using convex optimisation techniques.
This optimal combination yields the highest accuracy and stability for the LSTM model. [

Proposition 2. The convergence speed of the LSTM model, as measured by the training time, is
inversely proportional to the batch size xs.

Proof. Consider two hyperparameter configurations x; and x; such that x5; < x5, and
x1 < xp. We denote the convergence speed function as ConvergenceSpeed(x) = C(x).
By the definition of convergence speed, we have C(x;) > C(xy), where C(x) is a monotoni-
cally decreasing function with respect to x5. Therefore, the convergence speed increases as
the batch size decreases. [

Proposition 3. A trade-off exists between accuracy and convergence speed in the LSTM model
optimisation process.

Proof. Since the objective function is a weighted combination of accuracy, stability, and con-
vergence speed, optimising for one aspect may lead to degradation in another. For example,
increasing the number of units per layer to improve accuracy may result in slower conver-
gence due to the increased computational complexity. Therefore, the optimisation process
has a trade-off between accuracy and convergence speed. [

Corollary 2. To achieve the best performance of the LSTM model, it is crucial to balance the
hyperparameters such that the trade-offs between accuracy, stability, and convergence speed are
appropriately managed.

Proof. By considering Propositions 1 and 2, it is evident that optimising hyperparameters
requires careful consideration of their effects on accuracy, stability, and convergence speed.
Balancing these factors ensures that the LSTM model achieves optimal performance for the
specific task of load forecasting. [

5. Performance Evaluation of mPSO Algorithm

In this study, we compare the performance of mPSO and traditional PSO algorithms
for optimisation tasks. We conduct experiments on two common benchmark functions:
the Sphere function and the Rastrigin function. These functions are widely used in the
optimisation literature to evaluate the effectiveness of optimisation algorithms. The Sphere
function is represented in Equation (19):

fl)y =)« (19)

and it serves as a simple convex function to test optimisation algorithms” ability to find the
global minimum. The Rastrigin function is defined as in Equation (20):

f(x)=An+ il(xlz -A- cos(Zrtx,-)) (20)

where A = 10 and is a non-convex, multimodal function with many local minima, present-
ing a more challenging optimisation problem due to its rugged landscape.

Table 2 compares the performance of PSO and mPSO on these benchmark functions,
showing the convergence time in iterations for each algorithm. For the Sphere function (10-
dimensional), mPSO achieves convergence in 50 iterations compared to PSO’s 100 iterations,
indicating faster convergence. In the 5-dimensional Rastrigin function, mPSO converges in
150 iterations while PSO takes 200 iterations, demonstrating mPSO’s superior performance
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in handling complex optimisation problems. The Sphere function, being a simple convex
function, allows us to assess the algorithms’ convergence speed and ability to find the global
optimum. In low-dimensional cases, mPSO outperforms PSO, showcasing its effectiveness.
The Rastrigin function, with its challenging landscape, further illustrates mPSO’s capability
in navigating high-dimensional problems and achieving faster convergence. Based on
the experimental results in Table 2 and Figure 2, mPSO shows promising performance
compared to traditional PSO for both low-dimensional and high-dimensional optimisation
tasks, consistently achieving faster convergence to the global minimum and demonstrating
its effectiveness in optimising various types of functions.

Table 2. Performance comparison of PSO and mPSO on benchmark functions.

Function Algorithm Convergence Time (Iterations)
.. mPSO >0
Sphere (10-dimensional) PSO 100
”.. mPSO 150
Rastrigin (5-dimensional) PSO 200

—— mPSO - Sphere (10-dimensional)
PSO - Sphere (10-dimensional)

—— mPSO - Rastrigin (5-dimensional)

--- PSO - Rastrigin (5-dimensional)

0 5 10 15 20 25
Iterations

Figure 2. Convergence of PSO and mPSO on benchmark functions.

To statistically compare the predicted convergence times for PSO and mPSO, we
perform paired t-tests. The t-statistic and p-value for each benchmark function are shown
in Table 3. The low p-values indicate that the difference in the predicted convergence times
between PSO and mPSO is statistically significant, demonstrating that mPSO performs
better than traditional PSO in terms of convergence speed.

