

A Method for Optimum Control of

Dynamic Load Distribution in

 Time-sensitive Communication Networks for

Manufacturing Automation

Thomas Weichlein

A thesis submitted to

The University of Gloucestershire

in accordance with the requirements of the degree of

Doctor of Philosophy

in the School of Computing and Engineering

June 2024

Word Count: 73707

 Page 2

Abstract

Communication between end stations in a contemporary communication network

typically occurs over several paths for media redundancy and throughput

enhancement. To use all paths as evenly as possible, load balancing or load

distribution methods are applied, mainly in higher level information technology (IT)

networks such as Internet Service Provider (ISP) networks, campus networks, and

mobile access networks. Automation networks of operations technology (OT),

particularly Manufacturing Automation Networks (MAN), have rarely been subject to

load distribution control. IEEE Time Sensitive Networks (TSN) are a relatively young

network development that offers, among other features, redundant paths for

automation networks, the essential precondition for load distribution. Furthermore,

the TSN framework defines several traffic shapers and schedulers which are expected

to have different impacts on Load Distribution Control (LDC). However, the selection

of the right traffic shaper or scheduler for an automation network is challenging. Their

influence depends on various network parameters such as network extension,

network cycles, application cycles, and the amount of data per traffic class and per

network cycle. This thesis proposes, designs, and develops a method for optimum

control of dynamic load distribution in time-sensitive communication networks for

manufacturing automation.

The research philosophy underlying this research project is positivism. Literature

review (textual analysis) is used to obtain secondary data on relevant use cases of

automation communication, control theory concepts, and network standards. To

obtain the primary data on the control results, simulation is used.

Firstly, the influence of different TSN MAN network parameters and properties on LDC

is investigated. Secondly, the data flow control is analysed as a subsequent control

task for LDC under the influence of the different traffic shapers and traffic schedulers.

Based on these results, thirdly, a dedicated optimum load distribution control method

for MAN with a single automation controller (AC) is proposed. Then, this optimised

LDC method is applied to a network with multiple ACs.

Page 3

Contribution: The results of the analysis and evaluation of the influence of the various

automation parameters as well as the TSN shapers and schedulers provide a detailed

picture of the data flow control options within TSN MAN. The derivation of control

properties for data flow control and load distribution control as well as their control

simulation and evaluation of the results create the prerequisites for the design of LDC

solutions in these networks. A strong influence of the application cycles on the control

dynamics and stability is demonstrated. It is further shown that network nodes using

SPQ, SPQ with Preemption, and EST provide rather low path delays. They are the best

shaper and scheduler selections in high dynamic networks and in larger networks. The

application of network nodes using CQF and ATS can result in significantly high path

delay times, and thus, high control dead times, especially in larger networks with a

high hop count. Therefore, they are recommended only for smaller network sizes with

lower dynamic requirements. Based on this preliminary work, the study also provides

optimised control solutions for single and multiple AC LDCs, both with and without

mutual AC interference. The results based on network simulations confirm the

suitability of these solutions and show that the overall convergence time improves.

Thus, the present study provides a new comprehensive view and solutions to the

possibilities of LDC within TSN MAN that have been lacking in the research literature

so far.

Declaration of Original

I declare that the work in this thesis was carried out in accordance with the regulations

of the University of Gloucestershire and is original except, where indicated by specific

references in the text. No part of the thesis has been submitted as part of any other

academic award. The thesis has not been presented to any other education institution

in the United Kingdom or overseas. Any views expressed in the thesis are those of the

author and in no way represent those of the University.

Signed: Date: 2024/06/04

DOI: 10.46289/77UV2F4D

Page4

Page 5

Acknowledgment

At this point I would like to express my special thanks to my first supervisor, Prof

Shujun Zhang from the University of Gloucestershire for his advice and guidance,

which helped me to get this thesis on the right track. His experience, scientific

knowledge and domain expertise were invaluable for its success. I would also like to

thank my second supervisor, Dr Xu Zhang from the University of Southampton, for his

support and critical review of my work.

I also thank Prof Ros Jennings, Dr Philippa Ward, and Dr John Hockey from the

University of Gloucestershire for the transfer of the necessary basics of research

philosophy, methods, and methodology. Many thanks also to Dr William Sayers for

the critical review of the research design and to the staff of the university for their

support during these years.

I am also very grateful for the many inspiring and informative discussions with my

system architecture colleagues at SIEMENS AG, Digital Industries, during the many

years with definitions of general automation communication requirements and during

the preparation of contributions to IEC and IEEE communication networks

standardisation.

 Page 6

Table of Contents

Abstract…………. ... 2

Declaration of Original .. 4

Acknowledgment .. 5

Table of Contents .. 6

List of Figures…. .. 11

List of Tables…. ... 14

List of Abbreviations.. 15

Definitions…….. ... 21

Chapter 1 Introduction .. 24

1.1 Overview ... 24

1.2 Project Background ... 24

1.3 Motivation ... 32

1.4 Overall Aim and Research Objectives ... 33

1.5 Thesis Contributions to New Knowledge Generation 34

1.6 Publications ... 35

1.7 Thesis Structure .. 35

Chapter 2 Literature Review .. 37

2.1 Introduction .. 37

2.2 Communication Networks .. 37

2.2.1 General Communication Networks ... 37

2.2.2 Manufacturing Automation Networks (MAN) 40

2.2.3 Time Sensitive Networks (TSN) as MAN ... 46

2.3 Methods for Load Control in Communication Networks 52

Page 7

2.3.1 Load Reduction Strategies .. 52

2.3.2 Closed-loop Dynamic Load Control .. 54

2.3.3 Controller Types .. 57

2.4 Network Congestion Control .. 66

2.4.1 Open-loop Congestion Control ... 67

2.4.2 Closed-loop Congestion Control ... 72

2.5 Traffic Engineering .. 76

2.5.1 Layer 3 Traffic Engineering ... 77

2.5.2 Layer 2 Traffic Engineering ... 79

2.5.3 Multilayer Traffic Engineering .. 83

2.6 Load Balancing .. 84

2.6.1 Server Load Balancing ... 85

2.6.2 Distributed Systems Load Balancing ... 87

2.6.3 Cloud Computing Load Balancing ... 90

2.6.4 Network Load Balancing ... 91

2.7 Chapter Summary ... 96

Chapter 3 Research Methodology and Design ... 98

3.1 Philosophy and Methodology ... 98

3.2 Methods for Data Collection... 102

3.2.1 Simulation of the Control Circuit .. 104

3.2.2 Simulation of the Network ... 105

3.3 Methods for Data Analysis .. 108

3.4 Ethical Issues ... 108

3.5 Chapter Summary ... 109

Chapter 4 The Influences of TSN MAN Properties on Load Distribution Control

 ………………………………………………………………………………………………110

 Page 8

4.1 Introduction .. 110

4.2 Central or Distributed Control Concept .. 112

4.3 Relevant Network Topologies ... 115

4.4 Path Control and Load Distribution Control Location 117

4.5 Eligible Traffic Classes ... 121

4.6 Control Aspects ... 128

4.7 The Influence of the Automation Applications 136

4.8 The Influence of Stream Reservation .. 140

4.9 Consequences of Network Errors ... 143

4.10 Chapter Summary ... 145

Chapter 5 Application of Different TSN Traffic Shapers and Schedulers for

Subsequent Data Flow Control ... 147

5.1 Introduction .. 147

5.2 The Network as the System under Control 147

5.3 Applicable TSN Traffic Shapers and Traffic Schedulers 154

5.3.1 General Bridge Timing Considerations ... 154

5.3.2 Strict Priority Queuing (SPQ) ... 158

5.3.3 Credit Based Shaper (CBS) .. 160

5.3.4 Enhancements for Scheduled Traffic (EST) 160

5.3.5 Cyclic Queuing and Forwarding (CQF) .. 162

5.3.6 Asynchronous Traffic Shaper (ATS). .. 163

5.3.7 Scheduled Transmission (ST) ... 164

5.3.8 Discussions and Evaluations .. 165

5.4 Identification of the Plant Characteristics..................................... 165

5.4.1 Determination at Design Phase .. 166

5.4.2 Runtime Method for Unsynchronised Networks 168

5.4.3 Runtime Methods for Synchronised Networks 170

Page 9

5.5 Control Method and Structure ... 174

5.6 Network Flow Control Simulation and Results 178

5.7 Chapter Summary ... 191

Chapter 6 A New Control Method for Load Distribution Optimisation in TSN

MAN……………… .. 194

6.1 Introduction .. 194

6.2 Determination of Advantageous Network Preconditions 195

6.3 Discussion and Selection of the Basic Controller Types 195

6.3.1 Introduction .. 195

6.3.2 Discussion of the Relevant Controller Type Properties 196

6.3.3 Controller Type Selection Criteria for MAN 199

6.3.4 Flow Controller Selection .. 200

6.3.5 Distribution Controller Selection .. 201

6.3.6 Discussions and Evaluations ... 205

6.4 Analysis of Drawbacks of Current Basic Distribution Control

Possibilities……………. .. 207

6.5 Proposal of a Control Method for Optimising Load Distribution for

TSN MANs………. ... 209

6.6 Discussion and Selection of the Optimised Feedback Method 213

6.7 Performance Validations of the New Optimised Control Method

 ………………………………………………………………………………………………….215

6.7.1 Introduction .. 215

6.7.2 Performance of the Basic Linear Control 226

6.7.3 Performance of Application Cycle Dedicated Load Control 235

6.7.4 Section Summary .. 244

6.8 Network Error Mitigation Strategy ... 245

6.9 Chapter Summary ... 247

 Page 10

Chapter 7 Extension of the LDC Optimisation to Support Multiple

Automation Controllers ... 248

7.1 Introduction .. 248

7.2 Controller Location Considerations: Centrally or Distributed? 249

7.3 Dependencies between Controller Instances 251

7.4 Discussion and Selection of Solutions ... 252

7.4.1 Influence of Traffic Shapers and Schedulers on Mutual Controller

Dependency .. 253

7.4.2 A Solution Including Mutual Controller Dependencies................. 257

7.4.3 A Solution Avoiding Mutual Controller Dependencies 263

7.5 Performance Considerations for Multiple Automation Controller

Solutions…………. ... 273

7.6 Chapter Summary ... 274

Chapter 8 Conclusion and Further Work ... 276

8.1 Conclusion ... 276

8.2 The Contribution to the New Knowledge Generation 278

8.3 Limitations and Further Work ... 279

Chapter 9 Bibliography .. 281

Appendix 1: Load Calculations of Seamless Communication Use Case 292

Appendix 2: Ns-3 Simulation Code ... 296

Page 11

List of Figures

Figure 1.1: Typical automation communication network setup ... 29

Figure 2.1: Open Systems Interconnection (OSI) communication model 38

Figure 2.2: Basic network topologies .. 42

Figure 2.3: General control system ... 55

Figure 2.4: Neural network predictive control (Hagan et al., 2002) 61

Figure 2.5: MLC control loop (Duriez et al., 2017) .. 64

Figure 2.6: The leaky bucket principle .. 68

Figure 2.7: The token bucket principle (Tanenbaum et al., 2021) .. 69

Figure 2.8: The credit-based shaper algorithm ... 71

Figure 2.9: Client/Server system with server cluster .. 85

Figure 2.10: Common path in redundant or multi-paths communication networks 91

Figure 3.1: Research methodology ... 100

Figure 3.2: An arbitrary network segment between two end stations 104

Figure 4.1: Models of a.) Central Load Distribution Control (CLDC) and b.) Distributed Load

Distribution Control (DLDC). .. 113

Figure 4.2: Rings and redundantly coupled rings .. 117

Figure 4.3: Location possibilities of PCE and LDC entities ... 120

Figure 4.4: Decision criteria for data traffic classification ... 123

Figure 4.5: The coexistence of load-controllable data and non-load-controllable data on a

network path ... 128

Figure 4.6: Abstracted TSN automation network ... 131

Figure 4.7: Automation ring graph .. 132

Figure 4.8: Network cycle and application cycles ... 138

Figure 5.1: Control principle of the distribution control assembly in network rings 149

Figure 5.2: Layer 2 bridge internal frame processing entities .. 155

Figure 5.3: Frame arrival during an EST gating window .. 161

Figure 5.4: Accumulated Latency along a path. .. 172

Figure 5.5: Network path flow control structure .. 174

Figure 5.6: Network control simulation model ... 179

Figure 5.7: Step response and Nyquist diagram for EST ... 185

Figure 5.8: Step response and Nyquist diagram for SPQ with ICI ... 187

Figure 5.9: Step response and Nyquist diagram for ATS with maximum ICI 188

 Page 12

Figure 5.10: Dynamic performance deviation depending on dead time uncertainties 191

Figure 6.1: Optimised feedback creation process for one path 214

Figure 6.2: Automation ring setup for network simulations for performance evaluations .. 216

Figure 6.3: Dynamic Load Distribution Control Simulation with ns-3. Class diagram for

Automation Controller ... 221

Figure 6.4: Dynamic Load Distribution Control Simulation with ns-3. Class diagram for a Bridge

and Bridged End Station ... 223

Figure 6.5: Use case 1: Throughputs over time without load control. 227

Figure 6.6: Use case 2: Throughput with basic load control. .. 229

Figure 6.7: Use case 3: Throughput with full load control .. 230

Figure 6.8: Use case 4: Throughput measurement over all application class cycles with

different rolling mean integration intervals... 232

Figure 6.9: Use case 5.1: Fast application cycle CD load control deterioration under the

influence of applications with slow application cycles and without load control adaptation

to longer load measurement integration intervals. ... 233

Figure 6.10: Use case 5.2: Fast application cycle CD load control deterioration under the

influence of applications with slow application cycles and with load control adaptation to

longer load measurement integration intervals. ... 234

Figure 6.11: Use Case 6 setup ... 235

Figure 6.12: Use case 6.1: Load distribution for use case 6 without load control. 236

Figure 6.13: Use case 6.2: Load distribution for use case 6 with flow control and 8 ms rolling

mean measurement integration interval. .. 237

Figure 6.14: Use case 6.3: Load control results after connection of a slow application with

application cycle 𝑇𝐴𝑝𝑝 = 32 𝑚𝑠 and adaptation of 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠 but without adapting

the load controller parameters. ... 239

Figure 6.15: Use case 6.4: Load control results after connection of a slow application with

application cycle 𝑇𝐴𝑝𝑝 = 32 𝑚𝑠 and adaptation of 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠 and with optimised

load controller parameters. ... 239

Figure 6.16: Use case 6 result: Comparison of the simulation outputs for clockwise direction.

 .. 240

Figure 6.17: Use case 6.5: Load change settling time for common load control in dependency

of application cycle and of slowest application cycle. ... 241

Figure 6.18: Use case 7: Load control results with application cycle dedicated load controllers.

 .. 242

Page 13

Figure 6.19: Load change settling time over application cycle and over slowest application

cycle for application-cycle-dedicated load control. ... 244

Figure 7.1: Machine to machine (M2M) communication ... 248

Figure 7.2: Consequences of path selection ... 252

Figure 7.3: Dynamic load distribution control optimisation process and core algorithm 260

Figure 7.4: EST-DLDC solution for Automation Controller decoupling 265

Figure 7.5: Illustration of EST-DLDC bandwidth use example ... 266

Figure 7.6: Automation setup with seamless traffic ... 268

Figure 7.7: Example of load distribution of seamless communication with unsymmetric load.

 ... 269

Figure 7.8: Segmentation of the controller level ring ... 272

Figure 0.1: The structure of the data frames and most important data structures for the

simulation .. 296

 Page 14

List of Tables

Table 4.1: Industrial automation traffic types ... 122

Table 4.2: Traffic types for load distribution ... 127

Table 4.3: Notations .. 133

Table 4.4: Pseudo code of algorithm for path throughput load maximum determination and

comparison per node and path direction. ... 135

Table 5.1: Pseudo code to build the RM within the bridges and bridged end stations. 153

Table 5.2: Bridge to bridge delay components ... 156

Table 5.3: Pseudo code of algorithm for the PID Controller. .. 175

Table 5.4: Path dead times for the different traffic shapers and schedulers........................ 183

Table 5.5: Simulation parameters ... 184

Table 5.6: Simulation results for shaper/scheduler examples for a fast 2 ms application cycle

dominated network. .. 189

Table 6.1: Possible Distribution Load Control methods. ... 206

Table 6.2: Pseudo code of algorithm for packet control. .. 218

Table 6.3: Load distribution simulation use cases overview. .. 219

Table 6.4: Class Description of Simulation Code for an Automation Controller 221

Table 6.5: Class Description of Simulation Code for a Bridge or a Bridged End Station 224

Table 6.6: Settling times of common control and application-cycle-dedicated control for

different application cycle times .. 243

Table 7.1: Load controller dependency properties of traffic shapers and traffic schedulers and

cooperation solution strategies. .. 256

Table 0.1: Example of effects of seamless symmetric traffic contribution 292

Table 0.2: Example of effects of seamless asymmetric traffic contribution 294

Page 15

List of Abbreviations

AC Automation Controller

ACO Ant Colony Optimisation

ACOC Ant Colony Optimisation Control

ACID Automation Controller Identifier

AD Acyclic Data

AI Artificial Intelligence

AIMD additive-increase/multiplicative-decrease

APPID Application Identifier

AR Application Relationship

ARP Address Resolution Protocol

AS Autonomous System

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

ATS Asynchronous Traffic Shaper

ATS-DLDC Distributed Load Distribution Control based on ATS

AV Audio Video

AVB Audio Video Bridging

Avnu Automation Alliance for TSN and AVB application promotion

BE Best Effort (data traffic)

BLCE Bridge Local Computation Engine

CBS Credit Based Shaper

CCLB Cloud Computing Load Balancing

ccw Counterclockwise

CD Control Data

CIR Configuration in Run

CLDC Central Load Distribution Control

CMA Cumulative Moving Average

CNC Central Network Controller

COMET Programming Language designed for Optimisation Problems

 Page 16

CPU Central Processing Unit

CQF Cyclic Queuing and Forwarding

CQF-DLDC Distributed Load Distribution Control based on CQF

cw Clockwise

DC Distribution Control

DCB Data Centre Bridging

DL Deep Learning

DLB Dynamic Load Balancing

DLDC Distributed Load Distribution Control

DSLB Distributed Systems Load Balancing

ECT Explicit Equal Cost Tree

EIGRP Enhanced Interior Gateway Routing Protocol

ES End Station

EST Enhancements for Scheduled Traffic

EST-DLDC Distributed Load Distribution Control based on EST

ETS Enhanced Transmission Selection

FC Flow Control

FDB Filtering Data Base

FID Forwarding Database Identifier

FP Frame Preemption

FRER Frame Replication and Elimination for Reliability

FTP File Transfer Protocol

gPTP Generic Precision Time Protocol

GMPLS Generalized MPLS

GNU GNU is not Unix

I-CD Isochronous Control Data

HMI Human Machine Interface

HSR High Availability Seamless Redundancy

ICI In-Class-Interference

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

Page 17

IET Interspersing Express Traffic

IGP Interior Gateway Protocol

I/O Input/Output

IP Internet Protocol

IS-IS Intermediate System – Intermediate System

ISO International Organization of Standardization

IPV Internal Priority Value

ISP Internet Service Provider

IT Information Technology

LA Listener Attach

LAN Local Area Network

LDC Load Distribution Control

LNI Labs Network Industrie 4.0

LSP Labeled Switched Path

LTE Long Term Evolution mobile networks

LTE-A LTE Advanced network or 4G+ network

LR Literature Review but also Listener Ready, context dependent

MAC Media Access Control

MAN Manufacturing Automation Networks

MC Motion Controller

MIB Management Information Base

ML Machine Learning

MLC Machine Learning Control

MLTE Multilayer Traffic Engineering

mmWave NR Millimeter wave new radio (30 to 300 GHz)

MPLS Multi-Protocol Label Switching

MRP Media Redundancy Protocol but also Multiple Reservation Protocol

MRT Maximally Redundant Tree

MSRP Multiple Stream Registration Protocol

MSTP Multiple Spanning Tree Protocol

MSTI Multiple Spanning Tree Instance

 Page 18

M2M Machine to Machine

NARMA Non-linear Auto-Regressive Moving Average

NETCONF Network Configuration Protocol

NI-CD Non-isochronous Control Data

NLB Network Load Balancing

NLC Network Load Control

NP-hard Non-deterministic Polynomial-time hardness

ns-3 Network Simulator Tool

OMNet++ Network Simulator Tool

OSI Open Systems Interconnection

OSPF Open Shortest Path First

OPC Open Platform Communications

OPC UA Open Platform Communications Unified Architecture

OPC UA PubSub OPC UA Publisher Subscriber

OSI Open Systems Interconnection

OSPF Open Shortest Path First

OT Operations Technology

PBB Provider Backbone Bridging

PBBN Provider Backbone Bridged Networks

PC Packet Control

PCA Path Computation Agent

PCE Path Computation Element

PCR Path Control and Reservation

PHY Physical access to the communication media

PLC Programmable Logic Controller

PN PROFINET

PRP Parallel Redundancy Protocol

PSFP Per-Stream Filtering and Policing

PTP Precision Time Protocol

PT1 Proportional Element with one time constant

PID Proportional Integral Differential (Controller)

Page 19

QoS Quality of Service

RAP Resource Allocation Protocol

RIP Routing Information Protocol

RR Resource Reservation

RSTP Rapid Spanning Tree Protocol

RTT Round Trip Time

RFC Request for Comments

RM Rolling Mean

RO Research Objective

SDN Software Defined Networks

SDU Service Data Unit

SLB Server Load Balancing

SNMP Simple Network Management Protocol

SPB Shortest Path Bridging

SPBM Shortest Path Bridging – MAC

SPBV Shortest Path Bridging – VID

SPQ Strict Priority Queuing or Static Priority Queuing

SPQ-DLDC Distributed Load Distribution Control based on SPQ

SR Stream Reservation

SRP Stream Reservation Protocol

ST Scheduled Transmission

TA Talker Advertise or Talker Announce

TAS Time Aware Shaper, synonym for EST

TCAM Ternary Content Aware Memory

TCP Transport Control Protocol

TE Traffic Engineering

TED Traffic Engineering Database

TLV Type Length Value coding

TSN Time sensitive networks

UDP User Datagram Protocol

UML Unified Modelling Language

 Page 20

URL Unified Resource Locater

VID VLAN Identifier

VLAN Virtual Local Area Network

VxLAN Virtual Extensible LAN

WDM Wavelength Division Multiplexing

WAN Wide Area Network

Page 21

Definitions

Distribution Controller The controller which determines the target load

distribution, and which feeds the flow controller for

the individual paths. It is part of the Distribution

Control Assembly.

Distribution Control Assembly The assembly consisting of the actual distribution

controller and the downstream flow controller.

Flow Controller The controller which controls the increase and

decrease of load on the individual network paths

and which is fed by the distribution controller. It is

part of the Distribution Control Assembly.

Load balancing Distribute communication load equally among

several communication paths.

Load distribution Distribute communication load onto several

communication paths according to a given

distribution requirement. A more general

expression for load sharing and load balancing.

Control plane The functional entities of bridges and bridged end

stations providing interfaces for network protocols

to influence the behaviour of these devices.

Data plane The functional entities of bridge or bridged end

stations that provide mechanisms for the data

transport.

Gating window Time duration when a queue gate at a port is open.

Synonym for gate open window.

Load sharing Synonym for load balancing.

Intra-domain Within and bound to a delimited network domain.

Network cycle Synonym for network gating cycle or gating cycle.

 Page 22

Switch In the network domain terminology often used as a

synonym for bridge.

According to IEEE 802.1Q:

End station A device attached to a LAN or MAN, which acts as

a source of, and/or destination for, data traffic

carried on the LAN or MAN.

Bridge A functional unit that interconnects two or more

LANs or MANs that use the same Data Link layer

protocols above the MAC sublayer but can use

different MAC protocols. Synonym for switch.

Gating cycle The period of time over which the sequence of

operations in a gate control list repeat. It is here

and in other literature also addressed as network

gating cycle or shortly network cycle.

Listener The end station that is the destination, receiver, or

consumer of a stream.

Stream A unidirectional flow of data (e.g., audio and/or

video) from a Talker to one or more Listeners.

Talker The end station that is the source or producer of a

stream.

Time Sensitive Stream A stream of data frames that are required to be

delivered with a bounded latency.

Traffic Class A classification used to expedite transmission of

frames generated by critical or time sensitive

services. Traffic classes are numbered from zero

through N-1, where N is the number of outbound

queues associated with a given Bridge Port, and 1

Page 23

<= N <= 8, and each traffic class has a one-to-one

correspondence with a specific outbound queue for

that Port. Traffic class 0 corresponds to

nonexpedited traffic; nonzero traffic classes

correspond to expedited classes of traffic. A fixed

mapping determines, for a given priority associated

with a frame and a given number of traffic classes,

what traffic class will be assigned to the frame.

Stream Reservation (SR) Class A traffic class whose bandwidth can be reserved for

e.g., audio/video (AV) traffic. A priority value is

associated with each SR class. SR classes are

denoted by consecutive letters of the alphabet,

starting with A and continuing for up to seven

classes.

StreamID A 64-bit field that uniquely identifies a stream.

 StreamID comprises the following two

subcomponents:

 A 48-bit MAC Address associated with the System

sourcing the stream to the bridged network. The

MAC address shall be unique within the network.

 A 16-bit unsigned integer value, Unique ID, used to

distinguish among multiple streams sourced by the

same System.

 Page 24

Chapter 1 Introduction

1.1 Overview

This chapter provides background on how the research project is embedded in the

current technology of industrial communication networks and how the discipline

of control engineering contributes to possible solutions for load distribution. It

also explains why this project is important, its overall aim and research objectives,

the contributions to the new knowledge generation, and how the thesis is

structured.

1.2 Project Background

The continuously increasing communication demand in the industry is primarily

due to the “Industry 4.0” industrial revolution. This implies a significant expansion

in the digitalisation of the production process and vertical communication

connectivity from cloud-based servers down to the sensor level in an industrial

plant. This increase implies not only a growing demand for data volume and

communication speed, but also a higher need for reliable and deterministic data

transport. These developments have led in a first step to the development of the

Audio Video Bridging (AVB) standard (IEEE 802.1BA, 2011) and finally to the

creation of a “Time-Sensitive Networks (TSN)” (Finn, 2018; Lo Bello & Steiner,

2019) Task Group (TG) as part of the IEEE 802.1 Working Group (WG). TSN is

defined by the associated IEEE standards, some of which are still being developed

and extend the IEEE 802.1 standards:

• Forwarding and Queuing Enhancements for Time-Sensitive Streams (IEEE

802.1Qav, 2009),

• Enhancements for Scheduled Traffic (EST) (IEEE 802.1Qbv, 2015),

• Frame Preemption (FP) (IEEE 802.1Qbu, 2015),

• Path Control and Reservation (PCR) (IEEE 802.1Qca, 2015),

• Per-Stream Filtering and Policing (PSFP) (IEEE 802.1Qci, 2016),

• Cyclic Queuing and Forwarding (CQF) (IEEE 802.1Qch, 2019),

Page 25

• Frame Replication and Elimination for Reliability (FRER) (IEEE 802.1CB, 2017),

• Stream Reservation Protocol (SRP) Enhancements and Performance

Improvements (IEEE 802.1Qcc, 2018),

• Link-local Registration Protocol (LRP) (IEEE 802.1CS, 2019)

• Timing and Synchronization for Time-Sensitive Applications (gPTP) (IEEE

802.1AS, 2020),

• Asynchronous Traffic Shaper (ATS) (IEEE 802.1Qcr, 2020),

• Resource Allocation Protocol (RAP) (IEEE 802.1Qdd, 2023).

Thereby, TSN defines various new functionalities and different traffic shapers and

schedulers, such as the Credit Based Shaper (CBS) (IEEE 802.1Qav, 2009; IEEE

802.1Qcc, 2018), EST, CQF, and ATS. It also allows the extension of the classical

Strict Priority Queuing (SPQ) (IEEE 802.1Q, 2022) with stream reservation (SR) or

bandwidth resource reservation (RR) (IEEE 802.1Q, 2022; IEEE 802.1Qdd, 2023),

and frame preemption (FP) (IEEE 802.1Qbu, 2015; IEEE 802.3br, 2016), making

SPQ more deterministic and faster. The goal of a TSN is to achieve highly efficient

and deterministic data transport (Nasrallah et al., 2019). TSN also allow for the use

of multiple communication paths, primarily to provide seamless media

redundancy according to IEEE 802.1CB (IEEE 802.1CB, 2017), which defines "Frame

Replication and Elimination for Reliability (FRER)."

Similar to TSN networks for industry, increasingly loaded network paths have also

occurred earlier in general IT networks, such as Internet or campus

communication networks. This often led to network congestion and hence data

loss. When these networks were initially not set up redundantly, that is, when only

one communication path was available, researchers applied congestion control

solutions to cope with the increasing congestion loss of data traffic. The research

community differentiates between open-loop and closed-loop congestion control.

With open-loop congestion control (Wu & Mark, 1993), the approach is to stretch

ingress traffic. This can be achieved, for example, according to a principle called

“Leaky Bucket principle”. This symbolises that traffic bursts are converted into a

constant data rate.

 Page 26

A different approach to congestion control is closed-loop congestion control.

Here, congestion control becomes active only when congestion on a network path

actually occurs. Early closed-loop congestion control was applied in combination

with the widely used Open Systems Interconnection (OSI) layer 4 transport control

protocol TCP (IETF RFC 793, 1981) which led to a variety of TCP congestion control

algorithms (Hasegawa et al., 2000; IETF RFC 5681, 2009).

Since the late 1990s, general IT networks for Internet or campus communications,

both wired and wireless, have been increasingly set up as multi-paths networks.

In addition to the advantages of redundancy, the availability of multiple paths

allows the use of load sharing, load balancing, or load distribution concepts. All

three expressions are used as equivalent terms in the research literature and in

this thesis.

The difference between load balancing and congestion control is that load

balancing can shift load peaks to an alternate path. In the ideal case, the result is

that all available paths are evenly loaded. The major advantage is that traffic does

not need to be delayed to resolve upcoming congestion. This makes load

balancing especially interesting in combination with time critical control data (CD)

for automation purposes.

Load balancing is not only found in different network areas such as ISP networks

(Wang et al., 2006), campus networks (Elwalid et al., 2002), or access networks for

mobile connectivity (Ahmad et al., 2015), but is also used in combination within

different IT areas. The literature provides solutions in the area of Server Load

Balancing (SLB) (Bojović & Živko, 2022; Cardellini et al., 1999; Wilson &

Deepalakshmi, 2019), Distributed Systems Load Balancing (DSLB) (Grosu &

Chronopoulos, 2005; Metawei et al., 2012; Taley & Keole, 2015; Zaki et al., 1996),

Cloud Computing Load Balancing (CCLB) (Katyal & Mishra, 2014; Shahid et al.,

2020; Tawfeeg et al., 2022; Zhang & Zhang, 2010) and Network Load Balancing

(NLB) (Ahmad et al., 2015; Antic et al., 2010; Chadha & Gupta, 2013; Elwalid et al.,

2002; Fortz & Thorup, 2000) .

SLB, DSLB, and CCLB all three have in common that their primary goal is to

distribute the load on the systems rather than on the network, which is the goal

Page 27

of the NLB. However, they also imply NLB as a side effect, depending on the

network topology of the systems. Controlling the network load is also the focus of

this study. Thus, the approaches applied within these load balancing techniques

can yield valuable insights. Furthermore, they are interesting because their

controller types can, in principle, also be used for NLB.

NLB is typically used in the layer 3 routing technology (Tanenbaum et al., 2021).

Their dedicated load balancing methods include those for ISP networks (Wang et

al., 2006), campus networks (Elwalid et al., 2002), and access networks for mobile

connectivity (Ahmad et al., 2015).

However, it is also applied in layer 2 networks such as Data Center Bridging (DCB)

(Perry et al., 2014; Shuo et al., 2016; Wei et al., 2014; Zhang et al., 2018) or

Software Defined Networks (SDN) (Jahde et al., 2021; Todorov et al., 2020).

The applied controller type is a central and crucial element of all load balancing

solutions. This must be adapted to network characteristics. All types of controllers

have been used in previous research, such as linear control (Kandula et al., 2007;

Wang et al., 2006), stochastic control (Neely et al., 2008), fuzzy control (Pompili &

Priscoli, 2008; Talaat et al., 2019; Wang & Hung, 2012), Smith predictive control

or model predictive control (Mascolo, 2000; Quang et al., 2020), ant colony control

(Mohammadnia et al., 2016; Zhang & Zhang, 2010), neural network control (Talaat

et al., 2019; Wang & Hung, 2012), dedicated algorithm control (Elwalid et al.,

2002; Farahmand et al., 2005), and control by Artificial Intelligence (AI) or Machine

Learning (ML) (Anna Victoria Oikawa et al., 2020; Todorov et al., 2020).

The selection and application of the right controller type for network load

distribution control in TSN MAN is one of the tasks of this research.

Another dimension of load balancing is that it comprises three control tasks. These

are (Ahmad & Khan, 2018; Elwalid et al., 2002; Lopez-Perez et al., 2016; Neely et

al., 2008; Wang et al., 2006):

• Flow control: The control algorithm to control the data flow on a single path to

increase or decrease throughput.

 Page 28

• Fairness control: The control algorithm to regulate the fair distribution of the

reduction or increase in throughput among the different data flows.

• Distribution control: The control algorithm to allocate parts of a stream or

several streams evenly to a choice of paths.

Fairness control is not relevant for automation network CD, as CD data flows are

typically only allowed to be minimally delayed. However, flow control and

distribution control are important for load distribution control in a TSN MAN.

In factory automation applications, networks with smaller spatial extensions are

used to transport information between automation controllers (AC) and devices,

such as drives, sensors, and actuators. They are typically based on the OSI layer 2

technology using switching (IEC/IEEE 60802, 2018; Tanenbaum et al., 2021).

To achieve redundant connections with minimum wiring effort, ring topology has

become a prevalent topology in redundant industrial automation networks. Figure

1.1 shows a typical industrial automation network setup in which several field-

level rings are redundantly coupled to a controller-level ring. This, in turn, is

redundantly coupled to a higher-level Information Technology (IT) or Operational

Technology (OT) network (IEC/IEEE 60802, 2018).

Controller-level rings usually contain a variety of higher-level ACs such as

programmable logic controllers (PLC) or motion controllers (MC). However, a

field-level ring typically consists of only one AC that controls a variety of

automation devices, such as drives, sensors, actors, or decentral peripherals

providing digital and analog inputs and outputs. Field-level ACs communicate with

controller-level ACs.

 Page 30

Adaptive or dynamic control is based on routing decisions using network-load

metrics. A control algorithm constantly controls the load distribution on several

paths to achieve an optimal or near-optimal load distribution and to minimise the

local load maxima. Subsequent flow controllers have the task of increasing or

decreasing the load on single paths following the distribution calculation from the

distribution controller (Ahmad et al., 2015; Lopez-Perez et al., 2016; Neely et al.,

2008; Wang et al., 2006)

Regarding distribution and flow control, more research has been conducted on

distribution control (Ahmad et al., 2015; Lopez-Perez et al., 2016; Neely et al.,

2008; Wang et al., 2006) than on the flow control subtask (Bonomi & Fendick,

2002; Jain, 1998), which is identical with closed-loop congestion control for single

path networks. However, certain network characteristics play a crucial role in flow

control.

One important influencing factor is the cycle time of the automation application

tasks hosted by the ACs. These application cycle times, sending data at each cycle,

define the minimum rolling mean interval of a load measurement. This, in turn,

forms a system time constant and thus limits attainable control performance, that

is (Goodwin et al., 2001; Normey-Rico & Camacho, 2007), the time to establish a

new load distribution setpoint.

The other important parameter is the underlying basic cycle time of the network

communication, which must be long enough to transport the maximum amount

of data but small enough to serve the fastest application in the network domain.

Furthermore, the network extension and applied traffic shaper or scheduler

influence the path delays. These represent dead time elements that characterise

the flow control circuit properties.

The influence of these parameters: application cycle, communication cycle,

shaper influence, and network extension, is typical for TSN automation networks.

Their impact is particularly high on sophisticated MAN TSN owing to their fast

automation applications such as motion control or packaging and labeling

operations. These problems are not a big issue in general IT networks though and

Page 31

research has thus not yet investigated their effect on the design of data traffic

distribution control and flow control. In addition, the influence of RR and FP on

these tasks has not been investigated either.

Therefore, in the first step, the influence of different network parameters, namely

control location design possibilities, relevant network topologies, control setup

design possibilities and characteristics, eligible traffic classes, automation

applications influence, the role of stream reservation, and error mitigation

strategies, is analysed.

In the second step, data flow control for control data within TSN automation

networks is investigated under the influence of these parameters on control

dynamics and stability. Furthermore, the impact of bandwidth reservation and

frame preemption is analysed and recommendations for load measurements are

provided. Thus, the study provides the network designer with a valuable tool to

select the appropriate TSN mechanisms with the aim of deploying LDC adapted to

the automation applications.

A new method for distribution control in a TSN MAN is proposed. It specifically

addresses the problem of different application cycle times for various applications

in the network domain. Dedicated distribution controllers for a range of

application cycles are proposed. These improve the control dynamics and reduce

the effort required to reconfigure the control configuration in response to

network setup changes.

Then, this new load distribution method is described and investigated in terms of

its dynamic capabilities and behaviour in multi-talker/multi-listener applications.

The optimisation potential is analysed and evaluated. It shows that the

dependency of the load distribution convergence on the longest application cycle

can be resolved, and the overall load distribution convergence improves.

Furthermore, solutions addressing the use of multiple ACs in a ring are provided.

A solution using a control sovereignty passing method for multiple ACs with

mutual dependency is proposed. This is required when SPQ is selected as a shaper

basis. The second solution addresses multiple ACs without mutual dependency

 Page 32

which is the case with EST, CQF, or ATS. This is characterized by the temporal

decoupling of the control processes.

These new control methods can be applied in manufacturing automation network

controller level rings and field level rings. The new control methods improve

network utilisation and reduce the probability of network overload situations.

Thus, the present study offers a new and first comprehensive design guide for the

full implementation of LDC in TSN MAN in terms of:

1. The selection of the TSN shaper depending on the automation applications

and network parameters.

2. The design of the data flow and load distribution controller.

3. Choosing solutions to cope with multiple ACs in the TSN LDC domain for

the different types of TSN.

1.3 Motivation

Until now, there has been limited theoretical research and practical application

work on efficient load sharing and load balancing over multiple paths of TSN,

which is particularly true in industry. Nayak (2018) investigated general network

traffic distribution possibilities applying a central approach in combination with

EST. It however achieves only a limited dynamic performance because of

necessary high-effort distribution re-calculations. Ojewale and Yomsi (2020)

presented two other dedicated centrally computed routing algorithms to optimise

a combination of path lengths and loads. Here, too, the computational effort and

time increase disproportionately with the number of network nodes due to the

central approach. MAN, however, have high dynamic requirements regarding

reaction to load changes. Therefore, these, and particularly the more recent TSN

MAN, offer new grounds for research on network load distribution, which can be

expected to contribute to enhancing the performance of these networks. This

includes not only distribution control but also subsequent flow control per path.

Page 33

Especially in larger networks, the increasing number of end stations in an

automation ring also increases the amount of CD to be transported over the two

possible paths between communication participants. However, the presence of

fast applications demands short communication cycles which is particularly true

for EST and CQF traffic shapers which have only a limited CD transport capacity in

their communication cycle. This conflict forces the network designer to optimally

use both the available paths in an automation ring. Thus, the use of dynamic load

distribution will be an important means of optimum use of the network

preconditions.

A further important reason for load distribution in TSN MAN is the limited

possibility for seamless communication, that is, double sending over two paths for

redundancy reasons. The reason is, that there are only limited expensive

hardware resources for duplicate filtering in the switch ASICs. This increases the

amount of single-path CD, and thus, the need for load distribution.

The main purpose and motivation of this study is therefore to evaluate a possible

extension of the current content of the TSN project by proposing a method for

distribution control and flow control. This will optimise the use of multiple TSN

communication paths to dynamically distribute data traffic on the data paths

within manufacturing automation communication networks.

1.4 Overall Aim and Research Objectives

The overall aim is to propose, design, develop, and validate a method for optimum

control of dynamic load distribution in time-sensitive communication networks for

manufacturing automation.

The proposed method is verified and validated by control circuit simulations and

network simulations.

The following research objectives are addressed:

1. To analyse the properties of TSN networks that influence the goal of

establishing a load distribution.

 Page 34

2. To analyse and evaluate the influence of different TSN traffic shapers and

schedulers on subsequent data flow control.

3. To propose, design, develop, and validate an optimised closed loop load

distribution control method that can be effectively and efficiently applied in

the currently evolving Layer 2 TSN for different types of manufacturing

automation networks.

4. To extend the optimised closed loop load distribution control method to

support multiple automation controller setups.

1.5 Thesis Contributions to New Knowledge Generation

This thesis’ main contribution to the new knowledge generation is to demonstrate

the possibilities of load distribution in redundant TSN manufacturing automation

networks. The following contributions are made during the course of this task:

1. An analysis of TSN automation networks with regard to:

a) control location design possibilities,

b) relevant network topologies,

c) eligible traffic classes,

d) control aspects,

e) the influence of automation applications,

f) the influence of stream reservation,

g) and network error mitigation strategies.

Thereby, a detailed picture of load distribution control possibilities within TSN

MAN is provided.

2. Derivation of a closed-loop load distribution control model for automation ring

networks. The influence of the different types of TSN traffic shapers and

scheduler on data flow control is demonstrated. The different types of TSN

network communication paths are simulated and evaluated in terms of

controllability and stability.

3. Recommendations for the selection of traffic shapers or traffic schedulers

considering the types of automation tasks.

4. Proposal of an optimised control method for load distribution in TSN MAN.

Page 35

5. The proposal of an optimised control strategy for TSN MAN containing multiple

automation controllers.

Part of the bullet points 1 to 3 has been published (Weichlein et al., 2023).

1.6 Publications

Partial results of this thesis have been published (Weichlein et al., 2023):

Weichlein, T., Zhang, S., Li, P., & Zhang, X. (2023). Data Flow Control for Network Load

Balancing in IEEE Time-Sensitive Networks for Automation. IEEE Access.

1.7 Thesis Structure

This thesis is structured as follows.

After this introduction, the literature review chapter provides an overview of

communication networks, in general, and for automation. It also covers the basics

of the control theory for network load control and its application in network

congestion control, traffic engineering and network load balancing.

Chapter 3, “Research Methodology and Design”, provides the details of the

research process and the methods for data collection and presentation.

Chapter 4, “The Influences of TSN MAN Properties on Load Distribution Control”,

provides a detailed investigation into load control relevant properties of TSN

automation networks. Here, relevant network topologies, load distribution design

possibilities, eligible traffic classes, plant properties and control aspects are

discussed. Furthermore, the influences of the automation applications and of

stream reservations are analysed. The consequences of network errors are

discussed.

Chapter 5, “Application of Different TSN Traffic Shapers and Schedulers for

Subsequent Data Flow Control”, examines the influence of the different TSN traffic

shapers and traffic schedulers on the system properties, that is, the network path

as the system under control. Furthermore, in this chapter, these influences are

simulated and discussed with regard to their influence on the controllability and

stability of the control.

 Page 36

Chapter 6, “A New Control Method for Load Distribution Optimisation in TSN

MAN,” builds on the findings of Chapters 4 and 5 and firstly discusses and selects

an appropriate core controller type for flow control and distribution control. In

the second step the drawbacks of the classical approach of controlling the data

flow and introducing a better control strategy for an optimised control are

addressed. Furthermore, suitable feedback generation methods are discussed and

proposed. Finally, at the end of this section, the optimised method is verified by

network simulations.

Chapter 7, “Extension of the LDC Optimisation to Support Multiple Automation

Controllers,” extends the new optimised control method from Chapter 6 to apply

to multiple independent automation controllers with and without mutually

influencing each other.

Chapter 8, “Conclusion and Further Work,” concludes the thesis, summarises the

research results, and discusses the original contribution. Furthermore, it discusses

the limitations and the further work for improving this research on load

distribution in manufacturing automation networks.

Page 37

Chapter 2 Literature Review

2.1 Introduction

This chapter provides a critical literature review with a focus of load control in the

areas of TSN, their application as MAN, control theory for load control in

communication networks, and the related main control methods. It provides an

overview of the current knowledge in these areas. It also aims to identify the gap

in the existing research on network traffic load control in MANs based on TSN.

2.2 Communication Networks

This section provides an overview of load reduction research in general Ethernet

communication networks (IEEE 802.1Q, 2022; Tanenbaum et al., 2021), the special

properties of MAN (IEC/IEEE 60802, 2018; IETF RFC 8578, 2019), and the

application of TSN (IEEE 802.1Q TSN TG, 2022) in MAN. It thus clarifies the

technical basis on which the research is based.

2.2.1 General Communication Networks

General communication networks build the basis for TSN MAN and consist of data

relaying elements called routers and switches, which are connected via wire-

based or wire-less connections for data transport. It is generally accepted to

distinguish the data processing systems of manufacturing processes as operation

technology (OT) from pure information technology (IT).

The state-of-the-art model to describe communication functions in technical or

computer systems is the Open Systems Interconnection (OSI) reference model

(ISO/IEC 7498-1, 2000), which was defined by the International Organization of

Standardization (ISO) and is depicted in Figure 2.1.

 Page 38

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Layer 1

Layer 7

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Layer 1

Layer 7

Layer 2

 communication

Layer 3

 communication

System A System B

Figure 2.1: Open Systems Interconnection (OSI) communication model

The ISO/OSI reference model divides a communication system into seven

hierarchical layers (Tanenbaum et al., 2021):

• Layer 1: the physical layer (PHY)

• Layer 2: the data link layer containing the media access control (MAC)

• Layer 3: the network layer

• Layer 4: the transport layer

• Layer 5: the session layer

• Layer 6: the presentation layer

• Layer 7: the application layer

For this research, the layer 2 data link layer and the layer 3 network layer research

results on traffic load reduction and distribution are important. These are of

interest for the mechanisms of data packet transport from one network

participant to another. This is independent of whether physical Layer 1 of the

network is based on wire, as with campus or Internet networks, or is wireless as

in the case of mobile networks.

The communication links between the end stations and relaying elements have

limited data rate capacities which can lead to network congestion. This problem

was early addressed by Chiu and Jain (1989) in general communication layer 3

networks, mainly in combination with the layer 4 TCP as the main transport

protocol. At that time, increasing network loads stuffed networks and delayed the

Page 39

response times of client requests to network services. They investigated

throughput increase/decrease algorithms and demonstrated that they are

suitable for congestion reduction.

To avoid network congestion or achieve a homogenously distributed load on

individual network paths, either a means of congestion control or, in combination

with multiple network paths, a load distribution control mechanism is necessary.

Extensive research has been conducted on load sharing, load balancing, and load

distribution solutions. All three concepts are mostly used synonymously. These

operate on OSI Layer 3, such as on ISP networks or campus networks, or within

small Layer 2 sub-networks, or only between pairs of single nodes such as clients

and servers.

The literature review shows that existing load controlling concepts within various

communication networks technologies can generally be classified as follows:

1. Network congestion control (Kanagarathinam et al., 2020; Kasoro et al.,

2021; Katabi et al., 2002; Wu et al., 2009), aims to reduce the transmission

of traffic on the sender side to avoid congestion. It must be applied if no

alternate path for load distribution is available.

2. Traffic engineering (Elwalid et al., 2002; Fortz et al., 2002; Lemeshko et al.,

2013; Santos et al., 2009; Zhang et al., 2018) has the goal to plan all traffic

properly from the beginning. It can also include to dynamically react to

changes in the network.

3. Load balancing, which again can be subdivided into:

a. Server load balancing (Bojović & Živko, 2022; Cardellini et al., 1999;

Wilson & Deepalakshmi, 2019),

b. Distributed systems load balancing (Grosu & Chronopoulos, 2005;

Metawei et al., 2012; Taley & Keole, 2015; Zaki et al., 1996),

c. Network load balancing, both open and closed-loop, which is often

used as a synonym for network load control (see bullet point 4

below for references),

 Page 40

d. Cloud computing load balancing (Ahmad & Khan, 2018; Katyal &

Mishra, 2014; Nezami et al., 2021; Rajeshkannan & Aramudhan,

2016; Shahid et al., 2020; Zhang & Zhang, 2010);

4. Closed-loop network load distribution control or balancing (Han et al.,

2021; Jahde et al., 2021; Kandula et al., 2007; Lemeshko et al., 2013;

Mohammadnia et al., 2016).

Having OT MAN networks in focus, which typically do not feature several servers

or a widely distributed system, especially the closed-loop network load

distribution control concept, is the most important for this research project.

However, the results of the referenced research on other load distribution

concepts within the areas of network congestion control, traffic engineering and

load balancing are also relevant. They provide valuable data and experience on

sensible control concepts in various network areas. This data forms the basis for

this research on dynamic load distribution control in TSN MAN, a topic, which is

unexplored to the best of the author’s knowledge.

Therefore, the relevant basics of MAN and their differences from campus IT or

Internet networks will be briefly identified. Then, the application of control

engineering within data load control in communication networks is addressed.

Finally, the different existing load control concepts listed above and their

relevance for load distribution control for TSN MANs need to be reviewed more

closely.

2.2.2 Manufacturing Automation Networks (MAN)

The field of automation is huge (Soldatos et al., 2019) as it is used in all kinds of

applications such as power plants, chemical process industry, food and beverage

industry, packaging industry and other industrial productions or manufacturing

like vehicle production, for example, to name just a few. This research project

focuses on manufacturing automation networks as they typically have more

demanding communication requirements regarding speed and latency than other

automation areas. These results are expected to be applicable to other fields of

automation.

Page 41

The general Ethernet network technology (Tanenbaum et al., 2021) has over the

last decades produced two main principles for relaying data packets (Section

2.2.1):

• Data packet relaying by routing is based on layer 3 techniques. For example,

the most popular and widely used network communication protocol within

Ethernet networks is the Internet Protocol (IP), which uses IP-addresses as

routing information.

• Data packet relaying by switching is based on layer 2 techniques. For Ethernet

networks the so-called destination MAC-Address is usually used to forward

data packets to the recipient.

For the MAN in focus within this thesis, Layer 2 networks are the most important,

as they are mostly used in MAN setups at automation cells at the field level and

controller level and automation cell interconnection areas, as depicted in Figure

1.1. However, layer 3 communication is also sometimes applied in automation,

but mainly in hierarchical higher-level networks connecting larger automation

areas within a factory or plant (IEC/IEEE 60802, 2018).

Another important property of a communication network is its topology, that is,

the structure of how single network participants are connected. Several basic

network topologies are shown in Figure 2.2.

Early legacy automation networks without redundant connections were

preferentially set up in line or star topologies. For reasons of fault tolerance,

media-redundant networks, that is, networks providing at least two paths

between each node, are increasingly applied. To achieve redundant connections

with a minimum wiring effort, the ring topology and redundantly coupled ring

topology have become the prevalent topologies in redundant MAN (IEC/IEEE

60802, 2018). The transition from line or star topology to ring and redundantly

coupled ring topologies, offers an alternative communication path that allows

load distribution solutions.

Page 43

• cylinders of rolling mills

• stations of packaging machines

• assembly feeding chains of automotive production.

Such synchronous speed control automation setups are usually part of larger

automation applications together with various other applications. Figure 1.1

sketches a typical larger automation communication network setup, as described

in IEC/IEEE 60802 (2018) or IETF RFC 8578 (2019).

In the automation network shown in Figure 1.1, an upper automation controller

ring bundles access to several subrings that are responsible for controlling certain

parts of the automation setup. These parts can be machines or automation cells,

such as different conveyer belts in a series of conveyer belts or different assembly

chains in a series of assembly chains. The upper controllers in the controller level

ring have access to the single subrings for tasks such as changing production

templates in the subring controllers, synchronizing the subring devices, reading

visualization data, or obtaining general diagnostic data. In recent years, the trend

has been towards increasingly outsourcing the tasks of the controller level ring to

virtual ACs (Beran et al., 2010; Soldatos et al., 2019) onto so-called edge

automation devices (Mandić et al., 2022; Singh et al., 2022) or to cloud-based

automation (Ranjan et al., 2016; Wollschlaeger et al., 2017). Edge or cloud devices

typically contain several virtual ACs. Because cloud-based automation involves

higher and unsecure path delays between a remote cloud and an automation cell,

it is not suitable for faster manufacturing control applications, as they are the

focus of this research and will not be explored here. Edge solutions are equivalent

to local AC solutions because the paths are typically only slightly longer.

Within the subrings, ACs, such as a PLC or MC, exchange process data with single

peripheral devices such as sensors, actuators, digital/analog inputs, and outputs

(I/O), or drives for the motors that drive the mechanical parts of the automation

application. Regarding the data flow direction, sensors such as temperature,

pressure, or humidity sensors provide data from sensor in the direction of the AC.

In contrast, devices such as linear actuators, open-loop controlled motors, or

valves cause data flow in the other direction from AC to the actuator. Drives,

 Page 44

closed-loop controlled motors, or completely decentralised peripheral

automation stations for I/O typically cause bidirectional data flow. For this

research project, both the field-level subrings and the controller-level rings will be

the focus.

In the case of edge devices, in contrast to cloud-based automation, the

communication paths are still relatively short and typically in the same layer 2

domain, as they usually installed directly in the production hall. Therefore, as

Mandić et al. (2022) and Soldatos et al. (2019) also correctly state, edge-based

automation is just as suitable for latency-sensitive applications as dedicated

controller-level ring hardware. Thus, the results of this study can be applied to

both dedicated AC hardware setups and edge-based AC setups.

For the CD relevant to this research project, different requirements regarding the

communication cycles of the process data between the controller and drives or

sensors exist (IEC/IEEE 60802, 2018). This depends on the automation application.

For example, in the case of conveyer belts for transport purposes, the

communication cycle speed is rather relaxed and may be selected between 10 and

100 ms. For synchronisation for printing machines or packaging applications, the

communication cycles often need to be around 1 to 10 ms. Very demanding

applications such as packaging or labeling require communication cycles below

100 µs.

The amount of data to be exchanged between the subring controllers and devices

in the subring is typically rather low (IEC/IEEE 60802, 2018). As a rule, these

exchange frames with data sizes of less than 100 bytes, as information exchange

is typically limited to the cyclic transmission of setpoints and actual values. Other

data to be sporadically exchanged between the controller and field devices can be

diagnosis data and parameterization data. Because of their sporadic character,

these are also called “acylic” data (AD). AD for diagnosis or HMI stations is

transported in larger frames, sometimes up to a maximum frame size of 1550

bytes (IEEE 802.1Q, 2022). They are also transported at higher data rates which

can easily reach a few megabytes per second.

Page 45

It is well known, and worked out by Wisniewski et al. (2009), among others, that

the use of media redundant networks demands the application of media

redundancy protocols. Alvarez Vadillo et al. (2019) classify them and provide an

overview. Media redundancy protocols influence the possibility of network load

control. Basically, a distinction must be made between so-called “seamless”

protocols, which send data doubly over separated paths, and path-changing

protocols. The former cannot be combined with network load control, as they

already use both paths at the same time. The latter are traditionally spanning tree

protocols such as RSTP or MSTP (IEEE 802.1Q, 2022) which are slow though with

reconfiguration times typically around a few seconds. Researchers such as Yuen

et al. (2011) have successfully attempted to accelerate RSTP and MSTP

reconfiguration times by working with backup VLANs. However, the results imply

a complicated network setup, which make it difficult to use. These problems have

led to the development of dedicated redundancy protocols such as the MRP (IEC

62439-2, 2021; Wisniewski et al., 2009). MRP provides faster network

reconfiguration times between 500 ms and 10 ms. However, MRP has only been

used to completely change the path for all traffic and does not have the property

of MSTP VLAN-based path separation, which is important for network load

control. In certain automation applications, the seamless flow of cyclic

communication data is crucial for the quality of the automation tasks. An

interruption in the process data stream or a certain delay in the process data can

lead to product failures or even automation plant damage. For seamless

redundancy, where data are sent doubly over two available paths from source to

sink, thereby providing zero reconfiguration time, the HSR protocol (IEC 62439-3,

2021) can be applied. However, its application also excludes network load control.

In combination with streams, which follow dedicated assigned paths, the seamless

redundancy protocol IEEE 802.1CB, also called “Frame Replication and Elimination

for Reliability” (FRER) was defined by IEEE 802.1CB (2017). The types of applied

media redundancy protocols are important for NLB. These must be chosen and

configured carefully depending on the traffic types present in the network

(Alvarez Vadillo et al., 2019; Kirrmann & Dzung, 2006; Wisniewski et al., 2009).

 Page 46

However, this task is currently not reflected in the existing research in

combination with NLB for TSN MAN and must also be addressed in this study.

As Lo Bello and Steiner (2019) outline, the desire of many users to transmit

deterministic CD and non-real-time traffic (NRT) in parallel via the same data path

has led to the foundation of the task group IEEE 802.1Q TSN TG (2022) to develop

so-called converged networks, which finally got the name time-sensitive networks

(TSN). TSN standards provide new traffic shaping and scheduling mechanisms and

are also the basis for the latest modernisation of industrial automation networks.

2.2.3 Time Sensitive Networks (TSN) as MAN

Lo Bello and Steiner (2019), and Finn (2018), provide a comprehensive overview

of TSN. These are networks designed in accordance with one or more of a set of

new network standards (IEEE 802.1Q TSN TG, 2022) which essentially introduce

the capability of delivering data within a guaranteed minimum time from the data

source to the data sink. This property is known as “deterministic” data transport.

A further essential achievement and advantage of TSN is that it provides the

possibility of the coexistence of non-deterministic network traffic together with

deterministic network traffic on the same medium. This is often referred to as a

converged network. Converged networks are a major improvement in MAN to

save separate networks for deterministic and non-deterministic data traffic for an

application.

TSN functionality is shaped within the TSN Task Group (TG) as part of the IEEE

802.1 Working Group (WG). They defined a series of standard amendments,

supplementing or building on the central standard for Local and Metropolitan

Area Networks (IEEE 802.1Q, 2022). Farkas et al. (2018) provided a more detailed

overview of these TSN standards and of further reading on this topic.

The TSN standards define a variety of traffic shapers and schedulers to achieve an

optimal data transfer for CD. These are the Strict Priority Queuing (SPQ), or Static

Priority Queuing as it is also called, Credit Based Shaper (CBS), Enhancements for

Scheduled Traffic (EST), Cyclic Queuing and Forwarding (CQF), and Asynchronous

Traffic Shaper (ATS). Further TSN-specific functionality are Frame Preemption (FP),

Page 47

Scheduled Transmission (ST), and Stream Reservation (SR). Summarising the work

of Lo Bello and Steiner (2019), and Finn (2018), the shapers, schedulers, and TSN-

functions have their individual effect on data traffic transport:

The SPQ is known from classical Ethernet switch ASICs and is defined in IEEE

802.1Q (2022). SPQ is a favoured common system for assigning different Quality

of Service (QoS) properties to various traffic classes in general Layer 2 networks

and in automation communication networks. It is also used in TSN, mostly in

combination with stream or bandwidth resource reservation (IEEE 802.1Qcc,

2018; IEEE 802.1Qdd, 2023). Grigorjew et al. (2021) show that thereby a

deterministic TSN can be achieved, although SPQ is not a traffic shaper or

scheduler in the literal sense. A contemporary example is the “PROFINET (PN) over

TSN” field bus (IEC 61158-5-10, 2023; IEC 61158-6-10, 2023) for 1 Gbit/s and 2,5

Gbit/s which combines SPQ with express forwarding and scheduled traffic (EST,

see further down for details) for CD and Non-CD data. It can also use SPQ in

combination with synchronised traffic injection as an alternative to other methods

of shaping or scheduling traffic. SPQ provides one egress queue for each or

collections of the eight QoS frame priorities (IEEE 802.1Q, 2022). For CD, it is

common to use the highest or, in cases where network control frames shall have

a higher priority, the second highest priority. For the non-CD the next lowest

priority is used.

SPQ is expected to be usable in connection with load distribution control (LDC)

concepts for MAN and needs to be involved in the analysis and evaluations

provided by this thesis.

The CBS was introduced by IEEE 802.1Qav (2009) and IEEE 802.1Qcc (2018) for

transferring audio/video (AV) data without bursts and congestion. Zhao et al.

(2022) provided extensive performance data of the CBS and demonstrated its

suitability in AV applications to achieve a continuous data stream and avoid bursts.

However, this advantage in AV is a disadvantage in automation applications where

the challenge is to maintain the CD burst along a network path. The main feature

of the CBS is that it stretches bursts of data to achieve a continuous flow of the

stream. Therefore, it is of low interest for industrial automation CDs with fast

 Page 48

communication cycles, since CDs are intentionally sent in bursts at the beginning

of a new application cycle from an automation controller. Consequently, it is not

considered here for automation networks application and analysis.

The EST, defined by IEEE 802.1Qbv (2015), is also known as time-aware shaper

(TAS). It assigns gating windows to traffic classes. The send queue of each traffic

class is thereby emptied at a defined time slot, that is, the gating window or gate

open window, which is repeated every network cycle or gating cycle. The

expressions gating cycle, network gating cycle, or short network cycle are used

synonymously in the literature and standardisation. In addition to other

researchers, Craciunas et al. (2016) have made investigations as to the

performance of EST. EST can be used to have synchronised gating windows in all

bridges of the TSN domain, with no other data interfering with the transmission

during the gating window. This guarantees a free path for data traffic and

minimum network latency through the complete synchronised EST network

domain. If in addition a synchronised talker sends at the start of the gating

window, minimum network latencies can be achieved. Craciunas et al. identified

and analysed key parameters affecting the deterministic behaviour for centralized

scheduling of an EST. They also proposed optimisations to reduce the scheduling

calculation time by introducing heuristics. Vlk et al. (2020) enhanced the

schedulability and throughput of EST by adding a queue order check but required

special hardware additions to realise it. However, the application of specialized

hardware implies a high development effort and thus low market acceptance. Still,

the already low EST latencies are a sufficient reason to include EST in this study

for LDC in TSN MAN.

The CQF traffic shaper, defined by IEEE 802.1Qch (2019), also follows a network-

domain-global network cycle. It stores the ingress traffic in one network cycle,

which it then forwards during the next network cycle. Through this method, a

certain amount of data traffic is handed from bridge to bridge taking one hop per

network cycle. Finn (2019) shows that with CQF, limited latency can be guaranteed

which depends on the maximum number of hops through the CQF network

domain. In this case, the latency per hop is identical to that of the network cycle.

Page 49

The amount of admissible data per cycle depends on the configuration of the cycle

length and can be restricted by reservation and ingress limiting. Finn also outlines,

that windows for data of further traffic classes to be transported in parallel, raise

the necessary gating cycle and thereby the latency accordingly. Huang et al. (2022)

addressed the relatively high jitter of CQF and proposed a combination of CQF

with time triggered transmission, as known from the EST.

The suitability and characteristics of the basic CQF must be included in the analysis

and evaluation of LDC for TSN MAN.

The ATS, defined by IEEE 802.1Qcr (2020), provides additional, shaped egress

queues that feed the existing classical egress queue structure of SPQ. The

processing chain for a stream with ATS consists of Per-Stream Filtering and

Policing (PSFP), shapers, egress queues, transmission selection and gate control.

An Internal Priority Value (IPV) can be assigned to each traffic class within a bridge,

independent of and without influencing the frame`s tagged priority, allowing

dedicated prioritized frame handling per hop. A detailed analysis of the ATS

properties was provided among others by Zhou et al. (2018). They show that the

ATS does not depend on synchronous bridges or synchronous communication and

offers bounded latency for lower performance control data such as non-

isochronous CD (NI-CD). The ATS shaper mechanism works as a Token Bucket

traffic shaper, that is, it allows bursts to be limited to configurable bursts.

Nasrallah (2019) performed comparison with EST and found that EST is better

suited for cyclic traffic such as CD for automation purposes, whereas the ATS has

more advantages with sporadic, lower priority traffic. However, as the ATS is one

of the main TSN shapers, the analysis and evaluation of its capabilities in

connection with LDC for industrial automation is mandatory.

FP according to IEEE 802.1Qbu (2015) is another TSN feature where streams are

classified as either express traffic or preemptable traffic. Express traffic can

interrupt the transmission of a preemptable frame and thus overtake

preemptable frames. After the express frame is transmitted, the preemptable

frame transmission is resumed. The frame preemption feature according to IEEE

802.1Qbu is defined for the MAC Layer and strongly correlates with the definitions

 Page 50

within IEEE 802.3br (2016), Interspersing Express Traffic (IET) for the Physical

Layer. Thiele and Ernst (2016) performed a worst-case performance analysis of

TSN with FP and demonstrated that it can accelerate higher priority traffic.

Preemption can basically be applied in Strict Priority scheduling environments but

can in principle also be combined with EST, CQF and ATS shapers. Logically, only

one traffic class can be classified as express traffic without spoiling the intention

of preemption. A performance comparison of FP versus EST was provided by

Hellmanns et al. (2020). It demonstrates the advantages of FP in zero planning and

synchronisation requirements. However, it also shows the disadvantage of FP, in

that, with increasing use, the latency reduction degrades towards pure SPQ.

Against this background, the proposal of Nikolic et al. (2020) for a multi-level FP

to realise further express traffic classes, seems rather questionable. Nevertheless,

the improvements achieved with the moderate application of FP in combination

with SPQ for time-critical data make it an interesting feature worthy of inclusion

in the investigations of this thesis.

ST of data frames is another method that arose with the creation of the TSN

framework. The required scheduling algorithms were the focus of several research

teams (Ojewale & Yomsi, 2020; Y. Song et al., 2021; Yang et al., 2021). The

background to their work is the idea that the transmission time of each frame can

be planned in such a way that optimal utilization of the entire network is achieved

with minimal path latencies and optimal bandwidth utilization. They propose their

individually found solutions for heuristic algorithms to achieve this. These solution

always require a central instance, typically a central network controller (CNC) as

defined by, for example, IEEE 802.1Qcc (2018). This calculates the optimised

transmission points in time for each frame and station, at least to a certain extent.

However, as Craciunas et al. (2016) and Falk et al. (2019) explain, the problem with

ST is that it requires extensive calculations for an optimised schedule for all traffic.

As this thesis focuses on real dynamic load distribution though, such methods,

which require pre-network-startup calculations or complete reconfiguration at

runtime, are only of secondary importance (see Subsection 5.3.7 for more

reasoning on this).

Page 51

SR is another crucial feature that can be used in the TSN domain for resource

reservation. The RSVP (IETF RFC 2205, 1997) is an early representative of a

resource reservation protocol for the transport layer 3. It is primarily used in

multimedia applications (Braun, 1997). SR is represented in the IEEE TSN

framework by IEEE 802.1Qcc (2018) as the Multiple Stream Reservation Protocol

(MSRP), and by IEEE 802.1Qdd (2023) as the Resource Allocation Protocol (RAP).

Grigorjew et al. (2021) investigate SR in combination with automation networks

in its original application as overload protection for the network, where excessing

streams will not obtain a bandwidth reservation in the bridges. They showed that

with SR and admission control a bounded latency can be achieved with standard

Ethernet switches which contain no further TSN shapers or schedulers. Thus,

latency guarantees can be provided for certain stream classes. To protect against

congestion, that is, against talkers that exceed their reserved bandwidth, ingress

limiters as defined by IEEE 802.1Qci (2016) can be used as supplementary

protection. However, which also from the work of Grigorjew et al. emerges, the

reservation process needs time, which in combination with a dynamic shifting of

traffic from one path to the other is disruptive. These implications of SR for LDC

must be included in the investigations of this thesis.

