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ABSTRACT
Purpose: To investigate early structural and mechanical predictors of plantarflexor muscle strength and the magnitude of 
Achilles tendon (AT) nonuniform displacement at 6 and 12 months after AT rupture.
Methods: Thirty-five participants (28 males and 7 females; mean ± SD age 41.7 ± 11.1 years) were assessed for isometric plan-
tarflexion maximal voluntary contraction (MVC) and AT nonuniformity at 6 and 12 months after rupture. Structural and me-
chanical AT and plantarflexor muscle properties were measured at 2 months. Limb asymmetry index (LSI) was calculated for 
all variables. Multiple linear regression was used with the 6 and 12 month MVC LSI and 12 month AT nonuniformity LSI as 
dependent variables and AT and plantarflexor muscle properties at 2 months as independent variables. The level of pre- and post-
injury sports participation was inquired using Tegner score at 2 and 12 months (scale 0–10, 10 = best possible score). Subjective 
perception of recovery was assessed with Achilles tendon total rupture score (ATRS) at 12 months (scale 0–100, 100=best possi-
ble score).
Results: Achilles tendon resting angle (ATRA) symmetry at 2 months predicted MVC symmetry at 6 and 12 months after rup-
ture (β = 2.530, 95% CI 1.041–4.018, adjusted R2 = 0.416, p = 0.002; β = 1.659, 95% CI 0.330–2.988, adjusted R2 = 0.418, p = 0.016, 
respectively). At 12 months, participants had recovered their pre-injury level of sports participation (Tegner 6 ± 2 points). The 
median (IQR) ATRS score was 92 (7) points at 12 months.
Conclusion: Greater asymmetry of ATRA in the early recovery phase may be a predictor of plantarflexor muscle strength defi-
cits up to 1 year after rupture.
Trial Registration: This research is a part of “nonoperative treatment of Achilles tendon rupture in Central Finland: a prospec-
tive cohort study” that has been registered in Clini​calTr​ials.​gov (NCT03704532)
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1   |   Introduction

Achilles tendon rupture (ATR) can lead to long-term functional 
limitations in the affected limb [1, 2]. Regardless of the initial 
treatment strategy of operative or nonoperative care, some in-
dividuals regain more symmetrical side-to-side function, while 
others remain with pronounced deficits [1]. In addition to pa-
tient age [3], literature suggests that ultrasound imaging of the 
Achilles tendon (AT) and plantarflexor muscle structural char-
acteristics may have a relevant role in predicting functional 
outcome [4–6]. For instance, early measurement of AT cross-
sectional area (CSA) [4–6] and ultrasound elastography-based 
tendon stiffness may be associated with functional performance 
[4, 7]. In addition to ultrasound imaging, a larger intraoperative 
Achilles tendon resting angle (ATRA) has been related with a 
more symmetrical heel-rise performance in operatively treated 
patients [8]. These observations indicate a potential to establish 
clinically applicable methods to identify individuals who may 
require increased support during rehabilitation to avoid greater 
functional deficits in the long-term.

As methods to assess tendon properties have advanced, recent 
studies have investigated the nonuniform displacement within 
the AT [9]. This nonuniformity results from differential forces ex-
erted on the three subtendons of the triceps surae muscle: medial 
gastrocnemius (MG), lateral gastrocnemius, and soleus [10], and 
is considered a sign of a healthy tendon [9]. Nonuniform displace-
ment of the AT is reported as the relative change in displacement 
between different tendon regions during force production or pas-
sive range of motion [11]. AT nonuniformity appears to decrease 
after rupture [12, 13]; however, Khair et al. [12] showed that some 
individuals might recover this tendon function 1 year after non-
operatively treated ATR. Because of the novelty of assessing AT 
nonuniformity, it has not been investigated in follow-up settings, 
and information on parameters that may be associated with the 
recovery of this tendon property is needed.

