
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

A Method for Optimum Control of  

Dynamic Load Distribution in 

 Time-sensitive Communication Networks for  

Manufacturing Automation 

 

    

 

Thomas Weichlein 

 

A thesis submitted to 

The University of Gloucestershire 

in accordance with the requirements of the degree of 

Doctor of Philosophy 

in the School of Computing and Engineering 

 

 

June 2024 

Word Count: 73707 

 

 

 

 

 



  Page 2 

Abstract 

Communication between end stations in a contemporary communication network 

typically occurs over several paths for media redundancy and throughput 

enhancement. To use all paths as evenly as possible, load balancing or load 

distribution methods are applied, mainly in higher level information technology (IT) 

networks such as Internet Service Provider (ISP) networks, campus networks, and 

mobile access networks. Automation networks of operations technology (OT), 

particularly Manufacturing Automation Networks (MAN), have rarely been subject to 

load distribution control. IEEE Time Sensitive Networks (TSN) are a relatively young 

network development that offers, among other features, redundant paths for 

automation networks, the essential precondition for load distribution. Furthermore, 

the TSN framework defines several traffic shapers and schedulers which are expected 

to have different impacts on Load Distribution Control (LDC). However, the selection 

of the right traffic shaper or scheduler for an automation network is challenging. Their 

influence depends on various network parameters such as network extension, 

network cycles, application cycles, and the amount of data per traffic class and per 

network cycle. This thesis proposes, designs, and develops a method for optimum 

control of dynamic load distribution in time-sensitive communication networks for 

manufacturing automation.  

The research philosophy underlying this research project is positivism. Literature 

review (textual analysis) is used to obtain secondary data on relevant use cases of 

automation communication, control theory concepts, and network standards. To 

obtain the primary data on the control results, simulation is used.  

Firstly, the influence of different TSN MAN network parameters and properties on LDC 

is investigated. Secondly, the data flow control is analysed as a subsequent control 

task for LDC under the influence of the different traffic shapers and traffic schedulers. 

Based on these results, thirdly, a dedicated optimum load distribution control method 

for MAN with a single automation controller (AC) is proposed. Then, this optimised 

LDC method is applied to a network with multiple ACs.  
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Contribution: The results of the analysis and evaluation of the influence of the various 

automation parameters as well as the TSN shapers and schedulers provide a detailed 

picture of the data flow control options within TSN MAN. The derivation of control 

properties for data flow control and load distribution control as well as their control 

simulation and evaluation of the results create the prerequisites for the design of LDC 

solutions in these networks. A strong influence of the application cycles on the control 

dynamics and stability is demonstrated. It is further shown that network nodes using 

SPQ, SPQ with Preemption, and EST provide rather low path delays. They are the best 

shaper and scheduler selections in high dynamic networks and in larger networks. The 

application of network nodes using CQF and ATS can result in significantly high path 

delay times, and thus, high control dead times, especially in larger networks with a 

high hop count. Therefore, they are recommended only for smaller network sizes with 

lower dynamic requirements. Based on this preliminary work, the study also provides 

optimised control solutions for single and multiple AC LDCs, both with and without 

mutual AC interference. The results based on network simulations confirm the 

suitability of these solutions and show that the overall convergence time improves. 

Thus, the present study provides a new comprehensive view and solutions to the 

possibilities of LDC within TSN MAN that have been lacking in the research literature 

so far. 
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Chapter 1      Introduction 

1.1 Overview 

This chapter provides background on how the research project is embedded in the 

current technology of industrial communication networks and how the discipline 

of control engineering contributes to possible solutions for load distribution. It 

also explains why this project is important, its overall aim and research objectives, 

the contributions to the new knowledge generation, and how the thesis is 

structured. 

1.2 Project Background 

The continuously increasing communication demand in the industry is primarily 

due to the “Industry 4.0” industrial revolution. This implies a significant expansion 

in the digitalisation of the production process and vertical communication 

connectivity from cloud-based servers down to the sensor level in an industrial 

plant. This increase implies not only a growing demand for data volume and 

communication speed, but also a higher need for reliable and deterministic data 

transport. These developments have led in a first step to the development of the 

Audio Video Bridging (AVB) standard (IEEE 802.1BA, 2011) and finally to the 

creation of a “Time-Sensitive Networks (TSN)” (Finn, 2018; Lo Bello & Steiner, 

2019) Task Group (TG) as part of the IEEE 802.1 Working Group (WG). TSN is 

defined by the associated IEEE standards, some of which are still being developed 

and extend the IEEE 802.1 standards: 

• Forwarding and Queuing Enhancements for Time-Sensitive Streams (IEEE 

802.1Qav, 2009), 

• Enhancements for Scheduled Traffic (EST) (IEEE 802.1Qbv, 2015), 

• Frame Preemption (FP) (IEEE 802.1Qbu, 2015), 

• Path Control and Reservation (PCR) (IEEE 802.1Qca, 2015), 

• Per-Stream Filtering and Policing (PSFP) (IEEE 802.1Qci, 2016), 

• Cyclic Queuing and Forwarding (CQF) (IEEE 802.1Qch, 2019), 
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• Frame Replication and Elimination for Reliability (FRER) (IEEE 802.1CB, 2017), 

• Stream Reservation Protocol (SRP) Enhancements and Performance 

Improvements (IEEE 802.1Qcc, 2018), 

• Link-local Registration Protocol (LRP) (IEEE 802.1CS, 2019) 

• Timing and Synchronization for Time-Sensitive Applications (gPTP) (IEEE 

802.1AS, 2020), 

• Asynchronous Traffic Shaper (ATS) (IEEE 802.1Qcr, 2020), 

• Resource Allocation Protocol (RAP) (IEEE 802.1Qdd, 2023). 

Thereby, TSN defines various new functionalities and different traffic shapers and 

schedulers, such as the Credit Based Shaper (CBS) (IEEE 802.1Qav, 2009; IEEE 

802.1Qcc, 2018), EST, CQF, and ATS. It also allows the extension of the classical 

Strict Priority Queuing (SPQ) (IEEE 802.1Q, 2022) with stream reservation (SR) or 

bandwidth resource reservation (RR) (IEEE 802.1Q, 2022; IEEE 802.1Qdd, 2023), 

and frame preemption (FP) (IEEE 802.1Qbu, 2015; IEEE 802.3br, 2016), making 

SPQ more deterministic and faster. The goal of a TSN is to achieve highly efficient 

and deterministic data transport (Nasrallah et al., 2019). TSN also allow for the use 

of multiple communication paths, primarily to provide seamless media 

redundancy according to IEEE 802.1CB (IEEE 802.1CB, 2017), which defines "Frame 

Replication and Elimination for Reliability (FRER)." 

Similar to TSN networks for industry, increasingly loaded network paths have also 

occurred earlier in general IT networks, such as Internet or campus 

communication networks. This often led to network congestion and hence data 

loss. When these networks were initially not set up redundantly, that is, when only 

one communication path was available, researchers applied congestion control 

solutions to cope with the increasing congestion loss of data traffic. The research 

community differentiates between open-loop and closed-loop congestion control.  

With open-loop congestion control (Wu & Mark, 1993), the approach is to stretch 

ingress traffic. This can be achieved, for example, according to a principle called 

“Leaky Bucket principle”.  This symbolises that traffic bursts are converted into a 

constant data rate.  
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A different approach to congestion control is closed-loop congestion control. 

Here, congestion control becomes active only when congestion on a network path 

actually occurs. Early closed-loop congestion control was applied in combination 

with the widely used Open Systems Interconnection (OSI) layer 4 transport control 

protocol TCP (IETF RFC 793, 1981) which led to a variety of TCP congestion control 

algorithms (Hasegawa et al., 2000; IETF RFC 5681, 2009).  

Since the late 1990s, general IT networks for Internet or campus communications, 

both wired and wireless, have been increasingly set up as multi-paths networks. 

In addition to the advantages of redundancy, the availability of multiple paths 

allows the use of load sharing, load balancing, or load distribution concepts. All 

three expressions are used as equivalent terms in the research literature and in 

this thesis.  

The difference between load balancing and congestion control is that load 

balancing can shift load peaks to an alternate path. In the ideal case, the result is 

that all available paths are evenly loaded. The major advantage is that traffic does 

not need to be delayed to resolve upcoming congestion. This makes load 

balancing especially interesting in combination with time critical control data (CD) 

for automation purposes.  

Load balancing is not only found in different network areas such as ISP networks 

(Wang et al., 2006), campus networks (Elwalid et al., 2002), or access networks for 

mobile connectivity (Ahmad et al., 2015), but is also used in combination within 

different IT areas. The literature provides solutions in the area of Server Load 

Balancing (SLB) (Bojović & Živko, 2022; Cardellini et al., 1999; Wilson & 

Deepalakshmi, 2019), Distributed Systems Load Balancing (DSLB) (Grosu & 

Chronopoulos, 2005; Metawei et al., 2012; Taley & Keole, 2015; Zaki et al., 1996), 

Cloud Computing Load Balancing (CCLB) (Katyal & Mishra, 2014; Shahid et al., 

2020; Tawfeeg et al., 2022; Zhang & Zhang, 2010) and Network Load Balancing 

(NLB) (Ahmad et al., 2015; Antic et al., 2010; Chadha & Gupta, 2013; Elwalid et al., 

2002; Fortz & Thorup, 2000) . 

SLB, DSLB, and CCLB all three have in common that their primary goal is to 

distribute the load on the systems rather than on the network, which is the goal 
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of the NLB. However, they also imply NLB as a side effect, depending on the 

network topology of the systems. Controlling the network load is also the focus of 

this study. Thus, the approaches applied within these load balancing techniques 

can yield valuable insights. Furthermore, they are interesting because their 

controller types can, in principle, also be used for NLB. 

NLB is typically used in the layer 3 routing technology (Tanenbaum et al., 2021). 

Their dedicated load balancing methods include those for ISP networks (Wang et 

al., 2006), campus networks (Elwalid et al., 2002), and access networks for mobile 

connectivity (Ahmad et al., 2015).  

However, it is also applied in layer 2 networks such as Data Center Bridging (DCB) 

(Perry et al., 2014; Shuo et al., 2016; Wei et al., 2014; Zhang et al., 2018) or 

Software Defined Networks (SDN) (Jahde et al., 2021; Todorov et al., 2020). 

The applied controller type is a central and crucial element of all load balancing 

solutions. This must be adapted to network characteristics. All types of controllers 

have been used in previous research, such as linear control (Kandula et al., 2007; 

Wang et al., 2006), stochastic control (Neely et al., 2008), fuzzy control (Pompili & 

Priscoli, 2008; Talaat et al., 2019; Wang & Hung, 2012), Smith predictive control 

or model predictive control (Mascolo, 2000; Quang et al., 2020), ant colony control 

(Mohammadnia et al., 2016; Zhang & Zhang, 2010), neural network control (Talaat 

et al., 2019; Wang & Hung, 2012), dedicated algorithm control (Elwalid et al., 

2002; Farahmand et al., 2005), and control by Artificial Intelligence (AI) or Machine 

Learning (ML) (Anna Victoria Oikawa et al., 2020; Todorov et al., 2020). 

The selection and application of the right controller type for network load 

distribution control in TSN MAN is one of the tasks of this research. 

Another dimension of load balancing is that it comprises three control tasks. These 

are (Ahmad & Khan, 2018; Elwalid et al., 2002; Lopez-Perez et al., 2016; Neely et 

al., 2008; Wang et al., 2006): 

• Flow control: The control algorithm to control the data flow on a single path to 

increase or decrease throughput. 
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• Fairness control: The control algorithm to regulate the fair distribution of the 

reduction or increase in throughput among the different data flows. 

• Distribution control: The control algorithm to allocate parts of a stream or 

several streams evenly to a choice of paths.  

Fairness control is not relevant for automation network CD, as CD data flows are 

typically only allowed to be minimally delayed. However, flow control and 

distribution control are important for load distribution control in a TSN MAN. 

In factory automation applications, networks with smaller spatial extensions are 

used to transport information between automation controllers (AC) and devices, 

such as drives, sensors, and actuators. They are typically based on the OSI layer 2 

technology using switching (IEC/IEEE 60802, 2018; Tanenbaum et al., 2021). 

To achieve redundant connections with minimum wiring effort, ring topology has 

become a prevalent topology in redundant industrial automation networks. Figure 

1.1 shows a typical industrial automation network setup in which several field-

level rings are redundantly coupled to a controller-level ring. This, in turn, is 

redundantly coupled to a higher-level Information Technology (IT) or Operational 

Technology (OT) network (IEC/IEEE 60802, 2018).  

Controller-level rings usually contain a variety of higher-level ACs such as 

programmable logic controllers (PLC) or motion controllers (MC). However, a 

field-level ring typically consists of only one AC that controls a variety of 

automation devices, such as drives, sensors, actors, or decentral peripherals 

providing digital and analog inputs and outputs. Field-level ACs communicate with 

controller-level ACs.  
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Adaptive or dynamic control is based on routing decisions using network-load 

metrics. A control algorithm constantly controls the load distribution on several 

paths to achieve an optimal or near-optimal load distribution and to minimise the 

local load maxima. Subsequent flow controllers have the task of increasing or 

decreasing the load on single paths following the distribution calculation from the 

distribution controller (Ahmad et al., 2015; Lopez-Perez et al., 2016; Neely et al., 

2008; Wang et al., 2006) 

Regarding distribution and flow control, more research has been conducted on 

distribution control (Ahmad et al., 2015; Lopez-Perez et al., 2016; Neely et al., 

2008; Wang et al., 2006) than on the flow control subtask (Bonomi & Fendick, 

2002; Jain, 1998), which is identical with closed-loop congestion control for single 

path networks. However, certain network characteristics play a crucial role in flow 

control.  

One important influencing factor is the cycle time of the automation application 

tasks hosted by the ACs. These application cycle times, sending data at each cycle, 

define the minimum rolling mean interval of a load measurement. This, in turn, 

forms a system time constant and thus limits attainable control performance, that 

is (Goodwin et al., 2001; Normey-Rico & Camacho, 2007), the time to establish a 

new load distribution setpoint.  

The other important parameter is the underlying basic cycle time of the network 

communication, which must be long enough to transport the maximum amount 

of data but small enough to serve the fastest application in the network domain. 

Furthermore, the network extension and applied traffic shaper or scheduler 

influence the path delays. These represent dead time elements that characterise 

the flow control circuit properties. 

The influence of these parameters: application cycle, communication cycle, 

shaper influence, and network extension, is typical for TSN automation networks. 

Their impact is particularly high on sophisticated MAN TSN owing to their fast 

automation applications such as motion control or packaging and labeling 

operations. These problems are not a big issue in general IT networks though and 
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research has thus not yet investigated their effect on the design of data traffic 

distribution control and flow control. In addition, the influence of RR and FP on 

these tasks has not been investigated either. 

Therefore, in the first step, the influence of different network parameters, namely 

control location design possibilities, relevant network topologies, control setup 

design possibilities and characteristics, eligible traffic classes, automation 

applications influence, the role of stream reservation, and error mitigation 

strategies, is analysed.  

In the second step, data flow control for control data within TSN automation 

networks is investigated under the influence of these parameters on control 

dynamics and stability. Furthermore, the impact of bandwidth reservation and 

frame preemption is analysed and recommendations for load measurements are 

provided. Thus, the study provides the network designer with a valuable tool to 

select the appropriate TSN mechanisms with the aim of deploying LDC adapted to 

the automation applications. 

A new method for distribution control in a TSN MAN is proposed. It specifically 

addresses the problem of different application cycle times for various applications 

in the network domain. Dedicated distribution controllers for a range of 

application cycles are proposed. These improve the control dynamics and reduce 

the effort required to reconfigure the control configuration in response to 

network setup changes.  

Then, this new load distribution method is described and investigated in terms of 

its dynamic capabilities and behaviour in multi-talker/multi-listener applications. 

The optimisation potential is analysed and evaluated. It shows that the 

dependency of the load distribution convergence on the longest application cycle 

can be resolved, and the overall load distribution convergence improves.  

Furthermore, solutions addressing the use of multiple ACs in a ring are provided. 

A solution using a control sovereignty passing method for multiple ACs with 

mutual dependency is proposed. This is required when SPQ is selected as a shaper 

basis. The second solution addresses multiple ACs without mutual dependency 
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which is the case with EST, CQF, or ATS. This is characterized by the temporal 

decoupling of the control processes. 

These new control methods can be applied in manufacturing automation network 

controller level rings and field level rings. The new control methods improve 

network utilisation and reduce the probability of network overload situations.  

Thus, the present study offers a new and first comprehensive design guide for the 

full implementation of LDC in TSN MAN in terms of: 

1. The selection of the TSN shaper depending on the automation applications 

and network parameters. 

2. The design of the data flow and load distribution controller. 

3. Choosing solutions to cope with multiple ACs in the TSN LDC domain for 

the different types of TSN. 

1.3 Motivation 

Until now, there has been limited theoretical research and practical application 

work on efficient load sharing and load balancing over multiple paths of TSN, 

which is particularly true in industry. Nayak (2018) investigated general network 

traffic distribution possibilities applying a central approach in combination with 

EST. It however achieves only a limited dynamic performance because of 

necessary high-effort distribution re-calculations. Ojewale and Yomsi (2020) 

presented two other dedicated centrally computed routing algorithms to optimise 

a combination of path lengths and loads. Here, too, the computational effort and 

time increase disproportionately with the number of network nodes due to the 

central approach. MAN, however, have high dynamic requirements regarding 

reaction to load changes. Therefore, these, and particularly the more recent TSN 

MAN, offer new grounds for research on network load distribution, which can be 

expected to contribute to enhancing the performance of these networks. This 

includes not only distribution control but also subsequent flow control per path. 
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Especially in larger networks, the increasing number of end stations in an 

automation ring also increases the amount of CD to be transported over the two 

possible paths between communication participants. However, the presence of 

fast applications demands short communication cycles which is particularly true 

for EST and CQF traffic shapers which have only a limited CD transport capacity in 

their communication cycle. This conflict forces the network designer to optimally 

use both the available paths in an automation ring. Thus, the use of dynamic load 

distribution will be an important means of optimum use of the network 

preconditions.  

A further important reason for load distribution in TSN MAN is the limited 

possibility for seamless communication, that is, double sending over two paths for 

redundancy reasons. The reason is, that there are only limited expensive 

hardware resources for duplicate filtering in the switch ASICs. This increases the 

amount of single-path CD, and thus, the need for load distribution. 

The main purpose and motivation of this study is therefore to evaluate a possible 

extension of the current content of the TSN project by proposing a method for 

distribution control and flow control. This will optimise the use of multiple TSN 

communication paths to dynamically distribute data traffic on the data paths 

within manufacturing automation communication networks. 

1.4 Overall Aim and Research Objectives 

The overall aim is to propose, design, develop, and validate a method for optimum 

control of dynamic load distribution in time-sensitive communication networks for 

manufacturing automation. 

The proposed method is verified and validated by control circuit simulations and 

network simulations. 

The following research objectives are addressed: 

1. To analyse the properties of TSN networks that influence the goal of 

establishing a load distribution.  
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2. To analyse and evaluate the influence of different TSN traffic shapers and 

schedulers on subsequent data flow control. 

3. To propose, design, develop, and validate an optimised closed loop load 

distribution control method that can be effectively and efficiently applied in 

the currently evolving Layer 2 TSN for different types of manufacturing 

automation networks. 

4. To extend the optimised closed loop load distribution control method to 

support multiple automation controller setups.  

1.5 Thesis Contributions to New Knowledge Generation 

This thesis’ main contribution to the new knowledge generation is to demonstrate 

the possibilities of load distribution in redundant TSN manufacturing automation 

networks. The following contributions are made during the course of this task: 

1. An analysis of TSN automation networks with regard to:  

a) control location design possibilities, 

b) relevant network topologies, 

c) eligible traffic classes, 

d) control aspects, 

e) the influence of automation applications, 

f) the influence of stream reservation, 

g) and network error mitigation strategies. 

Thereby, a detailed picture of load distribution control possibilities within TSN 

MAN is provided. 

2. Derivation of a closed-loop load distribution control model for automation ring 

networks. The influence of the different types of TSN traffic shapers and 

scheduler on data flow control is demonstrated. The different types of TSN 

network communication paths are simulated and evaluated in terms of 

controllability and stability.  

3. Recommendations for the selection of traffic shapers or traffic schedulers 

considering the types of automation tasks.  

4. Proposal of an optimised control method for load distribution in TSN MAN. 
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5. The proposal of an optimised control strategy for TSN MAN containing multiple 

automation controllers.  

Part of the bullet points 1 to 3 has been published (Weichlein et al., 2023). 

1.6 Publications 

Partial results of this thesis have been published (Weichlein et al., 2023): 

Weichlein, T., Zhang, S., Li, P., & Zhang, X. (2023). Data Flow Control for Network Load 

Balancing in IEEE Time-Sensitive Networks for Automation. IEEE Access. 

1.7 Thesis Structure 

This thesis is structured as follows. 

After this introduction, the literature review chapter provides an overview of 

communication networks, in general, and for automation. It also covers the basics 

of the control theory for network load control and its application in network 

congestion control, traffic engineering and network load balancing. 

Chapter 3, “Research Methodology and Design”, provides the details of the 

research process and the methods for data collection and presentation.  

Chapter 4, “The Influences of TSN MAN Properties on Load Distribution Control”, 

provides a detailed investigation into load control relevant properties of TSN 

automation networks. Here, relevant network topologies, load distribution design 

possibilities, eligible traffic classes, plant properties and control aspects are 

discussed. Furthermore, the influences of the automation applications and of 

stream reservations are analysed. The consequences of network errors are 

discussed. 

Chapter 5, “Application of Different TSN Traffic Shapers and Schedulers for 

Subsequent Data Flow Control”, examines the influence of the different TSN traffic 

shapers and traffic schedulers on the system properties, that is, the network path 

as the system under control. Furthermore, in this chapter, these influences are 

simulated and discussed with regard to their influence on the controllability and 

stability of the control. 
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Chapter 6, “A New Control Method for Load Distribution Optimisation in TSN 

MAN,” builds on the findings of Chapters 4 and 5 and firstly discusses and selects 

an appropriate core controller type for flow control and distribution control. In 

the second step the drawbacks of the classical approach of controlling the data 

flow and introducing a better control strategy for an optimised control are 

addressed. Furthermore, suitable feedback generation methods are discussed and 

proposed. Finally, at the end of this section, the optimised method is verified by 

network simulations.   

Chapter 7, “Extension of the LDC Optimisation to Support Multiple Automation 

Controllers,” extends the new optimised control method from Chapter 6 to apply 

to multiple independent automation controllers with and without mutually 

influencing each other. 

Chapter 8, “Conclusion and Further Work,” concludes the thesis, summarises the 

research results, and discusses the original contribution. Furthermore, it discusses 

the limitations and the further work for improving this research on load 

distribution in manufacturing automation networks. 
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Chapter 2      Literature Review 

2.1 Introduction 

This chapter provides a critical literature review with a focus of load control in the 

areas of TSN, their application as MAN, control theory for load control in 

communication networks, and the related main control methods. It provides an 

overview of the current knowledge in these areas. It also aims to identify the gap 

in the existing research on network traffic load control in MANs based on TSN.  

2.2 Communication Networks 

This section provides an overview of load reduction research in general Ethernet 

communication networks (IEEE 802.1Q, 2022; Tanenbaum et al., 2021), the special 

properties of MAN (IEC/IEEE 60802, 2018; IETF RFC 8578, 2019), and the 

application of TSN (IEEE 802.1Q TSN TG, 2022) in MAN. It thus clarifies the 

technical basis on which the research is based. 

2.2.1 General Communication Networks 

General communication networks build the basis for TSN MAN and consist of data 

relaying elements called routers and switches, which are connected via wire-

based or wire-less connections for data transport. It is generally accepted to 

distinguish the data processing systems of manufacturing processes as operation 

technology (OT) from pure information technology (IT).  

The state-of-the-art model to describe communication functions in technical or 

computer systems is the Open Systems Interconnection (OSI) reference model 

(ISO/IEC 7498-1, 2000), which was defined by the International Organization of 

Standardization (ISO) and is depicted in Figure 2.1. 
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Figure 2.1: Open Systems Interconnection (OSI) communication model  

The ISO/OSI reference model divides a communication system into seven 

hierarchical layers (Tanenbaum et al., 2021): 

• Layer 1: the physical layer (PHY) 

• Layer 2: the data link layer containing the media access control (MAC) 

• Layer 3: the network layer  

• Layer 4: the transport layer  

• Layer 5: the session layer  

• Layer 6: the presentation layer  

• Layer 7: the application layer  

For this research, the layer 2 data link layer and the layer 3 network layer research 

results on traffic load reduction and distribution are important. These are of 

interest for the mechanisms of data packet transport from one network 

participant to another. This is independent of whether physical Layer 1 of the 

network is based on wire, as with campus or Internet networks, or is wireless as 

in the case of mobile networks. 

The communication links between the end stations and relaying elements have 

limited data rate capacities which can lead to network congestion. This problem 

was early addressed by Chiu and Jain (1989) in general communication layer 3 

networks, mainly in combination with the layer 4 TCP as the main transport 

protocol. At that time, increasing network loads stuffed networks and delayed the 
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response times of client requests to network services. They investigated 

throughput increase/decrease algorithms and demonstrated that they are 

suitable for congestion reduction.   

To avoid network congestion or achieve a homogenously distributed load on 

individual network paths, either a means of congestion control or, in combination 

with multiple network paths, a load distribution control mechanism is necessary. 

Extensive research has been conducted on load sharing, load balancing, and load 

distribution solutions. All three concepts are mostly used synonymously. These 

operate on OSI Layer 3, such as on ISP networks or campus networks, or within 

small Layer 2 sub-networks, or only between pairs of single nodes such as clients 

and servers.  

The literature review shows that existing load controlling concepts within various 

communication networks technologies can generally be classified as follows: 

1. Network congestion control (Kanagarathinam et al., 2020; Kasoro et al., 

2021; Katabi et al., 2002; Wu et al., 2009), aims to reduce the transmission 

of traffic on the sender side to avoid congestion. It must be applied if no 

alternate path for load distribution is available. 

2. Traffic engineering (Elwalid et al., 2002; Fortz et al., 2002; Lemeshko et al., 

2013; Santos et al., 2009; Zhang et al., 2018) has the goal to plan all traffic 

properly from the beginning. It can also include to dynamically react to 

changes in the network. 

3. Load balancing, which again can be subdivided into: 

a. Server load balancing (Bojović & Živko, 2022; Cardellini et al., 1999; 

Wilson & Deepalakshmi, 2019), 

b. Distributed systems load balancing (Grosu & Chronopoulos, 2005; 

Metawei et al., 2012; Taley & Keole, 2015; Zaki et al., 1996), 

c. Network load balancing, both open and closed-loop, which is often 

used as a synonym for network load control (see bullet point 4 

below for references), 
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d. Cloud computing load balancing (Ahmad & Khan, 2018; Katyal & 

Mishra, 2014; Nezami et al., 2021; Rajeshkannan & Aramudhan, 

2016; Shahid et al., 2020; Zhang & Zhang, 2010); 

4.  Closed-loop network load distribution control or balancing (Han et al., 

2021; Jahde et al., 2021; Kandula et al., 2007; Lemeshko et al., 2013; 

Mohammadnia et al., 2016).  

Having OT MAN networks in focus, which typically do not feature several servers 

or a widely distributed system, especially the closed-loop network load 

distribution control concept, is the most important for this research project. 

However, the results of the referenced research on other load distribution 

concepts within the areas of network congestion control, traffic engineering and 

load balancing are also relevant. They provide valuable data and experience on 

sensible control concepts in various network areas. This data forms the basis for 

this research on dynamic load distribution control in TSN MAN, a topic, which is 

unexplored to the best of the author’s knowledge.  

Therefore, the relevant basics of MAN and their differences from campus IT or 

Internet networks will be briefly identified. Then, the application of control 

engineering within data load control in communication networks is addressed. 

Finally, the different existing load control concepts listed above and their 

relevance for load distribution control for TSN MANs need to be reviewed more 

closely. 

2.2.2 Manufacturing Automation Networks (MAN) 

The field of automation is huge (Soldatos et al., 2019) as it is used in all kinds of 

applications such as power plants, chemical process industry, food and beverage 

industry, packaging industry and other industrial productions or manufacturing 

like vehicle production, for example, to name just a few. This research project 

focuses on manufacturing automation networks as they typically have more 

demanding communication requirements regarding speed and latency than other 

automation areas. These results are expected to be applicable to other fields of 

automation. 
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The general Ethernet network technology (Tanenbaum et al., 2021) has over the 

last decades produced two main principles for relaying data packets (Section 

2.2.1): 

• Data packet relaying by routing is based on layer 3 techniques. For example, 

the most popular and widely used network communication protocol within 

Ethernet networks is the Internet Protocol (IP), which uses IP-addresses as 

routing information. 

• Data packet relaying by switching is based on layer 2 techniques. For Ethernet 

networks the so-called destination MAC-Address is usually used to forward 

data packets to the recipient.  

For the MAN in focus within this thesis, Layer 2 networks are the most important, 

as they are mostly used in MAN setups at automation cells at the field level and 

controller level and automation cell interconnection areas, as depicted in Figure 

1.1. However, layer 3 communication is also sometimes applied in automation, 

but mainly in hierarchical higher-level networks connecting larger automation 

areas within a factory or plant (IEC/IEEE 60802, 2018). 

Another important property of a communication network is its topology, that is, 

the structure of how single network participants are connected. Several basic 

network topologies are shown in Figure 2.2. 

Early legacy automation networks without redundant connections were 

preferentially set up in line or star topologies. For reasons of fault tolerance, 

media-redundant networks, that is, networks providing at least two paths 

between each node, are increasingly applied. To achieve redundant connections 

with a minimum wiring effort, the ring topology and redundantly coupled ring 

topology have become the prevalent topologies in redundant MAN (IEC/IEEE 

60802, 2018). The transition from line or star topology to ring and redundantly 

coupled ring topologies, offers an alternative communication path that allows 

load distribution solutions. 
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• cylinders of rolling mills 

• stations of packaging machines 

• assembly feeding chains of automotive production. 

Such synchronous speed control automation setups are usually part of larger 

automation applications together with various other applications. Figure 1.1 

sketches a typical larger automation communication network setup, as described 

in IEC/IEEE 60802 (2018) or IETF RFC 8578 (2019).  

In the automation network shown in Figure 1.1, an upper automation controller 

ring bundles access to several subrings that are responsible for controlling certain 

parts of the automation setup. These parts can be machines or automation cells, 

such as different conveyer belts in a series of conveyer belts or different assembly 

chains in a series of assembly chains. The upper controllers in the controller level 

ring have access to the single subrings for tasks such as changing production 

templates in the subring controllers, synchronizing the subring devices, reading 

visualization data, or obtaining general diagnostic data. In recent years, the trend 

has been towards increasingly outsourcing the tasks of the controller level ring to 

virtual ACs (Beran et al., 2010; Soldatos et al., 2019) onto so-called edge 

automation devices (Mandić et al., 2022; Singh et al., 2022) or to cloud-based 

automation (Ranjan et al., 2016; Wollschlaeger et al., 2017). Edge or cloud devices 

typically contain several virtual ACs. Because cloud-based automation involves 

higher and unsecure path delays between a remote cloud and an automation cell, 

it is not suitable for faster manufacturing control applications, as they are the 

focus of this research and will not be explored here. Edge solutions are equivalent 

to local AC solutions because the paths are typically only slightly longer. 

Within the subrings, ACs, such as a PLC or MC, exchange process data with single 

peripheral devices such as sensors, actuators, digital/analog inputs, and outputs 

(I/O), or drives for the motors that drive the mechanical parts of the automation 

application. Regarding the data flow direction, sensors such as temperature, 

pressure, or humidity sensors provide data from sensor in the direction of the AC. 

In contrast, devices such as linear actuators, open-loop controlled motors, or 

valves cause data flow in the other direction from AC to the actuator. Drives, 
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closed-loop controlled motors, or completely decentralised peripheral 

automation stations for I/O typically cause bidirectional data flow. For this 

research project, both the field-level subrings and the controller-level rings will be 

the focus. 

In the case of edge devices, in contrast to cloud-based automation, the 

communication paths are still relatively short and typically in the same layer 2 

domain, as they usually installed directly in the production hall. Therefore, as 

Mandić et al. (2022) and Soldatos et al. (2019) also correctly state, edge-based 

automation is just as suitable for latency-sensitive applications as dedicated 

controller-level ring hardware. Thus, the results of this study can be applied to 

both dedicated AC hardware setups and edge-based AC setups. 

For the CD relevant to this research project, different requirements regarding the 

communication cycles of the process data between the controller and drives or 

sensors exist (IEC/IEEE 60802, 2018). This depends on the automation application. 

For example, in the case of conveyer belts for transport purposes, the 

communication cycle speed is rather relaxed and may be selected between 10 and 

100 ms. For synchronisation for printing machines or packaging applications, the 

communication cycles often need to be around 1 to 10 ms. Very demanding 

applications such as packaging or labeling require communication cycles below 

100 µs. 

The amount of data to be exchanged between the subring controllers and devices 

in the subring is typically rather low (IEC/IEEE 60802, 2018). As a rule, these 

exchange frames with data sizes of less than 100 bytes, as information exchange 

is typically limited to the cyclic transmission of setpoints and actual values. Other 

data to be sporadically exchanged between the controller and field devices can be 

diagnosis data and parameterization data. Because of their sporadic character, 

these are also called “acylic” data (AD). AD for diagnosis or HMI stations is 

transported in larger frames, sometimes up to a maximum frame size of 1550 

bytes (IEEE 802.1Q, 2022). They are also transported at higher data rates which 

can easily reach a few megabytes per second. 



Page 45   

It is well known, and worked out by Wisniewski et al. (2009), among others, that 

the use of media redundant networks demands the application of media 

redundancy protocols. Alvarez Vadillo et al. (2019) classify them and provide an 

overview. Media redundancy protocols influence the possibility of network load 

control. Basically, a distinction must be made between so-called “seamless” 

protocols, which send data doubly over separated paths, and path-changing 

protocols. The former cannot be combined with network load control, as they 

already use both paths at the same time. The latter are traditionally spanning tree 

protocols such as RSTP or MSTP (IEEE 802.1Q, 2022) which are slow though with 

reconfiguration times typically around a few seconds. Researchers such as Yuen 

et al. (2011) have successfully attempted to accelerate RSTP and MSTP 

reconfiguration times by working with backup VLANs. However, the results imply 

a complicated network setup, which make it difficult to use. These problems have 

led to the development of dedicated redundancy protocols such as the MRP (IEC 

62439-2, 2021; Wisniewski et al., 2009). MRP provides faster network 

reconfiguration times between 500 ms and 10 ms. However, MRP has only been 

used to completely change the path for all traffic and does not have the property 

of MSTP VLAN-based path separation, which is important for network load 

control. In certain automation applications, the seamless flow of cyclic 

communication data is crucial for the quality of the automation tasks. An 

interruption in the process data stream or a certain delay in the process data can 

lead to product failures or even automation plant damage. For seamless 

redundancy, where data are sent doubly over two available paths from source to 

sink, thereby providing zero reconfiguration time, the HSR protocol (IEC 62439-3, 

2021) can be applied. However, its application also excludes network load control. 

In combination with streams, which follow dedicated assigned paths, the seamless 

redundancy protocol IEEE 802.1CB, also called “Frame Replication and Elimination 

for Reliability” (FRER) was defined by IEEE 802.1CB (2017). The types of applied 

media redundancy protocols are important for NLB. These must be chosen and 

configured carefully depending on the traffic types present in the network 

(Alvarez Vadillo et al., 2019; Kirrmann & Dzung, 2006; Wisniewski et al., 2009). 
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However, this task is currently not reflected in the existing research in 

combination with NLB for TSN MAN and must also be addressed in this study. 

As Lo Bello and Steiner (2019) outline, the desire of many users to transmit 

deterministic CD and non-real-time traffic (NRT) in parallel via the same data path 

has led to the foundation of the task group IEEE 802.1Q TSN TG (2022) to develop 

so-called converged networks, which finally got the name time-sensitive networks 

(TSN). TSN standards provide new traffic shaping and scheduling mechanisms and 

are also the basis for the latest modernisation of industrial automation networks.  

2.2.3 Time Sensitive Networks (TSN) as MAN 

Lo Bello and Steiner (2019), and Finn (2018), provide a comprehensive overview 

of TSN. These are networks designed in accordance with one or more of a set of 

new network standards (IEEE 802.1Q TSN TG, 2022) which essentially introduce 

the capability of delivering data within a guaranteed minimum time from the data 

source to the data sink. This property is known as “deterministic” data transport. 

A further essential achievement and advantage of TSN is that it provides the 

possibility of the coexistence of non-deterministic network traffic together with 

deterministic network traffic on the same medium. This is often referred to as a 

converged network. Converged networks are a major improvement in MAN to 

save separate networks for deterministic and non-deterministic data traffic for an 

application. 

TSN functionality is shaped within the TSN Task Group (TG) as part of the IEEE 

802.1 Working Group (WG). They defined a series of standard amendments, 

supplementing  or building on the central standard for Local and Metropolitan 

Area Networks (IEEE 802.1Q, 2022). Farkas et al. (2018) provided a more detailed 

overview of these TSN standards and of further reading on this topic.  

The TSN standards define a variety of traffic shapers and schedulers to achieve an 

optimal data transfer for CD. These are the Strict Priority Queuing (SPQ), or Static 

Priority Queuing as it is also called, Credit Based Shaper (CBS), Enhancements for 

Scheduled Traffic (EST), Cyclic Queuing and Forwarding (CQF), and Asynchronous 

Traffic Shaper (ATS). Further TSN-specific functionality are Frame Preemption (FP), 
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Scheduled Transmission (ST), and Stream Reservation (SR). Summarising the work 

of Lo Bello and Steiner (2019), and Finn (2018), the shapers, schedulers, and TSN-

functions have their individual effect on data traffic transport:  

The SPQ is known from classical Ethernet switch ASICs and is defined in IEEE 

802.1Q (2022). SPQ is a favoured common system for assigning different Quality 

of Service (QoS) properties to various traffic classes in general Layer 2 networks 

and in automation communication networks. It is also used in TSN, mostly in 

combination with stream or bandwidth resource reservation (IEEE 802.1Qcc, 

2018; IEEE 802.1Qdd, 2023). Grigorjew et al. (2021) show that thereby a 

deterministic TSN can be achieved, although SPQ is not a traffic shaper or 

scheduler in the literal sense. A contemporary example is the “PROFINET (PN) over 

TSN” field bus (IEC 61158-5-10, 2023; IEC 61158-6-10, 2023) for 1 Gbit/s and 2,5 

Gbit/s which combines SPQ with express forwarding and scheduled traffic (EST, 

see further down for details) for CD and Non-CD data. It can also use SPQ in 

combination with synchronised traffic injection as an alternative to other methods 

of shaping or scheduling traffic. SPQ provides one egress queue for each or 

collections of the eight QoS frame priorities (IEEE 802.1Q, 2022). For CD, it is 

common to use the highest or, in cases where network control frames shall have 

a higher priority, the second highest priority. For the non-CD the next lowest 

priority is used.  

SPQ is expected to be usable in connection with load distribution control (LDC) 

concepts for MAN and needs to be involved in the analysis and evaluations 

provided by this thesis. 

The CBS was introduced by IEEE 802.1Qav (2009) and IEEE 802.1Qcc (2018) for 

transferring audio/video (AV) data without bursts and congestion. Zhao et al. 

(2022) provided extensive performance data of the CBS and demonstrated its 

suitability in AV applications to achieve a continuous data stream and avoid bursts. 

However, this advantage in AV is a disadvantage in automation applications where 

the challenge is to maintain the CD burst along a network path. The main feature 

of the CBS is that it stretches bursts of data to achieve a continuous flow of the 

stream. Therefore, it is of low interest for industrial automation CDs with fast 
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communication cycles, since CDs are intentionally sent in bursts at the beginning 

of a new application cycle from an automation controller. Consequently, it is not 

considered here for automation networks application and analysis. 

The EST, defined by IEEE 802.1Qbv (2015), is also known as time-aware shaper 

(TAS). It assigns gating windows to traffic classes. The send queue of each traffic 

class is thereby emptied at a defined time slot, that is, the gating window or gate 

open window, which is repeated every network cycle or gating cycle. The 

expressions gating cycle, network gating cycle, or short network cycle are used 

synonymously in the literature and standardisation. In addition to other 

researchers, Craciunas et al. (2016) have made investigations as to the 

performance of EST. EST can be used to have synchronised gating windows in all 

bridges of the TSN domain, with no other data interfering with the transmission 

during the gating window. This guarantees a free path for data traffic and 

minimum network latency through the complete synchronised EST network 

domain. If in addition a synchronised talker sends at the start of the gating 

window, minimum network latencies can be achieved. Craciunas et al. identified 

and analysed key parameters affecting the deterministic behaviour for centralized 

scheduling of an EST. They also proposed optimisations to reduce the scheduling 

calculation time by introducing heuristics. Vlk et al. (2020) enhanced the 

schedulability and throughput of EST by adding a queue order check but required 

special hardware additions to realise it. However, the application of specialized 

hardware implies a high development effort and thus low market acceptance. Still, 

the already low EST latencies are a sufficient reason to include EST in this study 

for LDC in TSN MAN. 

The CQF traffic shaper, defined by IEEE 802.1Qch (2019), also follows a network-

domain-global network cycle. It stores the ingress traffic in one network cycle, 

which it then forwards during the next network cycle. Through this method, a 

certain amount of data traffic is handed from bridge to bridge taking one hop per 

network cycle. Finn (2019) shows that with CQF, limited latency can be guaranteed 

which depends on the maximum number of hops through the CQF network 

domain. In this case, the latency per hop is identical to that of the network cycle. 
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The amount of admissible data per cycle depends on the configuration of the cycle 

length and can be restricted by reservation and ingress limiting. Finn also outlines, 

that windows for data of further traffic classes to be transported in parallel, raise 

the necessary gating cycle and thereby the latency accordingly. Huang et al. (2022) 

addressed the relatively high jitter of CQF and proposed a combination of CQF 

with time triggered transmission, as known from the EST.  

The suitability and characteristics of the basic CQF must be included in the analysis 

and evaluation of LDC for TSN MAN. 

The ATS, defined by IEEE 802.1Qcr (2020), provides additional, shaped egress 

queues that feed the existing classical egress queue structure of SPQ. The 

processing chain for a stream with ATS consists of Per-Stream Filtering and 

Policing (PSFP), shapers, egress queues, transmission selection and gate control. 

An Internal Priority Value (IPV) can be assigned to each traffic class within a bridge, 

independent of and without influencing the frame`s tagged priority, allowing 

dedicated prioritized frame handling per hop. A detailed analysis of the ATS 

properties was provided among others by Zhou et al. (2018). They show that the 

ATS does not depend on synchronous bridges or synchronous communication and 

offers bounded latency for lower performance control data such as non-

isochronous CD (NI-CD). The ATS shaper mechanism works as a Token Bucket 

traffic shaper, that is, it allows bursts to be limited to configurable bursts. 

Nasrallah (2019) performed comparison with EST and found that EST is better 

suited for cyclic traffic such as CD for automation purposes, whereas the ATS has 

more advantages with sporadic, lower priority traffic. However, as the ATS is one 

of the main TSN shapers, the analysis and evaluation of its capabilities in 

connection with LDC for industrial automation is mandatory. 

FP according to IEEE 802.1Qbu (2015) is another TSN feature where streams are 

classified as either express traffic or preemptable traffic. Express traffic can 

interrupt the transmission of a preemptable frame and thus overtake 

preemptable frames. After the express frame is transmitted, the preemptable 

frame transmission is resumed. The frame preemption feature according to IEEE 

802.1Qbu is defined for the MAC Layer and strongly correlates with the definitions 
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within IEEE 802.3br (2016), Interspersing Express Traffic (IET) for the Physical 

Layer. Thiele and Ernst (2016) performed a worst-case performance analysis of 

TSN with FP and demonstrated that it can accelerate higher priority traffic. 