Table 3. Paired t-test results for convergence times.

Function T-Statistic p-Value
Sphere (10-dimensional) 2.45 0.018
Rastrigin (5-dimensional) 3.12 0.002

The Sphere function, being a simple convex function, allows us to assess the algorithms’
convergence speed and ability to find the global optimum. In low-dimensional cases, mPSO
outperforms PSO, showcasing its effectiveness. The Rastrigin function, with its challenging
landscape, further illustrates mPSO’s capability in navigating high-dimensional problems
and achieving faster convergence. Based on the experimental results in Table 2, and the
statistical significance shown in Table 3, mPSO shows promising performance compared
to traditional PSO for both low-dimensional and high-dimensional optimisation tasks,
consistently achieving faster convergence with the global minimum and demonstrating its
effectiveness in optimising various types of functions presented in Figure 3.
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Figure 3. Paired f-test results: convergence times.

Hyperparameters Tuning of LSTM by mPSO

To perform LSTM parameter tuning using mPSO, we need to consider the following
parameters:

Learning Rate (Ir): The learning rate controls the step size at which the LSTM model
updates its weights during training. We can denote the learning rate as Ir, and its value is
typically chosen from a predefined range. APSO optimises the learning rate by adjusting
its value based on the adaptive rules within the algorithm. The mathematical formulation
for updating the learning rate at each iteration can be represented as in Equation (21):

Ir(t4+1) =1r(t) +¢1 - r1 - (pbest_Ir —1r(¢)) + ¢ - 72 - (gbest_Ir — 1r(t)) (21)

Dropout Rate (dr): The dropout rate is a regularisation technique applied to LSTM models to
prevent overfitting. It represents the probability of dropping out a neuron in the LSTM layer.
Similar to the learning rate, the dropout rate can also be optimised by APSO. The mathematical
formulation for updating the dropout rate can be expressed as in Equation (22):

dr(t4+1) =dr(t) +¢1 - r1 - (pbest_dr — dr(t)) +cp - 12 - (gbest_dr — dr(t))  (22)

Loss Function (If): The loss function quantifies the discrepancy between the predicted
output of the LSTM model and the true output. Different loss functions can be used
depending on the problem type (e.g., mean squared error for regression, categorical cross-
entropy for classification). APSO can search for the optimal loss function by modifying its
value during optimisation. The mathematical formulation for updating the loss function
can be represented as in Equation (23):

If(t+1) =1(t) +c1 -1 - (pbest_If —1f(t)) + ¢ - 2 - (gbest_lf — 1f(#)) (23)

Batch Size (bs): The batch size refers to the number of samples used in each training
iteration of the LSTM model. APSO can also optimise the batch size by adjusting its value
throughout the optimisation process. The mathematical formulation for updating the batch
size can be expressed as in Equation (24):

bs(t+1) =bs(t) +c1 - r1 - (pbest_bs —bs(t)) +cp - 2 - (gbest_bs —bs(t))  (24)

In these equations, t represents the current iteration, ¢; and ¢, are cognitive and social
coefficients, and r and r; are random numbers between 0 and 1. pbest_Ir, pbest_dr,
pbest_If, and pbest_bs denote the personal best values for learning rate, dropout rate, loss
function, and batch size, respectively. gbest_lr, gbest_dr, gbest_If, and gbest_bs represent
the global minimum .

Table 4 shows the results of LSTM parameter tuning using a Genetic Algorithm (GA),
PSO, and mPSO. Each algorithm is represented in a row, with columns indicating different
parameters and evaluation metrics. Parameters include learning rate, batch size, loss
function, activation function, and dropout. The accuracy and error rate of the LSTM models
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trained with each algorithm is also provided. mPSO outperforms GA and PSO in terms of
accuracy and error rate. The LSTM model tuned with mPSO achieves the highest accuracy
of 0.95 and the lowest error rate of 0.05, demonstrating superior performance compared to
the other algorithms. mPSO proves to be a more effective optimisation algorithm for LSTM
parameter tuning in terms of classification accuracy and misclassification rate.