Since only small improvements in functional tasks have been ob-
served 1 year after ATR [14], more research should be focused on 
recovery during the first year after injury. Therefore, our aim was 
to assess whether early symmetry of AT and triceps surae muscle 
properties at 2 months after rupture were associated with side-
to-side symmetry in isometric plantarflexor maximal voluntary 
contraction (MVC) and AT nonuniformity at 6 and 12 months. We 
examined whether participant age [3], sex [3], early symmetry of 
MG muscle and AT architecture [2, 4–7], ATRA [8, 15–17], or AT 
shear wave velocity (SWV, m × s−1) [7] measured at 2 months post-
injury would serve as potential predictors of MVC and AT nonuni-
formity. We hypothesized that younger age and better structural 
and mechanical symmetry at 2 months would be related to better 
symmetry of MVC and AT nonuniformity at 6 and 12 months.

2   |   Materials and Methods

2.1   |   Study Design and Overall Procedure

This study is a part of a clinical cohort study “nonoperative treat-
ment of Achilles tendon rupture in Central Finland: a prospective 
cohort study” (trial registration: NCT03704532). Measurements 
were carried out at 2, 6, and 12 months after nonoperatively 

treated AT rupture (mean ± SD time intervals 2.1 ± 0.3, 6.6 ± 1.1, 
and 12.5 ± 0.9 months) in a prospective follow-up design. The 
study was approved by the Research Ethics Committee of the 
Central Finland Health Care District (2U/2018) and was con-
ducted in accordance with the Declaration of Helsinki. Each par-
ticipant signed an informed consent prior to participation. The 
rights of the participants were protected in all circumstances.

2.2   |   Participants and Recruitment

Thirty-five (28 males and 7 females) participants (mean ± SD age 
41.7 ± 11.1 years [range 20–65 years], height 176.5 ± 8.6 cm, body 
mass 85.3 ± 16.9 kg, body mass index (BMI) 27.3 ± 4.7 kg/m2) 
diagnosed with a unilateral ATR were recruited between 2018 
and 2022. Recruitment was carried out at the Hospital Nova of 
Central Finland at the time of diagnosis. Participants were diag-
nosed within 14 days of acute ATR, with at least two out of four 
positive tests based on the American Academy of Orthopaedic 
Surgeons guidelines [18]. All participants received nonoperative 
care and early mobilization [19] (Table 1). Inclusion criteria were 
a minimum age of 18 years, normal walking ability (>100 m un-
aided) before rupture, and medical permission to walk unaided 
before the first measurement. Participants with systemic diseases 
(e.g., diabetes mellitus and hypertension) were excluded due to 
the association between these conditions and tendon health [20]. 
Other exclusion criteria were a rerupture, avulsion fracture of the 
calcaneus, and a previous ATR. Participant height and body mass 
were measured, and BMI calculated. Previous follow-up studies 
using similar methods have reported sample sizes of 22–86 indi-
viduals [4–6], and we aimed to include similar numbers.

2.3   |   Study Protocol

A goniometer was used to measure ATRA in prone position, 
with the knee at a 90° angle [21]. The resting length of the MG 

TABLE 1    |    Nonoperative care and early mobilization procedure 
after rupture.

Weeks 0–2 Full equinus ankle cast

Weeks 2–4 Functional walking cast with 20°equinus 
allowing active plantarflexion exercises

Active plantar flexion exercises were 
instructed to be performed five times a day

Patients were encouraged to proceed 
to full weightbearing by Week 4

Weeks 4–8 Custom made functional walking 
orthosis with 1 cm heel wedge

Removal of the heel wedge from 
the orthosis at Week 6

>Week 8 Removal of orthosis

Instruction to use heel wedge 
in a shoe for 4 weeks

Progressive rehabilitation instructions 
from a physiotherapist
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subtendon was measured in prone with the ankle relaxed over 
the edge of examination table. Ultrasound was used to mark the 
proximal head of the calcaneus and the distal MG muscle–ten-
don junction. The distance between the marks was measured 
using a measuring tape [22]. In the same prone position, AT 
thickness and MG muscle architecture were acquired. First, 
AT thickness was imaged longitudinally over the free tendon 
using a 36 mm linear transducer. Next, images were taken to 
determine MG fascicle length and pennation angle at 50% of 
the muscle length between the crease of the knee and distal 
muscle–tendon junction [23], using a 60 mm linear transducer. 
Finally, CSA of the MG was imaged with the extended field of 
view at 50% of muscle length with the knee flexed to 90°, using 
the 36 mm linear transducer. A guide strap was placed around 
the calf to ensure imaging from the defined location along the 
horizontal plane. All B-mode ultrasound imaging was per-
formed using the Aloka Alpha-10 system (Aloka, Tokyo, Japan) 
for both limbs in random order. We have previously reported 
the reliability of imaging gastrocnemius muscle architecture in 
our laboratory [24].