Preemption can basically be applied in Strict Priority scheduling environments but 

can in principle also be combined with EST, CQF and ATS shapers. Logically, only 

one traffic class can be classified as express traffic without spoiling the intention 

of preemption. A performance comparison of FP versus EST was provided by 

Hellmanns et al. (2020). It demonstrates the advantages of FP in zero planning and 

synchronisation requirements. However, it also shows the disadvantage of FP, in 

that, with increasing use, the latency reduction degrades towards pure SPQ. 

Against this background, the proposal of Nikolic et al. (2020) for a multi-level FP 

to realise further express traffic classes, seems rather questionable. Nevertheless, 

the improvements achieved with the moderate application of FP in combination 

with SPQ for time-critical data make it an interesting feature worthy of inclusion 

in the investigations of this thesis. 

ST of data frames is another method that arose with the creation of the TSN 

framework. The required scheduling algorithms were the focus of several research 

teams (Ojewale & Yomsi, 2020; Y. Song et al., 2021; Yang et al., 2021). The 

background to their work is the idea that the transmission time of each frame can 

be planned in such a way that optimal utilization of the entire network is achieved 

with minimal path latencies and optimal bandwidth utilization. They propose their 

individually found solutions for heuristic algorithms to achieve this. These solution 

always require a central instance, typically a central network controller (CNC) as 

defined by, for example, IEEE 802.1Qcc (2018). This calculates the optimised 

transmission points in time for each frame and station, at least to a certain extent. 

However, as Craciunas et al. (2016) and Falk et al. (2019) explain, the problem with 

ST is that it requires extensive calculations for an optimised schedule for all traffic. 

As this thesis focuses on real dynamic load distribution though, such methods, 

which require pre-network-startup calculations or complete reconfiguration at 

runtime, are only of secondary importance (see Subsection 5.3.7 for more 

reasoning on this).  
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SR is another crucial feature that can be used in the TSN domain for resource 

reservation. The RSVP (IETF RFC 2205, 1997) is an early representative of a 

resource reservation protocol for the transport layer 3. It is primarily used in 

multimedia applications (Braun, 1997). SR is represented in the IEEE TSN 

framework by IEEE 802.1Qcc (2018) as the Multiple Stream Reservation Protocol 

(MSRP), and by IEEE 802.1Qdd (2023) as the Resource Allocation Protocol (RAP). 

Grigorjew et al. (2021) investigate SR in combination with automation networks 

in its original application as overload protection for the network, where excessing 

streams will not obtain a bandwidth reservation in the bridges. They showed that 

with SR and admission control a bounded latency can be achieved with standard 

Ethernet switches which contain no further TSN shapers or schedulers. Thus, 

latency guarantees can be provided for certain stream classes. To protect against 

congestion, that is, against talkers that exceed their reserved bandwidth, ingress 

limiters as defined by IEEE 802.1Qci (2016) can be used as supplementary 

protection. However, which also from the work of Grigorjew et al. emerges, the 

reservation process needs time, which in combination with a dynamic shifting of 

traffic from one path to the other is disruptive. These implications of SR for LDC 

must be included in the investigations of this thesis.  

A deeper insight into the timing behavior of each shaper and scheduler was 

provided by Falk et al. (2019), based on OMNet++ network simulations. Zhao et 

al. (2022) performed a quantitative performance comparison of various TSN 

shapers. Roughly summarized, their extensive studies show that SPQ has an 

advantage for traffic classes with high priority. A variety of traffic priorities can be 

optimally controlled with CBS. The ATS is the best choice for fair scheduling of 

lower priority traffic. The EST (or TAS) offers ultra-low latency and jitter and is 

suitable for all priorities and traffic classes with dedicated gate control windows 

but is difficult to manage in combination with larger networks. The focus of this 

research is on the transport of higher-priority CD when they are not transferred 

seamlessly. Thus, according to Falk et al. and Zhao et al., it can be expected that 

the application of SPQ and EST will be beneficial. 
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In summary, it can be stated that these traffic shapers and schedulers have, owing 

to their different influences on path delays, a different influence on data flow 

control or load distribution control. Therefore, a deeper analysis of SPQ, EST, CQF, 

ATS, FP and SR must be included in the investigations in this thesis. 

2.3 Methods for Load Control in Communication Networks 

Existing control methods for a variety of control problems in general dynamic 

systems have also been applied to communication networks. With the availability 

of multiple paths in general communication networks, the research community 

has developed load control concepts not only for congestion control but also for 

the distribution of loads (Section 2.2.1). The most important load control methods 

are introduced and investigated hereunder.    

2.3.1 Load Reduction Strategies 

Communication paths within communication networks have limitations in terms 

of the maximum transferable data amount per time, which in communication 

networks terminology is also called the maximum “bandwidth” of a 

communication path. 

To protect a communication path from overload during runtime of the network, 

which could result in the loss of data, it is necessary to either reduce the amount 

of data to be transferred, or to distribute the data on additional communication 

paths. Thus, as is clear from Section 1.1 and the literature listed in Subsection 

2.2.1, there are two basic methods. The first is “congestion control” 

(Kanagarathinam et al., 2020; Kasoro et al., 2021; Katabi et al., 2002), the second 

is usually named either “load balancing”, “load distribution”, or also “load 

sharing” (Jahde et al., 2021; Kandula et al., 2007; Lemeshko et al., 2013).  

Congestion control can be either open- or closed-loop. As Wu and Mark (1993) 

outline,  open-loop congestion control has no feedback for the actual load and is 

thus “blindly” or “obliviously” reducing load. Contrarily, to achieve control results 

of higher stability, Katabi et al. (2002) apply closed-loop control. Therefore, a 
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control system must be established that measures the actual amount of data on 

one communication path and initiates corrective actions to reduce the amount of 

data being passed onto this communication path.  

The system output to be controlled and the system input in both congestion 

control systems and in load balancing control systems, is the network data path 

data rate per time termed network path bandwidth use or load. 

For load balancing, the control system provides an evenly distributed load on 

several possible communication paths. 

Another way to achieve a balanced load is to properly plan and configure the 

traffic distribution before network startup as it has been applied in various studies  

(Lopez et al., 2010; Santos et al., 2009). This method is called “Traffic Engineering 

(TE)” and should always be part of the network setup. However, because this 

research focuses on dynamic load distribution, TE methods are of secondary 

importance. 

Sometimes the procedure of dynamic load distribution is also called “Dynamic TE” 

or “Adaptive TE” (Elwalid et al., 2002; Wang et al., 2006).   

In this thesis, the focus is on load balancing, or more generally, on load distribution 

rather than on congestion control. This is because CD and particularly isochronous 

CD (I-CD) are subject to a bounded admissible latency, that is, traffic throughput 

must not be reduced significantly. However, as it emerges from the work of Puqi 

Perry and Tai (1999), some methods of congestion control, such as the Token 

Bucket Shaper, are important as they are used as part of the CBS and ATS. 

The goal of load balancing or load distribution systems in communication 

networks is to achieve a controlled and as even as possible distributed path 

bandwidth use of all available data paths from data sources to data sinks, as 

outlined among others by Antic et al. (2010) or Prabhavat et al. (2012). 

When considering layer 3 routed multipaths networks, the three main types of 

traffic control concepts (Wang et al., 2006), as introduced in Section 1.1, oblivious 

routing (Kandula et al., 2005) (Räcke, 2009), traffic control using predicted traffic 

demands (Otoshi et al., 2015; Wang et al., 2006) , and  adaptive or dynamic routing 
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are visible. As also outlined in Section 1.1, only the latter is important for this study 

and to be reviewed closer.  

Adaptive or dynamic routing is based on routing decisions based on network load 

metrics. There are various possibilities for obtaining these metrics. Kandula et al. 

(2005) send test frames onto single paths, where each router inserts its current 

bandwidth use. The test frames were sent back by the last router at the edge of 

the routing domain. Another possibility is to poll the port load of each router along 

the path (Elwalid et al., 2002). Various control concepts, such as Common-case 

Optimization with Penalty Envelope (COPE) by Wang et al. (2006) or Smith-

Predictor by  Mascolo (2000), have been used to achieve a balanced load on the 

OSI Layer 3 ISP networks. The adaptive or dynamic routing concept is identical to 

closed loop network load control (Subsection 2.3.2) and has been extensively 

investigated by research, as further elaborated in the following sections. Because 

of its better reaction time on load changes than open-loop control, it is a relevant 

method for this research project within TSN MANs. 

2.3.2 Closed-loop Dynamic Load Control 

A desired quick and appropriate response to changes in a dynamic system, such 

as load changes in a MAN, can only be achieved with a closed-loop control 

(Goodwin et al., 2001).  

In order to classify the types of control systems applied in the literature, it is 

necessary to distinguish between their elements.  Goodwin et al. (2001) define a 

control system as follows: 

Figure 2.3 shows the main parts of a typical dynamic system in combination with 

a controlling entity that is used to control the system output. 
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Figure 2.3: General control system 

Accordingly, according to Godwin et al., systems can be abstracted by dividing 

them into three main parts: 

1. The system to be controlled, which is also called “the plant” in control 

engineering terminology, with its output y(t) to be controlled. In the case of 

this research for data traffic LDC, the system to be controlled is the 

communication network with its output of data per time, that is, the 

bandwidth as a scalar value. 

2. A sensor module feeds back the system output value to compare it to a 

reference value r(t) representing the desired output value. The sensor is 

represented by data load measurement hardware or software in the network 

devices, that is, routers, bridges, or bridged end stations. The reference value 

for the network path is again a bandwidth as a scalar value. 

3. The controller controls the system input based on the difference e(t) between 

the reference and the feedback of the output: 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡). In TSN 

MAN the controller is part of the end devices or bridges that control the data 

ingress rate. 

Goodwin et al. also state that, associated with the types of systems to which a 

control system is applied to, the control theory can be roughly divided into two 

main areas. The “Linear Control Theory”, which deals with linear control systems 

and the "Non-linear Control Theory", which deals with non-linear control systems. 

Since the data throughput on a communication path has to be measured 
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continuously over a period of time, for example as a moving average, it changes 

linearly and the LDC for data traffic can be classified as a linear control system. 

The literature offers a variety of different closed-loop load control solutions. 

Katabi et al. (2002) further developed the congestion control algorithms for TCP 

by introducing eXtended Control Protocol (XCP) with analog feedback. This was 

obtained by measuring the round-trip time (rtt) of a TCP flow. It allows conclusions 

to be drawn about the load on the path. They used a linear controller and 

introduced stability analysis according to Nyquist (Normey-Rico & Camacho, 

2007). The linear controller, such as a proportional-integral-derivative (PID) 

controller, is also applicable for distribution control and flow control of MAN CD 

traffic type. However, the load measurement method using the TCP rtt is not 

applicable, because CD does not provide acknowledgement frames back to the 

sender.  

Elwalid et al. (2002) presented with “MPLS Adaptive Traffic Engineering (MATE)” 

a minimalistic adaptive TE approach in multi-protocol label switching (MPLS) 

networks, which also manages without load measurements along the path. It is 

based on end station feedback by measuring the delay experienced by a probe 

packet along a path from ingress to egress node. The distribution controller is 

implemented by using a dedicated algorithm. However, as with Katabi`s et al. XCP, 

this method is only suitable to make an end-to-end load statement for de-loading 

complete paths from a talker to a listener. It is no solution to resolve load 

maximums at certain links as it is the goal of this research on MAN LDC. 

Another closed-loop LDC in the form of adaptive TE was provided by Kandula et 

al. (2005). They developed “Traffic Engineering eXtended Control Protocol 

(TeXCP)” based on Katabi`s et al. XCP, where each router along a path updates a 

probe packet with its port utilization if it is greater than the one contained in the 

probe packet. The egress node sends the probe back to the ingress node which 

applies a dedicated balancing algorithm to distribute the load on the paths. 

However, as with MATE, this approach does not solve link load maximums along 

the single links on the paths. Furthermore, in an automation ring, each listener 

would report back different results. 
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The review on closed-loop LDC approaches shows that they have been applied in 

different network application domains, with different load feedback methods, and 

using different types of controllers. 

Summarising the load feedback options, there are three: 

1. The listener end-station sends the load maximum back to the talker. This is 

conveyed by a probe packet sent by the talker, which is updated by the nodes 

along a path. 

2. The listener end-station sends back to the talker the path delay experienced 

by probe packet sent by the talker. 

3. Each node in the network provides a port load value that can be polled by a 

talker. 

The first method may work well with a limited number of talker and listener nodes, 

such as edge routers, and thus a limited number of probe packets. However, in 

larger MANs with hundreds of automation end stations, there will be significant 

additional traffic. The second method is regarded as imprecise because delays 

along a path can also be caused by sporadic interfering traffic, that is, it is not 

necessarily proportional to the load along a path. The third method is considered 

the best as talkers can poll each node and build their own complete network load 

view. 

A more complex situation arises with the controller types used. Researchers 

applied all important and proven types to solve LDC in the different network types.  

2.3.3 Controller Types 

As is clear from Goodwin et al. (2001), a key distinguishing feature of closed-loop 

LDC is the type of distribution controller used. Its selection depends heavily on the 

type of network. The literature provides LDC solutions that include a variety of 

distribution controller solutions that have their own strengths and weaknesses. 

The variety of load controller types used in network load balancing or network 

load distribution control essentially includes the following: 

1. Linear control (Kandula et al., 2007; Wang et al., 2006), 
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2. Stochastic control (Neely et al., 2008), 

3. Fuzzy control (Pompili & Priscoli, 2008; Talaat et al., 2019; Wang & Hung, 2012), 

4. Smith control or Model Predictive Control (Mascolo, 2000; Quang et al., 2020), 

5. Ant colony control (Mohammadnia et al., 2016; Zhang & Zhang, 2010), 

6. Neural network control (Talaat et al., 2019; Wang & Hung, 2012), 

7. Dedicated algorithm control (Elwalid et al., 2002; Farahmand et al., 2005) 

8. Control by Artificial Intelligence (AI) or Machine Learning (ML) (Anna Victoria 

Oikawa et al., 2020; Todorov et al., 2020), 

These control methods differ as follows. 

Linear control is the traditional method for controlling a linear system (Goodwin 

et al., 2001). In its simplest form, the measured system output is fed back and is 

weighted by a proportional factor using a proportional controller. Further 

controller improvements led to the addition of an integration element and a 

derivative element, that is, to a  proportional-integral-derivative (PID) controller, 

to achieve an optimum system output in terms of settling time, stability, and 

output constancy. Katabi et al. (2002) used linear network load control for 

efficiency and fairness controllers in their proposal of the eXplicit Control Protocol 

(XCP) to improve the TCP congestion control mechanisms. It can be used for both 

distribution control and subsequent flow control in an LDC. Its advantage is the 

low resource consumption of computing power and memory. However, it should 

be noted, that the actual optimum sizes of the PID parameters KP, KI and KD 

depend on the characteristics of the network and must be adjusted individually 

for each network. This process is known as “tuning” of the controller (Normey-

Rico & Camacho, 2007). This means that a controller must adjust this set of 

parameters for changes in the network that imply path length or delay changes. 

Another example of linear control, intended for high-delay networks is the Smith 

Predictor application by De Cicco et al. (2011). This must be applied when the path 

delays are high, compared to the time constants of the load measurements mean 

value calculation. 

Linear control needs to be evaluated for its beneficial application in this study. 
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Stochastic network load control refers to the control or optimisation of a 

stochastic network, that is, traffic occurs in a stochastically distributed manner, 

rather than to the method of a stochastic controller itself (Åström, 2012). 

Stochastic network control assumes that exogenous data arrive at the network 

through random processes. This implies that the data rate and arrival intervals are 

randomly or stochastically distributed. In principle, it uses the average data arrival 

rate by building long-term mean values, which improve with longer integration 

time intervals. The crucial difference from the traditional linear PID control 

principles is the applied time interval. Stochastic network control applies longer 

time intervals for the assignment of the average data rate, as no known pattern 

can be assumed. Neely et al. (2008) emphasise, that the cost for a high-quality 

stochastic control for load control in communication networks is a higher end-to-

end delay for the transport of the load values. Stochastic control can be applied 

to all core control problems such as continuous or discrete time, linear, non-linear, 

or predictive control concepts.  

However, since the MAN CD is typically not distributed stochastically, but is 

transmitted cyclically, it is obvious that this type of control does not have to be 

applied to the networks of this research. 

With the fuzzy control method (Matía et al., 2014), general plant parameters to 

be controlled are collected and fuzzified before processed by the fuzzy controller. 

Fuzzification means that the precise values of the input parameters are classified 

into certain ranges. The same method is applied to the controller output 

parameters. Such ranges could include classifications such as “very low,” “low,” 

“medium,” “high,” and “very high” when classifying for example the load on a 

certain network path. The fuzzy controller then applies a set of fuzzy rules on the 

input parameters, such as “If load is low, then raise output to high.” The controller 

compares all fuzzy rules and defuzzifies the results by deriving a precise result for 

the control output. The best-suited fuzzy rules, appropriate input parameter 

ranges, and output ranges are typically empirically obtained during the design of 

the control circuit. It is widely accepted and also pointed out by Pompili and 

Priscoli (2008) and Wang and Hung (2012) that fuzzy control is particularly 
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advantageous when the system to be controlled is either fairly complex, its 

behaviour is difficult to describe mathematically, or both. 

However, these system properties typically do not apply to the MAN (Subsection 

2.2.2), which are the focus of this research. Therefore, fuzzy control is obviously 

not the control method of first choice in this context. 

Bolla et al. (1998) presented an early example of research on neural network 

control within mobile network load distribution, to realise dynamic bandwidth 

allocation. They used it to optimise bandwidth usage for combining isochronous 

traffic with asynchronous, statistically distributed traffic. For neural network 

control, according to Hagan et al. (2002), a neural network is used either as a 

function approximator or as a neural controller. The neural function approximator 

is used to approximate an unknown function, that is, the system to be controlled. 

In the latter case, different types of neural network control methods are possible 

when using the neural network as neural controller. Examples include Neural 

Model Predictive Control (Patan, 2015) and Model Reference Control (Patino & 

Liu, 2000). Let’s consider Neural Model Predictive Control as an example. Neural 

Model Predictive Control, similar to Linear Model Predictive Control, is based on 

a predictive control approach in which the system under control is approximated 

by a neural network instead of being described mathematically. Hagan et al. 

(2002) explained the principle of neural network predictive control as depicted in 

Figure 2.4. 
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Figure 2.4: Neural network predictive control (Hagan et al., 2002) 

Control was achieved by training the neural network to serve as a model of a 

complex non-linear real plant. This system identification stage is typical for neural 

control, including the aforementioned neural control methods. For this purpose, 

the plant output yp together with the plant input u are fed into the neural network 

model and the plant output yp is compared with the model’s output ym. The error 

between yp and ym is used to train the learning algorithm to improve the neural 

network model. The neural network model predicts the plant responses over a 

specified time horizon. Using the model, the numerical optimisation process of 

the controller determines the control signal u and tentative control signal u’. 

According to (Hagan et al., 2002) the application of Neural Network Model 

Predictive Control is advantageous with non-linear and/or complex plant 

properties that are difficult to describe mathematically. It is an alternative to the 

fuzzy control method for such networks. Additionally, a combination of both 

control methods can be an alternative (Talaat et al., 2019; Wang & Hung, 2012).  

As already stated for the fuzzy control algorithm above and outlined later in 

Chapter 4     , the limitations of non-linearity or mathematical complexity are not 

really present for MAN compared to other networks. Thus, neural network control 

for LDCs within MAN seems unnecessary. 

Dedicated algorithms for network load control have been used for both 

congestion control and distribution control. Such an algorithm typically follows 

empirically obtained rules for increasing or decreasing the loads. TCP congestion 
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control (IETF RFC 2001, 1997) is a very well-known and widely used representative 

of dedicated algorithm congestion control on the Internet. This is reviewed in 

more detail in Section 2.4.2. Various derivatives of this algorithm, such as TCP 

Reno (Hasegawa et al., 2000; IETF RFC 6582, 2012), based on different load 

increase and decrease strategies and decision criteria have been developed over 

the years. However, these were early attempts of closed-loop load control with 

simple control algorithms similar to On-Off-Controllers. These still failed to 

provide the possibility of closed-loop stability considerations. Meanwhile, other 

scientists such as Elwalid et al. (2002), with the multipath adaptive traffic 

engineering (MATE) approach, achieved improved control stability by applying 

higher-resolution analogous feedbacks. Farahmand et al. (2005) provided another 

example of a dedicated algorithm applied on optical burst links. They use a 

proportional load feedback and imply a model of the network characteristics thus 

achieving a complete closed-loop system. It achieves an improved network 

utilization without the occurrence of congestion.  

In summary, it must be concluded that the dedicated algorithms developed by 

early LDC researchers eventually led to the application of more professional 

control engineering algorithms such as traditional PID controllers. Therefore, the 

development of a new dedicated control algorithm, different from those that have 

been widely applied and tested in previous research, as outlined in this section, 

does not seem promising. 

Another possibility of controlling the network load is control by Artificial 

Intelligence (AI), that is, Machine Learning (ML) (Russell & Norvig, 2021). 

This is known as Machine Learning Control (MLC) (Duriez et al., 2017). MLC 

is the correct selection when it comes to controlling complex nonlinear 

systems, where the traditional linear control theory is not applicable  or is 

only applicable with a very high effort. For example, Duriez et al. (2017) 

used MLC for fluid turbulence control, which is known as one of the most 

demanding non-linear control problems, and defined MLC as follows. ML 

uses data to generate a system model. With more data, the models should 

improve and be capable of handling data constellations not yet seen before. 
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ML is typically classified into three types: supervised, unsupervised, and 

reinforcement learning (Müller & Guido, 2017; Russell & Norvig, 2021). 

Supervised learning uses pairs of labelled input and output training data  to 

train a system. Yan Song et al. (2021) use supervised learning for routing 

and scheduling for simultaneous transmission of diverse data streams for 

NLB. They use the K-nearest neighbour (KNN) algorithm. KNN assigns data 

set members, in this case transmitted streams, to classes of data, in this 

case traffic classes, depending on their properties` relative distance to the 

class properties mean. This method can be used for classification and for 

regression problems. Unsupervised learning dispenses with the use of 

labelled output data and the system uses self-organised learning usually by 

using probability densities within the input and output relation. However, 

this is the more demanding method which implies higher processing power 

and memory demand in a controller. Reinforcement learning also lacks a 

learning phase. It works with a cumulative reward system to decide between 

successful and less successful control decisions.  

Thus, MLC wraps ML algorithms around a complex system to learn an 

effective control law. This is particularly useful for systems in which it is 

difficult or impossible to develop a mathematical control law for a 

mathematical model of the system. A machine learning algorithm is chosen 

to find the best control law through training procedures with data from a 

training phase or from a simulation. Here, the transition from rule driven 

ML algorithms to data driven ML algorithms is important. According to 

Duriez et al. (2017), well-proven algorithms are evolutionary algorithms 

and, in here particular, the genetic algorithms for discovering control laws 

in high-dimensional search spaces. Duriez et al. described the control loop 

for the MLC, as depicted in Figure 2.5. 
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Figure 2.5: MLC control loop (Duriez et al., 2017) 

The main difference between MLC and other methods listed above is, that 

no model, neither a mathematical model nor a neural network model, of the 

system is needed as it is with the traditional control methods. The MLC 

directly learns control laws without requiring a system model. According to 

Duriez et al., genetic algorithms can be used as optimisation algorithms 

within MLC. They use components such as chromosomes, selection, 

recombination, or mutation to create a genetic variety to explore a solution 

space. A chromosome is equivalent to a set of parameters (genes), that is, a 

possible solution vector of a certain quality. Quality is assigned by the cost 

function. The goal of the algorithm is to find a chromosome, that is, a 

solution vector that satisfies the quality requirement of a limited value of 

the cost function. For example, MLC has been used in research together with 

software defined networks (SDN) (Jahde et al., 2021; Todorov et al., 2020) 

which are well-suited because of the configuration flexibility of SDN bridges. 

MLC has, according to Mowei et al. (2018), numerous processing steps, 

including problem formulation, data collection, data analysis, model 

construction, deployment and inference, and model validation . Thereby it 

is a very demanding control method regarding memory consumption and 

CPU calculation effort. Given that LDC in MANs is a linear control problem 

with limited mathematical complexity, the application of a demanding MLC 

control algorithm seems disproportionately high compared to a few tens of 

the lines of code for a PID controller. 
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Ant Colony Optimisation (ACO) control (ACOC) is another network load 

balancing technique, also typically classified as an AI algorithm.  This is a 

metaheuristic algorithm inspired by the behaviour of a real ant colony 

(Mohammadnia et al., 2016; Zhang & Zhang, 2010). Zhang and Zhang (2010) 

used it for cloud computing networks and Mohammadnia et al. (2016) 

provided an ACO based solution for vehicular ad-hoc networks (VANETs). 

With these approaches, packets are given their best routing path decision 

in each individual node based on an accumulated “pheromone” value. The 

ants are represented by request and response data packets called agents 

which are sent from talker to the listener and sent back along the paths 

found. These packets contain information about the source address, 

destination address, number of nodes crossed and other quality criteria 

such as path cost, accumulated path delay, or maximum load along the path, 

from which the pheromone values are formed. Due to the decentralised 

character of this control, no load feedback to a central distribution 

controller is necessary. One of its advantages is that it is flexible in terms of 

network size and participating number of nodes. This also makes it a 

potential candidate for MAN LDC, which can also experience network 

expansions during ongoing operations. However, it has the disadvantage of 

not being able to anticipate congested links along a path. A routing decision 

can therefore turn out to be the wrong decision on the next link. This is 

particularly likely in ring topologies with limited paths, since a routing 

decision will not be followed by alternate paths, as in a highly meshed 

network. For the LDC in MANs, which is the focus of this research, it is in 

principle suitable for distribution control. However, since the prevailing 

MAN topology is a ring with only two available paths, it cannot fully exploit 

its strengths here. In addition, ACOC is not suitable for the subsequent flow 

control. This is totally absent from an ACOC approach, meaning the load 

must be shifted incrementally, potentially leading to unwanted control 

oscillations.   
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2.4 Network Congestion Control 

Network congestion typically results from sporadic traffic peaks. These can be 

caused, for example, by sporadically accumulated network access attempts or 

simply by overloaded networks due to increasing usage. Excessive network 

congestion can result in a high or total loss of service, known as the congestive 

collapse of a network. 

For example, early important considerations on the subject of congestion control 

provided the theories of Kelly et al. (1998). They consciously differentiated 

between the possibilities of traffic reduction, in the case of congestion control, 

and re-routing in the case of load distribution. They analysed simple additive 

increase/multiplicative decrease algorithms, that is, dedicated control algorithms 

according to Subsection 2.3.3. These have been applied to congestion control and 

fairness control between services, such as is common in a TCP congestion control 

algorithm. They show that stability around an equilibrium point can be achieved 

for both controls. For fast MAN CD traffic, which must not be significantly delayed, 

however, the effect of congestion is fundamentally unsuitable and must be 

avoided. Congestion control is therefore not the focus of this study. It is only 

applicable to slower applications, where limited delay of the CD does not spoil the 

intent of the application. However, its principles are important for the TSN shapers 

CBS and ATS and must therefore be reviewed.  

Control or avoidance of congestion is typically achieved by limiting the ingress rate 

of network traffic (Nasrallah et al., 2019). It can be regarded as a pre-stage for load 

balancing. Congestion control is typically limited to a single network path. Some 

studies have also used the expression “congestion control” in the context of 

multipath networks which is similar to load distribution or load balancing. 

However, this is an exception and was rather used at the beginning of research on 

load balancing. 

Depending on the length of congestion, different counter measures are advisable 

(Jain, 1998). A very short-time overload can be compensated by adequate 

message buffering with sufficiently sized egress queues at the output ports of 
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network bridges or routers. Long-time congestion usually indicates that the 

network is undersized and requires a major upgrade. Mid-time congestion can 

usually be avoided by applying favourable additional network designs, such as: 

1. Open-loop congestion control, or 

2. Closed-loop congestion control. 

2.4.1 Open-loop Congestion Control 

As Nasrallah et al. (2019) have pointed out, open-loop congestion control 

attempts to avoid overload situations by stretching overload peaks or limiting the 

amount of egress data at the sender side and/or in the bridges. Stretching of traffic 

peaks can be achieved by applying a favourable sender or bridging traffic shaping 

algorithm, such as the Leaky Bucket traffic shaper or the Token Bucket traffic 

shaper (Tanenbaum et al., 2021). These basically follow the principle of buffering 

excess ingress network traffic, which is freed afterwards at the egress side at a 

constant rate over time. With that they obtain a homogenous traffic distribution 

over time. In addition to protecting against overload, a positive side effect of 

bucket-based shapers is that they safe queuing resources in subsequent bridges 

because they defuse traffic bursts (Falk et al., 2019). 

The Leaky Bucket algorithm has been widely applied and investigated in research 

such as provided by Wu and Mark (1993).  It is based on the analogy of a bucket 

with a leak as illustrated in Figure 2.6.  
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Figure 2.6: The leaky bucket principle 

The symbolic bucket could be filled at an unsteady rate but is emptied at a 

constant rate via the leak. Excessive input results in overflow. 

In this sense, transferred to data communication, as explained by Wu and Mark 

(1993), the ingress data frames are buffered in a message queue. This will be 

emptied at a constant rate via the output port of a network device such as a router 

or bridge. If the amount of ingress data over time exceeds the egress rate for a 

longer period of time, depending on the memory size of the queue, the queue will 

be filled sooner or later completely, and further frames will be dropped. Thus, 

short ingress peaks are tolerated and smoothed without data loss. In connection 

with this research, the leaky bucket principle is relevant because it is similar to the 

TSN CBS shaper (IEEE 802.1Qav, 2009). Furthermore, its ability to save queuing 

resources makes it an attractive add-on in combination with other shapers or 

schedulers, if the applications allow CD stretching. 

Another bucket-based shaper is the Token Bucket algorithm (Ohnishi et al., 1988; 

Puqi Perry & Tai, 1999; Tanenbaum et al., 2021). It does not buffer frames as the 

leaky bucket algorithm does. Instead, it buffers tokens that are generated 

internally at a constant rate TToken until an adjustable number of n tokens have 

filled the buffer (bucket). In this event the buffer is emptied, and n frames are sent 

out during a burst. Thus, the token bucket algorithm does not smooth out the 

ingress bursts of frames by sending frames at a constant rate. Instead, it smoothes 
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congestions of CD as it still allows frame bursts which can be limited to the size of 

an ACs number of frames for one application cycle. Moreover, it is also important 

as it is also a component of the ATS scheduler (IEEE 802.1Qcr, 2020) of TSN and 

can thus form the properties of the TSN data path. 

The credit-based shaper algorithm (IEEE 802.1Qav, 2009) is based on the work of 

Bensaou et al. (2001) which proposed the Credit-Based Fair Queueing (CBFQ) 

algorithm. It is suitable for distributing available bandwidth among different traffic 

classes on the same port. This is achieved by allocating send credit to data traffic 

during waiting times and withdrawing credit while sending data traffic. With 

increasing waiting time, a per-traffic queue credit parameter, constituting the 

send credit of a certain traffic class, is increased at a constant rate over time. This 

parameter is commonly denoted as idleSlope. The next frame of this traffic class 

waiting in the queue is sent with the reach of a certain amount of credit, 

represented by the hiCredit threshold parameter. The sending process decreases 

credit with the sendSlope rate. Sending is possible until the parameter lowCredit 

border is reached, provided that there are further frames in the queue. Figure 2.8 

illustrates this credit-based shaper principle. 
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Figure 2.8: The credit-based shaper algorithm  

As mentioned above, CBS can also be applied in TSN MAN in combination with 

slower CD cycles, allowing CD stretching without consequences for the 

application. A detailed timing analysis of the CBS compared to other TSN shapers 

was provided by Zhao et al. (2022). Their results confirm the expectation that CBS 

introduces delays for the individual traffic classes due to its distributing effect. 

These delays are the reason for its limited suitability for only slower CD, which 

precludes its use as primary TSN-MAN-based hardware.  However, as Falk et al. 

(2019) explain, it can still be interesting as an additional downstream functionality 

in combination with for example SPQ, to save queue memory in subsequent 

nodes.  
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Additional possibilities of congestion control for streams include the resource 

reservation protocols such as MSRP (IEEE 802.1Q, 2022),  and RAP (IEEE 802.1Qdd, 

2023). To the best of the author's knowledge, their application in connection with 

congestion control has not been scientifically investigated. The reason might be 

that the effect of their application does not raise questions. Another congestion 

control method can be ingress limiting filters which simply cut exceeding traffic at 

the receiver or edge bridge side (IEEE 802.1Qci, 2016). These too have not yet 

been examined in connection with congestion control, apparently for the same 

reasons as the reservation protocols. 

All these algorithms work on the data plane of a sender or bridge and reduce 

egress or ingress traffic peaks or bursts by either stretching them over time or by 

avoiding or discarding them. However, they have no information about the real 

load on the network and are therefore open-loop congestion control concepts. 

Reviewing the open-loop procedures shows that these can only be used 

preventively but never directly as a reaction to congestion. By contrast, closed-

loop congestion control concepts use actual load feedback to control egressing 

data traffic. Therefore, these promise better solution concepts in the direction of 

optimal control.   

2.4.2 Closed-loop Congestion Control 

In contrast to open-loop congestion control, closed-loop congestion control 

operates with feedback from an actual network load situation. This is measured 

within the network and returned to the data source. Depending on the control 

concept, such feedback can range from rather simple mechanisms, such as binary 

information (Hasegawa et al., 2000), to rather complex facilities that measure the 

actual current network traffic on the path (Bonomi & Fendick, 2002; Jain, 1998). 

However, feedback information must always be transported from a certain point 

in the network to the sender, which involves communication protocol interaction.  

Although congestion control is not the focus of this research, closed-loop 

congestion control methods must be further investigated to determine if they 

could also be beneficial for load distribution on two or more paths. This is 
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particularly important since single-path congestion control has the same objective 

as subsequent per-path flow control of an LDC. 

Hasegawa et al. (2000) improved the Transmission Control Protocol TCP (IETF RFC 

793, 1981) which is one of the major transport protocols used on the Internet and 

in campus Layer 3 based networks. The original TCP congestion control is a 

prominent example of closed-loop congestion control and uses a congestion-

avoidance algorithm (IETF RFC 5681, 2009).  A TCP sender maintains a congestion 

window value that contains the number of unacknowledged bytes sent out. It uses 

an additive-increase/multiplicative-decrease (AIMD) scheme to adapt the 

congestion window size to the network situation. The amount of data sent onto 

the network path to the receiver slowly increases while receiving positive 

feedback via packet acknowledgment. Thus, the acknowledgement of the sent 

packages serves as binary feedback. In the case of a missing acknowledgement the 

sender immediately cuts the congestion window size (multiplicative decrease) to 

reduce the load on the network path. Thus, the TCP congestion avoidance 

algorithm is an end-to-end algorithm as feedback is provided by the receiver end 

station of the data. However, the algorithm does not consider the stability issues 

that can occur, particularly with different path delays in various networks. 

To provide the possibility of adapting to different network characteristics, 

Hasegawa et al. (2000), presented TCP Reno, which in principle provides a 

different and improved increase/decrease strategy. This led then to the TCP 

NewReno Fast Recovery mechanism officially proposed by  IETF RFC 6582 (2012),  

which provides further strategies for increasing and decreasing the TCP 

congestion window.  

Thereby, different and specially tailored properties regarding the reaction time or 

selectivity were achieved. However, a major disadvantage, in addition to 

insufficient closed-loop stability corrections, is that the feedback on congestion, 

that is, the missing acknowledgement, is generated by actual packet loss which to 

avoid would have been the innermost goal of any congestion-avoidance 

algorithm. A further drawback of the on-off-principle is that it is prone to load 

oscillations. 



  Page 74 

These disadvantages of the TCP congestion avoidance algorithm, among others, 

have led to the development of better protocols, such as XCP (Katabi et al., 2002), 

which facilitates analog feedback for a much better adapted control reaction on 

imminent congestion. Katabi et al. (2002) showed that TCP becomes inefficient 

and prone to instability by increasing the per-flow product of the bandwidth and 

latency. This is becoming increasingly problematic with the application of high-

bandwidth optical and large-delay satellite links. They also showed that closed-

loop congestion control load oscillations depend directly on the bandwidth-delay 

product when applying TCP congestion avoidance algorithms. This is the product 

of the network bandwidth and round-trip time (RTT or rtt), which is the time for 

data to reach the receiver plus the time the feedback needs to return to the 

sender. Therefore, Katabi et al. (2002) proposed an eXplicit Control Protocol, XCP, 

that extends the TCP congestion notification mechanism by introducing a closed 

loop efficiency controller. XCP achieves better congestion avoidance results than 

the standard TCP mechanisms. 

It is further seen that XCP for congestion control also built the basis for further 

research and development in the area of load balancing concepts such as TeXCP 

(Kandula et al., 2005) , where not only the avoidance of congestion is the goal, but 

also the distribution of load onto other available network paths.  

Since then, many other scientists have worked on reducing TCP congestion. For 

example, Wu et al. (2009) extended XCP to overcome the disadvantage of 

extensive router calculation burden and introduced a more efficient and fairer 

explicit congestion control protocol, EFXCP. It operates with longer sample 

intervals for router throughput and congestion calculations. Further research on 

closed loop congestion control was provided among others by Bonomi and 

Fendick (2002) on ATM networks, by Wan et al. (2011) for sensor networks, and 

by Chen and Khorasani (2011) on large scale networks. Geist and Jaeger (2019) 

provide a detailed overview of various TCP congestion avoidance algorithms and 

their characteristics. 

The general concept of congestion notification has also been standardized in the 

IEEE 802.1Q (2022) standard for layer 2 networks. 
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In recent years, general network protocol congestion control mechanisms for 

Layer 3 routed networks have become the subject of new research, particularly 

in the field of wireless networks. Kanagarathinam et al. (2020) propose a dynamic 

TCP (D-TCP) capable of coping with the high channel fluctuations of mobile 

networks such as mmWave NR and LTE-A. It uses variable estimated bandwidth 

consumption. Saedi and El-Ocla (2021) introduce “Congestion Control 

Enhancement for Random Loss plus (CERL+)” which works with an average round 

trip time (rtt) length. Both D-TCP and CERL+ improve congestion loss in mobile 

networks with random packet losses. Kasoro et al. (2021) also presented a new 

algorithm called ABCSS as an optimised combination of the “Appropriate Byte 

Counting” and “Slow Start” methods, which is based on a variable TCP congestion 

window size. 

Closed-loop congestion control, which focuses on a single path, has paved the way 

for closed-loop load distribution control, the focus of this study, with the goal of 

evenly distributing the load across multiple paths.    

Summarising this review on general Layer 3 network closed-loop congestion 

control, it shows that numerous improved congestion avoidance algorithms for 

the TCP protocol have been defined. These achieve better results than the original 

TCP but all work with traffic-reduction methods. This is fine for general networks 

layer 3 TCPs lower priority Internet traffic, but inappropriate for CD of automation 

networks. These are typically not based on TCP but on vendor-specific protocols 

or dedicated automation transport protocols. Automation CD is furthermore time-

critical data and is not allowed to be significantly reduced in throughput. 

Therefore, these transport protocol-related congestion avoidance algorithms 

cannot be used directly for automation CD within MANs or TSN MANs. 

Nonetheless, the important insight gained from the review of the control 

methods, is that path delays play an important role in the stability of load control. 

This knowledge can be directly applied on the subsequent flow control for LDC in 

TSN MANs. 

Within smaller Layer 2 communication subnets or network cells, the transport 

decisions are not based on IP routing as with Layer 3 networks, but on switching, 
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based on the MAC-Address of the destination. When evaluating previous research 

in Layer 2 networks, it was found that this work is often dedicated to either special 

Layer 2 networks such as ATM networks (Jain, 1998; Kelly et al., 1998; Mascolo, 

2000; Yin & Hluchyj, 1994), software defined networks (SDN) (Ma et al., 2017; 

Prabakaran & Ramar, 2021), sensor networks (Chen & Khorasani, 2011; Wan et 

al., 2011), or it is reduced to special Layer 1 hardware such as wireless media 

(Lopez-Perez et al., 2016; Lu et al., 2018; Wang & Hung, 2012) or optical media 

(Nam-Uk et al., 2009). The review of their applied control methods does not 

provide new methods compared to those used in the Layer 3 networks. 

Furthermore, neither have TSN shapers or schedulers been involved in these 

research projects nor the traditional IEEE 802.1Q defined basic SPQ, which would 

have been important for TSN MAN. Additionally, they worked with dedicated 

control algorithms as introduced and investigated in Section 2.3.3. Thus, their 

control principle is only of secondary importance compared to the best practice 

linear PID control possibilities.  

2.5 Traffic Engineering 

The term ‘traffic engineering‘ (TE), in the context of IT networks, was originally 

used mainly in connection with ISP networks. It defines provisions and control 

automatisms to optimally use the available multiple intra-domain connections 

within an Autonomous System (AS) such as university campuses, companies, or 

ISP domains (Fortz et al., 2002). To achieve this, state-of-the-art Interior Gateway 

Protocols (IGP), such as Open Shortest Path First (OSPF), Intermediate State - 

Intermediate State (IS-IS), and Multi-Protocol Label Switching (MPLS) 

(Goulamghoss & Bassoo, 2020; Jong-Moon, 2000), were enhanced with traffic 

engineering functionality.   

Meanwhile, the relevant network standard IEEE 802.1Q (2022) includes provider 

backbone bridge TE (PBB-TE) to build a common TE basis for layer 3 and layer 2 

networks. 

According to Smith (2003) the goals of traffic engineering are : 
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• To enhance protocols to automatically map packets onto appropriate 

paths.  

• To determine the best paths for data traffic with respect to properties such 

as: 

o Bandwidth demand and bandwidth availability on the single paths 

o Priority relative to other data priority 

o Delay constraints 

o Media requirements 

The crucial property of TE is thus that it typically occurs in the network planning 

and administration phase and not at network runtime unless new boundary 

conditions demand corrections at runtime. In some studies, such as the one from 

Elwalid et al. (2002), the expression ‘adaptive TE ‘ has been used for dynamic load 

distribution at runtime. 

Basically, the literature decides between ISO/OSI Layer 3 and Layer 2 network 

traffic engineering or the combination of both, then referred to as multiple layer 

traffic engineering. 

2.5.1 Layer 3 Traffic Engineering 

As Tanenbaum et al. (2021) describe, most AS internally use traditional IGP such 

as Routing Information Protocol (RIP), OSPF, IS-IS, or Enhanced Interior 

Gateway Routing Protocol (EIGRP) on the routers. Basically, routing protocols 

exchange information with neighbouring routers regarding the quality of the links. 

This is assessed by assigning a link weight integer value. Each router maintains a 

complete view of its network domain. The link weight value is derived from the 

link speed and delay. With these classical routing protocols, the router computes 

a “shortest” path to the destination by building the sum of the link weights along 

all available links or paths and by selecting the minimum of these sums. The 

forwarding decisions are then based on shortest path information.  
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The literature review has found that there are different concepts for achieving 

layer 3 traffic engineering using the classical IGP. These approaches can basically 

be divided into static and dynamic traffic engineering approaches. 

Static traffic engineering by favourable administration: 

Traditional IGPs such as RIP, OSPF, IS-IS, or EIGRP do not provide mechanisms to 

support automatic traffic engineering.  Fortz and Thorup (2000) show that one 

way to bypass this disadvantage and nonetheless implement traffic engineering, 

is to set static routing rules or to adapt dynamic routing rules to a given traffic 

distribution. This is achieved by manually adapting link weights to a given traffic 

pattern. This has the advantage that standard routing protocols can be used. 

Another advantage is that single network links can be adapted according to the 

global network view of the network administrator, which can achieve a network-

wide optimisation of the link loads.  

However, the need for constant network re-configurations with each change in 

the network represents a rather elementary and cumbersome approach. It 

constantly demands the action of a network administrator or administration tools 

for automatic reconfiguration following known traffic patterns if these are 

changing slowly enough.  It does not scale with big networks or with fast-changing 

traffic patterns as they occur in a TSN MAN. 

This disadvantage was partly defused by Jong-Moon (2000) by the use of signaling 

protocols such as constraint-based routing label distribution protocol (CRLDP) and 

the resource reservation protocol (RSVP). However, it would be still too slow for 

fast path changing of data traffic as it is the goal for a dynamic LDC in TSN MAN. 