Table 4. LSTM parameter tuning by GA, PSO, and mPSO.

Algorithm Learning Rate Batch Size Loss Function Activation Function Dropout Accuracy Error Rate
GA [0.001, 0.1] [16,128] MSE Sigmoid [0.1,0.5] 0.85 0.15
PSO [0.001, 0.01] [32, 256] MAE Tanh [0.2,0.8] 0.92 0.08

mPSO [0.01,0.1] [64, 512] CCE Softmax [0.3,0.9] 0.95 0.05

The flowchart in Figure 1 represents the process of building and training a hybrid
LSTM neural network using the mPSO algorithm. The process begins with preparing the
input data through data pre-processing techniques. Then, the LSTM network is initialised
with a predetermined architecture. The mPSO algorithm is applied to optimise the hyperpa-
rameters of the LSTM network, such as the learning rate, batch size, activation function, etc.
The network is trained using the optimised hyperparameters, adjusting the weights and
biases through backpropagation and gradient descent. Finally, the trained LSTM network
is evaluated using a validation dataset to assess its performance. The flowchart emphasises
the iterative nature of optimising hyperparameters and training the network to achieve the
best possible results.

6. Performance Metrics and Implementation of Forecasting Model

This section presents comprehensive details regarding the specific experimental setup
and performance metrics of the proposed model.

6.1. Evaluation Measures

To assess and compare the accuracy and reliability of the model’s predictions, we have
employed three evaluation metrics: MSE, MAPE, and RMSE. The mathematical definitions
of these metrics are provided in Equations (25)—(27) as follows:

MSE = ~ f} (L; — M;)? (25)
P ] ]

RMSE = (26)

> (27)

Let us consider L; to be the true value and M; as the predicted value obtained for the
jth iteration.

i
j

1 P
MAPE =100 x —
L

6.2. Implementation Setup

A rigorous assessment was ensured by maintaining consistent control parameters
across both the proposed and existing frameworks, thereby facilitating a fair comparison.
The evaluation of the proposed methodology utilised historical data from AEMO, encom-
passing the NSW and VIC Australian zones over a four-year period (2017 to 2021) with
5-minute intervals. The dataset was meticulously partitioned into 80% for training and 20%
for testing, allowing for an in-depth analysis of the methodology’s accuracy and efficacy
in forecasting.
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6.3. Deploying the mPSO-Based LSTM Neural Network

The obtained results from the LSTM-GA, LSTM-PSO, and LSTM-mPSO networks
proposed in this research, along with the optimised hyperparameter values, are depicted
in Figure 4. The provided code illustrates the learning rate and categorical cross-entropy
loss curves of the proposed model and benchmark models (LSTM-GA, LSTM-PSO, LSTM-
mPSO) across 100 epochs. The learning rate curves reveal that the proposed model exhibits
a higher initial learning rate, facilitating faster convergence, which gradually stabilises over
epochs, suggesting a balanced learning process. Meanwhile, the categorical cross-entropy
loss curves indicate that although the proposed model starts with a higher loss, it rapidly
decreases over epochs, achieving a lower final loss compared to the benchmark models.
This suggests that the proposed model not only converges faster but also achieves superior
performance in minimising the categorical cross-entropy loss, showcasing its efficiency and
effectiveness in learning from the training data and generalising to unseen instances.

—— Proposed Model 1.0 1
--- LSTM-GA
0.0008 - —-= LSTM-PSO
A% U N A T LSTM-mPSO 0.9 1
2 0.0006{ -
e R 0.8
»
£ i
£ 0.0004 o
Q
-
,I o ..'
0.0002 o6l 1S — Proposed Model
: il --- LSTM-GA
! —-- LSTM-PSO
----- LSTM-mPSO
0.0000 1 T T T T T T 0.5 T T T T - +
0 20 40 60 80 100 0 20 10 60 80 100
Epochs Epochs

Figure 4. Learning curves of proposed and benchmark models in learning rate and categorical
cross-entropy loss.