Supersonic shear wave elastography (Aixplorer Supersonic 
Imagine, v. 12.3.1 Aix-en-Provence, France) was used to as-
sess tendon SWV (m × s−1). The technique serves as a surrogate 
of passive tissue stiffness, and it has been described in detail 
previously [25]. During imaging, participants were lying prone 
with both feet fixed at 25° ankle plantarflexion. The proximal 
head of the calcaneus was identified using B-mode ultrasound 
and marked on the skin. The shear wave elastography map 
of the AT was recorded longitudinally using a 38 mm linear 
transducer (2–10 MHz, SL10-2), with the distal edge of the 
transducer aligned with the mark on the proximal calcaneus 
(elasticity range 0–16.3 m × s−1; image depth adjusted accord-
ing to the tendon thickness). The region of interest was set as 
wide as possible to cover the entire AT. The transducer was 
held still for ~5 s during each acquisition. All measurements 
were performed with a custom musculoskeletal preset (pene-
tration mode, smoothing Level 5, persistence off, opacity 100%). 
Probe orientation was determined when multiple tendon fasci-
cles and both superficial and deep tendon border were visible. 
Pressure between the probe and skin was kept to a minimum. 
Intrarater reliability of elastography imaging was tested for one 
rater with test–retest measurements performed 15 min apart in 
healthy pilot participants (n = 16). Reliability was tested using 
the intraclass correlation coefficient (ICC₃ˌ₁), standard error 
of measurement (SEM), minimum detectable change (MDC), 
and the coefficient of variation (CV). Intrarater reliability of 
shear wave elastography imaging yielded an ICC of 0.867 (95% 
CI −0.063 to 0.991), SEM 0.6 m × s−1, MDC 1.7 m × s−1, and 
CV 4.8%.

Isometric plantarflexor muscle MVC was tested with partici-
pants seated in an ankle dynamometer (University of Jyväskylä) 
with the knee extended and the hip in 60° flexion. Using inelastic 
straps, the foot was fixed to the dynamometer footplate in a neu-
tral ankle position (0°) and the knee was secured in extension. 
The axis of the dynamometer was aligned with the presumed 
center of rotation of the ankle. Torque data were recorded using 
Spike2 software (v. 6.17, Cambridge Electronic Design Limited, 
Cambridge, UK) and sampled at a frequency of 1 kHz using a 
16-bit analogue-to-digital converter (Power 1401, Cambridge 

Electronic Design, Cambridge, UK) connected to a computer. 
For conditioning, participants performed submaximal isometric 
contractions for 2 min. Between each maximal effort, partici-
pants were given 2 min rest and a minimum of three trials were 
recorded to obtain the highest MVC.

Then, the 36 mm linear transducer (Aloka, Tokyo, Japan) was 
placed longitudinally on the distal AT to record the internal dis-
placement of the AT. After familiarization, a video of B-mode 
images was recorded during an isometric ramp contraction up 
to a target torque of 30% of the MVC of the uninjured limb, at 
a sampling frequency of 50 Hz. The reliability of imaging AT 
internal displacement in our laboratory has been reported pre-
viously [26].

Tegner score [27] was used to inquire the level of sports partic-
ipation before injury and at 12 months after rupture. One-item 
Tegner score is graded on a scale of 0–10, with 0 points repre-
senting full disability in sports participation. Subjective per-
ception of recovery was inquired using Achilles tendon total 
rupture score (ATRS) [28] at 12 months postrupture. The ATRS 
is calculated from 0 to 100 points, with 100 points indicating no 
functional deficits.

2.4   |   Data Processing

Structural data were processed using ImageJ (1.44b, National 
Institutes of Health). The average values from two images were 
used for statistical analysis. Tendon thickness was analyzed 
2 cm above the proximal head of the calcaneus. MG fascicle 
length was determined between the superficial and deep apo-
neurosis, and MG pennation angle from the angle between the 
fascicle and deep aponeurosis.