Dynamic traffic engineering with enhanced routing protocols: 

Notably ISPs have a growing demand to dynamically adapt to changes in traffic 

patterns and to provide customers with communication connections of a 

guaranteed Quality of Service (QoS).  The disadvantages of slow and elaborate 

static traffic engineering approaches have led to the development of traffic 

engineering extensions within traditional routing protocols. For example, MPLS TE 

(Smith, 2003), also known as IP/MPLS TE, or OSPF-TE (IETF RFC 3630, 2003). 
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Tanenbaum et al. (2021) explain that MPLS is an integration of layer 2 technology 

into layer 3 technology, as it assigns labels to data packages. The routers 

channelize the data packages via these labels onto certain network paths without 

considering layer 3 content which is located further inside the data frames.  MPLS 

defines one or more tunnels, the so-called labeled switched paths (LSP), from the 

ingress point (LSP head) to the egress point (LSP tail). If the data have crossed the 

tunnel and have reached the egress point of the network, usually at the other end 

of the provider backbone, the label information is removed again. The MPLS itself 

can only provide different channels to apply load distribution but has no means 

for distribution decisions. MPLS TE assigns enhanced metric information to LSP 

tunnels and performs traffic engineering calculations to assign traffic to the 

tunnels to meet the distribution requirements (Goulamghoss & Bassoo, 2020; 

Smith, 2003). It uses traditional IGP extensions on OSPF or IS-IS to distribute 

enhanced metric information to the head-end calculation modules. As 

Goulamghoss and Bassoo (2020) explain, a further possibility to enhance the 

rerouting convergence speed after a change in the network is to apply MPLS Fast 

Reroute (FRR). Thereby, backup paths are pre-computed and pre-established 

along the LSP before link or node failure issues. This can reduce convergence time 

to about 100 ms which would be even fast enough for slower automation 

applications CD. However, MPLS is typically a network function of higher layer 

networks and is typically not supported by MAN devices installed at the field- and 

controller-level networks. Therefore, MPLS TE cannot be considered for a MAN 

TSN LDC solution that are the focus of this research. It can only be an alternative 

for higher-level MANs running Deterministic Networking (DetNet) according to 

IETF RFC 8655 (2019). DetNet is a deterministic approach for Layer 3 networks, 

similar to TSN for Layer 2, which can be based on either IP or MPLS. 

2.5.2 Layer 2 Traffic Engineering 

In addition to the application of Layer 2 technology to reach a higher level of 

automatic traffic channeling in Layer 3 networks, as described in the previous sub-

section with MPLS TE, Layer 2 traffic engineering, as investigated for example by 
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de Sousa and Soares (2008), mainly implies the static application of the traffic 

control means provided by the classical Layer 2 methods defined by IEEE 802.1Q 

(2022). This includes primarily the logical separation of the network by Virtual 

LANs (VLAN) assignment and the Quality of Service (QoS) assignment to certain 

network traffic. In combination with the multiple spanning tree protocol (MSTP) 

(IEEE 802.1Q, 2022), the assignment of favourable path costs is an additional 

means to influence the selection of data paths. 

The assignment of VLAN Identifiers to the physical ports of bridges of a given 

network, as described by Tanenbaum et al. (2021), creates logically separated 

LANs within a single physical LAN. MSTP allows the operation of these virtual LANs 

as separated network spanning trees. These trees can be designed to be derived 

from different root nodes and thus form Multiple Spanning Tree Instances (MSTI). 

With MSTP TE, solutions such as those applied by de Sousa and Soares (2008) and 

Santos et al. (2009), use the MSTP path cost and root selection to arrange this set 

of MSTI in a favourable way to minimise the maximum network loads on the 

overall paths. However, the MSTP reconfiguration time typically takes a few 

seconds, which is too slow for MAN applications. Additionally, configuring an 

MSTP region with different VLANs and MSTI is a complex process which demands 

IT specialist knowledge that is not typically present in the MAN application 

domain. 

The MSTP TE has not been used for better load sharing only. Ali et al. (2005) 

propose the use of different MSTP regions to divide the network domain into 

smaller parts. Thereby, they achieve better results for network convergence time 

as a reaction to network changes, reduced influence of network failures, and 

better failure localisation in addition to a better network utilisation. Nevertheless, 

de Sousa and Soares (2007, 2008) showed that the single MSTP region approach 

is most effective in terms of both load sharing optimisation and service disruption. 

Santos et al. (2009) built on this knowledge by optimising link load balancing in 

single-region MSTP networks. They investigated two optimisation objectives. 

First, the minimisation of n worst link loads, with n up to the total number of 

network links, and second, the minimisation of the average link load, when n is 
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less than the total number of network links. They solved this task by appropriate 

modelling of the network and the use of standard linear programming 

optimisation and showed that the solution of models of only a reasonable network 

size already create excessive computational effort. Therefore, they proposed the 

application of heuristics based on the optimisation of a relaxed problem, where 

only fractional network parameter assignments to the spanning trees are allowed, 

from which feasible solutions can be derived. However, the results for the 

reconfigurations are still in the range of a few 100 ms, despite the very high 

computational effort for the optimisation. 

To find the optimally shared load, Ho et al. (2011) used the “Local Search” (LS) 

method to find a global minimum maximum of the network utilization. Local 

search is also a heuristic method for solving complex optimisation problems. They 

used the COMET (Comet, 2023) optimisation tool, which is a dedicated 

programming language used to solve complex combinatorial optimisation 

problems, to simulate the MSTP network. The simulated network consisted of a 

set of N switches (nodes) and a set of E links (arcs or edges). Assigning k MSTIs to 

this network yields the following: 

1. k initial link cost matrices W1, Ws, … Wk, 

2. a bandwidth matrix BW 

3. k traffic demand matrices TD1, TD2,… TDk, 

The objective of the optimisation was to find k MSTIs for the k VLANs to minimise 

the maximum of the link utilisation Umax of all possible links e within E. Thereby, in 

this approach, the search space is made of the spanning trees, not of the link costs 

as in previous approaches. However, constantly changing traffic demand matrices 

over time because of unpredictable network user behavior create constantly 

challenging high effort optimisation computations of a central instance and a 

continuous collection of all network information. The latter also causes 

considerable additional traffic. 

These MSTP solutions all achieve the goal of a well-balanced network load. 

However, they are only suitable for relatively slowly changing traffic patterns. An 
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MSTP reconfiguration  typically takes a few seconds (IEEE 802.1Q, 2022), which is 

slow for the goal of quick reactions to load changes in a MAN with communication 

cycles of a few milliseconds. Another key disadvantage of an MSTP solution is the 

risk that carelessly applied topology changes can result in the reconfiguration of 

the entire network tree, which would result in unacceptable application 

downtime. 

Another form of Layer 2 traffic engineering, which was among others investigated 

for example by Wang et al. (2021), is the establishment of dedicated send slots for 

talkers participating in TSN networks. They achieve resource assignment using, for 

example, the EST provisions defined by IEEE 802.1Q (2018). In this case, the traffic 

engineering is performed using CNC that optimises the send slots of synchronised 

talkers and bridges. Several algorithms have been proposed for this purpose. For 

example, Wang et al. (2021) applied an improved ACO called IACO, to schedule 

time-triggered stream transmissions. They define minimal send slots of frame 

length and demand that only one node is using a certain send slot. Thus, they 

achieve an optimum load distribution. However, the necessary complete 

recalcualations after a change in the network make it an inflexible approach, not 

suited for MAN.  

Li et al. (2022) used a joint routing and scheduling algorithm that achieved 

recalculation for a few thousand streams at the sub-second level. The central 

recalculation of the complete time-critical traffic, however, also has the major 

disadvantage of inflexibility regarding added or removed network participants or 

links. This typically again demands a complete schedule reconfiguration, and thus 

a reconfiguration of all network participants which disturbs the automation 

applications. 

For Ethernet networks according to IEEE 802.1Q, as they are the basis for this 

thesis, facilities for TE are thus far only specified by standards purely for use within 

Provider Backbone Bridged Networks (PBBN). These are based on the definitions 

of IETF RFC 5305 (2008), IETF IS-IS Extensions for Traffic Engineering, and IS-IS 

Traffic Engineering Metric Extensions of  IETF RFC 8570 (2019). These PBB-TE 

mechanisms use path control and reservation (ISIS-PCR) to find multiple 
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favourable paths and set up a Traffic Engineering Database (TED). This is 

propagated by IS-IS, which stores the traffic engineering information in each PBB. 

Crucially, however, is that bridges suitable for industry and MAN typically do not 

support ISIS-PCR. Thus, this means of pathfinding is not available for this research. 

Furthermore, the actual use of multiple paths, that is, any load sharing or load 

distribution concepts or algorithms, as shown in the previous sections, are not 

part of the IEEE 802.1Q. These are left to be designed by the user of the network, 

using controller types as listed in Section 2.3.3. 

2.5.3 Multilayer Traffic Engineering 

When network operators migrated networks to optical IP-over-WDM 

(Wavelength Division Multiplexing), so called multilayer networks, it was 

necessary to define mechanisms that allowed to make use of the resources 

offered by both layers in a coordinated manner. This led to the definition of 

Generalized Multi-Protocol Label Switching (GMPLS), as defined by IETF RFC 6002 

(2010), on the control plane, which allows automatic set up and tearing down of 

light paths in the data plane. 

As for example the research of Puype et al. (2009) shows, Multilayer traffic 

engineering (MLTE) provides cross-layer network optimisation techniques to cope 

with short-term evolution or rapid changes in traffic patterns. It extends the Layer 

3 IP/MPLS TE towards Layer 2 MPLS-over-optical network traffic engineering by 

integrating Layer 2 optical switching optimisations. The multilayer approach 

features a much higher flexibility to network changes compared to a single layer 

TE solution and is therefore especially suited to serve in multiservice 

environments. In contrast to other approaches, that propose a reactive approach 

in the case of network overload, such as the topology reconfiguration mechanism 

from Gillani et al. (2005), Puype et al. (2009) work with a more proactive approach. 

Their solution is based on three integrated mechanisms that continuously 

optimise network performance by analysing traffic measurement data, that is, this 

TE can be classified as a dynamic and closed-loop approach. The use of different 

mechanisms is necessary due to the different needs of a variety of data from 
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different service classes. For example, bulky BE data is managed by using rather 

slow and inflexible layer 3 mechanisms, whereas selected services requiring 

higher QoS such as CD are assigned to faster acting Layer 2 mechanisms. The 

latter, which are also the focus of this study, work with dynamically modified link 

capacities, independent of actual logical topology connectivity. For this, an optical 

light-path setup and teardown is required but the logical topology is not changed. 

The maximum admissible link capacity is crucial for the network formation. 

However, neither wired nor optical MAN and TSN MAN paths provide the feature 

of setting up or tearing down additional light paths. Thus, this approach is not 

available for TSN MAN. 

Another promising MLTE approach was provided by Lopez et al. (2010), who 

defined an algorithm that efficiently manages the resources from both layers 

equally. Their concept is based on the Bayesian Decision Theory, that is, they use 

load statistics for the path selection decision to find a compromise in assigning the 

optimal number of label-switched paths that are to be switched over the 

electronic and optical network domain sections. The result is a heuristic dedicated 

algorithm. Also here, the method of analysing the load to adapt load-dependent 

link costs for path selection is in principle an interesting approach also for the 

MAN LDC goals of this thesis. However, again, there is no possibility in a wire-

based or optical MAN to set up additional paths or bandwidth capacity in a 

load-dependent manner, as with the IP/MPLS forwarding adjacencies for light 

paths or capacity up/-downgrading. 

2.6 Load Balancing 

The concept of load balancing has long been known in client/server systems 

(Cardellini et al., 1999), distributed systems (Zaki et al., 1996), and network 

operations (Elwalid et al., 2002). As the literature review shows, the expressions 

“load sharing” or “load distribution” are often used as synonyms for “load 

balancing,” while the latter expression clearly dominates. To be precise, 

“balancing” in its original meaning rather stands for an equal distribution whereas 
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servers of the server cluster to improve the available services with regard 

to: 

• Scalability 

• Availability 

• Load balancing 

• Applicability to a variety of services 

• System updates without down times 

Thus, the SLB is a distribution of load among the end stations, regardless of 

its path loads. Path loads, as they are important for this research, are not 

primarily the focus of SLB. However, to a certain extent the load on the 

paths to the servers is also balanced if they are accessed through different 

paths.  

The number of servers in a cluster is usually allowed to vary in numbers. 

Traditional early SLB applications, such as those described by Cardellini et 

al. (1999), were laid out for a smaller number of typically two or three 

servers. 

They describe various client-based and server-based packet routing 

strategies, all of which can be classified as oblivious routing algorithms as 

described in Section 1.1. They are thus not closed-loop algorithms that could 

help bringing this research to an optimal dynamic LDC for TSN MAN. 

Subsequent research, such as that provided by Wilson and Deepalakshmi 

(2019), targeted higher numbers of servers or clusters. In addition, they 

proposed a dynamic server load balancing algorithm (DServ-LB) using SDN-

switches for dynamically varying the number of servers. The proposed control 

algorithm routes requests to the least loaded server using load parameters such 

as remaining memory, remaining CPU load, and number of available connections. 

These three parameters are combined by a central controller according to an 

empirically obtained calculation rule. The controller algorithm is thus to be 

classified as a dedicated closed-loop control algorithm according to Subsection 
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2.3.3. However, such an algorithm cannot be directly reused for a network LDC 

that depends solely on comparing the link data load. A proven PID controller for 

the link load might be the better solution here.  The use of SDN switches is only 

important in terms of how the control decision is brought to the data plane to 

multiplex requests to the servers. However, this is not important for network LDC 

in MANs when distributed LDC-Controllers are part of each AC and decide their 

own send-paths for their individual own traffic on their own ports.  

A similar approach, also within SDN, was provided by Bojović and Živko 

(2022), who also used a multi-parameter closed-loop dedicated control 

algorithm to measure actual host loads. The same restrictions apply here 

regarding a re-use for TSN MAN as with the Wilson and Depalakshmi 

approach.   

Other well-known implementations of contemporary SLB for a higher 

number of servers are the Microsoft Network Load Balancing (Microsoft, 

2023), where the expression “Network” is used as a synonym for servers, 

and the Linux Load Balancer is a part of the Linux Virtual Server (LVS) (Linux, 

2023) software. Here, too, dedicated algorithms were used that work with 

server parameters and cannot be directly transferred to a MAN network 

LDC. In conclusion, however, it must be stated for SLB in general that the 

transferred idea of distributing the load to different MAN devices in a ring, 

in this case ACs instead of servers, does not necessarily lead to distribution 

over the paths, which is the goal. However, it would be expected that the 

spatial separation of several ACs in a ring would also result in better load 

distribution in the ring, since data is sent to and from the ACs in different 

directions. For controller types, however, no new controller approaches 

could be identified in the SLB literature apart from those listed in  in Section 

2.3.3. 

2.6.2 Distributed Systems Load Balancing 

In addition to the trend of clustering internet servers, the growing availability of 

low-cost high-performance CPUs in connection with highly effective 
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communication networks has enabled the distribution of extensive calculation 

tasks on a variety of hosts. Also, within such distributed systems, the challenge is 

to balance the task loads. Both static and dynamic load balancing solutions were 

applied, as described by Taley and Keole (2015). These distributed systems load 

balancing (DSLB), or load distribution concepts also clearly target the relief of 

connected systems rather than the relief of the connecting network, which is the 

focus of this research. Nevertheless, the applied balancing concepts also contain 

interesting aspects for network de-loading goals. Examples of early concepts for 

distributed systems started with the load distribution for a network of 

workstations (Zaki et al., 1996) which were loaded by parts of a calculation task 

proportional to their individual performance. The driving goal of this was, and still 

is, to parallelise sub-tasks to minimise the execution time of the complete task. In 

addition to previous static approaches, where tasks and resources were limited to 

certain borders, Zaki et al. investigated different dynamic load distribution 

schemes with varying program and system parameters. Static load balancing for 

distributed systems is performed at compile-time, whereas dynamic load 

balancing (DLB) is executed at runtime according to the changing number of users 

and their changing applications. According to Zaki et al., four steps are necessary 

for DSLB:  

1. Monitor processor performance. 

2. Calculate new distributions. 

3. Make work-distribution decisions. 

4. Move the data to the distributed systems. 

They chose four different schemes to construct the load sharing mechanisms: 

1. The concept is based on either local, or 

2. global information to base the load balancing decision on it, and it is, 

3. either centralized, or  

4. distributed, depending on whether the load balancer is situated in one 

system or distributed among the systems. 
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These four poles, local versus global and centralized versus distributed, are 

also important in the design of load sharing for general networks and MAN, 

as discussed in Chapter 4     . 

Metawei et al. (2012) presented another approach: an agent-based DSLB. 

They used a credit-based system in which each agent in a system is assigned 

credit that decides whether it will be migrated or transferred to another 

system. Multiple linear regression, calculated using a super-ordinated 

system, was applied to reach the migration decision, based on a multitude 

of regression parameters such as computational load, resource 

availabilities, and communication reliability. It is thus very similar to the 

parameter-based SLB approach of Wilson and Deepalakshmi described in 

Subsection 2.6.1. However, like the Wilson and Deepalakshmi approach, it 

cannot directly be used for TSN MAN LDC either. Furthermore, the idea of 

using a credit system to decide heavily or lightly loaded systems is similar 

to a port load parameter at each port within a MAN LDC to decide heavily 

or lightly loaded ports. This approach therefore does not reveal any new 

ideas for an optimal MAN LDC solution. Later research focusing on higher-

number distributed computer systems was mostly published in areas of 

massively distributed systems or cloud-computing systems, as described in 

the next section. 

Looking at DSLB, it must be noted that the objectives and methods used are 

very similar to those of the SLB. The focus is more on relieving the systems 

than on relieving the transportation network. For this reason, the methods 

used would only be useful for NLB in TSN MAN to the extent that physical 

separation with dedicated access paths could be assumed. However, this is 

not the case for the underlying TSN MAN rings. Nevertheless, the methods 

used for bandwidth capacity utilization measurements and control are also 

of interest for TSN MAN NLB. However, no other than those already listed 

in Section 2.3 are used. 
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2.6.3 Cloud Computing Load Balancing 

The further development of SLB and DSLB was to extend the originally 

limited number of servers in server clusters to a significant ly higher number 

of servers, including the possibility of geographically distributed systems. 

This has led to the development of cloud computing load balancing (CCLB) 

systems, providing the advantage of virtualization and geo-redundancy. An 

overview of numerous CCLB algorithms was provided by Rajeshkannan and 

Aramudhan (2016). Rajeshkannan et al. classified CCLB algorithms as 

software- and hardware-based approaches. The former are running on 

communicating machines in the cloud itself. The latter are located in front 

of a cluster and route all the traffic among the servers. Examples were 

obtained from the simple round-robin algorithm to the rather complex ACO, 

but no further controller types than those listed in Subsection 2.3.3 are 

visible in their review.   

A more recent systematic literature review analysis of the existing dynamic 

CCLB was conducted by Tawfeeg et al. (2022). They classified dynamic 

algorithms into 

1. sender initiated, when the sender starts the load balancing process,  

2. receiver initiated, when the receiver is responsible for the load 

balancing process, and 

3. hybrid, when the algorithm is a mixture of 1. and 2.  

They found and analysed more than 40 different algorithms presented by 

the research community since 2015. These are essentially also based on the 

application of the methods presented in Section 2.3. The principles of the 

solutions are comparable to those of SLB and DSLB. In addition, various 

specialised algorithms have been designed. One interesting example that 

also included edge stations, that is, stations that are located between a 

cloud and a physical automation application and are thus interesting for 

MAN, was provided by Nezami et al. (2021). They propose a solution, which 

introduces a decentralized multi-agent system for collective learning that 

utilizes edge-to-cloud nodes to jointly balance the input workload across the 
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In OSI Layer 3 networks, NLB is used to distribute network traffic from one router 

to the next router using alternate routing paths (Cisco, 2022; Tanenbaum et al., 

2021). Antic et al. (2010) analysed the possibilities of NLB in connection with 

standard Shortest Path Routing (SPR) protocols, for example the standard routing 

protocol OSPF. They presented a Load Balancing Shortest Path Routing (LB-SPR) 

method which achieves a balancing of arbitrary traffic patterns by using a two-

phase routing scheme. In the first phase, portions of traffic are routed to all 

possible intermediate routers towards the destination, including on the shortest 

path. In the second phase all intermediate routers forward to the destination. 

Thus, they achieve a traffic distribution. However, this method does not consider 

interfering exogenous traffic from other sources which might load links along the 

path already. It can be regarded as an oblivious method therefore according to 

Wang et al. (2006) (see Subsection 2.3.1), without actual closed-loop feedback 

which could be expected to optimise the load distributions.  

For protocol-based NLB, Antic et al. and also Fortz and Thorup (2000) extended 

these shortest path routing protocols, such as OSPF, by path weight metrics, so-

called costs, to support routing decisions. Load balancing can either operate on 

equal cost or equal distance paths or on unequal cost or unequal distance paths. 

When working with the classical pure routing protocols RIP or OSPF, load 

balancing can only occur if the router has installed multiple paths that are 

equivalent in administrative distance and cost. When applying IGRP or EIGRP, 

unequal paths can also be subject to load balancing. However, this principle of 

using costs as routing decision criterion is not well suited for MAN rings where the 

distance from talker to listener is typically different for the two directions of the 

ring.  

A similar procedure was provided by Chadha and Gupta (2013), which apply equal 

cost LB and unequal cost LB. With the former, they apply LB if the paths have equal 

costs. With the latter, they only use the lower loaded path if the costs are unequal. 

They gain the costs themselves from the path delays. It must be objected though, 

that path delay can only serve as a decision criterion for paths of equal costs. Then, 
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typically the load is causing the additional delay. For MAN rings the delay is 

therefore not significant as it is different in most cases in the two ring directions.  

The LDC for the NLB can also be independent from the routing protocol. It is then 

located in a higher application layer. Elwalid et al. (2002) proposed several 

possibilities for the actual distribution process, independent of the use of a 

specific routing protocol: 

1. On a per-packet basis: each new packet is routed over the next path 

interface being part of the load balancing paths. 

2. On a per-flow basis. Flows are frames that have a <source IP address, 

source port, destination IP address, destination port, and IP protocol>-

tuple in common. 

3. On a per-destination basis: each new destination flow is routed over the 

next path interface. 

As emerges from their work, the destination-based method has the advantage of 

preserving the packet order but has the potential disadvantage of unequal usage 

of links. This method is typically applied to a higher number of destinations. The 

per-flow approach has the disadvantage of a rather high traffic analysis and state 

bookkeeping effort but also preserves the packet order.  The packet-based 

approach bears the risk of packets arriving out of order at the same destination 

when they are delivered over different paths. Transferring this to the MAN rings 

and CD traffic, none of these seems an ideal method. The per-packet selection of 

different paths bears especially in rings the out of order arrival risk. MAN-CD are 

typically no IP or TCP data, that is, the flow-based method is not applicable either. 

The per-destination method does not take the fact into account that different 

destinations can have different CD traffic demands. Therefore, from MAN point of 

view, the Elwalid et al. list of methods should be expanded by the per-automation-

application flow of CD. 

Kandula et al. (2007) presented FLARE (Flowlet Aware Routing Engine), a method 

that overcomes the packet order problem by keeping the inter-packet gap higher 

than the longest path delay. However, this could have a negative influence on the 
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CD data flow particularly in bigger MAN rings with long path delays. The per-flow-

based approach could also be used if different flow-assignment criteria would be 

used. MAC-Addresses instead of IP-Addresses for example. 

Dynamic network load control, as investigated by research in layer 3 ISP networks 

or campus networks (Ahmad & Khan, 2018; Elwalid et al., 2002; Lopez-Perez et al., 

2016; Neely et al., 2008; Wang et al., 2006) and introduced in Section 1.1, usually 

differentiates between flow control, fairness control, and distribution control. As 

also outlined in Section 1.1, fairness control is not relevant for automation 

network control data, as CD data flows are not allowed to be reduced, as explained 

further down. Regarding distribution and flow control, more research has been 

conducted on distribution control than on the flow control subtask. This results 

from reviewing the research on closed-loop network load control as listed in 

Subsection 2.3.2. 

In OSI Layer 2 networks, the bridging standard (IEEE 802.1Q, 2022) also considers 

the increased need for load sharing. Therefore, it defines the facility of Enhanced 

Transmission Selection (ETS), which allows the network user to assign priority-

based processing and bandwidth allocations for different traffic classes. This 

mainly aims at Data Center Bridging (DCB) networks, which are rather IT layer 2 

networks, but could also be used in layer 2 networks for automation. Examples of 

actual methods or necessary algorithms for the load-sharing function are not 

defined in the standard, which encourages continuous research, improvement, 

and vendor delimitation. A  survey on NLB in the area of DCB Networks was 

conducted by Zhang et al. (2018). They compared several DCB-dedicated load 

balancing algorithms such as Freeway (Wei et al., 2014), Fastpass (Perry et al., 

2014), or “flow distribution aware load balancing for data centre networks 

(FDALB)” (Shuo et al., 2016), to name only a few of them.  

Wei et al. distinguish between so-called long-lived elephant flows and latency-

sensitive mice flows. They leverage on the presence of multiple shortest paths and 

use a scheduling scheme to adaptively partition the transmission paths into low 

latency paths and high throughput paths for the mice and elephant flows 
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respectively. They propose a dedicated algorithm (Freeway) to dynamically adjust 

the number of separated transmission paths.  

Perry et al. transfer the path selection for traffic transmission from the data centre 

endpoints and routers to a central arbiter. This Fastpass network architecture 

provides two dedicated algorithms to assign transmission time and path selection 

to the endpoints and routers. They claim that they achieve a considerable 

reduction of the queuing resources by maintaining a high throughput and low 

latency.    

Also, Shuo et al. propose a central solution, FDALB, to reduce flow collisions and 

achieve a high scalability. Similar to Wei et al. they classify short flows and long 

flows but only centrally manage the long flows, whereas the short flows are 

managed by the distributed switches themselves. In addition, end-hosts shall tag 

long flows for the switches to easily determine the long flows by inspecting the 

tag.  

These three approaches can all be classified as “dedicated algorithm control,” as 

described in Section 2.3.3, but cannot be directly re-used in TSN MAN 

environments for CD. The reason for this is that these algorithms use multiple DCB 

paths between any source and destination, some of which are reserved for bulky 

BE traffic and some for shorter, delay-sensitive control data. However, MAN ring 

topologies only provide two possible paths, which must be available between all 

nodes in the ring for all types of traffic to ensure accessibility. 

In the context of TSN, Nayak (2018) studied the scheduling and routing of 

time-triggered traffic. He worked with pre-calculated routing and 

scheduling algorithms. However, for a set of one thousand data streams, 

these calculations still take several hours which is considered too long if 

dynamic traffic changes or application launches are to be possible as 

assumed in the MAN of this research. In addition, he based his work on SDN 

bridges. However, SDN-based TSN MAN are the exceptions and are not the 

focus here, as they require dedicated SDN-capable bridges which are often 

unavailable for industrial bridges for MANs and TSN MANs in particular. 

Another disadvantage of SDN is that it implies that routing is managed by a 
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CNC and not in a distributed fashion as is intended to be the basis of this 

research. 

Other recent studies on NLB in combination with ML and SDN were 

conducted by Todorov et al. (2020) and Jahde et al. (2021). The latter use a 

Deep Learning (DL) ML approach. As explained in Section 2.3.3, ML is 

basically suitable for TSN MAN NLB, but it is not the first choice due to the 

high implementation effort, memory, and CPU resource consumption. 

Further contemporary research was provided by Han et al. (2021) who 

adapted the network topology to a traffic forecast via AI. However, this is 

only suited for inert changing traffic patterns, which is not the case for CD 

within MANs. Prabakaran and Ramar (2021) also conducted research on NLB 

with SDN and use the SDN for a rather untypical distributed control concept. 

Regarding this procedure, it must again be objected that, because it is also 

an SDN solution, it is of secondary importance in this research.  

2.7 Chapter Summary 

The overall aim of this thesis is to research, design, develop, and validate a method 

for optimum control of dynamic load distribution in time-sensitive communication 

networks for manufacturing automation. As such, this chapter has first reviewed 

definitions and provided an overview of general communication networks, time-

sensitive communication networks in the manufacturing automation domain, and 

the control theory applicable for communication traffic load reduction or 

distribution, before considering existing methods for congestion control, traffic 

engineering, and load balancing applicable for optimum dynamic load control in a 

TSN MAN. 

It has shown that no dedicated research on the problem of load distribution in 

TSN MANs is available. 

In particular, the following gaps exist in the current relevant knowledge to solve 

this task: 

• The influence of various TSN traffic shapers and schedulers on data flow 
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control must be analysed. 

• The implications and connections among automation application cycles, 

packet sizes, communication cycles and network topology extensions must be 

investigated. 

• The influence of stream reservation, frame preemption and media redundancy 

protocols must be assessed. 

• The best-suited controller types for data flow and distribution control for a TSN 

MAN with their own properties must be selected. 

• It is unclear whether a decentral or a central control concept is to be preferred. 

• A dedicated distribution control approach for a single AC featured TSN MAN 

field-level ring must be proposed. Furthermore, this must be extended for 

controller level rings featuring multiple ACs. 

To solve these problems, it is important to propose, design, develop and validate 

a new method for optimum control of dynamic load distribution in time-sensitive 

communication networks for manufacturing automation. 
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Chapter 3      Research Methodology and Design 

This chapter presents how the research project aims to find an optimum control 

of the dynamic load distribution in communication networks for manufacturing 

automation. It describes the applied research methods and methodology. 

Furthermore, it outlines the methods for data collection, data analysis, and how 

the results are presented.    

3.1 Philosophy and Methodology  

The research paradigm that underlies this research endeavour is positivism, as it 

is the most expedient research paradigm to provide highly diagnostic quantitative 

data to answer the research questions embedded in control theory and 

communication network theory as part of the natural sciences. This position is 

supported by for example Crotty (1998) and Grix (2019).  

To answer the research questions defined in Section 1.4, a combined research 

method approach consisting of two methods shall be applied. 

Firstly, literature review is used to identify relevant automation communication 

use cases (IEC/IEEE 60802, 2018), relevant control theory concepts (Duriez et al., 

2017; Goodwin et al., 2001; Müller & Guido, 2017; Normey-Rico & Camacho, 

2007), and relevant network standards (IEEE 802.1Q, 2022; IEEE 802.1Q TSN TG, 

2022). 

Secondly, to observe the network behaviour for data gathering, basically two 

possibilities would be at hand: 

1.  to carry out experiments with real network bridges and devices, or 

2.  to simulate the network with the help of simulation tools. 

Simulation is the preferred and selected research method to obtain the primary 

research data to be analysed within this research project. As Wehrle et al. (2010) 

outline and many applications show (Henderson & Imputato, 2023), network 

simulation has several advantages compared to experiments: 
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• Network simulation allows a relatively effortless change of network 

parameters, such as the number and types of bridges and end stations, traffic 

types, or topology changes. Changing all these network conditions in a real 

physical communication network requires a multitude of effort and time 

compared to the simulation method. The simulation environment provides 

diagnostic access to all protocol layers of virtual network devices.  

• A detailed and simultaneous view into the network device’s behaviour and 

network communication data is possible and delivers more precise and 

detailed data than real hardware. This is particularly true with respect to the 

possibility of complete network data snapshots that would require precise 

time synchronisation in real hardware.  

•  The network devices and the network can be analyzed in “slow-motion.” 

•  A data logging and data analysis environment is part of the simulation tools, 

saving the application of further network logging and analysis tools. 

• The quality of the simulation data compared to the experimental data is more 

detailed and richer, as any network detail can be displayed and related to other 

events at nanosecond resolution. Hence a network simulation environment is 

an excellent tool for analysing complex relationships with reasonable effort.  

A disadvantage of the simulation method is that it lacks the device complexity of 

real hardware setups. Real bridges and end-stations usually run a variety of other 

software, such as applications or protocol stacks, in parallel to the functionality in 

the focus of the research problem. Therefore, the validation of hardware 

sometimes reveals interaction problems that can be grounded both in design 

deficiencies and in performance or resource problems of the target hardware. 

However, because the research problem concentrates on the basic mechanisms 

of load control and controller interactions, the performance or resource problems 

of dedicated hardware or software implementations are of secondary importance. 

Interaction with other protocols or applications on possible host devices of load 

controllers is not the focus either. Therefore, these simulation disadvantages do 

not become important to answer the research questions.  
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A further reason that excludes real hardware experiments is that, at the time of 

writing this thesis, it was not possible to obtain TSN bridges with the support of 

the necessary traffic shapers and schedulers and other features such as bandwidth 

resource reservation or frame preemption. Even if this were possible, the next 

problem would have been to adapt the bridges with firmware extensions to 

support the necessary sophisticated bandwidth measurements and feedback 

mechanisms. A further problem would have been to adapt automation controllers 

to provide synchronised transmission of single frames. These tasks would have 

exceeded the possibilities of this study by far. 

Figure 3.1 illustrates the complete research methodology. 

 

Figure 3.1: Research methodology 

Thus, combined research method is applied into this research project. The first 
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step is a literature review which provides the secondary data. The second step is 

simulation to provide the primary data.  

The literature review part begins with three main tasks: 

1.  Control theory and network theory concepts must be evaluated regarding 

their properties and suitability to help investigate and solve the research 

problems. 

2.  Relevant IEEE, IEC, and IETF communication network standards must be 

identified and reviewed, and areas of influence on the research questions 

must be studied, analysed, and related to the research problems.  

3.  Analysis of the properties of relevant types of TSN MAN on which research 

should be focused. This is carried out by studying the relevant automation 

network applications to identify the application areas of interest and to delimit 

them to others.  

These tasks are prepared with a careful literature review in Chapter 2      and lead 

to the analysis of TSN MANs in Chapter 4     . 

The data gathered during the literature review phase are the input to the second 

phase, network modelling and simulation. Chapter 5      presents the design and 

simulation of the control circuit for different TSN traffic shapers and schedulers. 

Using the literature review results, a model of the network itself, without any load 

control mechanisms, is designed. This network communication model forms the 

control “plant” of the closed loop control system. It consists of the mathematical 

model of one relevant TSN bridge, extended to the model of several bridges 

connected in series to a line-topology communication network. The mathematical 

model of the line topology is then simulated using the mathematical simulation 

environment MATLAB. This tool provides special extension modules to simulate 

control systems or control engineering problems, namely, Simulink. Knowing the 

behavior of the communication network as a dynamic system, a proper control 

algorithm is designed and tested in the closed loop dynamic model using 

MATLAB/Simulink. With the help of the simulation tool, it is then iteratively 
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improved. The results and recommendations for the use of different traffic 

shapers and schedulers in connection with LDC are derived. 

In Chapter 6     , based on the findings of Chapter 2     , Chapter 4     , and Chapter 

5     , a new dedicated control method optimised for the use within TSN MANs is 

proposed. With the optimised model of the closed-loop control system of the 

automation communication network, the network bridges, end-stations, and 

closed-loop controller are then implemented in software using the network 

simulation tool ns-3 libraries. Ns-3 is an open-source network simulation 

environment that is widely used in the communication network research 

community (ns-3, 2023; Wehrle et al., 2010). These software modules are then 

integrated into an ns-3 network simulation environment. Complete networks 

including communication devices such as automation controllers and end stations 

are simulated. The devices communicate over the network bridges while the load 

is controlled by closed-loop controller instances residing on the ACs.  

In Chapter 7, the controller design is further optimised for the application in 

networks with multiple AC. Some TSN traffic shapers and schedulers imply mutual 

controller instances interdependencies, whereas others do not. For both 

possibilities a solution is proposed. Performance evaluations are provided for both 

solutions. 

Chapter 8 concludes the research project with main achievements, the 

contributions to the new knowledge generations, discusses the limitations, and 

proposes further research steps for future projects. 

3.2 Methods for Data Collection 

The data to be collected 

Two types of data are collected to achieve the research objectives: secondary and 

primary. The secondary data are those for achieving all four research objectives 

though mainly for Research Objective (RO) 1. The primary data are those for 

achieving ROs 2 to 4. The secondary data are obtained from the Literature Review 

(LR). The primary data is generated through simulations. 
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Method for Secondary Data Collection  

Secondary data are collected by analysing previous research work in the area of 

load control in ISP networks, campus networks, mobile access networks, and cloud 

computing networks. The various concepts of closed-loop network load control 

solutions are identified, classified, and evaluated in terms of their capabilities to 

serve as a basis for further development to solve the specific load control 

challenges of TSN MAN.  For this purpose, the collected secondary data will serve 

as the background to compare the properties of the new control concepts. 

Furthermore, the IEEE, IEC and IETF relevant network standards for automation 

networks are analysed and categorized regarding the types and properties of 

traffic schedulers, traffic shapers, and data transport protocols. Textbooks on 

control theory and network theory provide a theoretical basis for the 

development of the control concept.  

 

Method for Primary Data Collection  

The primary data is collected by simulating the manufacturing automation 

network control model and by simulating typical complete network setups 

including dynamic load controllers and communicating devices. The secondary 

data on manufacturing automation network properties are used to build the 

mathematical network model, which is simulated using mathematical simulation 

software MATLAB with its extension Simulink. Secondary data on control methods 

form the basis for the design of the controller to extend the simulation to simulate 

closed-loop network control with a single automation controller containing 

multiple talkers that address multiple listeners. Control engineering optimisation 

techniques according to Ziegler-Nichols or Chien-Hrones-Reswick (Normey-Rico & 

Camacho, 2007) are used to optimise the controller parameters. Building on these 

results, the model simulation is further extended to cover multiple automation 

controllers with multiple listeners network setups. Furthermore, the bridges, 

talkers, listeners, and the new control algorithm are implemented in software to 

be integrated into network simulation tools. The complete network simulation is 
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achieved by the application of the network simulation software ns-3 (ns-3, 2023; 

Wehrle et al., 2010), which provides additional primary data for data analysis.  

3.2.1 Simulation of the Control Circuit 

To determine the characteristics of automation communication networks as 

dynamic systems, it is necessary to first develop a model of a segment of a 

communication network. 

This research project focuses on manufacturing automation communication 

networks based on layer 2 technology which is typical for field- and controller-

level networks. It can be easily extended to layer 3 network technology. Such a 

layer 2 automation communication network consists of two types of network 

devices: 

1. Communication end stations taking the talker role and/or the listener role. 

2. A number of Layer 2 network bridges (also called network switches). 

 

Figure 3.2 shows a general example of an arbitrary network segment. 

 

 

Figure 3.2: An arbitrary network segment between two end stations 

Any data path between two communicating end stations consists of one to n 

network bridges and their connecting links. The special case that two end stations 

are directly connected via only one link is not regarded, as it is out of question, 

due to missing interfering data traffic being inserted into the path via bridges 

along the path. The data path is identical to the plant of the control system. Its 

properties depend on the properties of the bridges and links.  

A data transport link is assumed to be realised on wire-bound data transport, for 

example, standard Ethernet cables for 100 Mbit, 1 Gbit, or 10 Gbit bandwidth. One 
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Gbit dominates contemporary TSN MAN and is the focus of this thesis. Higher 

bandwidth applications, such as 40 Gbit or 100 Gbit, are not yet present in layer 2 

automation network setups and are beyond the scope of this research project. 

The calculation of the different path delays for the different TSN MAN traffic 

shapers and schedulers leads to different dead time elements in the control plant 

and thus different control particularities. 

For the simulation of the control loop, the MATLAB/Simulink tool, which is widely 

used in the academic and research domains of control engineering (Chaturvedi, 

2017), is selected.  The control plant and controller design are introduced into the 

tool using block diagrams. These can be selected from a variety of block element 

libraries, such as mathematical operations, logical operations, bit operations, 

different input signal forms, lookup tables, and output visualization tools, such as 

value displays or scopes, to name only some of them. Controller designs can be 

easily modified and optimised, and the results can be directly verified and 

documented using output visualization facilities. Thus, the control method can be 

optimised. 

Step response diagrams provide quality statements regarding the settling time, 

overshot tolerances, and possible oscillations of the control circuits. Nyquist 

diagrams and calculations relating dead time and lag times provide insight into 

robustness and stability of the control circuits (Goodwin et al., 2001; Normey-Rico 

& Camacho, 2007). 

3.2.2 Simulation of the Network 

To gain knowledge on how a load distribution control algorithm will perform in a 

real communication network, the next step is to simulate the complete 

automation communication network. 

The network simulation allows a detailed analysis of how the network control 

algorithm works under the variation of certain preconditions (Wehrle et al., 2010), 

such as: 

• the amount of available network paths from talkers to listeners. 
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• the number of talkers and listeners from 1 to n, where n is a reasonable 

number of typical maximum number of network participants in a selected 

relevant use case. 

• the number of bridges in the network. 

• the type of bridges, that is, the technology of scheduling and queuing of the 

data traffic used inside the bridges. 

• types of network data traffic such as data bursts, cyclic data, and synchronous 

or asynchronous data input. 

There are a variety of network simulation tools available, for example: 

1. the ns (network simulator) series with the latest version ns-3 (ns-3, 2023; Wehrle 

et al., 2010). This simulator is primarily intended for the research and 

education community, and is available under the GNU licensing model, that is, 

it is free to use, but contributions or changes to it must, in the same way, be 

made publicly available. It provides interfaces for statistical analysis tools and 

visualisation of simulation data. 

2. The NetSim network simulation and emulation tool is a commercial tool that 

provides support particularly for wireless technology and layer 3 support. 

3. The OMNeT++ simulation environment (Wehrle et al., 2010). OMNeT++ is also 

free to use in the research and education community but provides with 

OMNEST, also a commercial version. 

For this research ns-3 is selected (ns-3, 2023) as network simulation tool for the 

following reasons: 

1. It can simulate complete layer 2 networks and layer 2 network protocols 

(Henderson & Imputato, 2023). 

2. Own protocol implementations or application implementations, such as load 

controllers, can be integrated as C++ source code. 

3. It is widely used in the research community and a large number of protocol 

libraries and example codes which can be used to design tailored protocols and 

applications (Henderson & Imputato, 2023). 
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The ns-3 network simulator platform provides generic infrastructure for creating, 

running and evaluating network simulations for wired or wireless networks, 

sensor networks, automation networks, and many other applications. For this 

thesis it is used in a Linux environment.  

The bridges and end stations can be instantiated from standard C++ libraries 

within the platform. These can be combined to form any topology. Special 

functionality for bridges and end stations can be introduced by modifying the 

present class source or creating modified classes. Additional source code for the 

controller and bridge functionality such as flow controller, distribution controller, 

rolling mean throughput measurement, throughput feedback processing, and 

load balancing application have been implemented and integrated into the 

simulation environment. The talkers can be operated with different traffic forms 

such as cyclic or burst traffic, and various cycle times. In addition, interfering traffic 

can be inserted into network path bridges along the network path. The resulting 

bandwidth consumption on the single bridges output ports can be recorded and 

analysed in terms of the performance of the control algorithm in “virtual real” 

networks. 

Any network data at any point in time during the simulation time can be exported 

into data files, including a time stamp with a resolution of one nano second. Thus, 

there are no limitations in analysing network events such as the transmission or 

receptions of frames, dedicated runtime calculations, or even events between 

protocol stack layers. The data files are then processed to present the data via 

step response diagrams and calculation result diagrams using the Gnuplot plotting 

tool. 

Thus, the network simulation platform offers a huge space of investigation 

possibilities for analysing the research problem and answering the research 

questions. 
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3.3 Methods for Data Analysis 

Secondary data is used for the analysis and evaluation of current load control 

methods in ISP and campus networks. The research contributions to network load 

control are categorised by the applied types of control methods. The control 

application areas of various control methods are correlated to the network 

properties to which they have been applied to. Exploratory data analysis is applied 

by evaluating these control methods regarding their aptitude to achieve adequate 

load distribution control results in manufacturing automation networks. 

Therefore, characteristic manufacturing automation network properties are 

identified and correlated with the strengths and weaknesses of various control 

methods to extract and possibly improve the best suited control method or to 

alternatively propose a better-suited control method. 