A deeper insight into the timing behavior of each shaper and scheduler was

provided by Falk et al. (2019), based on OMNet++ network simulations. Zhao et

al. (2022) performed a quantitative performance comparison of various TSN

shapers. Roughly summarized, their extensive studies show that SPQ has an

advantage for traffic classes with high priority. A variety of traffic priorities can be

optimally controlled with CBS. The ATS is the best choice for fair scheduling of

lower priority traffic. The EST (or TAS) offers ultra-low latency and jitter and is

suitable for all priorities and traffic classes with dedicated gate control windows

but is difficult to manage in combination with larger networks. The focus of this

research is on the transport of higher-priority CD when they are not transferred

seamlessly. Thus, according to Falk et al. and Zhao et al., it can be expected that

the application of SPQ and EST will be beneficial.

 Page 52

In summary, it can be stated that these traffic shapers and schedulers have, owing

to their different influences on path delays, a different influence on data flow

control or load distribution control. Therefore, a deeper analysis of SPQ, EST, CQF,

ATS, FP and SR must be included in the investigations in this thesis.

2.3 Methods for Load Control in Communication Networks

Existing control methods for a variety of control problems in general dynamic

systems have also been applied to communication networks. With the availability

of multiple paths in general communication networks, the research community

has developed load control concepts not only for congestion control but also for

the distribution of loads (Section 2.2.1). The most important load control methods

are introduced and investigated hereunder.

2.3.1 Load Reduction Strategies

Communication paths within communication networks have limitations in terms

of the maximum transferable data amount per time, which in communication

networks terminology is also called the maximum “bandwidth” of a

communication path.

To protect a communication path from overload during runtime of the network,

which could result in the loss of data, it is necessary to either reduce the amount

of data to be transferred, or to distribute the data on additional communication

paths. Thus, as is clear from Section 1.1 and the literature listed in Subsection

2.2.1, there are two basic methods. The first is “congestion control”

(Kanagarathinam et al., 2020; Kasoro et al., 2021; Katabi et al., 2002), the second

is usually named either “load balancing”, “load distribution”, or also “load

sharing” (Jahde et al., 2021; Kandula et al., 2007; Lemeshko et al., 2013).

Congestion control can be either open- or closed-loop. As Wu and Mark (1993)

outline, open-loop congestion control has no feedback for the actual load and is

thus “blindly” or “obliviously” reducing load. Contrarily, to achieve control results

of higher stability, Katabi et al. (2002) apply closed-loop control. Therefore, a

Page 53

control system must be established that measures the actual amount of data on

one communication path and initiates corrective actions to reduce the amount of

data being passed onto this communication path.

The system output to be controlled and the system input in both congestion

control systems and in load balancing control systems, is the network data path

data rate per time termed network path bandwidth use or load.

For load balancing, the control system provides an evenly distributed load on

several possible communication paths.

Another way to achieve a balanced load is to properly plan and configure the

traffic distribution before network startup as it has been applied in various studies

(Lopez et al., 2010; Santos et al., 2009). This method is called “Traffic Engineering

(TE)” and should always be part of the network setup. However, because this

research focuses on dynamic load distribution, TE methods are of secondary

importance.

Sometimes the procedure of dynamic load distribution is also called “Dynamic TE”

or “Adaptive TE” (Elwalid et al., 2002; Wang et al., 2006).

In this thesis, the focus is on load balancing, or more generally, on load distribution

rather than on congestion control. This is because CD and particularly isochronous

CD (I-CD) are subject to a bounded admissible latency, that is, traffic throughput

must not be reduced significantly. However, as it emerges from the work of Puqi

Perry and Tai (1999), some methods of congestion control, such as the Token

Bucket Shaper, are important as they are used as part of the CBS and ATS.

The goal of load balancing or load distribution systems in communication

networks is to achieve a controlled and as even as possible distributed path

bandwidth use of all available data paths from data sources to data sinks, as

outlined among others by Antic et al. (2010) or Prabhavat et al. (2012).

When considering layer 3 routed multipaths networks, the three main types of

traffic control concepts (Wang et al., 2006), as introduced in Section 1.1, oblivious

routing (Kandula et al., 2005) (Räcke, 2009), traffic control using predicted traffic

demands (Otoshi et al., 2015; Wang et al., 2006) , and adaptive or dynamic routing

 Page 54

are visible. As also outlined in Section 1.1, only the latter is important for this study

and to be reviewed closer.

Adaptive or dynamic routing is based on routing decisions based on network load

metrics. There are various possibilities for obtaining these metrics. Kandula et al.

(2005) send test frames onto single paths, where each router inserts its current

bandwidth use. The test frames were sent back by the last router at the edge of

the routing domain. Another possibility is to poll the port load of each router along

the path (Elwalid et al., 2002). Various control concepts, such as Common-case

Optimization with Penalty Envelope (COPE) by Wang et al. (2006) or Smith-

Predictor by Mascolo (2000), have been used to achieve a balanced load on the

OSI Layer 3 ISP networks. The adaptive or dynamic routing concept is identical to

closed loop network load control (Subsection 2.3.2) and has been extensively

investigated by research, as further elaborated in the following sections. Because

of its better reaction time on load changes than open-loop control, it is a relevant

method for this research project within TSN MANs.

2.3.2 Closed-loop Dynamic Load Control

A desired quick and appropriate response to changes in a dynamic system, such

as load changes in a MAN, can only be achieved with a closed-loop control

(Goodwin et al., 2001).

In order to classify the types of control systems applied in the literature, it is

necessary to distinguish between their elements. Goodwin et al. (2001) define a

control system as follows:

Figure 2.3 shows the main parts of a typical dynamic system in combination with

a controlling entity that is used to control the system output.

Page 55

Figure 2.3: General control system

Accordingly, according to Godwin et al., systems can be abstracted by dividing

them into three main parts:

1. The system to be controlled, which is also called “the plant” in control

engineering terminology, with its output y(t) to be controlled. In the case of

this research for data traffic LDC, the system to be controlled is the

communication network with its output of data per time, that is, the

bandwidth as a scalar value.

2. A sensor module feeds back the system output value to compare it to a

reference value r(t) representing the desired output value. The sensor is

represented by data load measurement hardware or software in the network

devices, that is, routers, bridges, or bridged end stations. The reference value

for the network path is again a bandwidth as a scalar value.

3. The controller controls the system input based on the difference e(t) between

the reference and the feedback of the output: 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡). In TSN

MAN the controller is part of the end devices or bridges that control the data

ingress rate.

Goodwin et al. also state that, associated with the types of systems to which a

control system is applied to, the control theory can be roughly divided into two

main areas. The “Linear Control Theory”, which deals with linear control systems

and the "Non-linear Control Theory", which deals with non-linear control systems.

Since the data throughput on a communication path has to be measured

 Page 56

continuously over a period of time, for example as a moving average, it changes

linearly and the LDC for data traffic can be classified as a linear control system.

The literature offers a variety of different closed-loop load control solutions.

Katabi et al. (2002) further developed the congestion control algorithms for TCP

by introducing eXtended Control Protocol (XCP) with analog feedback. This was

obtained by measuring the round-trip time (rtt) of a TCP flow. It allows conclusions

to be drawn about the load on the path. They used a linear controller and

introduced stability analysis according to Nyquist (Normey-Rico & Camacho,

2007). The linear controller, such as a proportional-integral-derivative (PID)

controller, is also applicable for distribution control and flow control of MAN CD

traffic type. However, the load measurement method using the TCP rtt is not

applicable, because CD does not provide acknowledgement frames back to the

sender.

Elwalid et al. (2002) presented with “MPLS Adaptive Traffic Engineering (MATE)”

a minimalistic adaptive TE approach in multi-protocol label switching (MPLS)

networks, which also manages without load measurements along the path. It is

based on end station feedback by measuring the delay experienced by a probe

packet along a path from ingress to egress node. The distribution controller is

implemented by using a dedicated algorithm. However, as with Katabi`s et al. XCP,

this method is only suitable to make an end-to-end load statement for de-loading

complete paths from a talker to a listener. It is no solution to resolve load

maximums at certain links as it is the goal of this research on MAN LDC.

Another closed-loop LDC in the form of adaptive TE was provided by Kandula et

al. (2005). They developed “Traffic Engineering eXtended Control Protocol

(TeXCP)” based on Katabi`s et al. XCP, where each router along a path updates a

probe packet with its port utilization if it is greater than the one contained in the

probe packet. The egress node sends the probe back to the ingress node which

applies a dedicated balancing algorithm to distribute the load on the paths.

However, as with MATE, this approach does not solve link load maximums along

the single links on the paths. Furthermore, in an automation ring, each listener

would report back different results.

Page 57

The review on closed-loop LDC approaches shows that they have been applied in

different network application domains, with different load feedback methods, and

using different types of controllers.

Summarising the load feedback options, there are three:

1. The listener end-station sends the load maximum back to the talker. This is

conveyed by a probe packet sent by the talker, which is updated by the nodes

along a path.

2. The listener end-station sends back to the talker the path delay experienced

by probe packet sent by the talker.

3. Each node in the network provides a port load value that can be polled by a

talker.

The first method may work well with a limited number of talker and listener nodes,

such as edge routers, and thus a limited number of probe packets. However, in

larger MANs with hundreds of automation end stations, there will be significant

additional traffic. The second method is regarded as imprecise because delays

along a path can also be caused by sporadic interfering traffic, that is, it is not

necessarily proportional to the load along a path. The third method is considered

the best as talkers can poll each node and build their own complete network load

view.

A more complex situation arises with the controller types used. Researchers

applied all important and proven types to solve LDC in the different network types.

2.3.3 Controller Types

As is clear from Goodwin et al. (2001), a key distinguishing feature of closed-loop

LDC is the type of distribution controller used. Its selection depends heavily on the

type of network. The literature provides LDC solutions that include a variety of

distribution controller solutions that have their own strengths and weaknesses.

The variety of load controller types used in network load balancing or network

load distribution control essentially includes the following:

1. Linear control (Kandula et al., 2007; Wang et al., 2006),

 Page 58

2. Stochastic control (Neely et al., 2008),

3. Fuzzy control (Pompili & Priscoli, 2008; Talaat et al., 2019; Wang & Hung, 2012),

4. Smith control or Model Predictive Control (Mascolo, 2000; Quang et al., 2020),

5. Ant colony control (Mohammadnia et al., 2016; Zhang & Zhang, 2010),

6. Neural network control (Talaat et al., 2019; Wang & Hung, 2012),

7. Dedicated algorithm control (Elwalid et al., 2002; Farahmand et al., 2005)

8. Control by Artificial Intelligence (AI) or Machine Learning (ML) (Anna Victoria

Oikawa et al., 2020; Todorov et al., 2020),

These control methods differ as follows.

Linear control is the traditional method for controlling a linear system (Goodwin

et al., 2001). In its simplest form, the measured system output is fed back and is

weighted by a proportional factor using a proportional controller. Further

controller improvements led to the addition of an integration element and a

derivative element, that is, to a proportional-integral-derivative (PID) controller,

to achieve an optimum system output in terms of settling time, stability, and

output constancy. Katabi et al. (2002) used linear network load control for

efficiency and fairness controllers in their proposal of the eXplicit Control Protocol

(XCP) to improve the TCP congestion control mechanisms. It can be used for both

distribution control and subsequent flow control in an LDC. Its advantage is the

low resource consumption of computing power and memory. However, it should

be noted, that the actual optimum sizes of the PID parameters KP, KI and KD

depend on the characteristics of the network and must be adjusted individually

for each network. This process is known as “tuning” of the controller (Normey-

Rico & Camacho, 2007). This means that a controller must adjust this set of

parameters for changes in the network that imply path length or delay changes.

Another example of linear control, intended for high-delay networks is the Smith

Predictor application by De Cicco et al. (2011). This must be applied when the path

delays are high, compared to the time constants of the load measurements mean

value calculation.

Linear control needs to be evaluated for its beneficial application in this study.

Page 59

Stochastic network load control refers to the control or optimisation of a

stochastic network, that is, traffic occurs in a stochastically distributed manner,

rather than to the method of a stochastic controller itself (Åström, 2012).

Stochastic network control assumes that exogenous data arrive at the network

through random processes. This implies that the data rate and arrival intervals are

randomly or stochastically distributed. In principle, it uses the average data arrival

rate by building long-term mean values, which improve with longer integration

time intervals. The crucial difference from the traditional linear PID control

principles is the applied time interval. Stochastic network control applies longer

time intervals for the assignment of the average data rate, as no known pattern

can be assumed. Neely et al. (2008) emphasise, that the cost for a high-quality

stochastic control for load control in communication networks is a higher end-to-

end delay for the transport of the load values. Stochastic control can be applied

to all core control problems such as continuous or discrete time, linear, non-linear,

or predictive control concepts.

However, since the MAN CD is typically not distributed stochastically, but is

transmitted cyclically, it is obvious that this type of control does not have to be

applied to the networks of this research.

With the fuzzy control method (Matía et al., 2014), general plant parameters to

be controlled are collected and fuzzified before processed by the fuzzy controller.

Fuzzification means that the precise values of the input parameters are classified

into certain ranges. The same method is applied to the controller output

parameters. Such ranges could include classifications such as “very low,” “low,”

“medium,” “high,” and “very high” when classifying for example the load on a

certain network path. The fuzzy controller then applies a set of fuzzy rules on the

input parameters, such as “If load is low, then raise output to high.” The controller

compares all fuzzy rules and defuzzifies the results by deriving a precise result for

the control output. The best-suited fuzzy rules, appropriate input parameter

ranges, and output ranges are typically empirically obtained during the design of

the control circuit. It is widely accepted and also pointed out by Pompili and

Priscoli (2008) and Wang and Hung (2012) that fuzzy control is particularly

 Page 60

advantageous when the system to be controlled is either fairly complex, its

behaviour is difficult to describe mathematically, or both.

However, these system properties typically do not apply to the MAN (Subsection

2.2.2), which are the focus of this research. Therefore, fuzzy control is obviously

not the control method of first choice in this context.

Bolla et al. (1998) presented an early example of research on neural network

control within mobile network load distribution, to realise dynamic bandwidth

allocation. They used it to optimise bandwidth usage for combining isochronous

traffic with asynchronous, statistically distributed traffic. For neural network

control, according to Hagan et al. (2002), a neural network is used either as a

function approximator or as a neural controller. The neural function approximator

is used to approximate an unknown function, that is, the system to be controlled.

In the latter case, different types of neural network control methods are possible

when using the neural network as neural controller. Examples include Neural

Model Predictive Control (Patan, 2015) and Model Reference Control (Patino &

Liu, 2000). Let’s consider Neural Model Predictive Control as an example. Neural

Model Predictive Control, similar to Linear Model Predictive Control, is based on

a predictive control approach in which the system under control is approximated

by a neural network instead of being described mathematically. Hagan et al.

(2002) explained the principle of neural network predictive control as depicted in

Figure 2.4.

Page 61

Figure 2.4: Neural network predictive control (Hagan et al., 2002)

Control was achieved by training the neural network to serve as a model of a

complex non-linear real plant. This system identification stage is typical for neural

control, including the aforementioned neural control methods. For this purpose,

the plant output yp together with the plant input u are fed into the neural network

model and the plant output yp is compared with the model’s output ym. The error

between yp and ym is used to train the learning algorithm to improve the neural

network model. The neural network model predicts the plant responses over a

specified time horizon. Using the model, the numerical optimisation process of

the controller determines the control signal u and tentative control signal u’.

According to (Hagan et al., 2002) the application of Neural Network Model

Predictive Control is advantageous with non-linear and/or complex plant

properties that are difficult to describe mathematically. It is an alternative to the

fuzzy control method for such networks. Additionally, a combination of both

control methods can be an alternative (Talaat et al., 2019; Wang & Hung, 2012).

As already stated for the fuzzy control algorithm above and outlined later in

Chapter 4 , the limitations of non-linearity or mathematical complexity are not

really present for MAN compared to other networks. Thus, neural network control

for LDCs within MAN seems unnecessary.

Dedicated algorithms for network load control have been used for both

congestion control and distribution control. Such an algorithm typically follows

empirically obtained rules for increasing or decreasing the loads. TCP congestion

 Page 62

control (IETF RFC 2001, 1997) is a very well-known and widely used representative

of dedicated algorithm congestion control on the Internet. This is reviewed in

more detail in Section 2.4.2. Various derivatives of this algorithm, such as TCP

Reno (Hasegawa et al., 2000; IETF RFC 6582, 2012), based on different load

increase and decrease strategies and decision criteria have been developed over

the years. However, these were early attempts of closed-loop load control with

simple control algorithms similar to On-Off-Controllers. These still failed to

provide the possibility of closed-loop stability considerations. Meanwhile, other

scientists such as Elwalid et al. (2002), with the multipath adaptive traffic

engineering (MATE) approach, achieved improved control stability by applying

higher-resolution analogous feedbacks. Farahmand et al. (2005) provided another

example of a dedicated algorithm applied on optical burst links. They use a

proportional load feedback and imply a model of the network characteristics thus

achieving a complete closed-loop system. It achieves an improved network

utilization without the occurrence of congestion.

In summary, it must be concluded that the dedicated algorithms developed by

early LDC researchers eventually led to the application of more professional

control engineering algorithms such as traditional PID controllers. Therefore, the

development of a new dedicated control algorithm, different from those that have

been widely applied and tested in previous research, as outlined in this section,

does not seem promising.

Another possibility of controlling the network load is control by Artificial

Intelligence (AI), that is, Machine Learning (ML) (Russell & Norvig, 2021).

This is known as Machine Learning Control (MLC) (Duriez et al., 2017). MLC

is the correct selection when it comes to controlling complex nonlinear

systems, where the traditional linear control theory is not applicable or is

only applicable with a very high effort. For example, Duriez et al. (2017)

used MLC for fluid turbulence control, which is known as one of the most

demanding non-linear control problems, and defined MLC as follows. ML

uses data to generate a system model. With more data, the models should

improve and be capable of handling data constellations not yet seen before.

Page 63

ML is typically classified into three types: supervised, unsupervised, and

reinforcement learning (Müller & Guido, 2017; Russell & Norvig, 2021).

Supervised learning uses pairs of labelled input and output training data to

train a system. Yan Song et al. (2021) use supervised learning for routing

and scheduling for simultaneous transmission of diverse data streams for

NLB. They use the K-nearest neighbour (KNN) algorithm. KNN assigns data

set members, in this case transmitted streams, to classes of data, in this

case traffic classes, depending on their properties` relative distance to the

class properties mean. This method can be used for classification and for

regression problems. Unsupervised learning dispenses with the use of

labelled output data and the system uses self-organised learning usually by

using probability densities within the input and output relation. However,

this is the more demanding method which implies higher processing power

and memory demand in a controller. Reinforcement learning also lacks a

learning phase. It works with a cumulative reward system to decide between

successful and less successful control decisions.

Thus, MLC wraps ML algorithms around a complex system to learn an

effective control law. This is particularly useful for systems in which it is

difficult or impossible to develop a mathematical control law for a

mathematical model of the system. A machine learning algorithm is chosen

to find the best control law through training procedures with data from a

training phase or from a simulation. Here, the transition from rule driven

ML algorithms to data driven ML algorithms is important. According to

Duriez et al. (2017), well-proven algorithms are evolutionary algorithms

and, in here particular, the genetic algorithms for discovering control laws

in high-dimensional search spaces. Duriez et al. described the control loop

for the MLC, as depicted in Figure 2.5.

 Page 64

Figure 2.5: MLC control loop (Duriez et al., 2017)

The main difference between MLC and other methods listed above is, that

no model, neither a mathematical model nor a neural network model, of the

system is needed as it is with the traditional control methods. The MLC

directly learns control laws without requiring a system model. According to

Duriez et al., genetic algorithms can be used as optimisation algorithms

within MLC. They use components such as chromosomes, selection,

recombination, or mutation to create a genetic variety to explore a solution

space. A chromosome is equivalent to a set of parameters (genes), that is, a

possible solution vector of a certain quality. Quality is assigned by the cost

function. The goal of the algorithm is to find a chromosome, that is, a

solution vector that satisfies the quality requirement of a limited value of

the cost function. For example, MLC has been used in research together with

software defined networks (SDN) (Jahde et al., 2021; Todorov et al., 2020)

which are well-suited because of the configuration flexibility of SDN bridges.

MLC has, according to Mowei et al. (2018), numerous processing steps,

including problem formulation, data collection, data analysis, model

construction, deployment and inference, and model validation . Thereby it

is a very demanding control method regarding memory consumption and

CPU calculation effort. Given that LDC in MANs is a linear control problem

with limited mathematical complexity, the application of a demanding MLC

control algorithm seems disproportionately high compared to a few tens of

the lines of code for a PID controller.

Page 65

Ant Colony Optimisation (ACO) control (ACOC) is another network load

balancing technique, also typically classified as an AI algorithm. This is a

metaheuristic algorithm inspired by the behaviour of a real ant colony

(Mohammadnia et al., 2016; Zhang & Zhang, 2010). Zhang and Zhang (2010)

used it for cloud computing networks and Mohammadnia et al. (2016)

provided an ACO based solution for vehicular ad-hoc networks (VANETs).

With these approaches, packets are given their best routing path decision

in each individual node based on an accumulated “pheromone” value. The

ants are represented by request and response data packets called agents

which are sent from talker to the listener and sent back along the paths

found. These packets contain information about the source address,

destination address, number of nodes crossed and other quality criteria

such as path cost, accumulated path delay, or maximum load along the path,

from which the pheromone values are formed. Due to the decentralised

character of this control, no load feedback to a central distribution

controller is necessary. One of its advantages is that it is flexible in terms of

network size and participating number of nodes. This also makes it a

potential candidate for MAN LDC, which can also experience network

expansions during ongoing operations. However, it has the disadvantage of

not being able to anticipate congested links along a path. A routing decision

can therefore turn out to be the wrong decision on the next link. This is

particularly likely in ring topologies with limited paths, since a routing

decision will not be followed by alternate paths, as in a highly meshed

network. For the LDC in MANs, which is the focus of this research, it is in

principle suitable for distribution control. However, since the prevailing

MAN topology is a ring with only two available paths, it cannot fully exploit

its strengths here. In addition, ACOC is not suitable for the subsequent flow

control. This is totally absent from an ACOC approach, meaning the load

must be shifted incrementally, potentially leading to unwanted control

oscillations.

 Page 66

2.4 Network Congestion Control

Network congestion typically results from sporadic traffic peaks. These can be

caused, for example, by sporadically accumulated network access attempts or

simply by overloaded networks due to increasing usage. Excessive network

congestion can result in a high or total loss of service, known as the congestive

collapse of a network.

For example, early important considerations on the subject of congestion control

provided the theories of Kelly et al. (1998). They consciously differentiated

between the possibilities of traffic reduction, in the case of congestion control,

and re-routing in the case of load distribution. They analysed simple additive

increase/multiplicative decrease algorithms, that is, dedicated control algorithms

according to Subsection 2.3.3. These have been applied to congestion control and

fairness control between services, such as is common in a TCP congestion control

algorithm. They show that stability around an equilibrium point can be achieved

for both controls. For fast MAN CD traffic, which must not be significantly delayed,

however, the effect of congestion is fundamentally unsuitable and must be

avoided. Congestion control is therefore not the focus of this study. It is only

applicable to slower applications, where limited delay of the CD does not spoil the

intent of the application. However, its principles are important for the TSN shapers

CBS and ATS and must therefore be reviewed.

Control or avoidance of congestion is typically achieved by limiting the ingress rate

of network traffic (Nasrallah et al., 2019). It can be regarded as a pre-stage for load

balancing. Congestion control is typically limited to a single network path. Some

studies have also used the expression “congestion control” in the context of

multipath networks which is similar to load distribution or load balancing.

However, this is an exception and was rather used at the beginning of research on

load balancing.

Depending on the length of congestion, different counter measures are advisable

(Jain, 1998). A very short-time overload can be compensated by adequate

message buffering with sufficiently sized egress queues at the output ports of

Page 67

network bridges or routers. Long-time congestion usually indicates that the

network is undersized and requires a major upgrade. Mid-time congestion can

usually be avoided by applying favourable additional network designs, such as:

1. Open-loop congestion control, or

2. Closed-loop congestion control.

2.4.1 Open-loop Congestion Control

As Nasrallah et al. (2019) have pointed out, open-loop congestion control

attempts to avoid overload situations by stretching overload peaks or limiting the

amount of egress data at the sender side and/or in the bridges. Stretching of traffic

peaks can be achieved by applying a favourable sender or bridging traffic shaping

algorithm, such as the Leaky Bucket traffic shaper or the Token Bucket traffic

shaper (Tanenbaum et al., 2021). These basically follow the principle of buffering

excess ingress network traffic, which is freed afterwards at the egress side at a

constant rate over time. With that they obtain a homogenous traffic distribution

over time. In addition to protecting against overload, a positive side effect of

bucket-based shapers is that they safe queuing resources in subsequent bridges

because they defuse traffic bursts (Falk et al., 2019).

The Leaky Bucket algorithm has been widely applied and investigated in research

such as provided by Wu and Mark (1993). It is based on the analogy of a bucket

with a leak as illustrated in Figure 2.6.

 Page 68

unsteady ingress

rate

constant egress

rate

overflowbucket

(message

buffer)

leak

Figure 2.6: The leaky bucket principle

The symbolic bucket could be filled at an unsteady rate but is emptied at a

constant rate via the leak. Excessive input results in overflow.

In this sense, transferred to data communication, as explained by Wu and Mark

(1993), the ingress data frames are buffered in a message queue. This will be

emptied at a constant rate via the output port of a network device such as a router

or bridge. If the amount of ingress data over time exceeds the egress rate for a

longer period of time, depending on the memory size of the queue, the queue will

be filled sooner or later completely, and further frames will be dropped. Thus,

short ingress peaks are tolerated and smoothed without data loss. In connection

with this research, the leaky bucket principle is relevant because it is similar to the

TSN CBS shaper (IEEE 802.1Qav, 2009). Furthermore, its ability to save queuing

resources makes it an attractive add-on in combination with other shapers or

schedulers, if the applications allow CD stretching.

Another bucket-based shaper is the Token Bucket algorithm (Ohnishi et al., 1988;

Puqi Perry & Tai, 1999; Tanenbaum et al., 2021). It does not buffer frames as the

leaky bucket algorithm does. Instead, it buffers tokens that are generated

internally at a constant rate TToken until an adjustable number of n tokens have

filled the buffer (bucket). In this event the buffer is emptied, and n frames are sent

out during a burst. Thus, the token bucket algorithm does not smooth out the

ingress bursts of frames by sending frames at a constant rate. Instead, it smoothes

 Page 70

congestions of CD as it still allows frame bursts which can be limited to the size of

an ACs number of frames for one application cycle. Moreover, it is also important

as it is also a component of the ATS scheduler (IEEE 802.1Qcr, 2020) of TSN and

can thus form the properties of the TSN data path.

The credit-based shaper algorithm (IEEE 802.1Qav, 2009) is based on the work of

Bensaou et al. (2001) which proposed the Credit-Based Fair Queueing (CBFQ)

algorithm. It is suitable for distributing available bandwidth among different traffic

classes on the same port. This is achieved by allocating send credit to data traffic

during waiting times and withdrawing credit while sending data traffic. With

increasing waiting time, a per-traffic queue credit parameter, constituting the

send credit of a certain traffic class, is increased at a constant rate over time. This

parameter is commonly denoted as idleSlope. The next frame of this traffic class

waiting in the queue is sent with the reach of a certain amount of credit,

represented by the hiCredit threshold parameter. The sending process decreases

credit with the sendSlope rate. Sending is possible until the parameter lowCredit

border is reached, provided that there are further frames in the queue. Figure 2.8

illustrates this credit-based shaper principle.

Page 71

credit

queued

frames

hiCredit

loCredit

idleSlope sendSlope

frame C

frame B

frame A frame C

fr. C

fr. B
1

2

3

0

Credit >= 0

-> frame B immediately

sent after A
frame C is sent when

Credit reaches zero.

transmitAllowed

TRUE

FALSE

transmitted data

fr. Bfr. A
conflicting

frames
fr. C

T1 T2 T3 T4 T5 T6

Figure 2.8: The credit-based shaper algorithm

As mentioned above, CBS can also be applied in TSN MAN in combination with

slower CD cycles, allowing CD stretching without consequences for the

application. A detailed timing analysis of the CBS compared to other TSN shapers

was provided by Zhao et al. (2022). Their results confirm the expectation that CBS

introduces delays for the individual traffic classes due to its distributing effect.

These delays are the reason for its limited suitability for only slower CD, which

precludes its use as primary TSN-MAN-based hardware. However, as Falk et al.

(2019) explain, it can still be interesting as an additional downstream functionality

in combination with for example SPQ, to save queue memory in subsequent

nodes.

 Page 72

Additional possibilities of congestion control for streams include the resource

reservation protocols such as MSRP (IEEE 802.1Q, 2022), and RAP (IEEE 802.1Qdd,

2023). To the best of the author's knowledge, their application in connection with

congestion control has not been scientifically investigated. The reason might be

that the effect of their application does not raise questions. Another congestion

control method can be ingress limiting filters which simply cut exceeding traffic at

the receiver or edge bridge side (IEEE 802.1Qci, 2016). These too have not yet

been examined in connection with congestion control, apparently for the same

reasons as the reservation protocols.

All these algorithms work on the data plane of a sender or bridge and reduce

egress or ingress traffic peaks or bursts by either stretching them over time or by

avoiding or discarding them. However, they have no information about the real

load on the network and are therefore open-loop congestion control concepts.

Reviewing the open-loop procedures shows that these can only be used

preventively but never directly as a reaction to congestion. By contrast, closed-

loop congestion control concepts use actual load feedback to control egressing

data traffic. Therefore, these promise better solution concepts in the direction of

optimal control.

2.4.2 Closed-loop Congestion Control

In contrast to open-loop congestion control, closed-loop congestion control

operates with feedback from an actual network load situation. This is measured

within the network and returned to the data source. Depending on the control

concept, such feedback can range from rather simple mechanisms, such as binary

information (Hasegawa et al., 2000), to rather complex facilities that measure the

actual current network traffic on the path (Bonomi & Fendick, 2002; Jain, 1998).

However, feedback information must always be transported from a certain point

in the network to the sender, which involves communication protocol interaction.

Although congestion control is not the focus of this research, closed-loop

congestion control methods must be further investigated to determine if they

could also be beneficial for load distribution on two or more paths. This is

Page 73

particularly important since single-path congestion control has the same objective

as subsequent per-path flow control of an LDC.

Hasegawa et al. (2000) improved the Transmission Control Protocol TCP (IETF RFC

793, 1981) which is one of the major transport protocols used on the Internet and

in campus Layer 3 based networks. The original TCP congestion control is a

prominent example of closed-loop congestion control and uses a congestion-

avoidance algorithm (IETF RFC 5681, 2009). A TCP sender maintains a congestion

window value that contains the number of unacknowledged bytes sent out. It uses

an additive-increase/multiplicative-decrease (AIMD) scheme to adapt the

congestion window size to the network situation. The amount of data sent onto

the network path to the receiver slowly increases while receiving positive

feedback via packet acknowledgment. Thus, the acknowledgement of the sent

packages serves as binary feedback. In the case of a missing acknowledgement the

sender immediately cuts the congestion window size (multiplicative decrease) to

reduce the load on the network path. Thus, the TCP congestion avoidance

algorithm is an end-to-end algorithm as feedback is provided by the receiver end

station of the data. However, the algorithm does not consider the stability issues

that can occur, particularly with different path delays in various networks.

To provide the possibility of adapting to different network characteristics,

Hasegawa et al. (2000), presented TCP Reno, which in principle provides a

different and improved increase/decrease strategy. This led then to the TCP

NewReno Fast Recovery mechanism officially proposed by IETF RFC 6582 (2012),

which provides further strategies for increasing and decreasing the TCP

congestion window.

Thereby, different and specially tailored properties regarding the reaction time or

selectivity were achieved. However, a major disadvantage, in addition to

insufficient closed-loop stability corrections, is that the feedback on congestion,

that is, the missing acknowledgement, is generated by actual packet loss which to

avoid would have been the innermost goal of any congestion-avoidance

algorithm. A further drawback of the on-off-principle is that it is prone to load

oscillations.

 Page 74

These disadvantages of the TCP congestion avoidance algorithm, among others,

have led to the development of better protocols, such as XCP (Katabi et al., 2002),

which facilitates analog feedback for a much better adapted control reaction on

imminent congestion. Katabi et al. (2002) showed that TCP becomes inefficient

and prone to instability by increasing the per-flow product of the bandwidth and

latency. This is becoming increasingly problematic with the application of high-

bandwidth optical and large-delay satellite links. They also showed that closed-

loop congestion control load oscillations depend directly on the bandwidth-delay

product when applying TCP congestion avoidance algorithms. This is the product

of the network bandwidth and round-trip time (RTT or rtt), which is the time for

data to reach the receiver plus the time the feedback needs to return to the

sender. Therefore, Katabi et al. (2002) proposed an eXplicit Control Protocol, XCP,

that extends the TCP congestion notification mechanism by introducing a closed

loop efficiency controller. XCP achieves better congestion avoidance results than

the standard TCP mechanisms.

It is further seen that XCP for congestion control also built the basis for further

research and development in the area of load balancing concepts such as TeXCP

(Kandula et al., 2005) , where not only the avoidance of congestion is the goal, but

also the distribution of load onto other available network paths.

Since then, many other scientists have worked on reducing TCP congestion. For

example, Wu et al. (2009) extended XCP to overcome the disadvantage of

extensive router calculation burden and introduced a more efficient and fairer

explicit congestion control protocol, EFXCP. It operates with longer sample

intervals for router throughput and congestion calculations. Further research on

closed loop congestion control was provided among others by Bonomi and

Fendick (2002) on ATM networks, by Wan et al. (2011) for sensor networks, and

by Chen and Khorasani (2011) on large scale networks. Geist and Jaeger (2019)

provide a detailed overview of various TCP congestion avoidance algorithms and

their characteristics.

The general concept of congestion notification has also been standardized in the

IEEE 802.1Q (2022) standard for layer 2 networks.

Page 75

In recent years, general network protocol congestion control mechanisms for

Layer 3 routed networks have become the subject of new research, particularly

in the field of wireless networks. Kanagarathinam et al. (2020) propose a dynamic

TCP (D-TCP) capable of coping with the high channel fluctuations of mobile

networks such as mmWave NR and LTE-A. It uses variable estimated bandwidth

consumption. Saedi and El-Ocla (2021) introduce “Congestion Control

Enhancement for Random Loss plus (CERL+)” which works with an average round

trip time (rtt) length. Both D-TCP and CERL+ improve congestion loss in mobile

networks with random packet losses. Kasoro et al. (2021) also presented a new

algorithm called ABCSS as an optimised combination of the “Appropriate Byte

Counting” and “Slow Start” methods, which is based on a variable TCP congestion

window size.

Closed-loop congestion control, which focuses on a single path, has paved the way

for closed-loop load distribution control, the focus of this study, with the goal of

evenly distributing the load across multiple paths.

Summarising this review on general Layer 3 network closed-loop congestion

control, it shows that numerous improved congestion avoidance algorithms for

the TCP protocol have been defined. These achieve better results than the original

TCP but all work with traffic-reduction methods. This is fine for general networks

layer 3 TCPs lower priority Internet traffic, but inappropriate for CD of automation

networks. These are typically not based on TCP but on vendor-specific protocols

or dedicated automation transport protocols. Automation CD is furthermore time-

critical data and is not allowed to be significantly reduced in throughput.

Therefore, these transport protocol-related congestion avoidance algorithms

cannot be used directly for automation CD within MANs or TSN MANs.

Nonetheless, the important insight gained from the review of the control

methods, is that path delays play an important role in the stability of load control.

This knowledge can be directly applied on the subsequent flow control for LDC in

TSN MANs.

Within smaller Layer 2 communication subnets or network cells, the transport

decisions are not based on IP routing as with Layer 3 networks, but on switching,

 Page 76

based on the MAC-Address of the destination. When evaluating previous research

in Layer 2 networks, it was found that this work is often dedicated to either special

Layer 2 networks such as ATM networks (Jain, 1998; Kelly et al., 1998; Mascolo,

2000; Yin & Hluchyj, 1994), software defined networks (SDN) (Ma et al., 2017;

Prabakaran & Ramar, 2021), sensor networks (Chen & Khorasani, 2011; Wan et

al., 2011), or it is reduced to special Layer 1 hardware such as wireless media

(Lopez-Perez et al., 2016; Lu et al., 2018; Wang & Hung, 2012) or optical media

(Nam-Uk et al., 2009). The review of their applied control methods does not

provide new methods compared to those used in the Layer 3 networks.

Furthermore, neither have TSN shapers or schedulers been involved in these

research projects nor the traditional IEEE 802.1Q defined basic SPQ, which would

have been important for TSN MAN. Additionally, they worked with dedicated

control algorithms as introduced and investigated in Section 2.3.3. Thus, their

control principle is only of secondary importance compared to the best practice

linear PID control possibilities.

2.5 Traffic Engineering

The term ‘traffic engineering‘ (TE), in the context of IT networks, was originally

used mainly in connection with ISP networks. It defines provisions and control

automatisms to optimally use the available multiple intra-domain connections

within an Autonomous System (AS) such as university campuses, companies, or

ISP domains (Fortz et al., 2002). To achieve this, state-of-the-art Interior Gateway

Protocols (IGP), such as Open Shortest Path First (OSPF), Intermediate State -

Intermediate State (IS-IS), and Multi-Protocol Label Switching (MPLS)

(Goulamghoss & Bassoo, 2020; Jong-Moon, 2000), were enhanced with traffic

engineering functionality.

Meanwhile, the relevant network standard IEEE 802.1Q (2022) includes provider

backbone bridge TE (PBB-TE) to build a common TE basis for layer 3 and layer 2

networks.

According to Smith (2003) the goals of traffic engineering are :

Page 77

• To enhance protocols to automatically map packets onto appropriate

paths.

• To determine the best paths for data traffic with respect to properties such

as:

o Bandwidth demand and bandwidth availability on the single paths

o Priority relative to other data priority

o Delay constraints

o Media requirements

The crucial property of TE is thus that it typically occurs in the network planning

and administration phase and not at network runtime unless new boundary

conditions demand corrections at runtime. In some studies, such as the one from

Elwalid et al. (2002), the expression ‘adaptive TE ‘ has been used for dynamic load

distribution at runtime.

Basically, the literature decides between ISO/OSI Layer 3 and Layer 2 network

traffic engineering or the combination of both, then referred to as multiple layer

traffic engineering.

2.5.1 Layer 3 Traffic Engineering

As Tanenbaum et al. (2021) describe, most AS internally use traditional IGP such

as Routing Information Protocol (RIP), OSPF, IS-IS, or Enhanced Interior

Gateway Routing Protocol (EIGRP) on the routers. Basically, routing protocols

exchange information with neighbouring routers regarding the quality of the links.

This is assessed by assigning a link weight integer value. Each router maintains a

complete view of its network domain. The link weight value is derived from the

link speed and delay. With these classical routing protocols, the router computes

a “shortest” path to the destination by building the sum of the link weights along

all available links or paths and by selecting the minimum of these sums. The

forwarding decisions are then based on shortest path information.

 Page 78

The literature review has found that there are different concepts for achieving

layer 3 traffic engineering using the classical IGP. These approaches can basically

be divided into static and dynamic traffic engineering approaches.

Static traffic engineering by favourable administration:

Traditional IGPs such as RIP, OSPF, IS-IS, or EIGRP do not provide mechanisms to

support automatic traffic engineering. Fortz and Thorup (2000) show that one

way to bypass this disadvantage and nonetheless implement traffic engineering,

is to set static routing rules or to adapt dynamic routing rules to a given traffic

distribution. This is achieved by manually adapting link weights to a given traffic

pattern. This has the advantage that standard routing protocols can be used.

Another advantage is that single network links can be adapted according to the

global network view of the network administrator, which can achieve a network-

wide optimisation of the link loads.

However, the need for constant network re-configurations with each change in

the network represents a rather elementary and cumbersome approach. It

constantly demands the action of a network administrator or administration tools

for automatic reconfiguration following known traffic patterns if these are

changing slowly enough. It does not scale with big networks or with fast-changing

traffic patterns as they occur in a TSN MAN.

This disadvantage was partly defused by Jong-Moon (2000) by the use of signaling

protocols such as constraint-based routing label distribution protocol (CRLDP) and

the resource reservation protocol (RSVP). However, it would be still too slow for

fast path changing of data traffic as it is the goal for a dynamic LDC in TSN MAN.

Dynamic traffic engineering with enhanced routing protocols:

Notably ISPs have a growing demand to dynamically adapt to changes in traffic

patterns and to provide customers with communication connections of a

guaranteed Quality of Service (QoS). The disadvantages of slow and elaborate

static traffic engineering approaches have led to the development of traffic

engineering extensions within traditional routing protocols. For example, MPLS TE

(Smith, 2003), also known as IP/MPLS TE, or OSPF-TE (IETF RFC 3630, 2003).

Page 79

Tanenbaum et al. (2021) explain that MPLS is an integration of layer 2 technology

into layer 3 technology, as it assigns labels to data packages. The routers

channelize the data packages via these labels onto certain network paths without

considering layer 3 content which is located further inside the data frames. MPLS

defines one or more tunnels, the so-called labeled switched paths (LSP), from the

ingress point (LSP head) to the egress point (LSP tail). If the data have crossed the

tunnel and have reached the egress point of the network, usually at the other end

of the provider backbone, the label information is removed again. The MPLS itself

can only provide different channels to apply load distribution but has no means

for distribution decisions. MPLS TE assigns enhanced metric information to LSP

tunnels and performs traffic engineering calculations to assign traffic to the

tunnels to meet the distribution requirements (Goulamghoss & Bassoo, 2020;

Smith, 2003). It uses traditional IGP extensions on OSPF or IS-IS to distribute

enhanced metric information to the head-end calculation modules. As

Goulamghoss and Bassoo (2020) explain, a further possibility to enhance the

rerouting convergence speed after a change in the network is to apply MPLS Fast

Reroute (FRR). Thereby, backup paths are pre-computed and pre-established

along the LSP before link or node failure issues. This can reduce convergence time

to about 100 ms which would be even fast enough for slower automation

applications CD. However, MPLS is typically a network function of higher layer

networks and is typically not supported by MAN devices installed at the field- and

controller-level networks. Therefore, MPLS TE cannot be considered for a MAN

TSN LDC solution that are the focus of this research. It can only be an alternative

for higher-level MANs running Deterministic Networking (DetNet) according to

IETF RFC 8655 (2019). DetNet is a deterministic approach for Layer 3 networks,

similar to TSN for Layer 2, which can be based on either IP or MPLS.

2.5.2 Layer 2 Traffic Engineering

In addition to the application of Layer 2 technology to reach a higher level of

automatic traffic channeling in Layer 3 networks, as described in the previous sub-

section with MPLS TE, Layer 2 traffic engineering, as investigated for example by

 Page 80

de Sousa and Soares (2008), mainly implies the static application of the traffic

control means provided by the classical Layer 2 methods defined by IEEE 802.1Q

(2022). This includes primarily the logical separation of the network by Virtual

LANs (VLAN) assignment and the Quality of Service (QoS) assignment to certain

network traffic. In combination with the multiple spanning tree protocol (MSTP)

(IEEE 802.1Q, 2022), the assignment of favourable path costs is an additional

means to influence the selection of data paths.

The assignment of VLAN Identifiers to the physical ports of bridges of a given

network, as described by Tanenbaum et al. (2021), creates logically separated

LANs within a single physical LAN. MSTP allows the operation of these virtual LANs

as separated network spanning trees. These trees can be designed to be derived

from different root nodes and thus form Multiple Spanning Tree Instances (MSTI).

With MSTP TE, solutions such as those applied by de Sousa and Soares (2008) and

Santos et al. (2009), use the MSTP path cost and root selection to arrange this set

of MSTI in a favourable way to minimise the maximum network loads on the

overall paths. However, the MSTP reconfiguration time typically takes a few

seconds, which is too slow for MAN applications. Additionally, configuring an

MSTP region with different VLANs and MSTI is a complex process which demands

IT specialist knowledge that is not typically present in the MAN application

domain.

The MSTP TE has not been used for better load sharing only. Ali et al. (2005)

propose the use of different MSTP regions to divide the network domain into

smaller parts. Thereby, they achieve better results for network convergence time

as a reaction to network changes, reduced influence of network failures, and

better failure localisation in addition to a better network utilisation. Nevertheless,

de Sousa and Soares (2007, 2008) showed that the single MSTP region approach

is most effective in terms of both load sharing optimisation and service disruption.

Santos et al. (2009) built on this knowledge by optimising link load balancing in

single-region MSTP networks. They investigated two optimisation objectives.

First, the minimisation of n worst link loads, with n up to the total number of

network links, and second, the minimisation of the average link load, when n is

Page 81

less than the total number of network links. They solved this task by appropriate

modelling of the network and the use of standard linear programming

optimisation and showed that the solution of models of only a reasonable network

size already create excessive computational effort. Therefore, they proposed the

application of heuristics based on the optimisation of a relaxed problem, where

only fractional network parameter assignments to the spanning trees are allowed,

from which feasible solutions can be derived. However, the results for the

reconfigurations are still in the range of a few 100 ms, despite the very high

computational effort for the optimisation.

To find the optimally shared load, Ho et al. (2011) used the “Local Search” (LS)

method to find a global minimum maximum of the network utilization. Local

search is also a heuristic method for solving complex optimisation problems. They

used the COMET (Comet, 2023) optimisation tool, which is a dedicated

programming language used to solve complex combinatorial optimisation

problems, to simulate the MSTP network. The simulated network consisted of a

set of N switches (nodes) and a set of E links (arcs or edges). Assigning k MSTIs to

this network yields the following:

1. k initial link cost matrices W1, Ws, … Wk,

2. a bandwidth matrix BW

3. k traffic demand matrices TD1, TD2,… TDk,

The objective of the optimisation was to find k MSTIs for the k VLANs to minimise

the maximum of the link utilisation Umax of all possible links e within E. Thereby, in

this approach, the search space is made of the spanning trees, not of the link costs

as in previous approaches. However, constantly changing traffic demand matrices

over time because of unpredictable network user behavior create constantly

challenging high effort optimisation computations of a central instance and a

continuous collection of all network information. The latter also causes

considerable additional traffic.

These MSTP solutions all achieve the goal of a well-balanced network load.

However, they are only suitable for relatively slowly changing traffic patterns. An

 Page 82

MSTP reconfiguration typically takes a few seconds (IEEE 802.1Q, 2022), which is

slow for the goal of quick reactions to load changes in a MAN with communication

cycles of a few milliseconds. Another key disadvantage of an MSTP solution is the

risk that carelessly applied topology changes can result in the reconfiguration of

the entire network tree, which would result in unacceptable application

downtime.

Another form of Layer 2 traffic engineering, which was among others investigated

for example by Wang et al. (2021), is the establishment of dedicated send slots for

talkers participating in TSN networks. They achieve resource assignment using, for

example, the EST provisions defined by IEEE 802.1Q (2018). In this case, the traffic

engineering is performed using CNC that optimises the send slots of synchronised

talkers and bridges. Several algorithms have been proposed for this purpose. For

example, Wang et al. (2021) applied an improved ACO called IACO, to schedule

time-triggered stream transmissions. They define minimal send slots of frame

length and demand that only one node is using a certain send slot. Thus, they

achieve an optimum load distribution. However, the necessary complete

recalcualations after a change in the network make it an inflexible approach, not

suited for MAN.

Li et al. (2022) used a joint routing and scheduling algorithm that achieved

recalculation for a few thousand streams at the sub-second level. The central

recalculation of the complete time-critical traffic, however, also has the major

disadvantage of inflexibility regarding added or removed network participants or

links. This typically again demands a complete schedule reconfiguration, and thus

a reconfiguration of all network participants which disturbs the automation

applications.

For Ethernet networks according to IEEE 802.1Q, as they are the basis for this

thesis, facilities for TE are thus far only specified by standards purely for use within

Provider Backbone Bridged Networks (PBBN). These are based on the definitions

of IETF RFC 5305 (2008), IETF IS-IS Extensions for Traffic Engineering, and IS-IS

Traffic Engineering Metric Extensions of IETF RFC 8570 (2019). These PBB-TE

mechanisms use path control and reservation (ISIS-PCR) to find multiple

Page 83

favourable paths and set up a Traffic Engineering Database (TED). This is

propagated by IS-IS, which stores the traffic engineering information in each PBB.

Crucially, however, is that bridges suitable for industry and MAN typically do not

support ISIS-PCR. Thus, this means of pathfinding is not available for this research.

Furthermore, the actual use of multiple paths, that is, any load sharing or load

distribution concepts or algorithms, as shown in the previous sections, are not

part of the IEEE 802.1Q. These are left to be designed by the user of the network,

using controller types as listed in Section 2.3.3.

2.5.3 Multilayer Traffic Engineering

When network operators migrated networks to optical IP-over-WDM

(Wavelength Division Multiplexing), so called multilayer networks, it was

necessary to define mechanisms that allowed to make use of the resources

offered by both layers in a coordinated manner. This led to the definition of

Generalized Multi-Protocol Label Switching (GMPLS), as defined by IETF RFC 6002

(2010), on the control plane, which allows automatic set up and tearing down of

light paths in the data plane.

As for example the research of Puype et al. (2009) shows, Multilayer traffic

engineering (MLTE) provides cross-layer network optimisation techniques to cope

with short-term evolution or rapid changes in traffic patterns. It extends the Layer

3 IP/MPLS TE towards Layer 2 MPLS-over-optical network traffic engineering by

integrating Layer 2 optical switching optimisations. The multilayer approach

features a much higher flexibility to network changes compared to a single layer

TE solution and is therefore especially suited to serve in multiservice

environments. In contrast to other approaches, that propose a reactive approach

in the case of network overload, such as the topology reconfiguration mechanism

from Gillani et al. (2005), Puype et al. (2009) work with a more proactive approach.

Their solution is based on three integrated mechanisms that continuously

optimise network performance by analysing traffic measurement data, that is, this

TE can be classified as a dynamic and closed-loop approach. The use of different

mechanisms is necessary due to the different needs of a variety of data from

 Page 84

different service classes. For example, bulky BE data is managed by using rather

slow and inflexible layer 3 mechanisms, whereas selected services requiring

higher QoS such as CD are assigned to faster acting Layer 2 mechanisms. The

latter, which are also the focus of this study, work with dynamically modified link

capacities, independent of actual logical topology connectivity. For this, an optical

light-path setup and teardown is required but the logical topology is not changed.

The maximum admissible link capacity is crucial for the network formation.

However, neither wired nor optical MAN and TSN MAN paths provide the feature

of setting up or tearing down additional light paths. Thus, this approach is not

available for TSN MAN.

Another promising MLTE approach was provided by Lopez et al. (2010), who

defined an algorithm that efficiently manages the resources from both layers

equally. Their concept is based on the Bayesian Decision Theory, that is, they use

load statistics for the path selection decision to find a compromise in assigning the

optimal number of label-switched paths that are to be switched over the

electronic and optical network domain sections. The result is a heuristic dedicated

algorithm. Also here, the method of analysing the load to adapt load-dependent

link costs for path selection is in principle an interesting approach also for the

MAN LDC goals of this thesis. However, again, there is no possibility in a wire-

based or optical MAN to set up additional paths or bandwidth capacity in a

load-dependent manner, as with the IP/MPLS forwarding adjacencies for light

paths or capacity up/-downgrading.

2.6 Load Balancing

The concept of load balancing has long been known in client/server systems

(Cardellini et al., 1999), distributed systems (Zaki et al., 1996), and network

operations (Elwalid et al., 2002). As the literature review shows, the expressions

“load sharing” or “load distribution” are often used as synonyms for “load

balancing,” while the latter expression clearly dominates. To be precise,

“balancing” in its original meaning rather stands for an equal distribution whereas

 Page 86

servers of the server cluster to improve the available services with regard

to:

• Scalability

• Availability

• Load balancing

• Applicability to a variety of services

• System updates without down times

Thus, the SLB is a distribution of load among the end stations, regardless of

its path loads. Path loads, as they are important for this research, are not

primarily the focus of SLB. However, to a certain extent the load on the

paths to the servers is also balanced if they are accessed through different

paths.

The number of servers in a cluster is usually allowed to vary in numbers.

Traditional early SLB applications, such as those described by Cardellini et

al. (1999), were laid out for a smaller number of typically two or three

servers.

They describe various client-based and server-based packet routing

strategies, all of which can be classified as oblivious routing algorithms as

described in Section 1.1. They are thus not closed-loop algorithms that could

help bringing this research to an optimal dynamic LDC for TSN MAN.

Subsequent research, such as that provided by Wilson and Deepalakshmi

(2019), targeted higher numbers of servers or clusters. In addition, they

proposed a dynamic server load balancing algorithm (DServ-LB) using SDN-

switches for dynamically varying the number of servers. The proposed control

algorithm routes requests to the least loaded server using load parameters such

as remaining memory, remaining CPU load, and number of available connections.

These three parameters are combined by a central controller according to an

empirically obtained calculation rule. The controller algorithm is thus to be

classified as a dedicated closed-loop control algorithm according to Subsection

Page 87

2.3.3. However, such an algorithm cannot be directly reused for a network LDC

that depends solely on comparing the link data load. A proven PID controller for

the link load might be the better solution here. The use of SDN switches is only

important in terms of how the control decision is brought to the data plane to

multiplex requests to the servers. However, this is not important for network LDC

in MANs when distributed LDC-Controllers are part of each AC and decide their

own send-paths for their individual own traffic on their own ports.

A similar approach, also within SDN, was provided by Bojović and Živko

(2022), who also used a multi-parameter closed-loop dedicated control

algorithm to measure actual host loads. The same restrictions apply here

regarding a re-use for TSN MAN as with the Wilson and Depalakshmi

approach.

Other well-known implementations of contemporary SLB for a higher

number of servers are the Microsoft Network Load Balancing (Microsoft,

2023), where the expression “Network” is used as a synonym for servers,

and the Linux Load Balancer is a part of the Linux Virtual Server (LVS) (Linux,

2023) software. Here, too, dedicated algorithms were used that work with

server parameters and cannot be directly transferred to a MAN network

LDC. In conclusion, however, it must be stated for SLB in general that the

transferred idea of distributing the load to different MAN devices in a ring,

in this case ACs instead of servers, does not necessarily lead to distribution

over the paths, which is the goal. However, it would be expected that the

spatial separation of several ACs in a ring would also result in better load

distribution in the ring, since data is sent to and from the ACs in different

directions. For controller types, however, no new controller approaches

could be identified in the SLB literature apart from those listed in in Section

2.3.3.

2.6.2 Distributed Systems Load Balancing

In addition to the trend of clustering internet servers, the growing availability of

low-cost high-performance CPUs in connection with highly effective

 Page 88

communication networks has enabled the distribution of extensive calculation

tasks on a variety of hosts. Also, within such distributed systems, the challenge is

to balance the task loads. Both static and dynamic load balancing solutions were

applied, as described by Taley and Keole (2015). These distributed systems load

balancing (DSLB), or load distribution concepts also clearly target the relief of

connected systems rather than the relief of the connecting network, which is the

focus of this research. Nevertheless, the applied balancing concepts also contain

interesting aspects for network de-loading goals. Examples of early concepts for

distributed systems started with the load distribution for a network of

workstations (Zaki et al., 1996) which were loaded by parts of a calculation task

proportional to their individual performance. The driving goal of this was, and still

is, to parallelise sub-tasks to minimise the execution time of the complete task. In

addition to previous static approaches, where tasks and resources were limited to

certain borders, Zaki et al. investigated different dynamic load distribution

schemes with varying program and system parameters. Static load balancing for

distributed systems is performed at compile-time, whereas dynamic load

balancing (DLB) is executed at runtime according to the changing number of users

and their changing applications. According to Zaki et al., four steps are necessary

for DSLB:

1. Monitor processor performance.

2. Calculate new distributions.

3. Make work-distribution decisions.

4. Move the data to the distributed systems.

They chose four different schemes to construct the load sharing mechanisms:

1. The concept is based on either local, or

2. global information to base the load balancing decision on it, and it is,

3. either centralized, or

4. distributed, depending on whether the load balancer is situated in one

system or distributed among the systems.

Page 89

These four poles, local versus global and centralized versus distributed, are

also important in the design of load sharing for general networks and MAN,

as discussed in Chapter 4 .

Metawei et al. (2012) presented another approach: an agent-based DSLB.

They used a credit-based system in which each agent in a system is assigned

credit that decides whether it will be migrated or transferred to another

system. Multiple linear regression, calculated using a super-ordinated

system, was applied to reach the migration decision, based on a multitude

of regression parameters such as computational load, resource

availabilities, and communication reliability. It is thus very similar to the

parameter-based SLB approach of Wilson and Deepalakshmi described in

Subsection 2.6.1. However, like the Wilson and Deepalakshmi approach, it

cannot directly be used for TSN MAN LDC either. Furthermore, the idea of

using a credit system to decide heavily or lightly loaded systems is similar

to a port load parameter at each port within a MAN LDC to decide heavily

or lightly loaded ports. This approach therefore does not reveal any new

ideas for an optimal MAN LDC solution. Later research focusing on higher-

number distributed computer systems was mostly published in areas of

massively distributed systems or cloud-computing systems, as described in

the next section.

Looking at DSLB, it must be noted that the objectives and methods used are

very similar to those of the SLB. The focus is more on relieving the systems

than on relieving the transportation network. For this reason, the methods

used would only be useful for NLB in TSN MAN to the extent that physical

separation with dedicated access paths could be assumed. However, this is

not the case for the underlying TSN MAN rings. Nevertheless, the methods

used for bandwidth capacity utilization measurements and control are also

of interest for TSN MAN NLB. However, no other than those already listed

in Section 2.3 are used.

 Page 90

2.6.3 Cloud Computing Load Balancing

The further development of SLB and DSLB was to extend the originally

limited number of servers in server clusters to a significant ly higher number

of servers, including the possibility of geographically distributed systems.

This has led to the development of cloud computing load balancing (CCLB)

systems, providing the advantage of virtualization and geo-redundancy. An

overview of numerous CCLB algorithms was provided by Rajeshkannan and

Aramudhan (2016). Rajeshkannan et al. classified CCLB algorithms as

software- and hardware-based approaches. The former are running on

communicating machines in the cloud itself. The latter are located in front

of a cluster and route all the traffic among the servers. Examples were

obtained from the simple round-robin algorithm to the rather complex ACO,

but no further controller types than those listed in Subsection 2.3.3 are

visible in their review.

A more recent systematic literature review analysis of the existing dynamic

CCLB was conducted by Tawfeeg et al. (2022). They classified dynamic

algorithms into

1. sender initiated, when the sender starts the load balancing process,

2. receiver initiated, when the receiver is responsible for the load

balancing process, and

3. hybrid, when the algorithm is a mixture of 1. and 2.

They found and analysed more than 40 different algorithms presented by

the research community since 2015. These are essentially also based on the

application of the methods presented in Section 2.3. The principles of the

solutions are comparable to those of SLB and DSLB. In addition, various

specialised algorithms have been designed. One interesting example that

also included edge stations, that is, stations that are located between a

cloud and a physical automation application and are thus interesting for

MAN, was provided by Nezami et al. (2021). They propose a solution, which

introduces a decentralized multi-agent system for collective learning that

utilizes edge-to-cloud nodes to jointly balance the input workload across the

 Page 92

In OSI Layer 3 networks, NLB is used to distribute network traffic from one router

to the next router using alternate routing paths (Cisco, 2022; Tanenbaum et al.,

2021). Antic et al. (2010) analysed the possibilities of NLB in connection with

standard Shortest Path Routing (SPR) protocols, for example the standard routing

protocol OSPF. They presented a Load Balancing Shortest Path Routing (LB-SPR)

method which achieves a balancing of arbitrary traffic patterns by using a two-

phase routing scheme. In the first phase, portions of traffic are routed to all

possible intermediate routers towards the destination, including on the shortest

path. In the second phase all intermediate routers forward to the destination.

Thus, they achieve a traffic distribution. However, this method does not consider

interfering exogenous traffic from other sources which might load links along the

path already. It can be regarded as an oblivious method therefore according to

Wang et al. (2006) (see Subsection 2.3.1), without actual closed-loop feedback

which could be expected to optimise the load distributions.

For protocol-based NLB, Antic et al. and also Fortz and Thorup (2000) extended

these shortest path routing protocols, such as OSPF, by path weight metrics, so-

called costs, to support routing decisions. Load balancing can either operate on

equal cost or equal distance paths or on unequal cost or unequal distance paths.

When working with the classical pure routing protocols RIP or OSPF, load

balancing can only occur if the router has installed multiple paths that are

equivalent in administrative distance and cost. When applying IGRP or EIGRP,

unequal paths can also be subject to load balancing. However, this principle of

using costs as routing decision criterion is not well suited for MAN rings where the

distance from talker to listener is typically different for the two directions of the

ring.

A similar procedure was provided by Chadha and Gupta (2013), which apply equal

cost LB and unequal cost LB. With the former, they apply LB if the paths have equal

costs. With the latter, they only use the lower loaded path if the costs are unequal.

They gain the costs themselves from the path delays. It must be objected though,

that path delay can only serve as a decision criterion for paths of equal costs. Then,

Page 93

typically the load is causing the additional delay. For MAN rings the delay is

therefore not significant as it is different in most cases in the two ring directions.

The LDC for the NLB can also be independent from the routing protocol. It is then

located in a higher application layer. Elwalid et al. (2002) proposed several

possibilities for the actual distribution process, independent of the use of a

specific routing protocol:

1. On a per-packet basis: each new packet is routed over the next path

interface being part of the load balancing paths.

2. On a per-flow basis. Flows are frames that have a <source IP address,

source port, destination IP address, destination port, and IP protocol>-

tuple in common.

3. On a per-destination basis: each new destination flow is routed over the

next path interface.

As emerges from their work, the destination-based method has the advantage of

preserving the packet order but has the potential disadvantage of unequal usage

of links. This method is typically applied to a higher number of destinations. The

per-flow approach has the disadvantage of a rather high traffic analysis and state

bookkeeping effort but also preserves the packet order. The packet-based

approach bears the risk of packets arriving out of order at the same destination

when they are delivered over different paths. Transferring this to the MAN rings

and CD traffic, none of these seems an ideal method. The per-packet selection of

different paths bears especially in rings the out of order arrival risk. MAN-CD are

typically no IP or TCP data, that is, the flow-based method is not applicable either.

The per-destination method does not take the fact into account that different

destinations can have different CD traffic demands. Therefore, from MAN point of

view, the Elwalid et al. list of methods should be expanded by the per-automation-

application flow of CD.

Kandula et al. (2007) presented FLARE (Flowlet Aware Routing Engine), a method

that overcomes the packet order problem by keeping the inter-packet gap higher

than the longest path delay. However, this could have a negative influence on the

 Page 94

CD data flow particularly in bigger MAN rings with long path delays. The per-flow-

based approach could also be used if different flow-assignment criteria would be

used. MAC-Addresses instead of IP-Addresses for example.

Dynamic network load control, as investigated by research in layer 3 ISP networks

or campus networks (Ahmad & Khan, 2018; Elwalid et al., 2002; Lopez-Perez et al.,

2016; Neely et al., 2008; Wang et al., 2006) and introduced in Section 1.1, usually

differentiates between flow control, fairness control, and distribution control. As

also outlined in Section 1.1, fairness control is not relevant for automation

network control data, as CD data flows are not allowed to be reduced, as explained

further down. Regarding distribution and flow control, more research has been

conducted on distribution control than on the flow control subtask. This results

from reviewing the research on closed-loop network load control as listed in

Subsection 2.3.2.

In OSI Layer 2 networks, the bridging standard (IEEE 802.1Q, 2022) also considers

the increased need for load sharing. Therefore, it defines the facility of Enhanced

Transmission Selection (ETS), which allows the network user to assign priority-

based processing and bandwidth allocations for different traffic classes. This

mainly aims at Data Center Bridging (DCB) networks, which are rather IT layer 2

networks, but could also be used in layer 2 networks for automation. Examples of

actual methods or necessary algorithms for the load-sharing function are not

defined in the standard, which encourages continuous research, improvement,

and vendor delimitation. A survey on NLB in the area of DCB Networks was

conducted by Zhang et al. (2018). They compared several DCB-dedicated load

balancing algorithms such as Freeway (Wei et al., 2014), Fastpass (Perry et al.,

2014), or “flow distribution aware load balancing for data centre networks

(FDALB)” (Shuo et al., 2016), to name only a few of them.

Wei et al. distinguish between so-called long-lived elephant flows and latency-

sensitive mice flows. They leverage on the presence of multiple shortest paths and

use a scheduling scheme to adaptively partition the transmission paths into low

latency paths and high throughput paths for the mice and elephant flows

Page 95

respectively. They propose a dedicated algorithm (Freeway) to dynamically adjust

the number of separated transmission paths.

Perry et al. transfer the path selection for traffic transmission from the data centre

endpoints and routers to a central arbiter. This Fastpass network architecture

provides two dedicated algorithms to assign transmission time and path selection

to the endpoints and routers. They claim that they achieve a considerable

reduction of the queuing resources by maintaining a high throughput and low

latency.

Also, Shuo et al. propose a central solution, FDALB, to reduce flow collisions and

achieve a high scalability. Similar to Wei et al. they classify short flows and long

flows but only centrally manage the long flows, whereas the short flows are

managed by the distributed switches themselves. In addition, end-hosts shall tag

long flows for the switches to easily determine the long flows by inspecting the

tag.

These three approaches can all be classified as “dedicated algorithm control,” as

described in Section 2.3.3, but cannot be directly re-used in TSN MAN

environments for CD. The reason for this is that these algorithms use multiple DCB

paths between any source and destination, some of which are reserved for bulky

BE traffic and some for shorter, delay-sensitive control data. However, MAN ring

topologies only provide two possible paths, which must be available between all

nodes in the ring for all types of traffic to ensure accessibility.

In the context of TSN, Nayak (2018) studied the scheduling and routing of

time-triggered traffic. He worked with pre-calculated routing and

scheduling algorithms. However, for a set of one thousand data streams,

these calculations still take several hours which is considered too long if

dynamic traffic changes or application launches are to be possible as

assumed in the MAN of this research. In addition, he based his work on SDN

bridges. However, SDN-based TSN MAN are the exceptions and are not the

focus here, as they require dedicated SDN-capable bridges which are often

unavailable for industrial bridges for MANs and TSN MANs in particular.

Another disadvantage of SDN is that it implies that routing is managed by a

 Page 96

CNC and not in a distributed fashion as is intended to be the basis of this

research.

Other recent studies on NLB in combination with ML and SDN were

conducted by Todorov et al. (2020) and Jahde et al. (2021). The latter use a

Deep Learning (DL) ML approach. As explained in Section 2.3.3, ML is

basically suitable for TSN MAN NLB, but it is not the first choice due to the

high implementation effort, memory, and CPU resource consumption.