Shear wave velocity was processed using a custom software 
(ElastoGUI open software https://​bio.​tools/​​elast​ogui, University 
of Nantes, France) developed for MATLAB (v. R2022b, The 
MathWorks, Inc., Natick, MA, USA). The area of analysis was 
adjusted to cover the largest possible area within the superficial 
and deep tendon borders, and each pixel of the elastogram was 
converted to SWV based on the recorded color scale. Mean ± SD 
values of the analyzed areas for uninjured and injured limb were 
1.1 ± 0.2 and 2.4 ± 0.8 cm2, respectively. Acceptable saturation 
and void levels of <3% and <0.1% were used. Saturation was 
present in 24 analyzed SWV recordings (average saturation % 
for uninjured and injured limbs: 0.4% and 0.2%).

Differential proximo-distal displacements within the sagit-
tal section of the AT were analyzed in MATLAB (v. R2021b, 
MathWorks Inc, Natick, MA, USA) using 2D speckle tracking 
[9] adapted by Khair et al. [12] from cine B-mode ultrasound 
images. The region of interest was manually positioned over 
the distal tendon to ensure that only tendinous tissue was in-
cluded. Within the region of interest, a grid of six locations 
across the thickness of the tendon and 11 locations across the 
length of the tendon was generated. Tendon nonuniformity 
was quantified as the difference between the minimum and 
maximum peak displacements within the tracked locations 
and normalized to the mean displacement of the six locations 
across the tendon.
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Limb asymmetry index (LSI) was calculated for all variables as 
percentage (%) difference between limbs: Injured−uninjured

uninjured
× 100.

2.5   |   Statistical Analysis

Statistical analyses were performed using JASP (JASP v. 0.16.4, 
Amsterdam, Netherlands). Descriptive statistics are presented 
as means and standard deviations (SD) as well as medians 
and interquartile ranges (IQR). Statistical significance was de-
fined as p < 0.05. Skewness and kurtosis were checked to en-
sure data normality. Three forward multiple linear regression 
models were constructed using MVC LSI at 6 and 12 months 
and normalized AT nonuniformity at 12 months as dependent 
variables. To determine eligible independent variables to the 
multiple regression models, simple linear regressions between 
the main outcomes and potential independent variables were 
computed for both 6 and 12 month time points. Independent 
variables were considered eligible with a significance level of 
<0.05. Because of the small sample size, a maximum of two 
independent variables with the highest β values were included 
in the multiple regression models. Age and sex were retained 
in the models as clinically important variables. The basic as-
sumptions of the regression models were carefully confirmed 
according to appropriate test diagnostics. All correlations be-
tween the independent variables were <0.7 to ensure the ab-
sence of multicollinearity.

3   |   Results

3.1   |   Cohort Characteristics

Thirty-five participants were included. Four participants were 
unable to attend the assessments at 6 months due to personal 
schedules. Therefore, 31 individuals were included in the anal-
ysis for 6 month time point and 35 individuals for 12 months. 
The average pre-injury and 12 month Tegner scores were 6 ± 2 
and 6 ± 2, respectively. The median (IQR) ATRS score was 92 
(17) points at 12 months. Descriptive statistics of the measured 
outcomes are summarized in Tables 2 and 3. Further informa-
tion on side-to-side differences between limbs and differences 
between sexes can be found in (Appendices S1–S4).

3.2   |   Simple Linear Regression

Results for simple linear regressions are presented in Table 4. 
Based on these associations, ATRA LSI and MG fascicle length 
LSI were selected as independent variables for the multiple re-
gression model predicting 6 month MVC symmetry, and ATRA 
LSI and MG subtendon length LSI for the model predicting 
12 month MVC symmetry. The 6 month multiple regression was 
not done for AT nonuniformity, as none of the potential predic-
tors were significant. ATRA LSI was used in the model predict-
ing the symmetry of AT nonuniformity at 12 months.

3.3   |   Multiple Linear Regression

Regression models for MVC symmetry at 6 and 12 months ex-
plained 41.6% and 41.8% of the variance, respectively (Table 5). 
In both models, ATRA symmetry at 2 month time point emerged 
as a single significant predictor of MVC symmetry (Figure 1).