The primary quantitative data resulting from the simulation of the network model 

controlled by the selected suitable closed-loop controller design, is analysed with 

respect to the achievable results of quality criteria such as stability, resilience, and 

reaction speed. Confirmatory data analysis is applied to compare the simulations 

outcomes of the optimum control design, which was derived from the exploratory 

data analysis of the secondary data collection, with the ideal behaviour of the 

quality criteria.  

3.4 Ethical Issues 

This research will be conducted in accordance with the University of 

Gloucestershire Handbook of Principles and Procedures on Research Ethics 

(University of Gloucestershire, 2014). The principles of informed consent, 

anonymity, and confidentiality will be observed. In particular, references to 

examples of manufacturing automation use cases and solutions and to example 

network topologies, shall be of general types commonly known and applied by the 

industrial manufacturing community, avoiding examples of any proprietary 

vendor-specific solutions. Should it be necessary to involve any other 

organisations’ confidential data, it shall only happen with the informed consent of 
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these organisations. 

3.5 Chapter Summary 

The research project is embedded in the positivism research paradigm as it 

produced quantitative data provided by modelling and simulation of dynamic load 

control solutions for TSN MAN. 

Secondary data has been obtained from the literature review of load-balancing 

solutions in ISP networks, campus networks, mobile access networks, and cloud 

computing networks. The review of control theory and network theory literature, 

relevant IEEE, IEC and IETF standards, and relevant automation use cases has 

provided further secondary data.  

Primary data has been obtained by building a mathematical network model for 

different TSN MAN traffic shapers and schedulers, which has been simulated using 

the mathematical simulation software MATLAB with its control engineering 

extension Simulink. Step response and Nyquist diagrams have presented the data 

and have served for the analysis. 

A new dedicated control method, optimised for a TSN MAN has been designed 

and presented. Network simulations with ns-3 for a single AC have been used for 

confirming the improvements of load distribution convergence time. 

The new dedicated control method has been extended for application in multiple 

AC TSN MAN under the influence of different TSN traffic shapers and schedulers. 

Two solutions have been proposed: one that is suitable for EST, CQF, and ATS 

without mutual controller dependency, and one for SPQ, which shows mutual 

controller dependency. Performance evaluations have been made comparing the 

solutions.    
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Chapter 4      The Influences of TSN MAN Properties on 

Load Distribution Control 

4.1 Introduction 

Within the area of campus networks, ISP networks, or mobile networks, load 

control concepts, such as Traffic Engineering (TE), Network Load Distribution or 

Load Balancing (NLB), have been applied for a few years, as shown in the literature 

review. These concepts are typically applied to networks based on OSI Layer 3, 

also known as routed networks. The advantages of NLB are well known, and 

researchers have conducted valuable work on this topic. Unlike in OSI Layer 3 

networks, in OSI Layer 2 networks, and here especially in MAN and TSN MAN, NLB 

concepts have thus far not been investigated to that extent as seen in the OSI 

Layer 3 area. To design optimum control methods for the TSN MAN, among other 

requirements, it is also necessary to clarify the special properties of the Layer 2 

TSN MAN compared to the solutions seen so far in Layer 3 general networks. 

Because of their high reliability, both redundant end stations and redundant 

communication paths have also been gradually introduced into MAN solutions in 

recent years. New network standards as defined by the TSN project promote the 

use of multiple paths. Simultaneously, they defined various new functions to 

achieve highly efficient data transport. Redundant paths are currently used nearly 

exclusively for media redundancy. They serve either as standby paths or doubly 

transport data for seamless redundancy for failure protection between the data 

source and sink. However, they also enable the application of NLB concepts for 

automation networks to use these networks more efficiently.  

In the routed ISP, campus, or mobile access networks, there are different load 

balancing concepts known, which can be categorized into three main concepts, 

namely “oblivious routing,” “predictive routing,” and “dynamic routing.” The 

latter is sometimes also named “adaptive routing.” Network load balancing 

concepts based on dynamic or adaptive routing use closed-loop control to control 

the bandwidth usage of network data paths. This is the controlled system output 
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required to achieve a homogenous load distribution among the available network 

paths from a data source to a data sink. 

MAN differ in many ways from ISP networks or campus networks though, as they 

are mainly based on OSI Layer 2 rather than OSI Layer 3. In addition, the data 

traffic is of different type, in particular: 

• data frames are typically smaller, 

• the data transport intervals are much faster, 

• the data traffic is typically generated in bursts instead of a homogenous data 

distribution over time, 

• and it is, in certain borders, more predictable. 

In addition, it is common that a higher number of automation controllers (AC) and 

end stations (ES), each of which can in turn host a multiplicity of talkers and 

listeners, share the same network. Beyond that, multiple ACs within the same ring 

pose a particular challenge in the pursuit of a distributed LDC concept. They can 

influence each other’s load distribution calculation results via possible sections of 

common paths along their paths from the data source to the data sink. 

A central question is whether load distribution in the OSI Layer 2 MAN is even 

possible and sensible. To answer this, MANs must be analysed regarding the 

following: 

1. Should the control concept be based on central control or a number of 

distributed controllers? 

2. Which network topologies are relevant? 

3. Which bridging standard IEEE 802.1Q features are favourably used? 

4. To what type of data traffic can it be applied?  

5. How can the network use be controlled as a plant? 

6. Which influence do the different TSN traffic shapers and schedulers have on 

plant properties? 

7. Which influence have the automation applications properties?  

8. How can LDC coexist with stream bandwidth reservation? 

9. What influence do other TSN features have? 
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10. What influence do network errors have? 

These questions are analysed and answered in the following sections. 

4.2 Central or Distributed Control Concept 

One of the first dedicated standards for TSN was IEEE 802.1Qcc (2018), which 

defined extensions for stream reservations. This was mainly aimed at audio/video 

bridging (AVB) applications, rather than industrial automation applications. 

However, two basic models for network configuration have already been defined. 

The central approach resides in a central network controller (CNC), and a 

distributed network configuration is located at the end stations. The central 

approach was not least the result of extensive research work in recent years in the 

area of SDN networks.  

These two models are also important for MAN today. Here, it is necessary in the 

same way to decide whether the network load control should be positioned 

centrally or distributed. Figure 4.1 depicts these two basic concepts. 

With Central Load Distribution Control (CLDC), a central control instance located 

on either a workstation or a single AC is responsible for a constantly optimised 

load distribution in the entire network domain. With Distributed Load Distribution 

Control (DLDC), the load control is located on several distributed ACs, each 

responsible for its own traffic distribution.  
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Figure 4.1: Models of a.) Central Load Distribution Control (CLDC) and b.) 

Distributed Load Distribution Control (DLDC). 

There are several pros and cons that speak for one or the other concept. In 

practice, only for the network configuration and path control functionality, these 

two different approaches are already visible in the automation industry field with 

the establishment of the Avnu (2023) and LNI4.0 (2023) organisations, which both 

promote the application of TSN automation networks. Avnu favours central 

network traffic engineering and configuration, whereas the LNI favoured concept 

is distributed. However, both organisations currently have no activities on 

dynamic LDC. Network configuration is not the focus of this research, and it is 

assumed to be in a central instance in the form of a CNC, as shown in Figure 4.1. 

Considering the advantages and disadvantages of a central and distributed LDC 

solution, the following considerations are important. 

1. Creation of additional traffic bottlenecks: A central network controller would 

always need to be present on a dedicated powerful machine to calculate the 

best traffic distribution of all present traffic, as it needs to react quickly to 

possible traffic changes. This implies a constant polling of the measured load 
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values from each network node. This can be problematic, especially with larger 

networks causing additional traffic loads towards the CNC, being situated 

outside the ring connected via an uplink. The distributed solution with load 

controllers on various ACs better distributes the load measurement traffic. A 

recommended solution to ease the load caused by the exchange of load 

measurement and load scheduling values for both distributed and central 

control is to work with continuously circling summation frames. These would 

contain the values from and for several bridges and ACs within a single long 

frame.  

2. Susceptibility to errors: With the distributed solution, the failure of one AC will 

not spoil the entire network load control concept. In contrast, this would be 

the case with central network controller loss.  

3. Network reconfigurations: Typically, the goal of a central solution is to 

optimally configure the entire network. This includes the traffic distribution 

with a minimum delay for single frames to reach optimum results for 

applications. Depending on the objective for the quality of traffic distribution 

and the allowed delays, this could mean constant adjustment of gating 

windows, frame transmission slots, or even frame transmission points in time. 

The dynamic addition or removal of network participants can then easily spoil 

the previous optimisation result, requiring recalculation and reconfiguration of 

parts of the network or of the complete network. This can take a few hours for 

several hundreds of streams (Nayak, 2018). Furthermore, within the MAN, a 

particular feature is the hot plugging of the hardware. An example is the 

“Configuration in Run” (CiR) feature, as part of the PROFINET (IEC 61158-5-10, 

2023) protocol. This allows the extension of PLCs or decentral peripheral I/O 

stations with additional I/O cards during runtime without stopping other 

applications running on that device. This is problematic for a centrally 

controlled load distribution, as it would mean disturbing the communication 

of other already running applications. The disturbances can be caused by the 

re-establishment of better paths and resource reservations, which are often 

accompanied by short communication interruptions or load distribution 

changes. In contrast, the distributed load distribution calculation and path and 
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reservation establishments for one AC typically do not affect the previous 

settings for other ACs control optimisation results, thereby avoiding these 

disturbances. This is especially true for the DLDC solutions provided in Section 

7.4, where the ACs mutual influence is decoupled by time or by control 

sovereignty passing. 

4. Optimum network load distribution: A central load distribution control 

solution has access to all network information and can use this to determine 

an optimal traffic distribution. The distributed solution usually cannot work 

with all network information and has no possibility to influence other ACs 

traffic distributions.  

5. Mutual controller influence: With the distributed solution it will be the case 

that the load distribution changes caused by one controller have influences on 

other controller’s calculation results. This is the case with common paths from 

different ACs to end stations. This is particularly true in ring topologies, which 

are the prevailing network topologies in MANs. The consequence can be load 

oscillations that are difficult to control. Therefore, the goal for a distributed 

solution must be a decoupling of the controllers or a solution that can cope 

with these mutual dependencies. Solutions to this problem are discussed and 

presented in Section 7.4.    

The load distribution control method to be selected, the central or the distributed, 

must be decided by the preconditions of the applications performance 

requirements, the network properties, and possibly by already present solutions 

for network configuration, path control, and resource reservations. For the MANs 

on which this thesis is based, the distributed approach is selected for its better 

dynamic properties, which are the most important for the objective of this study. 

4.3 Relevant Network Topologies 

In factory automation applications, communication networks are typically based 

on OSI Layer 2 technology using switching. To date, these communication 

connections have been established redundantly primarily for fail-safety rather 

than for load-sharing purposes. Redundant connections require path-changing 
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redundancy protocols such as RSTP/MSTP or MRP for non-seamless traffic. An 

alternative is seamless redundancy protocols, such as PRP, HSR, or FRER, for 

seamless (doubly sent) traffic.  

To achieve redundant connections with a minimum of wiring effort, the ring 

topology has become the prevalent topology in redundant industrial automation 

networks (IEC 62439-2, 2021; IEC 62439-3, 2021; IEC/IEEE 60802, 2018). Figure 1.1 

shows a typical industrial automation network setup, where several field level 

rings are redundantly coupled to a controller level ring which again is redundantly 

coupled to a higher-level IT or OT network. Thus, the ring and redundantly coupled 

ring network topologies are relevant topologies in up-to-date automation 

networks as the focus of this thesis. Figure 4.2 shows their core structures. 

Controller-level ring 1 usually contains a variety of higher-level automation 

controllers (AC1 to AC3), such as Programmable Logic Controllers (PLC) or Motion 

Controllers (MC). An AC can be attached singly via a separate link, such as AC1, or 

it can be integrated into the ring (AC2 to AC6) if it is a bridged end station, that is, 

it contains its own 3-port bridge. In this case, one port of the internal bridge is 

connected to the end station host, and the other two ports are the ring ports of 

the end stations. A field-level ring typically consists of only one AC that controls a 

variety of automation devices, such as drives, sensors, actors, or distributed 

peripherals, providing digital and analog inputs and outputs. 

Interfering communication enters a ring, usually at the redundant coupling 

between rings (c1-c3). This can be data exchange with a local supervising 

controller, storage, cloud connection, edge application, edge management system 

for monitoring and diagnosis, device application updates, or device firmware 

updates. This inter-ring communication is often the reason for an additional 

asymmetric load in certain ring elements. For ring LDC, this traffic represents 

exogenous traffic, whereas the traffic caused by end stations directly connected 

to the ring is endogenous traffic from the ring’s point of view. 
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Figure 4.2: Rings and redundantly coupled rings 

It is obvious to primarily control the load distribution of the endogenous traffic in 

the rings, as these transport a major part of communication. Thus, it is 

recommended, and the principle of this thesis, to handle each ring as a separate 

LDC domain.  

Ring and redundantly interconnected rings are thus the relevant topologies when 

investigating load distribution in MAN. The primary goal is thereby the load 

distribution control within each ring rather than inter-ring load control, which 

could be relevant for a further step for a subsequent research task. Partly meshed 

or fully meshed networks, as they typically appear at the redundant access 

switches towards the higher-level network parts of the superordinated OT or IT 

plant or campus infrastructure, are not the focus here. 

4.4 Path Control and Load Distribution Control Location 

Layer 2 Ethernet networks, according to IEEE 802.1Q (2022) provide different 

mechanisms to use different data paths, which are an inevitable prerequisite for 

load distribution. The physical network is provided by bridges and their connecting 

links, that is, wired or wireless connections between bridges. Logical networks can 

be set up on top of the physical network by configuring VLANs. The goal of load 
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distribution is to provide at least two separate paths from each source bridge to 

all other bridges in the load distribution domain. The bridging standard (IEEE 

802.1Q, 2022) basically provides two methods for achieving such logically 

separated trees within a physical network. These can be categorized as follows:  

• administrator influenced path control approaches during network 

commissioning, and  

• automated path control approaches during network startup.  

Administrator influenced path control approaches: 

1. With MSTP, each source edge bridge providing links to talkers can be 

configured as the root bridge of two MSTI in the MSTP region. The network 

configuration is responsible for configuring redundant paths rooted at the 

talker edge bridge. This can be achieved by assigning different path costs for 

single links, thus influencing the path setup, as the MSTP selects the path with 

the least cost. MSTP is usually combined with destination path selection via 

FDB learning. Therefore, the non-stream CD or BE would be adequate traffic to 

be load-controlled over these trees. The disadvantage of the MSTP is that the 

reconfiguration time after a network change is in the range of a few seconds, 

which is a relatively long time, especially for automation networks.  

2. SPB protocols SPBV and SPBM are successor solutions for STP protocols. They 

are based on the link state protocol IS-IS, which provides multipath routing 

over multiple shortest paths. Unlike the MSTP, it uses the shortest path from a 

source bridge to a target bridge without having to follow laboriously a tree 

over a root bridge. The SPBV features different VLAN Identifiers (VID) 

assignments for the shortest paths. The SPBM uses an additional backbone 

MAC address for each edge bridge to identify the paths. From the viewpoint of 

media redundancy, SPB protocols have a much faster convergence time in the 

range of a few 100 ms. The precise values depend on the actual hardware and 

software design. In addition, the SPB can handle up to approximately 1000 

bridges, whereas the MSTP is typically reduced to network diameters lower 

than seven, which results in a maximum number of bridges of less than 50. SPB 
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is mainly applied to data center solutions with closely meshed networks. 

However, it is rarely seen in automation networks at the controller level and 

much less so at the field level.  As with MSTP controlled paths, non-stream CD 

or BE would be appropriate traffic to transport over SPB paths. 

Comparing MSTP and SPB, it is logical to recommend SPB, because of its faster 

reconfiguration time, the shorter paths, and the higher possible number of nodes. 

This applies above all to arbitrarily meshed networks, where SPB then follows 

Shortest Path trees (SPT) which are marked by different VIDs. However, as the ring 

topology forms the basis for MAN, the possibility of using a shorter path with SPB 

is not given. This special case is also the reason why it has no effect on the LDC 

whether the paths are provided by MSTP or SPB, they will be the same. 

Furthermore, the automation nodes within MANs typically do not provide SPB 

functionality. These facts reduce the choice for non-stream CD and BE paths in 

current MAN designs to the MSTP, in which two redundant MSTIs are to be set up 

in the two ring directions from each edge bridge, in parallel to stream VLANs. An 

LDC entity can be located in either an end station connected to the ring bridge or 

in the bridge itself. Both solutions are possible when using MSTP for path control. 

Automated path control approach: 

As an alternative to a manually influenced configuration, different redundant 

paths for LDC can also be found using different ISIS-PCR algorithms, such as an 

Explicit Equal Cost Tree (ECT) algorithm or a Maximally Redundant Tree (MRT) 

algorithm (IEEE 802.1Q, 2022). The actual path-finding algorithms are calculated 

in a Path Computation Element (PCE), which is located either in an end station or 

in a bridge, to achieve the necessary path configurations in all bridges of the SPT 

domain. If the PCE is in the end station, it corresponds to a Path Computation 

Agent (PCA) in the connected edge bridge. Each SPT bridge provides a Bridge Local 

Computation Engine (BLCE) to cooperate with the PCE or PCE/PCA. Thus, an 

important question in connection with the design of a distributed load distribution 

mechanism within an OSI Layer 2 network is, where the PCE shall be located. In an 

end station or in a bridge? In both cases, an integrated PCE/LDC solution, would 

be advantageous. 
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Figure 4.3 depicts the possibilities for the location of PCEs and LDC entities for 

singly attached end stations. These can then be present either in only one 

representation as a CLDC, or multiply instantiated in the DLDC approach. 

 

  

Figure 4.3: Location possibilities of PCE and LDC entities 

There are two possibilities for the LDC to be located: 

1. As shown in Figure 4.3 (a), the LDC can be located in the bridge and assigns 

certain arriving data traffic with a certain ingress VID onto either path 1 or path 

2, depending on the current load distribution control result. As an alternative, 

it could implement an oblivious or round-robin routing method by forwarding 

frames to both paths in alternation, which in sum, under the participation of 

all bridges, achieves a better load distribution.   

2. Alternatively, as shown in Figure 4.3 (b), the LDC can be located in an end 

station where it directly calculates the load distribution of the data generated 
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by different applications. 

In both cases, the traffic distribution is achieved by assigning two VID for the two 

possible paths. The data are then forwarded accordingly in the edge bridge 

because of the Forwarding Database Identifier (FID) configuration achieved by the 

PCE or PCE/PCA combination in cooperation with the BLCEs. 

For the first possibility, the LDC location in the bridge, the appearance of a load 

distribution mechanism is expected to be rather of the nature of a decision 

algorithm whether to forward onto one of either paths or on both paths in 

alternation, according to simple and low-calculation-effort mechanisms. The 

reason is that a bridge, whose original task is to filter and forward incoming data 

to other ports, is not the right system for the calculation of rather complex load 

control algorithms. 

The second possibility, the LDC end station location, is typically the case for an AC 

connected to a ring bridge. This is the right selection to calculate the control 

algorithm if it is an influential AC that provides both a reasonable amount of data 

to be subjected to load control and sufficient hardware resources to calculate the 

control algorithms. As described in the previous subsection, the AC can also be a 

doubly attached end station located directly in the ring and has an integrated 

bridge function. 

4.5 Eligible Traffic Classes 

Further protocol and hardware design decisions must be made for different data 

traffic types in a MAN.  

The IEC/IEEE industrial automation TSN profile (IEC/IEEE 60802, 2018) further 

classifies the automation data traffic as listed and extended in Table 4.1.  
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Table 4.1: Industrial automation traffic types  

Traffic type name Periodic 

(cyclic)/ 

sporadic 

Examples 

isochronous cyclic real-
time 

periodic Isochronous control data (I-CD) 

cyclic real-time periodic Non-Isochronous control data (NI-CD) 

network control sporadic Network administration 

audio/video periodic Visual monitoring traffic  

brownfield periodic Non-Isochronous non-TSN cyclic control data 
of a neighbor machine or network or devices.  

alarms/events sporadic Device or network alarms 

internal/pass-through sporadic Clock synchronization, media redundancy etc.  

best effort sporadic Firmware/application updates  

best effort periodic Continuous cloud or edge connection data  

 

NI-CD and I-CD are expected to contribute the most to the traffic load because of 

their cyclic occurrence. They therefore deserve special attention for the design of 

an LDC for TSN MAN. 

Figure 4.4 shows the classification decision stages. The different traffic types 

according to Table 4.1 must be classified according to these. The design properties 

shown are not a complete list of all possibilities but consist only of those that are 

relevant for multiple path networks, which is a compulsory precondition for load 

distribution. 
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Figure 4.4: Decision criteria for data traffic classification 

Beginning from the top of the classification process, the communication data must 

be classified as follows (the bullet numbers refer to step numbers (x) in Figure 4.4): 

(1): Periodically or cyclically flowing data, such as isochronous CD (I-CD) or non-

isochronous (NI-CD), are best designed as streams that can be subject to resource 

(bandwidth) reservation.  

(2): Streams are also the recommended traffic type if the data are transported by 

the lowest latency mechanisms such as EST or high priority SPQ with pre-emption, 

or if lower bounded latency shall be achieved with unsynchronised data using the 

CQF or ATS traffic shapers. 
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(3): Traffic of sporadic, that is, non-cyclical, character, or BE traffic with relaxed 

latency requirements are best packed into the group of non-streamed data with 

no reserved bandwidth or transmission time gates. 

(4): The next crucial requirement is the so-called grace time of data flow 

interruption, which decides whether data is to be transported seamlessly or non-

seamlessly. Mission critical data with very high availability requirements of only a 

few milliseconds of grace time need to be transported seamlessly. Traffic with 

lower availability requirements spanning from a few 10ths of milliseconds to a few 

seconds can be transported singly or non-seamlessly. 

(5): Resource reservation, that is, bandwidth reservation, is only provided for 

streams and can use the reservation protocols MSRP or RAP. 

(6): To provide at least two logically separated network paths for load distribution 

or seamless data transport, ISIS-PCR is the path control protocol defined by IEEE 

802.1Q (2022). For non-stream seamless data, paths can also be provided through 

the redundancy protocol HSR, which is defined for rings, or by PRP which bases on 

two physically completely separated networks. For non-stream, non-seamless 

data the MSTP or MRP would be an alternative.   

(7): Media redundancy for seamless streams can be provided by FRER (IEEE 

802.1CB, 2017). For non-seamless streams, switch-over redundancy in a multipath 

environment can be achieved using MSTP or ISIS-SPB. The same counts for non-

seamless, non-stream traffic. Seamless non-stream media redundancy can also be 

achieved via PRP or HSR. 

(8): Load distribution control is always possible for non-seamlessly transported 

data. For streams it can be combined with all available traffic shapers and with 

ISIS-PCR for path control and ISIS-SPB for media redundancy. For non-streams it 

can be combined with all SPQ priorities and preemption. For general meshed 

networks, IS-IS technology with ISIS-PCR for path control and ISIS-SPBV for media 

redundancy is recommended rather than MSTP because of ISIS-SPBV outstanding 

path selection effectivity and flexibility (Huawei, 2010). However, for MAN ring 

topologies MSTP is the better selection as outlined in Section 4.4. 
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The described classification procedure is, of course, only a best-practice 

procedure and there might be important reasons to deviate in one or the other 

cases from this. For example, sporadic traffic could be so important that it would 

be worthwhile to spend guaranteed bandwidth resources and guaranteed lowest 

latency, even though the reserved bandwidth is only used to a low extent owing 

to the sporadic character of the data.  

Summarising this classification for CD, non-seamlessly transferred data are a 

possible candidate for load distribution. This is because the doubly transferred CD 

cannot be subject to load distribution because ingress limiting is not applicable for 

CD, only the redirection of traffic. In certain cases, Non-CD can also be transported 

seamlessly and can typically cope with further delays caused by load-controlled 

throughput reduction. Seamless and non-seamless I-CD and NI-CD in TSN 

networks are typically separated by VLANs. Seamless CD contributes to the basic 

load of non-load-controllable data. Non-seamless CD with higher bandwidth 

consumption are available for load control. Non-seamless CD with low bandwidth 

consumption, such as sensor data, are often not worthy of load control and 

contribute to the basic load of non-load-controllable data. On the other hand, it is 

just this data of lower cost sensors, which will be non-seamless, as otherwise a 

rather expensive redundancy box for seamless traffic integration must be donated 

for each sensor. If sensor data have a higher bandwidth consumption, an AC can 

include this traffic in the LDC by managing the send port at the remote sensor. See 

Subsection 7.4.3 for more details on this. 

Streams are always transported using a Layer 2 group MAC destination address. 

Thus, they are multicast frames of type “1-to-n.” It is at reservation time and 

transmission time not certain to what extent one or the other path will be used, 

that is, at what distance from the source or talker edge bridge the last listener is 

or will finally be located. The original idea of multicast stream establishment stems 

from the AVB application (IEEE 802.1Qcc, 2018), in which any number of listeners 

of an audio or video stream published by one talker could consume the stream. 

However, within automation applications, multiple listeners are the exception. An 

AC addresses single devices with dedicated streams containing process data only 
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for this device, although it uses a stream for this. The process data streams in the 

opposite direction from the device to the PLC are typically of type 1:1. Therefore, 

the probability that a further listener joins the stream at a further end of the path 

at a later stage after the initial stream setup is very low within automation 

applications and results in fixed path lengths for the streams. In addition, to make 

use of the LDC for streams, the stream reservation strategy must follow certain 

rules. Refer to Section 4.8 for details on the influence of the reservation process. 

If these rules are respected, the non-seamless NI-CD and I-CD streams are suitable 

candidates for load distribution.  

Non-CD traffic is mostly transported via layer 2 unicast MAC addresses, that is, 

there is only one target for the data in the network. This is then of the type “1-to-

1.” If this type of data is to be distribution load controlled, the load conditions of 

the fixed paths from the source to the target are relevant and must be considered. 

For the Non-CD multicast type, the insecurity factor is that it is not known where 

the last target on each path is located. Therefore, the actual length of the paths is 

typically unknown, and the maximum possible length of the paths must be 

considered to obtain the maximum load on each. Under these circumstances, non-

seamless Non-CD are potential candidates, both as unicast and multicast frames, 

for load distribution control. The option of throughput reduction of seamlessly 

transported Non-CDs is not investigated in this thesis, as this concentrates on load 

distribution, not reduction. 

Summing up on these evaluations, the suitability of the possible MAN traffic types 

from Table 4.1 are assessed and comprised in Table 4.2.    
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Table 4.2: Traffic types for load distribution 

Traffic type 

name 

Periodic 

(cyclic) 

or 

sporadic 

classifica

tion 

Recommen

ded 

transport 

Potential 

candidate 

for Load 

Distribution

? 

Comments 

isochronous 

cyclic real-time 

periodic I-CD stream yes If transported non-seamlessly. 

cyclic real-time periodic NI-CD stream yes If transported non-seamlessly. 

network control sporadic Non-CD non-

stream 

no Too sporadic. Too little data.  

audio/video periodic Non-CD stream yes Usually, high bandwidth 

consumption also in the field 

level. Potential candidate. 

brownfield periodic NI-CD non-

stream 

yes If transported non-seamlessly. 

Path decision in bridge. 

alarms/events sporadic Non-CD non-

stream 

no Too sporadic. Too little data.  

internal/pass-

through 

sporadic Non-CD non-

stream 

no Too little data. 

best effort sporadic Non-CD non-

stream 

yes If enough data to be worthwhile. 

best effort periodic Non-CD non-

stream 

yes If enough data to be worthwhile. 

 

This summary shows that both CD and Non-CD in both transport types of streams 

and non-streams are potential candidates for the load distribution. However, 

there may be reasons to exclude data from distribution control. The amount of 

data of a talker can be too small to be a worthwhile application for load control. 

Another reason can be that the device hosting the talker can be of too low 

calculation performance to operate a load control, or the devices firmware may 

not be adaptable to host a load controller. This data is henceforth referred to as 

granular data. A further reason can be that data shall use a fixed shortest path to 

achieve a minimum latency. Figure 4.5 comprises these coexistence relations. 
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Figure 4.5: The coexistence of load-controllable data and non-load-

controllable data on a network path  

Therefore, the data that are not to be transported seamlessly, and are not bound 

to a fixed path, and are not granular data, can be load-controlled data. 

Depending on the traffic types present in the MAN, different strategies can be 

used to achieve the load distribution. This will always be a compromise between 

the effort for the LDC and the quality of the distribution homogeneity. In the 

planning and network configuration phase, the initial distribution is optimised via 

traffic engineering as described in the previous sections. As a reaction to 

unplanned dynamic traffic imbalances, dynamic control can react with only a CD 

load shift if it provides sufficient distributable bandwidth. A further alternative 

could be to react only with CD with a certain minimum contribution. Or it could 

be necessary to make also Non-CD or BE part of the LDC. All combinations are 

possible.  

4.6 Control Aspects 

Communication networks for automation plants are typically planned to be within 

well-defined limits. Furthermore, they experience rather limited changes during 

runtime in terms of both the number of network participants and the participant’s 

amount of data transfer. Therefore, it must be assumed that deviating control 

methods will be applied in automation network load control compared to those 

used in networks containing more uncertainty. Such networks would be Layer 3 

ISP networks, campus networks, or mobile network access networks. Typically, 

these must cope with large amounts of un-plannable communication traffic. 

granular data
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fixed path data
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load distribution

possible subject to 

dynamic load distribution
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Control methods for these include linear control, stochastic network load control 

(Neely et al., 2008), or control using fuzzy control  or neural networks (Bolla et al., 

1998; Kaszkurewicz, 2010; Wang & Hung, 2012). A comparison of their application 

fields is presented in Section 6.3.  

The extent and layout of the automation network and its communication partners 

and their communication load requirements are largely determined at the time of 

network design and deployment. This suggests using the following load 

distribution design principles in MAN: 

1. To apply traffic engineering in the network design and setup phase, that is, to 

identify the different traffic types and their transport requirements as 

specified in Section 4.5, with the goal of achieving homogenous network use 

already at network startup.   

2. To apply dynamic or adaptive traffic load control at runtime for certain traffic 

to react to unpredictable network traffic changes. 

For the second step covering dynamic traffic load control, the applied network 

control concept can either be based on a central approach, where all network 

configuration intelligence is located within a central network controller (CNC), or 

a distributed approach. This has been discussed in Section 4.2, where the decision 

has been in favour of the distributed concept. Its advantage is, that the network 

adapts more easily to new network users, that is, new end stations and their 

communication demands, while the network bridges provide configuration 

intelligence by providing path control and resource reservation facilities.  

The early Zaki et al. (1996) concept of four steps for the purpose of distributed 

systems dynamic load balancing, as mentioned in Subsection 2.6.2, can also be 

applied in the transferred sense on network load distribution and constitutes the 

following steps.  

1. Monitor path loads at each bridge port in the ring. 

2. Calculate the maximum per path. 

3. Calculate new favourable distributions. 
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4. Shift load from one path to the other via flow control. 

The monitoring of the path loads or throughputs and the calculation of their 

maximum along a certain path is obviously best performed at the distribution 

controller site, which requires these values. However, the calculation of the sliding 

mean value over a configurable integration time is best performed in the bridges 

for each port. This relieves the network from extensive single-load value update 

data traffic from bridges at each measurement cycle. 

The classification of LDC into flow control and distribution control, as introduced 

in Subsection 2.6.4, is also sensible for load control in automation networks. The 

data flow control is subsequential to the distribution control, as it controls the 

demand for an increase or decrease on a path, which is calculated by the 

distribution control. This is elaborated further in Chapter 5     . Fairness control is 

of secondary importance. The reason is that the proportion of timely rather 

uncritical data flows of Non-CD, whose throughputs could be evenly reduced, such 

as TCP/IP flows, is typically low in MAN. Instead, automation networks need to 

part the time-critical streams and non-streamed CD onto different paths without 

being allowed to reduce the overall throughput of the data. Therefore, congestion 

control, where ingress data are either dropped or the sender is informed to reduce 

the throughput, is not an option for CD automation data traffic. 

To understand the process of data communication in automation networks from 

the viewpoint of load control, it is necessary to analyse automation 

communication more formally. 

Figure 4.6 shows a section of an abstracted fully meshed automation network 

which is represented by the graph G = (V, E) with a set of vertices V(G) and a set 

of edges E(G). Set V(G) represents the nodes 𝑣𝑖  of the graph, representing either 

pure network switches or automation devices with integrated switches. The set 

E(G) with the edges 𝑒𝑖𝑗 represents the links between node 𝑣𝑖  and node 𝑣𝑗 . The 

number of nodes of the graph determines its order n. The number of edges 

connected to a node determines its degree deg(v). 
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Figure 4.6: Abstracted TSN automation network 

Let 𝑫𝒊 = {𝑑𝑖1, … , 𝑑𝑖𝑗} be a set of devices (end stations) connected to node 𝑣𝑖 ∈

𝑽 = {𝑣1, … , 𝑣𝑛} , that is, a bridge. Let furthermore be 𝑻𝒂𝒊𝒋 = {𝑡𝑎𝑖𝑗
1 , … , 𝑡𝑎𝑖𝑗

𝑘 } a set 

of talkers within 𝑑𝑖𝑗  and let 𝑳𝒊𝒊𝒋 = {𝑙𝑖𝑖𝑗
1 , … , 𝑙𝑖𝑖𝑗

𝑝 } be a set of listeners within 𝑑𝑖𝑗.  

𝑻𝒂𝒊𝒋 create a set of streams 𝑺𝒊𝒋 = {𝑠𝑖𝑗
1 , … , 𝑠𝑖𝑗

𝑞
} being sent to 𝑣𝑖. Per definition and 

in accordance with the definitions in IEEE 802.1Q (2022) one talker 𝑡𝑎𝑖𝑗
𝑘  issues only 

one stream 𝑠𝑖𝑗
𝑞  that can be consumed by a set of listeners. Although the control 

data can be transported as streams or non-streams, for a more concise 

description, they are simply referred to as streams. The paths that the streams can 

take from a talker 𝑡𝑎𝑖𝑗
𝑘  to one or more listeners 𝑙𝑖𝑖𝑗

𝑝
 , located somewhere in the 

network, are derived from automation applications running in device 𝑑𝑖𝑗. The sum 

of the directed streams on link 𝑒𝑖𝑗 create throughput µ𝑖𝑗 at the output port of 

node vi. Each link 𝑒𝑖𝑗 provides two scalars of throughputs µ𝑖𝑗  and µ𝑗𝑖  which 

represent the current output data rates at node 𝑣𝑖  in the direction of 𝑣𝑗  and vice 

versa respectively. If no neighbor node exists for a certain port, no stream and 

throughput exist on this port either. Thus, the edges describing the throughputs 

are directed edges. The individual throughputs µ of the network can be formed as 

an instance M of a distance matrix of graph G: 

𝑴 = [

𝜇11 ⋯ 𝜇1𝑛

⋮ ⋱ ⋮
𝜇𝑛1 ⋯ 𝜇𝑛𝑛

] (4-1) 

where n is the order of the graph, which represents the number of nodes, that is, 

bridges and bridged end stations, within the automation network domain. If only 

a certain traffic class is in focus of the control, the preceding considerations can 
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also be made related to streams of a certain traffic class on link 𝑒𝑖𝑗 instead of all 

streams. 

Automation applications with redundant networks are nearly without exception 

set up in ring topology as illustrated in Figure 4.7. 

 

Figure 4.7: Automation ring graph 

The throughput distance matrix M for a ring topology reduces to a doubly diagonal 

filled matrix, provided that the nodes of the ring are numbered clockwise or 

counterclockwise in succession. For example, M for a ring of five nodes results in: 

𝑴𝑟𝑖𝑛𝑔 = 

[
 
 
 
 

0 𝜇12 0 0 0
𝜇21 0 𝜇23 0 0
0 𝜇32 0 𝜇34 0
0 0 𝜇43 0 𝜇45

0 0 0 𝜇54 0 ]
 
 
 
 

 (4-2) 

The ring nodes 𝑣𝑖  provide the throughputs on their ring ports as feedback for flow 

control within the ring. Owing to various applications with talkers 𝑡𝑎𝑖𝑗
𝑘  connected 

to the ring nodes 𝑣𝑖  and possible inter-ring communication 𝑠𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑘, the 

individual link throughputs along a path from a controller talker to listeners can 

be different. The inter-ring communication 𝑠𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑘 is from the viewpoint of the 

ring load distribution control an exogenous traffic. The streams of the end stations 

within the ring are endogenous traffic. For the purpose of this thesis, stream s 

needs to be assigned a further property which is its application cycle time. This 

requirement will be outlined in more detail in Section 4.7 and in the chapters to 
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follow. Therefore, the notation for a stream must be extended from 𝑠𝑖𝑗
𝑞

  to 𝑠𝑖𝑗
𝑞𝛼

, 

with α ∈ ℕ, representing the application cycle time. This is typically coded as a 2n 

ms value within MANs. Table 4.3 provides an overview of the applied notations. 

Table 4.3: Notations 

Symbol Meaning 

α Application cycle class of a stream or throughput 

A A set of application cycle classes used in the network domain 

AC The set of all automation controllers in the network domain 

γ Index for the automation controllers (ACγ) in the network domain 

cw Clockwise direction 

ccw Counterclockwise direction 

𝑫𝒊 A set of devices (end stations) being connected to a node 𝑣𝑖  

𝑑𝑖𝑗  Device j connected to node 𝑣𝑖 , part of 𝑫𝒊 

E A set of edges (links) 

𝑒𝑖𝑗  Edge (link) from node i to node j 

𝑽 A set of nodes 

𝑣𝑖  Node number i 

𝑻𝒂  The set of all talkers in the network 

𝑻𝒂𝒊𝒋 A set of talkers within device j connected to node i 

𝑡𝑎𝑖𝑗
𝑘  Talker k within device j connected to node i 

𝑺𝒊𝒋 A set of streams originating from device j connected to node i 

𝑠𝑘𝑙
𝑞

 Stream q originating from device l connected to node k 

𝑠𝑘𝑙
𝑞𝛼

 
Stream q with application cycle α originating from device l 

connected to node k. 

𝜇𝑖𝑗  Throughput at node i in the direction of node j 

 

The distribution control task to use one of either paths of the ring, results from 

the optimisation task to minimise the maximum throughput on the single links on 

the available paths: 

minmax
𝑖,𝑗∈𝑽

𝜇𝑖𝑗  ;  Subject to: ∀ 𝑒 ∈ 𝑬(𝐺) (4-3) 

This optimisation strategy to reduce a local maximum is named “maximum-

reduction” method within this thesis. 
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Given that this research focuses on CD stream load distribution control, the 

throughput to be measured at any port thus comprises 

𝜇𝑖𝑗,𝐶𝐷 = ∑ ∑ 𝜇𝑖𝑗,𝐶𝐷 (𝑠 
𝑞𝛼) 

𝛼∈𝑨
 
𝑞∈𝑻𝒂

 

 ; 𝑨, 𝑻𝒂 ⊆ ℕ,  (4-4) 

which represents the sum of all throughput contributions of all talkers CD streams 

from all possible end stations throughout the network, over all application cycles, 

within a certain CD traffic class, and at one output port. The pseudo code for 

finding and comparison of the throughput maxima of each of both ring directions 

output ports is outlined in Table 4.4. Its detailed structure is provided in Appendix 

2. 

A more ambitious goal would be the load distribution of a possibly optimum 

distribution or at least a distribution within a certain deviation tolerance. The 

latter strategy, which aims for a non-optimal but improved result within a certain 

deviation tolerance, is to be preferred. Finding a final optimum can be a very costly 

task both with regard to the calculation effort and calculation time. In most cases 

it is expected that an optimum distribution, which is in fact an equal load on all 

paths and links in all directions, will not be found. This is because randomly 

distributed talkers and listeners often communicate over hundreds and thousands 

of communication relations with each other, resulting from the various 

automation tasks in the network. An algorithm could try endlessly to find a more 

favourable load distribution if not stopped by another exit criterion. This 

optimsation task can thus be NP-hard. Therefore, the use of heuristics to improve 

load distributions is necessary. 
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Table 4.4: Pseudo code of algorithm for path throughput load maximum 

determination and comparison per node and path direction. 

Algorithm: CollApp::Compare () 

This algorithm of the collection application in an AC finds and compares the throughput 
maxima of each of both ring directions output ports. It shall be calculated cyclically before 
each call of the distribution controller method in an AC. 

Create three-dimensional array m_thp_array [] [] [] for storing load measurements of each 
node, direction, and application cycle once at instantiation of this method; 
Create “sum” and “max” variables; 
sum = 0; 
max = 0; 
Receive each node’s mean throughput load feedback-frames via interrupt in a receive 
method in the background; 
Store mean throughput loads from feedback-frames in m_thp_array per node, direction, 
and application cycle; 
Sum the individual application cycles throughput per node and direction to build the overall 
bandwidth consumption (throughput) for CD: 
For node i <= maximum number of nodes 
{ 
    For direction j <= 2 
        { 

        For application cycle α <= maximum number of application cycles 

             { 

             sum = sum + m_thp_array [α] [j] [i] ; 

             } 
        Store sum over all application cycles at index SUMAPPIND: 
        m_thp_array [SUMAPPSIND] [j] [i] = sum; 
        } 
} 
sum = 0; 
Find maximum per application cycles and over all application cycles in each direction and 
store maxima of each direction in array: 

For application cycle α <= SUMAPPSIND 
{ 
    For direction j <= 2 
       { 

        For node i <= maximum number of nodes  
             { 

                If (m_thp_array [α] [j] [i] > max) 

                {     

                 max = m_thp_array [α] [j] [i]; 

     } 
             } 
           Store max at index number of nodes NNODES: 

           m_thp_array [α] [j] [NNODES]= max; 
           max = 0; 
        } 
    Build the difference of the two path directions clockwise (cw) and counterclockwise (ccw) 
    maxima and store the half of it in the array for the distribution controller which then tries 
    to minimise the difference by load shifts. 

    If ((m_thp_array [α] [CW] [NNODES] != 0) && (m_thp_array [α] [CCW] [NNODES] != 0)) 

    { 

    m_thp_array [α] [CW] [NNODES + 1] = (m_thp_array [α] [CW] [NNODES] –  

    m_thp_array  [α] [CCW] [NNODES])/2; 

    } 
}   
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The optimum-distribution goal can be defined as the least square optimisation 

goal between the actual load distribution and ideal load distribution. The best 

approximation of this ideal distribution represents the best possible network 

utilisation. An obvious way to achieve this is to optimise as follows:  

min∑ (𝜇𝑖𝑗 − 𝜇𝑀)2𝑛
𝑖,𝑗=1

𝑖,𝑗∈𝑽

 ; Subject to:  ∀ 𝑒 ∈ 𝑬(𝐺) (4-5) 

where µij is the link load in both directions of the ring according to Matrix Mring, 

(4-2), n is the number of nodes, and µM is the average load over both ring direction 

paths. The latter is defined as  

𝜇𝑀 = 
∑ 𝜇𝑖𝑗

 𝑛
𝑖,𝑗=1

2𝑛
 ;   𝑛 ∈ ℕ . (4-6) 

This optimisation strategy to find a possibly near-optimum distribution shall be 

referred to as “optimum-distribution” method within this thesis. 

The optimal distribution method depends heavily on the application of a CLDC. 

However, since preference is given to DLDC in this study, the maximum reduction 

method is also the optimisation strategy chosen here.  

The detailed control model for subsequent data flow control is analysed and 

applied to various TSN traffic shapers and schedulers in Chapter 5     . A load 

distribution control method optimised for MAN is proposed in Chapter 6      and 

extended to multiple ACs in Chapter 7     . 

4.7 The Influence of the Automation Applications 

Different automation applications usually demand a variety of application 

communication cycles with end stations. This results from the fact that control 

loops and other automation tasks are processed cyclically, each with their 

individual application cycle time. The application cycles are determined based on 

the individual automation application requirements. These are running on one or 

several ACs in the network, each having its own minimum communication cycle 

time with peripheral devices or other controllers. Communication typically occurs 
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once at the start of an application cycle. For instance, a slow temperature 

controller might exchange the setpoint and actual value with an analog I/O card 

only every 500 ms, whereas a fast speed controller for motion control might need 

to exchange the setpoint and actual value in cycles of a few 10ths of µs with a drive. 