Further contemporary research was provided by Han et al. (2021) who

adapted the network topology to a traffic forecast via AI. However, this is

only suited for inert changing traffic patterns, which is not the case for CD

within MANs. Prabakaran and Ramar (2021) also conducted research on NLB

with SDN and use the SDN for a rather untypical distributed control concept.

Regarding this procedure, it must again be objected that, because it is also

an SDN solution, it is of secondary importance in this research.

2.7 Chapter Summary

The overall aim of this thesis is to research, design, develop, and validate a method

for optimum control of dynamic load distribution in time-sensitive communication

networks for manufacturing automation. As such, this chapter has first reviewed

definitions and provided an overview of general communication networks, time-

sensitive communication networks in the manufacturing automation domain, and

the control theory applicable for communication traffic load reduction or

distribution, before considering existing methods for congestion control, traffic

engineering, and load balancing applicable for optimum dynamic load control in a

TSN MAN.

It has shown that no dedicated research on the problem of load distribution in

TSN MANs is available.

In particular, the following gaps exist in the current relevant knowledge to solve

this task:

• The influence of various TSN traffic shapers and schedulers on data flow

Page 97

control must be analysed.

• The implications and connections among automation application cycles,

packet sizes, communication cycles and network topology extensions must be

investigated.

• The influence of stream reservation, frame preemption and media redundancy

protocols must be assessed.

• The best-suited controller types for data flow and distribution control for a TSN

MAN with their own properties must be selected.

• It is unclear whether a decentral or a central control concept is to be preferred.

• A dedicated distribution control approach for a single AC featured TSN MAN

field-level ring must be proposed. Furthermore, this must be extended for

controller level rings featuring multiple ACs.

To solve these problems, it is important to propose, design, develop and validate

a new method for optimum control of dynamic load distribution in time-sensitive

communication networks for manufacturing automation.

 Page 98

Chapter 3 Research Methodology and Design

This chapter presents how the research project aims to find an optimum control

of the dynamic load distribution in communication networks for manufacturing

automation. It describes the applied research methods and methodology.

Furthermore, it outlines the methods for data collection, data analysis, and how

the results are presented.

3.1 Philosophy and Methodology

The research paradigm that underlies this research endeavour is positivism, as it

is the most expedient research paradigm to provide highly diagnostic quantitative

data to answer the research questions embedded in control theory and

communication network theory as part of the natural sciences. This position is

supported by for example Crotty (1998) and Grix (2019).

To answer the research questions defined in Section 1.4, a combined research

method approach consisting of two methods shall be applied.

Firstly, literature review is used to identify relevant automation communication

use cases (IEC/IEEE 60802, 2018), relevant control theory concepts (Duriez et al.,

2017; Goodwin et al., 2001; Müller & Guido, 2017; Normey-Rico & Camacho,

2007), and relevant network standards (IEEE 802.1Q, 2022; IEEE 802.1Q TSN TG,

2022).

Secondly, to observe the network behaviour for data gathering, basically two

possibilities would be at hand:

1. to carry out experiments with real network bridges and devices, or

2. to simulate the network with the help of simulation tools.

Simulation is the preferred and selected research method to obtain the primary

research data to be analysed within this research project. As Wehrle et al. (2010)

outline and many applications show (Henderson & Imputato, 2023), network

simulation has several advantages compared to experiments:

Page 99

• Network simulation allows a relatively effortless change of network

parameters, such as the number and types of bridges and end stations, traffic

types, or topology changes. Changing all these network conditions in a real

physical communication network requires a multitude of effort and time

compared to the simulation method. The simulation environment provides

diagnostic access to all protocol layers of virtual network devices.

• A detailed and simultaneous view into the network device’s behaviour and

network communication data is possible and delivers more precise and

detailed data than real hardware. This is particularly true with respect to the

possibility of complete network data snapshots that would require precise

time synchronisation in real hardware.

• The network devices and the network can be analyzed in “slow-motion.”

• A data logging and data analysis environment is part of the simulation tools,

saving the application of further network logging and analysis tools.

• The quality of the simulation data compared to the experimental data is more

detailed and richer, as any network detail can be displayed and related to other

events at nanosecond resolution. Hence a network simulation environment is

an excellent tool for analysing complex relationships with reasonable effort.

A disadvantage of the simulation method is that it lacks the device complexity of

real hardware setups. Real bridges and end-stations usually run a variety of other

software, such as applications or protocol stacks, in parallel to the functionality in

the focus of the research problem. Therefore, the validation of hardware

sometimes reveals interaction problems that can be grounded both in design

deficiencies and in performance or resource problems of the target hardware.

However, because the research problem concentrates on the basic mechanisms

of load control and controller interactions, the performance or resource problems

of dedicated hardware or software implementations are of secondary importance.

Interaction with other protocols or applications on possible host devices of load

controllers is not the focus either. Therefore, these simulation disadvantages do

not become important to answer the research questions.

 Page 100

A further reason that excludes real hardware experiments is that, at the time of

writing this thesis, it was not possible to obtain TSN bridges with the support of

the necessary traffic shapers and schedulers and other features such as bandwidth

resource reservation or frame preemption. Even if this were possible, the next

problem would have been to adapt the bridges with firmware extensions to

support the necessary sophisticated bandwidth measurements and feedback

mechanisms. A further problem would have been to adapt automation controllers

to provide synchronised transmission of single frames. These tasks would have

exceeded the possibilities of this study by far.

Figure 3.1 illustrates the complete research methodology.

Figure 3.1: Research methodology

Thus, combined research method is applied into this research project. The first

Page 101

step is a literature review which provides the secondary data. The second step is

simulation to provide the primary data.

The literature review part begins with three main tasks:

1. Control theory and network theory concepts must be evaluated regarding

their properties and suitability to help investigate and solve the research

problems.

2. Relevant IEEE, IEC, and IETF communication network standards must be

identified and reviewed, and areas of influence on the research questions

must be studied, analysed, and related to the research problems.

3. Analysis of the properties of relevant types of TSN MAN on which research

should be focused. This is carried out by studying the relevant automation

network applications to identify the application areas of interest and to delimit

them to others.

These tasks are prepared with a careful literature review in Chapter 2 and lead

to the analysis of TSN MANs in Chapter 4 .

The data gathered during the literature review phase are the input to the second

phase, network modelling and simulation. Chapter 5 presents the design and

simulation of the control circuit for different TSN traffic shapers and schedulers.

Using the literature review results, a model of the network itself, without any load

control mechanisms, is designed. This network communication model forms the

control “plant” of the closed loop control system. It consists of the mathematical

model of one relevant TSN bridge, extended to the model of several bridges

connected in series to a line-topology communication network. The mathematical

model of the line topology is then simulated using the mathematical simulation

environment MATLAB. This tool provides special extension modules to simulate

control systems or control engineering problems, namely, Simulink. Knowing the

behavior of the communication network as a dynamic system, a proper control

algorithm is designed and tested in the closed loop dynamic model using

MATLAB/Simulink. With the help of the simulation tool, it is then iteratively

 Page 102

improved. The results and recommendations for the use of different traffic

shapers and schedulers in connection with LDC are derived.

In Chapter 6 , based on the findings of Chapter 2 , Chapter 4 , and Chapter

5 , a new dedicated control method optimised for the use within TSN MANs is

proposed. With the optimised model of the closed-loop control system of the

automation communication network, the network bridges, end-stations, and

closed-loop controller are then implemented in software using the network

simulation tool ns-3 libraries. Ns-3 is an open-source network simulation

environment that is widely used in the communication network research

community (ns-3, 2023; Wehrle et al., 2010). These software modules are then

integrated into an ns-3 network simulation environment. Complete networks

including communication devices such as automation controllers and end stations

are simulated. The devices communicate over the network bridges while the load

is controlled by closed-loop controller instances residing on the ACs.

In Chapter 7, the controller design is further optimised for the application in

networks with multiple AC. Some TSN traffic shapers and schedulers imply mutual

controller instances interdependencies, whereas others do not. For both

possibilities a solution is proposed. Performance evaluations are provided for both

solutions.

Chapter 8 concludes the research project with main achievements, the

contributions to the new knowledge generations, discusses the limitations, and

proposes further research steps for future projects.

3.2 Methods for Data Collection

The data to be collected

Two types of data are collected to achieve the research objectives: secondary and

primary. The secondary data are those for achieving all four research objectives

though mainly for Research Objective (RO) 1. The primary data are those for

achieving ROs 2 to 4. The secondary data are obtained from the Literature Review

(LR). The primary data is generated through simulations.

Page 103

Method for Secondary Data Collection

Secondary data are collected by analysing previous research work in the area of

load control in ISP networks, campus networks, mobile access networks, and cloud

computing networks. The various concepts of closed-loop network load control

solutions are identified, classified, and evaluated in terms of their capabilities to

serve as a basis for further development to solve the specific load control

challenges of TSN MAN. For this purpose, the collected secondary data will serve

as the background to compare the properties of the new control concepts.

Furthermore, the IEEE, IEC and IETF relevant network standards for automation

networks are analysed and categorized regarding the types and properties of

traffic schedulers, traffic shapers, and data transport protocols. Textbooks on

control theory and network theory provide a theoretical basis for the

development of the control concept.

Method for Primary Data Collection

The primary data is collected by simulating the manufacturing automation

network control model and by simulating typical complete network setups

including dynamic load controllers and communicating devices. The secondary

data on manufacturing automation network properties are used to build the

mathematical network model, which is simulated using mathematical simulation

software MATLAB with its extension Simulink. Secondary data on control methods

form the basis for the design of the controller to extend the simulation to simulate

closed-loop network control with a single automation controller containing

multiple talkers that address multiple listeners. Control engineering optimisation

techniques according to Ziegler-Nichols or Chien-Hrones-Reswick (Normey-Rico &

Camacho, 2007) are used to optimise the controller parameters. Building on these

results, the model simulation is further extended to cover multiple automation

controllers with multiple listeners network setups. Furthermore, the bridges,

talkers, listeners, and the new control algorithm are implemented in software to

be integrated into network simulation tools. The complete network simulation is

 Page 104

achieved by the application of the network simulation software ns-3 (ns-3, 2023;

Wehrle et al., 2010), which provides additional primary data for data analysis.

3.2.1 Simulation of the Control Circuit

To determine the characteristics of automation communication networks as

dynamic systems, it is necessary to first develop a model of a segment of a

communication network.

This research project focuses on manufacturing automation communication

networks based on layer 2 technology which is typical for field- and controller-

level networks. It can be easily extended to layer 3 network technology. Such a

layer 2 automation communication network consists of two types of network

devices:

1. Communication end stations taking the talker role and/or the listener role.

2. A number of Layer 2 network bridges (also called network switches).

Figure 3.2 shows a general example of an arbitrary network segment.

Figure 3.2: An arbitrary network segment between two end stations

Any data path between two communicating end stations consists of one to n

network bridges and their connecting links. The special case that two end stations

are directly connected via only one link is not regarded, as it is out of question,

due to missing interfering data traffic being inserted into the path via bridges

along the path. The data path is identical to the plant of the control system. Its

properties depend on the properties of the bridges and links.

A data transport link is assumed to be realised on wire-bound data transport, for

example, standard Ethernet cables for 100 Mbit, 1 Gbit, or 10 Gbit bandwidth. One

Page 105

Gbit dominates contemporary TSN MAN and is the focus of this thesis. Higher

bandwidth applications, such as 40 Gbit or 100 Gbit, are not yet present in layer 2

automation network setups and are beyond the scope of this research project.

The calculation of the different path delays for the different TSN MAN traffic

shapers and schedulers leads to different dead time elements in the control plant

and thus different control particularities.

For the simulation of the control loop, the MATLAB/Simulink tool, which is widely

used in the academic and research domains of control engineering (Chaturvedi,

2017), is selected. The control plant and controller design are introduced into the

tool using block diagrams. These can be selected from a variety of block element

libraries, such as mathematical operations, logical operations, bit operations,

different input signal forms, lookup tables, and output visualization tools, such as

value displays or scopes, to name only some of them. Controller designs can be

easily modified and optimised, and the results can be directly verified and

documented using output visualization facilities. Thus, the control method can be

optimised.

Step response diagrams provide quality statements regarding the settling time,

overshot tolerances, and possible oscillations of the control circuits. Nyquist

diagrams and calculations relating dead time and lag times provide insight into

robustness and stability of the control circuits (Goodwin et al., 2001; Normey-Rico

& Camacho, 2007).

3.2.2 Simulation of the Network

To gain knowledge on how a load distribution control algorithm will perform in a

real communication network, the next step is to simulate the complete

automation communication network.

The network simulation allows a detailed analysis of how the network control

algorithm works under the variation of certain preconditions (Wehrle et al., 2010),

such as:

• the amount of available network paths from talkers to listeners.

 Page 106

• the number of talkers and listeners from 1 to n, where n is a reasonable

number of typical maximum number of network participants in a selected

relevant use case.

• the number of bridges in the network.

• the type of bridges, that is, the technology of scheduling and queuing of the

data traffic used inside the bridges.

• types of network data traffic such as data bursts, cyclic data, and synchronous

or asynchronous data input.

There are a variety of network simulation tools available, for example:

1. the ns (network simulator) series with the latest version ns-3 (ns-3, 2023; Wehrle

et al., 2010). This simulator is primarily intended for the research and

education community, and is available under the GNU licensing model, that is,

it is free to use, but contributions or changes to it must, in the same way, be

made publicly available. It provides interfaces for statistical analysis tools and

visualisation of simulation data.

2. The NetSim network simulation and emulation tool is a commercial tool that

provides support particularly for wireless technology and layer 3 support.

3. The OMNeT++ simulation environment (Wehrle et al., 2010). OMNeT++ is also

free to use in the research and education community but provides with

OMNEST, also a commercial version.

For this research ns-3 is selected (ns-3, 2023) as network simulation tool for the

following reasons:

1. It can simulate complete layer 2 networks and layer 2 network protocols

(Henderson & Imputato, 2023).

2. Own protocol implementations or application implementations, such as load

controllers, can be integrated as C++ source code.

3. It is widely used in the research community and a large number of protocol

libraries and example codes which can be used to design tailored protocols and

applications (Henderson & Imputato, 2023).

Page 107

The ns-3 network simulator platform provides generic infrastructure for creating,

running and evaluating network simulations for wired or wireless networks,

sensor networks, automation networks, and many other applications. For this

thesis it is used in a Linux environment.

The bridges and end stations can be instantiated from standard C++ libraries

within the platform. These can be combined to form any topology. Special

functionality for bridges and end stations can be introduced by modifying the

present class source or creating modified classes. Additional source code for the

controller and bridge functionality such as flow controller, distribution controller,

rolling mean throughput measurement, throughput feedback processing, and

load balancing application have been implemented and integrated into the

simulation environment. The talkers can be operated with different traffic forms

such as cyclic or burst traffic, and various cycle times. In addition, interfering traffic

can be inserted into network path bridges along the network path. The resulting

bandwidth consumption on the single bridges output ports can be recorded and

analysed in terms of the performance of the control algorithm in “virtual real”

networks.

Any network data at any point in time during the simulation time can be exported

into data files, including a time stamp with a resolution of one nano second. Thus,

there are no limitations in analysing network events such as the transmission or

receptions of frames, dedicated runtime calculations, or even events between

protocol stack layers. The data files are then processed to present the data via

step response diagrams and calculation result diagrams using the Gnuplot plotting

tool.

Thus, the network simulation platform offers a huge space of investigation

possibilities for analysing the research problem and answering the research

questions.

 Page 108

3.3 Methods for Data Analysis

Secondary data is used for the analysis and evaluation of current load control

methods in ISP and campus networks. The research contributions to network load

control are categorised by the applied types of control methods. The control

application areas of various control methods are correlated to the network

properties to which they have been applied to. Exploratory data analysis is applied

by evaluating these control methods regarding their aptitude to achieve adequate

load distribution control results in manufacturing automation networks.

Therefore, characteristic manufacturing automation network properties are

identified and correlated with the strengths and weaknesses of various control

methods to extract and possibly improve the best suited control method or to

alternatively propose a better-suited control method.

The primary quantitative data resulting from the simulation of the network model

controlled by the selected suitable closed-loop controller design, is analysed with

respect to the achievable results of quality criteria such as stability, resilience, and

reaction speed. Confirmatory data analysis is applied to compare the simulations

outcomes of the optimum control design, which was derived from the exploratory

data analysis of the secondary data collection, with the ideal behaviour of the

quality criteria.

3.4 Ethical Issues

This research will be conducted in accordance with the University of

Gloucestershire Handbook of Principles and Procedures on Research Ethics

(University of Gloucestershire, 2014). The principles of informed consent,

anonymity, and confidentiality will be observed. In particular, references to

examples of manufacturing automation use cases and solutions and to example

network topologies, shall be of general types commonly known and applied by the

industrial manufacturing community, avoiding examples of any proprietary

vendor-specific solutions. Should it be necessary to involve any other

organisations’ confidential data, it shall only happen with the informed consent of

Page 109

these organisations.

3.5 Chapter Summary

The research project is embedded in the positivism research paradigm as it

produced quantitative data provided by modelling and simulation of dynamic load

control solutions for TSN MAN.

Secondary data has been obtained from the literature review of load-balancing

solutions in ISP networks, campus networks, mobile access networks, and cloud

computing networks. The review of control theory and network theory literature,

relevant IEEE, IEC and IETF standards, and relevant automation use cases has

provided further secondary data.

Primary data has been obtained by building a mathematical network model for

different TSN MAN traffic shapers and schedulers, which has been simulated using

the mathematical simulation software MATLAB with its control engineering

extension Simulink. Step response and Nyquist diagrams have presented the data

and have served for the analysis.

A new dedicated control method, optimised for a TSN MAN has been designed

and presented. Network simulations with ns-3 for a single AC have been used for

confirming the improvements of load distribution convergence time.

The new dedicated control method has been extended for application in multiple

AC TSN MAN under the influence of different TSN traffic shapers and schedulers.

Two solutions have been proposed: one that is suitable for EST, CQF, and ATS

without mutual controller dependency, and one for SPQ, which shows mutual

controller dependency. Performance evaluations have been made comparing the

solutions.

 Page 110

Chapter 4 The Influences of TSN MAN Properties on

Load Distribution Control

4.1 Introduction

Within the area of campus networks, ISP networks, or mobile networks, load

control concepts, such as Traffic Engineering (TE), Network Load Distribution or

Load Balancing (NLB), have been applied for a few years, as shown in the literature

review. These concepts are typically applied to networks based on OSI Layer 3,

also known as routed networks. The advantages of NLB are well known, and

researchers have conducted valuable work on this topic. Unlike in OSI Layer 3

networks, in OSI Layer 2 networks, and here especially in MAN and TSN MAN, NLB

concepts have thus far not been investigated to that extent as seen in the OSI

Layer 3 area. To design optimum control methods for the TSN MAN, among other

requirements, it is also necessary to clarify the special properties of the Layer 2

TSN MAN compared to the solutions seen so far in Layer 3 general networks.

Because of their high reliability, both redundant end stations and redundant

communication paths have also been gradually introduced into MAN solutions in

recent years. New network standards as defined by the TSN project promote the

use of multiple paths. Simultaneously, they defined various new functions to

achieve highly efficient data transport. Redundant paths are currently used nearly

exclusively for media redundancy. They serve either as standby paths or doubly

transport data for seamless redundancy for failure protection between the data

source and sink. However, they also enable the application of NLB concepts for

automation networks to use these networks more efficiently.

In the routed ISP, campus, or mobile access networks, there are different load

balancing concepts known, which can be categorized into three main concepts,

namely “oblivious routing,” “predictive routing,” and “dynamic routing.” The

latter is sometimes also named “adaptive routing.” Network load balancing

concepts based on dynamic or adaptive routing use closed-loop control to control

the bandwidth usage of network data paths. This is the controlled system output

Page 111

required to achieve a homogenous load distribution among the available network

paths from a data source to a data sink.

MAN differ in many ways from ISP networks or campus networks though, as they

are mainly based on OSI Layer 2 rather than OSI Layer 3. In addition, the data

traffic is of different type, in particular:

• data frames are typically smaller,

• the data transport intervals are much faster,

• the data traffic is typically generated in bursts instead of a homogenous data

distribution over time,

• and it is, in certain borders, more predictable.

In addition, it is common that a higher number of automation controllers (AC) and

end stations (ES), each of which can in turn host a multiplicity of talkers and

listeners, share the same network. Beyond that, multiple ACs within the same ring

pose a particular challenge in the pursuit of a distributed LDC concept. They can

influence each other’s load distribution calculation results via possible sections of

common paths along their paths from the data source to the data sink.

A central question is whether load distribution in the OSI Layer 2 MAN is even

possible and sensible. To answer this, MANs must be analysed regarding the

following:

1. Should the control concept be based on central control or a number of

distributed controllers?

2. Which network topologies are relevant?

3. Which bridging standard IEEE 802.1Q features are favourably used?

4. To what type of data traffic can it be applied?

5. How can the network use be controlled as a plant?

6. Which influence do the different TSN traffic shapers and schedulers have on

plant properties?

7. Which influence have the automation applications properties?

8. How can LDC coexist with stream bandwidth reservation?

9. What influence do other TSN features have?

 Page 112

10. What influence do network errors have?

These questions are analysed and answered in the following sections.

4.2 Central or Distributed Control Concept

One of the first dedicated standards for TSN was IEEE 802.1Qcc (2018), which

defined extensions for stream reservations. This was mainly aimed at audio/video

bridging (AVB) applications, rather than industrial automation applications.

However, two basic models for network configuration have already been defined.

The central approach resides in a central network controller (CNC), and a

distributed network configuration is located at the end stations. The central

approach was not least the result of extensive research work in recent years in the

area of SDN networks.

These two models are also important for MAN today. Here, it is necessary in the

same way to decide whether the network load control should be positioned

centrally or distributed. Figure 4.1 depicts these two basic concepts.

With Central Load Distribution Control (CLDC), a central control instance located

on either a workstation or a single AC is responsible for a constantly optimised

load distribution in the entire network domain. With Distributed Load Distribution

Control (DLDC), the load control is located on several distributed ACs, each

responsible for its own traffic distribution.

Page 113

Figure 4.1: Models of a.) Central Load Distribution Control (CLDC) and b.)

Distributed Load Distribution Control (DLDC).

There are several pros and cons that speak for one or the other concept. In

practice, only for the network configuration and path control functionality, these

two different approaches are already visible in the automation industry field with

the establishment of the Avnu (2023) and LNI4.0 (2023) organisations, which both

promote the application of TSN automation networks. Avnu favours central

network traffic engineering and configuration, whereas the LNI favoured concept

is distributed. However, both organisations currently have no activities on

dynamic LDC. Network configuration is not the focus of this research, and it is

assumed to be in a central instance in the form of a CNC, as shown in Figure 4.1.

Considering the advantages and disadvantages of a central and distributed LDC

solution, the following considerations are important.

1. Creation of additional traffic bottlenecks: A central network controller would

always need to be present on a dedicated powerful machine to calculate the

best traffic distribution of all present traffic, as it needs to react quickly to

possible traffic changes. This implies a constant polling of the measured load

 Page 114

values from each network node. This can be problematic, especially with larger

networks causing additional traffic loads towards the CNC, being situated

outside the ring connected via an uplink. The distributed solution with load

controllers on various ACs better distributes the load measurement traffic. A

recommended solution to ease the load caused by the exchange of load

measurement and load scheduling values for both distributed and central

control is to work with continuously circling summation frames. These would

contain the values from and for several bridges and ACs within a single long

frame.

2. Susceptibility to errors: With the distributed solution, the failure of one AC will

not spoil the entire network load control concept. In contrast, this would be

the case with central network controller loss.

3. Network reconfigurations: Typically, the goal of a central solution is to

optimally configure the entire network. This includes the traffic distribution

with a minimum delay for single frames to reach optimum results for

applications. Depending on the objective for the quality of traffic distribution

and the allowed delays, this could mean constant adjustment of gating

windows, frame transmission slots, or even frame transmission points in time.

The dynamic addition or removal of network participants can then easily spoil

the previous optimisation result, requiring recalculation and reconfiguration of

parts of the network or of the complete network. This can take a few hours for

several hundreds of streams (Nayak, 2018). Furthermore, within the MAN, a

particular feature is the hot plugging of the hardware. An example is the

“Configuration in Run” (CiR) feature, as part of the PROFINET (IEC 61158-5-10,

2023) protocol. This allows the extension of PLCs or decentral peripheral I/O

stations with additional I/O cards during runtime without stopping other

applications running on that device. This is problematic for a centrally

controlled load distribution, as it would mean disturbing the communication

of other already running applications. The disturbances can be caused by the

re-establishment of better paths and resource reservations, which are often

accompanied by short communication interruptions or load distribution

changes. In contrast, the distributed load distribution calculation and path and

Page 115

reservation establishments for one AC typically do not affect the previous

settings for other ACs control optimisation results, thereby avoiding these

disturbances. This is especially true for the DLDC solutions provided in Section

7.4, where the ACs mutual influence is decoupled by time or by control

sovereignty passing.

4. Optimum network load distribution: A central load distribution control

solution has access to all network information and can use this to determine

an optimal traffic distribution. The distributed solution usually cannot work

with all network information and has no possibility to influence other ACs

traffic distributions.

5. Mutual controller influence: With the distributed solution it will be the case

that the load distribution changes caused by one controller have influences on

other controller’s calculation results. This is the case with common paths from

different ACs to end stations. This is particularly true in ring topologies, which

are the prevailing network topologies in MANs. The consequence can be load

oscillations that are difficult to control. Therefore, the goal for a distributed

solution must be a decoupling of the controllers or a solution that can cope

with these mutual dependencies. Solutions to this problem are discussed and

presented in Section 7.4.

The load distribution control method to be selected, the central or the distributed,

must be decided by the preconditions of the applications performance

requirements, the network properties, and possibly by already present solutions

for network configuration, path control, and resource reservations. For the MANs

on which this thesis is based, the distributed approach is selected for its better

dynamic properties, which are the most important for the objective of this study.

4.3 Relevant Network Topologies

In factory automation applications, communication networks are typically based

on OSI Layer 2 technology using switching. To date, these communication

connections have been established redundantly primarily for fail-safety rather

than for load-sharing purposes. Redundant connections require path-changing

 Page 116

redundancy protocols such as RSTP/MSTP or MRP for non-seamless traffic. An

alternative is seamless redundancy protocols, such as PRP, HSR, or FRER, for

seamless (doubly sent) traffic.

To achieve redundant connections with a minimum of wiring effort, the ring

topology has become the prevalent topology in redundant industrial automation

networks (IEC 62439-2, 2021; IEC 62439-3, 2021; IEC/IEEE 60802, 2018). Figure 1.1

shows a typical industrial automation network setup, where several field level

rings are redundantly coupled to a controller level ring which again is redundantly

coupled to a higher-level IT or OT network. Thus, the ring and redundantly coupled

ring network topologies are relevant topologies in up-to-date automation

networks as the focus of this thesis. Figure 4.2 shows their core structures.

Controller-level ring 1 usually contains a variety of higher-level automation

controllers (AC1 to AC3), such as Programmable Logic Controllers (PLC) or Motion

Controllers (MC). An AC can be attached singly via a separate link, such as AC1, or

it can be integrated into the ring (AC2 to AC6) if it is a bridged end station, that is,

it contains its own 3-port bridge. In this case, one port of the internal bridge is

connected to the end station host, and the other two ports are the ring ports of

the end stations. A field-level ring typically consists of only one AC that controls a

variety of automation devices, such as drives, sensors, actors, or distributed

peripherals, providing digital and analog inputs and outputs.

Interfering communication enters a ring, usually at the redundant coupling

between rings (c1-c3). This can be data exchange with a local supervising

controller, storage, cloud connection, edge application, edge management system

for monitoring and diagnosis, device application updates, or device firmware

updates. This inter-ring communication is often the reason for an additional

asymmetric load in certain ring elements. For ring LDC, this traffic represents

exogenous traffic, whereas the traffic caused by end stations directly connected

to the ring is endogenous traffic from the ring’s point of view.

Page 117

Figure 4.2: Rings and redundantly coupled rings

It is obvious to primarily control the load distribution of the endogenous traffic in

the rings, as these transport a major part of communication. Thus, it is

recommended, and the principle of this thesis, to handle each ring as a separate

LDC domain.

Ring and redundantly interconnected rings are thus the relevant topologies when

investigating load distribution in MAN. The primary goal is thereby the load

distribution control within each ring rather than inter-ring load control, which

could be relevant for a further step for a subsequent research task. Partly meshed

or fully meshed networks, as they typically appear at the redundant access

switches towards the higher-level network parts of the superordinated OT or IT

plant or campus infrastructure, are not the focus here.

4.4 Path Control and Load Distribution Control Location

Layer 2 Ethernet networks, according to IEEE 802.1Q (2022) provide different

mechanisms to use different data paths, which are an inevitable prerequisite for

load distribution. The physical network is provided by bridges and their connecting

links, that is, wired or wireless connections between bridges. Logical networks can

be set up on top of the physical network by configuring VLANs. The goal of load

 Page 118

distribution is to provide at least two separate paths from each source bridge to

all other bridges in the load distribution domain. The bridging standard (IEEE

802.1Q, 2022) basically provides two methods for achieving such logically

separated trees within a physical network. These can be categorized as follows:

• administrator influenced path control approaches during network

commissioning, and

• automated path control approaches during network startup.

Administrator influenced path control approaches:

1. With MSTP, each source edge bridge providing links to talkers can be

configured as the root bridge of two MSTI in the MSTP region. The network

configuration is responsible for configuring redundant paths rooted at the

talker edge bridge. This can be achieved by assigning different path costs for

single links, thus influencing the path setup, as the MSTP selects the path with

the least cost. MSTP is usually combined with destination path selection via

FDB learning. Therefore, the non-stream CD or BE would be adequate traffic to

be load-controlled over these trees. The disadvantage of the MSTP is that the

reconfiguration time after a network change is in the range of a few seconds,

which is a relatively long time, especially for automation networks.

2. SPB protocols SPBV and SPBM are successor solutions for STP protocols. They

are based on the link state protocol IS-IS, which provides multipath routing

over multiple shortest paths. Unlike the MSTP, it uses the shortest path from a

source bridge to a target bridge without having to follow laboriously a tree

over a root bridge. The SPBV features different VLAN Identifiers (VID)

assignments for the shortest paths. The SPBM uses an additional backbone

MAC address for each edge bridge to identify the paths. From the viewpoint of

media redundancy, SPB protocols have a much faster convergence time in the

range of a few 100 ms. The precise values depend on the actual hardware and

software design. In addition, the SPB can handle up to approximately 1000

bridges, whereas the MSTP is typically reduced to network diameters lower

than seven, which results in a maximum number of bridges of less than 50. SPB

Page 119

is mainly applied to data center solutions with closely meshed networks.

However, it is rarely seen in automation networks at the controller level and

much less so at the field level. As with MSTP controlled paths, non-stream CD

or BE would be appropriate traffic to transport over SPB paths.

Comparing MSTP and SPB, it is logical to recommend SPB, because of its faster

reconfiguration time, the shorter paths, and the higher possible number of nodes.

This applies above all to arbitrarily meshed networks, where SPB then follows

Shortest Path trees (SPT) which are marked by different VIDs. However, as the ring

topology forms the basis for MAN, the possibility of using a shorter path with SPB

is not given. This special case is also the reason why it has no effect on the LDC

whether the paths are provided by MSTP or SPB, they will be the same.

Furthermore, the automation nodes within MANs typically do not provide SPB

functionality. These facts reduce the choice for non-stream CD and BE paths in

current MAN designs to the MSTP, in which two redundant MSTIs are to be set up

in the two ring directions from each edge bridge, in parallel to stream VLANs. An

LDC entity can be located in either an end station connected to the ring bridge or

in the bridge itself. Both solutions are possible when using MSTP for path control.

Automated path control approach:

As an alternative to a manually influenced configuration, different redundant

paths for LDC can also be found using different ISIS-PCR algorithms, such as an

Explicit Equal Cost Tree (ECT) algorithm or a Maximally Redundant Tree (MRT)

algorithm (IEEE 802.1Q, 2022). The actual path-finding algorithms are calculated

in a Path Computation Element (PCE), which is located either in an end station or

in a bridge, to achieve the necessary path configurations in all bridges of the SPT

domain. If the PCE is in the end station, it corresponds to a Path Computation

Agent (PCA) in the connected edge bridge. Each SPT bridge provides a Bridge Local

Computation Engine (BLCE) to cooperate with the PCE or PCE/PCA. Thus, an

important question in connection with the design of a distributed load distribution

mechanism within an OSI Layer 2 network is, where the PCE shall be located. In an

end station or in a bridge? In both cases, an integrated PCE/LDC solution, would

be advantageous.

 Page 120

Figure 4.3 depicts the possibilities for the location of PCEs and LDC entities for

singly attached end stations. These can then be present either in only one

representation as a CLDC, or multiply instantiated in the DLDC approach.

Figure 4.3: Location possibilities of PCE and LDC entities

There are two possibilities for the LDC to be located:

1. As shown in Figure 4.3 (a), the LDC can be located in the bridge and assigns

certain arriving data traffic with a certain ingress VID onto either path 1 or path

2, depending on the current load distribution control result. As an alternative,

it could implement an oblivious or round-robin routing method by forwarding

frames to both paths in alternation, which in sum, under the participation of

all bridges, achieves a better load distribution.

2. Alternatively, as shown in Figure 4.3 (b), the LDC can be located in an end

station where it directly calculates the load distribution of the data generated

Page 121

by different applications.

In both cases, the traffic distribution is achieved by assigning two VID for the two

possible paths. The data are then forwarded accordingly in the edge bridge

because of the Forwarding Database Identifier (FID) configuration achieved by the

PCE or PCE/PCA combination in cooperation with the BLCEs.

For the first possibility, the LDC location in the bridge, the appearance of a load

distribution mechanism is expected to be rather of the nature of a decision

algorithm whether to forward onto one of either paths or on both paths in

alternation, according to simple and low-calculation-effort mechanisms. The

reason is that a bridge, whose original task is to filter and forward incoming data

to other ports, is not the right system for the calculation of rather complex load

control algorithms.

The second possibility, the LDC end station location, is typically the case for an AC

connected to a ring bridge. This is the right selection to calculate the control

algorithm if it is an influential AC that provides both a reasonable amount of data

to be subjected to load control and sufficient hardware resources to calculate the

control algorithms. As described in the previous subsection, the AC can also be a

doubly attached end station located directly in the ring and has an integrated

bridge function.

4.5 Eligible Traffic Classes

Further protocol and hardware design decisions must be made for different data

traffic types in a MAN.

The IEC/IEEE industrial automation TSN profile (IEC/IEEE 60802, 2018) further

classifies the automation data traffic as listed and extended in Table 4.1.

 Page 122

Table 4.1: Industrial automation traffic types

Traffic type name Periodic

(cyclic)/

sporadic

Examples

isochronous cyclic real-
time

periodic Isochronous control data (I-CD)

cyclic real-time periodic Non-Isochronous control data (NI-CD)

network control sporadic Network administration

audio/video periodic Visual monitoring traffic

brownfield periodic Non-Isochronous non-TSN cyclic control data
of a neighbor machine or network or devices.

alarms/events sporadic Device or network alarms

internal/pass-through sporadic Clock synchronization, media redundancy etc.

best effort sporadic Firmware/application updates

best effort periodic Continuous cloud or edge connection data

NI-CD and I-CD are expected to contribute the most to the traffic load because of

their cyclic occurrence. They therefore deserve special attention for the design of

an LDC for TSN MAN.

Figure 4.4 shows the classification decision stages. The different traffic types

according to Table 4.1 must be classified according to these. The design properties

shown are not a complete list of all possibilities but consist only of those that are

relevant for multiple path networks, which is a compulsory precondition for load

distribution.

Page 123

Figure 4.4: Decision criteria for data traffic classification

Beginning from the top of the classification process, the communication data must

be classified as follows (the bullet numbers refer to step numbers (x) in Figure 4.4):

(1): Periodically or cyclically flowing data, such as isochronous CD (I-CD) or non-

isochronous (NI-CD), are best designed as streams that can be subject to resource

(bandwidth) reservation.

(2): Streams are also the recommended traffic type if the data are transported by

the lowest latency mechanisms such as EST or high priority SPQ with pre-emption,

or if lower bounded latency shall be achieved with unsynchronised data using the

CQF or ATS traffic shapers.

 Page 124

(3): Traffic of sporadic, that is, non-cyclical, character, or BE traffic with relaxed

latency requirements are best packed into the group of non-streamed data with

no reserved bandwidth or transmission time gates.

(4): The next crucial requirement is the so-called grace time of data flow

interruption, which decides whether data is to be transported seamlessly or non-

seamlessly. Mission critical data with very high availability requirements of only a

few milliseconds of grace time need to be transported seamlessly. Traffic with

lower availability requirements spanning from a few 10ths of milliseconds to a few

seconds can be transported singly or non-seamlessly.

(5): Resource reservation, that is, bandwidth reservation, is only provided for

streams and can use the reservation protocols MSRP or RAP.

(6): To provide at least two logically separated network paths for load distribution

or seamless data transport, ISIS-PCR is the path control protocol defined by IEEE

802.1Q (2022). For non-stream seamless data, paths can also be provided through

the redundancy protocol HSR, which is defined for rings, or by PRP which bases on

two physically completely separated networks. For non-stream, non-seamless

data the MSTP or MRP would be an alternative.

(7): Media redundancy for seamless streams can be provided by FRER (IEEE

802.1CB, 2017). For non-seamless streams, switch-over redundancy in a multipath

environment can be achieved using MSTP or ISIS-SPB. The same counts for non-

seamless, non-stream traffic. Seamless non-stream media redundancy can also be

achieved via PRP or HSR.

(8): Load distribution control is always possible for non-seamlessly transported

data. For streams it can be combined with all available traffic shapers and with

ISIS-PCR for path control and ISIS-SPB for media redundancy. For non-streams it

can be combined with all SPQ priorities and preemption. For general meshed

networks, IS-IS technology with ISIS-PCR for path control and ISIS-SPBV for media

redundancy is recommended rather than MSTP because of ISIS-SPBV outstanding

path selection effectivity and flexibility (Huawei, 2010). However, for MAN ring

topologies MSTP is the better selection as outlined in Section 4.4.

Page 125

The described classification procedure is, of course, only a best-practice

procedure and there might be important reasons to deviate in one or the other

cases from this. For example, sporadic traffic could be so important that it would

be worthwhile to spend guaranteed bandwidth resources and guaranteed lowest

latency, even though the reserved bandwidth is only used to a low extent owing

to the sporadic character of the data.

Summarising this classification for CD, non-seamlessly transferred data are a

possible candidate for load distribution. This is because the doubly transferred CD

cannot be subject to load distribution because ingress limiting is not applicable for

CD, only the redirection of traffic. In certain cases, Non-CD can also be transported

seamlessly and can typically cope with further delays caused by load-controlled

throughput reduction. Seamless and non-seamless I-CD and NI-CD in TSN

networks are typically separated by VLANs. Seamless CD contributes to the basic

load of non-load-controllable data. Non-seamless CD with higher bandwidth

consumption are available for load control. Non-seamless CD with low bandwidth

consumption, such as sensor data, are often not worthy of load control and

contribute to the basic load of non-load-controllable data. On the other hand, it is

just this data of lower cost sensors, which will be non-seamless, as otherwise a

rather expensive redundancy box for seamless traffic integration must be donated

for each sensor. If sensor data have a higher bandwidth consumption, an AC can

include this traffic in the LDC by managing the send port at the remote sensor. See

Subsection 7.4.3 for more details on this.

Streams are always transported using a Layer 2 group MAC destination address.

Thus, they are multicast frames of type “1-to-n.” It is at reservation time and

transmission time not certain to what extent one or the other path will be used,

that is, at what distance from the source or talker edge bridge the last listener is

or will finally be located. The original idea of multicast stream establishment stems

from the AVB application (IEEE 802.1Qcc, 2018), in which any number of listeners

of an audio or video stream published by one talker could consume the stream.

However, within automation applications, multiple listeners are the exception. An

AC addresses single devices with dedicated streams containing process data only

 Page 126

for this device, although it uses a stream for this. The process data streams in the

opposite direction from the device to the PLC are typically of type 1:1. Therefore,

the probability that a further listener joins the stream at a further end of the path

at a later stage after the initial stream setup is very low within automation

applications and results in fixed path lengths for the streams. In addition, to make

use of the LDC for streams, the stream reservation strategy must follow certain

rules. Refer to Section 4.8 for details on the influence of the reservation process.

If these rules are respected, the non-seamless NI-CD and I-CD streams are suitable

candidates for load distribution.

Non-CD traffic is mostly transported via layer 2 unicast MAC addresses, that is,

there is only one target for the data in the network. This is then of the type “1-to-

1.” If this type of data is to be distribution load controlled, the load conditions of

the fixed paths from the source to the target are relevant and must be considered.

For the Non-CD multicast type, the insecurity factor is that it is not known where

the last target on each path is located. Therefore, the actual length of the paths is

typically unknown, and the maximum possible length of the paths must be

considered to obtain the maximum load on each. Under these circumstances, non-

seamless Non-CD are potential candidates, both as unicast and multicast frames,

for load distribution control. The option of throughput reduction of seamlessly

transported Non-CDs is not investigated in this thesis, as this concentrates on load

distribution, not reduction.

Summing up on these evaluations, the suitability of the possible MAN traffic types

from Table 4.1 are assessed and comprised in Table 4.2.

Page 127

Table 4.2: Traffic types for load distribution

Traffic type

name

Periodic

(cyclic)

or

sporadic

classifica

tion

Recommen

ded

transport

Potential

candidate

for Load

Distribution

?

Comments

isochronous

cyclic real-time

periodic I-CD stream yes If transported non-seamlessly.

cyclic real-time periodic NI-CD stream yes If transported non-seamlessly.

network control sporadic Non-CD non-

stream

no Too sporadic. Too little data.

audio/video periodic Non-CD stream yes Usually, high bandwidth

consumption also in the field

level. Potential candidate.

brownfield periodic NI-CD non-

stream

yes If transported non-seamlessly.

Path decision in bridge.

alarms/events sporadic Non-CD non-

stream

no Too sporadic. Too little data.

internal/pass-

through

sporadic Non-CD non-

stream

no Too little data.

best effort sporadic Non-CD non-

stream

yes If enough data to be worthwhile.

best effort periodic Non-CD non-

stream

yes If enough data to be worthwhile.

This summary shows that both CD and Non-CD in both transport types of streams

and non-streams are potential candidates for the load distribution. However,

there may be reasons to exclude data from distribution control. The amount of

data of a talker can be too small to be a worthwhile application for load control.

Another reason can be that the device hosting the talker can be of too low

calculation performance to operate a load control, or the devices firmware may

not be adaptable to host a load controller. This data is henceforth referred to as

granular data. A further reason can be that data shall use a fixed shortest path to

achieve a minimum latency. Figure 4.5 comprises these coexistence relations.

 Page 128

Figure 4.5: The coexistence of load-controllable data and non-load-

controllable data on a network path

Therefore, the data that are not to be transported seamlessly, and are not bound

to a fixed path, and are not granular data, can be load-controlled data.

Depending on the traffic types present in the MAN, different strategies can be

used to achieve the load distribution. This will always be a compromise between

the effort for the LDC and the quality of the distribution homogeneity. In the

planning and network configuration phase, the initial distribution is optimised via

traffic engineering as described in the previous sections. As a reaction to

unplanned dynamic traffic imbalances, dynamic control can react with only a CD

load shift if it provides sufficient distributable bandwidth. A further alternative

could be to react only with CD with a certain minimum contribution. Or it could

be necessary to make also Non-CD or BE part of the LDC. All combinations are

possible.

4.6 Control Aspects

Communication networks for automation plants are typically planned to be within

well-defined limits. Furthermore, they experience rather limited changes during

runtime in terms of both the number of network participants and the participant’s

amount of data transfer. Therefore, it must be assumed that deviating control

methods will be applied in automation network load control compared to those

used in networks containing more uncertainty. Such networks would be Layer 3

ISP networks, campus networks, or mobile network access networks. Typically,

these must cope with large amounts of un-plannable communication traffic.

granular data

seamless data

fixed path data

flexible path data

not available for dynamic

load distribution

possible subject to

dynamic load distribution

reserve

Bandwidth

use

100%

0

Page 129

Control methods for these include linear control, stochastic network load control

(Neely et al., 2008), or control using fuzzy control or neural networks (Bolla et al.,

1998; Kaszkurewicz, 2010; Wang & Hung, 2012). A comparison of their application

fields is presented in Section 6.3.

The extent and layout of the automation network and its communication partners

and their communication load requirements are largely determined at the time of

network design and deployment. This suggests using the following load

distribution design principles in MAN:

1. To apply traffic engineering in the network design and setup phase, that is, to

identify the different traffic types and their transport requirements as

specified in Section 4.5, with the goal of achieving homogenous network use

already at network startup.

2. To apply dynamic or adaptive traffic load control at runtime for certain traffic

to react to unpredictable network traffic changes.

For the second step covering dynamic traffic load control, the applied network

control concept can either be based on a central approach, where all network

configuration intelligence is located within a central network controller (CNC), or

a distributed approach. This has been discussed in Section 4.2, where the decision

has been in favour of the distributed concept. Its advantage is, that the network

adapts more easily to new network users, that is, new end stations and their

communication demands, while the network bridges provide configuration

intelligence by providing path control and resource reservation facilities.

The early Zaki et al. (1996) concept of four steps for the purpose of distributed

systems dynamic load balancing, as mentioned in Subsection 2.6.2, can also be

applied in the transferred sense on network load distribution and constitutes the

following steps.

1. Monitor path loads at each bridge port in the ring.

2. Calculate the maximum per path.

3. Calculate new favourable distributions.

 Page 130

4. Shift load from one path to the other via flow control.

The monitoring of the path loads or throughputs and the calculation of their

maximum along a certain path is obviously best performed at the distribution

controller site, which requires these values. However, the calculation of the sliding

mean value over a configurable integration time is best performed in the bridges

for each port. This relieves the network from extensive single-load value update

data traffic from bridges at each measurement cycle.

The classification of LDC into flow control and distribution control, as introduced

in Subsection 2.6.4, is also sensible for load control in automation networks. The

data flow control is subsequential to the distribution control, as it controls the

demand for an increase or decrease on a path, which is calculated by the

distribution control. This is elaborated further in Chapter 5 . Fairness control is

of secondary importance. The reason is that the proportion of timely rather

uncritical data flows of Non-CD, whose throughputs could be evenly reduced, such

as TCP/IP flows, is typically low in MAN. Instead, automation networks need to

part the time-critical streams and non-streamed CD onto different paths without

being allowed to reduce the overall throughput of the data. Therefore, congestion

control, where ingress data are either dropped or the sender is informed to reduce

the throughput, is not an option for CD automation data traffic.

To understand the process of data communication in automation networks from

the viewpoint of load control, it is necessary to analyse automation

communication more formally.

Figure 4.6 shows a section of an abstracted fully meshed automation network

which is represented by the graph G = (V, E) with a set of vertices V(G) and a set

of edges E(G). Set V(G) represents the nodes 𝑣𝑖 of the graph, representing either

pure network switches or automation devices with integrated switches. The set

E(G) with the edges 𝑒𝑖𝑗 represents the links between node 𝑣𝑖 and node 𝑣𝑗 . The

number of nodes of the graph determines its order n. The number of edges

connected to a node determines its degree deg(v).

Page 131

v1 v3

link/edge

v2 v4

end station

µ
12

µ 21

e
14

s11

1
s11

2

12d

11d

node/vertex

throughput

streams

Figure 4.6: Abstracted TSN automation network

Let 𝑫𝒊 = {𝑑𝑖1, … , 𝑑𝑖𝑗} be a set of devices (end stations) connected to node 𝑣𝑖 ∈

𝑽 = {𝑣1, … , 𝑣𝑛} , that is, a bridge. Let furthermore be 𝑻𝒂𝒊𝒋 = {𝑡𝑎𝑖𝑗
1 , … , 𝑡𝑎𝑖𝑗

𝑘 } a set

of talkers within 𝑑𝑖𝑗 and let 𝑳𝒊𝒊𝒋 = {𝑙𝑖𝑖𝑗
1 , … , 𝑙𝑖𝑖𝑗

𝑝 } be a set of listeners within 𝑑𝑖𝑗.

𝑻𝒂𝒊𝒋 create a set of streams 𝑺𝒊𝒋 = {𝑠𝑖𝑗
1 , … , 𝑠𝑖𝑗

𝑞
} being sent to 𝑣𝑖. Per definition and

in accordance with the definitions in IEEE 802.1Q (2022) one talker 𝑡𝑎𝑖𝑗
𝑘 issues only

one stream 𝑠𝑖𝑗
𝑞 that can be consumed by a set of listeners. Although the control

data can be transported as streams or non-streams, for a more concise

description, they are simply referred to as streams. The paths that the streams can

take from a talker 𝑡𝑎𝑖𝑗
𝑘 to one or more listeners 𝑙𝑖𝑖𝑗

𝑝
 , located somewhere in the

network, are derived from automation applications running in device 𝑑𝑖𝑗. The sum

of the directed streams on link 𝑒𝑖𝑗 create throughput µ𝑖𝑗 at the output port of

node vi. Each link 𝑒𝑖𝑗 provides two scalars of throughputs µ𝑖𝑗 and µ𝑗𝑖 which

represent the current output data rates at node 𝑣𝑖 in the direction of 𝑣𝑗 and vice

versa respectively. If no neighbor node exists for a certain port, no stream and

throughput exist on this port either. Thus, the edges describing the throughputs

are directed edges. The individual throughputs µ of the network can be formed as

an instance M of a distance matrix of graph G:

𝑴 = [

𝜇11 ⋯ 𝜇1𝑛

⋮ ⋱ ⋮
𝜇𝑛1 ⋯ 𝜇𝑛𝑛

] (4-1)

where n is the order of the graph, which represents the number of nodes, that is,

bridges and bridged end stations, within the automation network domain. If only

a certain traffic class is in focus of the control, the preceding considerations can

 Page 132

also be made related to streams of a certain traffic class on link 𝑒𝑖𝑗 instead of all

streams.

Automation applications with redundant networks are nearly without exception

set up in ring topology as illustrated in Figure 4.7.

Figure 4.7: Automation ring graph

The throughput distance matrix M for a ring topology reduces to a doubly diagonal

filled matrix, provided that the nodes of the ring are numbered clockwise or

counterclockwise in succession. For example, M for a ring of five nodes results in:

𝑴𝑟𝑖𝑛𝑔 =

[

0 𝜇12 0 0 0
𝜇21 0 𝜇23 0 0
0 𝜇32 0 𝜇34 0
0 0 𝜇43 0 𝜇45

0 0 0 𝜇54 0]

 (4-2)

The ring nodes 𝑣𝑖 provide the throughputs on their ring ports as feedback for flow

control within the ring. Owing to various applications with talkers 𝑡𝑎𝑖𝑗
𝑘 connected

to the ring nodes 𝑣𝑖 and possible inter-ring communication 𝑠𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑘, the

individual link throughputs along a path from a controller talker to listeners can

be different. The inter-ring communication 𝑠𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑘 is from the viewpoint of the

ring load distribution control an exogenous traffic. The streams of the end stations

within the ring are endogenous traffic. For the purpose of this thesis, stream s

needs to be assigned a further property which is its application cycle time. This

requirement will be outlined in more detail in Section 4.7 and in the chapters to

factory automation ring 1
v1

v3v2
µ

12

µ 21

e
12

s11
1

s11
2

12d

11d

end station

v5

link/edge

Ring port

Interconnection port

node/vertex

factory automation ring 2

streams
throughput s Interring

v4

Page 133

follow. Therefore, the notation for a stream must be extended from 𝑠𝑖𝑗
𝑞

 to 𝑠𝑖𝑗
𝑞𝛼

,

with α ∈ ℕ, representing the application cycle time. This is typically coded as a 2n

ms value within MANs. Table 4.3 provides an overview of the applied notations.

Table 4.3: Notations

Symbol Meaning

α Application cycle class of a stream or throughput

A A set of application cycle classes used in the network domain

AC The set of all automation controllers in the network domain

γ Index for the automation controllers (ACγ) in the network domain

cw Clockwise direction

ccw Counterclockwise direction

𝑫𝒊 A set of devices (end stations) being connected to a node 𝑣𝑖

𝑑𝑖𝑗 Device j connected to node 𝑣𝑖 , part of 𝑫𝒊

E A set of edges (links)

𝑒𝑖𝑗 Edge (link) from node i to node j

𝑽 A set of nodes

𝑣𝑖 Node number i

𝑻𝒂 The set of all talkers in the network

𝑻𝒂𝒊𝒋 A set of talkers within device j connected to node i

𝑡𝑎𝑖𝑗
𝑘 Talker k within device j connected to node i

𝑺𝒊𝒋 A set of streams originating from device j connected to node i

𝑠𝑘𝑙
𝑞

 Stream q originating from device l connected to node k

𝑠𝑘𝑙
𝑞𝛼

Stream q with application cycle α originating from device l

connected to node k.

𝜇𝑖𝑗 Throughput at node i in the direction of node j

The distribution control task to use one of either paths of the ring, results from

the optimisation task to minimise the maximum throughput on the single links on

the available paths:

minmax
𝑖,𝑗∈𝑽

𝜇𝑖𝑗 ; Subject to: ∀ 𝑒 ∈ 𝑬(𝐺) (4-3)

This optimisation strategy to reduce a local maximum is named “maximum-

reduction” method within this thesis.

 Page 134

Given that this research focuses on CD stream load distribution control, the

throughput to be measured at any port thus comprises

𝜇𝑖𝑗,𝐶𝐷 = ∑ ∑ 𝜇𝑖𝑗,𝐶𝐷 (𝑠
𝑞𝛼)

𝛼∈𝑨

𝑞∈𝑻𝒂

 ; 𝑨, 𝑻𝒂 ⊆ ℕ, (4-4)

which represents the sum of all throughput contributions of all talkers CD streams

from all possible end stations throughout the network, over all application cycles,

within a certain CD traffic class, and at one output port. The pseudo code for

finding and comparison of the throughput maxima of each of both ring directions

output ports is outlined in Table 4.4. Its detailed structure is provided in Appendix

2.

A more ambitious goal would be the load distribution of a possibly optimum

distribution or at least a distribution within a certain deviation tolerance. The

latter strategy, which aims for a non-optimal but improved result within a certain

deviation tolerance, is to be preferred. Finding a final optimum can be a very costly

task both with regard to the calculation effort and calculation time. In most cases

it is expected that an optimum distribution, which is in fact an equal load on all

paths and links in all directions, will not be found. This is because randomly

distributed talkers and listeners often communicate over hundreds and thousands

of communication relations with each other, resulting from the various

automation tasks in the network. An algorithm could try endlessly to find a more

favourable load distribution if not stopped by another exit criterion. This

optimsation task can thus be NP-hard. Therefore, the use of heuristics to improve

load distributions is necessary.

Page 135

Table 4.4: Pseudo code of algorithm for path throughput load maximum

determination and comparison per node and path direction.

Algorithm: CollApp::Compare ()

This algorithm of the collection application in an AC finds and compares the throughput
maxima of each of both ring directions output ports. It shall be calculated cyclically before
each call of the distribution controller method in an AC.

Create three-dimensional array m_thp_array [] [] [] for storing load measurements of each
node, direction, and application cycle once at instantiation of this method;
Create “sum” and “max” variables;
sum = 0;
max = 0;
Receive each node’s mean throughput load feedback-frames via interrupt in a receive
method in the background;
Store mean throughput loads from feedback-frames in m_thp_array per node, direction,
and application cycle;
Sum the individual application cycles throughput per node and direction to build the overall
bandwidth consumption (throughput) for CD:
For node i <= maximum number of nodes
{
 For direction j <= 2
 {

 For application cycle α <= maximum number of application cycles

 {

 sum = sum + m_thp_array [α] [j] [i] ;

 }
 Store sum over all application cycles at index SUMAPPIND:
 m_thp_array [SUMAPPSIND] [j] [i] = sum;
 }
}
sum = 0;
Find maximum per application cycles and over all application cycles in each direction and
store maxima of each direction in array:

For application cycle α <= SUMAPPSIND
{
 For direction j <= 2
 {

 For node i <= maximum number of nodes
 {

 If (m_thp_array [α] [j] [i] > max)

 {

 max = m_thp_array [α] [j] [i];

 }
 }
 Store max at index number of nodes NNODES:

 m_thp_array [α] [j] [NNODES]= max;
 max = 0;
 }
 Build the difference of the two path directions clockwise (cw) and counterclockwise (ccw)
 maxima and store the half of it in the array for the distribution controller which then tries
 to minimise the difference by load shifts.

 If ((m_thp_array [α] [CW] [NNODES] != 0) && (m_thp_array [α] [CCW] [NNODES] != 0))

 {

 m_thp_array [α] [CW] [NNODES + 1] = (m_thp_array [α] [CW] [NNODES] –

 m_thp_array [α] [CCW] [NNODES])/2;

 }
}

 Page 136

The optimum-distribution goal can be defined as the least square optimisation

goal between the actual load distribution and ideal load distribution. The best

approximation of this ideal distribution represents the best possible network

utilisation. An obvious way to achieve this is to optimise as follows:

min∑ (𝜇𝑖𝑗 − 𝜇𝑀)2𝑛
𝑖,𝑗=1

𝑖,𝑗∈𝑽

 ; Subject to: ∀ 𝑒 ∈ 𝑬(𝐺) (4-5)

where µij is the link load in both directions of the ring according to Matrix Mring,

(4-2), n is the number of nodes, and µM is the average load over both ring direction

paths. The latter is defined as

𝜇𝑀 =
∑ 𝜇𝑖𝑗

 𝑛
𝑖,𝑗=1

2𝑛
 ; 𝑛 ∈ ℕ . (4-6)

This optimisation strategy to find a possibly near-optimum distribution shall be

referred to as “optimum-distribution” method within this thesis.

The optimal distribution method depends heavily on the application of a CLDC.

However, since preference is given to DLDC in this study, the maximum reduction

method is also the optimisation strategy chosen here.

The detailed control model for subsequent data flow control is analysed and

applied to various TSN traffic shapers and schedulers in Chapter 5 . A load

distribution control method optimised for MAN is proposed in Chapter 6 and

extended to multiple ACs in Chapter 7 .

4.7 The Influence of the Automation Applications

Different automation applications usually demand a variety of application

communication cycles with end stations. This results from the fact that control

loops and other automation tasks are processed cyclically, each with their

individual application cycle time. The application cycles are determined based on

the individual automation application requirements. These are running on one or

several ACs in the network, each having its own minimum communication cycle

time with peripheral devices or other controllers. Communication typically occurs

Page 137

once at the start of an application cycle. For instance, a slow temperature

controller might exchange the setpoint and actual value with an analog I/O card

only every 500 ms, whereas a fast speed controller for motion control might need

to exchange the setpoint and actual value in cycles of a few 10ths of µs with a drive.

Data exchange between the application on the AC and connected devices can be

unidirectional or bidirectional, depending on the application. Data are typically

exchanged once during the application cycle in each direction. Examples of

unidirectional data exchange include the provision of reference values to an

actuator or the provision of actual values from a sensor. Bidirectional data can be

a closed-loop control that exchanges setpoints or reference values in one direction

and actual values in the other direction once in the application cycle.

Besides the application cycle, nearly all types of TSN-based network types, except

for SPQ, provide a network cycle time. This uses the timing information of the

bridges to synchronise the data transport throughout the TSN domain. Thus, in

particular, with EST, a minimum latency is achieved. The network cycle time is

determined by the shortest application cycle in the network domain and may not

be longer than this. Figure 4.8 shows how application cycles and network cycles

are correlated within an automation network based on the EST traffic scheduler.

Figure 4.8 (a) shows a snapshot of two network cycles with EST windows for I-CD,

NI-CD, and Non-CD or BE traffic classes. The I-CD data transport is fed in

synchronised to the network cycle and its EST window start. It is transported

immediately at the start of the window without any delay. NI-CD and Non-CD

queues are emptied at the window start, and there might be additional

unsynchronised data during the window duration time.

Page 139

immediate link load or throughput measurement and its feedback and control

calculation at the network cycle speed. If measured at the network cycle speed,

the controller output oscillates with the interference of all different application

cycle’s data transmissions. Moreover, it would create a considerable CPU load on

the PLC to calculate the control loop in every network cycle, which is usually

selected within the range of 100 µs to 4 ms, for typical manufacturing automation

tasks. The network cycle depends on the applied traffic-shaping method and

applications. Furthermore, it would be difficult to collect all the actual values of

the throughputs at each link in the network within one network cycle. Therefore,

the mean throughput at a link must be measured over a suitable time span. It is

evident that this time span 𝑇𝑚𝑒𝑎𝑛 minimum length is determined by the slowest

application cycle 𝑇𝐴𝑝𝑝 sending data over the TSN domain. Under these conditions,

it is proposed to calculate as follows:

𝑇𝑀𝑒𝑎𝑛 ≥ 𝑚 (𝑚𝑎𝑥
𝑖

 𝑇𝐴𝑝𝑝 𝑖) (4-7)

where 𝑇𝑀𝑒𝑎𝑛 is the recommended integration time for the calculation of the mean

link load or throughput, m is an empirical factor that should be selected long

enough to smoothen local peaks but short enough to reach sufficient control

dynamics. For the simulations of this research task, m was chosen as 5, which

seemed to be a reasonable choice as a starting point. 𝑇𝐴𝑝𝑝 𝑖 are the application

cycles of all the applications in the network domain.

The crucial consequence of these considerations is that the slowest application in

the network domain defines the path load measurement integration time and,

thereby, the dynamic possibilities of the LDC. The precise consequences of this

situation are discussed in Chapter 5 . A distinctive feature in this respect comes

from the EST and CQF traffic schedulers, where faster and slower applications

could use different traffic classes and thus different EST/CQF windows. This opens

up for a load measurement per traffic class, which can be implemented using

hardware internal content-aware processors, as they are common in standard TSN

switching System-on-a-Chip (SoC) hardware.

 Page 140

Obviously, the load consumption on a path caused by an automation application

and measured over an application cycle depends on the frame size and application

cycle. This follows directly from Figure 4.8. One might initially assume that smaller

loads could simply be switched from one path to the other without even requiring

a flow controller to achieve this smoothly. However, the next measurement would

also have to wait at least until the settling time to avoid reacting too early with

further load shifts. In addition, further exogenous load changes could occur during

the transient period, which would negate this approach . Therefore, it is strongly

recommended to always include a subsequent proven flow control circuit for path

changes of loads, as will be further outlined in Chapter 5 .

4.8 The Influence of Stream Reservation

Stream reservation (SR) can be used in a TSN MAN in combination with different

traffic shapers and schedulers to limit the overall network load. This is an effective

means to protect the given maximum latency guarantees for data transport. These

guarantees are necessary to ensure the functionality of application control loops.

SR is defined by the Multiple Reservation Protocol (MRP)/Multiple Stream

Reservation Protocol (MSRP) (IEEE 802.1Q, 2022) and Resource Allocation

Protocol (RAP) (IEEE 802.1Qdd, 2023).

If SR is applied, it influences the load control properties. SR requires time for the

reservation process, which must occur before a stream can flow. This time appears

as an additional dead time element in the load-distribution control circuit if the

reservation is established dynamically at the control runtime. It is either caused

by the distributed reservation protocols MSRP or RAP, or by a central reservation

via the Simple Network Management Protocol (SNMP) or the Network

Configuration Protocol (NETCONF). The distributed reservation protocols send a

Talker Advertise (TA with MSRP) or Talker Announce (TA with RAP) through the

network to declare the talker streams. A listener who is interested in a frame

achieves a registration and resource reservation of the stream along the path by

sending a Listener Ready (LR with MSRP) or Listener Attach (LA with RAP) frame

back towards the talker. These paths are typically controlled using a VLAN. These

Page 141

are rooted at the talker edge bridge and can be found by a path-control

mechanism, typically the ISIS-PCR protocol in randomly meshed networks.

Alternatively, they can be assigned by network configuration in the case of a fixed

topology, which is the case in ring topologies and redundantly coupled rings of

MANs. Here, a maximum of two redundant paths exist, which are the two

directions into the ring at the ring ports or over the two redundant ring-coupling

links. This handshake of stream declaration and registration requires time before

the stream can flow on a new path. The MSRP uses MRP as a lower-layer transport

protocol for resource reservation. The MRP distributes new information cyclically

in fixed cycles, independent of whether there are information changes in the TA

or LR attributes. Therefore, with the MRP cycle time selection, a compromise must

be found between the fast distribution of new TAs or LRs contents and the

limitation of bandwidth consumption by MRP. Typical MRP cycle times are a few

hundred milliseconds. This is the time required to transport new reservation-

related information from hop to hop. In contrast to MSRP with MRP, RAP uses LRP

as a lower-layer transport protocol that directly exchanges attribute content

changes between hops at the point in time of their occurrence. Therefore, the

reservations via RAP and LRP are to be preferred from the view-point of LDC if the

reservation must be changed during runtime. Central resource reservation via

SNMP or NETCONF from a CNC also requires time to configure manageable

objects. However, this is used in combination with central load control and is not

the focus of this study which aims at a distributed concept. There are two

strategies for distributed stream reservation for LDCs:

1. Pre-reservation: All possible network paths options for a stream to flow are

reserved with 100 percent of the stream bandwidth demand. However, only a

fraction is used per path, or a different path may be used completely, following

the load control calculation result. This has the advantage of highly dynamic

path changes, but the disadvantage that bandwidth overbooking must be

admitted to use the full network capabilities. As distribution control is never

ideal, overbooking must be limited to:

𝐵𝑀𝑢𝑙𝑡𝑖𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 = 𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 ⋅ 𝑛 ⋅ 𝜂 (4-8)

 Page 142

where BMultiPathResMax is the maximally admissible bandwidth reservation per

path for multipath overbooking. BSinglePathResMax is the maximally reservable

bandwidth for a single-path network, n is the number of available paths, and

η is an empirical quality factor of the distribution control with η = f (J); 0 < η ≤

1. Parameter J is the control quality of the distribution control. It is given by,

for example, the integral of the time-weighted absolute error (ITAE) value with

J = ∫ |𝑒(𝑡) − 𝑒(∞)|
∞

0
 𝑡 𝑑𝑡, where e is the control deviation. This is the deviation

of the actual value from the setpoint or reference of the control. Pre-

reservation is a compulsory precondition if streams are split into several paths

instead of completely shifting them between paths. Overbooking must be

limited conservatively to ensure that the load deviations do not exceed 100%

load per path. To achieve low overbooking combined with high dynamic load

control, a compromise could be to take out early stream reservations from load

control, that is, to assign a fixed path up to a certain amount of reserved

bandwidth. The application of load control must then be initiated for streams

that are added after a certain level of reserved bandwidth.

2. Dynamic reservation: The shift of a stream completely from a previous path

onto a new path involves a new reservation process for the new path just

before the shift. This process implies an additional time span, that is, an

additional dead time, resulting slower path change. In the case of distributed

reservations via MSRP/MRP, this time span consists of

𝑇𝑅𝑒𝑠𝑀𝑆𝑅𝑃 = 2 𝑛 𝑇𝐶𝑦𝑐 𝑀𝑅𝑃, (4-9)

where 𝑇𝑅𝑒𝑠𝑀𝑆𝑅𝑃 is the overall reservation time from the talker to the relevant

listener, 𝑇𝐶𝑦𝑐 𝑀𝑅𝑃 is the cycle time in which the MRP attribute changes are

forwarded to the next hop, and n is the number of hops from the talker to the

relevant listener. Factor 2 results from the fact that both the TA towards the

listener and the LR toward the talker in the other direction have to make its

way along the path.

