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Abstract: Grasslands play a crucial role in exchanges between global ecosystems and the atmosphere
and form an integral part of the agricultural industry. Arbuscular mycorrhizal fungi (AMF) are
mutualistic symbionts of most grassland plant species and thereby influence the functional capacity
of grassland systems. Agricultural grasslands are primarily used for livestock farming and are
subjected to various management practices designed to increase production, but which also alter
both plant and soil communities in the process. This research investigated the effects of a selection
of management practices and environmental factors on the presence and abundance of AMF in
upland Welsh grasslands. The aim was to identify how these management practices affected the
abundance of AMF, assessed through microscopic observations of four AMF structures: spores,
hyphae, vesicles and arbuscules. The results suggest grazing sheep and cattle together had the
highest overall influence on AMF abundance compared to grazing sheep or cattle separately. High
plant diversity correlated with high arbuscule and vesicle abundance, but conversely, the application
of lime reduced vesicle abundance. These findings offer new insights into the effects of management
practices on AMF. Mixing livestock, increasing plant diversity and reducing lime applications are
shown here to improve the abundance of AMF and could, therefore, help to inform sustainable farm
management decisions in the future.

Keywords: arbuscular mycorrhizal fungi; effects of management practices; mixed grazing

1. Introduction

Grasslands are a globally important habitat with the potential to offer substantial
resources and extensive ecosystem services, e.g., flood prevention, biologically diverse
habitats and carbon storage [1–3]. Current research into the importance and value of
these habitats focuses predominantly on their uses within the agricultural industry, a key
area of which is the impact of livestock production, through direct grazing, silage or hay-
making [1,2]. Multiple avenues of research are now seeking to understand how grasslands
can be managed more appropriately by studying the complex interactions that occur both
above and below ground [4–9].

Recent analysis suggests 70% of all agricultural grasslands are now used for livestock
production, but these practices are also the main threat to many grassland habitats, with
inappropriate management cited as the leading cause of grassland degradation and soil
erosion [4,10–14]. However, if managed appropriately, livestock can be an essential tool
in sustainable agricultural grasslands by increasing plant diversity and improving soil
structure and function, to the extent that many conservation organisations now advocate
the use of grazing animals in restoration projects [9,15–17].
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Soils play a key role in healthy grasslands, containing a rich and varied diversity of life,
including meso and macrofauna, as well as archaeal, bacterial and fungal communities [5,9].
The permanent vegetative canopy above buffers surface temperatures and evaporation,
helping to regulate water filtration, decomposition rates and microbial activity in the
soil below [5,9]. Soil health underpins many aspects of grassland health but is highly
influenced by environmental and anthropogenic changes, both short-term and long-term.
This research focuses on the soil microbial level, specifically arbuscular mycorrhizal fungi
(AMF), and the influence of a range of management practices widely utilised within the
livestock farming community [18,19].

1.1. The Role of Mycorrhizal Fungi within Healthy Grassland Soils

Mycorrhizal fungi are a major group of symbiotic soil fungi, predominantly from the
phylum Glomeromycetes, but have also evolved independently in the phyla Ascomycota and
Basidiomycota [20,21]. Approximately 80% of all terrestrial plant species form symbiotic
relationships with mycorrhizal fungi, a phenomenon which is thought to have evolved
around 410 Mya ago and is one of the reasons the plant kingdom has been so successful in
colonising terrestrial environments [22–24]. The central benefit of these relationships is the
exchange of nutrients, especially phosphorus to the plant and carbohydrates to the fungi,
although continuing research is finding more varied and complex exchanges which are still
not yet fully understood [25–27].

Arbuscular mycorrhizal fungi (AMF) are one of the most notable species in this group
of symbiotic fungi and are unique in their appearance, due to the distinctive, highly
branched ‘tree-like’ structure, the arbuscule, which forms inside plant root cells [24]. AMF
are also the only group which form balloon-like storage structures, called vesicles [24]. The
ability of the hyphal network to extend into the surrounding soil in order to absorb nutri-
ents surpasses that of the host plant’s roots [21,25,28,29]. Both the plant and fungal partner
typically produce and obtain more carbon and nutrients together than they require individ-
ually, further supporting evidence that these associations are mutually beneficial [26,28,29].
The mycorrhizal network formed around the plant’s root system has been strongly linked
to improved soil aggregation through the release of glomalin, a glue-like deposit released
by the hyphae [25]. Additionally, this hyphal network also creates a microscopic habitat
for surrounding microbes which, in turn, release further micro-nutrients for the AMF to
absorb, increasing the mutual benefits [30,31].