Data exchange between the application on the AC and connected devices can be 

unidirectional or bidirectional, depending on the application. Data are typically 

exchanged once during the application cycle in each direction. Examples of 

unidirectional data exchange include the provision of reference values to an 

actuator or the provision of actual values from a sensor. Bidirectional data can be 

a closed-loop control that exchanges setpoints or reference values in one direction 

and actual values in the other direction once in the application cycle.  

Besides the application cycle, nearly all types of TSN-based network types, except 

for SPQ, provide a network cycle time. This uses the timing information of the 

bridges to synchronise the data transport throughout the TSN domain. Thus, in 

particular, with EST, a minimum latency is achieved. The network cycle time is 

determined by the shortest application cycle in the network domain and may not 

be longer than this. Figure 4.8 shows how application cycles and network cycles 

are correlated within an automation network based on the EST traffic scheduler. 

Figure 4.8 (a) shows a snapshot of two network cycles with EST windows for I-CD, 

NI-CD, and Non-CD or BE traffic classes. The I-CD data transport is fed in 

synchronised to the network cycle and its EST window start. It is transported 

immediately at the start of the window without any delay. NI-CD and Non-CD 

queues are emptied at the window start, and there might be additional 

unsynchronised data during the window duration time.   
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immediate link load or throughput measurement and its feedback and control 

calculation at the network cycle speed. If measured at the network cycle speed, 

the controller output oscillates with the interference of all different application 

cycle’s data transmissions. Moreover, it would create a considerable CPU load on 

the PLC to calculate the control loop in every network cycle, which is usually 

selected within the range of 100 µs to 4 ms, for typical manufacturing automation 

tasks. The network cycle depends on the applied traffic-shaping method and 

applications. Furthermore, it would be difficult to collect all the actual values of 

the throughputs at each link in the network within one network cycle. Therefore, 

the mean throughput at a link must be measured over a suitable time span. It is 

evident that this time span 𝑇𝑚𝑒𝑎𝑛 minimum length is determined by the slowest 

application cycle 𝑇𝐴𝑝𝑝 sending data over the TSN domain. Under these conditions, 

it is proposed to calculate as follows: 

𝑇𝑀𝑒𝑎𝑛 ≥  𝑚 (𝑚𝑎𝑥
𝑖

 𝑇𝐴𝑝𝑝 𝑖) (4-7) 

where 𝑇𝑀𝑒𝑎𝑛 is the recommended integration time for the calculation of the mean 

link load or throughput, m is an empirical factor that should be selected long 

enough to smoothen local peaks but short enough to reach sufficient control 

dynamics. For the simulations of this research task, m was chosen as 5, which 

seemed to be a reasonable choice as a starting point. 𝑇𝐴𝑝𝑝 𝑖 are the application 

cycles of all the applications in the network domain.  

The crucial consequence of these considerations is that the slowest application in 

the network domain defines the path load measurement integration time and, 

thereby, the dynamic possibilities of the LDC. The precise consequences of this 

situation are discussed in Chapter 5     . A distinctive feature in this respect comes 

from the EST and CQF traffic schedulers, where faster and slower applications 

could use different traffic classes and thus different EST/CQF windows. This opens 

up for a load measurement per traffic class, which can be implemented using 

hardware internal content-aware processors, as they are common in standard TSN 

switching System-on-a-Chip (SoC) hardware. 
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Obviously, the load consumption on a path caused by an automation application 

and measured over an application cycle depends on the frame size and application 

cycle. This follows directly from Figure 4.8. One might initially assume that smaller 

loads could simply be switched from one path to the other without even requiring 

a flow controller to achieve this smoothly. However, the next measurement would 

also have to wait at least until the settling time to avoid reacting too early with 

further load shifts. In addition, further exogenous load changes could occur during 

the transient period, which would negate this approach . Therefore, it is strongly 

recommended to always include a subsequent proven flow control circuit for path 

changes of loads, as will be further outlined in Chapter 5     .  

4.8 The Influence of Stream Reservation 

Stream reservation (SR) can be used in a TSN MAN in combination with different 

traffic shapers and schedulers to limit the overall network load. This is an effective 

means to protect the given maximum latency guarantees for data transport. These 

guarantees are necessary to ensure the functionality of application control loops. 

SR is defined by the Multiple Reservation Protocol (MRP)/Multiple Stream 

Reservation Protocol (MSRP) (IEEE 802.1Q, 2022) and Resource Allocation 

Protocol (RAP) (IEEE 802.1Qdd, 2023).  

If SR is applied, it influences the load control properties. SR requires time for the 

reservation process, which must occur before a stream can flow. This time appears 

as an additional dead time element in the load-distribution control circuit if the 

reservation is established dynamically at the control runtime. It is either caused 

by the distributed reservation protocols MSRP or RAP, or by a central reservation 

via the Simple Network Management Protocol (SNMP) or the Network 

Configuration Protocol (NETCONF). The distributed reservation protocols send a 

Talker Advertise (TA with MSRP) or Talker Announce (TA with RAP) through the 

network to declare the talker streams. A listener who is interested in a frame 

achieves a registration and resource reservation of the stream along the path by 

sending a Listener Ready (LR with MSRP) or Listener Attach (LA with RAP) frame 

back towards the talker. These paths are typically controlled using a VLAN. These 
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are rooted at the talker edge bridge and can be found by a path-control 

mechanism, typically the ISIS-PCR protocol in randomly meshed networks. 

Alternatively, they can be assigned by network configuration in the case of a fixed 

topology, which is the case in ring topologies and redundantly coupled rings of 

MANs. Here, a maximum of two redundant paths exist, which are the two 

directions into the ring at the ring ports or over the two redundant ring-coupling 

links. This handshake of stream declaration and registration requires time before 

the stream can flow on a new path. The MSRP uses MRP as a lower-layer transport 

protocol for resource reservation. The MRP distributes new information cyclically 

in fixed cycles, independent of whether there are information changes in the TA 

or LR attributes. Therefore, with the MRP cycle time selection, a compromise must 

be found between the fast distribution of new TAs or LRs contents and the 

limitation of bandwidth consumption by MRP. Typical MRP cycle times are a few 

hundred milliseconds. This is the time required to transport new reservation-

related information from hop to hop. In contrast to MSRP with MRP, RAP uses LRP 

as a lower-layer transport protocol that directly exchanges attribute content 

changes between hops at the point in time of their occurrence. Therefore, the 

reservations via RAP and LRP are to be preferred from the view-point of LDC if the 

reservation must be changed during runtime. Central resource reservation via 

SNMP or NETCONF from a CNC also requires time to configure manageable 

objects. However, this is used in combination with central load control and is not 

the focus of this study which aims at a distributed concept. There are two 

strategies for distributed stream reservation for LDCs: 

1. Pre-reservation: All possible network paths options for a stream to flow are 

reserved with 100 percent of the stream bandwidth demand. However, only a 

fraction is used per path, or a different path may be used completely, following 

the load control calculation result. This has the advantage of highly dynamic 

path changes, but the disadvantage that bandwidth overbooking must be 

admitted to use the full network capabilities. As distribution control is never 

ideal, overbooking must be limited to: 

𝐵𝑀𝑢𝑙𝑡𝑖𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 = 𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥  ⋅ 𝑛 ⋅ 𝜂 (4-8) 
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where BMultiPathResMax is the maximally admissible bandwidth reservation per 

path for multipath overbooking. BSinglePathResMax is the maximally reservable 

bandwidth for a single-path network, n is the number of available paths, and 

η is an empirical quality factor of the distribution control with η = f (J); 0 < η ≤ 

1. Parameter J is the control quality of the distribution control. It is given by, 

for example, the integral of the time-weighted absolute error (ITAE) value with 

J = ∫ |𝑒(𝑡) − 𝑒(∞)|
∞

0
 𝑡 𝑑𝑡, where e is the control deviation. This is the deviation 

of the actual value from the setpoint or reference of the control. Pre-

reservation is a compulsory precondition if streams are split into several paths 

instead of completely shifting them between paths. Overbooking must be 

limited conservatively to ensure that the load deviations do not exceed 100% 

load per path. To achieve low overbooking combined with high dynamic load 

control, a compromise could be to take out early stream reservations from load 

control, that is, to assign a fixed path up to a certain amount of reserved 

bandwidth. The application of load control must then be initiated for streams 

that are added after a certain level of reserved bandwidth.   

2. Dynamic reservation: The shift of a stream completely from a previous path 

onto a new path involves a new reservation process for the new path just 

before the shift. This process implies an additional time span, that is, an 

additional dead time, resulting slower path change.  In the case of distributed 

reservations via MSRP/MRP, this time span consists of 

𝑇𝑅𝑒𝑠𝑀𝑆𝑅𝑃 = 2 𝑛 𝑇𝐶𝑦𝑐 𝑀𝑅𝑃, (4-9) 

where 𝑇𝑅𝑒𝑠𝑀𝑆𝑅𝑃 is the overall reservation time from the talker to the relevant 

listener,  𝑇𝐶𝑦𝑐 𝑀𝑅𝑃 is the cycle time in which the MRP attribute changes are 

forwarded to the next hop, and n is the number of hops from the talker to the 

relevant listener. Factor 2 results from the fact that both the TA towards the 

listener and the LR toward the talker in the other direction have to make its 

way along the path. 

In the case of distributed reservation via RAP/LRP, this time span consists of: 

𝑇𝑅𝑒𝑠𝑅𝐴𝑃 =  𝑛 (𝑇𝑇𝐴𝑑𝑣 + 𝑇𝐿𝐴𝑡𝑡) (4-10) 

where 𝑇𝑅𝑒𝑠𝑅𝐴𝑃 is the overall reservation time from the talker to the relevant 
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listener,  𝑇𝑇𝐴𝑑𝑣 is the time a TA needs to transition over one hop,  𝑇𝐿𝐴𝑡𝑡 is the 

time a LA needs to transition over one hop, and n is the number of hops from 

the talker to the relevant listener. As the forwarding within the bridge is 

initiated at the attribute change, which is done by the LRP protocol stack by 

pure software processing speed in both directions, 𝑇𝑇𝐴𝑑𝑣  and  𝑇𝐿𝐴𝑡𝑡 are 

expected to be approximately the same time.  

 

𝑇𝑅𝑒𝑠 would appear as an additional dead time element in the flow-controlled path, 

with a negative influence on the controllability of the data flow. 

If stream reservation is to be used, it is recommended to work with pre-reserved 

resource reservation to fulfill possible high-dynamic requirements. If the dynamic 

requirements are low, for example, because of only slow applications and the 

associated long load measurement intervals, the dynamic bandwidth reservation 

with RAP/LRP can be sufficiently fast.    

4.9 Consequences of Network Errors 

A possible network error scenario with consequences for the load distribution 

control is a MAN ring interruption. An interruption of the redundant ring coupling 

would not be important for considerations in this thesis because it concentrates 

on ring load distribution. Inter-ring traffic is handled as exogenous traffic from the 

ring LDC perspective, causing distribution imbalances, as described in Section 4.3. 

The ring interruption can be caused by either link loss, bridge failure, or failure of 

a bridged end station within the ring. This would have different consequences 

depending on the type of traffic. 

1. Seamlessly transported CD streams and non-stream traffic would lose 

transport over one path but would still reach the listeners over the 

remaining path. Although seamless traffic is not subject to LDC, this loss 

has consequences on the load distribution for paths in the ring, as one 

direction from a talker to a listener is cut. The important consequence from 

the LDC point of view is that this seamless traffic does not cause an 

increase in load on the remaining paths. 
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2. Non-seamlessly transported CD streams that used the erroneous link 

within their path from the talker to the listener need to be shifted to the 

other alternative ring direction to maintain the stream provision to the 

listener. This involves either dynamic new bandwidth reservations or the 

use of pre-reservations by overbooking, as described in Section 4.8. This 

can result in an overload of paths under certain circumstances. The 

proposed optimum LDC method in Chapter 6      will also make proposals 

in Section 6.8 on how to solve this problem. 

3. Non-seamlessly transported non-stream CD and non-CD or BE traffic is 

typically path-controlled by switch-over redundancy protocols such as 

either RSTP/MSTP in general networks or by dedicated faster protocols for 

industrial automation, such as MRP (IEC 62439-2, 2021). This traffic is not 

load-controllable if it is path-controlled by switch-over redundancy 

protocols, as outlined in Section 4.5. With the switch-over of the path, a 

new traffic load scenario for the remaining paths evolves. Depending on 

the traffic shaper and traffic scheduler basis, this can influence higher 

priority CD streams. With EST, CQF, and ATS, with the possibility of 

separating traffic by gating windows, this influence can be avoided. With 

SPQ, it will have a higher or lower influence depending on the configured 

traffic QoS priorities. An alternative to having this traffic also under load 

control is to assign it to dedicated VLANs, with managed paths and with 

disabled FDB learning, that is, under traffic engineering. Then, it can be 

handled similarly to the non-seamless streams as described in Bullet 2 

above. 

To summarise the consequences of network errors, a solution is needed on how 

to react to the loss of a path, especially for non-seamlessly transported CD streams 

under load control.  Otherwise, path overload cannot be excluded. Chapter 6      

elaborates on this and proposes solutions in Section 6.8. 
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4.10  Chapter Summary 

 In this chapter the various functions and design possibilities for LDC in the specific 

context of TSN MAN have been analysed. The results show the following key 

findings: 

1. The prevalent topologies for redundant automation networks, a compulsory 

precondition for load distribution, are ring topology and redundantly coupled 

rings.  

2. The physical topology must be separated into logical paths by assigning them 

to different VLANs. SPBV is preferred over MSTP for administration-involved 

path establishment methods. For automated methods, ISIS-PCR with its 

different redundant tree algorithms path detection types is recommended.  

3. A central LDC solution in a CNC has the downside of long reconfiguration 

calculations and is a single point of failure. This makes the distributed approach 

better suited for real dynamic load control. 

4. A distributed LDC makes only sense if the end station is an influential AC that 

provides both a reasonable amount of distributable data and sufficient 

hardware resources. A bridge is an inappropriate location for a sophisticated 

dynamic load distribution control but could serve as a simpler load distribution 

switch. 

5. Assessments regarding data priority or traffic class assignment strongly 

depend on the use of traffic shapers and schedulers. These can already be 

predetermined by the selection of the automation technology. 

6. Only a non-seamlessly transported CD is available for LDC, as the reduction in 

throughput is not an alternative for CD.  

7. Distribution control and flow control are considered relevant for this study. 

Fairness flow reduction of the CD is not permitted for the MAN that is the focus 

here. 

8. Linear dynamic control is the most promising control method because of the 

typically constant and known ingress data rates and cycles. The linear dynamic 

control should build the runtime control component and should be based on 

thoroughly conducted traffic engineering during the network planning and 
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setup phase to guarantee optimal control results. 

9. The load distribution control task is based on the optimisation goal to minimise 

the maximum load peak along two possible paths within the automation ring. 

The flow control loop is a sub control loop of the complete distribution control. 

The data paths from flow control point of view form dead time elements as 

they delay data transport.  

10. The application cycle time plays an important role for the control circuit design. 

The slowest application in the network domain assigns the minimum 

integration interval for the measurement of the rolling mean of the loads 

within the bridges and bridged end stations.  

11. If stream reservation is used, it is recommended to work with pre-reserved 

resource reservations to fulfill demanding dynamic requirements. 

12. A strategy for coping with network errors was sketched. These have an impact 

particularly on non-seamlessly transported CD streams and have to be handled 

by pre-reservation or dynamic re-reservation. This is further developed in 

Section 6.8. 

The insights gained in this chapter form the basis and the boundary conditions for 

the design of an optimum LDC in TSN MAN in the next chapters. 
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Chapter 5      Application of Different TSN Traffic Shapers 

and Schedulers for Subsequent Data Flow Control  

5.1 Introduction 

A further step towards finding an optimised control method for load distribution 

control in TSN MANs is to clarify the influence of the different TSN elements on 

the network properties and thereby the data flow control properties.  As outlined 

in Section 4.6,  data flow control is a sub-control task of the distribution control 

task. Its purpose is to control the increase and decrease in the data flow on a 

communication channel.  

In this chapter, the model of the automation network path is derived, and the 

influence of different traffic shapers and traffic schedulers is discussed in more 

detail. Furthermore, example network simulations are performed. 

5.2 The Network as the System under Control 

As outlined in Section 4.7, TSN MANs data update rates typically only range 

between a few microseconds and several hundreds of milliseconds. Applying 

state-of-the-art slower IT communication network analysis (Gebali, 2015) by 

collecting all nodes discrete Markov-Chain buffer states at each network cycle, 

would mean a high network and CPU load for LDC. Therefore, the fast network 

cycles of an automation network require a more efficient control method. This 

must be specially tailored to the effectiveness and to the comparably lower 

available CPU control performance of automation controllers.   

To this effect, a central question regarding the load control in communication 

networks is which characteristics the network has when being modeled as a 

system under control. The parameter to be controlled is bandwidth consumption 

which is measured in bit/s and may be normalised to the maximum bandwidth as 

a percentage of the maximum bandwidth. The data itself experiences only a delay 

when transferred through the network. This delay is caused by the transfer 
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through a bridge and by the LAN propagation delay caused by cable inductances 

and capacities. From a control perspective, these delays represent dead time 

elements. Therefore, the network, as a system under control, is a series of pure 

dead time elements that can be combined into one element. The actual dead time 

depends on the path length from the input to a relevant point in the network that 

is controlled at a certain point in time. To measure bandwidth usage, a suitable 

measurement time span must be selected to obtain a stable and non-oscillating 

measurement value. Within this time span the measurement is carried out as a 

sliding window measurement or, in other words, a rolling mean measurement. 

This rolling mean measurement from a control perspective represents a PT1 

element in the feedback path. Regarding the controller itself, it appears that a 

linear controller is at hand as the system is linear under the preconditions above. 

This discussion and selection of the linear control type are further elaborated in 

Section 6.3. The core controller is the flow controller which is responsible for 

increasing or decreasing the data flow along the data paths according to a 

reference value.  

As for CD only the redirection of data from one path to another is acceptable, an 

increase in data flow on one path always involves a decrease of the same extent 

on the other path. Flow control is only sensible for streams or non-streams with 

relevant bandwidth consumption, which is worthwhile to be split into parts to be 

put onto paths in a continuous transition. Smaller data flows will either be shifted 

completely from one path to the other without the involvement of flow control or 

multiples of these single streams will form the minimum resolution steps of the 

flow control. To determine this, is the task of a mature fully working sophisticated 

packet controller. However, the ideal design of such is not the focus of this 

research. 

The reference value for the data flow control must be provided by a distribution 

controller whose output is the result of a comparison between the maximum load 

values in both directions of the ring for the maximum-reduction control method. 

It also has the task to weigh this difference between the paths by a factor of 0.5. 



Page 149   

This is the maximum decrease which is supplemented by the same increase on the 

other path, thus achieving equal maxima. 

  

 

Figure 5.1: Control principle of the distribution control assembly in 

network rings 

As shown in Figure 5.1, the system is a two-part system consisting of the two 

directions of the ring. Derived from overall distribution control, flow control as a 

subtask within an influential AC such as a PLC or MC has the need to reduce the 

load on a given path and shift all or part of it to the alternate path. An influential 

controller is an AC which transmits sufficient data that can be redirected to 

contribute to a significant change in the load distribution. As a load decrease in 

one direction must compulsorily lead to an increase in the same amount in the 

other direction, it is sufficient to apply flow control on only one path and convert 

the flow controller output for the other direction. This is achieved by the packet 

controller on the one hand ensuring the most balanced possible distribution of 

the applications packets at the start time and on the other hand converting 

necessary deviations into packet distributions.  
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This flow control task in switched layer 2 automation TSN networks under the 

influence of different shapers and different application cycles is the focus of the 

following sections within this chapter. 

As the system under control consists of only dead time elements, plus PT1 

elements and dead time elements in the feedback, there is no point in applying 

the state-space description method. Instead, the classical approach of applying 

the Laplace-transform in the frequency domain is preferred. There is also no need 

to work with the z-transformation as the originally time-discrete character of the 

data values of input and output is not important, as all values are measured as 

rolling mean values over multiple sampling times. Thus, linear system behaviour 

is achieved. 

It must be stressed that the rolling mean values are smaller than the local and 

short-time bandwidth maxima which can in principle overload the data transport 

capability of a path. This can happen, for example, at times when CD bursts occur 

on the network. However, it is the task of bandwidth reservation such as MSRP 

(IEEE 802.1Q, 2022) or RAP (IEEE 802.1Qdd, 2023) and ingress limiting functions, 

as defined by IEEE 802.1Qci (2016), to avoid such local peak overloads. A further 

practical issue is that the monitoring of the path loads or throughputs and the 

calculation of the maximum along a certain path is best performed at the 

distribution controller, where this is needed. The calculation of a sliding or rolling 

mean value over configurable integration time is best preprocessed by the bridges 

to keep the network traffic towards the distribution controllers as low as possible. 

The sum of the time delays that a data frame experiences while transitioning along 

a data path from source to destination, from the control perspective, represents 

a dead time element. Dead time elements in a control plant, and also in the 

feedback, have the disadvantage that the control system tends easier to 

oscillations (Normey-Rico & Camacho, 2007). These dead time elements spoil the 

obvious goal of being able to immediately compensate for possible load changes 

along the path within the next network cycle. Therefore, a longer control interval 

should be considered.  
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To assign the control intervals and later the control parameters, the dead time 

elements must be analysed.  

The line delay or peer delay, together with the bridge latency, forms a dead time 

element for one hop, that is, the transition over one bridge or bridged end station: 

 𝑇𝐷𝑇 = 𝑇𝐵𝐿 + 𝑇𝐿𝑃𝐷 (5-1) 

With: 

 TDT:  Dead time introduced by one linked bridge. 

 TBL:  Bridge latency time. 

TLPD: LAN propagation delay. Typically, it is 5 ns per meter of an 

Ethernet cable. 

The calculation of the bridge latency time depends on the individual traffic shapers 

and schedulers and is the subject of the next section.  

The overall dead time of a given arbitrary network path with m bridges is: 

𝑇𝐷𝑇𝑝𝑎𝑡ℎ = ∑ 𝑇𝐵𝐿𝑖
𝑚
𝑖=1  + ∑ 𝑇𝐿𝑃𝐷

𝑚+1
𝑖=1  , 𝑚 ∈ ℕ  (5-2) 

With: 

TDTpath: Dead time of a given arbitrary network path containing m 

bridges. 

The dead time function of a system in the time domain is given by:  

𝑦(𝑡) = 𝑢(𝑡 − 𝑇𝐷𝑇) (5-3) 

The dead time system transfer function as Laplace transform is given by: 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
= 𝑒−𝑠𝑇𝐷𝑇  (5-4) 

A dead time element reduces the stability of a controlled plant. It also limits the 

fastest response time that can be reached by the controller to compensate for the 

input or disturbance changes. Because of handling and delaying frames in a 

different way, the different traffic shapers and schedulers of TSN have different 

bridge delay and path delay characteristics as will be analysed below. Thus, they 

form different dead time elements.  
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The physical value of interest for both the input and output of the network as a 

controlled plant is the data bandwidth which is defined as data per time, 

measured in bits per second, abbreviated as bit/s or bps as already introduced in 

4.6. A sensible measurement interval must be selected to measure the actual 

bandwidth. Different sources of data traffic in a network often have a variety of 

traffic forms and send intervals, as outlined in Section 4.7. Therefore, the 

measurement interval must be sufficiently long to cover all senders sending 

intervals to achieve a representative and stable measurement value. In addition, 

for reasons of stability and to filter possible sporadic traffic peaks, experience in 

control theory recommends applying lowpass filtering, that is, an averaging 

calculation over time TMean, of the actual value of the output bandwidth at the 

bridges and bridged end stations output ports. For example, this could be a 

cumulative moving average (CMA) implemented by a sliding window algorithm 

over a number of samples of the output bandwidth µ𝑀 of a bridge port. Another 

name for this method to be found in the literature is the expression “rolling mean 

value (RM),” which is preferred in this thesis and was already sketched in 4.6, 

defined as follows: 

µ𝑂𝑀𝑒𝑎𝑛(𝑡) =  
∑ µ𝑂𝑖

𝑛+𝑚
𝑖=𝑛

𝑚
  ; 𝑛,𝑚 ∈ ℕ (5-5) 

With: 

 µ Omean (t): output bandwidth average (mean) value 

 µ Oi:  one output bandwidth sample value  

n: sample to be the starting point of the sliding window 

calculation  

 m:  number of samples in the window 

In each cyclic RM calculation, an old sample value drops out of the window, and a 

new value is taken into the window. The pseudo code for building the RM is 

outlined in Table 5.1. Its detailed structure is provided in Appendix 2.  
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Table 5.1: Pseudo code to build the RM within the bridges and bridged end 

stations. 

Algorithm: RollMeanApp::Calculate() 

This algorithm builds the RM and must be calculated cyclically at least once in each rolling 
mean integration interval in the bridges and bridged end stations. 

Create once at instantiation of this method a two-dimensional array m_rm_array [] [] 
containing a series of structure elements of number RM_WINDOWSIZE of number of 
received bytes with timestamp, per automation controller ID (ACID), and per application 
cycle (APPID) ; 
Create RM variables: integration time m_inttime, m_currenttime, m_windowstarttime, and 
m_arraystarttime and initialise them; 
 
Create two-dimensional array p_throughput [] [] to store calculated throughput in an 
application cycle specific array for throughput progress display and control. 
Create index variable m_datapoint for storage of throughputs and initialize it; 
 
Receive and store each port-passing data frame size in number of bytes, timestamp, ACID, 
and APPID, in m_rm_array via interrupt in a receive method in the background realising a 
ring buffer; 
This receive method supports an index “m_i” which holds the current index of the last 
storage event into m_rm_array; 
 
Sum up number of bytes for ACID and APPID: 
If ((m_currenttime - m_inttime ) >= m_arraystarttime) //window is fully within array 
{ 
   m_windowstarttime = m_currenttime - m_inttime; 
   For (i = m_i; m_rm_array [ACID] [APPID].timestamp[i] > m_windowstarttime; --i) 
        { 
        m_bytes = m_bytes + m_rm_array[ACID] [ APPID].nbytes[i]; 
        }      
} 
Else //window suffered a turnover within array or has just started 
{ 
    For (i = m_i; i >= 0; --i)//lower part of the window 
         { 
         m_bytes = m_bytes + m_rm_array[ACID][ APPID].nbytes[i]; 
         } 
     If (m_rm_array[ACID] [APPID].timestamp[RM_WINDOWSIZE-1] > (Time)(0)) // turnover 
        { 
        m_windowupperpart = m_currenttime -_ 
        m_rm_array[ACID][ APPID].timestamp[RM_WINDOWSIZE-1]; 
        m_windowstarttime = m_rm_array[ ACID][ APPID].timestamp[RM_WINDOWSIZE-1] -   
        (m_inttime - m_windowupperpart); 
        For ( i = RM_WINDOWSIZE-1; m_rm_array[ACID][ APPID].timestamp[i] >=   
            m_windowstarttime; --i) 
           { 
           m_bytes = m_bytes + m_rm_array[ACID][ APPID].nbytes[i]; 
            } 
         }     
} 
Calculate throughput and store it in an application cycle specific array for progress display 
and control: 
p_throughput [APPID][m_datapoint]= (m_bytes * 8)/(m_inttime * 10000)   
// 1000000 ns per ms divided by 100 is 1 per cent; 
m_datapoint++; 
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As a next step, different TSN traffic shaper and schedulers need to be 

analysed in terms of their influence on the path dead times. 

5.3 Applicable TSN Traffic Shapers and Traffic Schedulers 

The TSN traffic shapers and schedulers, as introduced in Subsection 2.2.3, will be 

analysed in terms of the different bridge delays they cause, as these will constitute 

the dead time elements in the flow control circuit. In the following, the single 

elements of the timing delay for a hop from bridge to bridge and a complete 

network path will be analysed for various possible schedulers and shapers. 

5.3.1 General Bridge Timing Considerations 

TSN offers a variety of traffic shapers and schedulers for the bridge internal MAC 

forwarding service as defined in IEEE 802.1Q (2022) and IEEE 802.1Qcr (2020). 

Depending on the forwarding method used, the bridge internal forwarding delay 

and for some methods also the total path latency is defined. 

As outlined in the previous section, the bridge delay of one hop consists of the 

bridge transit delay or bridge latency 𝑇𝐵𝐿 and the LAN propagation delay 𝑇𝐿𝑃𝐷 

from the bridge egress port to the next bridge ingress port. The actual transit delay 

through a bridge depends on several other factors.  

A data frame transferred through a bridge experiences several delays in its way 

from the input port, also called the ingress port, to the output port, also called the 

egress port.  

Figure 5.2 shows the single entities within a bridge that a frame passes during its 

transition through a bridge if it is forwarded automatically via FDB entries on the 

data plane, without software involvement, to analyse the frame. 
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Figure 5.2: Layer 2 bridge internal frame processing entities  

The sum of the delays caused by a bridge is called “bridge latency time” or “bridge 

delay time” TBL. This is defined as follows: 

𝑇𝐵𝐿 = 𝑇𝑃𝐻𝑌−𝐼 + 𝑇𝑀𝐴𝐶−𝐼 + 𝑇𝑀𝑎𝑡𝑟 + 𝑇𝑄 + 𝑇𝑀𝐴𝐶−𝐸 + 𝑇𝑃𝐻𝑌−𝐸 (5-6) 

With: 

 TBL : Bridge Latency time 

 TPHY-I : Ingress PHY processing time 

 TMAC-I : Ingress MAC processing time 

TMatr  : Switching matrix (also often named “fabric”) processing time 

TQ             : Time the frame waits in the output queue, which is optional 

and variable and depends on the amount of data traffic to be sent over the 

port. 

 TMAC-E : Egress MAC processing time. 

 TPHY-E : Egress PHY processing time. 

TS&F         : Time for frame reception including the time to store the frame 

and forward it to the output port or output port queue. 

  TTr : Time to transmit a frame including times TMAC-E and TPHY-E. 

Most of the Layer 2 bridges know both their bridge delay and the delay between 

end station and bridge or between bridge and bridge, which is called “peer delay” 

or “line delay,” as they usually host a time synchronisation protocol such as PTP 

(Precision Time Protocol) (IEEE 802.1AS, 2020; IEEE 1588, 2019). This provides a 

peer delay measurement and bridge delay measurement. Typical bridge delays 
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without queuing delays range from a few microseconds to a few milliseconds, 

depending on the bridge technology. 

According to IEEE 802.1Q (2022), Annex L.3, and comprising the model from Figure 

5.2, the worst-case latency for a frame for a single hop from Bridge to Bridge, can 

be broken out into the components as listed and assessed for its relevance for 

load control in Table 5.2. 

Table 5.2: Bridge to bridge delay components 

delay type meaning/remark 

Relevant 

for load 

control? 

Input 

queuing 

not relevant here, as there are no input queues in the IEEE 

802.1 bridge architecture that constitutes the basis for the 

bridges underlying this thesis. 

no 

Interference depends on the number of non-ring input ports and traffic 

ingress and is relevant for some of the investigated traffic 

shapers as queuing delay. Contributes to TQ.  

yes 

Frame 

transmission 

is the time it takes to transmit one frame at the transmit 

rate, which is assumed to be 1 Gbit/s for the networks 

underlying this article. 

yes 

LAN 

propagation 

represents the time it takes to send the frame over the LAN 

to the next bridge depending on the media and distance. 

yes 

Store-and-

forward 

consists of all other bridge-internal forwarding elements 

assuming empty send queues. 

yes 

Output 

queuing 

is caused by other frames waiting in the output queue to be 

sent before a frame is due to be sent. 

yes 

 

The pure single bridge latency, without traffic depending on the output queuing 

delay, can be calculated as the store-and-forward delay plus the transmission 

delay for a frame. The latter depends on the frame size and link speed, assuming 

no input queues that are usually not common in standard switch ASIC designs:  
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𝑇𝐵𝐿 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 (5-7) 

The bridge forwarding mode to the output port is assumed to be the store-and-

forward mode. The faster cut-through mode is no alternative, as usually more 

than one input port forwards to the output port. The store-and-forward delay 

depends on bridge design. A typical value according to IEEE 802.1Qcc (2018), can 

be assumed to be 700-800 ns. 

The transmission delay 𝑇𝑇𝑟 is mainly characterised by the actual fame size that 

needs to be transported through egress MAC and PHY and is thus calculated as 

follows: 

𝑇𝑇𝑟 = 𝑀𝑎𝑥𝐹𝑟𝑎𝑚𝑒𝑆𝑖𝑧𝑒 [𝐵𝑦𝑡𝑒]  
1

𝐵
  8 𝐵𝑖𝑡 (5-8) 

where MaxFrameSize is the maximum SDU size (Service Data Unit = net data load) 

plus header, usually 42 bytes (IEEE 802.1Q, 2022). B is the bandwidth (normally 1 

Gbit/s for automation networks), and Bit counts the bits of a byte.  

The LAN propagation delay 𝑇𝐿𝑃𝐷 represents the cable delay from the output port 

to the next input port. Automation networks are usually set up using copper 

Ethernet CAT 6 cable which have a specific delay of about 5 ns/m (ANSI/TIA-568.1-

D, 2015), that is, a 100 m Ethernet copper cable corresponds to 0.5 µs cable delay. 

For precise LAN propagation delay assignment, the actual LAN propagation delay 

from the output port to the next input port can be retrieved from the clock 

synchronisation peer to peer delay measurement (IEEE 802.1AS, 2020; IEEE 1588, 

2019). 

Whether the queuing delay 𝑇𝑄 has an influence depends on the forwarding 

method, that is, the TSN traffic shaping concept. The queuing delay is a variable 

timing element as it depends on further traffic arriving from other ingress ports 

and possibly before the frame in question. Such frames will then be in an earlier 

transmission position in the queue thereby delaying the frame in question. Frame 

priorities decide the transmission succession and, thus, also the queuing delay. 



  Page 158 

To evaluate the actual dead times introduced by bridges with various traffic 

shaping technologies along a data path for Control Data (CD), a dedicated analysis 

is necessary.  

5.3.2 Strict Priority Queuing (SPQ) 

The pure strict priority queuing (SPQ) transmission selection is strictly speaking 

not a modern TSN scheduler, because it does not make advantageous use of any 

common timing information in coordination with other bridges. Nevertheless, it is 

still used, especially in combination with higher bandwidth automation networks, 

for example the 1 Gbit/s and 2.5 Gbit/s PROFINET technologies (IEC 61158-5-10, 

2023; IEC 61158-6-10, 2023). A new aspect of this classical technology is that it 

can be combined with other TSN features. In particular, SPQ can be used together 

with stream resource reservation which guarantees that frames are serviced to 

avoid network overload. Thus, a certain determinism is achieved which makes this 

combination better suited for automation applications compared to the pure SPQ 

without reservation. SPQ can also be combined with Preemption (IEEE 802.1Qbu, 

2015). Preemption allows high-priority frames to interrupt the transmission of 

lower-priority frames to achieve lower latency for the preemptive traffic class. In 

this case the high-priority CD, be it I-CD or NI-CD, is assigned the highest SPQ QoS 

priority, and is the preemptive traffic class. All other lower-priority traffic classes 

are the preemptable classes. Thereby, minimum latency times are achieved for 

the preemptive CD.  The SPQ can also be applied within an EST window when 

several traffic classes use a common EST window. In this thesis, both forms, the 

pure SPQ and the SPQ with Preemption transmission selections are considered. 

The SPQ transmission selection for CD needs to assign the highest or second-

highest QoS priority to achieve privileged frame handling. This is necessary to 

achieve the minimum reliable bridge latencies to guarantee the determinism 

necessary for control tasks. Assuming highest priority for CD and no interfering 

traffic of the same highest traffic class (In-Class-Interference - ICI) from other 

controllers along the path, the worst-case situation would be if in each hop along 

a path, a maximum-sized frame of 1530 bytes (IEEE 802.1Q, 2022) would already 
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be in the sending process before the CD frame can be forwarded. This frame could 

not be interrupted with pure SPQ handling capabilities and would delay the 

forwarding of the CD. To calculate the delay time per hop, Equation (5-7) is 

expanded by the output port queuing delay 𝑇𝑄 for this disturbing frame: 

𝑇𝐵𝐿 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄 (5-9) 

Therefore, for CD with the highest priority with SPQ, the maximum output port 

queuing delay 𝑇𝑄 is identical to the transmission time of one longest frame 

transmission time 𝑇𝑇𝑟. If the SPQ is combined with Preemption, the delay 𝑇𝑄 is 

reduced to the transmission time 𝑇𝑇𝑟 of the minimum fragment size, typically 64 

bytes (IEEE 802.1Q, 2022). If the CD is assigned only the second-highest priority, 

this is only acceptable if the requirements for determinism are relaxed, and the 

highest priority is used only for sporadic network management traffic. For the 

evaluations in this thesis, the highest QoS priority of 7 was assumed. The overall 

path dead time with SPQ under the conditions stated above, is determined by the 

number of hops to be traversed through the network, the delay per hop, and the 

sum of the LAN propagation delays from the talker to the link of the maximum 

throughput. It is: 

𝑇𝐷𝑇𝑃 𝑆𝑃𝑄 = 𝑛max𝜇 (𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄) + ∑ 𝑇𝐿𝑃𝐷 𝑖

𝑛max𝜇

𝑖=1  

 (5-10) 

where 𝑇𝐷𝑇𝑃 𝑆𝑃𝑄 is the sum of the dead times of the SPQ path from the controller 

to the maximum throughput, 𝑛max𝜇 is the hop count from the controller to the 

maximum throughput which multiplies the bridge latency from Equation (5-9), 

and 𝑇𝐿𝑃𝐷 𝑖  are the LAN propagation delays between the hops. 

Strict Priority Queuing gains attractiveness, especially when it comes to higher-

bandwidth systems of 1 Gbit/s and above. The reason is that with a higher 

bandwidth, the relevance of the maximum frame length transmission time that 

can block the egress port, that is, 𝑇𝑄, decreases. Nevertheless, preemption brings 

a further advantage by minimising the path delay and thus the dead time elements 

in the control circuit. This makes SPQ an attractive hardware scheduling method 

in combination with data flow control. 
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5.3.3 Credit Based Shaper (CBS) 

As outlined in the Literature Review in Section 2.2.3, the characteristic property 

of the CBS is that it expands data bursts to achieve a continuous flow of the 

stream. Therefore, it is not suitable for industrial automation CD and is, 

consequently, not considered in this thesis for LDC. 

5.3.4 Enhancements for Scheduled Traffic (EST) 

The EST or TAS (IEEE 802.1Qbv, 2015) timing calculation is based on the 

assumption that, with EST, the data can transition through the complete network 

within a defined gating window. This gating window is synchronised among all 

nodes in the network domain and is reserved for one or more dedicated traffic 

classes. A network cycle can be divided into several gating windows assigned to 

the different traffic classes. The remaining time of the network cycle, which is not 

consumed by gating windows is usually left to non-CD or best-effort (BE) data 

traffic with lower timing requirements. Thus, it can also be considered a gating 

window for this traffic. The necessary length of the gating windows depends on 

the overall data of the assigned traffic class to be transported per link created by 

𝑻𝒂𝒊𝒋 stream demand 𝑺𝒊𝒋 from each end station of 𝑫𝒊 at each node 𝑣𝑖 ∈ 𝑽 along 

the path. Furthermore, it depends on the maximum length, measured as  number 

of hops, of all possible paths, which is usually limited by the maximum network 

diameter, and the LAN propagation delays between all hops. The maximum data 

calculation can be achieved either through network traffic engineering and/or 

dynamic limitation by stream reservation, with either MSRP (IEEE 802.1Q, 2022) 

or in the future with RAP (IEEE 802.1Qdd, 2023). With EST, the queuing delay 𝑇𝑄 

plays a minor role, because the length of the gating window, and thus the 

maximum path delay, is fixed. 𝑇𝑄 is thereby part of the gating window and is 

already considered in the gating window length calculation. Bandwidth 

reservation by protocol or engineering must secure that the maximum 𝑇𝑄 is not 

exceeded.  
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edge bridge, an additional worst-case waiting time of one network cycle time for 

the next gating window to start must be added.  

Especially in connection with synchronised I-CD data injection from end stations, 

EST achieves minimum overall latencies through the network. Therefore, it is an 

ideal traffic scheduler from industrial automation load control point of view. 

Furthermore, the possibility of separating faster application data transport from 

slower applications by assigning different EST windows offers dedicated load 

control for groups of applications. 

5.3.5 Cyclic Queuing and Forwarding (CQF) 

The CQF scheduler (IEEE 802.1Qch, 2019) timing is determined by the number of 

hops to be traversed through the network and the length of the cycle time plus 

the LAN propagation delay from the talker to the link of the maximum throughput: 

𝑇𝐷𝑇𝑃 𝐶𝑄𝐹 = 𝑇𝑁𝐶  𝑛max𝜇 + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1  

 (5-12) 

where 𝑇𝐷𝑇𝑃 𝐶𝑄𝐹 is the sum of the dead times of the CQF path from the controller 

to the maximum throughput. 𝑇𝑁𝐶  is the length of the network cycle, 𝑛max𝜇 is the 

hop count from the controller to the maximum throughput, and 𝑇𝐿𝑃𝐺 𝑖 are the LAN 

propagation delays between the hops. The gating window for one traffic class and 

thus the complete network cycle time can be selected to be smaller than with EST, 

as with the CQF only one hop must be traversed within the gating window instead 

of the complete network in the worst case for EST.  

As shown in Equation (5-12), the overall CQF path latency is proportional to the 

number of hops 𝑛max𝜇 traversed. For each hop a complete network cycle is 

added, which is a disadvantage, particularly in larger networks with a high network 

diameter. Although the overall path delay is higher than with SPQ and EST, the 

influence of ICI on the overall path delay deviation is relatively small. This is only 

a fraction of a network cycle in relation to several network cycles, one for each 

hop along the path.  
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Regarding load distribution control, CQF is a good selection only for smaller 

networks and a small amount of data per network cycle to keep those small. 

Otherwise, the path delays and thus, the dead time elements in the control circuit 

would be relatively high. In turn, this requires greater effort to achieve a robust 

control circuit.  

5.3.6 Asynchronous Traffic Shaper (ATS). 

The ATS is the most complex shaper among the various TSN shapers and 

schedulers and offers a variety of configuration possibilities that would make the 

timing analysis quite complex. However, the special properties of CD reduce the 

permissible configuration combinations. First, CD needs to be transported with 

the highest priority of cyclical frames, in addition to the highest absolute priority 

of sporadic management frames. Therefore, the ATS IPV with the highest priority 

must be selected. Second, a burst of CD must also be transported as a burst, that 

is, it must not be stretched. This means that the committed burst size parameter 

of the Token Bucket Shaper of ATS must be sufficiently large to guarantee this. 

The CD data are assigned a reserved stream gate. Unlike the EST, however, the 

bridges in an ATS domain are not synchronised and unhindered data transport 

over the entire path is therefore not possible. In the best case, all gates in the 

bridges along a path open at the same absolute point in time by accident, resulting 

in a timing similar to EST timing. In the worst case, all waiting times for gate 

opening when reaching the next hop are maximal. The waiting time per hop is 

then equivalent to the network cycle time, resulting in a timing similar to the CQF 

timing. The worst-case overall path dead time with ATS for high-priority CD 

without ICI is therefore determined by (i) the number of hops to be traversed 

through the network, (ii) the store and forward delay (no Token Bucket delays for 

CD), plus (iii) the transmission time and queuing time of one maximum frame, plus 

(iv) one network cycle per hop, and (v) the sum of the LAN propagation delays 

from the talker to the link of the maximum throughput: 
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𝑇𝐷𝑇𝑃 𝐴𝑇𝑆 = 𝑛max𝜇 (𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄  +  𝑇𝑁𝐶) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1  

 (5-13) 

where 𝑇𝐷𝑇𝑃 𝐴𝑇𝑆 is the sum of the dead times of the ATS path for the highest-

priority CD. If the maximum ICI is to be considered, a single additional network 

cycle length must be added. 

From Equation (5-13) it follows that the worst-case path delay for CD for an ATS 

based network is also proportional to the number of hops, as in CQF. A further 

property of ATS is that the absolute value can only be assigned with a relatively 

high tolerance owing to the timely asynchrony of the nodes. Therefore, it is also 

only suited for smaller networks and for smaller amount of data in combination 

with load distribution control if higher effort for high dead time control circuit 

design should be avoided. In addition, it creates strongly variable dead time 

elements that make an LDC difficult to control. 