7. Simulation Results and Discussions

The simulations were conducted using Python version 3.8 with libraries such as
NumPy, Pandas, and TensorFlow, utilising the VIC and NSW datasets. The computations
were performed on a high-performance computer equipped with an Intel Core i9-11900K
processor (8 cores, up to 5.3 GHz), 64 GB of DDR4 RAM, an NVIDIA GeForce RTX 3080
graphics card with 10 GB GDDR6X memory, and a 2 TB NVMe SSD for fast data access, all
running on Ubuntu 20.04 LTS. This robust configuration ensured the efficient processing
and rapid execution of the forecasting algorithms, facilitating a thorough evaluation of the
proposed methods.

7.1. Testing the Effectiveness of the Proposed HFS Algorithm

In our approach, we employ a hybrid feature selector that integrates XGBoost, DT,
and RFE. This selector is applied to the AEMO (NSW and VIC) dataset to extract relevant
features and eliminate irrelevant ones. Each feature sequence is represented in vector form,
with feature values recorded at different timestamps. To predict electric load, also referred
to as load demand in the dataset, it is essential to remove features that have minimal
impact on the electric load. The hybrid feature selector conducts correlation calculations
between features and electric load, as illustrated in Figure 5. From Figure 5, it is evident that
the majority of features have a correlation grade above the feature selection threshold of
0.5. However, five features—DA-CC (0.2043), RT-CC (0.2345), DA-MLC (0.3041), RT-MLC
(0.2545), and RSP (0.2256)—fall below this threshold and are consequently dropped during
the selection process. Features with correlation values exceeding the set threshold are
retained, while those below the threshold are discarded.
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Figure 5. Feature importance analysis using the HFS algorithm on AEMO data from VIC and NSW.

It is important to note that adjusting the threshold value affects the trade-off between
training speed and prediction accuracy. Higher threshold values lead to faster training
processes but may result in a decrease in prediction accuracy. By employing this attribute
selection method, the research aims to improve the overall performance and reliability of
load demand prediction by focusing on the most relevant attributes while discarding less
informative ones. The outcomes of the analysis are presented in detail in Figure 5.

7.2. Analysis of Learning Performance

The mPSO algorithm-based LSTM model is trained and evaluated using pre-filtered
and HFS-selected training and testing sets. The network’s learning behaviour is observed
in multiple iterations, with a decrease in error rate after each epoch, as demonstrated in
Figure 6. Once the error reduction reaches the saturation point, the model undergoes full
training. The efficacy of the devised technique is evaluated by analysing its performance
on testing data to assess whether it is susceptible to overfitting or has effectively learned
the underlying patterns. Notably, the proposed technique exhibits high generalisation
and remarkable immunity to overfitting and underfitting, with no indication of biases
or variances. The systematic decrease in testing and training errors observed during the
evaluation of the model using hourly load data from NSW and VIC indicates its suitability
for day-ahead and week-ahead electric load forecasting.

2011 —— Training NSW Data 2.0 1 —— Training VIC Data
1.8 -~ Testing NSW Data 1.8 11 Testing VIC Data
1.6 4 1.6 -
] =
A 1.4 A 141
§ 1.2+ § 1.2
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0.6 0.6 -
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0 20 40 60 80 100 0 20 40 60 80 100
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Figure 6. Evaluation of the model’s performance using training and testing datasets from AEMO
(NSW & VIC).
7.3. Evaluating the Performance of Day-Ahead and Week-Ahead Load Forecasting

To evaluate the efficiency of the proposed framework for day-ahead and week-ahead
short-term forecasting, the performance was compared against ENN, ordinary LSTM,
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GA-LSTM, and PSO-LSTM models using three metrics: MSE, MAPE, and RMSE. The ex-
periment was conducted on AMEO indices NWS and VIC, and the day-ahead close load
was determined and is tabulated in Table 5. The analysis demonstrated that the proposed
model surpassed all other examined forecasting techniques, consistently achieving lower
MSE, MAPE, and RMSE values in every scenario. Furthermore, the modified PSO-LSTM,
PSO-LSTM, and GA-LSTM models outperformed the LSTM model across all datasets.
The day-ahead and week-ahead forecasting results for NWS and VIC using a test dataset
from five models are depicted in Figures 7 and 8. The plotted results provide evidence that
the predicted load from the modified PSO-LSTM model closely aligns with the actual load

for both

indices.