In the case of distributed reservation via RAP/LRP, this time span consists of:

𝑇𝑅𝑒𝑠𝑅𝐴𝑃 = 𝑛 (𝑇𝑇𝐴𝑑𝑣 + 𝑇𝐿𝐴𝑡𝑡) (4-10)

where 𝑇𝑅𝑒𝑠𝑅𝐴𝑃 is the overall reservation time from the talker to the relevant

Page 143

listener, 𝑇𝑇𝐴𝑑𝑣 is the time a TA needs to transition over one hop, 𝑇𝐿𝐴𝑡𝑡 is the

time a LA needs to transition over one hop, and n is the number of hops from

the talker to the relevant listener. As the forwarding within the bridge is

initiated at the attribute change, which is done by the LRP protocol stack by

pure software processing speed in both directions, 𝑇𝑇𝐴𝑑𝑣 and 𝑇𝐿𝐴𝑡𝑡 are

expected to be approximately the same time.

𝑇𝑅𝑒𝑠 would appear as an additional dead time element in the flow-controlled path,

with a negative influence on the controllability of the data flow.

If stream reservation is to be used, it is recommended to work with pre-reserved

resource reservation to fulfill possible high-dynamic requirements. If the dynamic

requirements are low, for example, because of only slow applications and the

associated long load measurement intervals, the dynamic bandwidth reservation

with RAP/LRP can be sufficiently fast.

4.9 Consequences of Network Errors

A possible network error scenario with consequences for the load distribution

control is a MAN ring interruption. An interruption of the redundant ring coupling

would not be important for considerations in this thesis because it concentrates

on ring load distribution. Inter-ring traffic is handled as exogenous traffic from the

ring LDC perspective, causing distribution imbalances, as described in Section 4.3.

The ring interruption can be caused by either link loss, bridge failure, or failure of

a bridged end station within the ring. This would have different consequences

depending on the type of traffic.

1. Seamlessly transported CD streams and non-stream traffic would lose

transport over one path but would still reach the listeners over the

remaining path. Although seamless traffic is not subject to LDC, this loss

has consequences on the load distribution for paths in the ring, as one

direction from a talker to a listener is cut. The important consequence from

the LDC point of view is that this seamless traffic does not cause an

increase in load on the remaining paths.

 Page 144

2. Non-seamlessly transported CD streams that used the erroneous link

within their path from the talker to the listener need to be shifted to the

other alternative ring direction to maintain the stream provision to the

listener. This involves either dynamic new bandwidth reservations or the

use of pre-reservations by overbooking, as described in Section 4.8. This

can result in an overload of paths under certain circumstances. The

proposed optimum LDC method in Chapter 6 will also make proposals

in Section 6.8 on how to solve this problem.

3. Non-seamlessly transported non-stream CD and non-CD or BE traffic is

typically path-controlled by switch-over redundancy protocols such as

either RSTP/MSTP in general networks or by dedicated faster protocols for

industrial automation, such as MRP (IEC 62439-2, 2021). This traffic is not

load-controllable if it is path-controlled by switch-over redundancy

protocols, as outlined in Section 4.5. With the switch-over of the path, a

new traffic load scenario for the remaining paths evolves. Depending on

the traffic shaper and traffic scheduler basis, this can influence higher

priority CD streams. With EST, CQF, and ATS, with the possibility of

separating traffic by gating windows, this influence can be avoided. With

SPQ, it will have a higher or lower influence depending on the configured

traffic QoS priorities. An alternative to having this traffic also under load

control is to assign it to dedicated VLANs, with managed paths and with

disabled FDB learning, that is, under traffic engineering. Then, it can be

handled similarly to the non-seamless streams as described in Bullet 2

above.

To summarise the consequences of network errors, a solution is needed on how

to react to the loss of a path, especially for non-seamlessly transported CD streams

under load control. Otherwise, path overload cannot be excluded. Chapter 6

elaborates on this and proposes solutions in Section 6.8.

Page 145

4.10 Chapter Summary

 In this chapter the various functions and design possibilities for LDC in the specific

context of TSN MAN have been analysed. The results show the following key

findings:

1. The prevalent topologies for redundant automation networks, a compulsory

precondition for load distribution, are ring topology and redundantly coupled

rings.

2. The physical topology must be separated into logical paths by assigning them

to different VLANs. SPBV is preferred over MSTP for administration-involved

path establishment methods. For automated methods, ISIS-PCR with its

different redundant tree algorithms path detection types is recommended.

3. A central LDC solution in a CNC has the downside of long reconfiguration

calculations and is a single point of failure. This makes the distributed approach

better suited for real dynamic load control.

4. A distributed LDC makes only sense if the end station is an influential AC that

provides both a reasonable amount of distributable data and sufficient

hardware resources. A bridge is an inappropriate location for a sophisticated

dynamic load distribution control but could serve as a simpler load distribution

switch.

5. Assessments regarding data priority or traffic class assignment strongly

depend on the use of traffic shapers and schedulers. These can already be

predetermined by the selection of the automation technology.

6. Only a non-seamlessly transported CD is available for LDC, as the reduction in

throughput is not an alternative for CD.

7. Distribution control and flow control are considered relevant for this study.

Fairness flow reduction of the CD is not permitted for the MAN that is the focus

here.

8. Linear dynamic control is the most promising control method because of the

typically constant and known ingress data rates and cycles. The linear dynamic

control should build the runtime control component and should be based on

thoroughly conducted traffic engineering during the network planning and

 Page 146

setup phase to guarantee optimal control results.

9. The load distribution control task is based on the optimisation goal to minimise

the maximum load peak along two possible paths within the automation ring.

The flow control loop is a sub control loop of the complete distribution control.

The data paths from flow control point of view form dead time elements as

they delay data transport.

10. The application cycle time plays an important role for the control circuit design.

The slowest application in the network domain assigns the minimum

integration interval for the measurement of the rolling mean of the loads

within the bridges and bridged end stations.

11. If stream reservation is used, it is recommended to work with pre-reserved

resource reservations to fulfill demanding dynamic requirements.

12. A strategy for coping with network errors was sketched. These have an impact

particularly on non-seamlessly transported CD streams and have to be handled

by pre-reservation or dynamic re-reservation. This is further developed in

Section 6.8.

The insights gained in this chapter form the basis and the boundary conditions for

the design of an optimum LDC in TSN MAN in the next chapters.

Page 147

Chapter 5 Application of Different TSN Traffic Shapers

and Schedulers for Subsequent Data Flow Control

5.1 Introduction

A further step towards finding an optimised control method for load distribution

control in TSN MANs is to clarify the influence of the different TSN elements on

the network properties and thereby the data flow control properties. As outlined

in Section 4.6, data flow control is a sub-control task of the distribution control

task. Its purpose is to control the increase and decrease in the data flow on a

communication channel.

In this chapter, the model of the automation network path is derived, and the

influence of different traffic shapers and traffic schedulers is discussed in more

detail. Furthermore, example network simulations are performed.

5.2 The Network as the System under Control

As outlined in Section 4.7, TSN MANs data update rates typically only range

between a few microseconds and several hundreds of milliseconds. Applying

state-of-the-art slower IT communication network analysis (Gebali, 2015) by

collecting all nodes discrete Markov-Chain buffer states at each network cycle,

would mean a high network and CPU load for LDC. Therefore, the fast network

cycles of an automation network require a more efficient control method. This

must be specially tailored to the effectiveness and to the comparably lower

available CPU control performance of automation controllers.

To this effect, a central question regarding the load control in communication

networks is which characteristics the network has when being modeled as a

system under control. The parameter to be controlled is bandwidth consumption

which is measured in bit/s and may be normalised to the maximum bandwidth as

a percentage of the maximum bandwidth. The data itself experiences only a delay

when transferred through the network. This delay is caused by the transfer

 Page 148

through a bridge and by the LAN propagation delay caused by cable inductances

and capacities. From a control perspective, these delays represent dead time

elements. Therefore, the network, as a system under control, is a series of pure

dead time elements that can be combined into one element. The actual dead time

depends on the path length from the input to a relevant point in the network that

is controlled at a certain point in time. To measure bandwidth usage, a suitable

measurement time span must be selected to obtain a stable and non-oscillating

measurement value. Within this time span the measurement is carried out as a

sliding window measurement or, in other words, a rolling mean measurement.

This rolling mean measurement from a control perspective represents a PT1

element in the feedback path. Regarding the controller itself, it appears that a

linear controller is at hand as the system is linear under the preconditions above.

This discussion and selection of the linear control type are further elaborated in

Section 6.3. The core controller is the flow controller which is responsible for

increasing or decreasing the data flow along the data paths according to a

reference value.

As for CD only the redirection of data from one path to another is acceptable, an

increase in data flow on one path always involves a decrease of the same extent

on the other path. Flow control is only sensible for streams or non-streams with

relevant bandwidth consumption, which is worthwhile to be split into parts to be

put onto paths in a continuous transition. Smaller data flows will either be shifted

completely from one path to the other without the involvement of flow control or

multiples of these single streams will form the minimum resolution steps of the

flow control. To determine this, is the task of a mature fully working sophisticated

packet controller. However, the ideal design of such is not the focus of this

research.

The reference value for the data flow control must be provided by a distribution

controller whose output is the result of a comparison between the maximum load

values in both directions of the ring for the maximum-reduction control method.

It also has the task to weigh this difference between the paths by a factor of 0.5.

Page 149

This is the maximum decrease which is supplemented by the same increase on the

other path, thus achieving equal maxima.

Figure 5.1: Control principle of the distribution control assembly in

network rings

As shown in Figure 5.1, the system is a two-part system consisting of the two

directions of the ring. Derived from overall distribution control, flow control as a

subtask within an influential AC such as a PLC or MC has the need to reduce the

load on a given path and shift all or part of it to the alternate path. An influential

controller is an AC which transmits sufficient data that can be redirected to

contribute to a significant change in the load distribution. As a load decrease in

one direction must compulsorily lead to an increase in the same amount in the

other direction, it is sufficient to apply flow control on only one path and convert

the flow controller output for the other direction. This is achieved by the packet

controller on the one hand ensuring the most balanced possible distribution of

the applications packets at the start time and on the other hand converting

necessary deviations into packet distributions.

 Page 150

This flow control task in switched layer 2 automation TSN networks under the

influence of different shapers and different application cycles is the focus of the

following sections within this chapter.

As the system under control consists of only dead time elements, plus PT1

elements and dead time elements in the feedback, there is no point in applying

the state-space description method. Instead, the classical approach of applying

the Laplace-transform in the frequency domain is preferred. There is also no need

to work with the z-transformation as the originally time-discrete character of the

data values of input and output is not important, as all values are measured as

rolling mean values over multiple sampling times. Thus, linear system behaviour

is achieved.

It must be stressed that the rolling mean values are smaller than the local and

short-time bandwidth maxima which can in principle overload the data transport

capability of a path. This can happen, for example, at times when CD bursts occur

on the network. However, it is the task of bandwidth reservation such as MSRP

(IEEE 802.1Q, 2022) or RAP (IEEE 802.1Qdd, 2023) and ingress limiting functions,

as defined by IEEE 802.1Qci (2016), to avoid such local peak overloads. A further

practical issue is that the monitoring of the path loads or throughputs and the

calculation of the maximum along a certain path is best performed at the

distribution controller, where this is needed. The calculation of a sliding or rolling

mean value over configurable integration time is best preprocessed by the bridges

to keep the network traffic towards the distribution controllers as low as possible.

The sum of the time delays that a data frame experiences while transitioning along

a data path from source to destination, from the control perspective, represents

a dead time element. Dead time elements in a control plant, and also in the

feedback, have the disadvantage that the control system tends easier to

oscillations (Normey-Rico & Camacho, 2007). These dead time elements spoil the

obvious goal of being able to immediately compensate for possible load changes

along the path within the next network cycle. Therefore, a longer control interval

should be considered.

Page 151

To assign the control intervals and later the control parameters, the dead time

elements must be analysed.

The line delay or peer delay, together with the bridge latency, forms a dead time

element for one hop, that is, the transition over one bridge or bridged end station:

 𝑇𝐷𝑇 = 𝑇𝐵𝐿 + 𝑇𝐿𝑃𝐷 (5-1)

With:

 TDT: Dead time introduced by one linked bridge.

 TBL: Bridge latency time.

TLPD: LAN propagation delay. Typically, it is 5 ns per meter of an

Ethernet cable.

The calculation of the bridge latency time depends on the individual traffic shapers

and schedulers and is the subject of the next section.

The overall dead time of a given arbitrary network path with m bridges is:

𝑇𝐷𝑇𝑝𝑎𝑡ℎ = ∑ 𝑇𝐵𝐿𝑖
𝑚
𝑖=1 + ∑ 𝑇𝐿𝑃𝐷

𝑚+1
𝑖=1 , 𝑚 ∈ ℕ (5-2)

With:

TDTpath: Dead time of a given arbitrary network path containing m

bridges.

The dead time function of a system in the time domain is given by:

𝑦(𝑡) = 𝑢(𝑡 − 𝑇𝐷𝑇) (5-3)

The dead time system transfer function as Laplace transform is given by:

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
= 𝑒−𝑠𝑇𝐷𝑇 (5-4)

A dead time element reduces the stability of a controlled plant. It also limits the

fastest response time that can be reached by the controller to compensate for the

input or disturbance changes. Because of handling and delaying frames in a

different way, the different traffic shapers and schedulers of TSN have different

bridge delay and path delay characteristics as will be analysed below. Thus, they

form different dead time elements.

 Page 152

The physical value of interest for both the input and output of the network as a

controlled plant is the data bandwidth which is defined as data per time,

measured in bits per second, abbreviated as bit/s or bps as already introduced in

4.6. A sensible measurement interval must be selected to measure the actual

bandwidth. Different sources of data traffic in a network often have a variety of

traffic forms and send intervals, as outlined in Section 4.7. Therefore, the

measurement interval must be sufficiently long to cover all senders sending

intervals to achieve a representative and stable measurement value. In addition,

for reasons of stability and to filter possible sporadic traffic peaks, experience in

control theory recommends applying lowpass filtering, that is, an averaging

calculation over time TMean, of the actual value of the output bandwidth at the

bridges and bridged end stations output ports. For example, this could be a

cumulative moving average (CMA) implemented by a sliding window algorithm

over a number of samples of the output bandwidth µ𝑀 of a bridge port. Another

name for this method to be found in the literature is the expression “rolling mean

value (RM),” which is preferred in this thesis and was already sketched in 4.6,

defined as follows:

µ𝑂𝑀𝑒𝑎𝑛(𝑡) =
∑ µ𝑂𝑖

𝑛+𝑚
𝑖=𝑛

𝑚
 ; 𝑛,𝑚 ∈ ℕ (5-5)

With:

 µ Omean (t): output bandwidth average (mean) value

 µ Oi: one output bandwidth sample value

n: sample to be the starting point of the sliding window

calculation

 m: number of samples in the window

In each cyclic RM calculation, an old sample value drops out of the window, and a

new value is taken into the window. The pseudo code for building the RM is

outlined in Table 5.1. Its detailed structure is provided in Appendix 2.

Page 153

Table 5.1: Pseudo code to build the RM within the bridges and bridged end

stations.

Algorithm: RollMeanApp::Calculate()

This algorithm builds the RM and must be calculated cyclically at least once in each rolling
mean integration interval in the bridges and bridged end stations.

Create once at instantiation of this method a two-dimensional array m_rm_array [] []
containing a series of structure elements of number RM_WINDOWSIZE of number of
received bytes with timestamp, per automation controller ID (ACID), and per application
cycle (APPID) ;
Create RM variables: integration time m_inttime, m_currenttime, m_windowstarttime, and
m_arraystarttime and initialise them;

Create two-dimensional array p_throughput [] [] to store calculated throughput in an
application cycle specific array for throughput progress display and control.
Create index variable m_datapoint for storage of throughputs and initialize it;

Receive and store each port-passing data frame size in number of bytes, timestamp, ACID,
and APPID, in m_rm_array via interrupt in a receive method in the background realising a
ring buffer;
This receive method supports an index “m_i” which holds the current index of the last
storage event into m_rm_array;

Sum up number of bytes for ACID and APPID:
If ((m_currenttime - m_inttime) >= m_arraystarttime) //window is fully within array
{
 m_windowstarttime = m_currenttime - m_inttime;
 For (i = m_i; m_rm_array [ACID] [APPID].timestamp[i] > m_windowstarttime; --i)
 {
 m_bytes = m_bytes + m_rm_array[ACID] [APPID].nbytes[i];
 }
}
Else //window suffered a turnover within array or has just started
{
 For (i = m_i; i >= 0; --i)//lower part of the window
 {
 m_bytes = m_bytes + m_rm_array[ACID][APPID].nbytes[i];
 }
 If (m_rm_array[ACID] [APPID].timestamp[RM_WINDOWSIZE-1] > (Time)(0)) // turnover
 {
 m_windowupperpart = m_currenttime -_
 m_rm_array[ACID][APPID].timestamp[RM_WINDOWSIZE-1];
 m_windowstarttime = m_rm_array[ACID][APPID].timestamp[RM_WINDOWSIZE-1] -
 (m_inttime - m_windowupperpart);
 For (i = RM_WINDOWSIZE-1; m_rm_array[ACID][APPID].timestamp[i] >=
 m_windowstarttime; --i)
 {
 m_bytes = m_bytes + m_rm_array[ACID][APPID].nbytes[i];
 }
 }
}
Calculate throughput and store it in an application cycle specific array for progress display
and control:
p_throughput [APPID][m_datapoint]= (m_bytes * 8)/(m_inttime * 10000)
// 1000000 ns per ms divided by 100 is 1 per cent;
m_datapoint++;

 Page 154

As a next step, different TSN traffic shaper and schedulers need to be

analysed in terms of their influence on the path dead times.

5.3 Applicable TSN Traffic Shapers and Traffic Schedulers

The TSN traffic shapers and schedulers, as introduced in Subsection 2.2.3, will be

analysed in terms of the different bridge delays they cause, as these will constitute

the dead time elements in the flow control circuit. In the following, the single

elements of the timing delay for a hop from bridge to bridge and a complete

network path will be analysed for various possible schedulers and shapers.

5.3.1 General Bridge Timing Considerations

TSN offers a variety of traffic shapers and schedulers for the bridge internal MAC

forwarding service as defined in IEEE 802.1Q (2022) and IEEE 802.1Qcr (2020).

Depending on the forwarding method used, the bridge internal forwarding delay

and for some methods also the total path latency is defined.

As outlined in the previous section, the bridge delay of one hop consists of the

bridge transit delay or bridge latency 𝑇𝐵𝐿 and the LAN propagation delay 𝑇𝐿𝑃𝐷

from the bridge egress port to the next bridge ingress port. The actual transit delay

through a bridge depends on several other factors.

A data frame transferred through a bridge experiences several delays in its way

from the input port, also called the ingress port, to the output port, also called the

egress port.

Figure 5.2 shows the single entities within a bridge that a frame passes during its

transition through a bridge if it is forwarded automatically via FDB entries on the

data plane, without software involvement, to analyse the frame.

Page 155

Figure 5.2: Layer 2 bridge internal frame processing entities

The sum of the delays caused by a bridge is called “bridge latency time” or “bridge

delay time” TBL. This is defined as follows:

𝑇𝐵𝐿 = 𝑇𝑃𝐻𝑌−𝐼 + 𝑇𝑀𝐴𝐶−𝐼 + 𝑇𝑀𝑎𝑡𝑟 + 𝑇𝑄 + 𝑇𝑀𝐴𝐶−𝐸 + 𝑇𝑃𝐻𝑌−𝐸 (5-6)

With:

 TBL : Bridge Latency time

 TPHY-I : Ingress PHY processing time

 TMAC-I : Ingress MAC processing time

TMatr : Switching matrix (also often named “fabric”) processing time

TQ : Time the frame waits in the output queue, which is optional

and variable and depends on the amount of data traffic to be sent over the

port.

 TMAC-E : Egress MAC processing time.

 TPHY-E : Egress PHY processing time.

TS&F : Time for frame reception including the time to store the frame

and forward it to the output port or output port queue.

 TTr : Time to transmit a frame including times TMAC-E and TPHY-E.

Most of the Layer 2 bridges know both their bridge delay and the delay between

end station and bridge or between bridge and bridge, which is called “peer delay”

or “line delay,” as they usually host a time synchronisation protocol such as PTP

(Precision Time Protocol) (IEEE 802.1AS, 2020; IEEE 1588, 2019). This provides a

peer delay measurement and bridge delay measurement. Typical bridge delays

 Page 156

without queuing delays range from a few microseconds to a few milliseconds,

depending on the bridge technology.

According to IEEE 802.1Q (2022), Annex L.3, and comprising the model from Figure

5.2, the worst-case latency for a frame for a single hop from Bridge to Bridge, can

be broken out into the components as listed and assessed for its relevance for

load control in Table 5.2.

Table 5.2: Bridge to bridge delay components

delay type meaning/remark

Relevant

for load

control?

Input

queuing

not relevant here, as there are no input queues in the IEEE

802.1 bridge architecture that constitutes the basis for the

bridges underlying this thesis.

no

Interference depends on the number of non-ring input ports and traffic

ingress and is relevant for some of the investigated traffic

shapers as queuing delay. Contributes to TQ.

yes

Frame

transmission

is the time it takes to transmit one frame at the transmit

rate, which is assumed to be 1 Gbit/s for the networks

underlying this article.

yes

LAN

propagation

represents the time it takes to send the frame over the LAN

to the next bridge depending on the media and distance.

yes

Store-and-

forward

consists of all other bridge-internal forwarding elements

assuming empty send queues.

yes

Output

queuing

is caused by other frames waiting in the output queue to be

sent before a frame is due to be sent.

yes

The pure single bridge latency, without traffic depending on the output queuing

delay, can be calculated as the store-and-forward delay plus the transmission

delay for a frame. The latter depends on the frame size and link speed, assuming

no input queues that are usually not common in standard switch ASIC designs:

Page 157

𝑇𝐵𝐿 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 (5-7)

The bridge forwarding mode to the output port is assumed to be the store-and-

forward mode. The faster cut-through mode is no alternative, as usually more

than one input port forwards to the output port. The store-and-forward delay

depends on bridge design. A typical value according to IEEE 802.1Qcc (2018), can

be assumed to be 700-800 ns.

The transmission delay 𝑇𝑇𝑟 is mainly characterised by the actual fame size that

needs to be transported through egress MAC and PHY and is thus calculated as

follows:

𝑇𝑇𝑟 = 𝑀𝑎𝑥𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒 [𝐵𝑦𝑡𝑒]
1

𝐵
 8 𝐵𝑖𝑡 (5-8)

where MaxFrameSize is the maximum SDU size (Service Data Unit = net data load)

plus header, usually 42 bytes (IEEE 802.1Q, 2022). B is the bandwidth (normally 1

Gbit/s for automation networks), and Bit counts the bits of a byte.

The LAN propagation delay 𝑇𝐿𝑃𝐷 represents the cable delay from the output port

to the next input port. Automation networks are usually set up using copper

Ethernet CAT 6 cable which have a specific delay of about 5 ns/m (ANSI/TIA-568.1-

D, 2015), that is, a 100 m Ethernet copper cable corresponds to 0.5 µs cable delay.

For precise LAN propagation delay assignment, the actual LAN propagation delay

from the output port to the next input port can be retrieved from the clock

synchronisation peer to peer delay measurement (IEEE 802.1AS, 2020; IEEE 1588,

2019).

Whether the queuing delay 𝑇𝑄 has an influence depends on the forwarding

method, that is, the TSN traffic shaping concept. The queuing delay is a variable

timing element as it depends on further traffic arriving from other ingress ports

and possibly before the frame in question. Such frames will then be in an earlier

transmission position in the queue thereby delaying the frame in question. Frame

priorities decide the transmission succession and, thus, also the queuing delay.

 Page 158

To evaluate the actual dead times introduced by bridges with various traffic

shaping technologies along a data path for Control Data (CD), a dedicated analysis

is necessary.

5.3.2 Strict Priority Queuing (SPQ)

The pure strict priority queuing (SPQ) transmission selection is strictly speaking

not a modern TSN scheduler, because it does not make advantageous use of any

common timing information in coordination with other bridges. Nevertheless, it is

still used, especially in combination with higher bandwidth automation networks,

for example the 1 Gbit/s and 2.5 Gbit/s PROFINET technologies (IEC 61158-5-10,

2023; IEC 61158-6-10, 2023). A new aspect of this classical technology is that it

can be combined with other TSN features. In particular, SPQ can be used together

with stream resource reservation which guarantees that frames are serviced to

avoid network overload. Thus, a certain determinism is achieved which makes this

combination better suited for automation applications compared to the pure SPQ

without reservation. SPQ can also be combined with Preemption (IEEE 802.1Qbu,

2015). Preemption allows high-priority frames to interrupt the transmission of

lower-priority frames to achieve lower latency for the preemptive traffic class. In

this case the high-priority CD, be it I-CD or NI-CD, is assigned the highest SPQ QoS

priority, and is the preemptive traffic class. All other lower-priority traffic classes

are the preemptable classes. Thereby, minimum latency times are achieved for

the preemptive CD. The SPQ can also be applied within an EST window when

several traffic classes use a common EST window. In this thesis, both forms, the

pure SPQ and the SPQ with Preemption transmission selections are considered.

The SPQ transmission selection for CD needs to assign the highest or second-

highest QoS priority to achieve privileged frame handling. This is necessary to

achieve the minimum reliable bridge latencies to guarantee the determinism

necessary for control tasks. Assuming highest priority for CD and no interfering

traffic of the same highest traffic class (In-Class-Interference - ICI) from other

controllers along the path, the worst-case situation would be if in each hop along

a path, a maximum-sized frame of 1530 bytes (IEEE 802.1Q, 2022) would already

Page 159

be in the sending process before the CD frame can be forwarded. This frame could

not be interrupted with pure SPQ handling capabilities and would delay the

forwarding of the CD. To calculate the delay time per hop, Equation (5-7) is

expanded by the output port queuing delay 𝑇𝑄 for this disturbing frame:

𝑇𝐵𝐿 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄 (5-9)

Therefore, for CD with the highest priority with SPQ, the maximum output port

queuing delay 𝑇𝑄 is identical to the transmission time of one longest frame

transmission time 𝑇𝑇𝑟. If the SPQ is combined with Preemption, the delay 𝑇𝑄 is

reduced to the transmission time 𝑇𝑇𝑟 of the minimum fragment size, typically 64

bytes (IEEE 802.1Q, 2022). If the CD is assigned only the second-highest priority,

this is only acceptable if the requirements for determinism are relaxed, and the

highest priority is used only for sporadic network management traffic. For the

evaluations in this thesis, the highest QoS priority of 7 was assumed. The overall

path dead time with SPQ under the conditions stated above, is determined by the

number of hops to be traversed through the network, the delay per hop, and the

sum of the LAN propagation delays from the talker to the link of the maximum

throughput. It is:

𝑇𝐷𝑇𝑃 𝑆𝑃𝑄 = 𝑛max𝜇 (𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄) + ∑ 𝑇𝐿𝑃𝐷 𝑖

𝑛max𝜇

𝑖=1

 (5-10)

where 𝑇𝐷𝑇𝑃 𝑆𝑃𝑄 is the sum of the dead times of the SPQ path from the controller

to the maximum throughput, 𝑛max𝜇 is the hop count from the controller to the

maximum throughput which multiplies the bridge latency from Equation (5-9),

and 𝑇𝐿𝑃𝐷 𝑖 are the LAN propagation delays between the hops.

Strict Priority Queuing gains attractiveness, especially when it comes to higher-

bandwidth systems of 1 Gbit/s and above. The reason is that with a higher

bandwidth, the relevance of the maximum frame length transmission time that

can block the egress port, that is, 𝑇𝑄, decreases. Nevertheless, preemption brings

a further advantage by minimising the path delay and thus the dead time elements

in the control circuit. This makes SPQ an attractive hardware scheduling method

in combination with data flow control.

 Page 160

5.3.3 Credit Based Shaper (CBS)

As outlined in the Literature Review in Section 2.2.3, the characteristic property

of the CBS is that it expands data bursts to achieve a continuous flow of the

stream. Therefore, it is not suitable for industrial automation CD and is,

consequently, not considered in this thesis for LDC.

5.3.4 Enhancements for Scheduled Traffic (EST)

The EST or TAS (IEEE 802.1Qbv, 2015) timing calculation is based on the

assumption that, with EST, the data can transition through the complete network

within a defined gating window. This gating window is synchronised among all

nodes in the network domain and is reserved for one or more dedicated traffic

classes. A network cycle can be divided into several gating windows assigned to

the different traffic classes. The remaining time of the network cycle, which is not

consumed by gating windows is usually left to non-CD or best-effort (BE) data

traffic with lower timing requirements. Thus, it can also be considered a gating

window for this traffic. The necessary length of the gating windows depends on

the overall data of the assigned traffic class to be transported per link created by

𝑻𝒂𝒊𝒋 stream demand 𝑺𝒊𝒋 from each end station of 𝑫𝒊 at each node 𝑣𝑖 ∈ 𝑽 along

the path. Furthermore, it depends on the maximum length, measured as number

of hops, of all possible paths, which is usually limited by the maximum network

diameter, and the LAN propagation delays between all hops. The maximum data

calculation can be achieved either through network traffic engineering and/or

dynamic limitation by stream reservation, with either MSRP (IEEE 802.1Q, 2022)

or in the future with RAP (IEEE 802.1Qdd, 2023). With EST, the queuing delay 𝑇𝑄

plays a minor role, because the length of the gating window, and thus the

maximum path delay, is fixed. 𝑇𝑄 is thereby part of the gating window and is

already considered in the gating window length calculation. Bandwidth

reservation by protocol or engineering must secure that the maximum 𝑇𝑄 is not

exceeded.

 Page 162

edge bridge, an additional worst-case waiting time of one network cycle time for

the next gating window to start must be added.

Especially in connection with synchronised I-CD data injection from end stations,

EST achieves minimum overall latencies through the network. Therefore, it is an

ideal traffic scheduler from industrial automation load control point of view.

Furthermore, the possibility of separating faster application data transport from

slower applications by assigning different EST windows offers dedicated load

control for groups of applications.

5.3.5 Cyclic Queuing and Forwarding (CQF)

The CQF scheduler (IEEE 802.1Qch, 2019) timing is determined by the number of

hops to be traversed through the network and the length of the cycle time plus

the LAN propagation delay from the talker to the link of the maximum throughput:

𝑇𝐷𝑇𝑃 𝐶𝑄𝐹 = 𝑇𝑁𝐶 𝑛max𝜇 + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

 (5-12)

where 𝑇𝐷𝑇𝑃 𝐶𝑄𝐹 is the sum of the dead times of the CQF path from the controller

to the maximum throughput. 𝑇𝑁𝐶 is the length of the network cycle, 𝑛max𝜇 is the

hop count from the controller to the maximum throughput, and 𝑇𝐿𝑃𝐺 𝑖 are the LAN

propagation delays between the hops. The gating window for one traffic class and

thus the complete network cycle time can be selected to be smaller than with EST,

as with the CQF only one hop must be traversed within the gating window instead

of the complete network in the worst case for EST.

As shown in Equation (5-12), the overall CQF path latency is proportional to the

number of hops 𝑛max𝜇 traversed. For each hop a complete network cycle is

added, which is a disadvantage, particularly in larger networks with a high network

diameter. Although the overall path delay is higher than with SPQ and EST, the

influence of ICI on the overall path delay deviation is relatively small. This is only

a fraction of a network cycle in relation to several network cycles, one for each

hop along the path.

Page 163

Regarding load distribution control, CQF is a good selection only for smaller

networks and a small amount of data per network cycle to keep those small.

Otherwise, the path delays and thus, the dead time elements in the control circuit

would be relatively high. In turn, this requires greater effort to achieve a robust

control circuit.

5.3.6 Asynchronous Traffic Shaper (ATS).

The ATS is the most complex shaper among the various TSN shapers and

schedulers and offers a variety of configuration possibilities that would make the

timing analysis quite complex. However, the special properties of CD reduce the

permissible configuration combinations. First, CD needs to be transported with

the highest priority of cyclical frames, in addition to the highest absolute priority

of sporadic management frames. Therefore, the ATS IPV with the highest priority

must be selected. Second, a burst of CD must also be transported as a burst, that

is, it must not be stretched. This means that the committed burst size parameter

of the Token Bucket Shaper of ATS must be sufficiently large to guarantee this.

The CD data are assigned a reserved stream gate. Unlike the EST, however, the

bridges in an ATS domain are not synchronised and unhindered data transport

over the entire path is therefore not possible. In the best case, all gates in the

bridges along a path open at the same absolute point in time by accident, resulting

in a timing similar to EST timing. In the worst case, all waiting times for gate

opening when reaching the next hop are maximal. The waiting time per hop is

then equivalent to the network cycle time, resulting in a timing similar to the CQF

timing. The worst-case overall path dead time with ATS for high-priority CD

without ICI is therefore determined by (i) the number of hops to be traversed

through the network, (ii) the store and forward delay (no Token Bucket delays for

CD), plus (iii) the transmission time and queuing time of one maximum frame, plus

(iv) one network cycle per hop, and (v) the sum of the LAN propagation delays

from the talker to the link of the maximum throughput:

 Page 164

𝑇𝐷𝑇𝑃 𝐴𝑇𝑆 = 𝑛max𝜇 (𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄 + 𝑇𝑁𝐶) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

 (5-13)

where 𝑇𝐷𝑇𝑃 𝐴𝑇𝑆 is the sum of the dead times of the ATS path for the highest-

priority CD. If the maximum ICI is to be considered, a single additional network

cycle length must be added.

From Equation (5-13) it follows that the worst-case path delay for CD for an ATS

based network is also proportional to the number of hops, as in CQF. A further

property of ATS is that the absolute value can only be assigned with a relatively

high tolerance owing to the timely asynchrony of the nodes. Therefore, it is also

only suited for smaller networks and for smaller amount of data in combination

with load distribution control if higher effort for high dead time control circuit

design should be avoided. In addition, it creates strongly variable dead time

elements that make an LDC difficult to control.

5.3.7 Scheduled Transmission (ST)

The scheduled transmission of data frames refers to a scheduled injection of data

frames from the end stations. IEEE 802.1Qcc (2018) provides further definitions of

how to support ST. The goal is to provide an orchestrated frame injection from all

end stations in such a way that all frames experience a minimum latency without

disturbing each other’s flow in the network. This demands a centralized schedule

calculation using a CNC before network communication can start. Each single

change in the network topology or in the communication structure requires a

recalculation of the transmission schedules for each end station communication

connection, if the claim to optimal distribution is to be maintained. Scheduled

transmission must not be mixed up with scheduled traffic as described in

Subsection 5.3.4 with the EST scheduler. “Scheduled transmission” means a

dedicated send schedule for each frame in the end stations, whereas “scheduled

traffic” means reserved gating windows in the bridges for certain traffic classes

without differentiating between single frames. Therefore, strictly speaking,

scheduled transmission is not a traffic scheduler or shaper method; rather it is a

Page 165

method of network communication planning. Changes in end station

communication demand will lead to a “quasi-dynamic” re-planning and re-

configuration into a new static network state rather than to a real dynamic

measuring and adjustment. Therefore, ST belongs to the category of traffic

engineering rather than to the category of dynamic load distribution which is the

focus of this study. It is thereby beyond the scope of this thesis and has not been

further investigated.

5.3.8 Discussions and Evaluations

The various traffic shapers and schedulers contribute differently to the path

delays. Some are independent from interfering traffic, some provide a rather fixed

delay that is relatively independent of the actual hop count, while others change

significantly with the hop count.

Bridges using SPQ, SPQ with Preemption, and EST provide rather low path delays

also in larger networks. The application of bridges using CQF and ATS can result in

significantly high path delay times, and thus, high control dead times, especially in

larger networks with a high hop count. Therefore, they are recommended only for

smaller network sizes.

ST is a traffic engineering concept rather than a bridge traffic scheduler or shaper,

which is beyond the scope of this thesis, as it cannot be applied fully dynamically.

5.4 Identification of the Plant Characteristics

A further problem to be solved with LDC is how to obtain the actual plant

properties. The delay dead times are derived from this, which are necessary in

order to adapt the control circuits depending on the possible, constantly changing

positions of the load maxima.

As outlined in Section 5.2, the control method and design are tightly bound to

actual plant properties. In particular, path delays from source to destination are

important because they form dead time elements in the control circuit. These

parameters are not always at the disposition of a local network and control

 Page 166

designer or are not investigable with reasonable effort. For comparison, the

network load control concepts for Internet communication or client/server

communication over longer distances lack a detailed knowledge of

communication path properties. However, this is easier in MANs, which are

typically limited to machines, manufacturing automation cells, and plants. Only

newer automation developments, where parts of the automation roles can be

virtualized into remote data centers or provided as cloud services, make it

increasingly difficult to determine these parameters also in the automation

context. Regardless of how the network delays have been assigned, each node

containing an AC with load distribution control must maintain an adjacency list in

the form of a distance matrix instance M, as described in Section 4.6. This contains

the remote nodes and path delays towards them.

Depending on the type of network, various methods for assigning plant properties

are available.

5.4.1 Determination at Design Phase

If the load distribution control is to be planned for a MAN with a defined extension

such as a field-level ring or a controller-level ring, one possibility is to calculate all

possible path delays between all end stations. However, this requires detailed

knowledge of:

1. All path lengths, that is, all LAN lengths between end stations and bridges,

2. The store and forward delay 𝑇𝑆&𝐹 in each bridge and bridged end station,

3. Transmission time 𝑇𝑇𝑟 for a frame. Because this depends on the frame length,

it must be calculated with the worst-case packet length or with the longest

CD packet length in that network.

4. The traffic shaper or traffic scheduler technology used in the bridges and

bridged end stations. These have an impact on the path delay calculation as

outlined in Section 5.3.

For the last point regarding traffic shaper and scheduler technology, it is also

important whether the technology is homogeneous along all paths or whether

there are technology transitions in between. If it is not homogenous, this can

Page 167

imply additional frame transport waiting times. Such would occur if, for example,

frames transition from SPQ to EST, which would require waiting time for the next

gating window.

With networks of smaller spatial extension, such as in a machine, the actual LAN

propagation delay can be neglected and its continuous measurement during

runtime can be avoided. This is possible for EST and CQF. 𝑇𝐷𝑇𝑃 can be calculated

as the constant single dead time per hop, and the number of hops is known. For

example, delay with EST can be calculated in good approximation as the relative

distance of the throughput maximum in relation to the complete ring length in

hop counts, provided that deviations caused by LAN propagation delay differences

can be neglected:

𝑇𝐷𝑇𝑃 𝐸𝑆𝑇 =
𝑇𝐺𝑊

𝑛max𝑟𝑖𝑛𝑔
𝑛max𝜇 (5-14)

where 𝑇𝐷𝑇𝑃 𝐸𝑆𝑇 is the overall EST path dead time from the controller to the

maximum throughput, 𝑇𝐺𝑊 is the length of the gating window, 𝑛max𝑟𝑖𝑛𝑔 is the

maximum hop count of the ring, and 𝑛max𝜇 is the hop count from the controller

to maximum throughput. The same path delay calculation can be applied

figuratively to the CQF. This is, of course, an average value, and there is still the

problem with the early insertion of ICI on the path as described in Subsection

5.3.4. Therefore, for controller optimisation of the Load Distribution Control, it is

more secure and easier to always take the full gating window size as the one-way

path dead time. However, it must be accepted in this case that the convergence

time for the load distribution improvements worsens as outlined in more detail

below.

As can be seen from the necessary steps listed at the beginning of this subsection,

setting up a database with all the exact path delays between all end stations can

be quite a large and tedious task. Even with the help of dedicated automated

calculation programs, there is still a task left to provide all of these inputs. Another

possibility is to use runtime methods to determine the path delays, thus avoiding

necessary input from the system administrator. These methods are crucially

influenced by the availability of time synchronisation for nodes.

 Page 168

5.4.2 Runtime Method for Unsynchronised Networks

To select an appropriate method for constantly running plant timing properties

identification, it is important to determine whether the network and the end

stations support a time synchronisation method such as PTP (IEEE 1588, 2019), or

gPTP (IEEE 802.1AS, 2020), or whether they are unsynchronised. In an

unsynchronised network it is not possible to state the time difference between

any two nodes in the network. However, one method to still obtain the data about

properties and dimensions of a network and then to draw conclusions about the

behaviour over time is to use dedicated test messages.

Test messages are sent from talkers and returned by potential listeners back to

the talkers. This system has already been used in a rather simple form of a

measured round-trip time (RTT) by TCP congestion control. Further work built on

this, such as that provided by Katabi et al. (2002), who investigated high

bandwidth delay product network congestion control, as outlined in Subsection

2.4.2. For optimised load distribution control within MANs, test messages are also

an option to be used as a basis, but they demand a much more differentiated view.

To gain knowledge about the path delay from a given talker to a listener of

interest, without any knowledge of the properties of the path elements, the most

obvious method is to measure the time difference between the transmission and

reception of the reply. However, this presupposes that the talker supports at least

a free running own clock or timer with sufficient precision. To be allowed to derive

the path delay in one direction as the half from the RTT value it is important

though that the path is identical in both directions, that is, that it is “reverse path

congruent,” and that they are tolerably symmetrical in both directions from a path

delay point of view.

𝑇𝑇𝐿 ≈
𝑇𝑅𝑇𝑇

2
 ; 𝑓𝑜𝑟 𝑃𝑇𝐿 = 𝑃𝐿𝑇 ;

𝑃𝑇𝐿 = {𝑡𝑎, 𝑣1, … , 𝑣𝑛, 𝑙𝑖};

𝑃𝐿𝑇 = {𝑙𝑖, 𝑣𝑛, … , 𝑣1, 𝑡𝑎};

𝑛 ∈ ℕ; 𝑃𝑇𝐿 , 𝑃𝐿𝑇 ∈ 𝐺(𝑉, 𝐸);

(5-15)

Page 169

𝑇𝑇𝐿 is the path delay from a talker ta to listener li according to the annotation in

Section 4.6. 𝑇𝑅𝑇𝑇 is the round-trip time from the talker to the listener and back,

𝑃𝑇𝐿 the path from the talker to the listener, 𝑃𝐿𝑇 the path from the listener to the

talker, and v are the bridges or bridged end stations along a path. 𝑇𝑇𝐿 can never

be expected to be exactly half of 𝑇𝑅𝑇𝑇. Some bridge delays can depend on different

traffic interferences from other than path-ports or from other applications

inserting traffic along the paths. The influence of interfering traffic is particularly

noticeable in principle with SPQ and ATS. However, resource reservation is an

adequate means of limiting this influence in tolerable borders. Traffic

interferences have less impact on EST and CQF because a frame cannot experience

a greater delay here than when it is at the end of the gating window (with EST) or

in the last network cycle (with CQF). The RTT method is appropriate if not all

network paths are known or only partly known. It is important that a certain path

symmetry can be assumed. Particularly in the context of SPQ or ATS schedulers,

with the increased influence of traffic interference on the resulting delay

parameters, it is recommended to work with mean values over a period of test

intervals. Thus, the influence of short interference traffic peaks is dampened. The

mean value integration interval selection is a compromise between the actuality

of the values, the thereby created additional load in the network, and the CPU

time consumption of the nodes by updating the test packets. Further insecurity

with this estimation is introduced by the time consumed by the listener to receive

the test frame and send back the response frame. This frame processing can

depend on the runtime of other CPU tasks and can therefore also be subject to

variation. This is also an argument for mean value use. These insecurities must be

compensated by applying an adequate security margin to 𝑇𝑇𝐿. A dedicated

extension of the round-trip packet for the use of LDCs in MANs is the installation

of a hop counter in the packet as discussed in the previous subsection. The test

messages are modified by the nodes along the path by updating the counters.

Thus, the distance between the listener load distribution controller is known. This

information is useful for deciding whether streams to the listener influence path

links. However, this method can only be applied within smaller automation setups

 Page 170

which include tailored nodes for LDC, as such a feature requires a dedicated

control protocol and thus a load control awareness of each node in the TSN MAN.

5.4.3 Runtime Methods for Synchronised Networks

In a synchronised network, all end stations, bridges, and bridged end stations

share a common time. Because of the time synchronisation protocols necessary

to operate on each bridge, they know both their own bridge latency time and the

path delay to their neighbouring bridges. This information is accessible to a CNC

via, for example, SNMP or Netconf/Yang from the peer delay values in the

management information database (MIB) of the time synchronisation protocols.

From there, it can be made accessible to each AC in the automation network.

Depending on the different path delay calculations of the different traffic shapers

and schedulers, ACs can thus calculate the individual path delays to each

connected listener in the network domain.

Another possibility with synchronised networks is that each listener would

announce the individual path delays from certain talkers to itself. Resource

reservation protocols such as MSRP and RAP provide parameter values named

“accumulated latency” in their talker announce frames. When a talker announces

its streams into the network on the control plane, this accumulated latency field

is updated by each traversed bridge with its latency contribution. The original idea

of this parameter is that it serves as a decision basis for a listener whether the

delay of a stream along a path is acceptable and the listener can subscribe to that

stream. In this case, it sends a Listener Attach frame back to the talker. Then, each

involved bridge along the path back reserves bandwidth resources. This

mechanism can be extended for load distribution control in the following manner:

1. Talker Advertise (MSRP), or Talker Announce (RAP) frames obtain an

application-specific TLV with a hop count parameter in addition to the

accumulated latency parameter which is incremented by each bridge along a

path.

2. The MSRP Listener Ready or RAP Listener Attach frames, both of which have

the same core functionality, are extended by an application-specific TLV

Page 171

containing the accumulated latency and hop count from the talker to this

listener.

3. Thus, the path latency and hop count to the listener are communicated to

the stream origin talker by the Listener Ready/Listener Attach frames.

4. At the talker end station, a database for all addressed listeners’ distance and

latency must be supported.

5. As Talker Advertise (MSRP), Talker Announce (RAP), Listener Ready, and

Listener Attach frames are repeated cyclically, the latencies are always up-to-

date.

It must be stressed though that also here the calculated path delays are only an

estimate, as the actual path delays are never constant. As already outlined above

in connection with the unsynchronised network and in Section 5.3, the

calculations for the path delays of the different traffic shapers and schedulers are

all influenced to their individual extent by ICI queuing delays. This is also an issue

when updating the accumulated latency parameters. However, this insecurity

associated with accumulated latency is not addressed in the protocol standards

for MSRP (IEEE 802.1Q, 2022) and RAP (IEEE 802.1Qdd, 2023). The difficulty of a

bridge is determining whether to add its own latency contribution with or without

a certain amount of ICI for the accumulated latency path calculation. Figure 5.4

shows the problem using an example of the EST scheduler. It shows the course of

the actual accumulated latency (black graph) build-up of a stream 𝑠11
1 originating

from talker 𝑡𝑎11
1 of AC device 𝑑11

 connected to bridge node 𝑣1
 . At egress at 𝑣1

 the

stream experiences a longer delay caused by ICI 𝑠21
1 which arrived earlier at the

egress queue than 𝑠11
1 . This delay can be increased if 𝑡𝑎11

1 would send outside the

synchronised gating window, as shown in the graph. Theoretically, all possible ICI

could already be inserted and reserved at the edge bridge (𝑣1
 for 𝑠11

1).

 Page 172

 Figure 5.4: Accumulated Latency along a path.

The red dashed line shows the build-up of the accumulated latency parameter

when the maximum ICI, and thus the maximum 𝑇𝑄
 , is distributed among the

number of possible nodes on the longest path.

𝑇𝑄 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 =
𝑇𝑄𝑚𝑎𝑥

𝑛𝑚𝑎𝑥
 (5-16)

𝑇𝐴𝐿 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 + 𝑇𝐿𝑃𝐷 (5-17)

 𝑇𝑄 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 is the average hop queuing delay of EST and 𝑇𝐴𝐿 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 is the

increment in the accumulated latency parameter per hop for EST. 𝑇𝑆&𝐹 is the store

and forward delay, 𝑇𝑇𝑟 the transmission delay, and 𝑇𝐿𝑃𝐷 the known LAN

propagation delay as outlined in Subsection 5.3.1. In this case, the actual

Page 173

accumulated latency would be higher than the parameter value when egressing

at 𝑣1
 (red dashed circle). This case must not happen, because a listener connected

to 𝑣1
 would then base its subscription on a wrong lower guaranteed latency which

can spoil application control circuits. In addition, from LDC point of view, a control

circuit optimisation on lower delays than actually present would mean an output

overshot which is especially bad with load distribution control as explained in

more detail in the following sections. A better approach is to add all possible

queuing delay at the talker edge bridge, that is, at the first hop in the network.

𝑇𝐴𝐿 𝑇𝐸𝑑𝑔𝑒 𝐸𝑆𝑇 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄𝑚𝑎𝑥 + 𝑇𝐿𝑃𝐷 (5-18)

𝑇𝐴𝐿 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝐿𝑃𝐷 (5-19)

𝑇𝐴𝐿 𝑇𝐸𝑑𝑔𝑒 𝐸𝑆𝑇 is the accumulated latency increment for the talker edge bridge. The

blue dashed line in Figure 5.4 shows the course of this accumulated latency

assignment method. With this method, the error during egress at 𝑣1
 is avoided. A

higher calculated accumulated latency value than the real accumulated latency is

not problematic. The controller parameter optimisation for longer dead times

would only be expressed by a slower convergence time but not by an overshot of

the output, as will be shown in more detail in the following sections. Another more

accurate procedure is to estimate the bridge local queuing delay per egress port

by means of stream reservations made by the MSRP or RAP. The bridge then

calculates the worst-case ICI for each ingress/egress port combination. This is still

a worst-case calculation because the actual delay depends on the absolute

position of the frame in the queue, which cannot be predicted. It depends on the

time of transmission in the various end stations in the network, which is subject

to device-local decisions.

In summary, it can be stated that all accumulated latency update methods will

result in higher or lower delay time variations depending on the gating window

length and the path delay without interference. The question is for which value

the control circuit parameters must be optimised. The best mitigation for this

problem is to design the controller parameters, for example, in the case of a PID

Page 175

Nichols or Chien-Hrones-Reswick (Normey-Rico & Camacho, 2007) is applied to a

plant involving feedback and simulating the step response at the open loop at

𝑀𝑓(𝑠). Experience shows that further empirical fine-tuning of these parameters

in a “try-and-error” fashion can improve the Ziegler-Nichols or Chien-Hrones-

Reswick parameter assignments. The pseudo code for the core of the PID

Controller is outlined in Table 5.3. Its detailed structure is provided in Appendix 2.

Table 5.3: Pseudo code of algorithm for the PID Controller.

Algorithm: PIDCtrlApp::Calculate ()

This algorithm implements the core of the PID Controller. It can be used for both the data
flow controller and the distribution controller in an AC.

Create variables:
m_ref; // reference input r(t).
m_kp; //Proportional factor
m_ki; //Integral factor
m_kd; //Differential factor
m_out; //Output y(t)
m_int; //integral sum up
m_lastint; //last integral sum up
m_lasttime; //point in time of last calculation
m_intstep; //integration time step in ns, that is calculation cycle for PID controller
m_lastref; //reference at last calculation

Load m_ref with the result of the minmax comparison of Table 4.4.

If |m_ref| > threshold
{
 Build integral part:
 m_int = m_lastint + m_ki * m_ref * (current_time - m_lasttime);

 Add proportional and differential part:
 m_out = m_kp * m_ref + m_int + ((m_ref - m_lastref)/(current_time - m_lasttime) * m_kd);

 Store current results for next summation cycle:
 m_lastref = m_ref;
 m_lasttime = current_time;
 m_lastint = m_int;
}
Schedule next calculation cycle after integration interval m_intstep;

The transfer function of the plant 𝐺𝑃𝑙(𝑠), that is, the network path in the

frequency domain, is given by:

𝐺𝑃𝑙(𝑠) = 𝑒−𝑇𝐷𝑇𝑃 𝑠 , (5-20)

with:

 Page 176

𝑇𝐷𝑇𝑃 = ∑𝑇𝐷𝑇𝑖

𝑚

𝑖=1

 , (5-21)

where m ϵ ℕ is the number of hops from the controller to the link with the current

maximum of the throughput along the path. 𝑇𝐷𝑇𝑃 is the sum of the dead times of

these hops, consisting of the bridge latencies and LAN propagation delays. The

transfer function of the closed loop 𝐺𝐶𝐿 is then

𝐺𝐶𝐿(𝑠) =
𝑀𝑜(𝑠)

𝑀𝑖(𝑠)

=
𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠)

1 + 𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠) 𝐺𝑀(𝑠)𝐺𝐹(𝑠)

=

(𝐾𝑃 +
1

𝑇𝐼𝑠
+

𝑇𝐷𝑠
1 + 𝑇𝑝𝑠)𝑒

−𝑇𝐷𝑇𝑃 𝑠

1 + (𝐾𝑃 +
1

𝑇𝐼𝑠
+

𝑇𝐷𝑠
1 + 𝑇𝑝𝑠)𝑒

−𝑇𝐷𝑇𝑃 𝑠 1
1 + 𝑇𝑀𝑠 𝑒−𝑇𝐷𝑇𝐹 𝑠

 ,

(5-22)

where the product 𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠) 𝐺𝑀(𝑠)𝐺𝐹(𝑠) in the denominator is the transfer

function of the open loop 𝐺0(𝑠) .

One important goal of automation data control is that no or only a minimum of

data frames may be lost to avoid bumps in the controlled process. Therefore, an

overshot of 𝑀𝑜(𝑠) over the reference level 𝑀𝑖(𝑠) must be avoided, because the

operating point could be near the maximum bandwidth. An overshot would then

mean a congestion loss. As the plant consists of only dead time elements, this

limitation is equivalent to the requirement for proportional gain: 𝐾𝑃 ≤ 1. Another

reason for this limitation is the practical aspect: an overshot would mean an

oscillation of the load between two paths, which would only create unnecessary

disturbances. However, the price of the avoidance of overshot means slower

dynamic performance.

Generally, dead time elements increase the difficulty of controlling the loop and

promote its tendency toward instability. However, because of the PT1 dampening

effect of the rolling mean calculation in the feedback, the instability of the control

loop can be counteracted if the sum of the dead time elements is small compared

Page 177

to the 𝑇𝑀𝑒𝑎𝑛 of the rolling mean calculation. 𝑇𝑀𝑒𝑎𝑛 increases with the longest

application cycle, and is thereby determined by the slowest application, as stated

in Equation (4-7). The sum of dead times depends on the selection of the traffic

shaping technology, the number of hops between the controller and the current

throughput maximum, and the LAN propagation delays of the links between the

hops. With certain traffic shaping methods, bridge delays can be assumed to be

nearly constant, whereas others imply variable bridge delays and thereby variable

dead time elements in the control circuit. A nearly constant bridge latency and

thereby constant dead time element as it is given with, for example, EST traffic

shaping, has the advantage that 𝑇𝐷𝑇𝑃 does not need to be measured and

transferred to the controller continuously. 𝑇𝐷𝑇𝑃 can be calculated instead if a

constant single dead time per hop and the number of hops are known. However,

if the dead time needs to be measured as described in Section 5.4, it is

recommended to perform this continuously in a parallel process to the actual

throughput control to obtain instant dead time values for the load control.

The general control structure in Figure 5.5 provides separate overall dead times

for the data path and feedback path. This is because the values are not always

identical. The paths to be followed in the two directions to and from the relevant

link are not necessarily the same and could have different delays owing to the

influence of the interfering traffic. The local maximum of the throughput max
𝑖,𝑗 𝜖 𝑽

𝜇𝑖𝑗

can be at different locations in the network domain at each distribution control

loop sample time, resulting in different path characteristics. These in turn demand

different controller parameters for the flow control, if optimal flow control is to

be achieved. This means that the controlling instance located within an AC must

provide and use dedicated plant models for each possible location of max
𝑖,𝑗 𝜖 𝑽

𝜇𝑖𝑗.

A common way to identify the influence of dead time, and thereby the difficulty

in controlling the control loop, is the use of a normalized dead time related to the

time constants of the delaying elements, that is, the PT1 element in this case, such

that (Normey-Rico & Camacho, 2007):

𝜏 =
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑛
 (5-23)

 Page 178

where 𝜏 is the normalised dead time, with 0 ≤ 𝜏 ≤ 1, 𝑇𝐷𝑇 is the real dead time of

the plant and 𝑇𝑛 is the delay time constant of the plant. If 𝜏 is near 1, usually ≥
2

3

(Normey-Rico & Camacho, 2007), a system, as a rule of thumb, is said to be dead

time dominant; otherwise, it is said to be lag dominant. The PID controller in the

control structure in Figure 5.5 is sufficient, if dead times are relatively small in

comparison to the PT1 rolling mean element, that is, the system is rather lag

dominant. If the system is rather dead time dominant or demands enhanced

dynamics, the PID controller should be replaced using a predictive controller that

is either a Smith Predictor (De Cicco et al., 2011; Mascolo, 2000) or a Model

Predictive Controller (Normey-Rico & Camacho, 2007).

In summary, it must be stated that the different traffic shaper and schedulers

introduce different dead time elements into the flow control circuit influencing

the control characteristics. Furthermore, the network cycle and application cycles

in the network domain play a crucial role, as they affect the possible control

performance by assigning the possible rolling mean time constant of the

throughput, and thereby the relation of dead times to delay time constants.

5.6 Network Flow Control Simulation and Results

As described in the previous section, the characteristics of the plant model,

formed by a network path in this case, are given by the typical internal bridge

delays, line delays, and the way to build the output value which is the mean of the

output bandwidth.

This model is introduced into the mathematical simulation tool MATLAB with its

control engineering extension, Simulink. The mathematical simulation of the

network path provides detailed data and knowledge of the dynamic

characteristics of the network path, both as an uncontrolled dynamic system and

closed-loop controlled dynamic system. Such dynamic characteristics include

system step response behavior, control instability areas, input frequency

influences and dynamic reaction speed.

Page 179

One result of the data traffic analysis in Section 5.3 is that the actual dead time for

networks with a similar number of hops and throughput depends on the different

traffic-shaping methods. To compare their influences, a sample network model

was simulated as shown in Figure 5.6.

Figure 5.6: Network control simulation model

The parameters for the path delay and feedback delay are calculated as follows

and summarised at the end of this section in Table 5.4. The simulation parameters

are listed in Table 5.5. A network of 25 hops from the controller to the link with

the current maximum throughput 𝜇𝑖𝑗 𝑚𝑎𝑥 is assumed, which is half the typical

maximum ring diameter of 50 hops (IEC 61158-5-10, 2023; IEC 62439-2, 2021).

The average cable length between the hops is assumed with 100 m Ethernet CAT6

cable which have a typical propagation delay of about 0.5 𝜇𝑠 (ANSI/TIA-568.1-D,

2015). Thereby 𝑇𝐿𝑃𝐷 = 24 𝑥 0,5 𝜇𝑠 = 12 𝜇𝑠, under the assumption that the

controller is near the first bridge with insignificant LAN propagation delay. A

maximum data amount of 100 streams with a maximum of 200 bytes net SDU data

load plus a 42 Byte Ethernet header is assumed. For one stream frame, this leads

to a transmission delay according to Equation (5-8):

𝑇𝑇𝑟 = 242 𝐵𝑦𝑡𝑒
(8

𝐵𝑖𝑡
𝐵𝑦𝑡𝑒) 10−9𝑠

𝐵𝑖𝑡
= 1.936 𝜇𝑠

(5-24)

 Page 180

Therefore, to a Bridge Latency time according to Equation (5-7) of,

𝑇𝐵𝐿 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 = 0.800 𝜇𝑠 + 1.936 𝜇𝑠 ≈ 2.75 𝜇𝑠 (5-25)

For SPQ without considerable ICI, the dead time required to shift one frame from

the talker to the link with the maximum throughput is according to Equation

(5-10):

𝑇𝐷𝑇𝑃 𝑆𝑃𝑄 = 𝑛max𝜇(𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

= 24(0.8 𝜇𝑠 + 1.936 𝜇𝑠 + 1530 𝐵𝑦𝑡𝑒
(8

𝐵𝑖𝑡
𝐵𝑦𝑡𝑒) 10−9𝑠

𝐵𝑖𝑡
)

+12 𝜇𝑠

= 371.24 𝜇𝑠

≈ 370 𝜇𝑠

(5-26)

The path delay with Preemption, where only 64 Byte instead of 1530 Byte are to

be calculated for 𝑇𝑄, would result in 89,9 µs ≈ 90 µs path delay. These low path

delay values for SPQ are a result of the assumption that no other interfering ICI

enters the path that would raise 𝑇𝑄. If the worst case is assumed for this example,

the rest of the maximum load enters the ring at a ring interconnection to a coupled

ring in between, and this data is in front of the control data, one further 𝑇𝑄 𝐼𝐶𝐼 of:

𝑇𝑄 𝐼𝐶𝐼 = 99 × 1.936 𝜇𝑠 ≈ 200 𝜇𝑠 (5-27)

would have to be added, resulting in a dead time of approximately 570 µs for SPQ

with ICI.

For EST with ICI, calculation of required gating window length is necessary. To shift

the maximum data of 24200 Bytes through the network along the path, one 𝑇𝐵𝐿

of 195 µs (as reception and forwarding of bytes from bridge to bridge occur nearly

simultaneously) plus the complete LAN propagation delay of 𝑇𝐿𝑃𝐷 = 12 µs is to

be calculated. This results in a minimum gating window time 𝑇𝐺𝑊 of 207 µs. This

time also represents the worst-case delay for the I-CD data if the talker transmits

synchronised with the network gating windows. For unsynchronised talkers for NI-

Page 181

CD, one network cycle of worst-case waiting time must be added, which would

then result in a delay of 1207 µs assuming a network cycle time of 1 ms. For EST

without ICI the delay would be according to Equation (5-11):

𝑇𝐷𝑇𝑃 𝐸𝑆𝑇 = 𝑛max𝜇(𝑇𝑆&𝐹 + 𝑇𝑇𝑟) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

= 25(0.8 𝜇𝑠 + 1.936 𝜇𝑠) + 12 𝜇𝑠
= 80.4 𝜇𝑠
≈ 80 𝜇𝑠

(5-28)

For CQF, one network cycle time is required to transport the data over one hop.

According to Equation (5-25), this needs to be at least 𝑇𝐵𝐿 ≈ 195 µs for all 100

streams of this example, assuming that this data is the only traffic class to be

transported within the network cycle. The LAN propagation delay must be added

to reach the next hop. The overall delay from the controller to the link with the

current maximum throughput µ𝑖𝑗 𝑚𝑎𝑥 is then according to Equation (5-12):

𝑇𝐷𝑇𝑃 𝐶𝑄𝐹 = 𝑛max𝜇𝑇𝑁𝐶 + ∑𝑇𝐿𝑃𝐺 𝑖

𝑚

𝑖=1

= 25 × 195 𝜇𝑠 + 12 𝜇𝑠
= 4,887 𝜇𝑠
≈ 4,890 𝜇𝑠

 (5-29)

As with SPQ, if the maximum ICI is considered, the dead time would have to be

increased by a further 200 µs.

For ATS, the same network cycle time as that of CQF is assumed to be the only CD

traffic class to be transported. According to Equation (5-13), the worst-case path

delay for the network path under simulation must be calculated as follows:

 Page 182

𝑇𝐷𝑇𝑃 𝐴𝑇𝑆 = 𝑛max𝜇(𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄 + 𝑇𝑁𝐶) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

= 25(0.8 𝜇𝑠 + 1.936 𝜇𝑠 + 1530 𝐵𝑦𝑡𝑒
(8

𝐵𝑖𝑡
𝐵𝑦𝑡𝑒) 10−9𝑠

𝐵𝑖𝑡

+ 195) + 12 𝜇𝑠

= 5,141.4 𝜇𝑠

≈ 5,140 𝜇𝑠

(5-30)

As with SPQ and CQF, if the maximum ICI is considered, the dead time would have

to be increased by 200 µs.

Bandwidth Reservation reconfiguration dead times are not considered in the

simulations for two reasons. First, the dynamic changes of reservation have

practically only relevance in networks, including slow applications; otherwise,

their part of the dead time would be a multiple of the dead time caused by traffic

shapers and schedulers. Second, it would only add dead time of the same amount

for all the investigated shapers and schedulers thus distorting the view of the

actual results.

Table 5.4 summarises the path dead time results for the different traffic shapers

for the simulated network.

Page 183

Table 5.4: Path dead times for the different traffic shapers and schedulers

Traffic shaper and traffic type

Worst case

Path dead

time (µs)

SPQ without ICI 370

SPQ with Preemption and without ICI 90

SPQ with maximum ICI 570

EST without ICI 80

EST with maximum ICI 280

CQF without ICI 4,890

CQF with maximum ICI 5,090

ATS without ICI 5,140

ATS with maximum ICI 5,340

As outlined in Section 4.7 and 5.5, the influence of these dead times is only

dominant in networks that are not informed by slow applications, forcing a

multiple of these times as the integration time for the rolling mean calculation.

To visualise the influence of the different dead times on LDC, a high-performance

application with an application cycle of only 2 ms was simulated. The integration

time for the rolling mean calculation of the actual value feedback was selected to

be five times the application cycle of 2 ms, that is, m of Equation (4-7) is 5, which

is equivalent to a time constant of approximately 6 ms for the PT1 time constant

𝑇𝑀𝑒𝑎𝑛. The PID controller is optimised for minimum overshot rather than for fast

setpoint approximation for the reasons mentioned in Subsection 5.4.3. The

dynamic behaviour is analysed through the reference step response. As the

control circuit contains dead times that imply non-rational elements in the

transfer function, a stability analysis via poles and zeros of the closed-loop or

 Page 184

open-loop system is not at hand. Instead, the Nyquist criteria for the open loop

delivers evidence as to the stability and robustness of the closed-loop flow control,

that is if the magnitude of the transfer function of the open loop |𝐺0(𝑠)| =

|𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠) 𝐺𝑀(𝑠)𝐺𝐹(𝑠)| < 1 (compare to Equation (5-22)), at Im (𝐺0(𝑠)) = 0,

the closed loop is stable. The factor for the gain at Im (𝐺0(𝑠)) = 0 to reach

|𝐺0(𝑠)| = 1, that is, the gain margin, should not be smaller than 2 ≙ 6 dB for a

robust control design stability reserve. The second stability criterion is the phase

margin, which represents the angle of 𝐺0(𝑠) with the negative real axis at the

point of intersection with the unitary circle |𝐺0(𝑠)| = 1. For a robust control

design, the phase margin should be ≥ 45°. A Padé approximation of order 16 has

been applied for the linearisation of the dead time elements.

Figure 5.7 to Figure 5.9 show the simulation results for the step response and

Nyquist diagrams for a representative selection of three networks and traffic

situations featuring EST, SPQ and ATS. The simulation parameters are listed in

Table 5.5.

Table 5.5: Simulation parameters

Traffic shaper and

traffic type

Worst

case Path

dead time

(µs)

Simulation

time

(ms)

PID

KP

PID

TI

(ms)

PID

TD

(ms)

EST without ICI 80 20 0.75 7.7 0

SPQ with maximum ICI 570 20 0.95 6.5 0

ATS with maximum ICI 5340 100 0.38 22 0

Strictly speaking, the use of ATS in combination with a fast application cycle of 2

ms makes little sense from the application control point of view. This is because

the data transport for the setpoint and the actual value would be longer than the

overall available time to calculate an application control algorithm, including the

data transport times. Nevertheless, this is investigated here for reasons of flow

control behaviour analysis.