Although some species of AMF have been commercially produced as soil inoculants,
most AMF cannot be synthetically cultivated [32]. This makes enhancing their abundance
within agricultural soils highly dependent on appropriate management techniques as
opposed to reliance on artificial enrichment [33,34]. This study focuses on how agricul-
tural management practices change the abundance of four mycorrhizal structures (spores,
hyphae, vesicles and arbuscules).

1.2. Impact of Livestock and Agricultural Management on Grasslands

Cattle and sheep are globally important animals with estimated numbers of 1.5 billion
and 1.2 billion respectively [35]. They provide an important food source in places where
the land and soil quality are not sufficient to support arable crops and, therefore, provide
vital economic benefits [36]. However, their increasing numbers and influence on grassland
ecosystems are now the focus of much attention, especially in light of global food security,
climate change, environmental degradation and shifting dietary preferences.

Grassland plants have evolved to tolerate a degree of herbivory without long-term
damage, and research has shown that the action of non-intensive grazing can promote bio-
diversity and stimulate plant growth through compensatory vegetative production [16,37].
Large grazing mammals can, therefore, play an important role in maintaining open grass-
land habitats, by reducing the encroachment of trees and scrub, varying feeding preferences
to create a mosaic of plant species, contributing to the nutrient cycle with deposits of dung
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and urine, trampling the ground to open niche microhabitats and moving seeds both in
and on their bodies [38].

However, overgrazing has been the most cited cause of grassland decline, and it is esti-
mated that between 25 and 30% of global grasslands have been degraded by inappropriate
levels of livestock grazing [4,39,40]. Multiple studies offer evidence that high-intensity graz-
ing can negatively impact grasslands by excessive vegetation removal, adversely altering
species composition and damaging the soils either directly or indirectly [41–44]. To combat
these issues and maintain or even increase the productivity of agricultural grasslands, appli-
cations of fertilisers and other agrochemicals are used to artificially elevate grassland yields
and livestock productivity [45,46]. However, the consequences of these agrochemicals are
now emerging, as increasing application rates are required to compensate for diminishing
soil health, so understanding how to readdress the natural balance of grassland soils is of
vital importance to ensuring a sustainable future [46].

1.3. Agricultural Management

This research focuses on four agricultural practices within the livestock sector which
are each controlled to a greater or lesser degree by management decisions of farmers. The
aim of each practice is to increase agricultural output, but this study will investigate their
effects on AMF.

Livestock type varies largely across the globe depending on the environmental, social
and economic context and area of interest [47]. This study focuses on farmland in Wales,
which covers 88% of the land area of this region [48]. Livestock production is central to
Welsh farming, accounting for around 75% of total agricultural output [49]. It supplies 40%
of the UK’s sheep and cattle demand, despite only accounting for 10% of the agricultural
land area for the whole of the UK. Currently, there is no published research specifically
related to different livestock types and their effects on AMF, so this study aims to investigate
this knowledge gap.

Grazing livestock on grasslands is one of the dominant agricultural features of Wales,
as the low soil quality and the steep topography of the land is typically unsuitable for high
arable output [48]. Almost 80% of Welsh agricultural land is used for either permanent of
rough grazing, and Powys has one of the lowest arable land uses in Wales [48]. Only around
8% of farmers house their livestock year-round, with most choosing a mix of housing and
grazing, highlighting the importance of healthy grasslands [49]. Currently, most research
focuses on the effects of grazing intensity and AMF, commonly linking high-intensity
grazing with reduced AMF abundance [43,44].

Lime is applied to soils in order to counteract the negative effects of soil acidification.
The soils in Wales are predominantly acidic as a result of natural geological formation
and, therefore, typically low in organic content [50,51]. Research has shown that different
AMF taxa colonise soils of different pH; therefore, any alteration in the soil’s pH by the
application of lime could cause a disruption to or decline in the AMF community [52,53].

Plant diversity within livestock grasslands is commonly altered by farmers to max-
imise forage quantity and quality and compliment the application of agrochemicals, such
as fertiliser [54,55]. Ryegrass and clover often dominate agricultural grasslands due to the
quality and quantity of their forage, fast establishment and persistence within the field [55].
However, this reduces biodiversity and drought resilience. Research has shown that in-
creased plant diversity can improve soil health and overall grassland resilience [55,56].
Plant diversity has also been linked with AMF, but more research is required as there
are many compounding factors that influence this relationship, such as environment and
soil composition.