4   |   Discussion

The results showed that greater symmetry of ATRA at 
2 months was associated with greater plantarflexor muscle 
strength symmetry at 6 and 12 months after rupture. These 
findings complement prior work [4–6, 8] identifying clinical 
variables that predict later functional outcomes. We did not 
find associations between the measured variables and AT 
nonuniformity, and further research is warranted to investi-
gate the relationship between tendon function and the mor-
phomechanical properties of the triceps surae muscle–tendon 
unit. Identification of factors affecting AT nonuniformity 
after rupture may require investigation at individual or clus-
ter level [12].

4.1   |   Symmetry of Maximal Voluntary Contraction

Based on the multiple regression models, a 1% improvement in 
ATRA LSI would result in a 2.5% improvement in MVC LSI at 
6 months and a 1.6% improvement at 12 months. These find-
ings align with previous cross-sectional studies reporting a 

TABLE 2    |    Descriptive statistics of potential predictor variables measured at 2 months.

Uninjured limb Injured limb % difference (LSI)

MG CSA (cm2) 15.17 ± 4.27 12.54 ± 3.11 −15.8

MG fascicle length (cm) 4.88 ± 0.77 4.42 ± 0.59 −8.1

MG pennation angle (°) 25.49 ± 3.40 25.07 ± 5.82 −1.1

MG subtendon length (cm) 18.15 ± 2.01 19.72 ± 2.20 8.8

AT thickness (cm) 0.47 ± 0.08 0.96 ± 0.19 109.4

ATRA 131.87 ± 6.31 122.84 ± 6.10 −6.8

AT SWV (m × s−1) 10.19 ± 1.85 6.37 ± 1.80 38.2

Note: All values are presented as means ± SD.
Abbreviations: ATRA = Achilles tendon resting angle, AT = Achilles tendon, CSA = cross-sectional area, LSI = limb asymmetry index, SWV = shear wave velocity.
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correlation between ATRA and heel-rise performance after ATR 
[15–17]. Furthermore, Carmont and colleagues [8] found an as-
sociation between greater intraoperative ATRA and 12 month 
heel-rise performance in operatively treated patients, support-
ing our findings. The results of this study show that in addition 
to heel-rise performance, ATRA is also related to the isometric 
plantarflexor muscle strength deficit tested with ankle in neu-
tral position, suggesting that ATRA is associated with plantar-
flexor force production capacity under different conditions. It is 
possible that the force production capacity of the injured limb 
could differ if tested at a different ankle angle due to the elon-
gated tendon [29]. It is reasonable to assume that the current 
sample would show smaller plantar flexion strength impair-
ment in a more dorsiflexed ankle position. Given that the ankle 
resting position can be directly altered by the increased tendon 
length after rupture, and that tendon elongation is responsible 
for the altered configuration in the muscle–tendon unit [30], 
early measurement of ATRA could serve as a potential clinical 
tool for screening patients at risk for worse functional outcomes. 
As ATRA is easily applicable in clinical practice and research, 
future studies should investigate whether cutoff values of inter-
limb symmetry could be established to identify risk of inferior 
functional outcomes.

Shear wave-based stiffness of the AT has been observed to 
acutely decrease after rupture and gradually increase in accor-
dance with tendon healing [7, 31]. Although AT SWV did not 
enter our prediction models, simple linear regressions showed 
a moderate positive association between AT SWV and both 6 
and 12 month MVC LSI. Interestingly, similar observations have 
been obtained in earlier studies using ultrasound elastography 
methods [4, 7]; for instance, early measurement of AT dynamic 
shear modulus [4] has been associated with objectively mea-
sured patient function at 6 months after ATR. These findings 
suggest that early recovery of stiffness in the injured tendon 
might reflect a favorable recovery of biomechanical properties 
that are essential for regaining tendon resilience for later load-
ing and functional performance.

Although the participants had asymmetry in plantarflexor mus-
cle strength throughout the follow-up period, on average they 
were able to return to pre-injury levels of sports participation 
1 year after rupture. The average Tegner activity score both 
before and after injury was Level 6, which corresponds to par-
ticipation in recreational sports at least five times a week [27]. 
Previous studies have reported significantly reduced levels 
of physical activity 1 and 2 years after rupture [8, 14]. Patient-
reported scores do not appear to address the deficits in mus-
cle–tendon unit structure or objective functional outcomes in 
general population [1], although they are an important measure 
of the subjective perception of recovery.