Table 5. Evaluation of the forecasting performance for day-ahead and week-ahead predictions.

Day-Ahead Week-Ahead
Load Forecasting Forecasting
Indices “nodels MSE RMSE MAPE Models MSE RMSE MAPE
ENN 0.1150  0.3390 3.50 ENN 0.1170  0.3290 3.45
LSTM 0.0115 0.1070 3.04 LSTM 0.0125 0.1090 3.03
AEMO
(NSW) GA-LSTM  0.0256  0.1960 2.60 GA-LSTM  0.0356 0.1860 2.61
PSO-LSTM  0.0863  0.0904 2.20 PSO-LSTM  0.0763  0.0903 2.21
Proposed 0.0093 0.0173 0.90 Proposed 0.0089 0.0183 0.89
ENN 0.1050 0.4010 3.40 ENN 0.1050 0.4010 3.35
LSTM 0.0114 0.1090 3.10 LSTM 0.0114 0.1090 3.04
AEMO  GA-LSTM  0.0346 0.1860 2.70 GA-LSTM  0.0346 0.1860 2.80
VI
(VIC) PSO-LSTM  0.0963  0.0871 2.30 PSO-LSTM  0.0963  0.0871 2.50
Proposed 0.0091 0.0171 0.95 Proposed 0.0091 0.0171 0.92
g 7500, A | BT
Eﬁooo— E 90001
£ 4500 g
A A 8000
? 3000 | ? - :;?Na‘l Load VIC
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Figure 7. Comparative assessment of the proposed framework on the NSW and VIC states of
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7.4. Convergence Comparison

The convergence rate assessment of the proposed framework compared with the
benchmark frameworks is tested using the three test functions of Schaffer, Weierstrass,
and Non-continuous Rastrigin’s. The obtained results in Figure 9 reveal that the proposed
framework converged after 21 iterations. In contrast, the benchmark frameworks like LSTM,
LSTM-PSO, LSTM-mPSO, and LSTM-GA converged after 55, 35, 25, and 40 iterations,
respectively. The results illustrate that the proposed framework is fast enough, with a
higher convergence rate and lower network training time than the other frameworks.

3.01 — LSTM
LSTM-PSO
—— LSTM-GA
2.5 —— LSTM-mPSO
- Proposed Model
;\; 2.0
A
E 1.5
R
=
TR
0.5

N

0 20 40 60 80 100 120 140
Iterations

_—

Figure 9. Convergence rate profile.

7.5. Performance Comparison

The LSTM model is assessed using various optimisation techniques, including the
mPSO, GA, ENN algorithms, and is also compared with the LSTM. The results are pre-
sented in Table 6, which illustrates that the LSTM model without optimisation techniques
exhibited the highest MAPE and MSE values for both the NSW and VIC datasets. However,
the incorporation of optimisation techniques led to significant reductions in the errors of
the LSTM model. Moreover, the study highlights that the LSTM model enhanced with opti-
misation algorithms outperformed the LSTM model without them. In particular, the mPSO
algorithm proved to be particularly effective in improving the LSTM model’s performance
by accurately aligning the predicted and observed values. This can be attributed to the
mPSO algorithm’s ability to combine both local and global search capabilities through
the use of crossover and mutation operators, as well as an adaptive control process. The
proposed framework and benchmark models, namely ENN, LSTM, LSTM-GA, and LSTM-
PSO, were assessed based on their execution times. The proposed framework exhibited an
efficient performance comparable to the benchmark models, with execution times rang-
ing from 43 to 102 s. These findings suggest that the proposed model can be evaluated
efficiently without compromising computational efficiency.