Grasslands and their soils are of great importance to global food systems and environ-
mental functions. Understanding the complexities with which these systems interact is vital
for a sustainable and viable agricultural future. This research, therefore, aims to investigate
the impact of widely used agricultural management practices upon the aforementioned
four structures of AMF, a well-known but still relatively poorly understood element of
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healthy grassland soils. It is hypothesised that each of the management practices outlined
in Section 1.3. will impact one or more of the AMF structures to a greater or lesser degree. It
is predicted the practices which align more closely with sustainable practices, e.g., reduced
grazing and inputs and increased plant diversity, will result in greater AMF abundance.

2. Materials and Methods
2.1. Site and Field Selection

This study focuses on farmland in Wales, with study sites chosen from a self-selected
group of farmers consisting of 11 farms within the lower Wye Valley area of Powys. This
area is dominated by livestock, consisting mostly of sheep and cattle and is, therefore, repre-
sentative of the Welsh livestock industry [49]. The farms ranged in size between 12 hectares
and 200 hectares and had varied management approaches with a mix of livestock including
sheep and/or cattle.

The farmers were asked to identify two fields on their farm that had been under grass
for at least five years and were currently used in a grazing rotation using a low or moderate
grazing intensity. Information regarding management practices, such as type of livestock
used in the grazing rotation (sheep or cows) and the application of lime, was also collected
and recorded (Table 1). Each of the fields were sampled across three temporal periods to
ensure representative data across the growing season: early spring (end of March 2022), late
spring (late May 2022), and mid-summer (mid July 2022). During each temporal sample
period, it was noted whether the fields were being actively grazed by livestock (Table 2).
All the farmers were given an identification code and completed a consent form prior to
research commencing.

Table 1. Field codes and their corresponding management practices.

Field Code Livestock Type Lime Plant Diversity

A.1 Cattle No lime Medium
A.2 Sheep and Cattle No lime Medium
B.1 Sheep and Cattle No lime Medium
B.2 Sheep and Cattle No lime Medium
C.1 Cattle Lime High
C.2 Cattle Lime High
D.1 Sheep Lime Medium
D.2 Sheep Lime Low
E.1 Sheep No lime High
E.2 Sheep No lime High
F.1 Sheep and Cattle No lime High
F.2 Sheep and Cattle No lime High
G.1 Sheep and Cattle Lime Medium
G.2 Sheep and Cattle Lime Medium
H.1 Sheep and Cattle Lime Low
H.2 Sheep and Cattle Lime Low
J.1 Sheep and Cattle Lime Low
J.2 Sheep and Cattle Lime Low
K.1 Sheep No lime Medium
K.2 Sheep No lime Medium
M.1 Sheep Lime Low
M.2 Sheep Lime Low

Table 2. Field codes and their corresponding grazing practices per temporal period.

Field Code Early Spring Late Spring Summer

A.1 No grazing Active grazing No grazing
A.2 Active grazing No grazing Active grazing
B.1 No grazing No grazing No grazing
B.2 No grazing No grazing No grazing
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Table 2. Cont.

Field Code Early Spring Late Spring Summer

C.1 No grazing No grazing No grazing
C.2 No grazing No grazing No grazing
D.1 No grazing No grazing No grazing
D.2 No grazing No grazing No grazing
E.1 No grazing No grazing No grazing
E.2 No grazing No grazing No grazing
F.1 No grazing Active grazing No grazing
F.2 Active grazing Active grazing No grazing
G.1 No grazing Active grazing No grazing
G.2 No grazing No grazing No grazing
H.1 No grazing No grazing Active grazing
H.2 No grazing No grazing Active grazing
J.1 No grazing Active grazing Active grazing
J.2 Active grazing No grazing No grazing
K.1 No grazing No grazing No grazing
K.2 No grazing Active grazing No grazing
M.1 No grazing Active grazing No grazing
M.2 No grazing No grazing No grazing

2.2. Plant Diversity

A 50 × 50 cm quadrat sample was taken at random from the selected fields, avoiding
gateways, individual features such as trees, water troughs or footpaths and not within 20 m
of hedgerows to ensure a representative sample (Table 1). The plants were identified using
multiple keys to ensure accuracy [57–59].