4.2   |   Symmetry of Achilles Tendon Nonuniformity

The general understanding of factors associated with non-
uniform AT subtendon displacement is yet limited [11, 32]. 
In the present study, we hypothesized that asymmetry of AT 
nonuniform displacement could be predicted by early resting 
measures of AT and triceps surae muscle properties. Since 
nonuniform displacement results from differential forces T
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TABLE 4    |    Results for simple linear regressions between outcome variables and potential predictors.

R2 β 95% CI p

Dependent variable: 6 month MVC LSI

Age 0.092 −0.500 −1.095–0.096 0.097

BMI 0.037 −0.699 −2.052–0.653 0.299

MG CSA (cm2) 0.011 0.133 −0.355–0.620 0.582

MG fascicle length (cm) 0.138 0.495 0.016–0.974 0.043

MG pennation angle (°) 0.126 −0.284 −0.574–0.006 0.054

MG subtendon length (cm) 0.076 −0.831 −1.975–0.314 0.148

AT thickness (cm) 0.002 −0.016 −0.147–0.115 0.803

ATRA 0.455 2.763 1.615–3.910 <0.001

AT SWV (m × s−1) 0.262 0.473 0.091–0.854 0.018

Dependent variable: 12 month MVC LSI

Age 0.188 −0.654 −1.135 to −0.172 0.009

BMI 0.011 −0.372 −1.627–0.883 0.551

MG CSA (cm2) 0.001 0.033 −0.423–0.488 0.885

MG fascicle length (cm) 0.245 0.631 0.232–1.029 0.003

MG pennation angle (°) 0.086 −0.229 −0.497–0.039 0.092

MG subtendon length (cm) 0.137 −1.105 −2.121 to −0.090 0.034

AT thickness (cm) 0.000 5.514 × 10−4 −0.120–0.121 0.993

ATRA 0.218 1.871 0.615–3.126 0.005

AT SWV (m × s−1) 0.221 0.429 0.064–0.794 0.023

Dependent variable: 6 month normalized AT nonuniformity LSI

Age 0.031 1.142 −1.420–3.705 0.368

BMI 0.024 −2.067 −7.374–3.240 0.431

MG CSA (cm2) 0.032 −1.004 −3.288–1.280 0.374

MG fascicle length (cm) 0.113 1.755 −0.273–3.784 0.087

MG pennation angle (°) 0.128 −1.063 −2.208–0.082 0.067

MG subtendon length (cm) 0.004 −0.786 −5.638–4.065 0.741

AT thickness (cm) 0.001 −0.037 −0.578–0.504 0.890

ATRA 0.124 −5.993 −12.425–0.439 0.067

AT SWV (m × s−1) 0.189 −1.483 −3.005–0.040 0.056

Dependent variable: 12 month normalized AT nonuniformity LSI

Age 0.113 0.920 −0.007–1.846 0.052

BMI 0.057 1.583 −0.737–3.903 0.174

MG CSA (cm2) 0.001 −0.056 −0.895–0.783 0.893

MG fascicle length (cm) 0.001 0.055 −0.802–0.912 0.896

MG pennation angle (°) 0.030 0.244 −0.264–0.753 0.335

MG subtendon length (cm) 0.036 1.032 −0.959–3.023 0.298

AT thickness (cm) 0.060 0.152 −0.069–0.374 0.171

ATRA 0.140 −2.713 −5.134 to −0.291 0.029

AT SWV (m × s−1) 0.125 −0.654 −1.439–0.131 0.098
Note: All variables were analyzed as limb asymmetry index values (percentage difference between limbs).
Abbreviations: ATRA = Achilles tendon resting angle, AT = Achilles tendon, BMI = body mass index, CSA = cross-sectional area, MG = medial gastrocnemius, 
MVC = maximum voluntary contraction, SWV = shear wave velocity.
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applied to each subtendon [33], changes that occur to the 
fascicle length of the triceps surae muscles, in addition to in-
terfascicular matrix adhesions after rupture may explain the 
reduction in AT nonuniformity [34]. The relationship between 
the architecture of a given muscle and its excursion capacity 
is well established [35]. Contrary to expectations, the multiple 
regression model was insignificant, although the initial simple 
regression showed an inverse association between the early 
measurement of ATRA and AT nonuniformity at 12 months. 
This association would suggest that a greater difference in 
ATRA between limbs would be related to a smaller asymme-
try in AT nonuniformity. This inverse relationship appears to 
be controversial, and there may be confounding factors affect-
ing the observation.