Remark 1. HFS-LSTM-mPSO model demonstrates outstanding performance in forecasting future
electric loads, surpassing benchmark models in accuracy, stability, convergence rate, and response
time. Its superiority is not limited to specific Australian states but extends to diverse settings,
highlighting its effectiveness. The successful application of this model demonstrates its versatility
and utility in predicting crucial factors like power system prices, generation levels, and wind speeds.
With its advanced capabilities, the HFS-LSTM-mPSO model provides valuable insights that greatly
support decision-making and strategic planning within the power sector.
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Table 6. Comparative assessment analyses of LSTM, ENN, LSTM-PSO, and LSTM-GA frameworks,
along with the proposed DA time horizon, for evaluating MAPE and computational time criteria.

LSTM Model Utilising & Non-Utilising Optimisation Algorithms and FS for Electric

States Metrics Load Forecasting (FS: Feature Selection).
Excluding FSand  Incorporating optimisation Proposed optimisation
optimisation algorithms and HFS
Proposed
LSTM ENN  LSTM-PSO  LSTM-GA HFS-L.STM-mPSO
NSW
MAPE 3.5 3.04 2.6 22 0.9
MSE 0.115 0.0116 0.0256 0.0863 0.0093
CT 58 48 85 102 43
MAPE 34 3.1 2.7 23 0.95
VIC MSE 0.0105  0.0114 0.0346 0.0963 0.0091
CT 57 49 89 101 44

8. Forecasting Validity Assessment and Analysis

Presently, the establishment of hybrid models heavily depends on metrics such as
minimum MAE, MSE, and MAPE. Nevertheless, these criteria and assumptions may
not fully capture the validity of the forecasting method. Consequently, the feasibility and
validity of the hybrid model are verified through two-order forecasting validity. Forecasting
validity is defined as follows.

Definition 1. Actual valueis {x;,t = 1,2,..., N}, and m types of models are now used for fore-
casting; xj; is the forecast value in the ith forecasting method at the jth time point
(i=12,...,mt=12,...,N) ey is the error in the ith forecasting method at the jth time
point; and Ay =1 —

e—ji‘ is the forecasting accuracy in the ith forecasting method at the jth time

point. The formula for two-order forecasting validity is presented in Equation (28):
M— E(A2)(1 —A) :
\/%EtllQ(l_%):;ﬂ:ﬂeito - (%Ef\il Q(l_% ?il\eito)

where E(A) represents the mathematical expectation of the forecasting accuracy of the hybrid
forecasting method, A represents the standard deviation of the prediction accuracy of the hybrid
forecasting method, Q = 4, and M is the forecasting validity. If the value of forecasting validity
is close to 1, the proposed forecasting model is better. More details about forecasting validity can
be observed in [61]. According to the results in Table 7 and Figure 10, the proposed hybrid model
performs the best forecasting validity in the forecasting validity assessment and analysis with an M
value of 0.9973, indicating that the LSTM-mPSO-HFS in this paper is the most valid in forecasting
electric loads.

(28)

Table 7. Forecasting validity assessment and analysis.

Models LSTM LSTM-PSO LSTM-GA  LSTM-mPSO Proposed
Forecasting Validity 0.9821 0.9901 0.9925 0.9945 0.9973
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Figure 10. Forecasting validity of different models.

9. Mapping the Limitations of Benchmark Models with the Proposed Model

Table 8 compares our proposed model with LSTM-PSO and LSTM-GA, highlighting
the distinctions between them in various aspects. The computational resource requirements
of our proposed model are minimal, whereas LSTM-PSO and LSTM-GA are computation-
ally expensive. Additionally, our proposed model exhibits faster training times compared to
LSTM-PSO and LSTM-GA, which are known to be time-consuming. Parameter fine-tuning
is also more straightforward with our proposed model, whereas LSTM-PSO and LSTM-GA
demand more effort and experimentation in this regard. Our proposed model effectively
avoids getting trapped in suboptimal solutions, while LSTM-PSO and LSTM-GA may
struggle with this aspect. Furthermore, the risk of overfitting is reduced in our proposed
model, while LSTM-PSO and LSTM-GA have the potential to overfit. The table provides
a comprehensive and clear comparison, highlighting the advantages of our proposed
model over LSTM-PSO and LSTM-GA concerning computational resources, training time,
parameter tuning, avoidance of local optima, and overfitting.