The diversity was then ranked in one of three categories: low (indicating 6 or fewer
species per quadrat), medium (indicating between 7 and 10 species per quadrat), and high
(indicating over 10 species per quadrat).

2.3. Soil Samples
2.3.1. Collection and Storage

Three soil cores were taken from each of the selected fields per temporal period using
a standardised auger, 5 cm in diameter and 15 cm deep. The cores were taken at random
within the fields, but no cores were collected within 20 m of hedgerows, gateways or
obvious access paths. At each sampling point, the three cores were mixed into a single field
sample and any large vegetative matter was removed. In total, 66 samples were taken. The
samples were kept cool and stored within 48 h in a freezer at a constant −18 ◦C.

2.3.2. Staining

Root staining preparations were adapted from the protocols of Wu et al. (2012) and
Penn State, (2022) [60,61]. Blue Parker QuinkTM ink was selected as the stain, due to its
low toxicity and optimal staining performance comparable to other staining options which
were deemed too noxious/carcinogenic [60,62].

Approximately half (600 g) of each field sample was removed from the freezer and
defrosted thoroughly for a minimum of 24 h. These subsamples were then weighed and
fractioned through 6 mm and 2 mm sieves to isolate the roots, which were separated
and rinsed in a fine mesh strainer to remove the remaining soil. The isolated roots were
then reweighed.

The roots were then cut into ~1 cm fragments and any large, thick or dead roots
removed. The fragments were placed in a 10% potassium hydroxide mixture (KOH) and
heated to 80 ◦C for 30 min. The fragments were rinsed three times in distilled water, placed
in blue Parker Quink™ ink and clear white vinegar mix and left to stain for 15 min at room
temperature, in alignment with the adapted protocols of Wu et al. (2012) and Penn State,
(2022). The fragments were rinsed with distilled water and then submersed in distilled
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water with two drops of vinegar overnight at room temperature to de-stain further. A total
of 660 root fragments were selected at random, mounted on plates with distilled water and
observed using a compound microscope at ×250 and ×400 magnification.

2.3.3. Identification of Mycorrhizal Structures

The four AMF structures—spores, hyphae, arbuscules and vesicles—were identi-
fied using features standardised by Willis, Rodrigues and Harris, 2013 [25], Dixon et al.,
2014 [63], and Walker et al., 2018 [64] (Figure 1).
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Figure 1. Microscopy images of AMF structures after staining and cleaning process for (a) spores,
(b) hyphae, (c) arbuscules, (d) vesicles (Copyright Annie Buckle 2022).

For each root fragment selected, the spores, arbuscules and vesicles were assigned
an abundance value, shown here in brackets, based on the amount observed through
the microscope: none (0), between 1 and 4 (2), between 5 and 9 (5), and 10 or more (10).
These scores were used due to the large differences between samples (and to reduce
inaccuracy when counting large numbers on microscope slides). Hyphae were noted for
their presence (1) or absence (0).

2.4. Data Analysis

All data were analysed in GenStat Version 20.1.2.24528 by VSN International Ltd.,
Rothamsted Research, St Albans, UK. The data were verified for normality and homoscedas-
ticity prior to analysis and a transformation applied (log10 + 1) if necessary. Two-way
sample T-tests were used to test for significance in pairwise comparisons, and Analysis
of Variance (ANOVA) were used to determine significance for multiple pairwise compar-
isons. Graphs are presented with means of the abundance values, observed for each AMF
structure, to provide an abundance assessment.
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3. Results

Overall, all soil samples were found to contain root fragments which had at least one
AMF structure, and 78% of the individual root fragments taken from the soil samples were
found to contain more than one AMF structure. Significant results are denoted on the
graphs by the use of an asterisk (*).

3.1. Livestock Type

There was a significant association between the type of livestock and the relative
abundance of arbuscules and the presence of hyphae. When cattle and sheep were grazed
together, there was a 43% higher abundance of arbuscules compared to when cattle or
sheep were grazed separately (p = 0.036, Figure 2a). Similarly, when cattle and sheep were
grazed together, there was a 30% higher rate of hyphae presence compared to when cattle
or sheep were grazed separately (p = 0.001, Figure 2b). No significant differences were
found in vesicle or spore abundance.
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Figure 2. The abundance of (a) arbuscules and the presence of (b) hyphae were both significantly
higher when both sheep and cattle grazed together compared to field systems where sheep or cattle
grazed separately. No significant differences were found between vesicles or spores.