Page 185

Figure 5.7: Step response and Nyquist diagram for EST

Figure 5.7 shows the step response and Nyquist diagram for EST without ICI

representing the least possible dead time (DT or 𝑇𝐷𝑇) solution of 80 µs for both

path dead time and feedback dead time and thereby the network with the least

dead time. According to Equation (5-23), with:

 Page 186

𝜏 =
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑀𝑒𝑎𝑛
=

2 × 80 𝜇𝑠

2 × 80 𝜇𝑠 + 6000 𝜇𝑠
= 0.03

(5-31)

the control circuit is clearly lag dominant. The control circuit features a fast settling

time of 𝑇𝑆 = 2 𝑚𝑠, a gain margin of
1

0,05
= 20 ≙ 26 𝑑𝐵, and a phase margin of

about 88°, thereby representing a fast and robust control design.

Figure 5.8 shows the step response and Nyquist diagram for the SPQ with

maximum ICI. It represents a control circuit with a medium dead time of 680 µs

for both the path dead time and feedback dead time. According to Equation

(5-23), with

𝜏 =
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑀𝑒𝑎𝑛
=

2 × 570 𝜇𝑠

2 × 570 𝜇𝑠 + 6000 𝜇𝑠
= 0.1 ,

(5-32)

the control circuit is still a lag dominant network. It features a quite fast settling

time of 𝑇𝑆 = 10 𝑚𝑠, a gain margin of
1

0,2
= 5 ≙ 14 𝑑𝐵, and a phase margin of

about 75°, representing still a rather fast and robust control design.

Page 187

Figure 5.8: Step response and Nyquist diagram for SPQ with ICI

 Page 188

Figure 5.9: Step response and Nyquist diagram for ATS with maximum ICI

Figure 5.9 shows the step response and Nyquist diagram for ATS with maximum

ICI representing the traffic shaper and traffic type with the worst dead time of

5340 µs for path dead time and feedback dead time. According to Equation (5-23),

with

Page 189

τ =
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑀𝑒𝑎𝑛
=

2 × 5340 𝜇𝑠

2 × 5340 𝜇𝑠 + 6000 𝜇𝑠
= 0.64 ,

(5-33)

the control circuit is at the border of being dead time dominant. The settling time

has worsened to 70 ms, the gain margin to
1

0,4
= 2,5 ≙ 8 𝑑𝐵, and the phase

margin to 68°, representing a control design at the border of robustness.

Figure 5.7 to Figure 5.9 clearly show the influence of the path dead time and

feedback dead time. With increasing dead time, the necessary control loops

settling time 𝑡𝑆 grows approximately proportional. At the same time, the

intersection of the Nyquist diagrams with the negative real axis shifts with

increasing dead times towards -1, which is the critical point for stability. This results

in lower gain margins and lower phase margins and thereby less robust flow control

circuits. Table 5.6 summarises the results.

Table 5.6: Simulation results for shaper/scheduler examples for a fast 2 ms

application cycle dominated network.

Traffic shaper and

traffic type

worst

case path

dead time

𝑻𝑫𝑻 (µs)

settl.

time

𝒕𝑺

(ms)

gain

margin

𝒈𝑴

(dB)

phase

margin

𝝋𝑴

(°)

ctrl

robust-

ness

EST without ICI 80 2 26 88 high

SPQ with maximum ICI 570 10 14 75 medium

ATS with maximum ICI 5340 70 8 68 low

Because the dead time is either calculated or measured over an appropriate time

span, the actual dead time can differ. The possible uncertainty in the dead time

calculation or dead time measurement makes a tuned flow control circuit at least

imprecise or even unstable. To illustrate the effect of a dead time deviation, Figure

5.10 (a) shows an example of the step response for the SPQ with 50 percent ICI.

 Page 190

A dead time of 470 µs was assumed for both path delay and feedback delay. The

PID controller was optimised for DT = 470 µs dead time. In this case, the maximum

deviation is represented by either no ICI or maximum ICI, leading to either DT =

370 µs dead time or DT = 570 µs dead time, respectively.

Figure 5.10 (a) shows that the effect of the error is only a slightly mistuned control

circuit. In this case, it provokes a rather acceptable slower settling time of 𝑡𝑆 =

10 𝑚𝑠 for both 370 µs and 470 µs dead times compared to 8 ms for the 570 µs

tuned control circuit. Figure 5.10 (b) shows the result when the same test case

was applied to a tuned control circuit featuring the ATS. An average medium dead

time of DT = 2,710 µs, a possible deviating minimum dead time of DT = 80 µs and

a maximum dead time of DT = 5,340 µs were assumed. The considerably deviating

dead times provoked substantial deviations in settling time of 𝑡𝑆 = 70 𝑚𝑠 for

𝑇𝐷𝑇 = 80 𝜇𝑠, and 𝑇𝑆 = 95 𝑚𝑠 for 𝑇𝐷𝑇 = 5,340 𝜇𝑠, compared to the tuned settling

time of 𝑡𝑆 = 15 𝑚𝑠. In addition, the higher actual dead time produces a

considerable overshot of 40 %.

Summarising the influence of ICI, it can be stated, as Figure 5.10 (a) shows, that

ICI has very low influence on the control quality of SPQ. The small dead time

deviation tolerance band of only +/- 20% has hardly any noticeable control

performance consequences for the sample network. The tolerances for EST and

CQF, summarised in Table 5.4, were also uncritical. However, ATS, as illustrated in

Figure 5.10 (b), has a high uncertainty of nearly 90 per cent in this case. This is

caused by the asynchronous gating times between the bridges, which results in

poor settling times and a high overshot for the flow control circuit.

Page 191

Figure 5.10: Dynamic performance deviation depending on dead time

uncertainties

5.7 Chapter Summary

Different TSN traffic shapers introduce different dead times into the flow control

circuit. It is shown that EST, SPQ with Preemption, and SPQ without Preemption

are clearly the best selections from the flow control point of view because of their

lower absolute dead times. CQF and ATS delay times increase stronger with

 Page 192

increasing amount of admissible data traffic and number of hops compared to EST

and SPQ. Therefore, CQF and ATS could also be worthwhile selections within

either smaller networks, lower loaded networks, or both. A further result is that

the overall possible traffic load of the relevant traffic classes, that is, the ICI, on

the path has an influence on the gating window size for EST, CQF and ATS and

thereby on the resulting dead times. A higher possible ICI demands longer gating

windows and means higher resulting dead times. For SPQ, ICI cannot be overtaken

by Preemption and is therefore also a source of additional dead time for SPQ with

Preemption.

The slowest application cycle within a traffic class assigns the minimum

integration time of the rolling mean calculation of the throughput feedback and

thereby the achievable dynamic performance of the flow control circuit. For very

fast applications of a 2 ms application cycle time or faster, only EST and SPQ are

recommended traffic shapers in combination with load control for extensive

automation rings. The use of the slower traffic shapers CQF and ATS makes sense

if the network domain contains slow applications of at least “slowest application

time > two times longest path dead time” to avoid dead time dominant control

circuits with a need for elaborate and CPU time-consuming controllers. If ATS is to

be used in connection with flow control, the control circuits should be optimised

by assuming maximum dead times to avoid overshot during operation with dead

time variations in the direction of lower values.

A further outcome of the analysis is, that the ETS, in addition to its low absolute

dead time and low dead time uncertainty, offers the unique possibility of

separating data transport for fast applications from slower ones. This can be

realised by implementing independent and dedicated gating windows for groups

of applications. Therefore, tailored and decoupled flow control circuits can be

implemented for different application groups, that is, fast dynamic load

distribution control for fast applications, and slow load distribution control for

slow applications.

A further problem addressed in this chapter is how to derive the actual plant

properties to be in the position to determine the appropriate control parameters.

Page 193

Three alternative methods were proposed. First, the identification during the

design phase derives control parameters from the knowledge of all bridges and

bridged end station delays and all path delays. Hints for possible path estimation

possibilities are provided in combination with certain traffic shapers and

schedulers. A second possibility is the use of test messages to empirically obtain

the parameters at runtime. This method is especially at hand within timely

unsynchronised networks. For synchronized networks, the third possibility, to

derive the values from the time synchronization protocols is the most effective

way.

As a next step, in the following chapter, the optimal distribution control in ring

topologies for a variety of listeners depending on the location within the ring is

proposed and validated. A further challenging task is to find a proper method for

the collaboration of several controllers that apply LDC at the same ring, thereby

influencing each other. This is addressed in Chapter 7 .

 Page 194

Chapter 6 A New Control Method for Load Distribution

Optimisation in TSN MAN

6.1 Introduction

After the requirements for the task of load distribution control of TSN automation

networks in their various forms have been clarified in Chapter 4 and Chapter 5

, the corresponding network requirements, core control mechanisms, and

optimisations can now be defined.

For this goal, it would be illusory to believe in finding a completely new superior

core control method in addition to the already established methods for

approximately three decades, as described in the literature review. More

obviously, it will effectively mean that the best core control mechanism suitable

for MANs is to be selected and is then further optimised and extended for the

application in MANs.

According to the literature review, a variety of load distribution or load balancing

methods are available for networks such as ISP networks, campus networks, and

the access networks of mobile networks. To analyse their applicability and their

possible further expandability for automation networks, it is advantageous to

assess them based on their different solutions for the control elements as

introduced with Figure 2.3 in Subsection 2.3.2:

1. The controller type,

2. The load measurement or load calculation method,

3. The control goal,

4. The controller output intervention,

5. The controlled traffic type which influences the control variable.

6. The traffic cycle time selection (if any).

Each of these control elements should be decided upon and possibly optimised

for the individual requirements of manufacturing automation networks.

Page 195

6.2 Determination of Advantageous Network Preconditions

As shown in Chapter 4, there are various decisions to be made when designing an

automation network in general, particularly if this should support dynamic load

distribution.

First, it must be decided whether to use a central or distributed control concept

because this decision already limits the available controllers. Although the central

solution is best suited for reaching the optimum traffic distribution results, the

distributed solution is selected here. This is because it is better suited for dynamic

load changes, as outlined in Section 4.2, which is especially important in MANs

that can experience network extensions by new machines or automation cells.

Regarding network topology, the ring topology is the prevalent topology in

redundant MANs and is also the basic topology here.

As the distributed load distribution control concept is chosen, the load controllers

shall be located on the ACs. As outlined in Section 4.4, the other possibility for the

distributed control solution is that the load distribution control would be located

on a bridge. However, this is rather an atypical task for a bridge and is therefore

not considered here.

This chapter focusses on data distribution and data flow control for a single AC.

Load distribution control in the case of multiple ACs is discussed in Chapter 7 .

The selection of the distributed LDC concept also has an influence on the core

controller type selection, as not all types are suited well for the distributed control

approach. This will be discussed in the following section.

6.3 Discussion and Selection of the Basic Controller Types

6.3.1 Introduction

As outlined in Section 1.2, different controller types have been applied in

communication networks for both the overlaid load distribution control and

subsequent flow control so far.

 Page 196

All the applied control types have particularities providing advantages and

disadvantages in different types of networks. They can be applied as alternative

methods to each other for certain applications within certain limits. To select an

appropriate core controller type, the specifics of each controller type have to be

analysed from the viewpoint of TSN MAN.

As Chapter 5 has already shown, with the strong variation of dead times, data

traffic, and applications, one single best qualified controller core type cannot be

expected for all variants of the TSN.

6.3.2 Discussion of the Relevant Controller Type Properties

A linear controller is the traditional option for regulating linear systems. This is

the case for MAN, as they are analysed in this thesis, as outlined in Subsection

2.3.2. This is especially true for flow control to control the increase or decrease of

the load of a path. However, depending on the relation between the delay that

the data traffic experiences over the path and the necessary rolling mean

integration time, the application of a predictor-based linear controller such as the

Smith Predictor Controller or the Model Predictive Controller can be necessary.

This is the case when the delay component is large compared with the integration

time delay, as shown in Chapter 5 .

Stochastic network control is typically applied where incoming traffic arrival

events are not known in advance, that is, they are stochastically distributed.

However, a typical characteristic of automation network data traffic is that the

data traffic volume and occurrence is usually well known, as it is planned to a

certain extent. This is especially true for CD. Also, with CD, as outlined in

Subsection 2.2.3, the process data are always sent at the beginning of an

application communication cycle in the shape of a burst. Therefore, stochastic

network load control is not the first selection for automation network control

data. Its application would make more sense for data traffic created by

applications sending data at irregular intervals or at intervals that are difficult to

predict.

Page 197

Predictor-based controller types, such as the Smith Predictor or the Model

Predictive Controller are especially suited for coping with longer dead times within

the data path or the feedback path (Normey-Rico & Camacho, 2007). As shown in

Chapter 5 , this can be the case with higher-delay TSN traffic shapers such as

ATS or CQF shapers in combination with fast application cycle times for CD traffic.

However, in this thesis, the advantages of EST regarding its capability to decouple

the data traffic of dedicated traffic classes are required. This ability will be used in

a later stage of this thesis to decouple the data traffic from different automation

controllers. As the EST traffic shaper has the characteristic of a comparably low

latency time, as shown in Chapter 5 , and thereby a low dead time, there is no

need to apply predictor-based controller types as a basis for optimised control

within this thesis. This is also true for SPQ with a similar low latency time, which

will also be applied in this respect.

The fuzzy control is especially advantageous when the system to be controlled is

either rather complex, its behaviour is difficult to describe mathematically, or both

(Pompili & Priscoli, 2008; Wang & Hung, 2012), as outlined in Subsection 2.3.3.

This is particularly true when the system contains non-linearities. As the control

plant, that is, the network paths and feedbacks of the automation communication

network addressed in this thesis, are both linear and of limited complexity, the

application of fuzzy control is not a need, but can be an alternative.

With neural network control a neural network (Hagan et al., 2002) is used either

as a function approximator or as a neural controller, as introduced in Subsection

2.3.3. As outlined in Subsection 2.4.3, the neural network model within the neural

controller predicts the plant response over a specified time horizon. The

application of Neural Network Model Predictive Control is advantageous with

non-linear and/or complex plant properties that are difficult to describe

mathematically, which is not the case here. Automation networks behaviour is

mathematically describable with limited effort owing to the linearisation of

discrete data packets via rolling mean formation. But as is already the case with

the fuzzy control method, for the networks investigated in this thesis, Neural

 Page 198

Network Model Predictive Control can be an alternative control method to the

linear control method.

AI/ML controller selection is a further alternative for controlling complex systems

or systems that are difficult to describe mathematically. As already shown with

the assertion of the other traffic shapers and schedulers in this section, this is

certainly not the case for the data flow controller selection. However, it could be

a good selection for the optimisation task of distribution control to determine the

most favourable overall load distribution. The learning phases of MLC can have a

negative impact on the automation process though. Furthermore, it needs a high

implementation and computation resources effort. For the single AC at a ring use

case, it is from current point of view rather unlikely that the effort for an AI/ML

control is worthwhile. Multiple AC in the ring with mutual interference are more

likely to gain advantages with AI/ML. This case will be discussed in more detail in

the next sub-sections and in Chapter 7 .

The ant colony optimisation control (ACOC) is especially suited for a

distributed control approach, which is also considered for the optimised

control concept in this work. The distributed approach is inherent in ACOC,

as the agent packets need to be sent and received by the end stations

making use of the control. According to Subsection 2.3.3 its advantages are

scalability, distribution of the computational load, ruggedness to network

errors, and its suitability for multiply meshed networks. The disadvantage,

however, is the inclusion of the control layer in every routing decision and

thus the exclusion of the TSN traffic shapers and schedulers. Other

disadvantages are a possible temporal overuse of paths and the necessary

high agent frequency to achieve high dynamics. Despite these

disadvantages, the ACOC can, in principle, be used as a possible distribution

controller method. However, it is not suitable as a solution for a subsequent

flow controller which increases or decreases load on a single path.

Page 199

6.3.3 Controller Type Selection Criteria for MAN

Considering the properties of TSN automation networks as derived in Section 4.6

and the controller type properties from the previous subsection, a few boundary

conditions and consequences must be defined:

1. Load control is possible for BE and CD data traffic types. It is most

advantageously applied to CD which is the focus of this study. CD is typically

sent in a constant succession of data bursts. Measuring the throughput over a

succession of burst cycles as a rolling mean value results in a linear throughput

measurement. Therefore, LDC represents a linear control.

2. Lag dominant networks are assumed, that is, the dead time elements

introduced by the path traffic shapers or schedulers are low compared to the

time constants of the PT1 elements caused by the rolling mean calculation. The

reason is that the SPQ and EST traffic shaper shall be used because of their low

delay time and the EST traffic decoupling possibilities.

3. For distribution control, it is important to determine whether the control

should be distributed and autonomous on one or more AC or whether it is to

be located in a central instance for several automation controllers. This thesis

focuses on the distributed approach for its dynamic advantages as outlined in

Section 4.2. In the first place a single AC is considered. In Chapter 7 , the

distribution control method is extended to several ACs in the automation ring.

The goal of this thesis is not to find the ideal type of basic controller core by an

extensive comparison of all possible controller properties. This approach could

easily fail because of the great variety of automation networks regarding

automation application cycle time distribution, traffic types, and traffic scheduler

and traffic shaper types. The goal is rather to select a well-suited core controller

type that covers the most important and typical automation applications, and to

extend the control principle to suit the LDC task in these environments. As will be

visible further down, some core controller type could, in principle, also be

exchanged with other controller types. For example, if a different traffic shaper

concept would be selected for the data plane of the network this could introduce

 Page 200

a higher bridge delay and, thereby, a higher dead time. Then, it could be necessary

to replace, for example, a selected classical PID controller basic control core by a

Predictive Controller type such as the Smith Predictor Controller or the Model

Predictive Controller.

6.3.4 Flow Controller Selection

First, the type of flow controller must be assigned.

An important question in the selection of both the flow controller and the

distribution controller is whether abrupt changes in load on a path will cause the

output to exhibit non-linear behaviour. This requires a closer inspection of the

communication data as input and output variable.

The actual network consists of a pure dead time control element, as shown in

Section 4.6. This dead time is caused by the LAN propagation delays and bridge

latencies. The bridge latencies again depend on the applied traffic shaper or traffic

scheduler of the data plane as discussed in Chapter 4 . So, a data bit, data byte,

or data packet are just “shifted” through the network without any deformation.

The peculiarity of data communication paths as controlled systems is that the

input and output variables, that is, the data per time value, are non-linear when

measured over a sufficiently small time span. This results from the fact that

basically the data bits are transported serially over the path1. If the measuring

interval would be reduced to a bit time, the input variable would actually jump

nonlinearly between full and zero use. If the measuring interval is extended to a

byte length, full bandwidth use is measured at sending times, but zero bandwidth

use in the sending gaps. The same applies if the measuring interval is extended to

frame length. If the sending characteristic is burst, as with automation

applications CD as outlined in Section 4.7, all measuring intervals smaller than the

1 Strictly speaking also modern serial transport mediums such as Ethernet cables have a certain

extend of parallel transport as they contain several twisted pair strands.

Page 201

burst repetition cycle times would deliver oscillating throughput measurement

values, which also becomes clear from Figure 4.8.

From these considerations, it is obvious that a network transporting data

measured per time over a sufficiently long time interval must be handled as a

linear system, although a pure dead time element would have to be handled as a

non-linear system. Therefore, for the flow control of CD, there is no need for

dedicated controllers to cope with non-linearity or randomness of input data, such

as stochastic control, fuzzy control, neural network control, or machine learning

control.

Moreover, a dead time in the system to be controlled can be compensated by

sufficient delay times in the control loop, as shown by Normey-Rico and Camacho

(2007), and discussed and confirmed in Chapter 5 . In this case, such a network

can most easily be controlled by means of a traditional linear controller in the

shape of a PID controller.

Therefore, the second question is whether the network is lag dominant, that is,

the delay times in the network path are low compared to the time constants in

the feedback path, as analysed in Chapter 5 . This can be assumed with the use

of the EST traffic shaper and SPQ being the focus of this thesis in combination with

fast application cycles down to 1 ms, as outlined in Chapter 5 and the previous

subsection. Therefore, no prediction-based controller types are necessary.

For these reasons, the classical PID controller is selected as the basic flow

controller type.

6.3.5 Distribution Controller Selection

To be in the position to select the distribution controller type, the controller

location must be firstly decided. Shall the control be located centrally on a CNC

instance, or should it be located de-centrally on the automation controller? In the

latter case it is furthermore important whether the control is independent of and

unaffected by other distribution controllers of other ACs. In the previous

subsection these questions were answered with a focus on the distributed control.

 Page 202

In the first step, this is located on a single AC without considering the possible

influences of other distribution controllers.

A further prerequisite for the selection is that the actual load distribution

optimisation method needs to be selected. As shown in Section 4.6, there are

primarily two possible goals for the optimisation of the network load distribution

in the foreground:

1. One conceivable optimisation goal is the maximum-reduction which means

the minimisation of the maximum local load µij until the maxima on both paths

are equal or nearly equal within a predefined tolerance band.

2. An alternative goal would be the optimum-distribution to achieve a

distribution that is as even as possible on all paths.

Note that a path selection for the minimum delay time from talker to listener

would also be a worthwhile optimisation goal but is not a load distribution

optimisation goal and is out of focus here.

To achieve the maximum-reduction goal for a single distribution control on one

AC, the following tasks must be implemented:

1. The relevant data traffic bandwidth consumption must be measured over a

suitable time span at each ring port in the network domain. For this purpose,

the measured values of the subsequent flow control circuit can be reused.

2. The distribution control preprocessing of the distribution control assembly

compares the maximum values of each path and feeds half of the difference

to the distribution controller as a reference and from there, into the flow

controller.

3. The flow control output is fed into the packet controller, which feeds both

paths. For the direction with the current maximum, it will be fed negatively,

and for the other path it will be fed positively.

4. The reference provision for the flow control can either be applied as a simple

P-control that provides half of the maximum difference or can be further

smoothed and possibly accelerated by applying additional integration and

derivative control elements resulting in a PID-type distribution controller.

Page 203

The optimum-distribution goal in combination with the distributed control

concept requires a different approach:

1. Combined with the selected distributed control concept, it is difficult to

achieve an overall optimum distribution. This is because a single controller

requires special additional coordination mechanisms with all other distributed

controllers. These additional coordination mechanisms are expected to be

difficult to achieve, particularly with regard to the avoidance of load

oscillations.

2. Therefore, for the distributed approach, a compromise towards an optimum

distribution is selected that can work without high-effort ACs coordination.

This is further elaborated on in Chapter 7 .

3. From application engineering, an AC has information about each of its own

originating streams of a certain traffic class regarding the frame size,

application cycle, registered listeners, and their distance from the AC in each

direction of the ring. Thereby, it can calculate the bandwidth use contribution

of each stream for each ring port of the ring network domain.

4. Each AC strives for optimum distribution of its own traffic in the ring. Thus, it

can be assumed that the sum of the traffic of all ACs is also homogeneous to a

certain extent.

5. Smaller end stations, from a traffic generation point of view, or end devices

different from ACs, will not support their own distribution control for their

transmitted traffic. Integrating these into dynamic traffic distribution control

would typically only make sense by applying central traffic distribution control.

Nevertheless, their traffic would be measured, recorded, and published at the

ring ports in the same way as interfering exogenous and unknown traffic and

can thus also be considered in the distribution control for optimum

distribution. For integration into the distributed control, the end stations that

are addressed by the AC will use the reception of CD as a trigger to start their

sending process towards this AC. It is important for end stations without an

own load distribution controller, that they do not change the initially selected

paths for their CD towards ACs; otherwise, the measurement conditions would

 Page 204

constantly change for the AC. The initially selected paths chosen by the end

stations can be selected using criteria such as the minimum accumulated delay

calculated during the reservation process by the MSRP or RAP protocols.

Another possibility is a pre-engineered path selected by the network design at

the configuration time. If traffic is allowed to select a different path, the AC can

provoke this by sending appropriate managing configuration to this talker. See

Subsection 7.4.3 for further details.

6. A challenge is the use case of multiple ACs in or at the ring as it must be agreed

upon among those via an additional algorithm in which the AC compensates

for the data traffic of unknown ACs and small end devices. See Subsection 7.4.2

for a solution proposal as to this.

7. For a single AC, the distribution control task is to constantly calculate the

optimal traffic distribution by applying a dedicated algorithm that computes

the following steps:

a. Calculate the traffic distribution for each ring link for each possible

combination of path utilisation of the single streams under

consideration of the measured non-controlled streams of unknown

talkers from unknown ACs or from smaller end devices.

b. Calculate the least squares deviation of the mean traffic bandwidth use

for each possible stream-path use combination.

c. Select the optimal stream distribution or the first stream distribution

that is within the acceptance tolerance band.

Comparing the two distribution control concepts for maximum reduction and for

optimum distribution, it is obvious that the optimum-distribution concept

requires much more effort for the single AC than the PID controller for the

maximum-reduction optimisation goal. Furthermore, the maximum-reduction

goal is of higher importance because it can provide an immediate reaction to a

possible loss of data in the case of local bandwidth maxima when it is near the

maximum bandwidth. Therefore, the maximum-reduction goal within the

influence area of a single controller is regarded as a better optimisation goal. This

is especially true in combination with the EST traffic shaper, which allows the

Page 205

traffic of a single AC to be decoupled by assigning dedicated EST windows to each

AC. Thus, each AC sends and controls its traffic at dedicated point in times,

avoiding interference with other ACs.

Consequently, the most advantageous distribution controller type basis for the

controller optimisation to build upon is the linear PID controller in combination

with the maximum-reduction optimisation goal.

As will be shown in Chapter 7 and in more detail in Subsection 7.4.2, it will also

be possible to apply the maximum-reduction method to multiple mutually

dependent ACs in order to iteratively get closer to the optimum-distribution goal.

6.3.6 Discussions and Evaluations

To date, various controller types have been applied in general communication

networks for both overlaid load distribution control and subsequent flow control.

These are mainly linear control, stochastic control, predictive control, ant colony

optimisation control, neural network control, machine learning control, fuzzy

control, and dedicated control algorithms. All methods rely on the measurement

of the data throughput per time, which means counting data arrival events over a

suitable time span. The result is always an average or mean calculation of the

packets or data frames per time. It is a measurement of a continuous value over

the complete input and output range, and thus the network can be handled as a

continuous and linear system. Therefore, there is no need to apply elaborate

control methods for nonlinear systems such as fuzzy, neural or machine learning

control. Since the applications CD is also sent at regular and known intervals, no

stochastic control is required. Furthermore, the small dead times involved in

connection with the EST traffic scheduler, which is the focus of this thesis because

of its traffic decoupling capabilities, eliminate the utilisation of predictive

controllers. This is also true in connection with the SPQ, which serves as an

alternative solution in this study. These preconditions lead to the following

decision overview, as listed in Table 6.1.

 Page 206

Table 6.1: Possible Distribution Load Control methods.

Control method Application area Possibility for flow
controller for
automation CD

Possibility for
distribution
controller for
automation CD for
single AC

Possibility for
distribution
controller for
automation CD for
multiple AC

Linear (PID)

Lag dominant
linear systems

yes yes Yes, for distributed
controller. Not for
central solution

Linear Smith
Predictor or
Linear Model
Predictive

Dead time
dominant linear
systems

Yes, in connection
with slow traffic
shapers/schedulers
and fast application
cycles

Yes, in principle, but
not recommendable
as linear PID is better
suited for path
difference calculation
with small dead
times only

Yes, for distributed
controller. Not for
central solution

Stochastic

Unpredictable
traffic patterns,
stochastically
distributed

Yes, in principle,
but not
recommendable as
linear is better
suited for being
faster

Yes, in principle, but
not recommendable
as linear is better
suited for being
faster

Yes, in principle, but
not
recommendable as
linear is better
suited for being
faster

Neural Network Non-linear and/or
complex systems

Yes, in principle,
but not
recommendable as
linear is better
suited for network
path is linear and
non-complex

Yes, in principle, but
not recommendable
as the network
model needs
constant adaptations
depending on the
single links load
changes.

Yes, in principle, but
not
recommendable as
the network model
needs constant
changes depending
on the single links
load changes.

Machine Learning Non-linear and/or
complex systems

Yes, in principle,
but not
recommendable as
linear is better
suited

Yes, in principle, but
not recommendable
as the trained
network model
needs constant
adaptations
depending on the
single links load
changes.

Yes, in principle, but
not
recommendable as
the trained network
model needs
constant
adaptations
depending on the
single links load
changes.

Dedicated
Algorithm

Unpredictable
traffic patterns,
stochastically
distributed

Yes, in principle,
but not
recommendable as
linear is less effort

Yes, in principle, but
not recommendable
as linear is less effort.

Yes. One of the few
feasible solutions to
find an optimised
distribution of
traffic

Fuzzy Unpredictable
traffic patterns,
stochastically
distributed

Yes, in principle,
but not
recommendable as
linear is less effort

Yes, in principle, but
not recommendable
as linear is less effort

Yes. One of the few
feasible solutions to
find an optimised
distribution of
traffic

Ant colony
optimsation

Multiply meshed
networks such as
complex
networks, mobile

No, as it is only
deciding which
path to use. No
flow control

Yes, in principle, but
not recommendable
as linear is less effort.

Yes. But with
inherent tendency
to overload the
found best path.

Page 207

Control method Application area Possibility for flow
controller for
automation CD

Possibility for
distribution
controller for
automation CD for
single AC

Possibility for
distribution
controller for
automation CD for
multiple AC

networks, data
centers

possible.

These evaluations recommend linear traditional PID control as the basic core

controller for both distribution control and subsequent flow control for

automation CD. The distribution and flow controllers are set up in a classical

controller-cascade, with the distribution controller feeding the flow controller.

This basis serves as the starting point for optimisation to achieve the goals of this

thesis.

6.4 Analysis of Drawbacks of Current Basic Distribution Control

Possibilities

The classical approach with load balancing examples from the literature review

for measuring the load on a path is that all traffic is handled equally. Its load

influence is measured together, regardless of the type of traffic, its send intervals,

and its importance. Applying this method also to MANs would have the following

disadvantages:

1. All traffic is assumed to have the same deterministic requirements.

Unimportant traffic, which would have no problems with some delays, is given

the same importance as CD of highly deterministic requirements.

2. There is no differentiation between sporadic and cyclic traffic. This is an

obstacle to finding a possible load measurement integration interval without

oscillations, as outlined in Sections 4.6 and 4.7.

3. There is no differentiation between frame repetition intervals in the case of

cyclic traffic. This hampers the selection of the optimum load measurement

integration interval. Automation CD is usually sent in the form of a burst at the

start of an automation application cycle. It creates an inhomogeneous traffic

pattern when viewed over a period smaller than the application cycle. If a

 Page 208

common throughput measurement is applied that does not differentiate

between different application cycles, the rolling mean measurement interval

must be adapted to a value at least equal to the slowest application cycle

within the relevant network domain. Otherwise, the measurement provided

oscillating load distribution results. Similarly, sporadic non-CD traffic would

spoil the selection of a measurement integration interval if controlled together

with CD. A further consequence of this fact is, that in dynamic network setups,

where automation controllers, devices, or I/O extensions can be added or

removed during operation, a constant adaptation of all automation controllers

load control parameters to the slowest application cycle is necessary. This is

particularly bad in an environment where new automation processes might be

added or removed on the fly during runtime, which is a common requirement

for most automation networks. Removing ACs with slow applications or

disabling slow applications, has in the first place, not the important

consequences of adding slow applications. The quality of load distribution

control does not deteriorate. However, the control could be more dynamic

towards an optimal control if the control parameters are adjusted after

removal. The consequences of slight control dynamics deteriorations owing to

the influence of the presence of slow applications might not be as far-reaching

when the timely difference between fast and slow applications is small.

However, with higher ranges of application cycle times, the disadvantages for

the fast applications increase. This becomes clear immediately when

considering fast motion control circuits with cycle times as low as a few

microseconds. Their LDC dynamics can be tremendously slowed because of the

presence of one temperature control with an application communication cycle

of, for example, a few hundred milliseconds.

Page 209

6.5 Proposal of a Control Method for Optimising Load

Distribution for TSN MANs

As discussed in Section 6.3, for this research within MAN, a classical linear PID

controller is selected as the core mechanism for both the basic distribution

controller and subsequent flow controller. Both controllers, together with the

feedback calculation and packet controller, represent the distribution-control

assembly.

The current solution possibilities for load distribution control, as outlined in the

literature review, are not prepared for application in MAN. As outlined in the

previous section, they do not take the circumstance into account that application

control data is sent in different application cycles. The optimised control method

should be dedicated to the important traffic in the MAN, which are the CD

streams. Therefore, the first step is to exclude non-CD traffic which is of secondary

importance and can be controlled separately in a separate gating window. To

overcome the drawbacks of a straightforward overall load distribution control as

outlined in Section 6.4, the distribution control assembly is further supplemented

and extended specifically for TSN MAN CD by the following features:

1. The first and most important is that, instead of a common load distribution control,

a series of distribution controllers process dedicated application classes. The

application classes are categorised based on their application cycle times. Their

throughputs are measured individually per application cycle or application cycle

group and are individually fed back to their dedicated distribution controllers.

𝜇𝑖𝑗,𝐶𝐷,𝐴𝑝𝑝 𝛼 = ∑ 𝜇𝑖𝑗,𝐶𝐷 (𝑠
𝑞𝛼)

𝑞∈𝑻𝒂

 ; 𝑻𝒂 ⊆ ℕ ; α ∈ ℕ (6-1)

The maximum-reduction optimsation goal is then changing from the form in

Equation (4-3) to:

minmax
𝑖,𝑗∈𝑽

𝜇𝑖𝑗,𝐴𝑝𝑝𝛼 ; Subject to: ∀ 𝑒 ∈ 𝑬(𝐺), 𝛼 ∈ 𝑨 (6-2)

In Table 4.4, the pseudo code parts:

 Page 210

For application cycle α <= SUMAPPSIND
{
 For direction j <= 2
 {

 For node i <= maximum number of nodes
 {
 If (m_thp_array [α] [j] [i] > max)
 {
 max = m_thp_array [α] [j] [i];
 }
 }
 Store max at index number of nodes NNODES:
 m_thp_array [α] [j] [NNODES]= max;
 max = 0;
 },

and:

For application cycle α <= SUMAPPSIND
{
 For direction j <= 2
 {

 For node i <= maximum number of nodes
 {
 If (m_thp_array [α] [j] [i] > max)
 {
 max = m_thp_array [α] [j] [i];
 }
 }
 Store max at index number of nodes NNODES:
 m_thp_array [α] [j] [NNODES]= max;
 max = 0;
 }

determine the application-cycle-specific load maximum for each ring direction and

store it at the array index NNODES for later application-cycle-specific distribution

control. The optimum-distribution optimsation goal changes in the same way from

the form in Equations (4-5) and (4-6) to:

min∑ (𝜇𝑖𝑗,𝐴𝑝𝑝𝛼 − 𝜇𝑀,𝐴𝑝𝑝𝛼)2𝑛
𝑖,𝑗=1

𝑖,𝑗∈𝑽

 ; Subject to: ∀ 𝑒 ∈ 𝑬(𝐺), 𝛼 ∈ 𝑨 (6-3)

𝜇𝑀,𝐴𝑝𝑝𝛼 =
∑ 𝜇𝑖𝑗,𝐴𝑝𝑝𝛼

 𝑛
𝑖,𝑗=1

2𝑛
 ; 𝑛 ∈ ℕ (6-4)

2. The distribution control assembly sets up a delay list sorted by ring direction and

ring node number. This is necessary to feed the actual distribution and flow

controller with the optimum PID control parameter for optimum control

Page 211

performance, depending on the location of the current load maximum. The delay

values can be obtained by applying the different plant characteristic identification

mechanisms proposed in Section 5.4.

3. Slower application cycle traffic can be intentionally excluded from distribution

control because of its low overall balancing contribution. The consumption of

bandwidth, or in other words, the caused throughput on a network link, depends

on the packet length and application cycle. The shorter the application cycle

𝑇𝐴𝑝𝑝 and the longer the packet length 𝑛BytesApp , the higher is the applications

bandwidth consumption µ𝐴𝑝𝑝. Equation (6-5) reflects this for the underlying

maximum bandwidth of 1 Gbit/s:

𝜇𝐴𝑝𝑝 = 𝑛BytesApp 𝐵𝑦𝑡𝑒 (8
𝐵𝑖𝑡

𝐵𝑦𝑡𝑒
) 10−9𝑠

1

𝑇𝐴𝑝𝑝
 (6-5)

Thus, controlling the load distribution of faster applications contributes more to a

balanced overall distribution than controlling slow application cycle classes. The

system designer can weigh the requirements for the grade of load balance quality

against the calculation and configuration effort.

4. Traffic from single talkers with a small amount of traffic without an own LDC can

also be excluded from the distribution control for the same reasons as for the slow

applications mentioned above. Alternatively, the assigned AC can choose the

direction for this talker thus integrating it into the load distribution control.

5. The summation point of the path loads differentiation in the distribution control

assembly on the AC is provided with a threshold to avoid small oscillations around

the current working point.

The advantage of using dedicated controllers for groups of application cycle classes is

the ability to mask out the impact of the slower applications in the network domain

on the achievable control performance for faster application cycles. Furthermore, a

possible later addition of network participants communicating at slower application

cycles has no influence on LDC as their low influence is deliberately disregarded.

The typical automation network field-level ring consists of only one leading AC that

controls several field devices, such as IO peripherals, drives, or distributed automation

 Page 212

peripherals. Therefore, it can be advantageous to implement a “ring-central”

distribution control only on this AC neglecting smaller talkers that also put load on the

network ring. Basically, it is not worthwhile to implement distributed load distribution

units on talkers, which contribute only a small amount of traffic. But if these are under

control of an AC, this AC can after its own load distribution calculations provoke them

to use a certain ring direction to achieve a load shift on certain links.

In contrast to field-level rings, controller-level rings typically have multiple controllers.

The problem with multiple ACs is that distributed dynamic LDC creates mutual

influence over the common communication ring. To achieve a dynamic load

distribution in this case, either a central control approach with a dedicated load

distribution algorithm or a distributed solution with measures for mutual coordination

or mutual decoupling must be considered. Refer to Chapter 7 for the proposed

solutions in the case of multiple AC with distributed distribution controllers residing

on each AC.

The reason for the proposed threshold at the differentiation point before the

distribution controller is to avoid constant path changes with low traffic changes,

which would result in unwanted path-selection oscillations.

Although the design of an appropriate packet controller for dedicated distribution

controllers shall not be the focus of this thesis, some important influences and

possible limitations should be highlighted here. An issue with separated application

cycle load distribution controllers is that interferences can occur in certain application

cycle classes without any original traffic occurrences within this application cycle class

in the controlled automation network domain. A packet controller must then decide

whether to adapt the traffic of another application cycle class or ignore such traffic

situation occurrences with the consequence of tolerating a certain amount of load

differences within an application cycle class. A further limitation to be considered with

the EST and CQF traffic shapers is that the maximum possible bandwidth assignment

possibility for CD is limited by the assigned EST and CQF network cycle length. The

consequences of this fact are elaborated further in Subsection 7.4.3.

Page 213

6.6 Discussion and Selection of the Optimised Feedback Method

As the literature review shows, different solution approaches exist to feed the

distribution control assembly with information regarding the load situation on the

links in the network. Farahmand et al. (2005) investigated congestion control on

optical burst links and proposed a method in which the feedback signal specifically

notifies the source of how much it should reduce its rate to match the targeted

congestion level of the network. This is a different concept in which the actual

controller is located on each node whereas the AC would only serve as a packet

controller. However, this solution neglects to consider the dead times from the

controller to the nodes, which are necessary for an optimally tuned flow controller.

The MATE adaptive traffic engineering solution (Elwalid et al., 2002) uses the end-to-

end delay on the different paths as feedback for the control loop. The intention here

is to use end-to-end delay as an equivalent of congestion caused by load. This works

if it can be assumed that the paths from the source to the end have nearly equal

lengths. However, this typically is not the case with ring networks. Here, in the worst

case, when a node in question is right next to the AC, one direction is the complete

ring, and the distance in the other direction of the ring is only one link. This already

leads to greatly deviating path delays purely on the location of the node, without

delays due to the traffic load also being taken into account.

Therefore, for automation network rings, the goal must be to measure the actual load

on each ring port of the nodes in the ring. A further goal must be to consider the

individual dead time from the distribution control assembly in the AC to the node with

the current load maximum, to adapt the controller properties to the current control

situation. Applying closed-loop control methods that work with maximum bandwidth

use gained by path measurement and delay calculation or measurement avoids load

oscillations. These would occur with mere congestion control using only

acknowledgement losses, where path delays are not considered. Oscillations are an

important disadvantage. They particularly come to effect in high bandwidth delay

product networks such as ISP networks with high bandwidth and data transported

over longer distances, as described for XCP (Kandula et al., 2005).

 Page 214

The optimised control method, as proposed in Section 6.5, has additional

consequences for the formation of the feedback values for the control loops. As

explained and applied in Chapter 5 , for a single flow controller, the feedback value

must be measured over a suitable time span to avoid oscillations in the value.

Therefore, in Chapter 5 , this time span is selected as a multiple of the slowest

application cycle time in the network domain. With the new optimised control

method, dedicated control loops, for each of the different application classes cycle

times or for groups of classes, shall be applied. Therefore, also the mean values must

be measured, calculated, and fed back individually for the application classes or

groups of application classes. In the AC hosting the load distribution controllers, a

maximum load value selection must take place to select the individual maximum

throughput of the path per application cycle class.

Figure 6.1 depicts the optimised feedback creation process for one network path.

 Figure 6.1: Optimised feedback creation process for one path

The actual transport of the individual rolling mean values can be either in individual

frames from the nodes to the automation controller or by a collecting round-robin

Page 215

frame constantly circling round the ring to collect the individual rolling mean values.

The collection frame would have to be circled once per fastest application cycle rolling

mean value measuring time span. Each node inserts its throughput measurement in

an array organised by application cycle. The array is then written to the round-robin

frame with a special offset for each node. This has the advantage of creating less

throughput consumption, but the disadvantage is that new ring participants will cause

a recalculation and reconfiguration of the offset for each node. For the network

simulation in Section 6.7, the single frame solution was selected owing to its easier

network extension capabilities.

Further information to be part of the feedback frame is the measured path delay to

that node and port. This is needed for the optimum tuning of the distribution

controller and the flow controller, as outlined above and in Section 6.5.

6.7 Performance Validations of the New Optimised Control

Method

6.7.1 Introduction

To obtain the primary data for the validation of the new optimised control method

introduced in the previous sections, an automation network in ring topology is

simulated using the discrete-event network simulator ns-3. The simulator ns-3 is an

open-source network simulator implemented in C++ and Phyton and is freely available

at the Git repository https://github.com/nsnam under the GNU license conditions. Ns-

3 has been widely used by the communication network research community. Ns-3

allows a simulation time resolution in nanoseconds for creating, time-stamping, and

analysing communication events.

For the performance evaluations of the optimised control method, a single

automation controller (AC1) network setup is simulated. The automation controller

output is implemented by two applications sending frames clockwise (cw) and

counterclockwise (ccw) into an automation ring network. This consists of nine virtual

bridged nodes, n1 to n9, simulating either real bridges or bridged automation devices

 Page 216

containing listeners and/or talkers (L/T). The automation controller itself does not

contain a bridge instance to save the application of redundancy protocols in parallel.

Otherwise, broadcast data such as ARP requests and responses for address resolution

would circle endlessly in the ring, creating a loop and thereby an avalanche of circling

data. Figure 6.2 depicts the setup of the simulated automation ring network.

Link (LAN) lx transferring

data stream

T/L

Talker/Listener node

bridged and with ring

port numbers

AC

Automation controller

talker node

with port numbers

Legend:

AC1

T/L

Data traffic

l2

1 2

1 2

lx

l1
1

1T/L
1 1

1

1111

2

2
2 2 2

2

222
T/L

1

2

l3 l4

l5

l6

l7l8l9

l10

n0

n1 n2 n3 n4

n5

n6n7n8n9

r-m

cw

r-m

rolling mean

throughput

measurement

r-m

ccw

T/L T/L

T/L

T/LT/LT/L

µAC1cw

µAC1ccw

µAC1cw
µAC1ccw

µi1

µi1

µ

Figure 6.2: Automation ring setup for network simulations for performance

evaluations

The automation controller hosts several applications instantiating several virtual

talkers, which cause the overall load of streams (blue arrows). Multiple listeners

residing in the ring nodes are assumed for all streams. Therefore, all streams from

AC1 are sent around the complete ring in their individual directions. Without any

exogenous interfering traffic from the inter-ring links, the automation controller

divides the load equally in the two ring directions. To test the distribution control, an

additional interference load µI1 is injected at certain times at node n2, bound for a

virtual listener at node n4. This causes an asymmetrical load distribution in the ring

which is compensated by distribution control. The measured load difference is fed to

the distribution controller, which then provides the reference for the flow controller.

Depending on the algebraic sign of the distribution controller output, the flow

controller either increases or decreases traffic in the clockwise direction in the ring.

The counterclockwise throughput is then decreased or increased contrarily by the

same amount of traffic. Both the distribution and flow controller are implemented as

PID controllers as discussed in Section 6.3.

Page 217

For each application cycle class, there exists a dedicated output queue in which the

local applications of this application cycle store their frames either synchronously or

asynchronously at sending time. This is simulated by assuming a sufficient number of

applications to achieve the necessary bandwidth consumption for the simulation. The

packet controller outputs send a portion of the frames in each direction according to

the relation preset by the distribution and flow controllers. The individual number of

frames to be sent in either direction per network cycle is calculated using the

individual stream frame lengths of all reserved streams and the number of reserved

streams of that application cycle class. Streams of nearly equal length are assumed to

reduce the complexity of the simulation. However, in real applications, different

stream lengths are to be expected. A sophisticated mechanism for the packet

controller, to map the flow controller output to the packet controller output,

considering different stream lengths and single or bundled streams, could be subject

to further research but is not the focus of this thesis. The pseudo code for a packet

controller for fixed stream lengths is outlined in Table 6.2. Its detailed structure is

provided in Appendix 2.

 Page 218

Table 6.2: Pseudo code of algorithm for packet control.

Algorithm: LDCApp::Control ()

This algorithm of the LDC application in an AC connects the minmax differential
throughput from Table 4.4 to the distribution controller and this to the flow controller. It
converts the flow controller output into a number of packets to transmit. This method
must be called cyclically with distribution controller and flow controller.

Create variables:
m_diffthroughput; //difference of throughput
m_distctrlin; //input for distribution control
m_distctrlout; //output from distribution control, input for flow control
m_flowctrlin; //flow control input
m_flowctrlout; //flow control output, to be translated into m_nPackets for send unit
m_packetSize; //packet size of packets to transmit
m_nPackets; //number of packets to transmit
m_deltaPackets; //difference of packets to transmit

Fetch the maximum detection output from throughput array (see Table 4.4):

m_diffthroughput = m_thp_array [α] [CW] [NNODES + 1];

Connect this to the input of the distribution controller:
m_distctrlin = m_diffthroughput;

Create the flow controller input from the distribution controller output and the throughput
difference:
m_flowctrlin = m_distctrlout - m_diffthroughput;

Calculate packets and change algebraic sign as a positive difference means a reduction for
this direction:
m_deltaPackets = m_flowctrlout/(0.0001 * m_packetSize * 8);

Adapt the number of packets to be sent by the delta:
m_nPackets = m_nPackets + m_deltapackets;

To show the control problem and the effects of the optimised control method, a series

of use-cases is simulated. Simulations start with a single control of a single fast

application class. Further application classes of slower application cycles are added,

and different feedback rolling mean integration times are applied. Finally, control

circuits for dedicated application classes are added and the improvements become

visible. Table 6.3 provides an overview of these use cases.

Page 219

Table 6.3: Load distribution simulation use cases overview.

Use
case

Application
cycles (ms)

Interference
cycles (ms)

Flow
control?
Type?

Distribution
control?
Type?

Rolling
mean
integr.
time
(ms)

Purpose/Comments

 UC1 1 1 No control No control 1 Basic use case without
load control

UC2 1 1 Yes, PID Yes, Basic,
only
Proportional

1 Flow controller plus
limited distribution
controller. The
distribution controller
works only as a
proportional controller.

UC3 1 1 Yes, PID Yes, PID 1 Flow controller plus full
distribution PID-
Controller

UC4 1, 2, 4, 8 1 No No 1, 2, 4, 8 This use case shows the
influence of the
occurrences of application
cycle classes on the
control.

UC5.1 1, 2, 4, 8 1 Yes, PID,
optimised
for 1 ms
app cycle.

Yes, PID,
optimised for
1 ms app
cycle.

8 Occurrence of slower
application cycle classes
without controller
parameter adaptations

UC5.2 1, 2, 4, 8 1 Yes, PID,
optimised
for 8 ms
app cycle.

Yes, PID,
optimised for
8 ms app
cycle.

8 Occurrence of slower
application cycle classes
with controller parameter
adaptations

UC6.1 1, 2, 4, 8 1, 2, 4, 8 No control No control 8 Multiple application cycle
classes and multiple
controller basic use case
visualising load
interferences without
load control

UC6.2 1, 2, 4, 8 1, 2, 4, 8 Yes, PID,
optimised
for 8 ms
app cycle.

Yes, PID,
optimised for
8 ms app
cycle.

8 Multiple application cycle
classes and multiple
controller basic use case
visualising load
interferences with
common load control

UC6.2 1, 2, 4, 8 1, 2, 4, 8 Yes, PID,
optimised
for 8 ms
app cycle.

Yes, PID,
optimised for
8 ms app
cycle.

8 Multiple application cycle
classes and multiple
controller basic use case
visualising load
interferences with
common load control

UC6.3 1, 2, 4, 8 1, 2, 4, 8 Yes, PID,
optimised

Yes, PID,
optimised for

32 Like 6.2 but additional
slow application cycle

 Page 220

for 8 ms
app cycle.

8 ms app
cycle.

interference without
controller parameter
adaptations. Leads to
control quality
deterioration.

UC6.4 1, 2, 4, 8 1, 2, 4, 8, 32 Yes, PID,
optimised
for 32 ms
app cycle.

Yes, PID,
optimised for
32 ms app
cycle.

32 Like 6.3 but with
controller parameters
optimised for slowest 32
ms application cycle class.

UC6.5 1, 2, 4, 8 1, 2, 4, 8, 32 Yes, PID,
optimised
for 32 ms
app cycle.

Yes, PID,
optimised for
32 ms app
cycle.

32 Load change settling time
for common load control
in dependency of
application cycle and of
slowest application cycle

UC7 1, 2, 4, 8 1, 2, 4, 8, 32 Yes,
multiple
PIDs,
optimised
individually
for app
cycles.

Yes, multiple
PIDs,
optimised
individually
for app
cycles.

1, 2, 4, 8,
32

Load control with
application cycle
dedicated load
controllers.

The ns-3 simulation framework makes wide use of the C++ object aggregation. The

class "object" forms the basis where applications, nodes, net devices, and

communication channels, that is, links and sockets, are based on and created via

object inheritance. For the simulation topology, nodes were created and net devices,

standard applications, and dedicated applications were added to these nodes. Links

were added to the net devices, and thereby, nodes were connected to a network.

Packet transmission and processing are typically performed using dedicated

application objects. To provide the necessary functionality for this thesis,

supplementary C++ code has been added for the linear PID controllers, feedback

rolling-mean-value generations, feedback transport to the AC, and peripheral

functions such as interference traffic generation, simulation parameter handling, and

results handling. Furthermore, an algorithm for the packet controller, that is, to

control the actual data streams partitioning between the ring directions according to

the distribution controller, has been added. Figure 6.3 shows the UML class diagram

of the added classes for an AC embedded in the ns-3 framework.

The dedicated AC simulation code for this performance evaluation consists of three

classes derived from the ns-3 Application class, which is again derived from the Object

Page 221

class. A detailed description of the ns-3 classes and their derivation chain is located at

the ns-3 documentation home page https://www.nsnam.org/docs/. The functionality

of the three added classes for the AC simulation is briefly described in Table 6.4.

 Figure 6.3: Dynamic Load Distribution Control Simulation with ns-3. Class

diagram for Automation Controller

Table 6.4: Class Description of Simulation Code for an Automation Controller

Class Purpose/Comments Methods

 LDCApp () Load Distribution Control
Application.

Entry application for packet
handling. One instance for each ring
direction.

StartApplication ()

Starts the Application, creates the
packets, opens communication socket,
and sends a first packet.

StopApplication ()

Stops the Application, cancel send events,
close the communication socket.

SendPacket ()

Sends a data packet, schedules the next
packet till burst end, calls scheduler for
the next communication cycle start.

ScheduleTx ()

Schedules the next packet to be sent.

ScheduleTxCycle ()

Schedules the next communication cycle
start.

 Page 222

Class Purpose/Comments Methods

Control ()

Packet controller converts flow controller
output to a change of number of packets
to be sent. The pseudo code for this
method is provided in Table 6.2.

PIDCtrlApp () PID controller class. Is used for
distribution controller and for flow
controller.

StartApplication ()

Starts the PID controller application,
schedules first PID controller calculation.

StopApplication ()

Stops the PID controller application.

Calculate ()

Calculates PID controller and schedules
the next calculation. The pseudo code for
this method is provided in Table 5.3.

CollApp () Collector application. Is instantiated
at automation controller. Receives
the throughput feedback of the ring
nodes and compares and provides
the difference as input for the
distribution controller.

StartApplication ()

Starts and initializes the collector
application, schedules first collector call.

StopApplication ()

Stops the collector application.

ReceivePacket ()

Interrupt method for reception and
classification of feedback frame.

Compare ()

Builds the sum over the single application
cycles per node and direction to build the
overall throughput for application
dedicated control. Finds the maximum of
each direction and application cycle and
also for all application cycles and builds
and stores the difference of the
directions. The pseudo code for this
method is provided in Table 4.4.

The simulation code for a bridge or bridged end station is somewhat simpler because

it only needs to provide the throughput measurement, including feedback sending.

On certain nodes, an additional generation of interference traffic is added. Figure 6.4

shows the class structure of a bridge or bridged end station.

Page 223

Figure 6.4: Dynamic Load Distribution Control Simulation with ns-3. Class

diagram for a Bridge and Bridged End Station

The dedicated simulation code for a bridge or bridged end station for this

performance validation consists of two classes. These are derived from the ns-3

Application class, which is again derived from the Object class as is the case for

automation controller classes. The functionality of the two added classes is briefly

described in Table 6.5.

 Page 224

Table 6.5: Class Description of Simulation Code for a Bridge or a Bridged End
Station

Class Purpose/Comments Methods

RollMeanApp () Builds the rolling mean
measurement of throughput on a
node (bridged device) and per
port.

For each app cycle class, one
RollMeanApp is instantiated as
they finally will use different
rolling mean measurement
integration times.

StartApplication ()

Starts the Application, initiates first
scheduling of the calculation method.

StopApplication ()

Stops the Application, cancel feedback
frame send events, close the
communication socket for the feedback
frames.

CheckInPacket ()

Receive interrupt method to count amount,
type and size of packets passing a port.

Calculate ()

Calculates rolling mean for the node, port,
and application cycle class. Possibility of
calculation over all application cycle
classes. Sends feedback frames to ACs. The
pseudo code for this method is provided in
Table 5.1.

 TrafficApp () Sends frames in one direction of
the ring, usually to simulate
traffic interference not under
control of the automation
controller

StartApplication ()

Starts the Application, creates the packets,
opens a communication socket, and sends a
first packet.

StopApplication ()

Stops the Application, cancel send events,
close the communication socket.

SendPacket ()

Sends a data packet, schedules the next
packet till burst end, calls scheduler for the
next communication cycle start.

ScheduleTx ()

Schedules the next packet to be sent.

ScheduleTxCycle ()

Schedules the next communication cycle
start.

The detailed source code of the developed classes and methods for this simulation

are provided in Appendix 2.

The preconditions for the simulation are as follows: In analogy to the flow control

simulation in Section 5.6, streams of lengths of approximately 200 Bytes net SDU data

load plus 42 Byte Ethernet header are assumed. For easier distinction in the diagrams,

slightly different packet lengths, and thereby slightly different measured throughputs,

were applied in the two directions in the ring. These approximately 200 Bytes lead to,

Page 225

according to Equation (5-8), a frame transmission time of 𝑇𝑇𝑟 = 1.936 𝜇𝑠 ≈ 2 𝜇𝑠.

Therefore, to simulate a burst of CD streams, send events were scheduled every 2 𝜇𝑠.

The EST window size was selected with 200 𝜇𝑠. Assuming a 1 ms network

communication cycle, full use of the EST window is reached with the transmission of

100 streams and causes 100 percent CD load and thus a 20 percent overall bandwidth

use by CD. The calculation of the distribution and flow controllers must be scheduled

cyclically in parallel to their application cycles. The flow controller output influences

the number of frames scheduled for each direction. At the nodes of interest, the

feedback rolling mean of the bandwidth use, that is, the throughput value, is

generated and fed back to the automation controller.

The simulation uses UDP data frames for both the transport of the throughput

feedback values and for the CD frames. The frames contain information on their type

of frame, either CD or feedback, application class affiliation, originating AC or node,

and direction, which can be clockwise or counterclockwise.

Basically, the membership of a frame or packet to an application cycle class or an AC

can be achieved by various network technology means, including:

• Grouping by stream destination multicast addresses

• VLAN memberships

• Dedicated identifiers for application cycle membership (e.g., application

identifier, APPID) and automation controller membership (e.g., automation

controller identifier, ACID) in the application frame payload. This is a common

practice particularly in automation solutions such as the OPC UA PubSub

protocol or PROFINET protocol.

For this simulation, dedicated APPIDs and ACIDs in the payload of the frames are used.

TSN supporting switch hardware generally provides hardware facilities, such as

Ternary Content Aware Memory (TCAM) filters, to analyse payload content at wire

speed without additional CPU load or noteworthy delays.

The simulation begins with basic linear control without optimsation to form the basis

for comparisons with the new optimised dedicated control method extensions. It is

 Page 226

then extended by applying application-cycle-dedicated distribution and flow

controllers for the LDC.

The following subsections provide the results of the different use cases simulations.

6.7.2 Performance of the Basic Linear Control

The performance evaluation of the basic linear control method without optimisation

is the first step in assessing the potential of the control method optimisation. For this

purpose, a ring with a single automation controller hosting the load distribution

control assembly is simulated. The simulated network ring is shown in Figure 6.2. An

interference load µI1 is introduced into the network, which provokes a step response

by the load controller. The step response delivers load control quality results.

The network simulation has been set up under the following preconditions:

Use Case 1, Basic setup without load control:

• 1 Automation Controller (AC),

• 9 further bridged nodes,

• 1 application cycle of 1 ms,

• constant packet sizes of about 200 Byte payload,

• 200 µs EST window,

• 1 ms network cycle,

• The integration time for the rolling mean throughput measurement is equal to

the application cycle time of 1 ms, as no other disturbances are to be expected in

the network.

• bridge latency and LAN propagation delay sum up to 2 µs per hop.

As outlined in Chapter 5 , the 200 Byte payload result in an Ethernet frame of 242

Bytes, assuming data without a VLAN tag. With a data rate of 1 GBit/s, the 242 Bytes

require a time of 1936 ns in the EST window. This implies approximately 100 frames

per network cycle for a 100 percent CD bandwidth or 20 percent overall bandwidth

use. The throughput calculation is repeated in a cycle time of 1 ms to guarantee a fast

reaction to load changes. The basic load at the start of the simulation start is selected

as 50 percent of the 20 percent for CD in each direction, clockwise and

Page 227

counterclockwise. An interfering additional load of 20 percent is introduced at 20

percent simulation time at time 𝑡𝑖1 = 20 𝑚𝑠 from the interlink connection at node 3

in the clockwise direction. The target node for the interfering load is node 4. The

interference is stopped at 60 percent of the simulation time, at 𝑡𝑖2 = 60 𝑚𝑠. This

results in an interference duration of 𝑡𝑖12 = 40 𝑚𝑠 which is 40 percent of the

simulation time of 100 ms.

Figure 6.5 shows the throughput µ(t) measurement in the clockwise and

counterclockwise directions for use case 1 without any load control.

Figure 6.5: Use case 1: Throughputs over time without load control.

As shown in the diagram in Figure 6.5, the start of the interference at 𝑡𝑖1 = 20 𝑚𝑠

leads to a throughput µ(t) increase from 10.5 percent to approximately 14.5 percent

in the clockwise direction, with no influence on the load in the counterclockwise

direction.

Use Case 2: Basic setup with load control in the form of a basic proportional

distribution controller and a PID flow controller:

The simulation network setup for use case 2 is identical to that for use case 1, with

the difference that load control in the AC is enabled. The load control consists of a

 Page 228

basic distribution controller and PID flow controller. The full distribution PID controller

is shortcut in this use case. The basic distribution controller calculates the difference

between the clockwise direction throughput maximum and counterclockwise

throughput maximum. The difference is then multiplied with the proportional factor

of 0.5 and fed into the flow controller. The factor 0.5 takes the circumstance into

account that the output of the flow controller feeds both packet controls for the two

directions, the one for the clockwise direction and that for the counterclockwise

direction, in parallel. Thus, packet control for one direction increases the output and

the other decreases the output, each by half of the necessary load difference, to be

balanced.

The flow control parameters for the PID controller to achieve the best control results

are selected with a proportional factor 𝐾𝑃 = 0.4, an integral factor 𝐾𝐼 = 160, and a

very moderate differential factor 𝐾𝐷 = 0.0002. The integration time 𝑇𝐼 results from

the integral factor and the cycle time of the flow controller 𝑇𝑐 = 1 𝑚𝑠 and is thus

calculated as 𝑇𝐼 = 𝐾𝐼 ∗ 𝑇𝑐 = 160 ∗ 1 𝑚𝑠 = 160 𝑚𝑠.

As in use case 1, the integration time for the rolling mean calculation was selected to

be at the minimum of 1 ms as no slower periodic interference or other disturbances

in the ring must be considered. This helps to determine the best possible control

performance as a starting point for further simulations. Again, a 200 µs EST window

is reserved for all CD, which is 20 percent of the network cycle of 1 ms; thus, 20

percent of the overall available bandwidth is also the maximally reachable throughput

for CD.

Figure 6.6 shows the throughput measurement µ(t) in the clockwise (purple) and

counterclockwise (green) directions when the basic load control in the form of the

basic distribution controller plus the flow controller is active. The gray dashed curves

are the results of use case 1 above of load-uncontrolled operation for comparison.

Page 229

Figure 6.6: Use case 2: Throughput with basic load control.

From the start of the simulation to the control start 𝑡𝐶 = 10 𝑚𝑠 the throughputs are

slightly different owing to the slightly different packet lengths to reach a better initial

graphical differentiation of the two graphs. At 𝑡𝐶 = 10 𝑚𝑠, the load control is

activated causing an alignment of both throughputs. After the clockwise interference

load step at 𝑡𝑖1 = 20 𝑚𝑠 to approximately 14.5 percent, both directions load settle

down to a common value of approximately 12,5 percent. This is achieved at the

settling point 𝑡𝑆1 ≈ 32 𝑚𝑠 within a period of approximately 15 to 20 ms settling time.

At 𝑡𝑖2 = 60 𝑚𝑠 the interference load is removed, and 15 to 20 ms later at 𝑡𝑆2 ≈ 70 𝑚𝑠

both the clockwise and counterclockwise throughput have settled on a common value

of approximately 10 percent again. Thus, it can be stated that the basic load control

achieves a step response settling time of 𝑡𝑆 < 20 𝑚𝑠 under the given preconditions

and an acceptable maximal overshot of µ𝑂 < 5%.

Use Case 3: Basic setup with full load control in the form of a PID distribution

controller and a PID flow controller:

 Page 230

The simulation network setup for use case 3 is identical to the setup for use case 2

with the difference that the load control in the automation controller now consists of

the full distribution PID controller and the PID flow controller. The empirical tuning of

the cascade control leads to similar flow control parameters as in use case 2 and the

following distribution PID controller parameters. These were determined as a

proportional factor of 𝐾𝑃 = 0.2, an integral factor of 𝐾𝐼 = 70, and again a very

moderate differential factor of 𝐾𝐷 = 0.0001. The integration time 𝑇𝐼 results from the

integral factor and the cycle time of the flow controller 𝑇𝑐 = 1 𝑚𝑠 and is thus

calculated as 𝑇𝐼 = 𝐾𝐼 ∗ 𝑇𝑐 = 70 ∗ 1 𝑚𝑠 = 70 𝑚𝑠.

Figure 6.6 shows the throughput measurement µ(t) in the clockwise (purple) and

counterclockwise (green) directions when full load control in the form of the complete

distribution PID controller plus the PID flow controller is active.

Figure 6.7: Use case 3: Throughput with full load control

As in use case 2, the load control takes effect at 𝑡𝐶 = 10 𝑚𝑠. With full load control,

the load change step response at 𝑡𝑖1 = 20 𝑚𝑠 is compensated by the load controller

at the settling point 𝑡𝑆1 ≈ 32 𝑚𝑠 within a period of approximately 15 to 20 ms settling

time. The settling point after the removal of the load change at 𝑡𝑖2 = 60 𝑚𝑠 is also

reached at 𝑡𝑆2 ≈ 75 𝑚𝑠. The slight difference in the two load-controlled throughputs

Page 231

in the range of 50 ms to 60 ms results from the limited control resolution in steps of

the number of data packets.

Summarising use cases 2 and 3, it can be concluded that the use of the full distribution

controller cascaded together with the flow controller leads to a similar fast step

response convergence as the basic distribution control of use case 2. The full

distribution control displays a slightly wavier throughput output, which results from

the two integration elements of the flow controller and distribution controller. They

produce small oscillations at short rolling mean measurements of 1 𝑚𝑠. A settling

time of 𝑡𝑆 < 20 𝑚𝑠 can be realised under the given preconditions with an acceptable

maximal overshot of µ𝑂 < 5%.

For the following use cases, the full load control setup consisting of the full

distribution PID controller and PID flow controller is applied and hence forward

named and referenced with the generic term “load controller” as a placeholder.

The next use cases contain additional applications on the AC sending the CD at

additional, slower application cycles.

Use Case 4: Several applications with different application cycles and different

throughput measurement rolling mean integration intervals:

This use case is provided simply to formally validate the statement that a common

rolling mean measurement over all application classes traffic requires an integration

time that is at least longer than the slowest application cycle time in the network

domain. For this use case, three further applications are activated on the automation

controller AC1. One application with an application cycle of 𝑇𝐴𝑝𝑝 = 2 𝑚𝑠, one with 4

ms, and one with an 8 ms application cycle interval. Each application starts sending in

the first network cycle and sends 10 packets per network cycle. All of this CD traffic is

measured using a common throughput measurement for all application cycle class

intervals. The throughput is measured with different rolling mean integration

intervals 𝑇𝑖𝑛𝑡 as shown in Figure 6.8.

 Page 232

Figure 6.8: Use case 4: Throughput measurement over all application class

cycles with different rolling mean integration intervals.

If the integration interval is kept at 1 ms as in use cases 1 to 3, the measurement result

will be a wavy throughput actual value for the load control, as simulated in the very

left plot at 𝑇𝑖𝑛𝑡 = 1 𝑚𝑠. With increasing integration interval 𝑇𝑖𝑛𝑡 the ripple decreases.