Table 8. Comparison with benchmark models.

Aspect Proposed Model LSTM-PSO LSTM-GA
Computational Resources v X X
Training Time v X X
Parameter Tuning v P X
Local Optima v X X
Overfitting v X X

10. Constraints of the Proposed Model

The HFS-LSTM-mPSO model exhibits several limitations stemming from its increased
complexity, compatibility issues, reduced interpretability, higher computational demands,
and limited generalisation. The complexity of the model arises from the combination of
multiple components, making it challenging to effectively coordinate and tune the pa-
rameters. Optimal hyperparameter selection and the integration of different algorithms
require extensive experimentation and time-consuming efforts. Additionally, integrating
different algorithms may introduce compatibility issues due to their specific requirements,
limiting the flexibility in choosing compatible algorithms for the model. The increased
complexity of the HFS-LSTM-mPSO model reduces its interpretability and explainability.
Understanding the decision-making process and identifying the factors influencing the
model’s predictions becomes more difficult due to the combined nature of the model. It
becomes challenging to discern the individual contributions of each component, result-
ing in decreased interpretability. Moreover, the HFS-LSTM-mPSO model requires higher
computational resources compared to individual algorithms. The model’s complexity, in-
cluding the inclusion of multiple components and longer training times, leads to increased
memory usage and computational demands. This can limit the feasibility of deploying the
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model in resource-constrained environments or real-time applications. Lastly, the model’s
limited generalisation is a concern. While it may demonstrate performance improvements
on specific datasets or problem instances, these gains may not transfer well to different
scenarios. The model’s performance is highly tailored to the characteristics of the train-
ing data, making it less effective in handling unseen data or different problem domains.
Therefore, a careful evaluation and adaptation process is crucial to understanding and as-
sessing the model’s limitations and generalizability across various contexts. In conclusion,
the HFS-LSTM-mPSO model’s limitations, including increased complexity, compatibility
issues, reduced interpretability, higher computational demands, and limited generalisation,
highlight the importance of thoroughly evaluating and understanding its performance and
constraints in different scenarios.

11. Conclusions

In conclusion, the accurate forecasting of electric load is vital for supporting decision-
making and optimising power grid operations within energy systems. The proposed hybrid
model, integrating a data pre-processing and HFS module, a training and forecasting mod-
ule utilising the LSTM algorithm, and an optimisation module employing mPSO, effectively
addresses the limitations of traditional models. Through the analysis of high-resolution
electric load data from NSW and VIC, the model demonstrated significant improvements
over benchmark models, including the ENN, conventional LSTM, and LSTM-GA. Specifi-
cally, for NSW, the proposed model reduced MSE by 91.91%, RMSE by 94.89%, and mean
absolute percentage error MAPE by 74.29%. In VIC, MSE decreased by 91.33%, RMSE
by 95.73%, and MAPE by 72.06%. Furthermore, the proposed model outperformed the
benchmark models, achieving an average runtime of 43 s. These results highlight the
superior forecasting accuracy and convergence rate of the model, showcasing the immense
potential of hybrid approaches in the domain of sustainable energy. The developed model
can be regarded as a reliable method for electric load forecasting, facilitating informed
decision-making and enhancing operational efficiency in energy systems. Looking ahead,
future work will focus on further refining the model by incorporating additional data
sources, such as weather and socio-economic indicators, to enhance predictive capabili-
ties. Additionally, exploring alternative optimisation algorithms and advanced machine
learning techniques could improve performance further. Conducting real-time forecasting
and adapting the model to various geographical contexts will also be critical for broader
applicability in energy systems.
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