3.2. Active Grazing

The fields which were sampled whilst being actively grazed showed significantly lower
hyphae presence than those which were not being actively grazed (p = 0.001, Figure 3b).
No significant differences were found in the abundance of vesicles, arbuscules or spores
(Figure 3a).
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Figure 3. No significant differences were found for the abundance of (a) vesicles, arbuscules or spores,
but (b) the presence of hyphae was significantly lower in fields which had active grazing compared
to those which were not being actively grazed.

3.3. Application of Lime

There was a significantly lower abundance of vesicles when lime was applied to
the sampled fields, compared to when lime was not applied (p = 0.014, Figure 4a). No
significant differences were found between the abundance of arbuscules, spores or the
presence of hyphae (Figure 4a,b).
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Figure 4. The abundance of (a) vesicles was significantly lower in fields which had received an
application of lime within the management period of that field but no significant differences were
found in the abundance of arbuscules, spores or (b) the presence of hyphae.

3.4. Plant Diversity

There was a significantly lower abundance of arbuscules with high plant diversity,
compared to that of medium or low diversity (p = 0.001, Figure 5a). Conversely, there was
a significantly lower abundance of vesicles with low plant diversity, compared to that of
medium or high diversity (p = 0.044, Figure 5a). No significant differences were found in
the abundance of spores or the presence of hyphae (Figure 5a,b).
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Figure 5. The abundance of (a) vesicles was significantly lower in fields with low plant diversity,
and the abundance of arbuscules was significantly lower in fields with high plant diversity. No
significance was found in the abundance of spores or (b) the presence of hyphae.
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3.5. Farm Differences

The overall abundance of vesicles, arbuscules and spores, and the presence of hyphae
were tested for significance across all eleven farms sampled (Figure 6). The abundance of
vesicles showed a greater significant difference between farms D and B (p = 0.001), with
farms E, G, H, J, K and M most similar to D, and farms A, C and F most similar to B.
The abundance of arbuscules showed a greater significant difference between farm E and
farms B, G and J jointly (p = 0.007), with all remaining farms otherwise unrelated to one
another. The presence of hyphae had a greater significant difference between farms D
and B (p = 0.001), with farms C, K, M and H most similar to one another. No significant
differences were found in the abundance of spores (p = 0.761).
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Figure 6. Farm B had a significantly higher abundance of arbuscules and vesicles and higher presence
of hyphae compared to the other farms. Farm D had a significantly lower abundance of vesicles
and lower presence of hyphae compared to the other farms. Farm E had the lowest abundance of
arbuscules compared to the other farms.

It should be noted that farms C and F are organic, and the fields sampled on farms H
and J were part of a crop rotation and, therefore, not permanent, despite being within the
5-year timespan stipulated in the selection process. However, these differences were not
noticeable in comparison to the other farms (Figure 6).

Each farm showed considerable variation in the abundance and presence of the four
AMF structures, and plant diversity. Here, the farms were ranked according to the highest
abundance and presences of the four AMF structures (Figure 6) and are considered against
each of the four agricultural interventions tested. It was observed that only the practice of
grazing cattle and sheep together consistently appeared to correlate with the top-ranking
farms (Table 3). No other treatments, which had previously yielded significant results,
consistently appeared within these top performing farms.

Table 3. The farms which had the highest overall abundance or presence of the four AMF structures
were ordered from highest to lowest (with farm B being the highest).

Overall Mycorrhizal
Occurrence
(by Farm)

Cattle and
Sheep
(Per Field)

Lime Applied
(Per Farm)

Plant Diversity
Ranked High
(Per Field)

Actively Grazed
(/Field/Temporal
Period)

B ++ + − ++++++
A + + − +++
F ++ + ++ +++
J ++ − − +++
G ++ − − +++++
H ++ − − ++++
M − − − +++++
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Table 3. Cont.

Overall Mycorrhizal
Occurrence
(by Farm)

Cattle and
Sheep
(Per Field)

Lime Applied
(Per Farm)

Plant Diversity
Ranked High
(Per Field)

Actively Grazed
(/Field/Temporal
Period)

C − − ++ ++++++
K − + − +++++
E − + ++ ++++++
D − − − +++++

The two fields on each farm are marked with a (+) if they used both cows and sheep within their grazing rotation,
or a (−) if they used either cows, or sheep. The farms which reported to use lime are marked with a (+) or a (−) if
they did not use lime. The two fields on each farm are marked with a (+) if they ranked high on plant diversity or
a (−) if they ranked either medium or low. The two fields are marked with a (+) if they had been actively grazed
at each temporal period or (−) if they were not being actively grazed at each temporal period.