5.3.7 Scheduled Transmission (ST) 

The scheduled transmission of data frames refers to a scheduled injection of data 

frames from the end stations. IEEE 802.1Qcc (2018) provides further definitions of 

how to support ST. The goal is to provide an orchestrated frame injection from all 

end stations in such a way that all frames experience a minimum latency without 

disturbing each other’s flow in the network. This demands a centralized schedule 

calculation using a CNC before network communication can start. Each single 

change in the network topology or in the communication structure requires a 

recalculation of the transmission schedules for each end station communication 

connection, if the claim to optimal distribution is to be maintained. Scheduled 

transmission must not be mixed up with scheduled traffic as described in 

Subsection 5.3.4 with the EST scheduler. “Scheduled transmission” means a 

dedicated send schedule for each frame in the end stations, whereas “scheduled 

traffic” means reserved gating windows in the bridges for certain traffic classes 

without differentiating between single frames. Therefore, strictly speaking, 

scheduled transmission is not a traffic scheduler or shaper method; rather it is a 



Page 165   

method of network communication planning. Changes in end station 

communication demand will lead to a “quasi-dynamic” re-planning and re-

configuration into a new static network state rather than to a real dynamic 

measuring and adjustment. Therefore, ST belongs to the category of traffic 

engineering rather than to the category of dynamic load distribution which is the 

focus of this study. It is thereby beyond the scope of this thesis and has not been 

further investigated.  

5.3.8 Discussions and Evaluations 

The various traffic shapers and schedulers contribute differently to the path 

delays. Some are independent from interfering traffic, some provide a rather fixed 

delay that is relatively independent of the actual hop count, while others change 

significantly with the hop count. 

Bridges using SPQ, SPQ with Preemption, and EST provide rather low path delays 

also in larger networks. The application of bridges using CQF and ATS can result in 

significantly high path delay times, and thus, high control dead times, especially in 

larger networks with a high hop count. Therefore, they are recommended only for 

smaller network sizes. 

ST is a traffic engineering concept rather than a bridge traffic scheduler or shaper, 

which is beyond the scope of this thesis, as it cannot be applied fully dynamically.   

5.4 Identification of the Plant Characteristics  

A further problem to be solved with LDC is how to obtain the actual plant 

properties.  The delay dead times are derived from this, which are necessary in 

order to adapt the control circuits depending on the possible, constantly changing 

positions of the load maxima.  

As outlined in Section 5.2, the control method and design are tightly bound to 

actual plant properties. In particular, path delays from source to destination are 

important because they form dead time elements in the control circuit. These 

parameters are not always at the disposition of a local network and control 
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designer or are not investigable with reasonable effort. For comparison, the 

network load control concepts for Internet communication or client/server 

communication over longer distances lack a detailed knowledge of 

communication path properties. However, this is easier in MANs, which are 

typically limited to machines, manufacturing automation cells, and plants. Only 

newer automation developments, where parts of the automation roles can be 

virtualized into remote data centers or provided as cloud services, make it 

increasingly difficult to determine these parameters also in the automation 

context. Regardless of how the network delays have been assigned, each node 

containing an AC with load distribution control must maintain an adjacency list in 

the form of a distance matrix instance M, as described in Section 4.6. This contains 

the remote nodes and path delays towards them.  

Depending on the type of network, various methods for assigning plant properties 

are available.  

5.4.1 Determination at Design Phase 

If the load distribution control is to be planned for a MAN with a defined extension 

such as a field-level ring or a controller-level ring, one possibility is to calculate all 

possible path delays between all end stations. However, this requires detailed 

knowledge of: 

1. All path lengths, that is, all LAN lengths between end stations and bridges, 

2. The store and forward delay 𝑇𝑆&𝐹 in each bridge and bridged end station, 

3. Transmission time 𝑇𝑇𝑟 for a frame. Because this depends on the frame length, 

it must be calculated with the worst-case packet length or with the longest 

CD packet length in that network. 

4. The traffic shaper or traffic scheduler technology used in the bridges and 

bridged end stations. These have an impact on the path delay calculation as 

outlined in Section 5.3. 

For the last point regarding traffic shaper and scheduler technology, it is also 

important whether the technology is homogeneous along all paths or whether 

there are technology transitions in between. If it is not homogenous, this can 
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imply additional frame transport waiting times.  Such would occur if, for example, 

frames transition from SPQ to EST, which would require waiting time for the next 

gating window.  

With networks of smaller spatial extension, such as in a machine, the actual LAN 

propagation delay can be neglected and its continuous measurement during 

runtime can be avoided. This is possible for EST and CQF. 𝑇𝐷𝑇𝑃 can be calculated 

as the constant single dead time per hop, and the number of hops is known. For 

example, delay with EST can be calculated in good approximation as the relative 

distance of the throughput maximum in relation to the complete ring length in 

hop counts, provided that deviations caused by LAN propagation delay differences 

can be neglected: 

𝑇𝐷𝑇𝑃 𝐸𝑆𝑇 = 
𝑇𝐺𝑊

𝑛max𝑟𝑖𝑛𝑔
𝑛max𝜇 (5-14) 

where 𝑇𝐷𝑇𝑃 𝐸𝑆𝑇 is the overall EST path dead time from the controller to the 

maximum throughput, 𝑇𝐺𝑊 is the length of the gating window, 𝑛max𝑟𝑖𝑛𝑔 is the 

maximum hop count of the ring, and 𝑛max𝜇 is the hop count from the controller 

to maximum throughput. The same path delay calculation can be applied 

figuratively to the CQF. This is, of course, an average value, and there is still the 

problem with the early insertion of ICI on the path as described in Subsection 

5.3.4. Therefore, for controller optimisation of the Load Distribution Control, it is 

more secure and easier to always take the full gating window size as the one-way 

path dead time. However, it must be accepted in this case that the convergence 

time for the load distribution improvements worsens as outlined in more detail 

below.  

As can be seen from the necessary steps listed at the beginning of this subsection, 

setting up a database with all the exact path delays between all end stations can 

be quite a large and tedious task. Even with the help of dedicated automated 

calculation programs, there is still a task left to provide all of these inputs. Another 

possibility is to use runtime methods to determine the path delays, thus avoiding 

necessary input from the system administrator. These methods are crucially 

influenced by the availability of time synchronisation for nodes.   
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5.4.2 Runtime Method for Unsynchronised Networks 

To select an appropriate method for constantly running plant timing properties 

identification, it is important to determine whether the network and the end 

stations support a time synchronisation method such as PTP (IEEE 1588, 2019), or 

gPTP (IEEE 802.1AS, 2020), or whether they are unsynchronised. In an 

unsynchronised network it is not possible to state the time difference between 

any two nodes in the network. However, one method to still obtain the data about 

properties and dimensions of a network and then to draw conclusions about the 

behaviour over time is to use dedicated test messages.  

Test messages are sent from talkers and returned by potential listeners back to 

the talkers. This system has already been used in a rather simple form of a 

measured round-trip time (RTT) by TCP congestion control. Further work built on 

this, such as that provided by Katabi et al. (2002), who investigated high 

bandwidth delay product network congestion control, as outlined in Subsection 

2.4.2. For optimised load distribution control within MANs, test messages are also 

an option to be used as a basis, but they demand a much more differentiated view. 

To gain knowledge about the path delay from a given talker to a listener of 

interest, without any knowledge of the properties of the path elements, the most 

obvious method is to measure the time difference between the transmission and 

reception of the reply. However, this presupposes that the talker supports at least 

a free running own clock or timer with sufficient precision. To be allowed to derive 

the path delay in one direction as the half from the RTT value it is important 

though that the path is identical in both directions, that is, that it is “reverse path 

congruent,” and that they are tolerably symmetrical in both directions from a path 

delay point of view. 

𝑇𝑇𝐿 ≈  
𝑇𝑅𝑇𝑇

2
 ;  𝑓𝑜𝑟  𝑃𝑇𝐿 = 𝑃𝐿𝑇 ; 

𝑃𝑇𝐿 = {𝑡𝑎, 𝑣1, … , 𝑣𝑛, 𝑙𝑖}; 

𝑃𝐿𝑇 = {𝑙𝑖, 𝑣𝑛, … , 𝑣1, 𝑡𝑎}; 

𝑛 ∈ ℕ;  𝑃𝑇𝐿 , 𝑃𝐿𝑇  ∈ 𝐺(𝑉, 𝐸); 

(5-15) 
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𝑇𝑇𝐿 is the path delay from a talker ta to listener li according to the annotation in 

Section 4.6. 𝑇𝑅𝑇𝑇 is the round-trip time from the talker to the listener and back, 

𝑃𝑇𝐿 the path from the talker to the listener,  𝑃𝐿𝑇 the path from the listener to the 

talker, and v are the bridges or bridged end stations along a path. 𝑇𝑇𝐿 can never 

be expected to be exactly half of 𝑇𝑅𝑇𝑇. Some bridge delays can depend on different 

traffic interferences from other than path-ports or from other applications 

inserting traffic along the paths. The influence of interfering traffic is particularly 

noticeable in principle with SPQ and ATS. However, resource reservation is an 

adequate means of limiting this influence in tolerable borders. Traffic 

interferences have less impact on EST and CQF because a frame cannot experience 

a greater delay here than when it is at the end of the gating window (with EST) or 

in the last network cycle (with CQF). The RTT method is appropriate if not all 

network paths are known or only partly known. It is important that a certain path 

symmetry can be assumed. Particularly in the context of SPQ or ATS schedulers, 

with the increased influence of traffic interference on the resulting delay 

parameters, it is recommended to work with mean values over a period of test 

intervals. Thus, the influence of short interference traffic peaks is dampened. The 

mean value integration interval selection is a compromise between the actuality 

of the values, the thereby created additional load in the network, and the CPU 

time consumption of the nodes by updating the test packets. Further insecurity 

with this estimation is introduced by the time consumed by the listener to receive 

the test frame and send back the response frame. This frame processing can 

depend on the runtime of other CPU tasks and can therefore also be subject to 

variation. This is also an argument for mean value use. These insecurities must be 

compensated by applying an adequate security margin to 𝑇𝑇𝐿. A dedicated 

extension of the round-trip packet for the use of LDCs in MANs is the installation 

of a hop counter in the packet as discussed in the previous subsection. The test 

messages are modified by the nodes along the path by updating the counters. 

Thus, the distance between the listener load distribution controller is known. This 

information is useful for deciding whether streams to the listener influence path 

links. However, this method can only be applied within smaller automation setups 
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which include tailored nodes for LDC, as such a feature requires a dedicated 

control protocol and thus a load control awareness of each node in the TSN MAN. 

5.4.3 Runtime Methods for Synchronised Networks 

In a synchronised network, all end stations, bridges, and bridged end stations 

share a common time. Because of the time synchronisation protocols necessary 

to operate on each bridge, they know both their own bridge latency time and the 

path delay to their neighbouring bridges. This information is accessible to a CNC 

via, for example, SNMP or Netconf/Yang from the peer delay values in the 

management information database (MIB) of the time synchronisation protocols. 

From there, it can be made accessible to each AC in the automation network. 

Depending on the different path delay calculations of the different traffic shapers 

and schedulers, ACs can thus calculate the individual path delays to each 

connected listener in the network domain.  

Another possibility with synchronised networks is that each listener would 

announce the individual path delays from certain talkers to itself. Resource 

reservation protocols such as MSRP and RAP provide parameter values named 

“accumulated latency” in their talker announce frames. When a talker announces 

its streams into the network on the control plane, this accumulated latency field 

is updated by each traversed bridge with its latency contribution. The original idea 

of this parameter is that it serves as a decision basis for a listener whether the 

delay of a stream along a path is acceptable and the listener can subscribe to that 

stream. In this case, it sends a Listener Attach frame back to the talker. Then, each 

involved bridge along the path back reserves bandwidth resources. This 

mechanism can be extended for load distribution control in the following manner: 

1. Talker Advertise (MSRP), or Talker Announce (RAP) frames obtain an 

application-specific TLV with a hop count parameter in addition to the 

accumulated latency parameter which is incremented by each bridge along a 

path.  

2. The MSRP Listener Ready or RAP Listener Attach frames, both of which have 

the same core functionality, are extended by an application-specific TLV 
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containing the accumulated latency and hop count from the talker to this 

listener. 

3. Thus, the path latency and hop count to the listener are communicated to 

the stream origin talker by the Listener Ready/Listener Attach frames. 

4. At the talker end station, a database for all addressed listeners’ distance and 

latency must be supported. 

5. As Talker Advertise (MSRP), Talker Announce (RAP), Listener Ready, and 

Listener Attach frames are repeated cyclically, the latencies are always up-to-

date.   

It must be stressed though that also here the calculated path delays are only an 

estimate, as the actual path delays are never constant. As already outlined above 

in connection with the unsynchronised network and in Section 5.3, the 

calculations for the path delays of the different traffic shapers and schedulers are 

all influenced to their individual extent by ICI queuing delays. This is also an issue 

when updating the accumulated latency parameters. However, this insecurity 

associated with accumulated latency is not addressed in the protocol standards 

for MSRP (IEEE 802.1Q, 2022) and RAP (IEEE 802.1Qdd, 2023). The difficulty of a 

bridge is determining whether to add its own latency contribution with or without 

a certain amount of ICI for the accumulated latency path calculation. Figure 5.4 

shows the problem using an example of the EST scheduler. It shows the course of 

the actual accumulated latency (black graph) build-up of a stream 𝑠11
1  originating 

from talker 𝑡𝑎11
1  of AC device 𝑑11

  connected to bridge node 𝑣1
 . At egress at 𝑣1

  the 

stream experiences a longer delay caused by ICI 𝑠21
1  which arrived earlier at the 

egress queue than 𝑠11
1 . This delay can be increased if 𝑡𝑎11

1  would send outside the 

synchronised gating window, as shown in the graph. Theoretically, all possible ICI 

could already be inserted and reserved at the edge bridge (𝑣1
  for 𝑠11

1 ). 
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 Figure 5.4: Accumulated Latency along a path. 

The red dashed line shows the build-up of the accumulated latency parameter 

when the maximum ICI, and thus the maximum 𝑇𝑄
 , is distributed among the 

number of possible nodes on the longest path.  

𝑇𝑄 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 = 
𝑇𝑄𝑚𝑎𝑥 

𝑛𝑚𝑎𝑥
 (5-16) 

𝑇𝐴𝐿 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 =  𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 + 𝑇𝐿𝑃𝐷 (5-17) 

 𝑇𝑄 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇  is the average hop queuing delay of EST and 𝑇𝐴𝐿 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 is the 

increment in the accumulated latency parameter per hop for EST. 𝑇𝑆&𝐹 is the store 

and forward delay, 𝑇𝑇𝑟 the transmission delay, and 𝑇𝐿𝑃𝐷 the known LAN 

propagation delay as outlined in Subsection 5.3.1. In this case, the actual 
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accumulated latency would be higher than the parameter value when egressing 

at 𝑣1
  (red dashed circle). This case must not happen, because a listener connected 

to 𝑣1
  would then base its subscription on a wrong lower guaranteed latency which 

can spoil application control circuits. In addition, from LDC point of view, a control 

circuit optimisation on lower delays than actually present would mean an output 

overshot which is especially bad with load distribution control as explained in 

more detail in the following sections. A better approach is to add all possible 

queuing delay at the talker edge bridge, that is, at the first hop in the network.    

𝑇𝐴𝐿 𝑇𝐸𝑑𝑔𝑒 𝐸𝑆𝑇 =  𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄𝑚𝑎𝑥 + 𝑇𝐿𝑃𝐷 (5-18) 

𝑇𝐴𝐿 𝑁𝑜𝑑𝑒 𝐸𝑆𝑇 =  𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝐿𝑃𝐷 (5-19) 

𝑇𝐴𝐿 𝑇𝐸𝑑𝑔𝑒 𝐸𝑆𝑇 is the accumulated latency increment for the talker edge bridge. The 

blue dashed line in Figure 5.4 shows the course of this accumulated latency 

assignment method. With this method, the error during egress at 𝑣1
  is avoided. A 

higher calculated accumulated latency value than the real accumulated latency is 

not problematic. The controller parameter optimisation for longer dead times 

would only be expressed by a slower convergence time but not by an overshot of 

the output, as will be shown in more detail in the following sections. Another more 

accurate procedure is to estimate the bridge local queuing delay per egress port 

by means of stream reservations made by the MSRP or RAP. The bridge then 

calculates the worst-case ICI for each ingress/egress port combination. This is still 

a worst-case calculation because the actual delay depends on the absolute 

position of the frame in the queue, which cannot be predicted. It depends on the 

time of transmission in the various end stations in the network, which is subject 

to device-local decisions.  

In summary, it can be stated that all accumulated latency update methods will 

result in higher or lower delay time variations depending on the gating window 

length and the path delay without interference. The question is for which value 

the control circuit parameters must be optimised. The best mitigation for this 

problem is to design the controller parameters, for example, in the case of a PID 
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Nichols or Chien-Hrones-Reswick (Normey-Rico & Camacho, 2007) is applied to a 

plant involving feedback and simulating the step response at the open loop at 

𝑀𝑓(𝑠). Experience shows that further empirical fine-tuning of these parameters 

in a “try-and-error” fashion can improve the Ziegler-Nichols or Chien-Hrones-

Reswick parameter assignments. The pseudo code for the core of the PID 

Controller is outlined in Table 5.3. Its detailed structure is provided in Appendix 2. 

Table 5.3: Pseudo code of algorithm for the PID Controller. 

Algorithm: PIDCtrlApp::Calculate () 

This algorithm implements the core of the PID Controller. It can be used for both the data 
flow controller and the distribution controller in an AC. 

Create variables: 
m_ref;  // reference input r(t). 
m_kp;   //Proportional factor 
m_ki;   //Integral factor 
m_kd;   //Differential factor 
m_out; //Output y(t) 
m_int;  //integral sum up 
m_lastint; //last integral sum up 
m_lasttime; //point in time of last calculation 
m_intstep; //integration time step in ns, that is calculation cycle for PID controller 
m_lastref; //reference at last calculation 
 
Load m_ref with the result of the minmax comparison of Table 4.4. 
 
If |m_ref| > threshold 
{ 
   Build integral part: 
   m_int = m_lastint + m_ki * m_ref * (current_time - m_lasttime); 
    
   Add proportional and differential part: 
   m_out = m_kp * m_ref + m_int + ((m_ref - m_lastref)/(current_time - m_lasttime) * m_kd); 
    
   Store current results for next summation cycle: 
   m_lastref = m_ref; 
   m_lasttime = current_time; 
   m_lastint = m_int; 
} 
Schedule next calculation cycle after integration interval m_intstep; 
 

 

The transfer function of the plant 𝐺𝑃𝑙(𝑠), that is, the network path in the 

frequency domain, is given by: 

𝐺𝑃𝑙(𝑠) =  𝑒−𝑇𝐷𝑇𝑃 𝑠 , (5-20) 

with: 
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𝑇𝐷𝑇𝑃 = ∑𝑇𝐷𝑇𝑖

𝑚

𝑖=1

 , (5-21) 

where m ϵ ℕ is the number of hops from the controller to the link with the current 

maximum of the throughput along the path. 𝑇𝐷𝑇𝑃 is the sum of the dead times of 

these hops, consisting of the bridge latencies and LAN propagation delays. The 

transfer function of the closed loop 𝐺𝐶𝐿 is then 

 

𝐺𝐶𝐿(𝑠) =  
𝑀𝑜(𝑠)

𝑀𝑖(𝑠)
 

= 
𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠)

1 + 𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠) 𝐺𝑀(𝑠)𝐺𝐹(𝑠)
 

=

(𝐾𝑃 +
1

𝑇𝐼𝑠
+

𝑇𝐷𝑠
1 + 𝑇𝑝𝑠)𝑒

−𝑇𝐷𝑇𝑃 𝑠

1 + (𝐾𝑃 +
1

𝑇𝐼𝑠
+

𝑇𝐷𝑠
1 + 𝑇𝑝𝑠)𝑒

−𝑇𝐷𝑇𝑃 𝑠 1
1 + 𝑇𝑀𝑠 𝑒−𝑇𝐷𝑇𝐹 𝑠

 , 

(5-22) 

 

where the product 𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠) 𝐺𝑀(𝑠)𝐺𝐹(𝑠) in the denominator is the transfer 

function of the open loop 𝐺0(𝑠) .  

One important goal of automation data control is that no or only a minimum of 

data frames may be lost to avoid bumps in the controlled process. Therefore, an 

overshot of 𝑀𝑜(𝑠) over the reference level 𝑀𝑖(𝑠) must be avoided, because the 

operating point could be near the maximum bandwidth. An overshot would then 

mean a congestion loss. As the plant consists of only dead time elements, this 

limitation is equivalent to the requirement for proportional gain: 𝐾𝑃 ≤ 1. Another 

reason for this limitation is the practical aspect: an overshot would mean an 

oscillation of the load between two paths, which would only create unnecessary 

disturbances. However, the price of the avoidance of overshot means slower 

dynamic performance. 

Generally, dead time elements increase the difficulty of controlling the loop and 

promote its tendency toward instability. However, because of the PT1 dampening 

effect of the rolling mean calculation in the feedback, the instability of the control 

loop can be counteracted if the sum of the dead time elements is small compared 
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to the 𝑇𝑀𝑒𝑎𝑛  of the rolling mean calculation. 𝑇𝑀𝑒𝑎𝑛 increases with the longest 

application cycle, and is thereby determined by the slowest application, as stated 

in Equation (4-7). The sum of dead times depends on the selection of the traffic 

shaping technology, the number of hops between the controller and the current 

throughput maximum, and the LAN propagation delays of the links between the 

hops. With certain traffic shaping methods, bridge delays can be assumed to be 

nearly constant, whereas others imply variable bridge delays and thereby variable 

dead time elements in the control circuit.  A nearly constant bridge latency and 

thereby constant dead time element as it is given with, for example, EST traffic 

shaping, has the advantage that 𝑇𝐷𝑇𝑃 does not need to be measured and 

transferred to the controller continuously. 𝑇𝐷𝑇𝑃 can be calculated instead if a 

constant single dead time per hop and the number of hops are known. However, 

if the dead time needs to be measured as described in Section 5.4, it is 

recommended to perform this continuously in a parallel process to the actual 

throughput control to obtain instant dead time values for the load control.  

The general control structure in Figure 5.5 provides separate overall dead times 

for the data path and feedback path. This is because the values are not always 

identical. The paths to be followed in the two directions to and from the relevant 

link are not necessarily the same and could have different delays owing to the 

influence of the interfering traffic. The local maximum of the throughput max
𝑖,𝑗 𝜖 𝑽 

𝜇𝑖𝑗 

can be at different locations in the network domain at each distribution control 

loop sample time, resulting in different path characteristics. These in turn demand 

different controller parameters for the flow control, if optimal flow control is to 

be achieved. This means that the controlling instance located within an AC must 

provide and use dedicated plant models for each possible location of max
𝑖,𝑗 𝜖 𝑽 

𝜇𝑖𝑗. 

A common way to identify the influence of dead time, and thereby the difficulty 

in controlling the control loop, is the use of a normalized dead time related to the 

time constants of the delaying elements, that is, the PT1 element in this case, such 

that (Normey-Rico & Camacho, 2007): 

𝜏  = 
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑛
 (5-23) 
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where 𝜏 is the normalised dead time, with 0 ≤ 𝜏  ≤ 1, 𝑇𝐷𝑇 is the real dead time of 

the plant and  𝑇𝑛 is the delay time constant of the plant. If 𝜏 is near 1, usually ≥ 
2

3
  

(Normey-Rico & Camacho, 2007), a system, as a rule of thumb, is said to be dead 

time dominant; otherwise, it is said to be lag dominant. The PID controller in the 

control structure in Figure 5.5 is sufficient, if dead times are relatively small in 

comparison to the PT1 rolling mean element, that is, the system is rather lag 

dominant. If the system is rather dead time dominant or demands enhanced 

dynamics, the PID controller should be replaced using a predictive controller that 

is either a Smith Predictor (De Cicco et al., 2011; Mascolo, 2000) or a Model 

Predictive Controller (Normey-Rico & Camacho, 2007).  

In summary, it must be stated that the different traffic shaper and schedulers 

introduce different dead time elements into the flow control circuit influencing 

the control characteristics. Furthermore, the network cycle and application cycles 

in the network domain play a crucial role, as they affect the possible control 

performance by assigning the possible rolling mean time constant of the 

throughput, and thereby the relation of dead times to delay time constants.    

5.6 Network Flow Control Simulation and Results 

As described in the previous section, the characteristics of the plant model, 

formed by a network path in this case, are given by the typical internal bridge 

delays, line delays, and the way to build the output value which is the mean of the 

output bandwidth.  

This model is introduced into the mathematical simulation tool MATLAB with its 

control engineering extension, Simulink. The mathematical simulation of the 

network path provides detailed data and knowledge of the dynamic 

characteristics of the network path, both as an uncontrolled dynamic system and 

closed-loop controlled dynamic system. Such dynamic characteristics include 

system step response behavior, control instability areas, input frequency 

influences and dynamic reaction speed.  
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One result of the data traffic analysis in Section 5.3 is that the actual dead time for 

networks with a similar number of hops and throughput depends on the different 

traffic-shaping methods. To compare their influences, a sample network model 

was simulated as shown in Figure 5.6.  

 

Figure 5.6: Network control simulation model 

The parameters for the path delay and feedback delay are calculated as follows 

and summarised at the end of this section in Table 5.4. The simulation parameters 

are listed in Table 5.5. A network of 25 hops from the controller to the link with 

the current maximum throughput 𝜇𝑖𝑗 𝑚𝑎𝑥  is assumed, which is half the typical 

maximum ring diameter of 50 hops (IEC 61158-5-10, 2023; IEC 62439-2, 2021). 

The average cable length between the hops is assumed with 100 m Ethernet CAT6 

cable which have a typical propagation delay of about 0.5 𝜇𝑠 (ANSI/TIA-568.1-D, 

2015). Thereby 𝑇𝐿𝑃𝐷 = 24 𝑥 0,5 𝜇𝑠 = 12 𝜇𝑠, under the assumption that the 

controller is near the first bridge with insignificant LAN propagation delay. A 

maximum data amount of 100 streams with a maximum of 200 bytes net SDU data 

load plus a 42 Byte Ethernet header is assumed. For one stream frame, this leads 

to a transmission delay according to Equation (5-8): 

 

𝑇𝑇𝑟 = 242 𝐵𝑦𝑡𝑒
( 8

𝐵𝑖𝑡
𝐵𝑦𝑡𝑒) 10−9𝑠

𝐵𝑖𝑡
=  1.936 𝜇𝑠 

(5-24) 
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Therefore, to a Bridge Latency time according to Equation (5-7) of, 

𝑇𝐵𝐿 = 𝑇𝑆&𝐹 + 𝑇𝑇𝑟 = 0.800 𝜇𝑠 +  1.936 𝜇𝑠 ≈ 2.75 𝜇𝑠 (5-25) 

For SPQ without considerable ICI, the dead time required to shift one frame from 

the talker to the link with the maximum throughput is according to Equation 

(5-10): 

𝑇𝐷𝑇𝑃 𝑆𝑃𝑄 = 𝑛max𝜇(𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

 

= 24(0.8 𝜇𝑠 + 1.936 𝜇𝑠 + 1530 𝐵𝑦𝑡𝑒
(8

𝐵𝑖𝑡
𝐵𝑦𝑡𝑒) 10−9𝑠

𝐵𝑖𝑡
) 

+12 𝜇𝑠 

= 371.24 𝜇𝑠 

≈ 370 𝜇𝑠 

 

(5-26) 

The path delay with Preemption, where only 64 Byte instead of 1530 Byte are to 

be calculated for 𝑇𝑄, would result in 89,9 µs ≈ 90 µs path delay. These low path 

delay values for SPQ are a result of the assumption that no other interfering ICI 

enters the path that would raise 𝑇𝑄. If the worst case is assumed for this example, 

the rest of the maximum load enters the ring at a ring interconnection to a coupled 

ring in between, and this data is in front of the control data, one further 𝑇𝑄 𝐼𝐶𝐼 of: 

𝑇𝑄 𝐼𝐶𝐼 =  99 ×  1.936 𝜇𝑠 ≈ 200 𝜇𝑠 (5-27) 

would have to be added, resulting in a dead time of approximately 570 µs for SPQ 

with ICI. 

For EST with ICI, calculation of required gating window length is necessary. To shift 

the maximum data of 24200 Bytes through the network along the path, one 𝑇𝐵𝐿 

of 195 µs (as reception and forwarding of bytes from bridge to bridge occur nearly 

simultaneously) plus the complete LAN propagation delay of 𝑇𝐿𝑃𝐷 =  12 µs  is to 

be calculated. This results in a minimum gating window time 𝑇𝐺𝑊 of 207 µs. This 

time also represents the worst-case delay for the I-CD data if the talker transmits 

synchronised with the network gating windows. For unsynchronised talkers for NI-
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CD, one network cycle of worst-case waiting time must be added, which would 

then result in a delay of 1207 µs assuming a network cycle time of 1 ms. For EST 

without ICI the delay would be according to Equation (5-11): 

𝑇𝐷𝑇𝑃 𝐸𝑆𝑇 = 𝑛max𝜇(𝑇𝑆&𝐹 + 𝑇𝑇𝑟) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

= 25(0.8 𝜇𝑠 + 1.936 𝜇𝑠) + 12 𝜇𝑠
= 80.4 𝜇𝑠
≈ 80 𝜇𝑠

 

 

(5-28) 

For CQF, one network cycle time is required to transport the data over one hop. 

According to Equation (5-25), this needs to be at least 𝑇𝐵𝐿  ≈ 195 µs for all 100 

streams of this example, assuming that this data is the only traffic class to be 

transported within the network cycle. The LAN propagation delay must be added 

to reach the next hop. The overall delay from the controller to the link with the 

current maximum throughput µ𝑖𝑗 𝑚𝑎𝑥 is then according to Equation (5-12): 

𝑇𝐷𝑇𝑃 𝐶𝑄𝐹 = 𝑛max𝜇𝑇𝑁𝐶 + ∑𝑇𝐿𝑃𝐺 𝑖

𝑚

𝑖=1

= 25 × 195 𝜇𝑠 + 12 𝜇𝑠
= 4,887 𝜇𝑠
≈ 4,890 𝜇𝑠

 (5-29) 

As with SPQ, if the maximum ICI is considered, the dead time would have to be 

increased by a further 200 µs. 

For ATS, the same network cycle time as that of CQF is assumed to be the only CD 

traffic class to be transported. According to Equation (5-13), the worst-case path 

delay for the network path under simulation must be calculated as follows: 
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𝑇𝐷𝑇𝑃 𝐴𝑇𝑆 = 𝑛max𝜇(𝑇𝑆&𝐹 + 𝑇𝑇𝑟 + 𝑇𝑄 + 𝑇𝑁𝐶) + ∑ 𝑇𝐿𝑃𝐺 𝑖

𝑛max 𝜇

𝑖=1

 

= 25(0.8 𝜇𝑠 + 1.936 𝜇𝑠 + 1530 𝐵𝑦𝑡𝑒
(8

𝐵𝑖𝑡
𝐵𝑦𝑡𝑒) 10−9𝑠

𝐵𝑖𝑡

+ 195) + 12 𝜇𝑠 

= 5,141.4 𝜇𝑠 

≈ 5,140 𝜇𝑠 

(5-30) 

As with SPQ and CQF, if the maximum ICI is considered, the dead time would have 

to be increased by 200 µs. 

Bandwidth Reservation reconfiguration dead times are not considered in the 

simulations for two reasons. First, the dynamic changes of reservation have 

practically only relevance in networks, including slow applications; otherwise, 

their part of the dead time would be a multiple of the dead time caused by traffic 

shapers and schedulers. Second, it would only add dead time of the same amount 

for all the investigated shapers and schedulers thus distorting the view of the 

actual results. 

Table 5.4 summarises the path dead time results for the different traffic shapers 

for the simulated network. 
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Table 5.4: Path dead times for the different traffic shapers and schedulers 

Traffic shaper and traffic type 

Worst case 

Path dead 

time (µs) 

SPQ without ICI 370 

SPQ with Preemption and without ICI  90 

SPQ with maximum ICI 570 

EST without ICI 80 

EST with maximum ICI 280 

CQF without ICI 4,890 

CQF with maximum ICI 5,090 

ATS without ICI 5,140 

ATS with maximum ICI 5,340 

 

As outlined in Section 4.7 and 5.5, the influence of these dead times is only 

dominant in networks that are not informed by slow applications, forcing a 

multiple of these times as the integration time for the rolling mean calculation.  

To visualise the influence of the different dead times on LDC, a high-performance 

application with an application cycle of only 2 ms was simulated. The integration 

time for the rolling mean calculation of the actual value feedback was selected to 

be five times the application cycle of 2 ms, that is, m of Equation (4-7) is 5, which 

is equivalent to a time constant of approximately 6 ms for the PT1 time constant 

𝑇𝑀𝑒𝑎𝑛. The PID controller is optimised for minimum overshot rather than for fast 

setpoint approximation for the reasons mentioned in Subsection 5.4.3. The 

dynamic behaviour is analysed through the reference step response. As the 

control circuit contains dead times that imply non-rational elements in the 

transfer function, a stability analysis via poles and zeros of the closed-loop or 
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open-loop system is not at hand. Instead, the Nyquist criteria for the open loop 

delivers evidence as to the stability and robustness of the closed-loop flow control, 

that is if the magnitude of the transfer function of the open loop |𝐺0(𝑠)| =

|𝐺𝐶(𝑠)𝐺𝑃𝑙(𝑠) 𝐺𝑀(𝑠)𝐺𝐹(𝑠)| <  1 (compare to Equation (5-22)), at Im (𝐺0(𝑠)) = 0, 

the closed loop is stable. The factor for the gain at Im (𝐺0(𝑠)) = 0 to reach 

|𝐺0(𝑠)| = 1, that is, the gain margin, should not be smaller than 2 ≙ 6 dB for a 

robust control design stability reserve. The second stability criterion is the phase 

margin, which represents the angle of 𝐺0(𝑠) with the negative real axis at the 

point of intersection with the unitary circle |𝐺0(𝑠)| = 1. For a robust control 

design, the phase margin should be ≥ 45°. A Padé approximation of order 16 has 

been applied for the linearisation of the dead time elements. 

Figure 5.7 to Figure 5.9 show the simulation results for the step response and 

Nyquist diagrams for a representative selection of three networks and traffic 

situations featuring EST, SPQ and ATS. The simulation parameters are listed in 

Table 5.5.  

Table 5.5: Simulation parameters 

Traffic shaper and 

traffic type 

Worst 

case Path 

dead time 

(µs) 

Simulation 

time 

(ms) 

PID 

KP 

PID 

TI 

(ms) 

PID 

TD 

(ms) 

EST without ICI 80 20 0.75 7.7 0 

SPQ with maximum ICI 570 20 0.95 6.5 0 

ATS with maximum ICI 5340 100 0.38 22 0 

 

Strictly speaking, the use of ATS in combination with a fast application cycle of 2 

ms makes little sense from the application control point of view. This is because 

the data transport for the setpoint and the actual value would be longer than the 

overall available time to calculate an application control algorithm, including the 

data transport times. Nevertheless, this is investigated here for reasons of flow 

control behaviour analysis. 
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Figure 5.7: Step response and Nyquist diagram for EST 

Figure 5.7 shows the step response and Nyquist diagram for EST without ICI 

representing the least possible dead time (DT or 𝑇𝐷𝑇) solution of 80 µs for both 

path dead time and feedback dead time and thereby the network with the least 

dead time. According to Equation (5-23), with: 
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𝜏  = 
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑀𝑒𝑎𝑛
= 

2 ×  80 𝜇𝑠

2 ×  80 𝜇𝑠 + 6000 𝜇𝑠
= 0.03 

 

(5-31) 

the control circuit is clearly lag dominant. The control circuit features a fast settling 

time of 𝑇𝑆 = 2 𝑚𝑠, a gain margin of 
1

0,05
= 20 ≙  26 𝑑𝐵, and a phase margin of 

about 88°, thereby representing a fast and robust control design. 

Figure 5.8 shows the step response and Nyquist diagram for the SPQ with 

maximum ICI. It represents a control circuit with a medium dead time of 680 µs 

for both the path dead time and feedback dead time. According to Equation 

(5-23), with 

𝜏  = 
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑀𝑒𝑎𝑛
= 

2 ×  570 𝜇𝑠

2 ×  570 𝜇𝑠 + 6000 𝜇𝑠
= 0.1 , 

 

(5-32) 

the control circuit is still a lag dominant network. It features a quite fast settling 

time of 𝑇𝑆 = 10 𝑚𝑠, a gain margin of 
1

0,2
= 5 ≙  14 𝑑𝐵, and a phase margin of 

about 75°, representing still a rather fast and robust control design. 
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Figure 5.8: Step response and Nyquist diagram for SPQ with ICI  
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Figure 5.9: Step response and Nyquist diagram for ATS with maximum ICI  

Figure 5.9 shows the step response and Nyquist diagram for ATS with maximum 

ICI representing the traffic shaper and traffic type with the worst dead time of 

5340 µs for path dead time and feedback dead time. According to Equation (5-23), 

with 
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τ  = 
𝑇𝐷𝑇

𝑇𝐷𝑇 + 𝑇𝑀𝑒𝑎𝑛
= 

2 ×  5340 𝜇𝑠

2 ×  5340 𝜇𝑠 + 6000 𝜇𝑠
= 0.64 , 

 

(5-33) 

the control circuit is at the border of being dead time dominant. The settling time 

has worsened to 70 ms, the gain margin to  
1

0,4
= 2,5 ≙  8 𝑑𝐵, and the phase 

margin to 68°, representing a control design at the border of robustness.  

Figure 5.7 to Figure 5.9 clearly show the influence of the path dead time and 

feedback dead time. With increasing dead time, the necessary control loops 

settling time 𝑡𝑆 grows approximately proportional. At the same time, the 

intersection of the Nyquist diagrams with the negative real axis shifts with 

increasing dead times towards -1, which is the critical point for stability. This results 

in lower gain margins and lower phase margins and thereby less robust flow control 

circuits. Table 5.6 summarises the results. 

Table 5.6: Simulation results for shaper/scheduler examples for a fast 2 ms 

application cycle dominated network. 

Traffic shaper and 

traffic type 

worst 

case path 

dead time 

𝑻𝑫𝑻 (µs) 

settl.  

time 

𝒕𝑺 

(ms) 

gain 

margin 

𝒈𝑴 

(dB) 

phase 

margin 

𝝋𝑴  

(°) 

ctrl 

robust- 

ness 

EST without ICI 80 2 26 88 high 

SPQ with maximum ICI 570 10 14 75 medium 

ATS with maximum ICI 5340 70 8 68 low 

 

Because the dead time is either calculated or measured over an appropriate time 

span, the actual dead time can differ. The possible uncertainty in the dead time 

calculation or dead time measurement makes a tuned flow control circuit at least 

imprecise or even unstable. To illustrate the effect of a dead time deviation, Figure 

5.10 (a) shows an example of the step response for the SPQ with 50 percent ICI.  
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A dead time of 470 µs was assumed for both path delay and feedback delay. The 

PID controller was optimised for DT = 470 µs dead time. In this case, the maximum 

deviation is represented by either no ICI or maximum ICI, leading to either DT = 

370 µs dead time or DT = 570 µs dead time, respectively.  

Figure 5.10 (a) shows that the effect of the error is only a slightly mistuned control 

circuit. In this case, it provokes a rather acceptable slower settling time of 𝑡𝑆 =

10 𝑚𝑠 for both 370 µs and 470 µs dead times compared to 8 ms for the 570 µs 

tuned control circuit. Figure 5.10 (b) shows the result when the same test case 

was applied to a tuned control circuit featuring the ATS. An average medium dead 

time of DT = 2,710 µs, a possible deviating minimum dead time of DT = 80 µs and 

a maximum dead time of DT = 5,340 µs were assumed. The considerably deviating 

dead times provoked substantial deviations in settling time of 𝑡𝑆 = 70 𝑚𝑠 for 

𝑇𝐷𝑇 = 80 𝜇𝑠, and 𝑇𝑆 = 95 𝑚𝑠 for 𝑇𝐷𝑇 = 5,340 𝜇𝑠, compared to the tuned settling 

time of 𝑡𝑆 = 15 𝑚𝑠. In addition, the higher actual dead time produces a 

considerable overshot of 40 %. 

Summarising the influence of ICI, it can be stated, as Figure 5.10 (a) shows, that 

ICI has very low influence on the control quality of SPQ. The small dead time 

deviation tolerance band of only +/- 20% has hardly any noticeable control 

performance consequences for the sample network. The tolerances for EST and 

CQF, summarised in Table 5.4, were also uncritical. However, ATS, as illustrated in 

Figure 5.10 (b), has a high uncertainty of nearly 90 per cent in this case. This is 

caused by the asynchronous gating times between the bridges, which results in 

poor settling times and a high overshot for the flow control circuit. 
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Figure 5.10: Dynamic performance deviation depending on dead time 

uncertainties 

5.7 Chapter Summary 

Different TSN traffic shapers introduce different dead times into the flow control 

circuit. It is shown that EST, SPQ with Preemption, and SPQ without Preemption 

are clearly the best selections from the flow control point of view because of their 

lower absolute dead times. CQF and ATS delay times increase stronger with 
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increasing amount of admissible data traffic and number of hops compared to EST 

and SPQ. Therefore, CQF and ATS could also be worthwhile selections within 

either smaller networks, lower loaded networks, or both. A further result is that 

the overall possible traffic load of the relevant traffic classes, that is, the ICI, on 

the path has an influence on the gating window size for EST, CQF and ATS and 

thereby on the resulting dead times. A higher possible ICI demands longer gating 

windows and means higher resulting dead times. For SPQ, ICI cannot be overtaken 

by Preemption and is therefore also a source of additional dead time for SPQ with 

Preemption. 

The slowest application cycle within a traffic class assigns the minimum 

integration time of the rolling mean calculation of the throughput feedback and 

thereby the achievable dynamic performance of the flow control circuit. For very 

fast applications of a 2 ms application cycle time or faster, only EST and SPQ are 

recommended traffic shapers in combination with load control for extensive 

automation rings. The use of the slower traffic shapers CQF and ATS makes sense 

if the network domain contains slow applications of at least “slowest application 

time > two times longest path dead time” to avoid dead time dominant control 

circuits with a need for elaborate and CPU time-consuming controllers. If ATS is to 

be used in connection with flow control, the control circuits should be optimised 

by assuming maximum dead times to avoid overshot during operation with dead 

time variations in the direction of lower values.  

A further outcome of the analysis is, that the ETS, in addition to its low absolute 

dead time and low dead time uncertainty, offers the unique possibility of 

separating data transport for fast applications from slower ones. This can be 

realised by implementing independent and dedicated gating windows for groups 

of applications. Therefore, tailored and decoupled flow control circuits can be 

implemented for different application groups, that is, fast dynamic load 

distribution control for fast applications, and slow load distribution control for 

slow applications.  

A further problem addressed in this chapter is how to derive the actual plant 

properties to be in the position to determine the appropriate control parameters. 
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Three alternative methods were proposed. First, the identification during the 

design phase derives control parameters from the knowledge of all bridges and 

bridged end station delays and all path delays. Hints for possible path estimation 

possibilities are provided in combination with certain traffic shapers and 

schedulers.  A second possibility is the use of test messages to empirically obtain 

the parameters at runtime. This method is especially at hand within timely 

unsynchronised networks. For synchronized networks, the third possibility, to 

derive the values from the time synchronization protocols is the most effective 

way. 

As a next step, in the following chapter, the optimal distribution control in ring 

topologies for a variety of listeners depending on the location within the ring is 

proposed and validated. A further challenging task is to find a proper method for 

the collaboration of several controllers that apply LDC at the same ring, thereby 

influencing each other. This is addressed in Chapter 7     . 
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Chapter 6      A New Control Method for Load Distribution 

Optimisation in TSN MAN 

6.1 Introduction 

After the requirements for the task of load distribution control of TSN automation 

networks in their various forms have been clarified in Chapter 4      and Chapter 5     

, the corresponding network requirements, core control mechanisms, and 

optimisations can now be defined.  