As expected, the ripple is only lost if 𝑇𝑖𝑛𝑡 >= 𝑇𝐴𝑝𝑝 as simulated with the very right

plot with 𝑇𝑖𝑛𝑡 = 𝑇𝐴𝑝𝑝𝑆𝑙𝑜𝑤𝑒𝑠𝑡 = 8 𝑚𝑠. The simulation thus confirms the obvious

expectation that the rolling mean measurement integration interval must be similar

or larger as the slowest applied application cycle interval in the automation network

to avoid control oscillations. This is true if throughput measurement is performed over

all application cycle classes for common load control.

Use Case 5: Fast application cycle traffic load changes in a common load

measurement environment over all application cycle classes.

This simulation use case investigates the consequences for fast application cycle load

changes if slower application cycle classes are introduced into the network. As with

use case 4, CD traffic with an application cycle interval of 𝑇𝐴𝑝𝑝 = 1 𝑚𝑠, 2 ms, 4 ms,

and 8 ms is applied at AC1. A common throughput measurement and a common load

Page 233

control over all four application cycle classes is applied. Because of the results of use

case 4, the rolling mean throughput measurement integration interval is set equal to

the slowest application cycle interval of 𝑇𝑖𝑛𝑡 = 𝑇𝐴𝑝𝑝𝑆𝑙𝑜𝑤𝑒𝑠𝑡 = 8 𝑚𝑠. First, the use case

is simulated as use case 5.1, without adapting the distribution controller and the flow

control parameters that resulted from the optimisation for 𝑇𝑖𝑛𝑡 = 𝑇𝐴𝑝𝑝𝑆𝑙𝑜𝑤𝑒𝑠𝑡 =

1 𝑚𝑠 from use case 3. The results are shown in Figure 6.9.

Figure 6.9: Use case 5.1: Fast application cycle CD load control deterioration

under the influence of applications with slow application cycles and without

load control adaptation to longer load measurement integration intervals.

As the simulation plot in Figure 6.9 immediately shows, the control result is a wavy

throughput distribution. This results from the fact that the distribution controller and

flow controller were not adapted to the changed control characteristics. These were

caused by the changed PT1 characteristics of the rolling mean measurement in the

control feedback. Figure 6.10 shows the simulation results of the optimised

distribution controller and flow controller fitting to the longer rolling mean

measurement integration interval.

 Page 234

Figure 6.10: Use case 5.2: Fast application cycle CD load control

deterioration under the influence of applications with slow application

cycles and with load control adaptation to longer load measurement

integration intervals.

The result of the controller parameter adaptation is a far lower ripple in the

throughput distribution. Regarding the settling time, the comparison with use case 3

shows the expected deterioration from approximately 12 ms to 20 ms because of the

longer rolling mean measurement integration time.

The conclusion from the simulations of use case 1 to 5 is that the 1 ms application

cycle load changes can be compensated under the stated preconditions within a

settling time of about 12 to 15 ms. The simulation results confirm the expectation that

if slower application cycles are added to the network domain the integration time of

a common throughput measurement must be increased until it is equal or bigger than

the slowest application time. This is necessary to avoid the ripple of the throughputs

to achieve satisfactory control results. However, this leads to the consequence that

the achievable settling time decreases. In the case of the applied simulation use case,

the achievable settling time for load changes deteriorates to approximately 20 ms.

Page 235

With the next simulation steps, it is verified that the application cycle dedicated

throughput measurement and application cycle dedicated throughput load control,

as the main features of the proposed optimised control method for MAN, improve

the overall throughput load distribution settling time.

6.7.3 Performance of Application Cycle Dedicated Load Control

To verify the control optimisation improvement of the proposed application cycle

dedicated load control, two further use cases are simulated. Multiple application

cycles and multiple interference traffic sources of different application cycles are

added to the network. First, a common load control is simulated in use case 6. This is

then compared with an application cycle dedicated load control in use cases 7.

Use Case 6: Several applications with different application cycles, combined with

several interferences with different application cycles, and all controlled by one

common load control:

Figure 6.11 shows the simulation setup from use case 4 with the four different

applications hosted by AC1 sending CD µAC1cw and µAC1ccw at four different application

cycles of 1 ms, 2 ms, 4 ms and 8 ms.

Link (LAN) lx transferring

data stream

T/L

Talker/Listener node

bridged and with ring

port numbers

AC

Automation controller

talker node

with port numbers

Legend:

AC1

T/L

l2

1 2

1 2

lx

l1

µAC1cw

1
1T/L

1 1

1

1111

2

2
2 2 2

2

222
T/L

1

µAC1ccw

2

l3 l4

l5

l6

l7l8l9

l10

n0

n1 n2 n3 n4

n5

n6n7n8n9

r-m

cw

r-m

rolling mean

throughput

measurement

r-m

ccw

T/L T/L

T/L

T/LT/LT/L

µi1

µi1

µi2 µi8 µi4

µi2

µi8

µAC1ccw

µAC1cw

µi8

Data traffic
µ

Figure 6.11: Use Case 6 setup

To evaluate the performance of a common load control, four different interference

traffic loads µ𝑖1, µ𝑖2, µ𝑖4, and µ𝑖8 are introduced into the network in the clockwise

direction. They are also sent in four different application cycles of 1 ms, 2 ms, 4 ms

and 8 ms. Interferences are added stepwise.

 Page 236

 At node n2, the interference µ𝑖1 with a 1 ms application cycle from use case 3,

introduced at time 𝑡𝑖1 = 50 𝑚𝑠, is still active. Another interference with an

application cycle of 4 ms is introduced at n2 at time 𝑡𝑖4 = 250 𝑚𝑠 bound for n9. At n1

an interference load with an application cycle of 2 ms at time 𝑡𝑖4 = 150 𝑚𝑠 and one

with an application cycle of 8 ms at time 𝑡𝑖8 = 350 𝑚𝑠, both bound for n6, are

introduced. To evaluate the control performance of the common load control, a

throughput measurement with an integration time equal to the slowest application

cycle time of 8 ms is applied. The necessary simulation time is extended to 400 ms.

Each interference load creates a load step of approximately 2 percent of the overall

bandwidth which is equal to approximately 10 percent of the available CD bandwidth.

Figure 6.12 shows the load distribution without load control simulated as sub use case

6.1.

Figure 6.12: Use case 6.1: Load distribution for use case 6 without load

control.

The longest application communication cycle is 𝑇𝐴𝑝𝑝 𝑚𝑎𝑥 = 8 𝑚𝑠. Thus, an 𝑇𝐼𝑟𝑚 =

8 𝑚𝑠 for the rolling mean measurement is the minimum integration interval to avoid

oscillating load measurements. For the simulation of use case 6.2, the load control is

Page 237

activated. Figure 6.13 shows the result of the load control in combination with 𝑇𝐼𝑟𝑚 =

8 𝑚𝑠 rolling mean integration interval.

Figure 6.13: Use case 6.2: Load distribution for use case 6 with flow control

and 8 ms rolling mean measurement integration interval.

The flow controller parameters for the optimum result are a proportional factor

of 𝑲𝑷 = 𝟎. 𝟒, an integral factor of 𝑲𝑰 = 𝟕𝟓, and a differential factor of 𝑲𝑫 =

𝟎. 𝟎𝟎𝟎𝟐𝟗. The plot shows a slight ripple owing to small congestions in the queues as

interference packets sometimes arrive at the output ports at the same time as other

traffic packets. With a minimum rolling mean measurement integration interval,

these small congestions become visible. With common load control for all application

cycle classes the rolling mean is measured over all application cycle classes. Therefore,

the packet controller has no possibility to differentiate between the application cycle

classes for an optimal selective packet control to compensate for the traffic

interferences of certain application cycle classes. A possible alternative is to control

the packet flow of faster application cycles first. If the load cannot be compensated

thereby, slower application cycle packet flow will be manipulated. As a sophisticated

packet control mechanism is not the focus of this work, the fastest application cycle

of 1 ms was selected to transmit sufficient data to compensate for all interference

 Page 238

traffic from all application cycle classes. As for the comparison of the two use cases,

it is not important whether to work with full or basic distribution control. As there is

no real advantage of the full PID distribution controller, the basic distribution control

with only proportional influence is applied. Generally, PID controller tuning is a bit of

a challenge, as an optimal control for a certain application interference compensation

can cause a deterioration for another application cycle class interference. This is

because a reference step for slower application cycle classes has a flatter ramp-up

owing to the longer send intervals. Therefore, finding the optimal PID controller

parameters for a selection of application cycle classes is always a compromise. This is

a further disadvantage of a common load controller for all application cycle classes.

The load control for use case 6.2 in Figure 6.13 starts at 𝒕𝑪 = 𝟏𝟓 𝒎𝒔. The

simulation shows that, with an integration interval of 𝑻𝑰𝒓𝒎 = 𝟖 𝒎𝒔, all four load

interference steps are compensated after a maximum settling time of

approximately 25 ms at 𝒕𝒔𝟏, 𝒕𝒔𝟐, 𝒕𝒔𝟒, 𝒂𝒏𝒅 𝒕𝒔𝟖.

For the next use case, 6.3, it is anticipated that a new application with a slow

application communication cycle time of 𝑇𝐴𝑝𝑝 𝑚𝑎𝑥 = 32 𝑚𝑠 is attached to the

network. Thus, the rolling mean measurement integration interval must also be

increased to 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠. Figure 6.14 shows the load control results if the

load controller parameters are not adapted to the new situation.

The simulation shows that the load changes can no longer be compensated for by the

load control between the single-load interference steps. To achieve this, the load

controller parameter for the flow controller for optimum control must be adapted to

a proportional factor of 𝐾𝑃 = 0.6, an integral factor 𝐾𝐼 = 48, and a differential factor

𝐾𝐷 = 0. The result is shown in use case 6.4 in Figure 6.15.

Page 239

Figure 6.14: Use case 6.3: Load control results after connection of a slow

application with application cycle 𝑻𝑨𝒑𝒑 = 𝟑𝟐 𝒎𝒔 and adaptation of 𝑻𝑰𝒓𝒎 =

𝟑𝟐 𝒎𝒔 but without adapting the load controller parameters.

Figure 6.15: Use case 6.4: Load control results after connection of a slow

application with application cycle 𝑻𝑨𝒑𝒑 = 𝟑𝟐 𝒎𝒔 and adaptation of 𝑻𝑰𝒓𝒎 =

𝟑𝟐 𝒎𝒔 and with optimised load controller parameters.

 Page 240

The simulation shows that the settling points 𝑡𝑠1, 𝑡𝑠2, 𝑡𝑠4, 𝑎𝑛𝑑 𝑡𝑠8 after the load

interference steps at 𝑡𝑖1, 𝑡𝑖2, 𝑡𝑖4, 𝑎𝑛𝑑 𝑡𝑖8 are reached by far later, owing to the

necessary longer rolling mean integration interval. The settling times after the

interference steps increased from approximately 25 ms for 𝑇𝐼𝑟𝑚 = 8 𝑚𝑠 to

approximately 50 ms for 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠. The positive effect of the longer rolling mean

measurement integration interval is a decrease in the waviness of the load when it is

in a stable state after the settling time. Figure 6.16 compares the simulation outputs

of use case 6.1 to 6.4.

Figure 6.16: Use case 6 result: Comparison of the simulation outputs for

clockwise direction.

The comparison shows that load control achieves a reduction in the maximum load

from approximately 17 percent in use case 6.1 to approximately 13 percent in use

cases 6.2 to 6.4. In use case 6.2, with the load control optimised for rolling mean

measurement integration interval 𝑇𝐼𝑟𝑚 = 8 𝑚𝑠, the control reacts faster to

interference load steps than with 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠 in use case 6.3 and 6.4. However, the

lower rolling mean measurement integration interval is also responsible for the higher

load ripple. The plot for use case 6.3 (blue) with the unoptimised load controller shows

higher load oscillations than the load in combination with the optimised load

controller from use case 6.4 (brown).

Page 241

In use case 6.5, the dependency of the settling time on the actual application cycle

and the slowest application cycle is investigated. A number of slowest application

cycle values, ranging from 1 to 32 ms are simulated.

Figure 6.17: Use case 6.5: Load change settling time for common load control

in dependency of application cycle and of slowest application cycle.

The plot indicates that the throughput settling time of certain application cycles

depends only on the slowest application cycle time in the network domain. The

settling times are constant over the application cycles for the discrete slowest

application cycle times.

In the next step in use case 7, the control is switched to the application

communication cycle dedicated load distribution control, which is the core

improvement for the optimsed control method proposed in this thesis. This is

achieved by adding load controllers to each application communication cycle.

Use Case 7: Several applications with different application cycles and separate load

distribution controls:

For the simulation of use case 7, the same network setup as that of use case 6, as

depicted in Figure 6.11, is used. However, the difference is that the load control within

 Page 242

AC1 implements independent load controllers for each application communication

cycle of 1 ms, 2 ms, 4 ms and 8 ms.

Figure 6.18: Use case 7: Load control results with application cycle dedicated

load controllers.

The results for load control with application-cycle-dedicated load distribution

controllers confirm the expectation that load changes of faster application cycles can

be compensated for faster. Table 6.6 summarises the results. Figure 6.18 plots the

sum of the load caused by all four application cycle classes of 1 ms, 2 ms, 4 ms, and

8 ms. Differently than in use case 6.2, displayed in Figure 6.13, which shows a

constant maximum settling time of approximately 25 ms to 30 ms at 𝒕𝒔𝟏,

𝒕𝒔𝟐, 𝒕𝒔𝟒, 𝒂𝒏𝒅 𝒕𝒔𝟖, the faster application cycles settling times have now improved

to 𝒕𝑺𝟏 ≈ 𝟏𝟐 𝒎𝒔, and 𝒕𝑺𝟐 ≈ 𝟏𝟓 𝒎𝒔.

Page 243

Table 6.6: Settling times of common control and application-cycle-dedicated

control for different application cycle times

Application

Cycle

(ms)

Common control

settling time tS

(ms)

Application-cycle-

dedicated control

settling time tS

(ms)

1 25 to 30 12

2 25 to 30 15

4 25 to 30 25

8 25 to 30 25 to 30

The improvement is as expected lower with the 4 ms application cycle time

with 𝒕𝑺𝟒 ≈ 𝟐𝟓 𝒎𝒔. The result for the 8 ms application cycle is identical to that

in case 6.2, with 𝒕𝑺𝟖 ≈ 𝟑𝟎 𝒎𝒔 as the rolling mean integration intervals are

identical. Figure 6.19 compares the throughput settling times over the

application cycle time and over the slowest application cycle time in a three-

dimensional diagram with the diagram from Figure 6.17 for the common load

distribution control.

 Page 244

Figure 6.19: Load change settling time over application cycle and over

slowest application cycle for application-cycle-dedicated load control.

Figure 6.19 shows that with the application-cycle-dedicated load control, the

settling time (green curve) no longer depends on the slowest application but is

constant over it. It now depends only on its own application cycle time. Thus,

adding network participants with applications with slow application cycle times

no longer influences the faster application load distribution convergence time.

6.7.4 Section Summary

The simulations clearly show the expected load control performance enhancement

results. The classical and obvious load distribution control approach with common

load control for all CD reveals the disadvantage that the control settling time of load

changes depends on the slowest application cycle time in the network domain. This is

due to the circumstance that the slowest application cycle determines the rolling

mean measurement integration interval and thereby the inertia of the load control

circuit. The simulation further shows that the new approach of using several

application cycle dedicated load controllers, for the existing application cycle times

prevalent in the network domain, improves the load control settling times for

Page 245

applications with faster application cycles. Moreover, the load control of existing

application cycle times becomes independent from the possibly newly added slower

applications. In this case, the existing load distribution controllers must no longer be

reconfigured, which is a crucial maintenance advantage when operating a MAN.

6.8 Network Error Mitigation Strategy

A further important question for network design is how to handle network errors in

the form of link loss or a faulty node, as outlined in Section 4.9. In the automation

network ring, this would cause an open ring and, consequently, only one available

path from any talker to any listener instead of the two possible paths. For seamless

traffic, this is, of course, no problem as data are sent doubly over both paths from the

start. BE traffic is either also secured by the seamless protocol (HSR, PRP, or FRER) or

covered by a path switch-over redundancy protocol such as MRP or RSTP/MSTP. This

is also the case for non-seamless, non-stream CD, which is typically controlled by FDB-

learning forwarding mechanisms instead of path control. Section 4.4 has outlined

these mechanisms for different data-handling possibilities in MANs.

However, non-seamless streams that are under load control require a further

mitigation strategy. From an optimum network use point of view, it would be ideal if

all available paths and links were used near their maximum bandwidth capabilities. If

this is the case, the loss of one link in the ring would have the following consequences:

1. Non-streams not secured by seamless transport from a lost path will additionally

load the remaining path after the error occurrence and path switch-over by

redundancy protocols (MRP or RSTP/MSTP in this case).

2. Streams not secured by seamless transport will also be shifted to the remaining

path.

This would be problematic if the remaining path was already loaded near the

maximum load before the switch-over. Possible solutions to this problem are as

follows:

1. Maintain a reservation reserve for the load which could be subject to switch-over.

However, calculating this load in advance can be quite a challenging task, as it

 Page 246

depends on the amount and distribution of traffic in the network domain. This

requires constant bookkeeping and calculations during runtime.

2. Reducing the available bandwidth resources for data traffic of less importance in

favour of more important traffic in the error case. With the EST, CQF and ATS, this

can be achieved by extending the important gating windows while shortening less

important traffic gating windows such as non-CD and BE. With SPQ, this is already

an inherent system characteristic as non-CD and BE get lower priorities, and their

traffic transport will be reduced in favour of additional higher priority traffic.

If resource reservation is applied, either distributed via MSRP or RAP, or centrally via

a CNC, basically two reservation strategies can be applied, as outlined in more detail

in Section 4.8.

1. Booking both paths with the complete traffic that would occur after the switch-

over. This is especially recommended for slower resource reservation mechanisms

such as MSRP.

2. Reserve the switch-over load bandwidth immediately after error occurrence. This

is only recommended with faster resource reservation mechanisms such as

LRP/RAP. The advantage of this method is that it is a simpler reservation process,

as data does not need to be classified into the load actually transported on a path

and the future load to be booked, as described in the previous bullet.

Which solutions are preferred depends on various factors such as whether a central

or distributed network configuration has been selected, on the resource reservation

protocol selection, and on the traffic classes in use. This must be decided by the

system designer of the complete MAN.

The aspect of path control, although not the focus within this thesis, needs further

attention to be paid by the network designer in case of the loss of link or device. The

load-distribution control algorithm does not know which direction in the ring towards

possible listeners has been lost. Therefore, it can be beneficial to switch from

dedicated traffic-engineered paths within the TE-MSTI to FDB learning for the

dedicated VLANs used by this traffic. Thus, the path to the listeners is automatically

established by the MAC address learning process, as defined by IEEE 802.1Q (2022).

Page 247

6.9 Chapter Summary

The most commonly used control methods for load control in communication

networks for campus, mobile, and service provider networks were discussed in terms

of their suitability for automation communication networks. In particular, the

properties of the distribution core control method, flow control method, and possible

feedback methods were considered. The classical PID controller was selected as a

suitable representative core control method to satisfy the requirements of typical

load control preconditions within TSN MANs. It is used for both the core distribution

controller and flow controller to form the basis on which to build the optimisations.

The classic approach of a combined load measurement for CD for all application cycles

has an important disadvantage in that the control inertia is determined by the slowest

application cycle. The application-cycle-dedicated distribution control has been

introduced as a major feature for an optimised control method. For this purpose, the

throughput measurement at the paths output ports is also dedicated to the

application cycle classes instead of a common measurement. For each node in the

ring, an AC containing the load distribution controllers sets up a database with path

delays and tailored controller parameters. This is required for an optimum control

circuit configuration, wherever in the ring a load maximum is to be diminished.

Furthermore, it is proposed to exclude slower application cycles from load control

owing to their low load distribution contribution compared with the effort for a

dedicated control effort. The smaller talker data traffic of smaller automation devices

can also be excluded from the active distribution control to avoid the effort for

controller implementation on such cost-sensitive devices. Alternatively, the traffic

sending ring direction can be managed by the assigned AC`s LDCs.

Performance validations confirmed the expected improvements in the load

distribution convergence time. Another important advantage is that new and slow

applications added at runtime have no longer an influence on the established load

distribution setup.

 Page 248

Chapter 7 Extension of the LDC Optimisation to Support

Multiple Automation Controllers

7.1 Introduction

In Chapter 6 , an optimised load distribution control method for a single AC, such as

a PLC or MC, in an automation network ring topology is introduced. The single AC per

network ring use case is typical for a field-level ring as it appears in setups, such as

single machines or smaller automation cells, as depicted in the lower part of Figure

1.1. Field-level rings are often connected to each other by redundant connections via

a controller-level ring to communicate with each other. This use case is also referred

to as the Machine-to-Machine (M2M) communication use case. An example is shown

in Figure 7.1.

Figure 7.1: Machine to machine (M2M) communication

In this example, a supervisory AC1 communicates with the machines or automation

cell`s AC2, AC3, and AC4. The machines/automation cells also exchange data. M2M or

AC to AC is typically a 1:1 communication relation rather than a 1:n relation with many

listeners. This means that there is usually only one listener in the ring subscribing to

the streams of a certain talker. However, this has no effect on the load distribution.

This is similar to considering streams for multiple listeners, where only the last listener

Page 249

on a path is relevant for the extension of the stream into the network. For all the links

in between, it is of no relevance whether the load is also consumed by listeners

located nearer to the controller or if there is no more than one listener. Of course,

there can also exist unidirectional CD, for example, from sensors to ACs or from ACs

to actuators. The controller-level ring can also contain further ACs with higher-level

automation tasks. These network structures result in the task of load distribution

control involving multiple ACs at the same automation network ring.

The aim of this chapter is to extend the optimised load distribution control method

from rings with a single AC from Chapter 6 to rings with multiple ACs.

7.2 Controller Location Considerations: Centrally or Distributed?

In Section 4.2, the basics and possibilities of a Central Load Distribution Control (CLDC)

in comparison to a distributed approach (DLDC) were discussed. From an abstract

point of view, a central intelligence controlling the network traffic of multiple ACs in

an optimised manner would be an obvious solution promising best optimisation

results. This central intelligence or Central Network Controller (CNC) can then contain

algorithms to constantly calculate favourable traffic distributions at runtime. For

example, Yan Song et al. (2021) use a combination of a modified Ant Colony

Optimsation (ACO) algorithm and a K-nearest neighbor clustering algorithm to

optimise a central routing and scheduling algorithm for industrial applications. Yang

et al. (2021) also used an improved ACO algorithm for centrally calculating an overall

schedule. Gavrilut et al. (2018) use a K-Shortest Path heuristic algorithm for routing

and an Adaptive Search Procedure algorithm for scheduling.

The goal of these algorithms is not only an acceptable load distribution but also a

minimum latency and no congestions. Another possibility for LDC is that the CNC

contains an AI instance with a knowledge base on how to act under certain traffic

conditions. A controller based on AI, or strictly spoken rather Machine Learning (ML)

as the relevant discipline within AI, can contain a problem generator to generate

stochastically distributed input vectors in the learning phase to provide the possibility

for the controller to learn from its actions. However, the probability to be successful

in preparing the ML controller with a complete set of all possible traffic constellations

 Page 250

of a real, possibly large plant with this method becomes lower, the bigger the

networks. Therefore, the ML controller algorithm still learns some of the possible

traffic constellations in the operating mode. However, such a learning phase during

operation can also include erroneous or non-optimal behaviour on its way to finally

achieve the best results. This is an undesired process within automation plants as

there is no possibility of a learning phase in a real plant under real production

conditions. To achieve optimum results from the beginning, the learning would have

to be performed completely before operation via a model or a set of learning data

providing basic start knowledge to avoid critical automation plant states, possibly

causing damages to products, the plant, or even to humans. The better the

environment perception of the ML agent, that is, the more precise the input data, the

better the control results. Such input data would include for example source and

destination addresses, application cycles, traffic classes, and frame sizes. Imagining a

bigger network of hundreds of participants, which is not uncommon for

manufacturing setups, this results in huge knowledge or action rules database. It

would have to be built without having the real plant in operation. This could mean a

very high input effort in advance to achieve a good approximation of the plant.

Moreover, plant properties change with each additional or removed network

participant or application on the host. These changes must be learned again before

the system reacts appropriately. This is again a critical issue with automation

networks, where the loss of control data must be avoided in any circumstance.

Another disadvantage of a central solution is that it requires a central source of

knowledge and action. A second hot-standby CNC is needed to achieve a redundant

fail-save setup, which is an additional unwanted cost factor.

Distributed load distribution controllers avoid this disadvantage of a single point of

failure. Each of the distributed load distribution controller can be responsible for a

certain amount of load to be distributed in an optimised manner to achieve the

common goal of an optimised load distribution. The failure of a single controller would

only have an effect on a part of the load and not a complete loss of the overall

optimisation function. However, one must realise that the result with distributed

controllers cannot achieve the same distribution quality results of an "omniscient"

Page 251

central solution. Despite this, because of the greater weight of the advantages, a

distributed load distribution control approach is also the goal for the multiple AC

problem in this thesis. A special aspect of a distributed solution is whether there is

mutual influence of the controllers caused by common load paths. This can result in

oscillating loads within the network. Whether this is the case is discussed in the

following subsections.

7.3 Dependencies between Controller Instances

In the case of several automation controllers using the same automation network for

communication with their devices, the use of a dynamic load distribution on more

than one automation controller can create interdependencies between the individual

load controllers. The reason is obvious. A change in the network traffic load on one

path is recognized by different ACs load controllers that also use this path to

communicate with their devices or other controllers. These will lead to the same

conclusion to de-load this path. Therefore, the amount of shifted load is influenced

by the number of controllers and could, without appropriate counter-measurements,

disproportionately increase the load on the evasion path. This can lead to oscillations

of the load or overload of paths. Thus, one challenge is to find a solution that

compensates for these mutual dependencies.

Furthermore, the resolution of the dependencies is made more difficult because not

all streams always have a common path. Streams from different talkers to one or

more listeners somewhere in the ring may be forwarded on completely different

paths in the ring, or they may only share a part of a common path. To provide a simple

example of this problem, Figure 7.2 shows four ACs from which two pairs, AC1/AC2

and AC3/AC4, communicate with each other over paths P1 and P2.

 Page 252

Figure 7.2: Consequences of path selection

In example a.), P2 between AC3/AC4 does not influence the path of AC1/AC2, whereas

in example b.), when AC3/AC4 chooses the other direction in the ring, this is the case.

Of course, with more complex controller network setups, and number of applications,

these dependencies grow and can lead to communication dependencies that can be

resolved only with unreasonably high effort.

These dependencies need either to be managed by an inter-working algorithm, or

they need to be avoided from the start by a proper network-use design.

7.4 Discussion and Selection of Solutions

The expected mutual dependencies between multiple load distribution controllers at

a ring can be counterbalanced in various ways. These reach from accepting and

incorporating dependency into the load distribution control to complete decoupling

of the controllers. With the latter solution, the dependencies do not have to be

considered at all, at the expense of other disadvantages, as can be seen further down.

The possibilities are closely connected to the applied Layer 2 TSN traffic shapers and

Page 253

schedulers, as all of these have a certain influence. Thus, the first step is to clarify the

influence of the shapers and schedulers on mutual controller dependency.

7.4.1 Influence of Traffic Shapers and Schedulers on Mutual Controller

Dependency

The CBS is not suitable for automation applications because it distributes a burst of

frames evenly over time. This would spoil the CD bursts with which the process data

are transferred at the beginning of an application cycle, as outlined in Subsection

2.2.3. Therefore, this is not considered here.

One Layer 2 possibility to build an LDC for CD is to use the SPQ classical queuing

method in combination with resource reservation. The latter is necessary to achieve

deterministic behavior by excluding overload situations. A further requirement to

reach deterministic behaviour is to assign this traffic class the highest QoS priority.

Otherwise, frames would constantly be kept waiting in the output queue in favour of

other higher-priority traffic spoiling determinism. As all ACs must be granted the

possibility of using deterministic CD, they are all to be using the same high-priority

traffic class. Thus, all the ACs CD traffic, which is subject to load control, is controlled

via the same output queue in the bridges and bridged end stations. This creates

varying latencies when the frames are transported through the network, which is

unfavourable for the accurate design of applications.

Therefore, the SPQ is generally, regardless of its properties as to LDC, a rather

unfavourable selection in terms of multiple ACs, if their applications depend on

deterministic behaviour without much jitter. Although a bounded latency can be

guaranteed owing to stream reservation, a certain determinism, that is, a guaranteed

latency with a certain tolerance for jitter, is difficult to achieve. Regarding LDC, with

the SPQ, all frame load changes measured by an ACs load control are also visible for

other ACs and their load controllers thus creating a mutual dependency. Thus, the

distribution control will always influence the CD of others ACs by choosing a specific

path, unless other measures are taken. One such measure would be to provide a clear

path when a frame is transmitted onto the network. This can be achieved by a central

frame transmission algorithm that is aware of the complete traffic in the network.

 Page 254

Such a CLDC is in the position to calculate the exact transmission point in time for all

or for certain important traffic of high priority in the complete network. If this is

applied on at least the highest-priority CD, the jitter for the single frames can be kept

at a minimum. However, a central solution is not the focus of this thesis, because of

the disadvantages listed in 7.2. The SPQ thus creates mutual dependencies in

combination with DLDCs.

EST allow the assignment of certain traffic to traffic classes. These can be assigned to

dedicated gating windows in the network cycle as described in Subsections 2.2.3,

5.3.4, and Section 5.6. This fact can be used to separate traffic in a time-multiplexed

manner. If each AC, with its internal load distribution controllers, is assigned to a

different gating window, the LDC would also be decoupled. This approach is further

discussed in Subsection 7.4.3.

The CQF traffic shaper typically works with smaller network cycle times, which are

used to shift data frames from hop to hop in each network cycle, as explained and

analysed in Subsections 2.2.3, 5.3.5, and 5.6. It also makes use of gating windows,

similar to the EST, to reserve sending slots for traffic classes. Thus, in principle, it can

also achieve the separation of traffic from different ACs in a time-multiplexed manner.

The typical method for designing the CQF function is a one-buffer system, as described

in IEEE 802.1Qch (2019). However, the traffic of several stream classes for several ACs

cannot be separated into a single queue buffer. If each AC should be assigned a

different stream class to achieve decoupling, different output queues must be

emptied at different gating windows. This is why, at least with the classical CQF

approach, working with a one-buffer system, there is also a mutual dependency

between distribution load controllers residing on different ACs at the ring. One

possibility to circumvent this would be to assign each controller different stream

reservation classes combined with separate multiple CQF queuing systems. Multiple

CQFs were also proposed by Finn (2019) for the separate handling of streams or

stream classes. A two buffer CQF system as described by IEEE 802.1Q (2022), Annex

T, can differentiate between two different stream classes, typically differentiated by

priority, for two ACs without mutual influence. However, this requires an extension

of the network cycle. The extension of the network cycle with the addition of further

Page 255

ACs is also necessary with EST, but the EST method only needs one network cycle for

all data traffic to traverse the complete network. In contrast, the CQF requires one

network cycle per hop, which is a crucial disadvantage in terms of the implied higher

dead time and the associated disadvantageous control behavior, as outlined in

Chapter 5 . An alternative for a one queue buffer system to support further ACs

including mutual independency would be the Per Stream Filtering and Policing (PSFP)

feature belonging to the CQF shaper according to IEEE 802.1Qch (2019) . Using this,

streams could be classified into Stream ID ranges, and not only Stream Classes

differentiated via stream priority. Another aspect with multiple stream classes CQF is

that it is a rather hardware resource-consuming requirement, as dedicated input

filters in combination with buffers are required on each bridge. This is especially true

if, for each stream class, a system of parallel input/output buffers for a better

parallelism of the reception and sending phase shall be achieved, as proposed by Finn

(2019). This could be problematic, as it is particularly for low-end bridges, not a matter

of course to have these resources available. A clear advantage of the CQF is that it

provides a rather easy to calculate delay, which depends mainly on hop count and

network cycle time, as shown in Subsection 2.2.3 and Section 5.6. Thus, CQF always

has the conflict of the need for small network cycles to obtain short end-to-end

latency and the need for long network cycles to encompass all applications regardless

of the length of their application cycle. However, in larger networks, this leads to long

end-to-end delays which imply a need for a more sophisticated dead-time-

compensating control design. Summarising these CQF properties it must be stated

that the EST is better suited for a solution with mutual controller independency than

the CQF.

In principle, the ATS is a combination of EST and asynchronously filled upstream

buffers. Thus, it can also reach the separation of traffic in the same way as the EST,

and also reach a mutual independency of load distribution controllers residing on

different ACs. As outlined in Subsection 2.2.3, the difference is that the AST bridges

are not synchronised. This means that the end-to-end latency from a controller to any

maximum at a certain link is larger than with the EST, with the known disadvantages

of the worse controllability of ATS LDC, as analysed in Section 4.6. Therefore, EST is

 Page 256

preferred over ATS, not only for the design of the optimal load distribution control

solution for single AC, but also for a solution of mutual controller independency.

Preemption has no influence on the mutual dependency of ACs load distribution

control because it only influences the latency of the highest priority stream class. This

is then preemptive, as it can interrupt lower-priority frame transmissions in favour of

its own stream class frame transmission on a port.

As a result of these considerations, Table 7.1 comprises the properties of the shapers

and schedulers regarding their suitability to achieve mutual independency of load

distribution controllers. It also contains strategies on how a distributed load

distribution control solution based on the different shapers and schedulers can look

like.

Table 7.1: Load controller dependency properties of traffic shapers and traffic
schedulers and cooperation solution strategies.

Shaper/

Scheduler

Controller
Independency

possible?

Possible solution strategies for controller cooperation

SPQ No To cope with the mutual controller dependencies, an obvious
strategy would be as follows: guarantee that only one
controller at a time is influencing the traffic distribution.
Furthermore, the single controllers should have only
influence on own traffic sources and traffic from certain fixed
assigned communication partners. However, this solution is
expected to take more time than solutions with mutual
independencies as it needs to work step by step instead of
the parallel processing of the independent controls.

EST Yes EST supporting end stations, bridges, and bridged end
stations are timely synchronised by PTP or gPTP. This fact
can be used to reserve time slots within a network cycle
for each AC and its load distribution controllers. Thus, the
CD traffic of the different ACs can never influence each
other if the ACs follow this assignment. On top of this, EST
gating windows on output ports of the bridges can be
used to secure that traffic reaching bridges outside the
assigned time slots will be blocked by EST.

Page 257

Shaper/

Scheduler

Controller
Independency

possible?

Possible solution strategies for controller cooperation

CQF Yes In the same way as with the EST, with CQF, end stations,
bridges, and bridged end stations are time synchronised
and the same solutions as with the EST can be applied.
The difference is that the gating windows are applied
between each node (hop) instead of one window to cross
the complete path. Thus, the hop-by-hop cyclic
forwarding involves a higher delay than EST, making the
CQF rather a second-choice candidate in combination
with multiple-AC LDC.

ATS Yes Considering the ATS in combination with multiple load
controller cooperation, the crucial design feature is again
the gating facilities at the output port. As with the EST
and CQF, it can be used to separate the single ACs traffic
classes to achieve a mutual independency. The single
nodes are not timely synchronised as with EST and CQF.
Therefore, an even higher and variable path delay must
be accepted. This makes it much more difficult to apply
flow control for higher bandwidth-consuming streams as
discussed in Chapter 5 . These facts make the ATS a
rather unattractive candidate for networks which should
implement multiple-AC LDC.

The above discussions and the given solutions in the table show that the SPQ can be

used for a solution that tolerates and solves load distribution controller

interdependencies. It has the advantage of the best bandwidth use among all the four.

From the three shapers and schedulers EST, CQF, and ATS, which allow mutual load

distribution controller independency by design, EST is clearly preferred for its

minimum path delay capabilities. These allow for the most efficient flow control

setups as shown in Chapter 5 . The following subsections propose solutions for both

the variants.

7.4.2 A Solution Including Mutual Controller Dependencies

If a traffic scheduler or shaper that implies load controller dependence, as is the case

with the SPQ, needs to be selected as the hardware basis of the network domain for

any reason, then a suitable method or algorithm to handle this dependence needs to

be provided. This is hence forward named “Strict Priority Queuing based Distributed

Load Distribution Control (SPQ-DLDC)” as a working title here for easier addressing.

 Page 258

As mentioned in the overview in Table 7.1, possible cooperation between the ACs

can be achieved by timely decoupling of the ACs LDC process. Such a dependency

compensation process, which must be in place at each controller in combination with

the distributed approach, can be constructed as follows:

1. Every bridge or bridged end station in the ring, for example, an AC, distributes

its traffic situation at its ring ports for each traffic class, application cycle class,

AC assignment, and direction into the network. This can be achieved via

multicast load updates, which are subsequently consumed by the nodes in the

network. These build the throughputs classified by the application cycle

according to Equation (6-1).

2. Every bridge or bridged end station, including all ACs, maintain a database that

contains the traffic situation of the complete network.

3. One station acting as a load control administrator manages a temporal

optimisation sovereignty token for the ring and leases this temporarily to the

ACs, for example, in a round-robin system.

4. An AC receiving optimisation sovereignty checks whether it can improve the

network load distribution either by maximum-reduction or optimum-

distribution optimisation, depending on the selected optimisation strategy, as

outlined in Section 4.6. The overall load at disposition for CD load control within

the network domain is given by:

𝑴𝐶𝐷,𝑖𝑗 =

[

𝜇𝐴𝐶1,1 . . . 𝜇𝐴𝐶1,𝛼𝑚𝑎𝑥

.

.
𝜇𝐴𝐶𝛾𝑚𝑎𝑥,1 . . . 𝜇𝐴𝐶𝛾𝑚𝑎𝑥,𝛼𝑚𝑎𝑥

]

 (7-1)

The rows are indexed by the controller assignment and the columns by the

application cycle classes. The latter are required to apply the optimised

application cycle class dedicated single AC control method from Chapter 6 on

every AC in the network domain. The maximum-reduction optimisation goal

from Equation (6-2) is the goal for each AC:

Page 259

minmax
𝑖,𝑗∈𝑽

𝜇𝑖𝑗,𝐴𝑝𝑝𝛼 ; Subject to: ∀ 𝑒 ∈ 𝑬(𝐺); 𝛼 ∈ 𝑨; 𝐴𝐶𝛾 ∈ 𝑨𝑪 (7-2)

The alternative optimum-distribution optimsation goal is changing in the same way

from the form in Equations (4-5) and (4-6) to

min∑ (𝜇𝑖𝑗,𝐴𝑝𝑝𝛼 − 𝜇𝑀,𝐴𝑝𝑝𝛼)2
𝑛

𝑖,𝑗=1
𝑖,𝑗∈𝑽

 (7-3)

Subject to:

∀ 𝑒 ∈ 𝑬(𝐺); 𝛼 ∈ 𝑨; 𝐴𝐶𝛾 ∈ 𝑨𝑪

𝜇𝑀,𝐴𝑝𝑝𝛼 =
∑ 𝜇𝑖𝑗,𝐴𝑝𝑝𝛼

 𝑛
𝑖,𝑗=1

2𝑛
 ; 𝑛 ∈ ℕ (7-4)

5. The optimisation process and core algorithm for an ACs LDC for one

traffic class are shown in Figure 7.3. The solution described above can

be classified into the category of dedicated algorithm controllers , as

described in Subsection 2.3.3. This process cooperates with the load

distribution control assembly setup consisting of the core PID

distribution controller, PID flow controller, and packet controller , as

described in Section 6.5. The maxima can be found by making a closed

graph walk from each AC in each direction of the ring, where the AC

represents the root of the graph. The optimisation algorithm enables the

packet controller of the LDC circuit and feeds it with the Stream ID. This

can then be used by the packet controller working as the flow controller

output, thus achieving a reduction in the load difference for each

application cycle class between the two paths originating from the AC

currently being active. For a pure bridge or bridged end station not being

an LDC container, the process shown in Figure 7.3 reduces to the first

two tasks after initialisation, consisting of rolling mean building and

distribution.

 Page 260

Figure 7.3: Dynamic load distribution control optimisation process and core

algorithm

6. If the AC has finished this optimisation interval for all its application cycle

classes, it releases sovereignty to the administrator station, which leases it to

the next station.

7. The next AC then repeats this process until all ACs contributions reach a state

without further improvements.

8. New exogenous traffic interference into the ring from higher-level or lower-

level coupled networks, or from ACs with new applications, bring new load

imbalances that lead to new optimisations.

This optimisation strategy for finding better distributions towards a possibly

optimum distribution can be classified as an “optimum-distribution” method,

as described in Section 4.6. The described process demands that each AC is

informed of which listeners in the network ring have subscribed to the CD

streams it publishes. Moreover, each AC needs to know the distance (hop

Page 261

count) to these listeners in each direction to assess whether the change of a

stream or the division of a stream affects the maximum at the link in question.

This also implies knowledge of the location of the maximum, and not only the

direction. Such information is required to calculate what each change in

direction would add to the other links load in the ring. With the described

approach, an AC holding control sovereignty does not continue the

optimisation until it has found an optimal solution, but rather applies the first

found improvement. This ensures a fast application of this improvement

instead of trying further possibilities with the risk of getting no better results,

thus only wasting time. The alternative would be a more time-consuming

calculation of all possibilities, leading to the advantage of finding the best

result. Which of the two possibilities is advantageous in various si tuations can

be the subject of further research, exceeding the focus of this thesis.

A clear advantage of selecting the SPQ as the hardware basis is that the

available bandwidth is optimally used. This is because no gating windows are

reserved for certain ACs, which might only be partially used. This would mean

that the bandwidth lies fallow and is wasted and not usable for other ACs.

However, this could be counterbalanced with a flexible gating window length

for the EST-based hardware. The length could be adjusted after the load

measurement as shown in the next subsection with EST-DLDC. With SPQ-DLDC,

ACs can use whatever amount of the overall bandwidth they need without being

mindful of gating window limitations. Of course, one could assign such

bandwidth usage limitations to single ACs without the presence of hardware

limitations such as gating windows. However, this would spoil the optimal

bandwidth utilisation advantage of the SPQ-DLDC. On the other hand, this

waiving of the individual resource reservation limitation also poses a risk.

Traffic control mechanisms or reservation mechanisms will then only check the

maximum available overall bandwidth corruption and not the individual ones

for the single load controllers. One AC cannot increase its admissible maximum

bandwidth to the overall available bandwidth at the cost of reducing the

available bandwidth for others without influencing the others. However, the

 Page 262

optimum bandwidth use advantage could outweigh this. In this case, the most

sensible bandwidth limitation border for resource reservation for each load

distribution controller for the SPQ hardware basis in analogy to Section 4.8 is

given as follows:

𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 = 𝐵𝑀𝑎𝑥 (7-5)

where 𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 is the maximum reservation for single-path operation,

and 𝐵𝑀𝑎𝑥 is the maximum overall bandwidth available, which is assumed to be

1 Gbit/s for the networks used here.

Moreover, the application cycle time also plays an important role in

consideration of bandwidth use. With EST, long application cycles of multiple

network cycles still make gating window reservations in every network cycle.

However, these time slots are used only at the frequency of the application

cycle. The result is worse bandwidth overall utilisation with solutions using

gating windows. This is not the case with SPQ which is a further advantage of

SPQ-DLDC.

Another advantage is that no time synchronisation protocol is required for

frame transmission within the assigned time slot. This also enables less-

expensive end stations to participate in the load-controlled network. This is

often a crucial requirement for creating a MAN solution.

Regarding the detailed design of one ACs load distribution control for SPQ-

DLDC, the same principle of separated controllers for each or for the most

important application classes, which are differentiated by their application

cycle, applies, as outlined previously. With SPQ-DLDC, the application cycle of

a certain CD has a further influence. As outlined in Section 5.2, the rolling mean

measurement time interval must be longer than the CDs application cycle to

avoid oscillation of the measured value. This also means that load distribution

controllers residing on other ACs will measure an applied change to its full

extent only after the rolling mean measurement time interval has passed.

Therefore, an AC must wait for at least:

Page 263

𝑇𝑃𝑎𝑠𝑠𝑇𝑜𝑘𝑒𝑛 ≥ 𝑇𝑀𝑒𝑎𝑛 (7-6)

before passing the control sovereignty token back to administration and thus

further to the next AC. 𝑇𝑃𝑎𝑠𝑠𝑇𝑜𝑘𝑒𝑛 is the token passing time interval to wait, and

𝑇𝑀𝑒𝑎𝑛 is the rolling mean measurement time interval from Section 5.2, of the

application cycle class of the CD for which a path change is currently ongoing.

This ensures decoupling and prevents other controllers from reacting to traffic

situations that are about to change. Otherwise, the load changes would

oscillate.

It is clear from these considerations, that the effort to compensate for the

mutual dependency of load distribution controllers is extensive. The alternative

is to exclude mutual dependencies from the start as discussed in the following

subsection.

7.4.3 A Solution Avoiding Mutual Controller Dependencies

Summarising the discussion of the properties of the shapers and schedulers

from Subsection 7.4.1, it can be stated that EST, CQF, and ATS are suited to

achieve decoupled multiple ACs load control in combination with DLDC. Let us

name these solutions EST-DLDC, CQF-DLDC, and ATS-DLDC respectively, in

analogy to the SPQ-DLDC of Subsection 7.4.2 for easier addressing. The

decoupling is achieved mainly by the reservation of time slots for the single

AC’s CD traffic within a network cycle. It must be stressed that this network

global time-slot reservation is applicable for both I-CD and NI-CD. This is the

case even though the latter is not sent synchronously to a network global

working clock. It is only sent cyclically with the cycles derived from a device-

local clock. However, NI-CD will be synchronised into the timing slots at the first

bridge, that is, the edge bridge. The bridges themselves must be synchronised.

The use of NI-CD allows for simpler and economical device design, saving cost

sensitive devices the often tricky and demanding time synchronisation protocol

support. The backside of the NI-CD is a higher latency as this waiting time at

 Page 264

the edge bridge for synchronisation to the time slots is added to the overall

path delay.

Theoretically, this reservation of the time slot for sending in combination with

a time-synchronised transmission of frames by ACs or bridges would be

sufficient to achieve decoupling. However, a further measurement to exclude

possible timing slot corruptions by ACs is to use a reserved time-controlled gate

opening, that is, the gating window, at the output port. The gating windows are

assigned to the different traffic queues of the traffic classes, one for each AC.

This can be achieved using firmware for all three EST, CQF, and ATS schedulers

in the TSN supporting bridge switch ASICs. As we have seen in the previous

subsection, the SPQ shaper is not suitable for achieving this decoupled stream

handling in combination with DLDC. This is because even scheduled

transmission of frames does not guarantee uninfluenced transportation

through the network. As outlined in the previous section, decoupling can be

achieved only by applying control time slots instead of send time slots. Another

crucial advantage of the EST-DLDC, CQF-DLDC, and ATS-DLDC is that separate

queues are used for the gating windows. In contrast, with SPQ-DLDC, the

streams of all ACs share the same queues in the bridges, implying that traffic

interference arriving at any point in time thus influences the available load and

the measured load for others. However, as already outlined in the previous

section, in contrast to EST-DLDC, CQF-DLDC, and ATS-DLDC, SPQ and SPQ-DLDC

manage without a time synchronisation protocol.

Thus, EST, CQF, and ATS traffic shapers are suited to achieve decoupling of the

load distribution controllers working at the same automation network ring. This

thesis focuses on the EST-DLDC solution because of its very low latency

advantage as described in Chapter 5 . However, any conclusions drawn for

EST-DLDC regarding load control decoupling apply equally to CQF-DLDC and

ATS-DLDC solutions.

As stated above, decoupling is achieved by reserving dedicated stream classes

and gating windows for each AC. Thereby, a time-multiplexed use of the

Page 265

network is possible with each AC using a different time slot. This demands a

time-synchronised sending of the I-CD or alternatively a cyclic sending of the

NI-CD within each AC, and thus an application of a time synchronisation

protocol such as IEEE 1588 (2019) or IEEE 802.1AS (2020) for the end stations

(only for I-CD), bridges, and bridged end stations. Figure 7.4 depicts the

solution.

Figure 7.4: EST-DLDC solution for Automation Controller decoupling

In the example in Figure 7.4, the I-CD and NI-CD gating window slots are

reserved for four ACs, AC1 to AC4, located in a ring, as shown in Figure 7.2.

Locating the NI-CD slot of an AC directly after the I-CD slot of the same AC has

the advantage that the gate for the I-CD of that controller can stay open during

the opening of the NI-CD gate. Thereby, possibly late frames of I-CD are not

blocked, although this should theoretically not occur if the network has been

designed properly and the resource reservations have not been exceeded. After

all CD gating windows of a network cycle follows a common Best Effort (BE)

traffic phase within that cycle for all non-CD traffic. The common BE phase

instead of single BE phases after the CD gating windows has the advantage that

large frames can also be transported without being constantly interrupted or

queued in favor of the next I-CD phase of the next AC. An SPQ can be applied

within the BE window. As with the mutual dependency solution SPQ-DLDC from

Subsection 7.4.2, each AC in the EST-DLDC has separated load distribution

controllers for each or for the most important application classes categorised

by their application cycle membership. The difference to SPQ-DLDC is the

crucial parameter of the maximum admissible bandwidth. The decoupling is

achieved by limiting the bandwidth maximum by the relation of the length of

the gating window to the network cycle length:

 Page 266

𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 = 𝐵𝑀𝑎𝑥 ⋅
𝑇𝐺𝑊

𝑇𝑁𝑒𝑡𝑤
 (7-7)

where 𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 is the maximum reservation for single-path operation,

𝐵𝑀𝑎𝑥 is the maximum overall bandwidth for the path, 𝑇𝐺𝑊 is the gating window

length of the stream class, and 𝑇𝑁𝑒𝑡𝑤 is the network cycle length. The lengths of the

gating windows do not have to be fixed. They can be estimated at the time of

engineering to meet the needs of individual ACs. Furthermore, a dynamic adaptation

of the length could be applied in such a way that, for example, only partially used

windows could be reduced or constantly full windows could be extended after such

situations have been measured over a longer period. Figure 7.5 shows an illustration

of an example of bandwidth use with the EST-DLDC.

Figure 7.5: Illustration of EST-DLDC bandwidth use example

In this example, only AC1 NI-CD and BE show proper utilisation of bandwidth because

the unused bandwidth is small compared to the bandwidth used. This means that the

gating window for AC1 NI-CD is slightly longer than that required to have some reserve

bandwidth. The AC1 I-CD window length is not ideal and could be reduced. This could

Page 267

also lead to a smaller network cycle length if it fits the end stations’ capabilities and

needs. With respect to the bandwidth measurement interval, also with EST-DLDC, the

bandwidth measurement interval must be a multiple of the longest application

cycle class time 𝑇𝐴𝑝𝑝𝛼 as outlined in Section 6.5.

If a certain transmission and gating window is reserved for only one ACs CD

traffic class, then one could justifiably ask whether there can be any traffic

interference at all in the ring within that traffic class. One could further argue

whether then a DLDC is necessary at all. However, the answer to this question

is still yes. One advantage, even without any interference, is that the DLDC

automatically cares for a smooth load distribution from the start, saving the

network administrator ’s effort into precise traffic engineering. In addition,

unidirectional traffic to actuators or from sensors creates imbalances in the

paths. This could happen within a stream class of an AC if this unidirectional

traffic is assigned to this stream class, or it could be assigned to a reserved

class. A common stream class is expected to be better suited. There are two

reasons for this. First, the number of stream classes should be kept low for

better bandwidth utilisation, as described by the incomplete use of gating

windows above. Second, there are limited gating window configuration

possibilities in the switch hardware. A further cause for load imbalances is that

also seamless traffic, that is, traffic sent doubly in both directions, issued by

ACs using the FRER, PRP, or HSR media redundancy protocols do not

automatically leave a balanced network load distribution, as one might assume

at first. This is evident in the example shown in Figure 7.6.

 Page 268

Figure 7.6: Automation setup with seamless traffic

Let AC1 be a head or supervisory AC communicating seamlessly with three field

level ACs, AC2 to AC4, each of which controls, for example, a machine or a

smaller automation cell. AC2, AC3, and AC4 also communicate with each other

(machine-to-machine, M2M). All communication is assumed to be bidirectional,

that is, the AC1 delivers, for example, control setpoints or other output

settings, and the communication partner answers with control actual values or

other input data. If we assume that the communication of AC1 with the other

ACs consumes a 5 percent load in both directions and M2M consumes a 2

percent bidirectional load, we obtain a special case of homogenous load

distribution over links L1 to L4 of 21 percent (see Annex 1 for detailed

calculations). However, if we only had an asymmetrical communication load of

AC1 to AC2, AC3, and AC4, assuming 5 percent from AC1 to others and 3 percent

in the other direction, the load distribution is already inhomogeneous and

justifies LDC. Figure 7.7 graphically shows the load distribution in the latter

case. For detailed calculations, refer to Appendix 1.

Page 269

 Figure 7.7: Example of load distribution of seamless communication with

unsymmetric load.

If we assume further unidirectional sensor/actuator CD streams without LDC,

the load distribution can become further inhomogeneous. Therefore, non-

seamless CD traffic in the ring makes sense to be used as a means to achieve a

more homogeneous load distribution. For example, let us assume further non-

seamless traffic between AC1 and AC2 in both directions. In the direction from

AC1 to AC2, both directions have the same maximum of 21 percent already, and

it would therefore be best to divide the additional load on both paths. In the

direction from AC2 to AC1, it would be best to send the traffic counterclockwise

over L1. This is the better selection, as it would help both to avoid creating a

higher value over L2 and using the shortest path. In addition, the shortest path

achieves a minimum delay on top of the favourable load distribution. Thus, the

LDC with its integrated packet controller provides the best path selection for

this non-seamless traffic. However, even if seamless traffic is distributed

homogeneously, additional uncoordinated non-seamless traffic spoils the

distribution without an LDC. Again, the load distribution control algorithm

ensures that all single-path traffic will be split automatically between the two

possible paths, thus avoiding the local maximum to be on either of the two

paths nearest the controller. From a practical point of view, non-seamless

traffic can be marked either as minimum-delay traffic or as load-distributable

traffic. A packet controller in a load distribution controller can assign the

 Page 270

shortest path to the traffic with minimum-delay requirement and use load-

distributable traffic for load distribution optimisation purposes.

Another traffic type to be considered with LDC is bidirectional traffic to smaller

end stations that do not provide their own LDC, but are under control of an AC.

For example, this could be a drive for motor control. The AC, with its load

distribution controller, can choose the path towards the drive. For the CD traffic

in the other direction, from drive to AC, such as actual values of the motor

current, speed, or position values, the drive could select the reception port of

the setpoints to be also the output port for actual values. Another solution can

be that the AC manages the drive output port usage. This can be achieved by

either a flag in the header of the CD or by a generally manageable object in an

end station, the drive in this case, at the control plane level. Thus, the AC can

influence the CD direction from the end station to the AC and thus include it in

the LDC.

A further advantage of the EST, CQF, or ATS decoupling of ACs is that the ACs

are generally decoupled, not only from an LDC perspective. This is particularly

important in the case of plant extensions. In this case, it is often an issue that

newly added applications create changed traffic situations in a network. This

can have an influence on applications that were previously operated without

problems, such that they experience communication problems owing to the

additional load. Previously deterministic traffic, could, for example, no longer

be deterministic after the extension. This is especially risky with SPQ as a

hardware basis. With the EST, CQF, or ATS decoupling possibilities, this problem

is avoided as newly added ACs are assigned their own stream classes and thus

their own gating windows without influencing the already established ones.

Therefore, the bandwidth reserve should be considered when designing the

network for an automation plant, that is, in this case, space for possibly new

reserve gating windows within the network cycle.

In combination with the network cycle length, one disadvantage or peculiarity

of gating-window-based solutions must be discussed at this point. As outlined

Page 271

in Section 4.7, the fastest application cycle occurrence in the network domain

assigns the maximum network cycle length. Shorter network cycles are also

possible. However, with the AC decoupling method, all ACs time slots for I-CD

and NI-CD as well as the BE phase must fit into this network cycle. This relation

is given by:

𝑇𝐴𝑝𝑝𝑀𝑖𝑛 ≥ 𝑇𝑁𝑒𝑡𝑤 ≥ 𝑇𝐺𝑊 𝐵𝐸 + ∑(𝑇𝐺𝑊 𝐼𝐶𝐷𝑖 +

γ

𝑖=1

 𝑇𝐺𝑊 𝑁𝐼𝐶𝐷𝑖) (7-8)

where 𝑇𝐴𝑝𝑝𝑀𝑖𝑛 is the smallest application communication cycle in the network

domain applying the EST-DLDC, 𝑇𝑁𝑒𝑡𝑤 is the network cycle, 𝑇𝐺𝑊 𝐵𝐸 is the gating

window length for BE traffic, 𝑇𝐺𝑊 𝐼𝐶𝐷𝑖 the gating window length for the I-CD of

one AC, 𝑇𝐺𝑊 𝑁𝐼𝐶𝐷𝑖 the gating window length for the NI-CD of one AC, and γ is the

number of ACs in the EST-DLDC network domain. These two contradicting

limiting preconditions have conflicting demands regarding the network cycle

length. Thus, the selection of the network cycle might not be possible with fast

application cycles, many ACs, or large CD traffic demands. A fact that defuses

this is that multiple ACs typically appear only in controller-level rings which

usually have slower application cycles than a field-level ring.

Nevertheless, should such a conflict be present, a possible solution is to

segment the controller level ring as shown in Figure 7.8. However, a necessary

precondition for this is that the communication structure of the network allows

a sensible separation into clusters of devices, forming separate rings for ACs

that communicate more intensively with each other. The inter-communication

between these clusters, that is, rings, should be as small as possible which then

allows to keep the gating windows of ACs of the other ring small .

 Page 272

Figure 7.8: Segmentation of the controller level ring

The top-most solution a.) in Figure 7.8 shows a single controller level ring, as it

would be set up if the EST-DLDC is possible within the network cycle. Solution

b.) shows the segmented controller level ring, resulting in two independent

controller level rings that are redundantly interconnected via four bridges. This

redundant interconnection can be achieved using suitable redundancy

protocols such as RSTP/MSTP or MRP Interconnection to avoid broadcast

domain loops on non-stream traffic levels, for example, for BE traffic. CD

streams are not forwarded via FDB learning but are under path control and are

thus not subject to RSTP/MSTP or MRP Interconnection path-changing

redundancy protocol influences. The seamless inter-ring stream traffic uses the

seamless FRER protocol for transport. Both rings can use the same

communication cycle but with longer gating windows for ACs belong to the ring

and smaller windows for those of the other ring. The advantage of solution b.)

is that changes or errors in one ring do not influence link loads or load

distribution of the other rings. However, its disadvantage is the higher cost for

four additional bridges. Solution c.) also shows controller-level ring

segmentation, but now with only partly independent rings at the lower cost of

Page 273

only two interconnection bridges. This can also be achieved by applying either

RSTP/MSTP or vendor-specific faster protocols especially tailored for

automation purposes and involving shorter reconfiguration timings than RSTP

in the case of network errors. However, the disadvantage of solution c.) is that

a missing link or device in one ring also induces load changes in the other ring.

For example, if the link between AC4 and AC6 is lost, the traffic that used this

link must be redirected to the path between AC4 and AC5. However, this path

also has a common link with the path between AC1 and AC3, thereby

influencing link load distributions of the other ring.

7.5 Performance Considerations for Multiple Automation

Controller Solutions

With the SPQ-DLDC solution from Subsection 7.4.2, implying mutual load distribution

controller dependency, control sovereignty is handed from AC to AC in a round-robin

fashion. Each AC calculates its LDC according to the previously described algorithm. It

has also been stated that the time to elapse before the token can be handed to the

next AC depends on the application cycle of the controlled CD class which is shifted

from one path to another because of the optimisation algorithm calculations. This is

because the rolling mean measurement interval must have been elapsed for the next

controller to measure the usual traffic distribution after the last change. The number

of optimisation attempts required for each AC and application cycle class in the

network to reach the final optimum load distribution in the network cannot be

predicted. This is different for each network and depends on many factors, such as

the overall amount of seamless and non-seamless streams, the location of the talkers

and listeners, and the network size, that is, the number of nodes. Therefore, CD with

long application cycles not only has a lower bandwidth consumption but also lower

influence on the load distribution if it is changed. Their changes also require longer

token passing time, and thus, a longer overall time to achieve the overall optimisation.

Therefore, it is recommended that an SPQ-DLDC controller residing on an AC starts by

first checking the CD streams with the fastest application cycle. This ensures a faster

convergence time for the overall optimsation result.

 Page 274

With the solutions EST-DLDC, CQF-DLDC, and ATS-DLDC, which exclude mutual load

distribution controller dependencies, the LDCs residing on the different ACs can work

in parallel. This is because each AC works with a dedicated stream class for its CD

streams which can then be kept in different transmission slots and gating window

slots, as outlined in Subsection 7.4.3. Thus, the distribution load controls also operate

in separate time slots and gating windows. Therefore, these three solutions are

expected to converge much faster than with SPQ-DLDC method.

Comparing simulations between the two described solutions are pointless for the

following reasons:

1. The parallel processing of EST-DLDC, CQF-DLDC, and ATS-DLDC, will in any way be

faster than the subsequent processing of the same control loops with SPQ-DLDC.

2. Quantitative convergence speed simulation results would be of low value. This is

because they depend on many network parameters such as number of ACs,

number of bridges, number of applications, application cycle intervals, and

stream sizes of applications.

7.6 Chapter Summary

The optimised load distribution control method for a single AC in the field level-ring

from Chapter 6 must be extended to be applied in a controller-level ring for

machine-to-machine (M2M) communication with multiple ACs. There are two control

strategies possible to control the load of multiple ACs. These are the Central Load

Distribution Control (CLDC) and Distributed Load Distribution Control (DLDC). The

CLDC is typically located on a CNC, which typically also performs other tasks such as

network orchestration, nodes configuration, transmission scheduling, and resource

reservations. The advantage of CLDC is that it can achieve an optimum load

distribution because it has access to all traffic information and influence on all nodes

in the entire network domain. One disadvantage is that constant reorganisation of the

network with each change or extension of the setup would constantly disturb the

established automation applications. Another disadvantage is the single point of

failure of the CNC. Its loss would lead to a loss of the complete load-distribution

function. With DLDC, the single load distribution controllers are located on various

Page 275

ACs and thus distributed in the network. Each AC is responsible only for its own CD

traffic. Thus, the failure of one AC has only a limited influence on the overall load

distribution optimisation function. For these reasons, DLDC is the preferred solution

and is the basis for the solutions proposed in this chapter.

Different traffic shapers and schedulers have different effects on the DLDC approach.

With the SPQ as the hardware basis, a mutual dependency exists between the

distributed load controllers. A DLDC solution based on SPQ is proposed and outlined,

which is based on a step-by-step optimisation process handing over a control

sovereignty from AC to AC in a round-robin system. Thus, the ACs SPQ-DLDC is timely

decoupled. An algorithm for this SPQ-DLDC was proposed.

A DLDC solution without mutual dependency among the load controllers is possible

with EST, CQF and ATS hardware solutions. With all three shapers/schedulers, the

time-synchronised controllers and bridges in the network enable a time-synchronised

transmission of the CD traffic. In combination with the gating windows of

shapers/schedulers, time-multiplexed forwarding within the network is possible. Each

AC uses different stream classes for its CD, which are assigned to different time slots;

thus, the ACs with their LDCs are decoupled and run in parallel. The EST-DLDC is

preferable to the CQF-DLDC and ATS-DLDC for its lower end-to-end latency, allowing

less complex flow control setups. The SPQ-DLDC makes better use of the available

bandwidth as it lacks fixed reserved time slots and allows flexible bandwidth usage by

all the ACs. In contrast, all ACs LDCs can operate in parallel when using EST-DLDC, CQF-

DLDC, or ATS-DLDC. Thus, these have a convergence speed advantage compared to

the SPQ-DLDC.

A comparative simulation of the two solutions is deliberately omitted because, by

comparing parallel processing in contrast to sequential processing, the parallel

solution with an identical network setup is expected to be faster. The speed

differences will be different for each network detail difference. Thus, a simulation

would have a low orientation value. Therefore, it is not considered worthwhile.

 Page 276

Chapter 8 Conclusion and Further Work

This chapter concludes the thesis with a summary of what has been achieved

regarding the research objectives, as stated in the introduction. It also provides a

presentation of the original contribution to the body of knowledge and an outlook for

future work.

8.1 Conclusion

This thesis investigates the possibilities of load distribution control (LDC) in the

complex TSN MAN landscape. It consists of four main chapters to answer the four

research objectives. Each provides an original research work to contribute to the goal

of finding solutions for an optimum distributed dynamic LDC method for a TSN MAN.

In the first main chapter, Chapter 4, TSN MANs are analysed in terms of their potential

to facilitate LDC systems. It shows that the prevalent TSN MAN topologies are ring and

redundantly coupled rings. The best path establishment methods for the physical

topology VLANs are SPBV for administration-involved assignment and ISIS-PCR for

automated assignment. A distributed LDC approach is better suited for real dynamic

load control. This should be located in an influential AC rather than in a bridge. Data

priority or traffic class assignment strongly depend on the use of traffic shapers and

schedulers. However, these are typically predetermined by the selection of the

automation technology. Only a non-seamlessly transported CD is available for LDC, as

the reduction in throughput is not an alternative for CD. This is also the reason that

only distribution control and flow control are considered relevant for this study and

no fairness flow reduction. Linear dynamic control is the most promising control

method for TSN MAN because of the typically constant and known ingress data rates,

fast communication cycles, and the small dead times of EST and SPQ which are

preferred here. It should be combined with traffic engineering during the network

planning and setup phase. The load distribution control task is based on the

optimisation goal to minimise the maximum load peak along two possible paths

within the automation ring. The flow control loop is a sub control loop of the complete

distribution control. For the design of this, the application cycle time plays an

Page 277

important role because the slowest application in the network domain assigns the

minimum integration interval for data flow measurement. For stream resource

reservation, it is recommended to work with pre-reserved reservations to fulfill

demanding dynamic requirements. Furthermore, it reveals that network errors are

best handled using pre-reservation or dynamic re-reservation. Thus, Chapter 4

answers the main part of the first research objective to clarify the applicability of load

distribution in TSN MANs. It also provides the foundations for answering the

subsequent research objectives by clarifying the boundary conditions for LDC within

MANs.

The second research objective is addressed in Chapter 5 . The different influences

of the traffic shapers and schedulers on data flow control were analysed and

simulated. It is shown that EST, SPQ, and SPQ with Preemption are the best selections

from a data flow control point of view for bigger TSN MAN or such comprising fast

automation applications. CQF and ATS are only recommended for smaller TSN MAN

with slower automation applications.

In Chapter 6, the third research objective is developed. It proposes a new dedicated

control method, that is optimised for TSN MANs with different application cycles of

the automation tasks. Providing dedicated flow controllers for data flows of different

application cycle times guarantees an optimised settling time for each application

cycle time. This approach also implies a dedicated, per-application cycle class, rolling

mean measurement of the CD traffic on each bridge or bridged end station. This

design was verified by a network simulation. It is shown that multiple application-

cycle-class-dedicated control achieves a faster overall load distribution convergence

than a single common flow controller.