4. Discussion

This study investigated the effects of a selection of common agricultural management
practices on the abundance of four structures of AMF. The results show that the most
positive effect on AMF resulted from mixed grazing, while plant diversity had mixed
results, and the application of lime, along with active grazing, negatively affected AMF.
These variable results are discussed in more detail below.

4.1. The Effect of Mixing Livestock

The influence of mixing livestock types and the positive effect on the abundance of
arbuscules and presence of hyphae is a novel outcome of this research as there is currently
no other research into this particular phenomenon (Figure 1). Although research exists
which investigates the influence of mixed grazing on other grassland functions, none refers
specifically to the influence of mixed grazing on AMF. The results of this study, therefore,
offer a new gateway for research to explore and examine the potential influence of mixed
grazing on AMF.

Studies into the effects of mixed grazing or co-grazing on other aspects of grassland
functions have found that combining cattle and sheep increases the soil organic content,
reduces the bulk density and improves the species composition of the grassland [65–67].
Multiple studies conducted by Cuchillo-Hilario et al. have also shown that grazing sheep
and cattle together alters the animals’ grazing behaviours and, therefore, foraging selectivity
and duration to the extent that plant diversity and botanical composition are also altered in
a positive way [68–70]. A study by Zhang et al. (2022) also concluded that mixing livestock
resulted in a higher turn-over of root growth and increased organic carbon soil content when
compared to only one grazer type or no grazing at all [71]. Additionally, other influencing
factors of mixing livestock may include the following: different grazing mechanisms such
as ripping or biting, variable grazing duration and amounts consumed, body sizes and
the associated weight impact on the soil, varying excretion composition and amount, and
even potentially the sex of the animals as hormones within the excrements could affect the
soil biome differently [67,72,73]. A recent meta-analysis of mixed grazing, conducted by
Su et al. (2023) [65], highlighted the multi-dimensional benefits of mixing sheep and cattle,
including effects on plant vegetation, both above and below ground, and the physical,
chemical and biological effects on soil. However, with the exception of nematodes, the soil
variables they investigated did not include any specific soil communities such as fungi or
specifically AMF. As the role of hyphae and arbuscules are concerned predominantly with
the transfer of nutrients between the fungi and the plant, the aforementioned beneficial
effects exhibited within the soil by mixed grazing are, therefore, likely to be transferred to
the AMF network also.

From the perspective of practical application, this initial analysis suggests mixing
livestock types could be beneficial to AMF abundance in grassland soils. This study begins
to fill this knowledge gap and highlights the need for further research to explore the
value of mixed grazing alongside the existing and ongoing research which focuses on
grazing intensity.
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4.2. Active Grazing Impacts

The effect of grazing intensity on grasslands is one of the most widely studied areas
in this field of research and the results from this study support previous findings which
suggest grazing can negatively impact AMF (Figure 2) [43,45]. However, these results only
indicated a reduction in the presence of hyphae, reflecting the findings of Faghihinia et al.
(2020) [43], and support other suggestions [74] that the influence of grazing on AMF, whilst
variable, may not necessarily be wholly detrimental.

In their study, Faghihinia et al. (2020) [43] found hyphal length was negatively
correlated with increasing grazing intensity, but the number of root fragments colonised
by hyphae and the amount of hyphal colonisation on those root fragments were not
significantly affected. They also investigated arbuscule intensity, which did not express
any significant correlation either. Earlier research by van der Heyde et al. (2017) [74] and
Ren et al. (2017) [75] also showed hyphal length was negatively affected by grazing, but
root colonisation itself was not. The results of this study appear to agree with those of
Faghihinia et al. (2020) [43] and Heyde et al. (2017) [74].