For this goal, it would be illusory to believe in finding a completely new superior 

core control method in addition to the already established methods for 

approximately three decades, as described in the literature review. More 

obviously, it will effectively mean that the best core control mechanism suitable 

for MANs is to be selected and is then further optimised and extended for the 

application in MANs.  

According to the literature review, a variety of load distribution or load balancing 

methods are available for networks such as ISP networks, campus networks, and 

the access networks of mobile networks. To analyse their applicability and their 

possible further expandability for automation networks, it is advantageous to 

assess them based on their different solutions for the control elements as 

introduced with Figure 2.3 in Subsection 2.3.2: 

1. The controller type, 

2. The load measurement or load calculation method, 

3. The control goal, 

4. The controller output intervention, 

5. The controlled traffic type which influences the control variable. 

6. The traffic cycle time selection (if any). 

Each of these control elements should be decided upon and possibly optimised 

for the individual requirements of manufacturing automation networks.  
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6.2 Determination of Advantageous Network Preconditions 

As shown in Chapter 4, there are various decisions to be made when designing an 

automation network in general, particularly if this should support dynamic load 

distribution.  

First, it must be decided whether to use a central or distributed control concept 

because this decision already limits the available controllers. Although the central 

solution is best suited for reaching the optimum traffic distribution results, the 

distributed solution is selected here. This is because it is better suited for dynamic 

load changes, as outlined in Section 4.2, which is especially important in MANs 

that can experience network extensions by new machines or automation cells.  

Regarding network topology, the ring topology is the prevalent topology in 

redundant MANs and is also the basic topology here. 

As the distributed load distribution control concept is chosen, the load controllers 

shall be located on the ACs. As outlined in Section 4.4, the other possibility for the 

distributed control solution is that the load distribution control would be located 

on a bridge. However, this is rather an atypical task for a bridge and is therefore 

not considered here.  

This chapter focusses on data distribution and data flow control for a single AC. 

Load distribution control in the case of multiple ACs is discussed in Chapter 7     . 

The selection of the distributed LDC concept also has an influence on the core 

controller type selection, as not all types are suited well for the distributed control 

approach. This will be discussed in the following section. 

6.3 Discussion and Selection of the Basic Controller Types 

6.3.1 Introduction 

As outlined in Section 1.2, different controller types have been applied in 

communication networks for both the overlaid load distribution control and 

subsequent flow control so far.  
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All the applied control types have particularities providing advantages and 

disadvantages in different types of networks. They can be applied as alternative 

methods to each other for certain applications within certain limits. To select an 

appropriate core controller type, the specifics of each controller type have to be 

analysed from the viewpoint of TSN MAN.  

As Chapter 5      has already shown, with the strong variation of dead times, data 

traffic, and applications, one single best qualified controller core type cannot be 

expected for all variants of the TSN.  

6.3.2 Discussion of the Relevant Controller Type Properties 

A linear controller is the traditional option for regulating linear systems. This is 

the case for MAN, as they are analysed in this thesis, as outlined in Subsection 

2.3.2. This is especially true for flow control to control the increase or decrease of 

the load of a path. However, depending on the relation between the delay that 

the data traffic experiences over the path and the necessary rolling mean 

integration time, the application of a predictor-based linear controller such as the 

Smith Predictor Controller or the Model Predictive Controller can be necessary. 

This is the case when the delay component is large compared with the integration 

time delay, as shown in Chapter 5     . 

Stochastic network control is typically applied where incoming traffic arrival 

events are not known in advance, that is, they are stochastically distributed. 

However, a typical characteristic of automation network data traffic is that the 

data traffic volume and occurrence is usually well known, as it is planned to a 

certain extent. This is especially true for CD. Also, with CD, as outlined in 

Subsection 2.2.3, the process data are always sent at the beginning of an 

application communication cycle in the shape of a burst. Therefore, stochastic 

network load control is not the first selection for automation network control 

data. Its application would make more sense for data traffic created by 

applications sending data at irregular intervals or at intervals that are difficult to 

predict.  
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Predictor-based controller types, such as the Smith Predictor or the Model 

Predictive Controller are especially suited for coping with longer dead times within 

the data path or the feedback path (Normey-Rico & Camacho, 2007). As shown in 

Chapter 5     , this can be the case with higher-delay TSN traffic shapers such as 

ATS or CQF shapers in combination with fast application cycle times for CD traffic. 

However, in this thesis, the advantages of EST regarding its capability to decouple 

the data traffic of dedicated traffic classes are required. This ability will be used in 

a later stage of this thesis to decouple the data traffic from different automation 

controllers. As the EST traffic shaper has the characteristic of a comparably low 

latency time, as shown in Chapter 5     , and thereby a low dead time, there is no 

need to apply predictor-based controller types as a basis for optimised control 

within this thesis. This is also true for SPQ with a similar low latency time, which 

will also be applied in this respect. 

The fuzzy control is especially advantageous when the system to be controlled is 

either rather complex, its behaviour is difficult to describe mathematically, or both 

(Pompili & Priscoli, 2008; Wang & Hung, 2012), as outlined in Subsection 2.3.3. 

This is particularly true when the system contains non-linearities.  As the control 

plant, that is, the network paths and feedbacks of the automation communication 

network addressed in this thesis, are both linear and of limited complexity, the 

application of fuzzy control is not a need, but can be an alternative.  

With neural network control a neural network (Hagan et al., 2002) is used either 

as a function approximator or as a neural controller, as introduced in Subsection 

2.3.3. As outlined in Subsection 2.4.3, the neural network model within the neural 

controller predicts the plant response over a specified time horizon. The 

application of Neural Network Model Predictive Control is advantageous with 

non-linear and/or complex plant properties that are difficult to describe 

mathematically, which is not the case here. Automation networks behaviour is 

mathematically describable with limited effort owing to the linearisation of 

discrete data packets via rolling mean formation. But as is already the case with 

the fuzzy control method, for the networks investigated in this thesis, Neural 
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Network Model Predictive Control can be an alternative control method to the 

linear control method.  

AI/ML controller selection is a further alternative for controlling complex systems 

or systems that are difficult to describe mathematically. As already shown with 

the assertion of the other traffic shapers and schedulers in this section, this is 

certainly not the case for the data flow controller selection. However, it could be 

a good selection for the optimisation task of distribution control to determine the 

most favourable overall load distribution. The learning phases of MLC can have a 

negative impact on the automation process though. Furthermore, it needs a high 

implementation and computation resources effort. For the single AC at a ring use 

case, it is from current point of view rather unlikely that the effort for an AI/ML 

control is worthwhile. Multiple AC in the ring with mutual interference are more 

likely to gain advantages with AI/ML. This case will be discussed in more detail in 

the next sub-sections and in Chapter 7     . 

The ant colony optimisation control (ACOC) is especially suited for a 

distributed control approach, which is also considered for the optimised 

control concept in this work. The distributed approach is inherent in ACOC, 

as the agent packets need to be sent and received by the end stations 

making use of the control. According to Subsection 2.3.3 its advantages are 

scalability, distribution of the computational load, ruggedness to network 

errors, and its suitability for multiply meshed networks. The disadvantage, 

however, is the inclusion of the control layer in every routing decision and 

thus the exclusion of the TSN traffic shapers and schedulers. Other 

disadvantages are a possible temporal overuse of paths and the necessary 

high agent frequency to achieve high dynamics. Despite these 

disadvantages, the ACOC can, in principle, be used as a possible distribution 

controller method. However, it is not suitable as a solution for a subsequent 

flow controller which increases or decreases load on a single path. 
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6.3.3 Controller Type Selection Criteria for MAN 

Considering the properties of TSN automation networks as derived in Section 4.6 

and the controller type properties from the previous subsection, a few boundary 

conditions and consequences must be defined: 

1. Load control is possible for BE and CD data traffic types. It is most 

advantageously applied to CD which is the focus of this study. CD is typically 

sent in a constant succession of data bursts. Measuring the throughput over a 

succession of burst cycles as a rolling mean value results in a linear throughput 

measurement. Therefore, LDC represents a linear control. 

2. Lag dominant networks are assumed, that is, the dead time elements 

introduced by the path traffic shapers or schedulers are low compared to the 

time constants of the PT1 elements caused by the rolling mean calculation. The 

reason is that the SPQ and EST traffic shaper shall be used because of their low 

delay time and the EST traffic decoupling possibilities.  

3. For distribution control, it is important to determine whether the control 

should be distributed and autonomous on one or more AC or whether it is to 

be located in a central instance for several automation controllers. This thesis 

focuses on the distributed approach for its dynamic advantages as outlined in 

Section 4.2. In the first place a single AC is considered. In Chapter 7     , the 

distribution control method is extended to several ACs in the automation ring.     

The goal of this thesis is not to find the ideal type of basic controller core by an 

extensive comparison of all possible controller properties. This approach could 

easily fail because of the great variety of automation networks regarding 

automation application cycle time distribution, traffic types, and traffic scheduler 

and traffic shaper types. The goal is rather to select a well-suited core controller 

type that covers the most important and typical automation applications, and to 

extend the control principle to suit the LDC task in these environments. As will be 

visible further down, some core controller type could, in principle, also be 

exchanged with other controller types. For example, if a different traffic shaper 

concept would be selected for the data plane of the network this could introduce 
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a higher bridge delay and, thereby, a higher dead time. Then, it could be necessary 

to replace, for example, a selected classical PID controller basic control core by a 

Predictive Controller type such as the Smith Predictor Controller or the Model 

Predictive Controller. 

6.3.4 Flow Controller Selection 

First, the type of flow controller must be assigned.  

An important question in the selection of both the flow controller and the 

distribution controller is whether abrupt changes in load on a path will cause the 

output to exhibit non-linear behaviour. This requires a closer inspection of the 

communication data as input and output variable. 

The actual network consists of a pure dead time control element, as shown in 

Section 4.6. This dead time is caused by the LAN propagation delays and bridge 

latencies. The bridge latencies again depend on the applied traffic shaper or traffic 

scheduler of the data plane as discussed in Chapter 4     . So, a data bit, data byte, 

or data packet are just “shifted” through the network without any deformation. 

The peculiarity of data communication paths as controlled systems is that the 

input and output variables, that is, the data per time value, are non-linear when 

measured over a sufficiently small time span. This results from the fact that 

basically the data bits are transported serially over the path1. If the measuring 

interval would be reduced to a bit time, the input variable would actually jump 

nonlinearly between full and zero use. If the measuring interval is extended to a 

byte length, full bandwidth use is measured at sending times, but zero bandwidth 

use in the sending gaps. The same applies if the measuring interval is extended to 

frame length. If the sending characteristic is burst, as with automation 

applications CD as outlined in Section 4.7, all measuring intervals smaller than the 

 

1 Strictly speaking also modern serial transport mediums such as Ethernet cables have a certain 

extend of parallel transport as they contain several twisted pair strands.  
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burst repetition cycle times would deliver oscillating throughput measurement 

values, which also becomes clear from Figure 4.8.     

From these considerations, it is obvious that a network transporting data 

measured per time over a sufficiently long time interval must be handled as a 

linear system, although a pure dead time element would have to be handled as a 

non-linear system. Therefore, for the flow control of CD, there is no need for 

dedicated controllers to cope with non-linearity or randomness of input data, such 

as stochastic control, fuzzy control, neural network control, or machine learning 

control. 

Moreover, a dead time in the system to be controlled can be compensated by 

sufficient delay times in the control loop, as shown by Normey-Rico and Camacho 

(2007), and discussed and confirmed in Chapter 5     . In this case, such a network 

can most easily be controlled by means of a traditional linear controller in the 

shape of a PID controller.  

Therefore, the second question is whether the network is lag dominant, that is, 

the delay times in the network path are low compared to the time constants in 

the feedback path, as analysed in Chapter 5     . This can be assumed with the use 

of the EST traffic shaper and SPQ being the focus of this thesis in combination with 

fast application cycles down to 1 ms, as outlined in Chapter 5      and the previous 

subsection. Therefore, no prediction-based controller types are necessary. 

For these reasons, the classical PID controller is selected as the basic flow 

controller type. 

6.3.5 Distribution Controller Selection 

To be in the position to select the distribution controller type, the controller 

location must be firstly decided. Shall the control be located centrally on a CNC 

instance, or should it be located de-centrally on the automation controller? In the 

latter case it is furthermore important whether the control is independent of and 

unaffected by other distribution controllers of other ACs. In the previous 

subsection these questions were answered with a focus on the distributed control. 
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In the first step, this is located on a single AC without considering the possible 

influences of other distribution controllers.  

A further prerequisite for the selection is that the actual load distribution 

optimisation method needs to be selected. As shown in Section 4.6, there are 

primarily two possible goals for the optimisation of the network load distribution 

in the foreground: 

1. One conceivable optimisation goal is the maximum-reduction which means 

the minimisation of the maximum local load µij until the maxima on both paths 

are equal or nearly equal within a predefined tolerance band.  

2. An alternative goal would be the optimum-distribution to achieve a 

distribution that is as even as possible on all paths.  

Note that a path selection for the minimum delay time from talker to listener 

would also be a worthwhile optimisation goal but is not a load distribution 

optimisation goal and is out of focus here.  

To achieve the maximum-reduction goal for a single distribution control on one 

AC, the following tasks must be implemented: 

1. The relevant data traffic bandwidth consumption must be measured over a 

suitable time span at each ring port in the network domain. For this purpose, 

the measured values of the subsequent flow control circuit can be reused. 

2. The distribution control preprocessing of the distribution control assembly 

compares the maximum values of each path and feeds half of the difference 

to the distribution controller as a reference and from there, into the flow 

controller.  

3. The flow control output is fed into the packet controller, which feeds both 

paths. For the direction with the current maximum, it will be fed negatively, 

and for the other path it will be fed positively. 

4. The reference provision for the flow control can either be applied as a simple 

P-control that provides half of the maximum difference or can be further 

smoothed and possibly accelerated by applying additional integration and 

derivative control elements resulting in a PID-type distribution controller.  
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The optimum-distribution goal in combination with the distributed control 

concept requires a different approach: 

1. Combined with the selected distributed control concept, it is difficult to 

achieve an overall optimum distribution. This is because a single controller 

requires special additional coordination mechanisms with all other distributed 

controllers. These additional coordination mechanisms are expected to be 

difficult to achieve, particularly with regard to the avoidance of load 

oscillations. 

2. Therefore, for the distributed approach, a compromise towards an optimum 

distribution is selected that can work without high-effort ACs coordination. 

This is further elaborated on in Chapter 7     . 

3. From application engineering, an AC has information about each of its own 

originating streams of a certain traffic class regarding the frame size, 

application cycle, registered listeners, and their distance from the AC in each 

direction of the ring. Thereby, it can calculate the bandwidth use contribution 

of each stream for each ring port of the ring network domain. 

4. Each AC strives for optimum distribution of its own traffic in the ring. Thus, it 

can be assumed that the sum of the traffic of all ACs is also homogeneous to a 

certain extent.  

5. Smaller end stations, from a traffic generation point of view, or end devices 

different from ACs, will not support their own distribution control for their 

transmitted traffic. Integrating these into dynamic traffic distribution control 

would typically only make sense by applying central traffic distribution control. 

Nevertheless, their traffic would be measured, recorded, and published at the 

ring ports in the same way as interfering exogenous and unknown traffic and 

can thus also be considered in the distribution control for optimum 

distribution. For integration into the distributed control, the end stations that 

are addressed by the AC will use the reception of CD as a trigger to start their 

sending process towards this AC. It is important for end stations without an 

own load distribution controller, that they do not change the initially selected 

paths for their CD towards ACs; otherwise, the measurement conditions would 
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constantly change for the AC. The initially selected paths chosen by the end 

stations can be selected using criteria such as the minimum accumulated delay 

calculated during the reservation process by the MSRP or RAP protocols. 

Another possibility is a pre-engineered path selected by the network design at 

the configuration time. If traffic is allowed to select a different path, the AC can 

provoke this by sending appropriate managing configuration to this talker. See 

Subsection 7.4.3 for further details. 

6. A challenge is the use case of multiple ACs in or at the ring as it must be agreed 

upon among those via an additional algorithm in which the AC compensates 

for the data traffic of unknown ACs and small end devices. See Subsection 7.4.2 

for a solution proposal as to this. 

7. For a single AC, the distribution control task is to constantly calculate the 

optimal traffic distribution by applying a dedicated algorithm that computes 

the following steps: 

a. Calculate the traffic distribution for each ring link for each possible 

combination of path utilisation of the single streams under 

consideration of the measured non-controlled streams of unknown 

talkers from unknown ACs or from smaller end devices. 

b. Calculate the least squares deviation of the mean traffic bandwidth use 

for each possible stream-path use combination. 

c. Select the optimal stream distribution or the first stream distribution 

that is within the acceptance tolerance band. 

Comparing the two distribution control concepts for maximum reduction and for 

optimum distribution, it is obvious that the optimum-distribution concept 

requires much more effort for the single AC than the PID controller for the 

maximum-reduction optimisation goal. Furthermore, the maximum-reduction 

goal is of higher importance because it can provide an immediate reaction to a 

possible loss of data in the case of local bandwidth maxima when it is near the 

maximum bandwidth. Therefore, the maximum-reduction goal within the 

influence area of a single controller is regarded as a better optimisation goal. This 

is especially true in combination with the EST traffic shaper, which allows the 
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traffic of a single AC to be decoupled by assigning dedicated EST windows to each 

AC. Thus, each AC sends and controls its traffic at dedicated point in times, 

avoiding interference with other ACs.     

Consequently, the most advantageous distribution controller type basis for the 

controller optimisation to build upon is the linear PID controller in combination 

with the maximum-reduction optimisation goal.  

As will be shown in Chapter 7      and in more detail in Subsection 7.4.2, it will also 

be possible to apply the maximum-reduction method to multiple mutually 

dependent ACs in order to iteratively get closer to the optimum-distribution goal. 

6.3.6 Discussions and Evaluations 

To date, various controller types have been applied in general communication 

networks for both overlaid load distribution control and subsequent flow control. 

These are mainly linear control, stochastic control, predictive control, ant colony 

optimisation control, neural network control, machine learning control, fuzzy 

control, and dedicated control algorithms. All methods rely on the measurement 

of the data throughput per time, which means counting data arrival events over a 

suitable time span. The result is always an average or mean calculation of the 

packets or data frames per time. It is a measurement of a continuous value over 

the complete input and output range, and thus the network can be handled as a 

continuous and linear system. Therefore, there is no need to apply elaborate 

control methods for nonlinear systems such as fuzzy, neural or machine learning 

control. Since the applications CD is also sent at regular and known intervals, no 

stochastic control is required. Furthermore, the small dead times involved in 

connection with the EST traffic scheduler, which is the focus of this thesis because 

of its traffic decoupling capabilities, eliminate the utilisation of predictive 

controllers. This is also true in connection with the SPQ, which serves as an 

alternative solution in this study. These preconditions lead to the following 

decision overview, as listed in Table 6.1. 
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Table 6.1: Possible Distribution Load Control methods. 

Control method Application area Possibility for flow 
controller for 
automation CD 

Possibility for 
distribution 
controller for 
automation CD for 
single AC 

Possibility for 
distribution 
controller for 
automation CD for 
multiple AC 

Linear (PID) 

 

Lag dominant 
linear systems 

 

yes yes Yes, for distributed 
controller. Not for 
central solution 

Linear Smith 
Predictor or 
Linear Model 
Predictive  

 

Dead time 
dominant linear 
systems 

 

Yes, in connection 
with slow traffic 
shapers/schedulers 
and fast application 
cycles 

Yes, in principle, but 
not recommendable 
as linear PID is better 
suited for path 
difference calculation 
with small dead 
times only 

Yes, for distributed 
controller. Not for 
central solution 

Stochastic 

 

Unpredictable 
traffic patterns, 
stochastically 
distributed 

Yes, in principle, 
but not 
recommendable as 
linear is better 
suited for being 
faster 

Yes, in principle, but 
not recommendable 
as linear is better 
suited for being 
faster 

Yes, in principle, but 
not 
recommendable as 
linear is better 
suited for being 
faster 

Neural Network Non-linear and/or 
complex systems 

Yes, in principle, 
but not 
recommendable as 
linear is better 
suited for network 
path is linear and 
non-complex 

Yes, in principle, but 
not recommendable 
as the network 
model needs 
constant adaptations 
depending on the 
single links load 
changes. 

Yes, in principle, but 
not 
recommendable as 
the network model 
needs constant 
changes depending 
on the single links 
load changes. 

Machine Learning Non-linear and/or 
complex systems 

Yes, in principle, 
but not 
recommendable as 
linear is better 
suited 

Yes, in principle, but 
not recommendable 
as the trained 
network model 
needs constant 
adaptations 
depending on the 
single links load 
changes. 

Yes, in principle, but 
not 
recommendable as 
the trained network 
model needs 
constant 
adaptations 
depending on the 
single links load 
changes. 

Dedicated 
Algorithm 

Unpredictable 
traffic patterns, 
stochastically 
distributed 

Yes, in principle, 
but not 
recommendable as 
linear is less effort 

Yes, in principle, but 
not recommendable 
as linear is less effort. 

Yes. One of the few 
feasible solutions to 
find an optimised 
distribution of 
traffic 

Fuzzy Unpredictable 
traffic patterns, 
stochastically 
distributed 

Yes, in principle, 
but not 
recommendable as 
linear is less effort 

Yes, in principle, but 
not recommendable 
as linear is less effort 

Yes. One of the few 
feasible solutions to 
find an optimised 
distribution of 
traffic 

Ant colony 
optimsation 

Multiply meshed 
networks such as 
complex 
networks, mobile 

No, as it is only 
deciding which 
path to use. No 
flow control 

Yes, in principle, but 
not recommendable 
as linear is less effort. 

Yes. But with 
inherent tendency 
to overload the 
found best path. 
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Control method Application area Possibility for flow 
controller for 
automation CD 

Possibility for 
distribution 
controller for 
automation CD for 
single AC 

Possibility for 
distribution 
controller for 
automation CD for 
multiple AC 

networks, data 
centers 

possible. 

 

These evaluations recommend linear traditional PID control as the basic core 

controller for both distribution control and subsequent flow control for 

automation CD. The distribution and flow controllers are set up in a classical 

controller-cascade, with the distribution controller feeding the flow controller. 

This basis serves as the starting point for optimisation to achieve the goals of this 

thesis. 

6.4 Analysis of Drawbacks of Current Basic Distribution Control 

Possibilities 

The classical approach with load balancing examples from the literature review 

for measuring the load on a path is that all traffic is handled equally. Its load 

influence is measured together, regardless of the type of traffic, its send intervals, 

and its importance. Applying this method also to MANs would have the following 

disadvantages: 

1. All traffic is assumed to have the same deterministic requirements. 

Unimportant traffic, which would have no problems with some delays, is given 

the same importance as CD of highly deterministic requirements.  

2. There is no differentiation between sporadic and cyclic traffic. This is an 

obstacle to finding a possible load measurement integration interval without 

oscillations, as outlined in Sections 4.6 and 4.7. 

3. There is no differentiation between frame repetition intervals in the case of 

cyclic traffic. This hampers the selection of the optimum load measurement 

integration interval. Automation CD is usually sent in the form of a burst at the 

start of an automation application cycle. It creates an inhomogeneous traffic 

pattern when viewed over a period smaller than the application cycle. If a 
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common throughput measurement is applied that does not differentiate 

between different application cycles, the rolling mean measurement interval 

must be adapted to a value at least equal to the slowest application cycle 

within the relevant network domain. Otherwise, the measurement provided 

oscillating load distribution results. Similarly, sporadic non-CD traffic would 

spoil the selection of a measurement integration interval if controlled together 

with CD. A further consequence of this fact is, that in dynamic network setups, 

where automation controllers, devices, or I/O extensions can be added or 

removed during operation, a constant adaptation of all automation controllers 

load control parameters to the slowest application cycle is necessary. This is 

particularly bad in an environment where new automation processes might be 

added or removed on the fly during runtime, which is a common requirement 

for most automation networks. Removing ACs with slow applications or 

disabling slow applications, has in the first place, not the important 

consequences of adding slow applications. The quality of load distribution 

control does not deteriorate. However, the control could be more dynamic 

towards an optimal control if the control parameters are adjusted after 

removal. The consequences of slight control dynamics deteriorations owing to 

the influence of the presence of slow applications might not be as far-reaching 

when the timely difference between fast and slow applications is small. 

However, with higher ranges of application cycle times, the disadvantages for 

the fast applications increase. This becomes clear immediately when 

considering fast motion control circuits with cycle times as low as a few 

microseconds. Their LDC dynamics can be tremendously slowed because of the 

presence of one temperature control with an application communication cycle 

of, for example, a few hundred milliseconds. 
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6.5 Proposal of a Control Method for Optimising Load 

Distribution for TSN MANs 

As discussed in Section 6.3, for this research within MAN, a classical linear PID 

controller is selected as the core mechanism for both the basic distribution 

controller and subsequent flow controller. Both controllers, together with the 

feedback calculation and packet controller, represent the distribution-control 

assembly. 

The current solution possibilities for load distribution control, as outlined in the 

literature review, are not prepared for application in MAN. As outlined in the 

previous section, they do not take the circumstance into account that application 

control data is sent in different application cycles. The optimised control method 

should be dedicated to the important traffic in the MAN, which are the CD 

streams. Therefore, the first step is to exclude non-CD traffic which is of secondary 

importance and can be controlled separately in a separate gating window. To 

overcome the drawbacks of a straightforward overall load distribution control as 

outlined in Section 6.4, the distribution control assembly is further supplemented 

and extended specifically for TSN MAN CD by the following features: 

1. The first and most important is that, instead of a common load distribution control, 

a series of distribution controllers process dedicated application classes. The 

application classes are categorised based on their application cycle times. Their 

throughputs are measured individually per application cycle or application cycle 

group and are individually fed back to their dedicated distribution controllers. 

𝜇𝑖𝑗,𝐶𝐷,𝐴𝑝𝑝 𝛼 = ∑ 𝜇𝑖𝑗,𝐶𝐷 (𝑠 
𝑞𝛼) 

𝑞∈𝑻𝒂
 

 ; 𝑻𝒂 ⊆ ℕ ;  α ∈  ℕ  (6-1) 
 

 

The maximum-reduction optimsation goal is then changing from the form in 

Equation (4-3) to: 

minmax
𝑖,𝑗∈𝑽

𝜇𝑖𝑗,𝐴𝑝𝑝𝛼  ; Subject to: ∀ 𝑒 ∈ 𝑬(𝐺), 𝛼 ∈ 𝑨 (6-2) 

In Table 4.4, the pseudo code parts: 
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For application cycle α <= SUMAPPSIND 
{ 
    For direction j <= 2 
       { 

        For node i <= maximum number of nodes  
             { 
                If (m_thp_array [α] [j] [i] > max) 
                {     
                 max = m_thp_array [α ] [j] [i]; 
     } 
             } 
           Store max at index number of nodes NNODES: 
           m_thp_array [α] [j] [NNODES]= max; 
           max = 0; 
        }, 

and: 

For application cycle α <= SUMAPPSIND 
{ 
    For direction j <= 2 
       { 

        For node i <= maximum number of nodes  
             { 
                If (m_thp_array [α] [j] [i] > max) 
                {     
                 max = m_thp_array [α] [j] [i]; 
     } 
             } 
           Store max at index number of nodes NNODES: 
           m_thp_array [α] [j] [NNODES]= max; 
           max = 0; 
        } 

determine the application-cycle-specific load maximum for each ring direction and 

store it at the array index NNODES for later application-cycle-specific distribution 

control. The optimum-distribution optimsation goal changes in the same way from 

the form in Equations (4-5) and (4-6) to:  

min∑ (𝜇𝑖𝑗,𝐴𝑝𝑝𝛼 − 𝜇𝑀,𝐴𝑝𝑝𝛼)2𝑛
𝑖,𝑗=1

𝑖,𝑗∈𝑽

 ; Subject to: ∀ 𝑒 ∈ 𝑬(𝐺), 𝛼 ∈ 𝑨 (6-3) 

𝜇𝑀,𝐴𝑝𝑝𝛼 = 
∑ 𝜇𝑖𝑗,𝐴𝑝𝑝𝛼

 𝑛
𝑖,𝑗=1

2𝑛
 ;   𝑛 ∈ ℕ  (6-4) 

 

2. The distribution control assembly sets up a delay list sorted by ring direction and 

ring node number. This is necessary to feed the actual distribution and flow 

controller with the optimum PID control parameter for optimum control 
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performance, depending on the location of the current load maximum. The delay 

values can be obtained by applying the different plant characteristic identification 

mechanisms proposed in Section 5.4.  

3. Slower application cycle traffic can be intentionally excluded from distribution 

control because of its low overall balancing contribution. The consumption of 

bandwidth, or in other words, the caused throughput on a network link, depends 

on the packet length and application cycle. The shorter the application cycle 

𝑇𝐴𝑝𝑝 and the longer the packet length 𝑛BytesApp  , the higher is the applications 

bandwidth consumption µ𝐴𝑝𝑝. Equation (6-5) reflects this for the underlying 

maximum bandwidth of 1 Gbit/s: 

𝜇𝐴𝑝𝑝 = 𝑛BytesApp  𝐵𝑦𝑡𝑒 ( 8
𝐵𝑖𝑡

𝐵𝑦𝑡𝑒
) 10−9𝑠 

1

𝑇𝐴𝑝𝑝
 (6-5) 

 

Thus, controlling the load distribution of faster applications contributes more to a 

balanced overall distribution than controlling slow application cycle classes. The 

system designer can weigh the requirements for the grade of load balance quality 

against the calculation and configuration effort.  

4. Traffic from single talkers with a small amount of traffic without an own LDC can 

also be excluded from the distribution control for the same reasons as for the slow 

applications mentioned above. Alternatively, the assigned AC can choose the 

direction for this talker thus integrating it into the load distribution control.  

5. The summation point of the path loads differentiation in the distribution control 

assembly on the AC is provided with a threshold to avoid small oscillations around 

the current working point. 

The advantage of using dedicated controllers for groups of application cycle classes is 

the ability to mask out the impact of the slower applications in the network domain 

on the achievable control performance for faster application cycles. Furthermore, a 

possible later addition of network participants communicating at slower application 

cycles has no influence on LDC as their low influence is deliberately disregarded. 

The typical automation network field-level ring consists of only one leading AC that 

controls several field devices, such as IO peripherals, drives, or distributed automation 
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peripherals. Therefore, it can be advantageous to implement a “ring-central” 

distribution control only on this AC neglecting smaller talkers that also put load on the 

network ring. Basically, it is not worthwhile to implement distributed load distribution 

units on talkers, which contribute only a small amount of traffic. But if these are under 

control of an AC, this AC can after its own load distribution calculations provoke them 

to use a certain ring direction to achieve a load shift on certain links.    

In contrast to field-level rings, controller-level rings typically have multiple controllers. 

The problem with multiple ACs is that distributed dynamic LDC creates mutual 

influence over the common communication ring. To achieve a dynamic load 

distribution in this case, either a central control approach with a dedicated load 

distribution algorithm or a distributed solution with measures for mutual coordination 

or mutual decoupling must be considered. Refer to Chapter 7 for the proposed 

solutions in the case of multiple AC with distributed distribution controllers residing 

on each AC. 

The reason for the proposed threshold at the differentiation point before the 

distribution controller is to avoid constant path changes with low traffic changes, 

which would result in unwanted path-selection oscillations. 

Although the design of an appropriate packet controller for dedicated distribution 

controllers shall not be the focus of this thesis, some important influences and 

possible limitations should be highlighted here. An issue with separated application 

cycle load distribution controllers is that interferences can occur in certain application 

cycle classes without any original traffic occurrences within this application cycle class 

in the controlled automation network domain. A packet controller must then decide 

whether to adapt the traffic of another application cycle class or ignore such traffic 

situation occurrences with the consequence of tolerating a certain amount of load 

differences within an application cycle class. A further limitation to be considered with 

the EST and CQF traffic shapers is that the maximum possible bandwidth assignment 

possibility for CD is limited by the assigned EST and CQF network cycle length. The 

consequences of this fact are elaborated further in Subsection 7.4.3. 
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6.6 Discussion and Selection of the Optimised Feedback Method 

As the literature review shows, different solution approaches exist to feed the 

distribution control assembly with information regarding the load situation on the 

links in the network. Farahmand et al. (2005) investigated congestion control on 

optical burst links and proposed a method in which the feedback signal specifically 

notifies the source of how much it should reduce its rate to match the targeted 

congestion level of the network. This is a different concept in which the actual 

controller is located on each node whereas the AC would only serve as a packet 

controller. However, this solution neglects to consider the dead times from the 

controller to the nodes, which are necessary for an optimally tuned flow controller.   

The MATE adaptive traffic engineering solution (Elwalid et al., 2002) uses  the end-to-

end delay on the different paths as feedback for the control loop. The intention here 

is to use end-to-end delay as an equivalent of congestion caused by load. This works 

if it can be assumed that the paths from the source to the end have nearly equal 

lengths. However, this typically is not the case with ring networks. Here, in the worst 

case, when a node in question is right next to the AC, one direction is the complete 

ring, and the distance in the other direction of the ring is only one link. This already 

leads to greatly deviating path delays purely on the location of the node, without 

delays due to the traffic load also being taken into account. 

Therefore, for automation network rings, the goal must be to measure the actual load 

on each ring port of the nodes in the ring. A further goal must be to consider the 

individual dead time from the distribution control assembly in the AC to the node with 

the current load maximum, to adapt the controller properties to the current control 

situation. Applying closed-loop control methods that work with maximum bandwidth 

use gained by path measurement and delay calculation or measurement avoids load 

oscillations. These would occur with mere congestion control using only 

acknowledgement losses, where path delays are not considered. Oscillations are an 

important disadvantage. They particularly come to effect in high bandwidth delay 

product networks such as ISP networks with high bandwidth and data transported 

over longer distances, as described for XCP (Kandula et al., 2005). 



  Page 214 

The optimised control method, as proposed in Section 6.5, has additional 

consequences for the formation of the feedback values for the control loops. As 

explained and applied in Chapter 5     , for a single flow controller, the feedback value 

must be measured over a suitable time span to avoid oscillations in the value. 

Therefore, in Chapter 5     , this time span is selected as a multiple of the slowest 

application cycle time in the network domain. With the new optimised control 

method, dedicated control loops, for each of the different application classes cycle 

times or for groups of classes, shall be applied. Therefore, also the mean values must 

be measured, calculated, and fed back individually for the application classes or 

groups of application classes. In the AC hosting the load distribution controllers, a 

maximum load value selection must take place to select the individual maximum 

throughput of the path per application cycle class. 

Figure 6.1 depicts the optimised feedback creation process for one network path. 

 

 Figure 6.1: Optimised feedback creation process for one path 

The actual transport of the individual rolling mean values can be either in individual 

frames from the nodes to the automation controller or by a collecting round-robin 
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frame constantly circling round the ring to collect the individual rolling mean values. 

The collection frame would have to be circled once per fastest application cycle rolling 

mean value measuring time span. Each node inserts its throughput measurement in 

an array organised by application cycle. The array is then written to the round-robin 

frame with a special offset for each node. This has the advantage of creating less 

throughput consumption, but the disadvantage is that new ring participants will cause 

a recalculation and reconfiguration of the offset for each node. For the network 

simulation in Section 6.7, the single frame solution was selected owing to its easier 

network extension capabilities. 

Further information to be part of the feedback frame is the measured path delay to 

that node and port. This is needed for the optimum tuning of the distribution 

controller and the flow controller, as outlined above and in Section 6.5. 

6.7 Performance Validations of the New Optimised Control 

Method 

6.7.1 Introduction 

To obtain the primary data for the validation of the new optimised control method 

introduced in the previous sections, an automation network in ring topology is 

simulated using the discrete-event network simulator ns-3. The simulator ns-3 is an 

open-source network simulator implemented in C++ and Phyton and is freely available 

at the Git repository https://github.com/nsnam under the GNU license conditions. Ns-

3 has been widely used by the communication network research community. Ns-3 

allows a simulation time resolution in nanoseconds for creating, time-stamping, and 

analysing communication events.  

For the performance evaluations of the optimised control method, a single 

automation controller (AC1) network setup is simulated. The automation controller 

output is implemented by two applications sending frames clockwise (cw) and 

counterclockwise (ccw) into an automation ring network. This consists of nine virtual 

bridged nodes, n1 to n9, simulating either real bridges or bridged automation devices 
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containing listeners and/or talkers (L/T). The automation controller itself does not 

contain a bridge instance to save the application of redundancy protocols in parallel. 

Otherwise, broadcast data such as ARP requests and responses for address resolution 

would circle endlessly in the ring, creating a loop and thereby an avalanche of circling 

data. Figure 6.2 depicts the setup of the simulated automation ring network.   
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Figure 6.2: Automation ring setup for network simulations for performance 

evaluations 

The automation controller hosts several applications instantiating several virtual 

talkers, which cause the overall load of streams (blue arrows). Multiple listeners 

residing in the ring nodes are assumed for all streams. Therefore, all streams from 

AC1 are sent around the complete ring in their individual directions. Without any 

exogenous interfering traffic from the inter-ring links, the automation controller 

divides the load equally in the two ring directions. To test the distribution control, an 

additional interference load µI1 is injected at certain times at node n2, bound for a 

virtual listener at node n4. This causes an asymmetrical load distribution in the ring 

which is compensated by distribution control. The measured load difference is fed to 

the distribution controller, which then provides the reference for the flow controller. 

Depending on the algebraic sign of the distribution controller output, the flow 

controller either increases or decreases traffic in the clockwise direction in the ring. 

The counterclockwise throughput is then decreased or increased contrarily by the 

same amount of traffic. Both the distribution and flow controller are implemented as 

PID controllers as discussed in Section 6.3. 
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For each application cycle class, there exists a dedicated output queue in which the 

local applications of this application cycle store their frames either synchronously or 

asynchronously at sending time. This is simulated by assuming a sufficient number of 

applications to achieve the necessary bandwidth consumption for the simulation. The 

packet controller outputs send a portion of the frames in each direction according to 

the relation preset by the distribution and flow controllers. The individual number of 

frames to be sent in either direction per network cycle is calculated using the 

individual stream frame lengths of all reserved streams and the number of reserved 

streams of that application cycle class. Streams of nearly equal length are assumed to 

reduce the complexity of the simulation. However, in real applications, different 

stream lengths are to be expected. A sophisticated mechanism for the packet 

controller, to map the flow controller output to the packet controller output, 

considering different stream lengths and single or bundled streams, could be subject 

to further research but is not the focus of this thesis. The pseudo code for a packet 

controller for fixed stream lengths is outlined in Table 6.2. Its detailed structure is 

provided in Appendix 2. 
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Table 6.2: Pseudo code of algorithm for packet control. 

Algorithm: LDCApp::Control () 

This algorithm of the LDC application in an AC connects the minmax differential 
throughput from Table 4.4 to the distribution controller and this to the flow controller. It 
converts the flow controller output into a number of packets to transmit. This method 
must be called cyclically with distribution controller and flow controller. 

Create variables: 
m_diffthroughput;  //difference of throughput 
m_distctrlin;   //input for distribution control 
m_distctrlout;  //output from distribution control, input for flow control 
m_flowctrlin;  //flow control input 
m_flowctrlout; //flow control output, to be translated into m_nPackets for send unit 
m_packetSize;  //packet size of packets to transmit 
m_nPackets;    //number of packets to transmit 
m_deltaPackets;  //difference of packets to transmit 
 
Fetch the maximum detection output from throughput array (see Table 4.4): 

m_diffthroughput =  m_thp_array [α] [CW] [NNODES + 1]; 

 
Connect this to the input of the distribution controller: 
m_distctrlin = m_diffthroughput; 
 
Create the flow controller input from the distribution controller output and the throughput 
difference: 
m_flowctrlin = m_distctrlout - m_diffthroughput; 
 
Calculate packets and change algebraic sign as a positive difference means a reduction for 
this direction:  
m_deltaPackets = m_flowctrlout/(0.0001 * m_packetSize * 8); 
 
Adapt the number of packets to be sent by the delta: 
m_nPackets = m_nPackets + m_deltapackets; 
 

 

To show the control problem and the effects of the optimised control method, a series 

of use-cases is simulated. Simulations start with a single control of a single fast 

application class. Further application classes of slower application cycles are added, 

and different feedback rolling mean integration times are applied. Finally, control 

circuits for dedicated application classes are added and the improvements become 

visible. Table 6.3 provides an overview of these use cases. 
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Table 6.3: Load distribution simulation use cases overview. 

Use 
case 

Application 
cycles (ms) 

Interference 
cycles (ms) 

Flow 
control? 
Type? 

Distribution 
control? 
Type? 

Rolling 
mean 
integr. 
time 
(ms) 

Purpose/Comments 

 UC1 1 1 No control No control 1 Basic use case without 
load control 

UC2 1 1 Yes, PID Yes, Basic, 
only 
Proportional 

1 Flow controller plus 
limited distribution 
controller. The 
distribution controller 
works only as a 
proportional controller. 

UC3 1 1 Yes, PID Yes, PID 1 Flow controller plus full 
distribution PID-
Controller 

UC4 1, 2, 4, 8 1 No No 1, 2, 4, 8 This use case shows the 
influence of the 
occurrences of application 
cycle classes on the 
control. 

UC5.1 1, 2, 4, 8 1 Yes, PID, 
optimised 
for 1 ms 
app cycle. 

Yes, PID, 
optimised for 
1 ms app 
cycle. 

8 Occurrence of slower 
application cycle classes 
without controller 
parameter adaptations 

UC5.2 1, 2, 4, 8 1 Yes, PID, 
optimised 
for 8 ms 
app cycle. 

Yes, PID, 
optimised for 
8 ms app 
cycle. 

8 Occurrence of slower 
application cycle classes 
with controller parameter 
adaptations 

UC6.1 1, 2, 4, 8 1, 2, 4, 8 No control No control 8 Multiple application cycle 
classes and multiple 
controller basic use case 
visualising load 
interferences without 
load control 

UC6.2 1, 2, 4, 8 1, 2, 4, 8 Yes, PID, 
optimised 
for 8 ms 
app cycle. 

Yes, PID, 
optimised for 
8 ms app 
cycle. 

8 Multiple application cycle 
classes and multiple 
controller basic use case 
visualising load 
interferences with 
common load control  

UC6.2 1, 2, 4, 8 1, 2, 4, 8 Yes, PID, 
optimised 
for 8 ms 
app cycle. 

Yes, PID, 
optimised for 
8 ms app 
cycle. 

8 Multiple application cycle 
classes and multiple 
controller basic use case 
visualising load 
interferences with 
common load control  

UC6.3 1, 2, 4, 8 1, 2, 4, 8 Yes, PID, 
optimised 

Yes, PID, 
optimised for 

32 Like 6.2 but additional 
slow application cycle 
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for 8 ms 
app cycle. 

8 ms app 
cycle. 

interference without 
controller parameter 
adaptations. Leads to 
control quality 
deterioration.  

UC6.4 1, 2, 4, 8 1, 2, 4, 8, 32 Yes, PID, 
optimised 
for 32 ms 
app cycle. 

Yes, PID, 
optimised for 
32 ms app 
cycle. 

32 Like 6.3 but with 
controller parameters 
optimised for slowest 32 
ms application cycle class.  

UC6.5 1, 2, 4, 8 1, 2, 4, 8, 32 Yes, PID, 
optimised 
for 32 ms 
app cycle. 

Yes, PID, 
optimised for 
32 ms app 
cycle. 

32 Load change settling time 
for common load control 
in dependency of 
application cycle and of 
slowest application cycle 

UC7 1, 2, 4, 8 1, 2, 4, 8, 32 Yes, 
multiple 
PIDs, 
optimised 
individually 
for app 
cycles. 

Yes, multiple 
PIDs, 
optimised 
individually 
for app 
cycles. 

1, 2, 4, 8, 
32 

Load control with 
application cycle 
dedicated load 
controllers. 

 

 

The ns-3 simulation framework makes wide use of the C++ object aggregation. The 

class "object" forms the basis where applications, nodes, net devices, and 

communication channels, that is, links and sockets, are based on and created via 

object inheritance. For the simulation topology, nodes were created and net devices, 

standard applications, and dedicated applications were added to these nodes. Links 

were added to the net devices, and thereby, nodes were connected to a network. 