In the fourth and last main chapter, Chapter 7, the single controller solution is

expanded to multiple controller solutions. Thereby, this chapter provides answers to

the fourth research question. Two types of distributed load distribution control

solutions for multiple ACs are possible. The essential differentiating criterion is the

existence or lack of a mutual controller dependency. Concrete implementations were

proposed for both types. The Strict Priority Queuing based distributed load

distribution control (SPQ-DLDC) is the only representative of the type that has an

 Page 278

inherent mutual controller dependency. Mutual dependency must be seen as a

disadvantage as it complicates control. However, a main advantage of SPQ-DLDC is its

flexible bandwidth use, as it does not depend on gating windows, nor does it require

a synchronised network cycle or synchronised end stations. With EST, CQF, and ATS,

it is possible to build EST-DLDC, CQF-DLDC, and ATS-DLDC without mutual controller

dependencies. This reduces the effort required for the multiple controller solution to

the same effort that is necessary for a single load distribution controller without any

dedicated algorithms to cope with mutual dependency. Comparing EST-DLDC, CQF-

DLDC, and ATS-DLDC, EST-DLDC is clearly preferred because of its very low end-to-end

latency and, thus, associated more dynamic and economic control design possibilities.

The crucial property for these DLDCs is that the bridges and end stations must be time-

synchronised. Combined with an AC-dedicated bandwidth-use measurement, a

complete separation of the single ACs LDC can be achieved.

8.2 The Contribution to the New Knowledge Generation

The main contribution of this thesis is the presentation of possible solutions for an

optimum load distribution control in manufacturing automation networks. In

particular:

• An analysis of the broad field of TSN automation networks with its technological

diversity such as different TSN traffic shapers and schedulers, control location

design possibilities, relevant network topologies, control setup design possibilities

and characteristics, eligible traffic classes, automation applications influence, the

role of stream reservation, and error mitigation strategies regarding their

suitability and influence for load distribution control purposes. Thereby, a

comprehensive picture of LDC possibilities within TSN MAN is provided.

• A closed-loop load distribution control model for automation ring networks has

been established and the influence of the different types of TSN traffic shapers

and schedulers on data flow control are shown. Furthermore, a strong influence

of the applications is demonstrated. Their application cycles determine the

dynamics and stability of the load distribution control. The findings are validated

through simulations.

Page 279

• Recommendations are given for the use of TSN traffic shapers and schedulers in

various TSN MAN. SPQ, SPQ with Preemption, and EST are the best shaper and

scheduler selections in high dynamic networks and also in larger networks. CQF

and ATS are to be preferred for larger networks with a high hop count or networks

containing slow applications.

• An optimised control method for load distribution control in automation networks

is proposed. It considers the influence of the applications by providing dedicated

load distribution controllers per application cycles or groups of application cycles.

This achieves more dynamic load distribution convergence and robustness

towards an appearance of new and slow applications. An ns-3 simulation code is

provided, and the assumptions are validated through simulations.

• Two load distribution control methods for multiple load distribution controllers

residing on multiple ACs are provided. The first method, SPQ-DLDC. represents a

solution based on SPQ traffic shaping, with its inherent mutual controller

dependencies. The proposed method with its consecutive control sovereignty

approach resolves these dependencies. The second method is suitable for EST, CQF

and ATS schedulers and shapers which demand time-synchronised end stations,

bridges, and bridged end stations. It achieves fast parallel controller calculations

without mutual dependencies.

8.3 Limitations and Further Work

The prevailing automation solutions today are mostly application specific physical

automation islands. This will continuously shift towards virtual applications running in

virtual automation controllers hosted by industrial data centers or edge appliances.

This requires increasing deterministic data communication from higher-level

automation clouds or data centers down to edge controllers and field devices.

Regarding load distribution, this also implies load distribution concepts not only on a

horizontal basis within field-level communication rings or controller-level

communication rings but also on a vertical basis between and through the hierarchical

automation communication layers.

 Page 280

To take this development into account and to provide a fully applicable load

distribution control for industrial manufacturing automation, further work that

exceeds the focus and possibilities of this thesis is necessary. This would be in

particular:

• A redundant ring interconnection exists between a controller-level ring and a field-

level ring. If the controller level ring is segmented for the application of EST-DLDC

as described in Subsection 7.4.3, then also a ring interconnection topology is part

of the network topology. Each ring forms then a separate EST-DLDC domain.

However, inter-ring communication will also be involved. The LDC concept should

be expanded to cover such ring interconnection topologies.

• For the control design of the application cycle class specific load distribution

controllers, it is assumed that the AC has a CD traffic load within each application

cycle traffic class to distribute. This may not always be the case in practice. The

packet handler controls the number of data packets of data streams to be

distributed. Therefore, a more sophisticated packet controller, capable of making

distribution decisions across application cycle classes is necessary in the future.

• For the EST-DLDC, a dynamic adaptation of the gating window lengths during

runtime, depending on the traffic measurement statistics results, for better

bandwidth use would be advantageous.

• In Subsection 7.4.2, an optimsation algorithm for the SPQ-DLDC is proposed. This

could stop at the first found improvement and bring it to the network. The

alternative would be to search for the best improvement by calculating all

possibilities. Comparative simulations on which strategy is advantageous,

depending on various networks and traffic setups, would be useful.

Page 281

Chapter 9 Bibliography

Ahmad, I., Karunarathna, S. N., Ylianttila, M., & Gurtov, A. (2015). Load Balancing in
Software Defined Mobile Networks. In Software Defined Mobile Networks (SDMN) :
Beyond LTE Network Architecture (pp. 225-245). John Wiley & Sons, Ltd :
Chichester, UK. https://doi.org/10.1002/9781118900253.ch13

Ahmad, M., & Khan, R. Z. (2018). Load Balancing Tools and Techniques in Cloud
Computing: A Systematic Review. In (pp. 181-195). https://doi.org/10.1007/978-981-
10-3773-3 18

Ali, M., Chiruvolu, G., & Ge, A. (2005). Traffic engineering in metro Ethernet. IEEE Network,
19(2). https://doi.org/10.1109/MNET.2005.1407693

Alvarez Vadillo, I., Ballesteros, A., Barranco, M., Gessner, D., Djerasevic, S., & Proenza, J.
(2019). Fault Tolerance in Highly Reliable Ethernet-Based Industrial Systems.
Proceedings of the IEEE, 107(6), 977-1010.
https://doi.org/10.1109/JPROC.2019.2914589

Anna Victoria Oikawa, C. R., Freitas, V., Castro, M., & Pilla, L. L. (2020). Adaptive Load
Balancing based on Machine Learning for Iterative Parallel Applications. In 2020 28th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP) (pp. 94-101). IEEE. https://doi.org/10.1109/PDP50117.2020.00021

ANSI/TIA-568.1-D. (2015). Commercial Building Telecommunications Cabling Standard. In.
Washington, D.C., USA: American National Standards Institute.

Antic, M., Maksic, N., Knezevic, P., & Smiljanic, A. (2010). Two phase load balanced routing
using OSPF. IEEE Journal on Selected Areas in Communications, 28(1).
https://doi.org/10.1109/JSAC.2010.100106

Åström, K. J. (2012). Introduction to Stochastic Control Theory. Dover Publications.

Avnu. (2023). Avnu Alliance. Retrieved 2023/08/10 from https://avnu.org

Bensaou, B., Tsang, D. H. K., & King Tung, C. (2001). Credit-based fair queueing (CBFQ): a
simple service-scheduling algorithm for packet-switched networks. IEEE/ACM
Transactions on Networking, 9(5). https://doi.org/10.1109/90.958328

Beran, J., Fiedler, P., & Zezulka, F. (2010). Virtual Automation Networks. IEEE Industrial
Electronics Magazine, 4(3). https://doi.org/10.1109/MIE.2010.937930

Bojović, P. D., & Živko, B. (2022). Hybrid SDN Networks: A Multi-parameter Server Load
Balancing Scheme. Journal of Network and Systems Management, 30(2).
https://doi.org/10.1007/s10922-022-09642-y

Bolla, R., Davoli, F., Maryni, P., & Parisini, T. (1998). An adaptive neural network admission
controller for dynamic bandwidth allocation. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 28(4). https://doi.org/10.1109/3477.704298

Bonomi, F., & Fendick, K. W. (2002). The rate-based flow control framework for the available
bit rate ATM service. IEEE Network, 9(2). https://doi.org/10.1109/65.372653

Braun, R. (1997). Internet protocols for multimedia communications. II. Resource reservation,
transport, and application protocols. IEEE MultiMedia, 4(4).
https://doi.org/10.1109/93.641882

Cardellini, V., Colajanni, M., & Yu, P. S. (1999). Dynamic load balancing on Web-server
systems. IEEE Internet Computing, 3(3). https://doi.org/10.1109/4236.769420

Chadha, A., & Gupta, A. K. (2013). Attaining more Efficiency from Enhanced Interior Gateway
Routing Protocol. International Journal of Computer Applications, 975, 8887.

Chaturvedi, D. K. (2017). Modeling and simulation of systems using MATLAB and Simulink.
CRC press.

 Page 282

Chen, R. R., & Khorasani, K. (2011). A robust adaptive congestion control strategy for large
scale networks with differentiated services traffic. Automatica, 47(1), 26-38.
https://doi.org/10.1016/j.automatica.2010.08.019

Chiu, D.-M., & Jain, R. (1989). Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks. Computer Networks & ISDN Systems,
17(1), 1.

Cisco. (2022). How Does Load Balancing Work? Cisco Systems. Retrieved 2023/09/20 from
http://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/5212-
46.html

Comet. (2023). COMET Optimisation Technology. Comet. Retrieved 2023/09/18 from
https://www.comet.com/docs/v2/

Craciunas, S. S., Serna, R., Martin, O., & Steiner, C. W. (2016). Scheduling real-time
communication in IEEE 802.1Qbv time sensitive networks. ACM International
Conference Proceeding Series, 19-21-October-2016, 183-192.
https://doi.org/10.1145/2997465.2997470

Crotty, M. (1998). The foundations of social research : meaning and perspective in the
research process. Sage Publications.

De Cicco, L., Mascolo, S., & Niculescu, S.-I. (2011). Robust stability analysis of Smith
predictor-based congestion control algorithms for computer networks. Automatica,
47(8), 1685-1692. https://doi.org/10.1016/j.automatica.2011.02.036

de Sousa, A., & Soares, G. (2007). Improving load balance and minimizing service disruption
on ethernet networks with IEEE 802.1 S MSTP. Workshop on IP QoS and traffic
control,

de Sousa, A., & Soares, G. (2008). Improving Load Balance and Minimizing Service
Disruption on Ethernet Networks with IEEE 802.1 S MSTP. EuroFGI Workshop on IP
QoS and Traffic Control.

Duriez, T., Brunton, S. L., & Noack, B. (2017). Machine Learning Control - Taming Nonlinear
Dynamics and Turbulence (1st ed. 2017 ed.). Springer International Publishing.

Elwalid, A., Jin, C., Low, S., & Widjaja, I. (2002). MATE: multipath adaptive traffic
engineering. Computer Networks, 40(6), 695-709. https://doi.org/10.1016/S1389-
1286(02)00308-0

Falk, J., Hellmanns, D., Carabelli, B., Nayak, N., Durr, F., Kehrer, S., . . . International
Conference on Networked Systems Munich, G. M. M. (2019). NeSTiNg: Simulating
IEEE Time-sensitive Networking (TSN) in OMNeT++. In 2019 International
Conference on Networked Systems (NetSys) (pp. 1-8).
https://doi.org/10.1109/NetSys.2019.8854500

Farahmand, F., Qiong, Z., & Jue, J. P. (2005). A closed-loop rate-based contention control for
optical burst switched networks. In GLOBECOM '05. IEEE Global
Telecommunications Conference, 2005. (pp. 5-1993). IEEE.
https://doi.org/10.1109/GLOCOM.2005.1578014

Farkas, J., Bello, L. L., & Gunther, C. (2018). Time-Sensitive Networking Standards. IEEE
Communications Standards Magazine, 2(2).
https://doi.org/10.1109/MCOMSTD.2018.8412457

Finn, N. (2018). Introduction to Time-Sensitive Networking. IEEE Communications Standards
Magazine, 2(2). https://doi.org/10.1109/MCOMSTD.2018.1700076

Finn, N. (2019). Multiple Cyclic Queuing and Forwarding. In.

Fortz, B., Rexford, J., & Thorup, M. (2002). Traffic engineering with traditional IP routing
protocols. IEEE Communications Magazine, 40(10).
https://doi.org/10.1109/MCOM.2002.1039866

Fortz, B., & Thorup, M. (2000). Internet traffic engineering by optimizing OSPF weights. In
Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.

Page 283

Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (pp. 519-528). https://doi.org/10.1109/INFCOM.2000.832225

Gavrilut, V., Zhao, L., Raagaard, M. L., & Pop, P. (2018). AVB-Aware Routing and
Scheduling of Time-Triggered Traffic for TSN. IEEE Access, PP(99).
https://doi.org/10.1109/ACCESS.2018.2883644

Gebali, F. (2015). Analysis of computer and communication networks (Second edition. ed.).
Springer. https://doi.org/10.1007/978-3-319-15657-6

Geist, M., & Jaeger, B. (2019). Overview of TCP Congestion Control Algorithms.

Gillani, B., Kent, R., & Aggarwal, A. (2005). Topology Reconfiguration Mechanism for Traffic
Engineering in WDM Optical Network. In (pp. 161-169). IEEE,; 2005).

Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control system design (Vol. 240).
Prentice Hall Upper Saddle River.

Goulamghoss, M. I., & Bassoo, V. (2020). Analysis of traffic engineering and fast reroute on
multiprotocol label switching. Journal of Ambient Intelligence and Humanized
Computing, 12(2), 2409-2420. https://doi.org/10.1007/s12652-020-02365-5

Grigorjew, A., Baier, C., Metzger, F., & Hosfeld, T. (2021). Distributed Implementation of
Deterministic Networking in Existing Non-TSN Ethernet Switches. In 2021 IEEE
International Conference on Communications Workshops (ICC Workshops) (pp. 1-6).
IEEE. https://doi.org/10.1109/ICCWorkshops50388.2021.9473776

Grix, J. (2019). The foundations of research (Third edition. ed.). Red Globe Press.

Grosu, D., & Chronopoulos, A. T. (2005). Noncooperative load balancing in distributed
systems. Journal of Parallel and Distributed Computing, 65(9), 1022-1034.
https://doi.org/10.1016/j.jpdc.2005.05.001

Hagan, M. T., Demuth, H. B., & Jesús, O. D. (2002). An introduction to the use of neural
networks in control systems. International Journal of Robust and Nonlinear Control,
12(11), 959-985. https://doi.org/10.1002/rnc.727

Han, Z., Kong, J., Wang, Z., Zhang, Y., Liu, K., Pan, L., . . . Wu, D. (2021). AI-based network
topology optimization system. ITU Journal on Future and Evolving Technologies,
2(4), 81-90. https://doi.org/10.52953/YXTB5085

Hasegawa, G., Murata, M., & Miyahara, H. (2000). Fairness and stability of congestion
control mechanisms of TCP. Telecommunication Systems, 15(1-2), 167-184.

Hellmanns, D., Falk, J., Glavackij, A., Hummen, R., Kehrer, S., Durr, F., & Ieee International
Conference on Industrial Technology Buenos Aires, A. F. F. (2020). On the
Performance of Stream-based, Class-based Time-aware Shaping and Frame
Preemption in TSN. In 2020 IEEE International Conference on Industrial Technology
(ICIT) (pp. 298-303). IEEE. https://doi.org/10.1109/ICIT45562.2020.9067122

Henderson, T., & Imputato, P. (2023). Proceedings of the 2023 Workshop on ns-3. Arlington,
VA, USA.

Ho, T. V., Deville, Y., Bonaventure, O., & François, P. (2011). Traffic engineering for multiple
spanning tree protocol in large data centers. In. 23rd International Teletraffic,
Congress.

Huang, Y., Wang, S., Zhang, X., Huang, T., & Liu, Y. (2022). Flexible Cyclic Queuing and
Forwarding for Time-Sensitive Software-Defined Networks. IEEE Transactions on
Network and Service Management, PP(99).
https://doi.org/10.1109/TNSM.2022.3198171

Huawei. (2010). Shortest Path Bridging IEEE 802.1aq Tutorial and Demo. Retrieved
2023/09/10 from
https://archive.nanog.org/meetings/nanog50/presentations/Sunday/IEEE 8021aqSho
rtest Path.pdf

 Page 284

IEC 61158-5-10. (2023). Industrial communication networks –Fieldbus specifications. In Part
5-10: Application layer service definition – Type 10 elements: International
Electrotechnical Commission.

IEC 61158-6-10. (2023). Industrial communication networks –Fieldbus specifications. In Part
6-10: Application layer protocol specification – Type 10 elements: International
Electrotechnical Commission.

IEC 62439-2. (2021). Industrial communication networks - High availability automation
networks - Part 2: Media Redundancy Protocol (MRP). In: International
Electrotechnical Commission.

IEC 62439-3. (2021). Industrial communication networks - High availability automation
networks - Part 3: Parallel Redundancy Protocol (PRP) and High-availability
Seamless Redundancy (HSR) In: International Electrotechnical Commission.

IEC/IEEE 60802. (2018). TSN Profile for Industrial Automation, Use Cases. In.

IEEE 802.1AS. (2020). IEEE Standard for Local and Metropolitan Area Networks—Timing
and Synchronization for Time-Sensitive Applications. In. New York, USA: Institute of
Electrical and Electronics Engineers (IEEE).

IEEE 802.1BA. (2011). IEEE Standard for Local and Metropolitan Area Networks—Audio
Video Bridging (AVB) Systems. In. New York, USA: Institute of Electrical and
Electronics Engineers (IEEE).

IEEE 802.1CB. (2017). IEEE Standard for Local and Metropolitan Area Networks—Frame
Replication and Elimination for Reliability. In. New York, USA: Institute of Electrical
and Electronics Engineers (IEEE).

IEEE 802.1CS. (2019). Link-local Registration Protocol (LRP). In. New York, USA: Institute of
Electrical and Electronics Engineers (IEEE).

IEEE 802.1Q. (2022). IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks. In. New York, USA: Institute of Electrical and Electronics
Engineers (IEEE).

IEEE 802.1Q TSN TG. (2022). Time-Sensitive Networking (TSN) Task Group. In: Institute of
Electrical and Electronic Engineers.

IEEE 802.1Qav. (2009). IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks. In Amendment: Forwarding and Queuing
Enhancements for Time-Sensitive Streams. New York, USA: Institute of Electrical
and Electronics Engineers (IEEE).

IEEE 802.1Qbu. (2015). IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks. In Amendment: Frame Preemption. New York, USA:
Institute of Electrical and Electronics Engineers (IEEE).

IEEE 802.1Qbv. (2015). IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks. In Amendment: Enhancements for Scheduled Traffic.
New York, USA: Institute of Electrical and Electronics Engineers (IEEE).

IEEE 802.1Qca. (2015). IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Virtual Bridged Local Area Networks. In Amendment: Path Control and
Reservation New York, USA: Institute of Electrical and Electronics Engineers (IEEE).

IEEE 802.1Qcc. (2018). IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks. In Amendment: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements New York, USA: Institute of
Electrical and Electronics Engineers (IEEE).

IEEE 802.1Qch. (2019). IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks. In Amendment 29: Cyclic Queuing and Forwarding
New York, USA: Institute of Electrical and Electronics Engineers (IEEE).

Page 285

IEEE 802.1Qci. (2016). IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks. In Amendment: Per-Stream Filtering and Policing New
York, USA: Institute of Electrical and Electronics Engineers (IEEE).

IEEE 802.1Qcr. (2020). IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks. In Amendment: Asynchronous Traffic Shaping New York,
USA: Institute of Electrical and Electronics Engineers (IEEE).

IEEE 802.1Qdd. (2023). IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks. In Amendment: Resource Allocation Protocol New York,
USA: Institute of Electrical and Electronics Engineers (IEEE).

IEEE 802.3br. (2016). IEEE Standard for Ethernet In Amendment 5: Specification and
Management Parameters for Interspersing Express Traffic. New York, USA: Institute
of Electrical and Electronics Engineers (IEEE).

IEEE 1588. (2019). IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. In. New York, USA: Institute of
Electrical and Electronics Engineers (IEEE).

IETF RFC 793. (1981). Ttansmission Control Protocol. In Request for Comments: 793. USA,
California: Information Sciences Institute, University of Southern California.

IETF RFC 2001. (1997). TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. In Request for Comments: 2001: Internet Engineering Task
Force.

IETF RFC 2205. (1997). Resource ReSerVation Protocol (RSVP). In Request for Comments:
2205: Internet Engineering Task Force.

IETF RFC 3630. (2003). Traffic Engineering (TE) Extensions to OSPF Version 2. In Request
for Comments: 3630: Internet Engineering Task Force.

IETF RFC 5305. (2008). IS-IS Extensions for Traffic Engineering. In Request for Comments:
5305: Internet Engineering Task Force.

IETF RFC 5681. (2009). TCP Congestion Control. In Request for Comments: 5681. USA,
Indiana: Purdue University.

IETF RFC 6002. (2010). Generalized MPLS (GMPLS) Data Channel Switching Capable
(DCSC) and Channel Set Label Extensions. In Request for Comments: 6002:
Internet Engineering Task Force.

IETF RFC 6582. (2012). The NewReno Modification to TCP's Fast Recovery Algorithm. In
Request for Comments: 6582. Finland, Oulu: Oulu University.

IETF RFC 8570. (2019). IS-IS Traffic Engineering (TE) Metric Extensions. In Request for
Comments: 8570: Internet Engineering Task Force.

IETF RFC 8578. (2019). Deterministic Networking Use Cases. In Request for Comments:
8578: Internet Engineering Task Force.

IETF RFC 8655. (2019). Deterministic Networking Architeture. In Request for Comments:
8655: Internet Engineering Task Force.

ISO/IEC 7498-1. (2000). Information technology — Open Systems Interconnection — Basic
Reference Model: The Basic Model. In: International Organization for
Standardization/ International Electrotechnical Commission.

Jahde, S., Sakhtivel, S., Sudha, R. V., Verma, R. K., Walia, R., & Lokesh, M. R. (2021). SDN
Network Load Balancing using Environmental Congenital ACO Methodology.
International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS), 10.
https://doi.org/10.31032/ijbpas/2021/10.11.1079

Jain, R. (1998). Congestion control and traffic management in ATM networks: Recent
advances and a survey. Computer Networks & ISDN Systems, 28.

 Page 286

Jong-Moon, C. (2000). Analysis of MPLS traffic engineering. In Proceedings of the 43rd IEEE
Midwest Symposium on Circuits and Systems (Cat.No.CH37144) (pp. 550-553).
https://doi.org/10.1109/MWSCAS.2000.952816

Kanagarathinam, M. R., Singh, S., Sandeep, I., Kim, H., Maheshwari, M. K., Hwang, J., . . .
Saxena, N. (2020). NexGen D-TCP: Next Generation Dynamic TCP Congestion
Control Algorithm. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3022284

Kandula, S., Katabi, D., S. Davie, B., & Charny, A. (2005). Walking the tightrope: Responsive
yet stable traffic engineering (Vol. 35). Computer Communication Review.
https://doi.org/10.1145/1080091.1080122

Kandula, S., Katabi, D., Sinha, S., & Berger, A. (2007). Dynamic Load Balancing Without
Packet Reordering. COMPUTER COMMUNICATION REVIEW, 37(2), 51-62.

Kasoro, N. M., Kasereka, S. K., Alpha, G. K., & Kyamakya, K. (2021). ABCSS: A novel
approach for increasing the TCP congestion window in a network. Procedia
Computer Science, 191, 437-444. https://doi.org/10.1016/j.procs.2021.07.075

Kaszkurewicz, E. (2010). A proposed solution for the load balancing problem on
heterogeneous clusters based on a delayed neural network. International Journal of
Intelligent Computing and Cybernetics, 3(1), 73-93.
https://doi.org/10.1108/17563781011028550

Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth-delay
product networks. ACM SIGCOMM Computer Communication Review, 32(4), 89.
https://doi.org/10.1145/964725.633035

Katyal, M., & Mishra, A. (2014). A Comparative Study of Load Balancing Algorithms in Cloud
Computing Environment. International Journal of Distributed and Cloud Computing,
1(2).

Kelly, F. P., Maulloo, A., & Tan, D. (1998). Rate control for communication networks: Shadow
prices, proportional fairness and stability. Journal of Operations Research Society,
49, 237-252.

Kirrmann, H., & Dzung, D. (2006). Selecting a Standard Redundancy Method for Highly
Available Industrial Networks. In 2006 IEEE International Workshop on Factory
Communication Systems (pp. 386-390). IEEE.
https://doi.org/10.1109/WFCS.2006.1704184

Lemeshko, O., Vavenko, T., & Ovchinnikov, K. (2013). Design of multipath routing scheme
with load balancing in MPLS-network. In 12th International Conference on the
Experience of Designing and Application of CAD Systems in Microelectronics
(CADSM) (pp. 211-213). IEEE.

Li, Y., Jiang, J., & Hong, S. H. (2022). Joint Traffic Routing and Scheduling Algorithm
Eliminating the Nondeterministic Interruption for TSN Networks Used in IIoT. IEEE
Internet of Things Journal, 9(19). https://doi.org/10.1109/JIOT.2022.3163411

Linux. (2023). Load Balancing. LinuxVirtualServer.org. Retrieved 2023/09/08 from
http://kb.linuxvirtualserver.org/wiki/Load balancing#Computing Load Balancing

LNI4.0. (2023). Labs Network Industrie 4.0. Retrieved 2023/08/10 from https://lni40.de/

Lo Bello, L., & Steiner, W. (2019). A Perspective on IEEE Time-Sensitive Networking for
Industrial Communication and Automation Systems. Proceedings of the IEEE,
107(6), 1094-1120. https://doi.org/10.1109/JPROC.2019.2905334

Lopez-Perez, D., Laselva, D., Wallmeier, E., Purovesi, P., Lunden, P., Virtej, E., . . . Ding, M.
(2016). Long Term Evolution-Wireless Local Area Network Aggregation Flow Control.
IEEE Access, 4. https://doi.org/10.1109/ACCESS.2016.2643690

Lopez, V., Hernandez, J. A., Gonzalez de Dios, O., Fernandez Palacios, J., & Aracil, J.
(2010). Multilayer Traffic Engineering for IP Over WDM Networks Based on Bayesian
Decision Theory. IEEE/OSA Journal of Optical Communications and Networking,
2(8). https://doi.org/10.1364/JOCN.2.000515

Page 287

Lu, Y., Fu, B., Xi, X., Zhang, Z., & Zhang, N. (2018). Medium Rate Control Method for Ship
Mobile Network Traffic Generation. Journal of Coastal Research, 83(sp1), 261-266.
https://doi.org/10.2112/SI83-042.1

Ma, Y.-W., Chen, J.-L., Tsai, Y.-H., Cheng, K.-H., & Hung, W.-C. (2017). Load-Balancing
Multiple Controllers Mechanism for Software-Defined Networking. Wireless Personal
Communications : An International Journal, 94(4), 3549-3574.
https://doi.org/10.1007/s11277-016-3790-y

Mandić, Z., Stankovski, S., Ostojić, G., & Popović, B. (2022, 16-18 March 2022). Potential of
Edge Computing PLCs in Industrial Automation. 2022 21st International Symposium
INFOTEH-JAHORINA (INFOTEH),

Mascolo, S. (2000). Smith's principle for congestion control in high-speed data networks.
IEEE Transactions on Automatic Control, 45(2). https://doi.org/10.1109/9.839966

Matía, F., Marichal, G. N. s., & Jiménez, E. (2014). Fuzzy modeling and control : theory and
applications. Atlantis Press. https://doi.org/10.2991/978-94-6239-082-9

Metawei, M. A., Ghoneim, S. A., Haggag, S. M., & Nassar, S. M. (2012). Load balancing in
distributed multi-agent computing systems. Ain Shams Engineering Journal, 3(3),
237-249. https://doi.org/10.1016/j.asej.2012.03.001

Microsoft. (2023). Network Load Balancing. Microsoft. Retrieved 2023/09/22 from
https://docs.microsoft.com/en-us/windows-server/networking/technologies/network-
load-balancing

Mohammadnia, A., Rahmani, R., Mohammadnia, S., & Bekravi, M. (2016). A Load Balancing
Routing Mechanism Based on Ant Colony Optimization Algorithm for Vehicular
Adhoc Network. In (ISSN 0975-6485 Volume 7, Number 1 (2016) ed.). (International
Journal Network and Computer Engineering.)

Mowei, W., Yong, C., Xin, W., Shihan, X., & Junchen, J. (2018). Machine Learning for
Networking: Workflow, Advances and Opportunities. IEEE Network, 32(2).
https://doi.org/10.1109/MNET.2017.1700200

Müller, A. C., & Guido, S. (2017). Introduction to machine learning with Python : a guide for
data scientists (First edition. ed.). O'Reilly Media, Inc.

Nam-Uk, K., Hyun-Su, L., Hong-Shik, P., & Minho, K. (2009). Traffic Load Distribution-Based
Excess Bandwidth Allocation in Time-Division-Multiplexed PONs. Journal of
Lightwave Technology, 27(19). https://doi.org/10.1109/JLT.2009.2022768

Nasrallah, A. (2019). Performance Comparison of IEEE 802.1 TSN Time Aware Shaper
(TAS) and Asynchronous Traffic Shaper (ATS). IEEE Access, 7, 44165-44181.

Nasrallah, A., Thyagaturu, A., Alharbi, Z., Wang, C., Shao, X., Reisslein, M., & El Bakoury, H.
(2019). Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet
Standards and Related 5G ULL Research. IEEE Communications Surveys &
Tutorials, PP(99). https://doi.org/10.1109/COMST.2018.2869350

Nayak, N. (2018). Scheduling & routing time-triggered traffic in time-sensitive networks.
Dissertation(4), 176.

Neely, M. J., Li, C. P., & Modiano, E. (2008). Fairness and optimal stochastic control for
heterogeneous networks. IEEE/ACM Transactions on Networking, 16(2), 396-409.
https://doi.org/10.1109/TNET.2007.900405

Nezami, Z., Zamanifar, K., Djemame, K., & Pournaras, E. (2021). Decentralized Edge-to-
Cloud Load Balancing: Service Placement for the Internet of Things. IEEE Access, 9.
https://doi.org/10.1109/ACCESS.2021.3074962

Nikolic, B., Yomsi, P. M., & Ojewale, M. A. (2020). Multi-Level Preemption in TSN: Feasibility
and Requirements Analysis. In 2020 IEEE 23rd International Symposium on Real-
Time Distributed Computing (ISORC) (pp. 47-55).
https://doi.org/10.1109/ISORC49007.2020.00017

 Page 288

Normey-Rico, J. E., & Camacho, E. F. (2007). Control of Dead-time Processes (Online-ausg.
ed.). Springer-Verlag London Limited. https://doi.org/10.1007/978-1-84628-829-6

ns-3. (2023). The ns-3 Network Simulator. Retrieved 2021/09/10 from
https://www.nsnam.org/

ODVA. (2023). EtherNet/IP - Technology Overview Series. In.

Ohnishi, H., Okada, T., & Noguchi, K. (1988). Flow control schemes and delay/loss tradeoff in
ATM networks. IEEE Journal on Selected Areas in Communications, 6(9), 1609-
1616.

Ojewale, M. A., & Yomsi, P. M. (2020). Routing heuristics for load-balanced transmission in
TSN-based networks. ACM SIGBED Review, 16(4), 20-25.
https://doi.org/10.1145/3378408.3378411

Otoshi, T., Ohsita, Y., Murata, M., Takahashi, Y., Ishibashi, K., & Shiomoto, K. (2015). Traffic
prediction for dynamic traffic engineering. Computer Networks, 85, 36.
https://doi.org/10.1016/j.comnet.2015.05.001

Patan, K. (2015). Neural Network-Based Model Predictive Control: Fault Tolerance and
Stability. IEEE Transactions on Control Systems Technology, 23(3).
https://doi.org/10.1109/TCST.2014.2354981

Patino, H. D., & Liu, D. (2000). Neural network-based model reference adaptive control
system. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
30(1). https://doi.org/10.1109/3477.826961

Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D., & Fugal, H. (2014). Fastpass a
centralized "zero-queue" datacenter network. In Proceedings of the 2014 ACM
conference on SIGCOMM (pp. 307-318). https://doi.org/10.1145/2619239.2626309

Pompili, D., & Priscoli, F. D. (2008). A closed-loop fuzzy traffic controller for fair bandwidth
sharing. ACM SIGBED Review, 5(2), 1-6. https://doi.org/10.1145/1399583.1399588

Prabakaran, S., & Ramar, R. (2021). Software Defined Network: Load Balancing Algorithm
Design and Analysis. The International Arab Journal of Information Technology,
18(3). https://doi.org/10.34028/iajit/18/3/7

Prabhavat, S., Nishiyama, H., Ansari, N., & Kato, N. (2012). On Load Distribution over
Multipath Networks. IEEE Communications Surveys & Tutorials, 14(3).
https://doi.org/10.1109/SURV.2011.082511.00013

Puqi Perry, T., & Tai, T. Y. C. (1999). Network traffic characterization using token bucket
model. In IEEE INFOCOM '99. Conference on Computer Communications.
Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. The Future is Now (Cat. No.99CH36320) (pp. 51-62).
https://doi.org/10.1109/INFCOM.1999.749252

Puype, B., Colle, D., Pickavet, M., & Demeester, P. (2009). Multilayer traffic engineering for
multiservice environments. Photonic Network Communications, 18(2), 150-159.
https://doi.org/10.1007/s11107-008-0179-1

Quang, P. T. A., Magnouche, Y., Leguay, J., Gong, X., & Zeng, F. (2020). Model predictive
control for load balancing. In Proceedings of the SIGCOMM '20 Poster and Demo
Sessions (pp. 37-38). https://doi.org/10.1145/3405837.3411383

Räcke, H. (2009, 2009//). Survey on Oblivious Routing Strategies. Mathematical Theory and
Computational Practice, Berlin, Heidelberg.

Rajeshkannan, R., & Aramudhan, M. (2016). Comparative study of load balancing algorithms
in cloud computing environment. Indian Journal of Science and Technology, 9(20).
https://doi.org/10.17485/ijst/2016/v9i20/85866

Ranjan, R., Villari, M., Fazia, M., Jayaraman, P. P., & Georgakopoulos, D. (2016). Internet of
Things and Edge Cloud Computing Roadmap for Manufacturing. IEEE Cloud
Computing, 3(4), 66-73. https://doi.org/10.1109/MCC.2016.91

Page 289

Russell, S. J., & Norvig, P. (2021). Artificial intelligence : a modern approach (Fourth edition.
ed.). Pearson Education.

Saedi, T., & El-Ocla, H. (2021). TCP CERL+: revisiting TCP congestion control in wireless
networks with random loss. Wireless Networks, 27(1), 423-440.
https://doi.org/10.1007/s11276-020-02459-0

Santos, D., de Sousa, A., Alvelos, F., Dzida, M., Pioro, M., & Zagozdzon, M. (2009). Traffic
Engineering of Multiple Spanning Tree Routing Networks: the Load Balancing Case.
In 2009 Next Generation Internet Networks (pp. 1-8).
https://doi.org/10.1109/NGI.2009.5175784

Shahid, M. A., Islam, N., Alam, M. M., Su'ud, M. M., & Musa, S. (2020). A Comprehensive
Study of Load Balancing Approaches in the Cloud Computing Environment and a
Novel Fault Tolerance Approach. IEEE Access, 8.
https://doi.org/10.1109/ACCESS.2020.3009184

Shuo, W., Jiao, Z., Tao, H., Tian, P., Jiang, L., & Yunjie, L. (2016). FDALB: Flow distribution
aware load balancing for datacenter networks. In 2016 IEEE/ACM 24th International
Symposium on Quality of Service (IWQoS) (pp. 1-2). IEEE.
https://doi.org/10.1109/IWQoS.2016.7590409

Singh, A., Kumar, A., & Chauhan, B. K. (2022). A Comprehensive Study of Edge Computing
and the Impact of Distributed Computing on Industrial Automation. Cognitive
Informatics and Soft Computing, Singapore.

Smith, S. (2003). Introduction to MPLS. Cisco Systems. Retrieved 2023/09/22 from
https://www.cisco.com/c/dam/global/fr ca/training-events/pdfs/Intro to mpls.pdf

Soldatos, J., Lazaro, O., & Cavadini, F. (2019). The digital shopfloor : industrial automation in
the industry 4.0 era : performance analysis and applications. River Publishers.
https://doi.org/10.1201/9781003339717

Song, Y., Guo, C., Xu, P., Li, L., & Zhang, R. (2021). Research on routing and scheduling
algorithms for the simultaneous transmission of diverse data streaming services on
the industrial internet. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-
97613-9

Song, Y., Guo, C., Xu, P., Li, L., & Zhang, R. (2021). Research on routing and scheduling
algorithms for the simultaneous transmission of diverse data streaming services on
the industrial internet. Scientific Reports, 11(1), 18351.
https://doi.org/10.1038/s41598-021-97613-9

Talaat, F. M., Saleh, A. I., Ali, H. A., & Ali, S. H. (2019). Effective Load Balancing Strategy
(ELBS) for Real-Time Fog Computing Environment Using Fuzzy and Probabilistic
Neural Networks. Journal of Network and Systems Management.
https://doi.org/10.1007/s10922-019-09490-3

Taley, M. M., & Keole, R. R. (2015). Study of Load Balancing In Distributed Computing
Environment.

Tanenbaum, A., Wetherall, D., & Feamster, N. (2021). Computer Networks, EBook, Global
Edition (Sixth edition, Global Edition. ed.). Pearson Education, Limited.

Tawfeeg, T. M., Yousif, A., Hassan, A., Alqhtani, S. M., Hamza, R., Bashir, M. B., & Ali, A.
(2022). Cloud Dynamic Load Balancing and Reactive Fault Tolerance Techniques: A
Systematic Literature Review (SLR). IEEE Access, 10.
https://doi.org/10.1109/ACCESS.2022.3188645

Thiele, D., & Ernst, R. (2016). Formal worst-case performance analysis of time-sensitive
Ethernet with frame preemption. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA) (pp. 1-9). IEEE.
https://doi.org/10.1109/ETFA.2016.7733740

Todorov, D., Valchanov, H., & Aleksieva, V. (2020). Load Balancing model based on Machine
Learning and Segment Routing in SDN. In 2020 International Conference Automatics

 Page 290

and Informatics (ICAI) (pp. 1-4). IEEE.
https://doi.org/10.1109/ICAI50593.2020.9311385

Vlk, M., Hanzalek, Z., Brejchova, K., Tang, S., Bhattacharjee, S., & Fu, S. (2020). Enhancing
Schedulability and Throughput of Time-Triggered Traffic in IEEE 802.1Qbv Time-
Sensitive Networks. IEEE Transactions on Communications, 68(11).
https://doi.org/10.1109/TCOMM.2020.3014105

Wan, C.-Y., Eisenman, S. B., & Campbell, A. T. (2011). Energy-efficient congestion detection
and avoidance in sensor networks. ACM Transactions on Sensor Networks (TOSN),
7(4), 1-31. https://doi.org/10.1145/1921621.1921626

Wang, H., Xie, H., Qiu, L., Yang, Y. R., Zhang, Y., & Greenberg, A. (2006). COPE traffic
engineering in dynamic networks. ACM SIGCOMM Computer Communication
Review, 36(4), 99. https://doi.org/10.1145/1151659.1159926

Wang, Y.-T., & Hung, K.-M. (2012). Fuzzy logic based neural network models for load
balancing in wireless networks. Journal of communications and networks, 10(1), 38-
43.

Wang, Y., Chen, J., Ning, W., Yu, H., Lin, S., Wang, Z., . . . Chen, C. (2021). A time-sensitive
network scheduling algorithm based on improved ant colony optimization. Alexandria
Engineering Journal, 60(1), 107-114. https://doi.org/10.1016/j.aej.2020.06.013

Wehrle, K., Günes, M., & Gross, J. (2010). Modeling and tools for network simulation.
Springer. https://doi.org/10.1007/978-3-642-12331-3

Wei, W., Yi, S., Kai, Z., Kaafar, M. A., Dan, L., & Zhongcheng, L. (2014). Freeway: Adaptively
Isolating the Elephant and Mice Flows on Different Transmission Paths. In 2014
IEEE 22nd International Conference on Network Protocols (pp. 362-367). IEEE.
https://doi.org/10.1109/ICNP.2014.59

Weichlein, T., Zhang, S., Li, P., & Zhang, X. (2023). Data Flow Control for Network Load
Balancing in IEEE Time-Sensitive Networks for Automation. IEEE Access.

Wilson, S. P., & Deepalakshmi, P. (2019). DServ-LB: Dynamic server load balancing
algorithm. International Journal of Communication Systems, 32(1).
https://doi.org/10.1002/dac.3840

Wisniewski, L., Hameed, M., Schriegel, S., & Jasperneite, J. (2009). A Survey of Ethernet
Redundancy Methods for Real-Time Ethernet Networks and its Possible
Improvements. IFAC Proceedings Volumes, 42(3), 163-170.
https://doi.org/10.3182/20090520-3-KR-3006.00024

Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The Future of Industrial
Communication: Automation Networks in the Era of the Internet of Things and
Industry 4.0. IEEE Industrial Electronics Magazine, 11(1).
https://doi.org/10.1109/MIE.2017.2649104

Wu, G.-L., & Mark, J. (1993). Discrete time analysis of leaky-bucket congestion control.
COMPUTER NETWORKS AND ISDN SYSTEMS, 26(1), 79.

Wu, H., Ren, F., Mu, D., & Gong, X. (2009). An efficient and fair explicit congestion control
protocol for high bandwidth-delay product networks. Computer Communications,
32(7), 1138-1147. https://doi.org/10.1016/j.comcom.2008.11.016

Xiao, Y., Zhu, K., & Choo Liaw, H. (2005). Generalized synchronization control of multi-axis
motion systems. Control Engineering Practice, 13(7), 809-819.
https://doi.org/10.1016/j.conengprac.2004.09.005

Yang, W., Jidong, C., Wei, N., Hao, Y., Shimei, L., Zhidong, W., . . . Chao, C. (2021). A time-
sensitive network scheduling algorithm based on improved ant colony optimization.
Alexandria Engineering Journal, 60(1), 107-114.

Yao, S., Gao, G., & Gao, Z. (2021). On multi-axis motion synchronization: The cascade
control structure and integrated SMC-ADRC design. ISA transactions, 109, 259-268.
https://doi.org/10.1016/j.isatra.2020.10.012

Page 291

Yin, N., & Hluchyj, M. (1994). On Closed-Loop Rate Control for ATM Cell Relay Networks. In
5th Annual joint conference on computer communications

 (pp. 99-109). IEEE; 1994.

Yuen, W. K., Yeung, K. H., & Yan, F. (2011). Fast RSTP Convergence By Using Backup
VLANs. In (pp. 338-338). WSEAS; 2011.

Zaki, M. J., Wei, L., & Parthasarathy, S. (1996, 6-9 Aug. 1996). Customized dynamic load
balancing for a network of workstations. Proceedings of 5th IEEE International
Symposium on High Performance Distributed Computing,

Zhang, J., Yu, F. R., Wang, S., Huang, T., Liu, Z., & Liu, Y. (2018). Load Balancing in Data
Center Networks: A Survey. IEEE Communications Surveys & Tutorials, 20(3).
https://doi.org/10.1109/COMST.2018.2816042

Zhang, Z., & Zhang, X. (2010). A load balancing mechanism based on ant colony and
complex network theory in open cloud computing federation. In 2010 The 2nd
International Conference on Industrial Mechatronics and Automation (pp. 240-243).
https://doi.org/10.1109/ICINDMA.2010.5538385

Zhao, L., Pop, P., & Steinhorst, S. (2022). Quantitative Performance Comparison of Various
Traffic Shapers in Time-Sensitive Networking. IEEE Transactions on Network and
Service Management, 19(3). https://doi.org/10.1109/TNSM.2022.3180160

Zhou, Z., Yan, Y., Berger, M., & Ruepp, S. (2018). Analysis and modeling of asynchronous
traffic shaping in time sensitive networks. In 2018 14th IEEE International Workshop
on Factory Communication Systems (WFCS) (pp. 1-4). IEEE.
https://doi.org/10.1109/WFCS.2018.8402376

 Page 292

Appendix 1: Load Calculations of Seamless

Communication Use Case

The following tables show the detailed calculation of the load for the example of

seamless M2M communication as referred to in Section 7.4. The numbers in the cells

represent used bandwidth in per cent.

A symmetric load distribution is the result, if the traffic between two stations is equal

in both directions as shown in Table 0.1. Each link has equal load sums of 21 per cent.

Table 0.1: Example of effects of seamless symmetric traffic contribution

Source->Sink/

Direction

Link/Direction

L1 /c L1 /cc L2 /c L2 /cc L3 /c L3 /cc L4 /c L4 /cc

AC1->AC2 /c 5

AC1->AC2 /cc 5 5 5

AC1->AC3 /c 5 5

AC1->AC3 /cc 5 5

AC1->AC4 /c 5 5 5

AC1->AC4 /cc 5

AC2->AC1 /c 5 5 5

AC2->AC1 /cc 5

AC2->AC3 /c 2

AC2->AC3 /cc 2 2 2

AC2->AC4 /c 2 2

AC2->AC4 /cc 2 2

AC3->AC1 /c 5 5

AC3->AC1 /cc 5 5

AC3->AC2 /c 2 2 2

AC3->AC2 /cc 2

AC3->AC4 /c 2

AC3->AC4 /cc 2 2 2

AC4->AC1 /c 5

AC4->AC1 /cc 5 5 5

Page 293

AC4->AC2 /c 2 2

AC4->AC2 /cc 2 2

AC4->AC3 /c 2 2 2

AC4->AC3 /cc 2

Sum 21 21 21 21 21 21 21 21

c: clockwise

cc: counterclockwise

 Page 294

The asymmetric load distribution is the result, if the traffic between two stations is

not equal in both directions as shown in Table 0.2. The link loads for the example differ

between 15 and 21 per cent.

Table 0.2: Example of effects of seamless asymmetric traffic contribution

Source->Sink/

Direction

Link/Direction

L1 /c L1 /cc L2 /c L2 /cc L3 /c L3 /cc L4 /c L4 /cc

AC1->AC2 /c 5

AC1->AC2 /cc 5 5 5

AC1->AC3 /c 5 5

AC1->AC3 /cc 5 5

AC1->AC4 /c 5 5 5

AC1->AC4 /cc 5

AC2->AC1 /c 3 3 3

AC2->AC1 /cc 3

AC2->AC3 /c 2

AC2->AC3 /cc 2 2 2

AC2->AC4 /c 2 2

AC2->AC4 /cc 2 2

AC3->AC1 /c 3 3

AC3->AC1 /cc 3 3

AC3->AC2 /c 2 2 2

AC3->AC2 /cc 2

AC3->AC4 /c 2

AC3->AC4 /cc 2 2 2

AC4->AC1 /c 3

AC4->AC1 /cc 3 3 3

AC4->AC2 /c 2 2

AC4->AC2 /cc 2 2

AC4->AC3 /c 2 2 2

AC4->AC3 /cc 2

Sum 21 15 19 17 17 19 15 21

c: clockwise

cc: counterclockwise

Page 295

Appendix 2: Ns-3 Simulation Code

This chapter provides supplementary documentation of the ns-3 network simulation setup for

the validation use cases of Section 6.7. A detailed code print of the ns-3 C++ code follows. The

structure of the data frames and most important data structures used for communication

therein are shown in Figure 0.1. For the UML description of the modules refer to Section 6.7.

Figure 0.1: The structure of the data frames and most important data structures for

the simulation

Code section:

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */

// This ns-3 simulation supplements the PhD thesis:

// A method for optimum control of dynamic load distribution in time-sensitive communication networks for manufacturing automation

//

// Author: Thomas Weichlein, University of Gloucestershire, UK

//

// Details:

// Network topology consists of a ring topology with 1 AC and 9 devices including integrated two port bridges (n1 to n9).

//

// This version supports the use cases (UC) according to thesis: UC1, UC2, UC3, UC4, UC5, UC6.1 .2 .3 .4, UC7,

//

// - UDP stream as Control data 1,2,4 and 8 ms from n0 (AC 10.1.1.0) to n9 (10.1.1.18) and from n0 (AC 10.1.1.20) to n1 (10.1.1.2)

// - UDP stream as interference Control data 1 ms and 4 ms from n2 (PLC 10.1.1.4) to n4 (10.1.1.8)

// - UDP stream as interference Control data 2 ms and 8 ms from n1 (PLC 10.1.1.2) to n5 (10.1.1.10)

// - Separate Flow Controllers for each application communication cycle class of 1 ms, 2 ms, 4 ms, and 8 ms,

// - DropTail queues

// - Tracing of queues and packet receptions to file "LDCv011.tr"

// - Creation of plot files 2D and 3D

//

// General hints:

// - The start of the controllers must be adapted to the integration time of the rolling mean measurement, that is must be later, to

avoid start jumps

// e.g. 1 ms Int. Time : 0.01 (10 ms) start delay; 8 ms Int. Time : 0.02 (20 ms) start delay;

//

#include <iostream>

#include <fstream>

Page 298

#include <vector>

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/applications-module.h"

#include "ns3/bridge-module.h"

#include "ns3/csma-module.h"

#include "ns3/internet-module.h"

#include "ns3/netanim-module.h"

#include "ns3/gnuplot.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("LDCSim");

// Load Control is off?

//#define NOCONTROL

// Common Load Control for all app cycles?

//#define COMMONCONTROL

//If Load Control is on, include Distribution Controller?

//#define DISTCTRL

//switch on interferences?

#define INTERFERENCE_1MS

#define INTERFERENCE_2MS

#define INTERFERENCE_4MS

#define INTERFERENCE_8MS

// kind of plot

#define PLOT_2D

//#define PLOT_3D

#ifdef DISTCTRL

#define FLOW_1MS_IN LDCcw1msApp->m_flowctrlin

#else

#define FLOW_1MS_IN CollAC1App->m_thp_array[ALLAPPSIND][CW][NNODES+1]

Page 299

#endif

//global simulation constants and variables:

//general

#define TAS_WINDOW_NS 200000 //Size of the TAS or EST Window in ns

#define DATARATE 1000000000 //data rate in bit per second

#define MIN_PACKET_SIZE 242 //for this simulation, otherwise 96 is minimum

#define SIMSTART 0.0 //Time of general start of simulation

#define SIMEND 0.4 //Time of general end of simulation

#define LDC_ENDDELAY 0.008 //Delay to continue with throughput rolling mean measurement

#define CTRL_SIMSTART 0.015 //Time of control start of simulation

#define RM_1MS_DELAY 0.0008 //Delay to place the start of rolling mean measurement

#define RM_2MS_DELAY 0.0007 //Delay to place the start of rolling mean measurement

#define RM_4MS_DELAY 0.0006 //Delay to place the start of rolling mean measurement

#define RM_8MS_DELAY 0.00055 //Delay to place the start of rolling mean measurement

#define RM_ENDDELAY 0.0002 //Delay to continue with throughput rolling mean measurement

#define COLL_STARTDELAY 0.00062 //Delay to start with throughput feedback collections

#define COLL_ENDDELAY 0.008 //Delay to continue with throughput feedback collections

#define CTRLRAMPSTEP 4 //Ramp of reference to avoid switch-on-jump

#define DIST_STARTDELAY 0.00064 //Delay to start with distribution controller

#define DIST_ENDDELAY 0.00 //Delay to continue with distribution controller

#define FLOW_STARTDELAY 0.00068 //Delay to start with flow controller

#define FLOW_ENDDELAY 0.001 //Delay to continue with flow controller

#define CTRL_STARTDELAY_1 660000 //Offset to start with flow controller in ns for seamless interaction

#define CTRL_STARTDELAY_2 700000 //Second offset to start with flow controller in ns for seamless interaction

#define INTERFERENCE_START_1MS 0.05 //time to start with the 1 ms interference load step

#define INTERFERENCE_START_2MS 0.15 //time to start with the 2 ms interference load step

#define INTERFERENCE_START_4MS 0.25 //time to start with the 4 ms interference load step

#define INTERFERENCE_START_8MS 0.35 //time to start with the 8 ms interference load step

#define INTERFERENCE_STOP_1MS 0.4 //time to stop with the 1 ms interference load step

Page 300

//frames

#define DF 1 //frame ID data frame

#define FBF 2 //frame ID throughput feedback frame

#define UDP 0x11 //UDP frame

enum NODEID {N0, //Node ID node 0 which is always AC1

 N1, //Node ID node 1

 N2, //Node ID node 2

 N3, //Node ID node 3 or AC2 depending on use case simulation

 N4, //Node ID node 4

 N5, //Node ID node 5 or ACC3 depending on use case simulation

 N6, //Node ID node 6

 N7, //Node ID node 7

 N8, //Node ID node 8 or ACC4 depending on use case simulation

 N9, //Node ID node 9

 NNODES //Number of Nodes

};

//rolling mean calculation

#define RM_WINDOWSIZE 10000 //for now for 1ms, otherwise later calculate

:5*32*TAS_WINDOW_NS/((1*8*MIN_PACKET_SIZE)) //The maximum window size for the rolling mean calculation in number of packets

#define APPSPECIFIC 0 //access application cycle specific throughput measurement

#define APPSCOLLECTIVE 1 //access all application cycle throughput measurement

enum APPINDEX {

APP1MSIND,

APP2MSIND,

APP4MSIND,

APP8MSIND,

APP16MSIND,

APP32MSIND,

ALLAPPSIND, //for measurement by rolling mean measurement at node over all application cycles

Page 301

SUMAPPSIND, //for summing up at collection app over all application cycles

NAPPSIND}; //to address the application cycle in arrays

enum APPCYCLE {

APP1MS = 1,

APP2MS,

APP4MS = 4,

APP8MS = 8,

APP16MS = 16,

APP32MS = 32,

ALLAPPS = 0xff

}; //to configure the application cycle

enum INTTIME {

INT1MS = 1,

INT2MS,

INT4MS = 4,

INT8MS = 8,

INT16MS = 16,

INT32MS = 32

}; //to code the application cycle

//distribution control and flow control

enum DIRECTION {CW, //Clockwise direction for maximum calculation

CCW, //Counterlockwise direction for maximum calculation

NDIR}; //Number of Directions

//plotting

#define DATAPOINTS 400 //maximum number of data points for the plot file

#define DATASTEP 1 //plot only every DATASTEP data point

//Dynamic load Balancing specific classes

//+++++++++++++++++++++++++++++++++++++++

//A LDCApp sends application frames in one direction of the ring and provides control facilities

Page 302

class LDCApp : public Application

{

public:

static TypeId GetTypeId (void)

 {

static TypeId tid = TypeId ("LDCApp")

.SetParent (Object::GetTypeId ())

.SetGroupName ("MyGroup")

.AddConstructor<LDCApp> ()

.AddTraceSource ("NPackets",

"Number of Packets to trace.",

MakeTraceSourceAccessor (&LDCApp::NPackets),

"ns3::TracedValueCallback::Int32")

;

return tid;

 }

 LDCApp ();

 virtual ~LDCApp();

 void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t

appcycle, uint32_t acid, bool externalref, float* extref, float* diffthp);

 uint32_t plot_array [4][DATAPOINTS];

 TracedValue<int32_t> NPackets;

 float* m_diffthroughput; //difference of throughput

 float m_distctrlin; //input for distribution control

 float m_distctrlout; //output from distribution control, input for flow control

 float m_flowctrlin; //flow control input

 float m_flowctrlout; //flow control output, to be translated into m_nPackets for send unit

private:

 virtual void StartApplication (void);

Page 303

 virtual void StopApplication (void);

 void ScheduleTx (void);

 void ScheduleTxCycle (void);

 void SendPacket (void);

 void ReceivePacket (Ptr<Socket> socket);

 void Control (void);

 Ptr<Packet> m_packet;

 Ptr<Socket> m_socket;

 Address m_peer;

 uint32_t m_packetSize;

 uint32_t m_nPackets;

 int32_t m_deltaPackets;

 DataRate m_dataRate;

 EventId m_sendEvent;

 bool m_running;

 uint32_t m_packetsSent;

 uint32_t m_appcycle;

 uint32_t m_appcycle_ind;

 uint32_t m_acid;

 uint32_t m_totalsent;

 uint32_t m_j; //iterator for rolling mean

 double m_throughputs [2][NNODES]; //received throughput measurements from nodes

 double m_maxthroughput_cw; //maximum throughput clockwise direction

 double m_maxthroughput_ccw; //maximum throughput countrclockwise direction

 bool m_externalref; //use reference from coupled LDC

 float* m_extref; //reference from coupled LDC flow controller output

// Gnuplot2dDataset m_2ddataset;

// Gnuplot3dDataset m_3ddataset;

};

Page 304

LDCApp::LDCApp ()

 : m_diffthroughput(0),

m_distctrlin (0),

m_distctrlout (0),

m_flowctrlin (0),

m_flowctrlout (0),

m_packet (0),

m_socket (0),

m_peer (),

m_packetSize (0),

m_nPackets (0),

m_deltaPackets (0),

m_dataRate (0),

m_sendEvent (),

m_running (false),

m_packetsSent (0),

m_appcycle (1),

m_appcycle_ind (0),

m_acid (1),

m_totalsent (0),

m_j (0),

// m_throughputs (0),

m_maxthroughput_cw (0),

m_maxthroughput_ccw (0),

m_externalref (false),

m_extref (0)

// m_2ddataset (),

// m_3ddataset ()

{

Page 305

}

LDCApp::~LDCApp()

{

 m_socket = 0;

}

void

LDCApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t appcycle,

uint32_t acid, bool externalref, float* extref, float* diffthp)

{

 m_socket = socket;

 m_peer = address;

 m_packetSize = packetSize;

 m_nPackets = nPackets;

 m_dataRate = dataRate;

 m_appcycle = appcycle;

 m_acid = acid;

 m_externalref = externalref;

 m_extref = extref;

 m_diffthroughput = diffthp;

}

void

LDCApp::StartApplication (void)

{

 m_running = true;

 m_packetsSent = 0;

 m_socket->Bind ();

 m_socket->Connect (m_peer);

 uint8_t buffer[3];

 buffer[0]= (uint8_t) DF; //data frame

Page 306

 buffer[1]= (uint8_t) m_acid; //automation controller id for packet

 buffer[2]= (uint8_t) m_appcycle; //application cycle in ms for packet

 uint8_t* buf = buffer;

 m_packet = Create<Packet> (buf, m_packetSize);

 SendPacket ();

}

void

LDCApp::StopApplication (void)

{

 m_running = false;

 NS_LOG_INFO ("LDCApp: Total packets sent: " << m_totalsent);

 if (m_sendEvent.IsRunning ())

{

Simulator::Cancel (m_sendEvent);

}

 if (m_socket)

{

m_socket->Close ();

}

}

void

LDCApp::SendPacket (void)

{

// Ptr<Packet> packet = Create<Packet> (m_packetSize);

 m_socket->Send (m_packet);

 m_totalsent++;

 //to test trace:

 //++m_nPackets;

 //NPackets = m_nPackets;

Page 307

 // //this->m_2ddataset.Add (static_cast<double> (Simulator::Now ()), m_nPackets);

 //if (m_nPackets == 5)

 // m_nPackets = 2;

 // NS_LOG_INFO ("Sending App: = " << this);

 if (++m_packetsSent < m_nPackets + m_deltaPackets)

{

ScheduleTx ();

}

 else

 {

 ScheduleTxCycle ();

 }

}

//Schedule sending within the communication cycle

void

LDCApp::ScheduleTx (void)

{

 if (m_running)

{

 if (m_packetsSent == 1)

 {

//Schedule value update and convertion before and after flow controller

Time tNextControl_1 (CTRL_STARTDELAY_1);

m_sendEvent = Simulator::Schedule (tNextControl_1, &LDCApp::Control, this);

Time tNextControl_2 (CTRL_STARTDELAY_2);

m_sendEvent = Simulator::Schedule (tNextControl_2, &LDCApp::Control, this);

 }

//Schedule next frame

Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));

Page 308

m_sendEvent = Simulator::Schedule (tNext, &LDCApp::SendPacket, this);

 //NS_LOG_INFO ("ScheduleTx in " << tNext);

}

}

//Schedule sending for the application cycle

void

LDCApp::ScheduleTxCycle (void)

{

 if (m_running)

{

Time tNextCycle (Seconds ((m_appcycle/static_cast<double> (1000))- m_packetsSent * (m_packetSize * 8 / static_cast<double>

(m_dataRate.GetBitRate ()))));

m_sendEvent = Simulator::Schedule (tNextCycle, &LDCApp::SendPacket, this);

 //NS_LOG_INFO ("ScheduleTxCycle in " << tNextCycle);

}

 plot_array[0][m_j] = m_appcycle *(m_j+1);

 plot_array[1][m_j] = m_nPackets;

 if (m_j <= DATAPOINTS) m_j++;

 m_packetsSent = 0;

}

//Handle references and outputs, make LDC coupling, convert flow controller output into number of packets

void

LDCApp::Control (void)

{

if (!m_externalref)

{

#ifdef DISTCTRL

m_distctrlin = (*m_diffthroughput)* (float)(-1);

m_flowctrlin = m_distctrlout - (*m_diffthroughput);

Page 309

// m_flowctrlin = m_distctrlout - ((*m_diffthroughput) * (float)(-1));

#else

m_flowctrlin = (*m_diffthroughput)* (float)(-1);

#endif

NS_LOG_INFO ("diffthroughput is " << (*m_diffthroughput));

}

else

{

//Coupled to other LDC on node. No own distribution or flow control. Take result from other leading flow controller

output

m_flowctrlout = *m_extref * (float)(-1);

}

//simulate with or without load control

#ifdef NOCONTROL

m_deltaPackets = 0;

#else

//Calculate packets and change algebraic sign as a positive difference means a reduction for this direction

// m_deltaPackets = (m_flowctrlout * (float)(-1))/(0.0001 * m_packetSize * 8);

m_deltaPackets = m_flowctrlout/(0.0001 * m_packetSize * 8);

//a controller can only compensate load differences within the border of its own introduced load

if (m_deltaPackets > (int32_t)m_nPackets)

{

m_deltaPackets = m_nPackets -3;

}

if (m_deltaPackets <= ((int32_t)m_nPackets * (-1)))

{

m_deltaPackets = (m_nPackets * (-1)) + 3;

}

NS_LOG_INFO ("delta packets is " << m_deltaPackets);

Page 310

#endif

}

#if 0

static void

CwndChange (uint32_t oldCwnd, uint32_t newCwnd)

{

 NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);

}

//static void

//RxDrop (Ptr<const Packet> p)

//{

// NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());

//}

void

 IntTrace (int32_t oldValue, int32_t newValue)

 {

 std::cout << "Traced Test " << oldValue << " to " << newValue << std::endl;

 }

#endif

// The RollMeanApp builds the rolling mean measurement of throughput on a node (bridged device)

// For each app cycle class there will be one necessary as they finally will use different integration times.

// But have with "getall" also the possibility to capture all app cycle class frames for the common control use case which is to

improve.

class RollMeanApp : public Application

{

public:

static TypeId GetTypeId (void)

 {

static TypeId tid = TypeId ("RollMeanApp")

Page 311

.SetParent (Object::GetTypeId ())

.SetGroupName ("MyGroup")

.AddConstructor<RollMeanApp> ()

 ;

return tid;

 }

 RollMeanApp ();

 virtual ~RollMeanApp();

 void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, DataRate dataRate, uint32_t direction, uint32_t appcycle,

uint32_t inttime, uint32_t node, bool getall);

 void CheckInPacket (ns3::Ptr<const ns3::Packet>);

 float p_throughput[2][DATAPOINTS]; // in percent, one array for app cycle class, one for all app cycle class measurement

private:

 virtual void StartApplication (void);

 virtual void StopApplication (void);

 void Calculate (void);

 Ptr<Packet> m_packet;

 Ptr<Socket> m_socket;

 Address m_peer;

 uint32_t m_packetSize;

 uint8_t m_buffer [4 + 10 * sizeof(float)];

 uint32_t m_nPackets;

 DataRate m_dataRate;

 EventId m_sendEvent;

 uint32_t m_windowSize; //number of measurement values in the storage window

 uint32_t m_direction; //clockwise or counterclockwise

 uint32_t m_appcycle; //app cycle class to capture

 uint32_t m_inttime; // integration time for rolling mean measurement

 bool m_getall; //if true the throughput is measured over all application cycles

Page 312

 uint32_t m_node; //node number in the ring

 uint32_t m_j; // check in iterator for explicit app cycle

 uint32_t m_k; // check in iterator for all app cycle

 struct rm_array_t {uint32_t nbytes[RM_WINDOWSIZE]; Time timestamp[RM_WINDOWSIZE];};

 rm_array_t m_rm_array [2/*Number of ACIDs*/][2/* one for appcycle class and one for all frames*/];

 bool m_running;

 uint32_t m_totalcheckedin;

 uint32_t m_totalallcheckedin;

 Time m_currenttime;

 Time m_windowstart;

 Time m_windowupperpart;

 Time m_windowstarttime;

 Time m_arraystarttime;

 Time m_simulatorlast;

 uint32_t m_appcycle_ind;

 EventId m_calcEvent;

 uint32_t m_datapoint;

 uint32_t m_i; //loopcounter for debugging

 uint32_t m_bytes;

 uint32_t m_prevsize;

};

RollMeanApp::RollMeanApp ()

: m_packet (0),

m_socket (0),

m_peer (),

m_packetSize (0),

m_nPackets (0),

m_dataRate (0),

m_sendEvent (),

Page 313

m_windowSize (RM_WINDOWSIZE),

m_direction (0),

m_appcycle (1),

m_inttime (0),

m_getall (false),

m_node (0),

m_j (0),

m_k (0),

m_running (false),

m_totalcheckedin (0),

m_totalallcheckedin (0),

m_currenttime (0),

m_windowstart (0),

m_windowupperpart (0),

m_windowstarttime (0),

m_arraystarttime (0),

m_simulatorlast (0),

m_appcycle_ind (0),

m_calcEvent (),

m_datapoint (),

m_i (0),

m_bytes (0),

m_prevsize (0)

{

}

RollMeanApp::~RollMeanApp()

{

}

//so far not needed:

Page 314

void

RollMeanApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, DataRate dataRate, uint32_t direction, uint32_t

appcycle, uint32_t inttime, uint32_t node, bool getall)

{

 m_socket = socket;

 m_peer = address;

 m_packetSize = packetSize;

 m_dataRate = dataRate;

 m_direction = direction;

 m_appcycle = appcycle;

 m_inttime = inttime;

 m_node = node;

 m_getall = getall;

}

void

RollMeanApp::StartApplication (void)

{

 m_running = true;

 m_socket->Bind ();

 m_socket->Connect (m_peer);

 m_buffer[0]= (uint8_t) FBF; //Feedback frame

 m_buffer[1]= (uint8_t) m_appcycle; //application cycle in ms for packet

 m_buffer[2]= (uint8_t) m_direction; //clockwise or conterclockwise

 uint8_t* buf = &m_buffer[0];

 m_packet = Create<Packet> (buf, m_packetSize);

 Time tNext (/*m_inttime **/ 1000000/*Seconds ((uint32_t) 0.005)*/); //First calculation

 m_calcEvent = Simulator::Schedule (tNext, &RollMeanApp::Calculate, this);

// NS_LOG_INFO ("Calculate RM in " << tNext);

// NS_LOG_INFO (Simulator::Now () << " " << Simulator::Now().GetSeconds());

Page 315

}

void

RollMeanApp::StopApplication (void)

{

 m_running = false;

 NS_LOG_INFO ("Total app specific packets checked in: " << m_totalcheckedin);

 NS_LOG_INFO ("Total all apps packets checked in: " << m_totalallcheckedin);

 if (m_sendEvent.IsRunning ())

{

Simulator::Cancel (m_sendEvent);

}

 if (m_socket)

{

m_socket->Close ();

}

#if (0)

 for (uint32_t i=0; i < 50; i++) //Check just a few entries visually

 {

 NS_LOG_INFO ("rm_array entry number: " << i);

 NS_LOG_INFO ("rm_array bytes = " << m_rm_array[0][0].nbytes[i]);

 NS_LOG_INFO ("rm_array timestamp = " << m_rm_array[0][0].timestamp[i] << std::endl);

 }

#endif

}

// Calculate the rolling means of all application cycles and VLANs

void

RollMeanApp::Calculate (void)

{

// one calculation for app cycle class and one for all app cycles

Page 316

for (uint32_t c = 0; c < 2; ++c)

{

m_currenttime = (Simulator::Now ());

m_arraystarttime = m_rm_array[0][c].timestamp[0];

m_bytes = 0;

m_i = 0;

uint32_t ind = 0;

if (c==0)

{

ind = m_j; //app cycle specific calculation

}

if (c==1)

{

ind = m_k; //calculation over all app cycles

}

if ((m_currenttime- (Time)m_inttime * 1000000) >= m_arraystarttime) //window is fully within array

{

m_windowstarttime = m_currenttime - (Time)m_inttime * 1000000;

for (uint32_t i = ind; m_rm_array[0][c].timestamp[i] > m_windowstarttime; --i)

{

m_bytes = m_bytes + m_rm_array[0][c].nbytes[i];

m_i++;

}

 NS_LOG_INFO ("RollMeanApp: Sum of " << m_i << "packets");

}

else //window suffered a turnover within array or has just started

{

for (int32_t i = ind; i >= 0; --i)

{

Page 317

m_bytes = m_bytes + m_rm_array[0][c].nbytes[i];

m_i++;

}

if (m_rm_array[0][c].timestamp[RM_WINDOWSIZE-1] > (Time)(0)) // turnover

{

m_windowupperpart = m_currenttime - m_rm_array[0][c].timestamp[RM_WINDOWSIZE-1];

m_windowstarttime = m_rm_array[0][c].timestamp[RM_WINDOWSIZE-1] - ((Time)(m_inttime * 1000000) - m_windowupperpart);

for (uint32_t i = RM_WINDOWSIZE-1; m_rm_array[0][c].timestamp[i] >= m_windowstarttime; --i)

{

m_bytes = m_bytes + m_rm_array[0][c].nbytes[i];

m_i++;

}

}

NS_LOG_INFO ("RollMeanApp: Sum of " << m_i << "packets");

}

p_throughput [c][m_datapoint]= ((float)m_bytes * 8)/(m_inttime * 10000)/* 5 * 1000000 ns per ms divided by 100 is 1

per cent*/;

NS_LOG_INFO ("RollMeanApp: Throughput = " << p_throughput[c][m_datapoint] << " %" << std::endl);

m_i = 0;

}

if(m_running)

{

 Time tNext (1000000); //next calculation (is not integration time but calc cycle

 m_calcEvent = Simulator::Schedule (tNext, &RollMeanApp::Calculate, this);

// NS_LOG_INFO ("Calculate in " << tNext << std::endl);

}

//For now, send the throughput circle frame here directly to AC1, Later on only to the next node.