Although it is unclear exactly why hyphal length is affected more severely than
hyphal root colonisation, other studies have shown that carbon allocation to the plant
roots decreases following the removal of above ground biomass by grazing, as available
carbon is reserved for plant regrowth instead of being exchanged with the mycorrhizal
associates [45,76]. A similar response also occurs with phosphorus, whereby it is absorbed
by the plant for regrowth after vegetative removal, thereby altering the soil phosphorus
availability [77]. Early research, supported by these later studies, also shows external
hyphal growth is more sensitive to phosphorus availability than other nutrients, with
phosphorus being a key trigger in hyphal growth [21,76]. This may go some way in
explaining this phenomenon, but more research into the detailed mechanisms is needed.
Additionally, the synergetic effects of grazing intensity and mixed grazing would be useful
to explore as it is possible the impact of grazing intensity could be reduced or buffered by
mixed stocking.

4.3. The Effects of Applying Lime

This research found that the application of lime negatively affected the abundance of
both vesicles and root density, which appears to contradict the previous understanding of
the benefits of liming (Figure 3).

Early research by Siqueira et al. (1984) [78] on the effect of soil acidity on mycorrhizal
fungal colonisation suggests that reducing soil acidity improves colonisation, but it is now
known that soil pH affects species of soil fungi differently, and this original assumption can-
not be extrapolated across all AMF species [79]. There are currently no directly comparable
data related specifically to the abundance of vesicles and the application of lime. However,
research by Olsson et al. (2011) [80] identified phosphorus as a key element found within
vesicles, along with calcium, sulphur and potassium. These particular nutrients become
less available in soils with a pH of 6.5 or less, and therefore, the ability for AMF to provide
a reserve of these nutrients for use by the host plants is highly advantageous in acidic soils.
However, if lime is applied to readdress the pH balance, thus improving the availability of
these nutrients, the need for vesicles is reduced as plants are able to receive them directly
from the soil through their own roots or hyphal associations.

4.4. Plant Diversity

The relationship between plant diversity and AMF observed within this study ap-
pears to diverge from the published literature (Figure 4). Previous research has found
that increased AMF correlates with increased plant diversity, but whilst both vesicle and
arbuscule abundance occurred most frequently under medium plant diversity, arbuscule
abundance significantly reduced under high plant diversity [81].

A study conducted by Horn et al. (2017) [82] found plant communities are not a
strong predictor of AMF communities. Although their findings suggest plant commu-
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nity structure as a driver of AMF community structure, many compounding variables
in the environment, such as soil requirements and temporal influences, meant the link
was not necessarily universal across all plant and fungal interactions [82]. Research by
Faghihinia et al. (2020) [42] also found plant diversity did not have a direct, linear effect on
the presence or abundance of AMF, but was more variable and environmentally dependant.
As plant diversity increases, the resource demands diversify, thus reducing inter-species
competition and enabling the utilisation of different nutrients in different amounts. This
trend has been observed in studies whereby increased plant species diversity improved
soil resource use and correspondingly increased total plant biomass [83]. This theoretically
leads to a reduced reliance on the AMF arbuscule exchanges sites within the root cells but
an increase in storage vesicles, as excess nutrients are stored for later utilisation.

4.5. Implications and Limitations

The results of this study have highlighted further areas of potential research that
could be applied to sustainable agricultural management practices related to both soil and
grassland health within the livestock industry.

Considering the practical applications, utilising a mixed grazing approach could not
only reduce reliance on artificial inputs and, therefore, reduce costs, but also offer farmers a
more stable and resilient business model through diversification. Collaborations with other
local farmers could also be encouraged through the sharing of livestock.

This study recommends more research is urgently required to better understand the
effects of mixed grazing animals and AMF. The limitations of this study could be improved
upon by increasing the sample size and the area of study to enable better extrapolation
of the data, and by the addition of further parameters related to mixed grazing. This
could include investigating the effectiveness of existing mixed grazing systems, such as
‘co-grazing’ or ‘follow-on’ grazing and the ability for mixed grazing to counteract the
impact of grazing intensity.

5. Conclusions

This research aimed to investigate the impact of specific but widely used agricultural
interventions on arbuscular mycorrhizal fungi in grazed grasslands.

The results of this research offer two novel insights: Mixed grazing promoted AMF, and
the application of lime reduced AMF. The positive effect of mixed grazing is an important
finding when considering the potentially negative effect of certain grazing intensities and,
therefore, could have a significant impact on how livestock is managed in the future.

Grasslands play a key role within agriculture. As well as being an irreplaceable
resource for the livestock industry, they provide invaluable habitats for wild species and
multiple other ecosystem services. This research contributes to the knowledge required to
inform best-practice grassland management, policy and governance and will help to inform
the development and restoration of healthy, diverse and resilient grassland ecosystems.
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