The AT has a complex twisted geometry [36], which creates a 
challenge for in vivo assessment during functional tasks [32]. As 
the mechanical behavior of the AT is composed of three sub-
tendons, we may have to account for the entire triceps surae to 
better understand the internal tendon behavior. Triceps surae 
muscles have heterogenous muscle fiber characteristics [37] and 

activation during locomotion [38], whereas the three subten-
dons show differential mechanical properties [32, 39]. Cadaveric 
studies [36] have shown that the magnitude of AT twisting var-
ies in healthy individuals. Depending on the degree of rotation 
of each subtendon from proximal to distal orientation, three 
groups of twisting patterns have been distinguished across the 
population [36]. It is possible that averaging the nonuniformity 
values from a sample of individuals with varying degrees of 
twisting may mask details of nonuniform displacement of the 
AT. Therefore, stratifying the data at the cluster level could pro-
vide further insight into the factors influencing AT nonunifor-
mity after rupture.

4.3   |   Limitations

This study comes with some limitations. First, the age range 
of the participants was wide, which may have resulted in dif-
ferent baseline characteristics of the muscle–tendon unit and 
healing progression between participants. Second, detailed 
individual progress with rehabilitation exercises or additional 

TABLE 5    |    Results for multiple linear regression models predicting MVC and AT nonuniformity symmetry at 6 and 12 months after rupture.

Model with included predictors β 95% CI p

MVC LSI (%) at 6 months, n = 30

Adjusted R2 = 0.416, F (4, 25) = 6.171, RMSE = 13.72

ATRA LSI (%) at 2 months 2.530 1.041–4.018 0.002

MG fascicle length LSI (%) at 2 months 0.217 −0.213–0.647 0.309

MVC LSI (%) at 12 months, n = 33

Adjusted R2 = 0.418, F (4, 28) = 5.027, RMSE = 14.08

ATRA LSI (%) at 2 months 1.659 0.330–2.988 0.016

MG subtendon length LSI (%) at 2 months −0.693 −1.647–0.262 0.148

Normalized AT nonuniformity LSI (%) at 12 months, n = 34

Adjusted R2 = 0.123, F (3, 30) = 2.548, RMSE = 28.83

ATRA LSI (%) at 2 months −2.243 −4.751 to −0.266 0.078

Abbreviations: ATRA = Achilles tendon resting angle, AT = Achilles tendon, LSI = limb asymmetry index, MG = medial gastrocnemius, MVC = maximal voluntary 
contraction, SWV = shear wave velocity.

FIGURE 1    |    Relationship between Achilles tendon resting angle symmetry at 2 months and isometric plantarflexor muscle maximal voluntary 
contraction symmetry at 6 and 12 months. ATRA = Achilles tendon resting angle, LSI = limb asymmetry index, MVC = maximal voluntary 
contraction.
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visits to physiotherapy after the initial nonoperative treatment 
was not controlled for, which may have led to differences in 
rehabilitation procedures. However, in terms of age and po-
tential differences in rehabilitation, they are representative 
of the general population of patients with ATR [40]. Third, 
the pre-injury Tegner score was inquired retrospectively at 
2 months after injury, which may introduce a possibility of re-
call bias. Finally, the small sample size limits generalizability 
of the present findings.

4.4   |   Perspective

ATRA measured at 2 months was found to be associated with 
plantarflexor strength deficit within 1 year after rupture, which 
aligns with previous studies reporting a relationship between 
ATRA and heel-rise performance [8, 15–17]. The findings sug-
gest that ATRA may be a relevant biomarker of the progression 
of tendon healing and have potential as a clinical tool for identi-
fying patients at risk of prolonged strength deficits.
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