//Later on also one frame per direction and app cycle which comes with different rolling mean apps.

//*(((float*)(&m_buffer[4])) + m_node) = p_throughput [0][m_datapoint];

Page 318

// Send app cycle class throughput measurement

// *((uint8_t*)(&m_packet[0x2b])) = (uint8_t)m_appcycle;

// *(((float*)((uint8_t*)(&m_packet[0x2e]))) + m_node) = p_throughput[0] [m_datapoint];

// *((uint8_t*)((&m_packet->m_buffer)+1)) = (uint8_t)m_appcycle;

// *(((float*)((uint8_t*)(&m_packet->m_buffer[3]))) + m_node) = p_throughput[0] [m_datapoint];

m_buffer[1] = (uint8_t) m_appcycle;

(((float)(&m_buffer[4])) + m_node) = p_throughput [0] [m_datapoint];

uint8_t* buf = &m_buffer[0];

m_packet = Create<Packet> (buf, m_packetSize);

m_socket->Send (m_packet);

// NS_LOG_INFO ("Packet UID " << m_packet->GetUid());

// NS_LOG_INFO ("Packet RefCnt " << m_packet->GetReferenceCount() << std::endl);

// Send overall app cycle class throughput measurement out of the 8 ms app cycle measurement

if (m_appcycle == APP8MS)

{

m_buffer[1] = ALLAPPS;

(((float)(&m_buffer[4])) + m_node) = p_throughput [1][m_datapoint];

m_packet = Create<Packet> (buf, m_packetSize);

m_socket->Send (m_packet);

// NS_LOG_INFO ("Packet UID " << m_packet->GetUid());

// NS_LOG_INFO ("Packet RefCnt " << m_packet->GetReferenceCount() << std::endl);

}

if(m_datapoint < DATAPOINTS)

{

m_datapoint++;

}

}

void

RollMeanApp::CheckInPacket (Ptr<const Packet> pPacket)

Page 319

{

 uint8_t buffer [0x30];

 uint8_t* p_buf = buffer;

 Ptr<const Packet> ppacket = pPacket;

 ppacket->CopyData (p_buf, 0x30);

// NS_LOG_INFO ("tx callback: pointer = " << *ppacket << std::endl << std::endl);

// std::cout << "send callback: pointer = " << *ppacket;

// NS_LOG_INFO ("tx callback: packet size = " << ppacket->GetSize());

// NS_LOG_INFO ("Check In App: = " << this);

 if (m_running)

 {

 // fetch only UDP process data

if (buffer[0x17] == UDP)

 {

 //fetch only data frames

 if (buffer[0x2a] == DF)

 {

 //check into first buffer if of this explicit app cycle

 if (buffer[0x2c] == m_appcycle)

{

 if (m_j == m_windowSize -1)

 {

 m_j = 0;

// NS_LOG_INFO ("iterator m_j turnover, set to " << m_j);

 }

 else

 {

 m_j++;

 }

Page 320

 m_rm_array[(buffer[0x2b])-1/*ACID*/][0].nbytes[m_j] = ppacket->GetSize();

 m_rm_array[(buffer[0x2b])-1/*ACID*/][0].timestamp[m_j] = (Simulator::Now ());

 m_totalcheckedin++;

}

#if 0

 /*Check all frames into second buffer for common throughput measurement?*/

 if ((buffer[0x2c] == APP1MS) || (buffer[0x2c] == APP2MS) || (buffer[0x2c] == APP4MS) || (buffer[0x2c] ==

APP8MS) || (buffer[0x2c] == APP16MS) || (buffer[0x2c] == APP32MS))

{

 if (m_getall)

 {

if (m_k == m_windowSize -1)

{

m_k = 0;

// NS_LOG_INFO ("iterator m_k turnover, set to " << m_k);

}

else

{

m_k++;

}

m_rm_array[(buffer[0x2b])-1/*ACID*/][1].nbytes[m_k] = ppacket->GetSize();

m_rm_array[(buffer[0x2b])-1/*ACID*/][1].timestamp[m_k] = (Simulator::Now ());

m_totalallcheckedin++;

 }

}

#endif

#if 0

 if (((ppacket->GetSize() != m_prevsize)&& (m_prevsize !=0))|| (ppacket->GetSize() == 0))

{

Page 321

 NS_LOG_INFO ("Error packet size: previous size = " << m_prevsize << " ,current size is " << ppacket->GetSize()

<< std::endl);

 }

m_prevsize = ppacket->GetSize();

#endif

#if 0

 NS_LOG_INFO ("rm_array bytes = " << m_rm_array[0][0].nbytes[m_j]);

 NS_LOG_INFO ("rm_array timestamp = " << m_rm_array[0][0].timestamp[m_j]);

 NS_LOG_INFO ("delta time = " << m_rm_array[0][0].timestamp[m_j] - m_simulatorlast);

 NS_LOG_INFO ("iterator m_j = " << m_j << std::endl);

 m_simulatorlast = Simulator::Now ();

#endif

 }

 }

 }

}

// The PIDCtrlApp implements the PID Controller

class PIDCtrlApp : public Application

{

public:

static TypeId GetTypeId (void)

 {

static TypeId tid = TypeId ("PIDCtrlApp")

.SetParent (Object::GetTypeId ())

.SetGroupName ("MyGroup")

.AddConstructor<PIDCtrlApp> ()

 ;

return tid;

 }

Page 322

 PIDCtrlApp ();

 virtual ~PIDCtrlApp();

 void Setup (double kp, double ki, double kd, uint32_t intstep, double thres, float* ref, float* out, std::string type);

 float p_throughput[DATAPOINTS]; // in percent

private:

 virtual void StartApplication (void);

 virtual void StopApplication (void);

 void Calculate (void);

 double m_ref; //input

 uint32_t m_rampcnt; //counter to avoid start-up-jumps by ramping up reference.

 Double m_threshold; //threshold to damp responsiveness

 double m_kp; //Proportional factor

 double m_ki; //Integral factor

 double m_kd; //Differential factor

 float m_out; //Output

 bool m_running;

 EventId m_calculateEvent;

 Double m_int; //integral sum up

 Double m_lastint; //last integral sum up

 Double m_lasttime; //point in time of last calculation

 uint32_t m_intstep; //integration time step in ns, that is calculation cycle for PID controller

 double m_lastref; //reference at last calculation

 float* m_refptr; //pointer to controller reference input

 float* m_outptr; //pointer to controller output

 std::string m_type; //type of PID (distribution or flow control)

};

PIDCtrlApp::PIDCtrlApp ()

 : m_ref (0),

m_rampcnt (0),

Page 323

m_threshold (0),

m_kp (0),

m_ki (0),

m_kd (0),

m_out (0),

m_running (false),

m_calculateEvent (),

m_int (0),

m_lastint (0),

m_lasttime (0),

m_intstep (0),

m_lastref (0),

m_refptr (0),

m_outptr (0),

m_type ()

{

}

PIDCtrlApp::~PIDCtrlApp()

{

}

void

PIDCtrlApp::Setup (double kp, double ki, double kd, uint32_t intstep, double thres, float* ref, float* out, std::string type)

{

 m_kp = kp;

 m_ki = ki;

 m_kd = kd;

 m_intstep = intstep;

 m_threshold = thres;

 m_refptr = ref;

Page 324

 m_outptr = out;

 m_type = type;

}

void

PIDCtrlApp::StartApplication (void)

{

 m_running = true;

 Time tNext (1000000/*m_intstep*/);

 m_calculateEvent = Simulator::Schedule (tNext, &PIDCtrlApp::Calculate, this);

//NS_LOG_INFO ("Calculate PIDCtrl in " << tNext);

}

void

PIDCtrlApp::StopApplication (void)

{

 m_running = false;

}

// Calculate the PID Controller

// used for distribution control and flow control

void

PIDCtrlApp::Calculate (void)

{

#if 1

NS_LOG_INFO ("PID Type is " << m_type);

NS_LOG_INFO ("Reference is " << *m_refptr);

//avoid "switch-on-jumps": ramp up reference at control start.

m_ref = *m_refptr;

if (m_rampcnt == 0)

{

m_ref = m_ref/CTRLRAMPSTEP;

Page 325

m_rampcnt++;

}

else

{

m_ref = m_ref * (m_rampcnt/CTRLRAMPSTEP);

if (m_rampcnt < CTRLRAMPSTEP)

{

m_rampcnt++;

}

}

if (fabs(m_ref) > m_threshold)

{

m_int = m_lastint + (m_ki * (m_ref) * (Simulator::Now ().GetSeconds() - m_lasttime));

*m_outptr = m_kp * m_ref + m_int + ((m_ref - m_lastref)/(Simulator::Now ().GetSeconds() - m_lasttime) * m_kd);

NS_LOG_INFO ("Time is " << Simulator::Now ().GetSeconds());

NS_LOG_INFO ("integral difference is " << (m_ki * m_ref * (Simulator::Now ().GetSeconds() - m_lasttime)));

NS_LOG_INFO ("integral new sum is " << m_int);

NS_LOG_INFO ("differential part is " << ((m_ref - m_lastref)/(Simulator::Now ().GetSeconds() - m_lasttime) * m_kd));

m_lastref = m_ref;

m_lasttime = Simulator::Now().GetSeconds();

m_lastint = m_int;

}

NS_LOG_INFO ("Output is " << *m_outptr << std::endl);

if(m_running)

{

 Time tNext (1000000/*m_intstep*/);

 m_calculateEvent = Simulator::Schedule (tNext, &PIDCtrlApp::Calculate, this);

// NS_LOG_INFO ("Calculate PID in " << tNext);

}

Page 326

#endif

}

//A collector application receives the throughput feedbacks from the nodes, compares and provides

//the difference as input for the distribution control

class CollApp : public Application

{

public:

static TypeId GetTypeId (void)

 {

static TypeId tid = TypeId ("CollApp")

.SetParent (Object::GetTypeId ())

.SetGroupName ("MyGroup")

.AddConstructor<CollApp> ();

#if 0

 .AddTraceSource ("NPackets",

"Number of Packets to trace.",

MakeTraceSourceAccessor (&CollApp::NPackets),

"ns3::TracedValueCallback::Int32")

;

#endif

return tid;

 }

 CollApp ();

 virtual ~CollApp();

 void Setup (uint32_t node);

 void ReceivePacket (ns3::Ptr<const ns3::Packet>);

 void Compare (void);

 //array of throughputs per direction, app, and node. forelast element to hold maximum

 //last element to hold the difference to the other direction

Page 327

 float m_thp_array [NAPPSIND][NDIR][NNODES+2];

float plot_array [NAPPSIND][NDIR][DATAPOINTS];

// TracedValue<int32_t> NPackets;

private:

 virtual void StartApplication (void);

 virtual void StopApplication (void);

 bool m_running;

 EventId m_compEvent;

 uint32_t m_node;

 uint32_t m_appcycle_ind;

 uint32_t m_datapoint;

}

;

CollApp::CollApp ()

 : m_running (false),

m_compEvent (),

m_node (0),

m_appcycle_ind (0),

m_datapoint (0)

{

}

CollApp::~CollApp()

{

}

void

CollApp::Setup (uint32_t node)

{

 m_node = node;

}

Page 328

void

CollApp::StartApplication (void)

{

 m_running = true;

 //initialize throughput matrix

 for (uint32_t k = APP1MSIND; k < NAPPSIND; ++k)

{

for (uint32_t j = CW; j < NDIR; ++j)

{

for (uint32_t i = N0; i < NNODES + 2; ++i)

{

m_thp_array [k][j][i] = 0;

}

}

}

 //initialize plot array

 for (uint32_t k = APP1MSIND; k < NAPPSIND; ++k)

{

for (uint32_t j = CW; j < NDIR; ++j)

{

for (uint32_t i = 0; i < DATAPOINTS; ++i)

{

plot_array [k][j][i] = 0;

}

}

}

 Time tNext (1000000); //10 ms after simulation start

 m_compEvent = Simulator::Schedule (tNext, &CollApp::Compare, this);

// NS_LOG_INFO ("Compare throughputs " << tNext);

Page 329

}

void

CollApp::StopApplication (void)

{

 m_running = false;

}

//Receive Callback routine for the reception of nodes throughput feedbacks

void

CollApp::ReceivePacket (ns3::Ptr<const ns3::Packet> pPacket)

{

 uint8_t buffer [110]; //need at least 42 Bytes plus Header 24 Bytes

 uint8_t* p_buf = buffer;

 Ptr<const Packet> ppacket = pPacket;

 ppacket->CopyData (p_buf, ppacket->GetSize());

// NS_LOG_INFO ("size of float is = " << sizeof(float) << std::endl);

// NS_LOG_INFO ("rx callback: pointer = " << *ppacket << std::endl << std::endl);

// std::cout << "rx callback: pointer = " << *ppacket;

// NS_LOG_INFO ("Check In App: = " << this);

 if (m_running)

 {

 // fetch only UDP process data

if (buffer[0x17] == UDP)

 {

 //analyse throughput feedback frames and copy throughputs into array.

 if (buffer[0x2a] == FBF)

 {

 switch (buffer[0x2b]/*APPID*/)

 {

 case APP1MS:

Page 330

 m_appcycle_ind = APP1MSIND;

 break;

 case APP2MS:

 m_appcycle_ind = APP2MSIND;

 break;

 case APP4MS:

 m_appcycle_ind = APP4MSIND;

 break;

 case APP8MS:

 m_appcycle_ind = APP8MSIND;

 break;

 case APP16MS:

 m_appcycle_ind = APP16MSIND;

 break;

 case APP32MS:

 m_appcycle_ind = APP32MSIND;

 break;

 case ALLAPPS:

 m_appcycle_ind = ALLAPPSIND;

 break;

 default:

break;

}

for (uint32_t i = N0; i < NNODES; ++i)

{

m_thp_array [m_appcycle_ind][buffer[0x2c]][i] = *((float*) (&buffer [0x2e + (i * sizeof(float))]));

#if 1

NS_LOG_INFO ("+++++ CollApp: +++++ ");

uint32_t temp = *((uint32_t*)(&buffer[0x2b]));

Page 331

NS_LOG_INFO ("App cycle " << temp << "ms");

temp = *((uint32_t*)(&buffer[0x2c]));

NS_LOG_INFO ("Direction " << *((uint32_t*)(&buffer[0x2c])));

NS_LOG_INFO ("throughput of node " << i << " :" << m_thp_array [m_appcycle_ind][*((uint8_t*)&buffer[0x2c])][i]);

NS_LOG_INFO ("rx callback: packet size = " << ppacket->GetSize() << std::endl);

#endif

}

 }

 }

 }

#if 0

 if (packet->GetSize () > 0)

{

 NS_LOG_INFO ("Received packet ");

}

#endif

/*For further extensions: Make a coll app including forwarding for ACs, and a similar only forwarding app for nodes.

Create two circling throughput collection frames cw and ccw. Create a pass-further method with parameter direction.

In AC 1 make a buffer turnover of a buffer containing IP addresses in succession (to know where to pass to)

*/

}

// Compare the nodes throughputs

void

CollApp::Compare (void)

{

//sum up over the single application cycles per node and direction to build the overall bandwidth consumption (throughput) for app

dedicated control.

#if 1

float sum = 0;

Page 332

for (uint32_t i = N0; i < NNODES; ++i)

{

for (uint32_t j = CW; j < NDIR; ++j)

{

for (uint32_t k = APP1MSIND; k < (NAPPSIND-2); ++k)

{

sum = sum + m_thp_array [k][j][i];

}

m_thp_array [SUMAPPSIND][j][i] = sum;

#if 0

NS_LOG_INFO ("+++++ CollApp: for Plot+++++ ");

NS_LOG_INFO ("data point " << m_datapoint);

NS_LOG_INFO ("Sum of Node " << i);

NS_LOG_INFO ("for direction " << j);

NS_LOG_INFO ("Sum" << " :" << sum);

#endif

sum = 0;

}

}

#endif

//find maximum of each direction and application cycle and all application cycles and build and store difference

#if 1

float max=0;

static bool take = false;

for (uint32_t k = APP1MSIND; k < (NAPPSIND - 0); ++k)

{

for (uint32_t j = CW; j < NDIR; ++j)

{

for (uint32_t i = N0; i < NNODES; ++i)

Page 333

{

if (m_thp_array [k][j][i] > max)

{

max = m_thp_array [k][j][i];

}

}

m_thp_array [k][j][NNODES] = max;

if (m_datapoint < DATAPOINTS)

{

plot_array [k][j][m_datapoint] = max;

}

max = 0;

m_thp_array [k][j][NNODES + 1] = 0;

}

// only compare if both directions throughputs are available already

if ((m_thp_array [k][CW][NNODES] != 0) && (m_thp_array [k][CCW][NNODES] != 0))

{

m_thp_array [k][CW][NNODES + 1] = (m_thp_array [k][CW][NNODES] - m_thp_array [k][CCW][NNODES])/2;

NS_LOG_INFO ("maximum clockwise " << " :" << m_thp_array [k][CW][NNODES]);

NS_LOG_INFO ("maximum counterclockwise " << " :" << m_thp_array [k][CCW][NNODES]);

}

}

if (take == true) //store only every 2nd sample as CollApp is processed twice per millisecond for fast reaction

{

take = false;

m_datapoint++;

}

else

{

Page 334

take = true;

}

if (m_running)

{

Time tNext (500000/*m_intstep/2*/);

m_compEvent = Simulator::Schedule (tNext, &CollApp::Compare, this);

// NS_LOG_INFO ("Compare throughputs " << tNext);

}

#endif

}

//A TrafficApp only sends frames in one direction of the ring, usually to simulate traffic interference

class TrafficApp : public Application

{

public:

static TypeId GetTypeId (void)

 {

static TypeId tid = TypeId ("TrafficApp")

.SetParent (Object::GetTypeId ())

.SetGroupName ("MyGroup")

.AddConstructor<TrafficApp> ()

.AddTraceSource ("NPackets",

"Number of Packets to trace.",

MakeTraceSourceAccessor (&LDCApp::NPackets),

"ns3::TracedValueCallback::Int32")

;

return tid;

 }

 TrafficApp ();

 virtual ~TrafficApp();

Page 335

 void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t

appcycle, uint32_t acid);

 TracedValue<int32_t> NPackets;

private:

 virtual void StartApplication (void);

 virtual void StopApplication (void);

 void ScheduleTx (void);

 void ScheduleTxCycle (void);

 void SendPacket (void);

 Ptr<Packet> m_packet;

 Ptr<Socket> m_socket;

 Address m_peer;

 uint32_t m_packetSize;

 uint32_t m_nPackets;

 DataRate m_dataRate;

 EventId m_sendEvent;

 bool m_running;

 uint32_t m_packetsSent;

 uint32_t m_appcycle;

 uint32_t m_acid;

 uint32_t m_totalsent;

// Gnuplot2dDataset m_2ddataset;

// Gnuplot3dDataset m_3ddataset;

};

TrafficApp::TrafficApp ()

 : m_packet (0),

m_socket (0),

m_peer (),

m_packetSize (0),

Page 336

m_nPackets (0), 1141

m_dataRate (0), 1142

m_sendEvent (), 1143

m_running (false), 1144

m_packetsSent (0), 1145

m_appcycle (1), 1146

m_acid (0), 1147

m_totalsent (0) 1148

{ 1149

} 1150

TrafficApp::~TrafficApp() 1151

{ 1152

 m_socket = 0; 1153

} 1154

void 1155

TrafficApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t 1156

appcycle, uint32_t acid) 1157

{ 1158

 m_socket = socket; 1159

 m_peer = address; 1160

 m_packetSize = packetSize; 1161

 m_nPackets = nPackets; 1162

 m_dataRate = dataRate; 1163

 m_appcycle = appcycle; 1164

 m_acid = acid; 1165

} 1166

void 1167

TrafficApp::StartApplication (void) 1168

{ 1169

Page 337

 m_running = true;

 m_packetsSent = 0;

 m_socket->Bind ();

 m_socket->Connect (m_peer);

 uint8_t buffer[3];

 buffer[0]= (uint8_t) DF; //data frame

 buffer[1]= (uint8_t) m_acid; //id for packet (0xff for interference)

 buffer[2]= (uint8_t) m_appcycle; //application cycle in ms for packet

 uint8_t* buf = buffer;

 m_packet = Create<Packet> (buf, m_packetSize);

 SendPacket ();

}

void

TrafficApp::StopApplication (void)

{

 m_running = false;

 NS_LOG_INFO ("TrafficApp: Total packets sent: " << m_totalsent);

 if (m_sendEvent.IsRunning ())

{

Simulator::Cancel (m_sendEvent);

}

 if (m_socket)

{

m_socket->Close ();

}

}

void

TrafficApp::SendPacket (void)

{

Page 338

 m_socket->Send (m_packet);

 m_totalsent++;

 if (++m_packetsSent < m_nPackets)

{

ScheduleTx ();

}

 else

 {

 ScheduleTxCycle ();

 }

}

//Schedule sending within the communication cycle

void

TrafficApp::ScheduleTx (void)

{

 if (m_running)

{

//Schedule next frame

Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));

m_sendEvent = Simulator::Schedule (tNext, &TrafficApp::SendPacket, this);

 //NS_LOG_INFO ("ScheduleTx in " << tNext);

}

}

//Schedule sending for the application cycle

void

TrafficApp::ScheduleTxCycle (void)

{

 if (m_running)

{

Page 339

Time tNextCycle (Seconds ((m_appcycle/static_cast<double> (1000))- m_packetsSent * (m_packetSize * 8 / static_cast<double>

(m_dataRate.GetBitRate ()))));

m_sendEvent = Simulator::Schedule (tNextCycle, &TrafficApp::SendPacket, this);

 //NS_LOG_INFO ("ScheduleTxCycle in " << tNextCycle);

}

 m_packetsSent = 0;

}

int

main (int argc, char *argv[])

{

 //

 // explicit debugging for selected modules

 //

#if 1

 LogComponentEnable ("LDCSim", LOG_LEVEL_ALL);

#endif

#if 0

 LogComponentEnable ("CsmaNetDevice", LOG_LEVEL_ALL);

#endif

#if 0

 LogComponentEnable ("OnOffApplication", LOG_LEVEL_ALL);

#endif

#if 0

 LogComponentEnable ("Ipv4EndPoint", LOG_LEVEL_ALL);

#endif

#if 0

 LogComponentEnable ("UdpSocketImpl", LOG_LEVEL_ALL);

#endif

#if 0

Page 340

 LogComponentEnable ("Simulator", LOG_LEVEL_ALL);

#endif

#if 0

 LogComponentEnable ("Application", LOG_LEVEL_ALL);

#endif

#if 0

 LogComponentEnable ("OnOffApplication", LOG_LEVEL_ALL);

#endif

 //

 //command-line arguments

 //

 CommandLine cmd (__FILE__);

cmd.Parse (argc, argv);

 //

 // Explicitly create the nodes required by the topology (shown above).

 //

 NS_LOG_INFO ("rolling mean window size = " << RM_WINDOWSIZE);

 NS_LOG_INFO ("Create nodes.");

 Ptr<Node> AC1 = CreateObject<Node> ();

 Ptr<Node> n1 = CreateObject<Node> ();

 Ptr<Node> n2 = CreateObject<Node> ();

 Ptr<Node> n3 = CreateObject<Node> ();

 Ptr<Node> n4 = CreateObject<Node> ();

 Ptr<Node> n5 = CreateObject<Node> ();

 Ptr<Node> n6 = CreateObject<Node> ();

 Ptr<Node> n7 = CreateObject<Node> ();

 Ptr<Node> n8 = CreateObject<Node> ();

 Ptr<Node> n9 = CreateObject<Node> ();

 NS_LOG_INFO ("Build Topology");

Page 341

 CsmaHelper csma;

 csma.SetChannelAttribute ("DataRate", StringValue ("1000Mbps"));

 csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (0.002)));

 // Create the NetDevice containers for the csma links

 NetDeviceContainer Lan1Devices;

 NetDeviceContainer Lan2Devices;

 NetDeviceContainer Lan3Devices;

 NetDeviceContainer Lan4Devices;

 NetDeviceContainer Lan5Devices;

 NetDeviceContainer Lan6Devices;

 NetDeviceContainer Lan7Devices;

 NetDeviceContainer Lan8Devices;

 NetDeviceContainer Lan9Devices;

 NetDeviceContainer Lan10Devices;

 // put the nodes into containers for the LAN segments

 NodeContainer Lan1 (AC1, n1);

 NodeContainer Lan2 (n1, n2);

 NodeContainer Lan3 (n2, n3);

 NodeContainer Lan4 (n3, n4);

 NodeContainer Lan5 (n4, n5);

 NodeContainer Lan6 (n5, n6);

 NodeContainer Lan7 (n6, n7);

 NodeContainer Lan8 (n7, n8);

 NodeContainer Lan9 (n8, n9);

 NodeContainer Lan10 (n9, AC1);

 NodeContainer Seg1 (AC1, n1, n2, n3, n4);

 NodeContainer Seg2 (n5, n6, n7, n8, n9);

 NodeContainer AllSeg (Seg1, Seg2);

 // positions for the use of NetAnim

Page 342

 AnimationInterface::SetConstantPosition (Lan1.Get (0), 10, 50);

 AnimationInterface::SetConstantPosition (n1, 20, 30);

 AnimationInterface::SetConstantPosition (n2, 30, 30);

 AnimationInterface::SetConstantPosition (n3, 40, 30);

 AnimationInterface::SetConstantPosition (n4, 50, 30);

 AnimationInterface::SetConstantPosition (n5, 60, 50);

 AnimationInterface::SetConstantPosition (n6, 50, 70);

 AnimationInterface::SetConstantPosition (n7, 40, 70);

 AnimationInterface::SetConstantPosition (n8, 30, 70);

 AnimationInterface::SetConstantPosition (n9, 20, 70);

//Create the csma links

 Lan1Devices = csma.Install (NodeContainer (Lan1.Get (0), Lan1.Get (1)));

 Lan2Devices = csma.Install (NodeContainer (Lan2.Get (0), Lan2.Get (1)));

 Lan3Devices = csma.Install (NodeContainer (Lan3.Get (0), Lan3.Get (1)));

 Lan4Devices = csma.Install (NodeContainer (Lan4.Get (0), Lan4.Get (1)));

 Lan5Devices = csma.Install (NodeContainer (Lan5.Get (0), Lan5.Get (1)));

 Lan6Devices = csma.Install (NodeContainer (Lan6.Get (0), Lan6.Get (1)));

 Lan7Devices = csma.Install (NodeContainer (Lan7.Get (0), Lan7.Get (1)));

 Lan8Devices = csma.Install (NodeContainer (Lan8.Get (0), Lan8.Get (1)));

 Lan9Devices = csma.Install (NodeContainer (Lan9.Get (0), Lan9.Get (1)));

 Lan10Devices = csma.Install (NodeContainer (Lan10.Get (0), Lan10.Get (1)));

 //build new device containers for the bridge devices

NetDeviceContainer Bridge_n1Devices;

NetDeviceContainer Bridge_n2Devices;

NetDeviceContainer Bridge_n3Devices;

NetDeviceContainer Bridge_n4Devices;

NetDeviceContainer Bridge_n5Devices;

NetDeviceContainer Bridge_n6Devices;

NetDeviceContainer Bridge_n7Devices;

Page 343

NetDeviceContainer Bridge_n8Devices;

NetDeviceContainer Bridge_n9Devices;

NetDeviceContainer AllDevices;

Bridge_n1Devices.Add (Lan1Devices.Get(1));

Bridge_n1Devices.Add (Lan2Devices.Get(0));

Bridge_n2Devices.Add (Lan2Devices.Get(1));

Bridge_n2Devices.Add (Lan3Devices.Get(0));

Bridge_n3Devices.Add (Lan3Devices.Get(1));

Bridge_n3Devices.Add (Lan4Devices.Get(0));

Bridge_n4Devices.Add (Lan4Devices.Get(1));

Bridge_n4Devices.Add (Lan5Devices.Get(0));

Bridge_n5Devices.Add (Lan5Devices.Get(1));

Bridge_n5Devices.Add (Lan6Devices.Get(0));

Bridge_n6Devices.Add (Lan6Devices.Get(1));

Bridge_n6Devices.Add (Lan7Devices.Get(0));

Bridge_n7Devices.Add (Lan7Devices.Get(1));

Bridge_n7Devices.Add (Lan8Devices.Get(0));

Bridge_n8Devices.Add (Lan8Devices.Get(1));

Bridge_n8Devices.Add (Lan9Devices.Get(0));

Bridge_n9Devices.Add (Lan9Devices.Get(1));

Bridge_n9Devices.Add (Lan10Devices.Get(0));

AllDevices.Add (Lan1Devices.Get(0));

AllDevices.Add (Lan1Devices.Get(1));

AllDevices.Add (Lan2Devices.Get(0));

AllDevices.Add (Lan2Devices.Get(1));

AllDevices.Add (Lan3Devices.Get(0));

AllDevices.Add (Lan3Devices.Get(1));

AllDevices.Add (Lan4Devices.Get(0));

AllDevices.Add (Lan4Devices.Get(1));

Page 344

AllDevices.Add (Lan5Devices.Get(0));

AllDevices.Add (Lan5Devices.Get(1));

AllDevices.Add (Lan6Devices.Get(0));

AllDevices.Add (Lan6Devices.Get(1));

AllDevices.Add (Lan7Devices.Get(0));

AllDevices.Add (Lan7Devices.Get(1));

AllDevices.Add (Lan8Devices.Get(0));

AllDevices.Add (Lan8Devices.Get(1));

AllDevices.Add (Lan9Devices.Get(0));

AllDevices.Add (Lan9Devices.Get(1));

AllDevices.Add (Lan10Devices.Get(0));

AllDevices.Add (Lan10Devices.Get(1));

 //

 // Create the bridge NetDevice for packet switching.

 // Each node contains a bridge thereby forming the ring with two-port devices.

 //

 BridgeHelper Bridge_n1, Bridge_n2, Bridge_n3, Bridge_n4, Bridge_n5;

 BridgeHelper Bridge_n6, Bridge_n7, Bridge_n8, Bridge_n9;

 Bridge_n1.Install (n1, Bridge_n1Devices);

 Bridge_n2.Install (n2, Bridge_n2Devices);

 Bridge_n3.Install (n3, Bridge_n3Devices);

 Bridge_n4.Install (n4, Bridge_n4Devices);

 Bridge_n5.Install (n5, Bridge_n5Devices);

 Bridge_n6.Install (n6, Bridge_n6Devices);

 Bridge_n7.Install (n7, Bridge_n7Devices);

 Bridge_n8.Install (n8, Bridge_n8Devices);

 Bridge_n9.Install (n9, Bridge_n9Devices);

 // Add internet stack to the nodes. Stack is per node, not per NetDevice (interface)

 InternetStackHelper internet;

Page 345

 internet.Install (AllSeg);

 // "hardware" in place. Add IP addresses.

 // IP address is per NetDevice (interface) starting from PLC with 10.1.1.1

 // n1 clockwise (cw): 10.1.1.2 n6 cw: 10.1.1.12

 // n1 counterclockwise (ccw): 10.1.1.3 n6 ccw: 10.1.1.13

 // n2 cw: 10.1.1.4 n7 cw: 10.1.1.14

 // n2 ccw: 10.1.1.5 n7 ccw: 10.1.1.15

 // n3 cw: 10.1.1.6 n8 cw: 10.1.1.16

 // n3 ccw: 10.1.1.7 n8 ccw: 10.1.1.17

 // n4 cw: 10.1.1.8 n9 cw: 10.1.1.18

 // n4 ccw: 10.1.1.9 n9 ccw: 10.1.1.19

 // n5 cw: 10.1.1.10 PLC cw: 10.1.1.20

 // n5 ccw: 10.1.1.11 PLC ccw:10.1.1.1

 // etc....

 NS_LOG_INFO ("Assign IP Addresses.");

 Ipv4AddressHelper ipv4;

 ipv4.SetBase ("10.1.1.0", "255.255.255.0");

 ipv4.Assign (AllDevices);

 //

 // Create router nodes, initialize routing database and set up the routing

 // tables in the nodes. We excuse the bridge nodes from having to serve as

 // routers, since they don't even have internet stacks on them.

 //

 //Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

 NS_LOG_INFO ("Create Applications.");

 uint16_t port = 9; // Discard port (RFC 863)

 //*************Create AC 1 Applications************

 //************* 1 ms clockwise round the ring************

#if (1)

Page 346

 Ptr<Socket> LDCcw1msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCcw1msApp = CreateObject<LDCApp> ();

 Lan1.Get (0)->AddApplication (LDCcw1msApp);

 LDCcw1msSocket->BindToNetDevice (Lan1Devices.Get(0));

 LDCcw1msApp->SetStartTime (Seconds (SIMSTART));

 LDCcw1msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

 // Add the throughput collection and maximum calculation app.

 Ptr<CollApp> CollAC1App = CreateObject<CollApp> ();

 Lan1.Get (0)->AddApplication (CollAC1App);

 Lan1Devices.Get (0)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App));

 CollAC1App->Setup(N0);

 CollAC1App->SetStartTime (Seconds (SIMSTART + COLL_STARTDELAY));

 CollAC1App->SetStopTime (Seconds (SIMEND + COLL_ENDDELAY));

#ifndef NOCONTROL

#ifdef COMMONCONTROL

 //install and setup distribution controller for all app cycles

 Ptr<PIDCtrlApp> DistCtrlAC1_AllApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (DistCtrlAC1_AllApp);

 DistCtrlAC1_AllApp->Setup (0.2, 40, 0/*0.00001*/, 1000000, 0.0, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

 DistCtrlAC1_AllApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY));

 DistCtrlAC1_AllApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY));

 //install and setup flow controller

 Ptr<PIDCtrlApp> FlowCtrlAC1_AllApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (FlowCtrlAC1_AllApp);

 FlowCtrlAC1_AllApp->Setup (0.6, 48/*85*/, 0.000/*0.00029*/, 1000000, 0.0, &LDCcw1msApp->m_flowctrlin , &LDCcw1msApp-

>m_flowctrlout, "Flow");

 FlowCtrlAC1_AllApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY));

 FlowCtrlAC1_AllApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY));

Page 347

 LDCcw1msApp->Setup (LDCcw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 222, 40, DataRate ("1Gb/s"),

APP1MS, 1, false, 0, &CollAC1App->m_thp_array[ALLAPPSIND][CW][NNODES+1]);

#endif

#ifndef COMMONCONTROL

 //install and setup distribution controller

 Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp);

 DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

 DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY));

 DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY));

 //install and setup flow controller

 Ptr<PIDCtrlApp> FlowCtrlAC1_1msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (FlowCtrlAC1_1msApp);

 FlowCtrlAC1_1msApp->Setup (0.4,140, 0.00002, 1000000, 0.0, &LDCcw1msApp->m_flowctrlin , &LDCcw1msApp->m_flowctrlout, "Flow");

 FlowCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY));

 FlowCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY));

 LDCcw1msApp->Setup (LDCcw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 222, 15, DataRate ("1Gb/s"),

APP1MS, 1, false, 0, &CollAC1App->m_thp_array[APP1MSIND][CW][NNODES+1]);

#endif

#endif

 NS_LOG_INFO ("Application 1 ms clockwise created.");

#endif

 //************* 2 ms clockwise round the ring************

#if (1)

 Ptr<Socket> LDCcw2msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCcw2msApp = CreateObject<LDCApp> ();

 Lan1.Get (0)->AddApplication (LDCcw2msApp);

 LDCcw2msSocket->BindToNetDevice (Lan1Devices.Get(0));

Page 348

 LDCcw2msApp->SetStartTime (Seconds (SIMSTART));

 LDCcw2msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

#if 0

 //install and setup distribution controller

 Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp);

 DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

 DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY));

 DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY));

#endif

 //install and setup flow controller

 Ptr<PIDCtrlApp> FlowCtrlAC1_2msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (FlowCtrlAC1_2msApp);

 FlowCtrlAC1_2msApp->Setup (0.4, 145, 0.00002, 1000000, 0.0, &LDCcw2msApp->m_flowctrlin , &LDCcw2msApp->m_flowctrlout, "Flow");

 FlowCtrlAC1_2msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY));

 FlowCtrlAC1_2msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY));

 LDCcw2msApp->Setup (LDCcw2msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 223, 15, DataRate ("1Gb/s"),

APP2MS, 1, false, 0, &CollAC1App->m_thp_array[APP2MSIND][CW][NNODES+1]);

 NS_LOG_INFO ("Application 2 ms clockwise created.");

#endif

 //************* 4 ms clockwise round the ring************

#if (1)

 Ptr<Socket> LDCcw4msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCcw4msApp = CreateObject<LDCApp> ();

 Lan1.Get (0)->AddApplication (LDCcw4msApp);

 LDCcw4msSocket->BindToNetDevice (Lan1Devices.Get(0));

 LDCcw4msApp->SetStartTime (Seconds (SIMSTART));

 LDCcw4msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

Page 349

#if 0

 //install and setup distribution controller

 Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp);

 DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

 DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY));

 DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY));

#endif

 //install and setup flow controller

 Ptr<PIDCtrlApp> FlowCtrlAC1_4msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (FlowCtrlAC1_4msApp);

 FlowCtrlAC1_4msApp->Setup (0.4, 160, 0.00002, 1000000, 0.0, &LDCcw4msApp->m_flowctrlin , &LDCcw4msApp->m_flowctrlout, "Flow");

 FlowCtrlAC1_4msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY));

 FlowCtrlAC1_4msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY));

 LDCcw4msApp->Setup (LDCcw4msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 224, 20, DataRate ("1Gb/s"),

APP4MS, 1, false, 0, &CollAC1App->m_thp_array[APP4MSIND][CW][NNODES+1]);

 NS_LOG_INFO ("Application 4 ms clockwise created.");

#endif

 //************* 8 ms clockwise round the ring************

#if (1)

 Ptr<Socket> LDCcw8msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCcw8msApp = CreateObject<LDCApp> ();

 Lan1.Get (0)->AddApplication (LDCcw8msApp);

 LDCcw8msSocket->BindToNetDevice (Lan1Devices.Get(0));

 LDCcw8msApp->SetStartTime (Seconds (SIMSTART));

 LDCcw8msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

#if 0

 //install and setup distribution controller

Page 350

 Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp);

 DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

 DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY));

 DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY));

#endif

 //install and setup flow controller

 Ptr<PIDCtrlApp> FlowCtrlAC1_8msApp = CreateObject<PIDCtrlApp> ();

 Lan1.Get (0)->AddApplication (FlowCtrlAC1_8msApp);

 FlowCtrlAC1_8msApp->Setup (0.4, 220, 0.00002, 1000000, 0.0, &LDCcw8msApp->m_flowctrlin , &LDCcw8msApp->m_flowctrlout, "Flow");

 FlowCtrlAC1_8msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY));

 FlowCtrlAC1_8msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY));

 LDCcw8msApp->Setup (LDCcw8msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 225, 25, DataRate ("1Gb/s"),

APP8MS, 1, false, 0, &CollAC1App->m_thp_array[APP8MSIND][CW][NNODES+1]);

 NS_LOG_INFO ("Application 8 ms clockwise created.");

#endif

 //************* 1 ms counterclockwise round the ring************

 Ptr<Socket> LDCccw1msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCccw1msApp = CreateObject<LDCApp> ();

 LDCccw1msApp->Setup (LDCccw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 211, 15, DataRate ("1Gb/s"),

APP1MS, 1, true, &LDCcw1msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP1MS][CCW][NNODES+1]);

 Lan1.Get (0)->AddApplication (LDCccw1msApp);

 LDCccw1msSocket->BindToNetDevice (Lan10Devices.Get(1));

 LDCccw1msApp->SetStartTime (Seconds (SIMSTART));

 LDCccw1msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

 Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App));

 NS_LOG_INFO ("Application 1 ms counterclockwise created.");

 //************* 2 ms counterclockwise round the ring************

Page 351

#if 1

 Ptr<Socket> LDCccw2msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCccw2msApp = CreateObject<LDCApp> ();

 LDCccw2msApp->Setup (LDCccw2msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 212, 15, DataRate ("1Gb/s"),

APP2MS, 1, true, &LDCcw2msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP2MS][CCW][NNODES+1]);

 Lan1.Get (0)->AddApplication (LDCccw2msApp);

 LDCccw2msSocket->BindToNetDevice (Lan10Devices.Get(1));

 LDCccw2msApp->SetStartTime (Seconds (SIMSTART));

 LDCccw2msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

 Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App));

 NS_LOG_INFO ("Application 2 ms counterclockwise created.");

 //************* 4 ms counterclockwise round the ring************

 Ptr<Socket> LDCccw4msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCccw4msApp = CreateObject<LDCApp> ();

 LDCccw4msApp->Setup (LDCccw4msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 213, 20, DataRate ("1Gb/s"),

APP4MS, 1, true, &LDCcw4msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP4MS][CCW][NNODES+1]);

 Lan1.Get (0)->AddApplication (LDCccw4msApp);

 LDCccw4msSocket->BindToNetDevice (Lan10Devices.Get(1));

 LDCccw4msApp->SetStartTime (Seconds (SIMSTART));

 LDCccw4msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

 Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App));

 NS_LOG_INFO ("Application 4 ms counterclockwise created.");

 //************* 8 ms counterclockwise round the ring************

 Ptr<Socket> LDCccw8msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ());

 Ptr<LDCApp> LDCccw8msApp = CreateObject<LDCApp> ();

 LDCccw8msApp->Setup (LDCccw8msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 214, 25, DataRate ("1Gb/s"),

APP8MS, 1, true, &LDCcw8msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP8MS][CCW][NNODES+1]);

 Lan1.Get (0)->AddApplication (LDCccw8msApp);

 LDCccw8msSocket->BindToNetDevice (Lan10Devices.Get(1));

Page 352

 LDCccw8msApp->SetStartTime (Seconds (SIMSTART));

 LDCccw8msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY));

 Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App));

 NS_LOG_INFO ("Application 8 ms counterclockwise created.");

#endif

 //*************Create Interference Loads************

 //************* Interference 1 on n2 clockwise to n4, cycle 1 ms ************

#ifdef INTERFERENCE_1MS

 Ptr<Socket> IFn2n4cw1msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<TrafficApp> IFn2n4cw1msApp = CreateObject<TrafficApp> ();

 IFn2n4cw1msApp->Setup (IFn2n4cw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.8"), port)), 200, 15, DataRate

("1Gb/s"), APP1MS, 1);

 Lan2.Get (0)->AddApplication (IFn2n4cw1msApp);

 IFn2n4cw1msSocket->BindToNetDevice (Lan2Devices.Get(0));

 IFn2n4cw1msApp->SetStartTime (Seconds (INTERFERENCE_START_1MS));

 IFn2n4cw1msApp->SetStopTime (Seconds (SIMEND/*INTERFERENCE_STOP_1MS*/));

 NS_LOG_INFO ("Interference clockwise from n2 to n4 created.");

#endif

 //************* Interference 2 on n2 clockwise to n4, cycle 2 ms ************

#ifdef INTERFERENCE_2MS

 Ptr<Socket> IFn2n4cw2msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<TrafficApp> IFn2n4cw2msApp = CreateObject<TrafficApp> ();

 IFn2n4cw2msApp->Setup (IFn2n4cw2msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.8"), port)), 200, 20, DataRate

("1Gb/s"), APP2MS, 1);

 Lan2.Get (0)->AddApplication (IFn2n4cw2msApp);

 IFn2n4cw2msSocket->BindToNetDevice (Lan2Devices.Get(0));

 IFn2n4cw2msApp->SetStartTime (Seconds (INTERFERENCE_START_2MS));

 IFn2n4cw2msApp->SetStopTime (Seconds (SIMEND));

 NS_LOG_INFO ("Interference clockwise from n2 to n4 created.");

Page 353

#endif

 //************* Interference 3 on n1 clockwise to n5, cycle 4 ms ************

#ifdef INTERFERENCE_4MS

 Ptr<Socket> IFn1n5cw4msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<TrafficApp> IFn1n5cw4msApp = CreateObject<TrafficApp> ();

 IFn1n5cw4msApp->Setup (IFn1n5cw4msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.10"), port)), 200, 30, DataRate

("1Gb/s"), APP4MS, 1);

 Lan2.Get (0)->AddApplication (IFn1n5cw4msApp);

 IFn1n5cw4msSocket->BindToNetDevice (Lan2Devices.Get(0));

 IFn1n5cw4msApp->SetStartTime (Seconds (INTERFERENCE_START_4MS));

 IFn1n5cw4msApp->SetStopTime (Seconds (SIMEND));

 NS_LOG_INFO ("Interference clockwise from n1 to n5 created.");

#endif

 //************* Interference 4 on n1 clockwise to n5, cycle 8 ms ************

#ifdef INTERFERENCE_8MS

 Ptr<Socket> IFn1n5cw8msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ());

 Ptr<TrafficApp> IFn1n5cw8msApp = CreateObject<TrafficApp> ();

 IFn1n5cw8msApp->Setup (IFn1n5cw8msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.10"), port)), 200, 40, DataRate

("1Gb/s"), APP8MS, 1);

 Lan2.Get (0)->AddApplication (IFn1n5cw8msApp);

 IFn1n5cw8msSocket->BindToNetDevice (Lan2Devices.Get(0));

 IFn1n5cw8msApp->SetStartTime (Seconds (INTERFERENCE_START_8MS));

 IFn1n5cw8msApp->SetStopTime (Seconds (SIMEND));

 NS_LOG_INFO ("Interference clockwise from n1 to n5 created.");

#endif

 //*************Create rolling mean throughput measurement applications************

 //*** on n3 clockwise***

#if 1

 // 1 ms integration time

Page 354

 Ptr<RollMeanApp> RollMeanAC1APP1I1_n3d1App = CreateObject<RollMeanApp> ();

 Lan4.Get (0)->AddApplication (RollMeanAC1APP1I1_n3d1App);

 Ptr<Socket> RollMeanAC1APP1I1_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP1I1_n3d1App->Setup (RollMeanAC1APP1I1_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)),

60, DataRate ("1Gb/s"), CW, APP1MS, INT1MS, N3, true);

 RollMeanAC1APP1I1_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0));

 RollMeanAC1APP1I1_n3d1App->SetStartTime (Seconds (SIMSTART + RM_1MS_DELAY));

 RollMeanAC1APP1I1_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

 NS_LOG_INFO ("Rolling mean 1 ms on node 3 clockwise created.");

 Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP1I1_n3d1App));

#if 1

 // 2 ms integration time

 Ptr<RollMeanApp> RollMeanAC1APP2I2_n3d1App = CreateObject<RollMeanApp> ();

 Lan4.Get (0)->AddApplication (RollMeanAC1APP2I2_n3d1App);

 Ptr<Socket> RollMeanAC1APP2I2_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP2I2_n3d1App->Setup (RollMeanAC1APP2I2_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)),

60, DataRate ("1Gb/s"), CW, APP2MS, INT2MS, N3, true);

 RollMeanAC1APP2I2_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0));

 RollMeanAC1APP2I2_n3d1App->SetStartTime (Seconds (SIMSTART + RM_2MS_DELAY));

 RollMeanAC1APP2I2_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

 NS_LOG_INFO ("Rolling mean 2 ms on node 3 clockwise created.");

 Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP2I2_n3d1App));

 // 4 ms integration time

 Ptr<RollMeanApp> RollMeanAC1APP4I4_n3d1App = CreateObject<RollMeanApp> ();

 Lan4.Get (0)->AddApplication (RollMeanAC1APP4I4_n3d1App);

 Ptr<Socket> RollMeanAC1APP4I4_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP4I4_n3d1App->Setup (RollMeanAC1APP4I4_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)),

60, DataRate ("1Gb/s"), CW, APP4MS, INT4MS, N3, true);

 RollMeanAC1APP4I4_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0));

Page 355

 RollMeanAC1APP4I4_n3d1App->SetStartTime (Seconds (SIMSTART + RM_4MS_DELAY));

 RollMeanAC1APP4I4_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

 NS_LOG_INFO ("Rolling mean 4 ms on node 3 clockwise created.");

 Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP4I4_n3d1App));

 // 8 ms integration time

 Ptr<RollMeanApp> RollMeanAC1APP8I8_n3d1App = CreateObject<RollMeanApp> ();

 Lan4.Get (0)->AddApplication (RollMeanAC1APP8I8_n3d1App);

 Ptr<Socket> RollMeanAC1APP8I8_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP8I8_n3d1App->Setup (RollMeanAC1APP8I8_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)),

60, DataRate ("1Gb/s"), CW, APP8MS, INT8MS, N3, true);

 RollMeanAC1APP8I8_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0));

 RollMeanAC1APP8I8_n3d1App->SetStartTime (Seconds (SIMSTART + RM_8MS_DELAY));

 RollMeanAC1APP8I8_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

 NS_LOG_INFO ("Rolling mean 8 ms on node 3 clockwise created.");

 Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP8I8_n3d1App));

#endif

#endif

#if 0

// 32 ms integration time

Ptr<RollMeanApp> RollMeanAC1APP32I32_n3d1App = CreateObject<RollMeanApp> ();

Lan4.Get (0)->AddApplication (RollMeanAC1APP32I32_n3d1App);

Ptr<Socket> RollMeanAC1APP32I32_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ());

RollMeanAC1APP32I32_n3d1App->Setup (RollMeanAC1APP32I32_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"),

port)), 60, DataRate ("1Gb/s"), CW, APP1MS, 32/*INT8MS*/, N3, true);

RollMeanAC1APP32I32_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0));

RollMeanAC1APP32I32_n3d1App->SetStartTime (Seconds (SIMSTART /* + RM_1MS_DELAY*/));

RollMeanAC1APP32I32_n3d1App->SetStopTime (Seconds (SIMEND /*+ RM_ENDDELAY*/));

NS_LOG_INFO ("Rolling mean on node 3 clockwise created.");

Page 356

Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket,

RollMeanAC1APP32I32_n3d1App));

#endif

#if (0)

#endif

 //*** on n7 counterclockwise***

#if 1

 // 1 ms integration time

 Ptr<RollMeanApp> RollMeanAC1APP1I1_n7d0App = CreateObject<RollMeanApp> ();

 Lan7.Get (1)->AddApplication (RollMeanAC1APP1I1_n7d0App);

 Ptr<Socket> RollMeanAC1APP1I1_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP1I1_n7d0App->Setup (RollMeanAC1APP1I1_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)),

60, DataRate ("1Gb/s"), CCW, APP1MS, INT1MS, N7, true);

 RollMeanAC1APP1I1_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1));

 RollMeanAC1APP1I1_n7d0App->SetStartTime (Seconds (SIMSTART + RM_1MS_DELAY));

 RollMeanAC1APP1I1_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

 NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created.");

 Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP1I1_n7d0App));

#endif

#if 1

 // 2 ms integration time

 Ptr<RollMeanApp> RollMeanAC1APP2I2_n7d0App = CreateObject<RollMeanApp> ();

 Lan7.Get (1)->AddApplication (RollMeanAC1APP2I2_n7d0App);

 Ptr<Socket> RollMeanAC1APP2I2_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP2I2_n7d0App->Setup (RollMeanAC1APP2I2_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)),

60, DataRate ("1Gb/s"), CCW, APP2MS, INT2MS, N7, true);

 RollMeanAC1APP2I2_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1));

 RollMeanAC1APP2I2_n7d0App->SetStartTime (Seconds (SIMSTART + RM_2MS_DELAY));

 RollMeanAC1APP2I2_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

Page 357

 NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created.");

 Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP2I2_n7d0App));

 // 4 ms integration time

 Ptr<RollMeanApp> RollMeanAC1APP4I4_n7d0App = CreateObject<RollMeanApp> ();

 Lan7.Get (1)->AddApplication (RollMeanAC1APP4I4_n7d0App);

 Ptr<Socket> RollMeanAC1APP4I4_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP4I4_n7d0App->Setup (RollMeanAC1APP4I4_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)),

60, DataRate ("1Gb/s"), CCW, APP4MS, INT4MS, N7, true);

 RollMeanAC1APP4I4_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1));

 RollMeanAC1APP4I4_n7d0App->SetStartTime (Seconds (SIMSTART + RM_4MS_DELAY));

 RollMeanAC1APP4I4_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

 NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created.");

 Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP4I4_n7d0App));

 // 8 ms integration time

 Ptr<RollMeanApp> RollMeanAC1APP8I8_n7d0App = CreateObject<RollMeanApp> ();

 Lan7.Get (1)->AddApplication (RollMeanAC1APP8I8_n7d0App);

 Ptr<Socket> RollMeanAC1APP8I8_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ());

 RollMeanAC1APP8I8_n7d0App->Setup (RollMeanAC1APP8I8_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)),

60, DataRate ("1Gb/s"), CCW, APP8MS, INT8MS, N7, true);

 RollMeanAC1APP8I8_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1));

 RollMeanAC1APP8I8_n7d0App->SetStartTime (Seconds (SIMSTART + RM_8MS_DELAY));

 RollMeanAC1APP8I8_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY));

 NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created.");

 Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP8I8_n7d0App));

#endif

 NS_LOG_INFO ("Configure Tracing.");

 //

 // Configure tracing of all enqueue, dequeue, and NetDevice receive events.

 // Trace output will be sent to the file .tr"

Page 358

 //

 AsciiTraceHelper ascii;

 csma.EnableAsciiAll (ascii.CreateFileStream ("LDCv011.tr"));

 //

 // tcpdump traces; each interface will be traced.

 // The output files will be named:

 // LDCv011-<nodeId>-<interfaceId>.pcap

 // and can be read by the "tcpdump -r" command (use "-tt" option to

 // display timestamps correctly)

 //

 csma.EnablePcapAll ("LDCv011", false);

#if 0

 // Set the bounding box for animation

 //csma.BoundingBox (1, 1, 100, 100);

 std::string animFile = "dlb-animation.xml" ; // Name of file for animation output

 // Create the animation object and configure for specified output

 AnimationInterface anim (animFile);

 //Create link description for NetAnim

 anim.UpdateNodeDescription (PLC, "PLC");

 //Create link description for NetAnim

 anim.UpdateLinkDescription (PLC, n1, "Link 1");//#Todo: Check cms helper why not serving xml file with link info like ptp

 anim.EnablePacketMetadata (); // Optional

 anim.EnableIpv4L3ProtocolCounters (Seconds (0), Seconds (0.1)); // Optional

#endif

 //

 // Run Simulation.

 //

 NS_LOG_INFO ("Run Simulation.");

 Simulator::Run ();

Page 359

// std::cout << "Animation Trace file created:" << animFile.c_str ()<< std::endl;

 //*********** Create data files for plot***************

 std::ofstream data_uc7p1_2D;

 data_uc7p1_2D.open ("data_uc7p1_2D.txt");

 // std::ofstream data_uc6p4_3D;

 // data_uc6p4_3D.open ("data_uc6p4_3D.txt");

#ifdef PLOT_2D

 // 2D plots

// the 32 ms integration time collective measurement

 for (uint32_t j = 0; j < DATAPOINTS -4; j = j + DATASTEP)

{

 //stop for zero values before end

// if (CollAC1App->plot_array[SUMAPPSIND][j] != 0)

// {

 //for result over all apps load documentation

 data_uc7p1_2D << j << " " << CollAC1App->plot_array[SUMAPPSIND][CW][j] << " " << CollAC1App-

>plot_array[SUMAPPSIND][CCW][j]<< std::endl ;

 //for single app cycle optimization

 //data_uc7p1_2D << j << " " << RollMeanAC1APP2I2_n3d1App->p_throughput[0][j] << " " << RollMeanAC1APP2I2_n7d0App-

>p_throughput[0][j]<< std::endl ;

// }

}

#if 0

 // the contribution to the 3D comparison plot

 for (uint32_t j = 0; j < DATAPOINTS -4; j = j + DATASTEP)

{

 //stop for zero values before end

 if (RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0)

{

Page 360

 data_uc6p4_3D << "4" << " " << j << " " << RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] << " " <<

RollMeanAC1APP1I8_n7d0App->p_throughput[APPSCOLLECTIVE][j]<< std::endl ;

 }

}

 data_uc6p4_3D << std::endl;

#endif

#endif

#ifdef PLOT_3D

 // 3D plots

 // the 1 ms integration time collective measurement

 for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP)

{

 //stop for zero values before end

 if (RollMeanAC1APP1I1_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0)

 {

 data_cw << "1" << " " << j << " " << RollMeanAC1APP1I1_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ;

 }

}

 data_cw << " " << std::endl ;

 // the 2 ms integration time collective measurement

for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP)

{

if (RollMeanAC1APP1I2_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0)

 {

data_cw << "2" << " " << j << " " << RollMeanAC1APP1I2_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ;

 }

}

data_cw << " " << std::endl ;

// the 4 ms integration time collective measurement

Page 361

for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP)

{

 if (RollMeanAC1APP1I4_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0)

 {

 data_cw << "4" << " " << j << " " << RollMeanAC1APP1I4_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ;

 }

}

data_cw << " " << std::endl ;

// the 8 ms integration time collective measurement

for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP)

{

if (RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0)

 {

data_cw << "8" << " " << j << " " << RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ;

 }

}

data_cw << " " << std::endl ;

#endif

 data_uc7p1_2D.close();

// data_uc6p4_3D.close();

 //*********** Create 2D plot file ***************

#if 1

 std::ofstream PlotFile_cw;

 PlotFile_cw.open ("PlFile_uc7p1_2D.plt");

 PlotFile_cw << "set terminal png" << std::endl;

 PlotFile_cw << "set output \"Plot_uc7p1_2D.png\"" << std::endl;

 PlotFile_cw << "set title \"Throughput, 1 AC, Mixed Appl. Interf., Dedicated Flow Control\"" << std::endl;

 PlotFile_cw << "set xlabel \"Simulation time t in ms\"" << std::endl;

 PlotFile_cw << "set ylabel \"Throughput Âµ(t) in %\"" << std::endl;

Page 362

 PlotFile_cw << "set xrange [0:400]" << std::endl;

 PlotFile_cw << "set yrange [0:25]" << std::endl;

 //PlotFile_cw << "set grid" << std::endl;

#endif

#if 0 //with smoothing

 PlotFile_cw << "plot \"data_cw.txt\" using 1:2 smooth acsplines with linespoint title \"clockwise at n3\" lw 2 pi 10,\

 \"data_cw.txt\" using 1:3 smooth acsplines with linespoint title \"counterclockwise at n7\" lw 2 pi 10" << std::endl;

#endif

#if 0 //without smoothing

 PlotFile_cw << "plot \"data_cw.txt\" using 1:2 with linespoint title \"clockwise at n3\" lw 2 pi 10,\

 \"data_cw.txt\" using 1:3 with linespoint title \"counterclockwise at n7\" lw 2 pi 10" << std::endl;

#endif

#if 0

 PlotFile_cw << "plot \"data_cw.txt\" using 1:2 with linespoint title \"clockwise n3\" lw 2,\

 \"data_cw.txt\" using 1:3 with linespoint title \"counterclockwise n7\" lw 2,\

 \"data_cw.txt\" using 1:4 with linespoint title \"counterclockwise n8\" lw 2,\

 \"data_cw.txt\" using 1:5 with linespoint title \"counterclockwise n9\" lw 2" << std::endl;

#endif

#if 0

 //*********** Create 3D plot file ***************

 std::ofstream PlotFile3D_cw;

 PlotFile3D_cw.open ("PlFile_uc6p4_3D.plt");

 PlotFile3D_cw << "set terminal png font \"arial,10\"" << std::endl;

 PlotFile3D_cw << "set output \"Plot_uc6p4_3D.png\"" << std::endl;

 PlotFile3D_cw << "set title \"Throughput, 1 AC, Mixed Appl., 8 to 32 ms RM-Int., Flow Control\"" << std::endl;

 PlotFile3D_cw << "set xlabel \"\\n x: Sub-use-case Nr. 6.x\" rotate parallel" << std::endl;

 PlotFile3D_cw << "set ylabel \"\\n y: Simulation time t in ms\" rotate parallel" << std::endl;

 PlotFile3D_cw << "set zlabel \"z: Throughput Âµ(t) in %\" rotate parallel" << std::endl;

 PlotFile3D_cw << "set xrange [0:5]" << std::endl;

Page 363

 PlotFile3D_cw << "set yrange [0:400]" << std::endl;

 PlotFile3D_cw << "set zrange [0:25]" << std::endl;

 PlotFile3D_cw << "set grid x y z vertical" << std::endl;

 PlotFile3D_cw << "set xyplane at 0" << std::endl;

 PlotFile3D_cw << "set view 70,55,1" << std::endl;

#endif

 #if 0

 std::ofstream PlotFile_cw;

 PlotFile_cw.open ("PlFile_cw.plt");

 PlotFile_cw << "set terminal png" << std::endl;

 PlotFile_cw << "set output \"NPackets_cw.png\"" << std::endl;

 PlotFile_cw << "set title \"Throughput, 1 AC, Mixed Appl., 1 to 8 ms RM-Int., No Control\"" << std::endl;

 PlotFile_cw << "set xlabel \"\\n x: Integration interval T_i_n_t in ms\" rotate parallel" << std::endl;

 PlotFile_cw << "set ylabel \"\\n y: Simulation time t in ms\" rotate parallel" << std::endl;

 PlotFile_cw << "set zlabel \"z: Throughput Âµ(t) in %\" rotate parallel" << std::endl;

 PlotFile_cw << "set xrange [0:8.5]" << std::endl;

 PlotFile_cw << "set yrange [0:100]" << std::endl;

 PlotFile_cw << "set zrange [0:25]" << std::endl;

 PlotFile_cw << "set grid x y z vertical" << std::endl;

 PlotFile_cw << "set xyplane at 0" << std::endl;

#endif

#if 1 //2D with smoothing

 PlotFile_cw << "plot \"data_uc7p1_2D.txt\" using 1:2 smooth acsplines with linespoint title \"clockwise at n3\" lw 2 pi 10,\

 \"data_uc7p1_2D.txt\" using 1:3 smooth acsplines with linespoint title \"counterclockwise at n7\" lw 2 pi 10" << std::endl;

#endif

#if 0 //3D without smoothing (not available in 3D)

 PlotFile3D_cw << "splot \"data_uc6p1_3D.txt\" using 1:2:3 with linespoint title \"uc6.1: No Ctrl., 8 ms RM-Int\" lw 2 pi 80,\

 \"data_uc6p2_3D.txt\" using 1:2:3 with linespoint title \"uc6.2: Flow Ctrl., 8 ms RM-Int\" lw 2 pi 80,\

 \"data_uc6p3_3D.txt\" using 1:2:3 with linespoint title \"uc6.3: Flow Ctrl., 32 ms RM-Int, no opt\" lw 2 pi 80,\

Page 364

 \"data_uc6p4_3D.txt\" using 1:2:3 with linespoint title \"uc6.4: Flow Ctrl., 32 ms RM-Int, opt\" lw 2 pi 80" <<

std::endl;

#endif

#if 0 //3D without smoothing (not available in 3D

 PlotFile_cw << "splot \"data_cw.txt\" using 1:2:3 with linespoint title \"clockwise at n3\" lw 1.5 pi 10" << std::endl;

#endif

#if 0

 PlotFile_cw << "plot \"data_cw.txt\" using 1:2 with linespoint title \"clockwise n3\" lw 2,\

 \"data_cw.txt\" using 1:3 with linespoint title \"counterclockwise n7\" lw 2,\

 \"data_cw.txt\" using 1:4 with linespoint title \"counterclockwise n8\" lw 2,\

 \"data_cw.txt\" using 1:5 with linespoint title \"counterclockwise n9\" lw 2" << std::endl;

#endif

 PlotFile_cw.close();

// PlotFile3D_cw.close();

 Simulator::Destroy ();

 NS_LOG_INFO ("Done.");

}