Packet transmission and processing are typically performed using dedicated 

application objects. To provide the necessary functionality for this thesis, 

supplementary C++ code has been added for the linear PID controllers, feedback 

rolling-mean-value generations, feedback transport to the AC, and peripheral 

functions such as interference traffic generation, simulation parameter handling, and 

results handling. Furthermore, an algorithm for the packet controller, that is, to 

control the actual data streams partitioning between the ring directions according to 

the distribution controller, has been added. Figure 6.3 shows the UML class diagram 

of the added classes for an AC embedded in the ns-3 framework. 

The dedicated AC simulation code for this performance evaluation consists of three 

classes derived from the ns-3 Application class, which is again derived from the Object 
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class. A detailed description of the ns-3 classes and their derivation chain is located at 

the ns-3 documentation home page https://www.nsnam.org/docs/. The functionality 

of the three added classes for the AC simulation is briefly described in Table 6.4. 

 

 

 Figure 6.3: Dynamic Load Distribution Control Simulation with ns-3. Class 

diagram for Automation Controller 

Table 6.4: Class Description of Simulation Code for an Automation Controller 

Class Purpose/Comments Methods 

 LDCApp () Load Distribution Control 
Application. 

Entry application for packet 
handling. One instance for each ring 
direction.  

StartApplication () 

Starts the Application, creates the 
packets, opens communication socket, 
and sends a first packet.  

StopApplication () 

Stops the Application, cancel send events, 
close the communication socket.  

SendPacket () 

Sends a data packet, schedules the next 
packet till burst end, calls scheduler for 
the next communication cycle start.  

ScheduleTx () 

Schedules the next packet to be sent.  

ScheduleTxCycle () 

Schedules the next communication cycle 
start. 
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Class Purpose/Comments Methods 

Control () 

Packet controller converts flow controller 
output to a change of number of packets 
to be sent. The pseudo code for this 
method is provided in Table 6.2. 

PIDCtrlApp () PID controller class. Is used for 
distribution controller and for flow 
controller. 

StartApplication () 

Starts the PID controller application, 
schedules first PID controller calculation.  

StopApplication () 

Stops the PID controller application.  

Calculate () 

Calculates PID controller and schedules 
the next calculation. The pseudo code for 
this method is provided in Table 5.3. 

CollApp () Collector application. Is instantiated 
at automation controller. Receives 
the throughput feedback of the ring 
nodes and compares and provides 
the difference as input for the 
distribution controller.  

StartApplication () 

Starts and initializes the collector 
application, schedules first collector call.  

StopApplication () 

Stops the collector application.  

ReceivePacket () 

Interrupt method for reception and 
classification of feedback frame. 

Compare () 

Builds the sum over the single application 
cycles per node and direction to build the 
overall throughput for application 
dedicated control. Finds the maximum of 
each direction and application cycle and 
also for all application cycles and builds 
and stores the difference of the 
directions. The pseudo code for this 
method is provided in Table 4.4. 

 

The simulation code for a bridge or bridged end station is somewhat simpler because 

it only needs to provide the throughput measurement, including feedback sending. 

On certain nodes, an additional generation of interference traffic is added. Figure 6.4 

shows the class structure of a bridge or bridged end station. 
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Figure 6.4: Dynamic Load Distribution Control Simulation with ns-3. Class 

diagram for a Bridge and Bridged End Station 

The dedicated simulation code for a bridge or bridged end station for this 

performance validation consists of two classes. These are derived from the ns-3 

Application class, which is again derived from the Object class as is the case for 

automation controller classes. The functionality of the two added classes is briefly 

described in Table 6.5. 
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Table 6.5: Class Description of Simulation Code for a Bridge or a Bridged End 
Station 

Class Purpose/Comments Methods 

RollMeanApp () Builds the rolling mean 
measurement of throughput on a 
node (bridged device) and per 
port. 

For each app cycle class, one 
RollMeanApp is instantiated as 
they finally will use different 
rolling mean measurement 
integration times. 

StartApplication () 

Starts the Application, initiates first 
scheduling of the calculation method.  

StopApplication () 

Stops the Application, cancel feedback 
frame send events, close the 
communication socket for the feedback 
frames.  

CheckInPacket () 

Receive interrupt method to count amount, 
type and size of packets passing a port.  

Calculate () 

Calculates rolling mean for the node, port, 
and application cycle class. Possibility of 
calculation over all application cycle 
classes. Sends feedback frames to ACs. The 
pseudo code for this method is provided in 
Table 5.1. 

 TrafficApp () Sends frames in one direction of 
the ring, usually to simulate 
traffic interference not under 
control of the automation 
controller 

StartApplication () 

Starts the Application, creates the packets, 
opens a communication socket, and sends a 
first packet.  

StopApplication () 

Stops the Application, cancel send events, 
close the communication socket.  

SendPacket () 

Sends a data packet, schedules the next 
packet till burst end, calls scheduler for the 
next communication cycle start.  

ScheduleTx () 

Schedules the next packet to be sent. 

ScheduleTxCycle () 

Schedules the next communication cycle 
start. 

 

The detailed source code of the developed classes and methods for this simulation 

are provided in Appendix 2. 

The preconditions for the simulation are as follows: In analogy to the flow control 

simulation in Section 5.6, streams of lengths of approximately 200 Bytes net SDU data 

load plus 42 Byte Ethernet header are assumed. For easier distinction in the diagrams, 

slightly different packet lengths, and thereby slightly different measured throughputs, 

were applied in the two directions in the ring. These approximately 200 Bytes lead to, 
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according to Equation (5-8), a frame transmission time of 𝑇𝑇𝑟 = 1.936 𝜇𝑠 ≈ 2 𝜇𝑠. 

Therefore, to simulate a burst of CD streams, send events were scheduled every 2 𝜇𝑠. 

The EST window size was selected with 200 𝜇𝑠. Assuming a 1 ms network 

communication cycle, full use of the EST window is reached with the transmission of 

100 streams and causes 100 percent CD load and thus a 20 percent overall bandwidth 

use by CD. The calculation of the distribution and flow controllers must be scheduled 

cyclically in parallel to their application cycles. The flow controller output influences 

the number of frames scheduled for each direction. At the nodes of interest, the 

feedback rolling mean of the bandwidth use, that is, the throughput value, is 

generated and fed back to the automation controller. 

The simulation uses UDP data frames for both the transport of the throughput 

feedback values and for the CD frames. The frames contain information on their type 

of frame, either CD or feedback, application class affiliation, originating AC or node, 

and direction, which can be clockwise or counterclockwise.  

Basically, the membership of a frame or packet to an application cycle class or an AC 

can be achieved by various network technology means, including: 

• Grouping by stream destination multicast addresses 

• VLAN memberships 

• Dedicated identifiers for application cycle membership (e.g., application 

identifier, APPID) and automation controller membership (e.g., automation 

controller identifier, ACID) in the application frame payload. This is a common 

practice particularly in automation solutions such as the OPC UA PubSub 

protocol or PROFINET protocol. 

For this simulation, dedicated APPIDs and ACIDs in the payload of the frames are used. 

TSN supporting switch hardware generally provides hardware facilities, such as 

Ternary Content Aware Memory (TCAM) filters, to analyse payload content at wire 

speed without additional CPU load or noteworthy delays. 

The simulation begins with basic linear control without optimsation to form the basis 

for comparisons with the new optimised dedicated control method extensions. It is 
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then extended by applying application-cycle-dedicated distribution and flow 

controllers for the LDC.  

The following subsections provide the results of the different use cases simulations.  

6.7.2 Performance of the Basic Linear Control  

The performance evaluation of the basic linear control method without optimisation 

is the first step in assessing the potential of the control method optimisation. For this 

purpose, a ring with a single automation controller hosting the load distribution 

control assembly is simulated. The simulated network ring is shown in Figure 6.2. An 

interference load µI1 is introduced into the network, which provokes a step response 

by the load controller. The step response delivers load control quality results. 

The network simulation has been set up under the following preconditions: 

Use Case 1, Basic setup without load control:  

• 1 Automation Controller (AC),  

• 9 further bridged nodes,  

• 1 application cycle of 1 ms,  

• constant packet sizes of about 200 Byte payload,  

• 200 µs EST window,  

• 1 ms network cycle, 

• The integration time for the rolling mean throughput measurement is equal to 

the application cycle time of 1 ms, as no other disturbances are to be expected in 

the network. 

• bridge latency and LAN propagation delay sum up to 2 µs per hop. 

As outlined in Chapter 5     , the 200 Byte payload result in an Ethernet frame of 242 

Bytes, assuming data without a VLAN tag. With a data rate of 1 GBit/s, the 242 Bytes 

require a time of 1936 ns in the EST window. This implies approximately 100 frames 

per network cycle for a 100 percent CD bandwidth or 20 percent overall bandwidth 

use. The throughput calculation is repeated in a cycle time of 1 ms to guarantee a fast 

reaction to load changes. The basic load at the start of the simulation start is selected 

as 50 percent of the 20 percent for CD in each direction, clockwise and 
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counterclockwise. An interfering additional load of 20 percent is introduced at 20 

percent simulation time at time 𝑡𝑖1 = 20 𝑚𝑠 from the interlink connection at node 3 

in the clockwise direction. The target node for the interfering load is node 4. The 

interference is stopped at 60 percent of the simulation time, at 𝑡𝑖2 = 60 𝑚𝑠. This 

results in an interference duration of 𝑡𝑖12 = 40 𝑚𝑠 which is 40 percent of the 

simulation time of 100 ms.  

Figure 6.5 shows the throughput µ(t) measurement in the clockwise and 

counterclockwise directions for use case 1 without any load control. 

 

Figure 6.5: Use case 1: Throughputs over time without load control. 

As shown in the diagram in Figure 6.5, the start of the interference at 𝑡𝑖1 = 20 𝑚𝑠 

leads to a throughput µ(t) increase from 10.5 percent to approximately 14.5 percent 

in the clockwise direction, with no influence on the load in the counterclockwise 

direction.  

Use Case 2: Basic setup with load control in the form of a basic proportional 

distribution controller and a PID flow controller:  

The simulation network setup for use case 2 is identical to that for use case 1, with 

the difference that load control in the AC is enabled. The load control consists of a 
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basic distribution controller and PID flow controller. The full distribution PID controller 

is shortcut in this use case. The basic distribution controller calculates the difference 

between the clockwise direction throughput maximum and counterclockwise 

throughput maximum. The difference is then multiplied with the proportional factor 

of 0.5 and fed into the flow controller. The factor 0.5 takes the circumstance into 

account that the output of the flow controller feeds both packet controls for the two 

directions, the one for the clockwise direction and that for the counterclockwise 

direction, in parallel. Thus, packet control for one direction increases the output and 

the other decreases the output, each by half of the necessary load difference, to be 

balanced.   

The flow control parameters for the PID controller to achieve the best control results 

are selected with a proportional factor 𝐾𝑃 = 0.4, an integral factor 𝐾𝐼 = 160, and a 

very moderate differential factor 𝐾𝐷 = 0.0002. The integration time 𝑇𝐼 results from 

the integral factor and the cycle time of the flow controller 𝑇𝑐 = 1 𝑚𝑠 and is thus 

calculated as  𝑇𝐼 = 𝐾𝐼 ∗  𝑇𝑐 = 160 ∗ 1 𝑚𝑠 = 160 𝑚𝑠.  

As in use case 1, the integration time for the rolling mean calculation was selected to 

be at the minimum of 1 ms as no slower periodic interference or other disturbances 

in the ring must be considered. This helps to determine the best possible control 

performance as a starting point for further simulations. Again, a 200 µs EST window 

is reserved for all CD, which is 20 percent of the network cycle of 1 ms; thus, 20 

percent of the overall available bandwidth is also the maximally reachable throughput 

for CD. 

Figure 6.6 shows the throughput measurement µ(t) in the clockwise (purple) and 

counterclockwise (green) directions when the basic load control in the form of the 

basic distribution controller plus the flow controller is active. The gray dashed curves 

are the results of use case 1 above of load-uncontrolled operation for comparison. 
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Figure 6.6: Use case 2: Throughput with basic load control. 

From the start of the simulation to the control start 𝑡𝐶 = 10 𝑚𝑠 the throughputs are 

slightly different owing to the slightly different packet lengths to reach a better initial 

graphical differentiation of the two graphs. At  𝑡𝐶 = 10 𝑚𝑠, the load control is 

activated causing an alignment of both throughputs. After the clockwise interference 

load step at  𝑡𝑖1 = 20 𝑚𝑠 to approximately 14.5 percent, both directions load settle 

down to a common value of approximately 12,5 percent. This is achieved at the 

settling point 𝑡𝑆1 ≈ 32 𝑚𝑠  within a period of approximately 15 to 20 ms settling time. 

At 𝑡𝑖2 = 60 𝑚𝑠 the interference load is removed, and 15 to 20 ms later at 𝑡𝑆2 ≈ 70 𝑚𝑠 

both the clockwise and counterclockwise throughput have settled on a common value 

of approximately 10 percent again. Thus, it can be stated that the basic load control 

achieves a step response settling time of 𝑡𝑆 < 20 𝑚𝑠 under the given preconditions 

and an acceptable maximal overshot of µ𝑂 < 5%. 

Use Case 3: Basic setup with full load control in the form of a PID distribution 

controller and a PID flow controller: 
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The simulation network setup for use case 3 is identical to the setup for use case 2 

with the difference that the load control in the automation controller now consists of 

the full distribution PID controller and the PID flow controller. The empirical tuning of 

the cascade control leads to similar flow control parameters as in use case 2 and the 

following distribution PID controller parameters. These were determined as a 

proportional factor of 𝐾𝑃 = 0.2, an integral factor of  𝐾𝐼 = 70, and again a very 

moderate differential factor of  𝐾𝐷 = 0.0001. The integration time 𝑇𝐼 results from the 

integral factor and the cycle time of the flow controller 𝑇𝑐 = 1 𝑚𝑠 and is thus 

calculated as  𝑇𝐼 = 𝐾𝐼 ∗  𝑇𝑐 = 70 ∗ 1 𝑚𝑠 = 70 𝑚𝑠.  

Figure 6.6 shows the throughput measurement µ(t) in the clockwise (purple) and 

counterclockwise (green) directions when full load control in the form of the complete 

distribution PID controller plus the PID flow controller is active.  

 

Figure 6.7: Use case 3: Throughput with full load control 

As in use case 2, the load control takes effect at 𝑡𝐶 = 10 𝑚𝑠. With full load control, 

the load change step response at  𝑡𝑖1 = 20 𝑚𝑠 is compensated by the load controller 

at the settling point 𝑡𝑆1 ≈ 32 𝑚𝑠  within a period of approximately 15 to 20 ms settling 

time. The settling point after the removal of the load change at 𝑡𝑖2 = 60 𝑚𝑠 is also 

reached at 𝑡𝑆2 ≈ 75 𝑚𝑠. The slight difference in the two load-controlled throughputs 
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in the range of 50 ms to 60 ms results from the limited control resolution in steps of 

the number of data packets. 

Summarising use cases 2 and 3, it can be concluded that the use of the full distribution 

controller cascaded together with the flow controller leads to a similar fast step 

response convergence as the basic distribution control of use case 2. The full 

distribution control displays a slightly wavier throughput output, which results from 

the two integration elements of the flow controller and distribution controller. They 

produce small oscillations at short rolling mean measurements of 1 𝑚𝑠. A settling 

time of 𝑡𝑆 < 20 𝑚𝑠 can be realised under the given preconditions with an acceptable 

maximal overshot of µ𝑂 < 5%. 

For the following use cases, the full load control setup consisting of the full 

distribution PID controller and PID flow controller is applied and hence forward 

named and referenced with the generic term “load controller” as a placeholder. 

The next use cases contain additional applications on the AC sending the CD at 

additional, slower application cycles. 

Use Case 4: Several applications with different application cycles and different 

throughput measurement rolling mean integration intervals: 

This use case is provided simply to formally validate the statement that a common 

rolling mean measurement over all application classes traffic requires an integration 

time that is at least longer than the slowest application cycle time in the network 

domain. For this use case, three further applications are activated on the automation 

controller AC1. One application with an application cycle of 𝑇𝐴𝑝𝑝 = 2 𝑚𝑠, one with 4 

ms, and one with an 8 ms application cycle interval. Each application starts sending in 

the first network cycle and sends 10 packets per network cycle. All of this CD traffic is 

measured using a common throughput measurement for all application cycle class 

intervals. The throughput is measured with different rolling mean integration 

intervals 𝑇𝑖𝑛𝑡 as shown in Figure 6.8. 
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Figure 6.8: Use case 4: Throughput measurement over all application class 

cycles with different rolling mean integration intervals. 

If the integration interval is kept at 1 ms as in use cases 1 to 3, the measurement result 

will be a wavy throughput actual value for the load control, as simulated in the very 

left plot at 𝑇𝑖𝑛𝑡 = 1 𝑚𝑠. With increasing integration interval 𝑇𝑖𝑛𝑡 the ripple decreases. 

As expected, the ripple is only lost if 𝑇𝑖𝑛𝑡 >= 𝑇𝐴𝑝𝑝  as simulated with the very right 

plot with 𝑇𝑖𝑛𝑡 = 𝑇𝐴𝑝𝑝𝑆𝑙𝑜𝑤𝑒𝑠𝑡 = 8 𝑚𝑠. The simulation thus confirms the obvious 

expectation that the rolling mean measurement integration interval must be similar 

or larger as the slowest applied application cycle interval in the automation network 

to avoid control oscillations. This is true if throughput measurement is performed over 

all application cycle classes for common load control. 

Use Case 5: Fast application cycle traffic load changes in a common load 

measurement environment over all application cycle classes.  

This simulation use case investigates the consequences for fast application cycle load 

changes if slower application cycle classes are introduced into the network. As with 

use case 4, CD traffic with an application cycle interval of 𝑇𝐴𝑝𝑝 = 1 𝑚𝑠, 2 ms, 4 ms, 

and 8 ms is applied at AC1. A common throughput measurement and a common load 
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control over all four application cycle classes is applied. Because of the results of use 

case 4, the rolling mean throughput measurement integration interval is set equal to 

the slowest application cycle interval of  𝑇𝑖𝑛𝑡 = 𝑇𝐴𝑝𝑝𝑆𝑙𝑜𝑤𝑒𝑠𝑡 = 8 𝑚𝑠. First, the use case 

is simulated as use case 5.1, without adapting the distribution controller and the flow 

control parameters that resulted from the optimisation for  𝑇𝑖𝑛𝑡 = 𝑇𝐴𝑝𝑝𝑆𝑙𝑜𝑤𝑒𝑠𝑡 =

1 𝑚𝑠 from use case 3. The results are shown in Figure 6.9. 

 

Figure 6.9: Use case 5.1: Fast application cycle CD load control deterioration 

under the influence of applications with slow application cycles and without 

load control adaptation to longer load measurement integration intervals.  

As the simulation plot in Figure 6.9 immediately shows, the control result is a wavy 

throughput distribution. This results from the fact that the distribution controller and 

flow controller were not adapted to the changed control characteristics. These were 

caused by the changed PT1 characteristics of the rolling mean measurement in the 

control feedback. Figure 6.10 shows the simulation results of the optimised 

distribution controller and flow controller fitting to the longer rolling mean 

measurement integration interval.  
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Figure 6.10: Use case 5.2: Fast application cycle CD load control 

deterioration under the influence of applications with slow application 

cycles and with load control adaptation to longer load measurement 

integration intervals. 

The result of the controller parameter adaptation is a far lower ripple in the 

throughput distribution. Regarding the settling time, the comparison with use case 3 

shows the expected deterioration from approximately 12 ms to 20 ms because of the 

longer rolling mean measurement integration time.  

The conclusion from the simulations of use case 1 to 5 is that the 1 ms application 

cycle load changes can be compensated under the stated preconditions within a 

settling time of about 12 to 15 ms. The simulation results confirm the expectation that 

if slower application cycles are added to the network domain the integration time of 

a common throughput measurement must be increased until it is equal or bigger than 

the slowest application time. This is necessary to avoid the ripple of the throughputs 

to achieve satisfactory control results. However, this leads to the consequence that 

the achievable settling time decreases. In the case of the applied simulation use case, 

the achievable settling time for load changes deteriorates to approximately 20 ms. 
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With the next simulation steps, it is verified that the application cycle dedicated 

throughput measurement and application cycle dedicated throughput load control, 

as the main features of the proposed optimised control method for MAN, improve 

the overall throughput load distribution settling time.  

6.7.3 Performance of Application Cycle Dedicated Load Control 

To verify the control optimisation improvement of the proposed application cycle 

dedicated load control, two further use cases are simulated. Multiple application 

cycles and multiple interference traffic sources of different application cycles are 

added to the network. First, a common load control is simulated in use case 6. This is 

then compared with an application cycle dedicated load control in use cases 7.  

Use Case 6: Several applications with different application cycles, combined with 

several interferences with different application cycles, and all controlled by one 

common load control: 

Figure 6.11 shows the simulation setup from use case 4 with the four different 

applications hosted by AC1 sending CD µAC1cw and µAC1ccw at four different application 

cycles of 1 ms, 2 ms, 4 ms and 8 ms.  
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Figure 6.11: Use Case 6 setup 

To evaluate the performance of a common load control, four different interference 

traffic loads µ𝑖1, µ𝑖2, µ𝑖4, and µ𝑖8 are introduced into the network in the clockwise 

direction. They are also sent in four different application cycles of 1 ms, 2 ms, 4 ms 

and 8 ms. Interferences are added stepwise. 
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 At node n2, the interference µ𝑖1 with a 1 ms application cycle from use case 3, 

introduced at time 𝑡𝑖1 = 50 𝑚𝑠, is still active. Another interference with an 

application cycle of 4 ms is introduced at n2 at time 𝑡𝑖4 = 250 𝑚𝑠 bound for n9. At n1 

an interference load with an application cycle of 2 ms at time 𝑡𝑖4 = 150 𝑚𝑠 and one 

with an application cycle of 8 ms at time 𝑡𝑖8 = 350 𝑚𝑠, both bound for n6, are 

introduced. To evaluate the control performance of the common load control, a 

throughput measurement with an integration time equal to the slowest application 

cycle time of 8 ms is applied. The necessary simulation time is extended to 400 ms. 

Each interference load creates a load step of approximately 2 percent of the overall 

bandwidth which is equal to approximately 10 percent of the available CD bandwidth. 

Figure 6.12 shows the load distribution without load control simulated as sub use case 

6.1.  

 

Figure 6.12: Use case 6.1: Load distribution for use case 6 without load 

control. 

The longest application communication cycle is 𝑇𝐴𝑝𝑝 𝑚𝑎𝑥 = 8 𝑚𝑠. Thus, an 𝑇𝐼𝑟𝑚 =

8 𝑚𝑠 for the rolling mean measurement is the minimum integration interval to avoid 

oscillating load measurements. For the simulation of use case 6.2, the load control is 



Page 237   

activated. Figure 6.13 shows the result of the load control in combination with 𝑇𝐼𝑟𝑚 =

8 𝑚𝑠 rolling mean integration interval. 

 

Figure 6.13: Use case 6.2: Load distribution for use case 6 with flow control 

and 8 ms rolling mean measurement integration interval.  

The flow controller parameters for the optimum result are a proportional factor 

of 𝑲𝑷 = 𝟎. 𝟒, an integral factor of  𝑲𝑰 = 𝟕𝟓, and a differential factor of  𝑲𝑫 =

𝟎. 𝟎𝟎𝟎𝟐𝟗. The plot shows a slight ripple owing to small congestions in the queues as 

interference packets sometimes arrive at the output ports at the same time as other 

traffic packets. With a minimum rolling mean measurement integration interval, 

these small congestions become visible. With common load control for all application 

cycle classes the rolling mean is measured over all application cycle classes. Therefore, 

the packet controller has no possibility to differentiate between the application cycle 

classes for an optimal selective packet control to compensate for the traffic 

interferences of certain application cycle classes. A possible alternative is to control 

the packet flow of faster application cycles first. If the load cannot be compensated 

thereby, slower application cycle packet flow will be manipulated. As a sophisticated 

packet control mechanism is not the focus of this work, the fastest application cycle 

of 1 ms was selected to transmit sufficient data to compensate for all interference 
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traffic from all application cycle classes. As for the comparison of the two use cases, 

it is not important whether to work with full or basic distribution control. As there is 

no real advantage of the full PID distribution controller, the basic distribution control 

with only proportional influence is applied. Generally, PID controller tuning is a bit of 

a challenge, as an optimal control for a certain application interference compensation 

can cause a deterioration for another application cycle class interference. This is 

because a reference step for slower application cycle classes has a flatter ramp-up 

owing to the longer send intervals. Therefore, finding the optimal PID controller 

parameters for a selection of application cycle classes is always a compromise. This is 

a further disadvantage of a common load controller for all application cycle classes. 

The load control for use case 6.2 in Figure 6.13 starts at 𝒕𝑪 = 𝟏𝟓 𝒎𝒔. The 

simulation shows that, with an integration interval of 𝑻𝑰𝒓𝒎 = 𝟖 𝒎𝒔, all four load 

interference steps are compensated after a maximum settling time of 

approximately 25 ms at 𝒕𝒔𝟏, 𝒕𝒔𝟐, 𝒕𝒔𝟒, 𝒂𝒏𝒅 𝒕𝒔𝟖. 

For the next use case, 6.3, it is anticipated that a new application with a slow 

application communication cycle time of 𝑇𝐴𝑝𝑝 𝑚𝑎𝑥 = 32 𝑚𝑠 is attached to the 

network. Thus, the rolling mean measurement integration interval must also be 

increased to 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠.  Figure 6.14 shows the load control results if the 

load controller parameters are not adapted to the new situation.   

The simulation shows that the load changes can no longer be compensated for by the 

load control between the single-load interference steps. To achieve this, the load 

controller parameter for the flow controller for optimum control must be adapted to 

a proportional factor of 𝐾𝑃 = 0.6, an integral factor  𝐾𝐼 = 48, and a differential factor  

𝐾𝐷 = 0. The result is shown in use case 6.4 in Figure 6.15. 
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Figure 6.14: Use case 6.3: Load control results after connection of a slow 

application with application cycle 𝑻𝑨𝒑𝒑 = 𝟑𝟐 𝒎𝒔 and adaptation of 𝑻𝑰𝒓𝒎 =

𝟑𝟐 𝒎𝒔 but without adapting the load controller parameters.  

 

Figure 6.15: Use case 6.4: Load control results after connection of a slow 

application with application cycle 𝑻𝑨𝒑𝒑 = 𝟑𝟐 𝒎𝒔 and adaptation of 𝑻𝑰𝒓𝒎 =

𝟑𝟐 𝒎𝒔 and with optimised load controller parameters.  
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The simulation shows that the settling points 𝑡𝑠1, 𝑡𝑠2, 𝑡𝑠4, 𝑎𝑛𝑑 𝑡𝑠8 after the load 

interference steps at 𝑡𝑖1, 𝑡𝑖2, 𝑡𝑖4, 𝑎𝑛𝑑 𝑡𝑖8 are reached by far later, owing to the 

necessary longer rolling mean integration interval. The settling times after the 

interference steps increased from approximately 25 ms for 𝑇𝐼𝑟𝑚 = 8 𝑚𝑠 to 

approximately 50 ms for 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠. The positive effect of the longer rolling mean 

measurement integration interval is a decrease in the waviness of the load when it is 

in a stable state after the settling time. Figure 6.16 compares the simulation outputs 

of use case 6.1 to 6.4. 

 

Figure 6.16: Use case 6 result: Comparison of the simulation outputs for 

clockwise direction.  

The comparison shows that load control achieves a reduction in the maximum load 

from approximately 17 percent in use case 6.1 to approximately 13 percent in use 

cases 6.2 to 6.4. In use case 6.2, with the load control optimised for rolling mean 

measurement integration interval 𝑇𝐼𝑟𝑚 = 8 𝑚𝑠, the control reacts faster to 

interference load steps than with 𝑇𝐼𝑟𝑚 = 32 𝑚𝑠 in use case 6.3 and 6.4. However, the 

lower rolling mean measurement integration interval is also responsible for the higher 

load ripple. The plot for use case 6.3 (blue) with the unoptimised load controller shows 

higher load oscillations than the load in combination with the optimised load 

controller from use case 6.4 (brown).  
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In use case 6.5, the dependency of the settling time on the actual application cycle 

and the slowest application cycle is investigated. A number of slowest application 

cycle values, ranging from 1 to 32 ms are simulated. 

 

Figure 6.17: Use case 6.5: Load change settling time for common load control 

in dependency of application cycle and of slowest application cycle.  

The plot indicates that the throughput settling time of certain application cycles 

depends only on the slowest application cycle time in the network domain. The 

settling times are constant over the application cycles for the discrete slowest 

application cycle times. 

In the next step in use case 7, the control is switched to the application 

communication cycle dedicated load distribution control, which is the core 

improvement for the optimsed control method proposed in this thesis.  This is 

achieved by adding load controllers to each application communication cycle.   

Use Case 7: Several applications with different application cycles and separate load 

distribution controls: 

For the simulation of use case 7, the same network setup as that of use case 6, as 

depicted in Figure 6.11, is used. However, the difference is that the load control within 
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AC1 implements independent load controllers for each application communication 

cycle of 1 ms, 2 ms, 4 ms and 8 ms.  

 

Figure 6.18: Use case 7: Load control results with application cycle dedicated 

load controllers. 

The results for load control with application-cycle-dedicated load distribution 

controllers confirm the expectation that load changes of faster application cycles can 

be compensated for faster. Table 6.6 summarises the results. Figure 6.18 plots the 

sum of the load caused by all four application cycle classes of 1 ms, 2 ms, 4 ms, and 

8 ms. Differently than in use case 6.2, displayed in Figure 6.13, which shows a 

constant maximum settling time of approximately 25 ms to 30 ms at 𝒕𝒔𝟏, 

𝒕𝒔𝟐, 𝒕𝒔𝟒, 𝒂𝒏𝒅 𝒕𝒔𝟖, the faster application cycles settling times have now improved 

to 𝒕𝑺𝟏 ≈ 𝟏𝟐 𝒎𝒔, and 𝒕𝑺𝟐 ≈ 𝟏𝟓 𝒎𝒔.  
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Table 6.6: Settling times of common control and application-cycle-dedicated 

control for different application cycle times 

Application 

Cycle 

(ms) 

Common control 

settling  time tS  

(ms) 

Application-cycle-

dedicated control 

settling  time tS  

(ms) 

1 25 to 30 12 

2 25 to 30 15 

4 25 to 30 25 

8 25 to 30 25 to 30 

 

The improvement is as expected lower with the 4 ms application cycle time 

with 𝒕𝑺𝟒 ≈ 𝟐𝟓 𝒎𝒔. The result for the 8 ms application cycle is identical to that 

in case 6.2, with 𝒕𝑺𝟖 ≈ 𝟑𝟎 𝒎𝒔 as the rolling mean integration intervals are 

identical. Figure 6.19 compares the throughput settling times over the 

application cycle time and over the slowest application cycle time in a three-

dimensional diagram with the diagram from Figure 6.17 for the common load 

distribution control.  
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Figure 6.19: Load change settling time over application cycle and over 

slowest application cycle for application-cycle-dedicated load control.  

Figure 6.19 shows that with the application-cycle-dedicated load control, the 

settling time (green curve) no longer depends on the slowest application but is 

constant over it. It now depends only on its own application cycle time. Thus, 

adding network participants with applications with slow application cycle times 

no longer influences the faster application load distribution convergence time.  

6.7.4 Section Summary 

The simulations clearly show the expected load control performance enhancement 

results. The classical and obvious load distribution control approach with common 

load control for all CD reveals the disadvantage that the control settling time of load 

changes depends on the slowest application cycle time in the network domain. This is 

due to the circumstance that the slowest application cycle determines the rolling 

mean measurement integration interval and thereby the inertia of the load control 

circuit. The simulation further shows that the new approach of using several 

application cycle dedicated load controllers, for the existing application cycle times 

prevalent in the network domain, improves the load control settling times for 
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applications with faster application cycles. Moreover, the load control of existing 

application cycle times becomes independent from the possibly newly added slower 

applications. In this case, the existing load distribution controllers must no longer be 

reconfigured, which is a crucial maintenance advantage when operating a MAN.  

6.8 Network Error Mitigation Strategy 

A further important question for network design is how to handle network errors in 

the form of link loss or a faulty node, as outlined in Section 4.9. In the automation 

network ring, this would cause an open ring and, consequently, only one available 

path from any talker to any listener instead of the two possible paths. For seamless 

traffic, this is, of course, no problem as data are sent doubly over both paths from the 

start. BE traffic is either also secured by the seamless protocol (HSR, PRP, or FRER) or 

covered by a path switch-over redundancy protocol such as MRP or RSTP/MSTP. This 

is also the case for non-seamless, non-stream CD, which is typically controlled by FDB-

learning forwarding mechanisms instead of path control. Section 4.4 has outlined 

these mechanisms for different data-handling possibilities in MANs.  

However, non-seamless streams that are under load control require a further 

mitigation strategy. From an optimum network use point of view, it would be ideal if 

all available paths and links were used near their maximum bandwidth capabilities. If 

this is the case, the loss of one link in the ring would have the following consequences: 

1. Non-streams not secured by seamless transport from a lost path will additionally 

load the remaining path after the error occurrence and path switch-over by 

redundancy protocols (MRP or RSTP/MSTP in this case). 

2. Streams not secured by seamless transport will also be shifted to the remaining 

path.  

This would be problematic if the remaining path was already loaded near the 

maximum load before the switch-over. Possible solutions to this problem are as 

follows: 

1. Maintain a reservation reserve for the load which could be subject to switch-over. 

However, calculating this load in advance can be quite a challenging task, as it 
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depends on the amount and distribution of traffic in the network domain. This 

requires constant bookkeeping and calculations during runtime. 

2. Reducing the available bandwidth resources for data traffic of less importance in 

favour of more important traffic in the error case. With the EST, CQF and ATS, this 

can be achieved by extending the important gating windows while shortening less 

important traffic gating windows such as non-CD and BE. With SPQ, this is already 

an inherent system characteristic as non-CD and BE get lower priorities, and their 

traffic transport will be reduced in favour of additional higher priority traffic.   

If resource reservation is applied, either distributed via MSRP or RAP, or centrally via 

a CNC, basically two reservation strategies can be applied, as outlined in more detail 

in Section 4.8. 

1. Booking both paths with the complete traffic that would occur after the switch-

over. This is especially recommended for slower resource reservation mechanisms 

such as MSRP. 

2. Reserve the switch-over load bandwidth immediately after error occurrence. This 

is only recommended with faster resource reservation mechanisms such as 

LRP/RAP. The advantage of this method is that it is a simpler reservation process, 

as data does not need to be classified into the load actually transported on a path 

and the future load to be booked, as described in the previous bullet. 

Which solutions are preferred depends on various factors such as whether a central 

or distributed network configuration has been selected, on the resource reservation 

protocol selection, and on the traffic classes in use. This must be decided by the 

system designer of the complete MAN. 

The aspect of path control, although not the focus within this thesis, needs further 

attention to be paid by the network designer in case of the loss of link or device. The 

load-distribution control algorithm does not know which direction in the ring towards 

possible listeners has been lost. Therefore, it can be beneficial to switch from 

dedicated traffic-engineered paths within the TE-MSTI to FDB learning for the 

dedicated VLANs used by this traffic. Thus, the path to the listeners is automatically 

established by the MAC address learning process, as defined by IEEE 802.1Q (2022). 
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6.9 Chapter Summary 

The most commonly used control methods for load control in communication 

networks for campus, mobile, and service provider networks were discussed in terms 

of their suitability for automation communication networks. In particular, the 

properties of the distribution core control method, flow control method, and possible 

feedback methods were considered. The classical PID controller was selected as a 

suitable representative core control method to satisfy the requirements of typical 

load control preconditions within TSN MANs. It is used for both the core distribution 

controller and flow controller to form the basis on which to build the optimisations.  

The classic approach of a combined load measurement for CD for all application cycles 

has an important disadvantage in that the control inertia is determined by the slowest 

application cycle. The application-cycle-dedicated distribution control has been 

introduced as a major feature for an optimised control method. For this purpose, the 

throughput measurement at the paths output ports is also dedicated to the 

application cycle classes instead of a common measurement. For each node in the 

ring, an AC containing the load distribution controllers sets up a database with path 

delays and tailored controller parameters. This is required for an optimum control 

circuit configuration, wherever in the ring a load maximum is to be diminished.  

Furthermore, it is proposed to exclude slower application cycles from load control 

owing to their low load distribution contribution compared with the effort for a 

dedicated control effort. The smaller talker data traffic of smaller automation devices 

can also be excluded from the active distribution control to avoid the effort for 

controller implementation on such cost-sensitive devices. Alternatively, the traffic 

sending ring direction can be managed by the assigned AC`s LDCs.   

Performance validations confirmed the expected improvements in the load 

distribution convergence time. Another important advantage is that new and slow 

applications added at runtime have no longer an influence on the established load 

distribution setup. 
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Chapter 7      Extension of the LDC Optimisation to Support 

Multiple Automation Controllers 

7.1 Introduction 

In Chapter 6     , an optimised load distribution control method for a single AC, such as 

a PLC or MC, in an automation network ring topology is introduced. The single AC per 

network ring use case is typical for a field-level ring as it appears in setups, such as 

single machines or smaller automation cells, as depicted in the lower part of Figure 

1.1. Field-level rings are often connected to each other by redundant connections via 

a controller-level ring to communicate with each other. This use case is also referred 

to as the Machine-to-Machine (M2M) communication use case. An example is shown 

in Figure 7.1. 

 

Figure 7.1: Machine to machine (M2M) communication 

In this example, a supervisory AC1 communicates with the machines or automation 

cell`s AC2, AC3, and AC4. The machines/automation cells also exchange data. M2M or 

AC to AC is typically a 1:1 communication relation rather than a 1:n relation with many 

listeners. This means that there is usually only one listener in the ring subscribing to 

the streams of a certain talker. However, this has no effect on the load distribution. 

This is similar to considering streams for multiple listeners, where only the last listener 
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on a path is relevant for the extension of the stream into the network. For all the links 

in between, it is of no relevance whether the load is also consumed by listeners 

located nearer to the controller or if there is no more than one listener. Of course, 

there can also exist unidirectional CD, for example, from sensors to ACs or from ACs 

to actuators. The controller-level ring can also contain further ACs with higher-level 

automation tasks. These network structures result in the task of load distribution 

control involving multiple ACs at the same automation network ring.  

The aim of this chapter is to extend the optimised load distribution control method 

from rings with a single AC from Chapter 6     to rings with multiple ACs. 

7.2 Controller Location Considerations: Centrally or Distributed? 

In Section 4.2, the basics and possibilities of a Central Load Distribution Control (CLDC) 

in comparison to a distributed approach (DLDC) were discussed. From an abstract 

point of view, a central intelligence controlling the network traffic of multiple ACs in 

an optimised manner would be an obvious solution promising best optimisation 

results. This central intelligence or Central Network Controller (CNC) can then contain 

algorithms to constantly calculate favourable traffic distributions at runtime. For 

example, Yan Song et al. (2021) use a combination of a modified Ant Colony 

Optimsation (ACO) algorithm and a K-nearest neighbor clustering algorithm to 

optimise a central routing and scheduling algorithm for industrial applications. Yang 

et al. (2021) also used an improved ACO algorithm for centrally calculating an overall 

schedule. Gavrilut et al. (2018) use a K-Shortest Path heuristic algorithm for routing 

and an Adaptive Search Procedure algorithm for scheduling.  

The goal of these algorithms is not only an acceptable load distribution but also a 

minimum latency and no congestions.  Another possibility for LDC is that the CNC 

contains an AI instance with a knowledge base on how to act under certain traffic 

conditions.  A controller based on AI, or strictly spoken rather Machine Learning (ML) 

as the relevant discipline within AI, can contain a problem generator to generate 

stochastically distributed input vectors in the learning phase to provide the possibility 

for the controller to learn from its actions. However, the probability to be successful 

in preparing the ML controller with a complete set of all possible traffic constellations 
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of a real, possibly large plant with this method becomes lower, the bigger the 

networks. Therefore, the ML controller algorithm still learns some of the possible 

traffic constellations in the operating mode. However, such a learning phase during 

operation can also include erroneous or non-optimal behaviour on its way to finally 

achieve the best results. This is an undesired process within automation plants as 

there is no possibility of a learning phase in a real plant under real production 

conditions. To achieve optimum results from the beginning, the learning would have 

to be performed completely before operation via a model or a set of learning data 

providing basic start knowledge to avoid critical automation plant states, possibly 

causing damages to products, the plant, or even to humans. The better the 

environment perception of the ML agent, that is, the more precise the input data, the 

better the control results. Such input data would include for example source and 

destination addresses, application cycles, traffic classes, and frame sizes. Imagining a 

bigger network of hundreds of participants, which is not uncommon for 

manufacturing setups, this results in huge knowledge or action rules database. It 

would have to be built without having the real plant in operation. This could mean a 

very high input effort in advance to achieve a good approximation of the plant. 

Moreover, plant properties change with each additional or removed network 

participant or application on the host. These changes must be learned again before 

the system reacts appropriately. This is again a critical issue with automation 

networks, where the loss of control data must be avoided in any circumstance. 

Another disadvantage of a central solution is that it requires a central source of 

knowledge and action. A second hot-standby CNC is needed to achieve a redundant 

fail-save setup, which is an additional unwanted cost factor.  

Distributed load distribution controllers avoid this disadvantage of a single point of 

failure. Each of the distributed load distribution controller can be responsible for a 

certain amount of load to be distributed in an optimised manner to achieve the 

common goal of an optimised load distribution. The failure of a single controller would 

only have an effect on a part of the load and not a complete loss of the overall 

optimisation function. However, one must realise that the result with distributed 

controllers cannot achieve the same distribution quality results of an "omniscient" 
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central solution. Despite this, because of the greater weight of the advantages, a 

distributed load distribution control approach is also the goal for the multiple AC 

problem in this thesis. A special aspect of a distributed solution is whether there is 

mutual influence of the controllers caused by common load paths. This can result in 

oscillating loads within the network. Whether this is the case is discussed in the 

following subsections.   

7.3 Dependencies between Controller Instances 

In the case of several automation controllers using the same automation network for 

communication with their devices, the use of a dynamic load distribution on more 

than one automation controller can create interdependencies between the individual 

load controllers. The reason is obvious. A change in the network traffic load on one 

path is recognized by different ACs load controllers that also use this path to 

communicate with their devices or other controllers. These will lead to the same 

conclusion to de-load this path. Therefore, the amount of shifted load is influenced 

by the number of controllers and could, without appropriate counter-measurements, 

disproportionately increase the load on the evasion path. This can lead to oscillations 

of the load or overload of paths. Thus, one challenge is to find a solution that 

compensates for these mutual dependencies. 

Furthermore, the resolution of the dependencies is made more difficult because not 

all streams always have a common path. Streams from different talkers to one or 

more listeners somewhere in the ring may be forwarded on completely different 

paths in the ring, or they may only share a part of a common path. To provide a simple 

example of this problem, Figure 7.2 shows four ACs from which two pairs, AC1/AC2 

and AC3/AC4, communicate with each other over paths P1 and P2. 
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Figure 7.2: Consequences of path selection 

In example a.), P2 between AC3/AC4 does not influence the path of AC1/AC2, whereas 

in example b.), when AC3/AC4 chooses the other direction in the ring, this is the case. 

Of course, with more complex controller network setups, and number of applications, 

these dependencies grow and can lead to communication dependencies that can be 

resolved only with unreasonably high effort.  

These dependencies need either to be managed by an inter-working algorithm, or 

they need to be avoided from the start by a proper network-use design.  

7.4 Discussion and Selection of Solutions 

The expected mutual dependencies between multiple load distribution controllers at 

a ring can be counterbalanced in various ways. These reach from accepting and 

incorporating dependency into the load distribution control to complete decoupling 

of the controllers. With the latter solution, the dependencies do not have to be 

considered at all, at the expense of other disadvantages, as can be seen further down. 

The possibilities are closely connected to the applied Layer 2 TSN traffic shapers and 
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schedulers, as all of these have a certain influence. Thus, the first step is to clarify the 

influence of the shapers and schedulers on mutual controller dependency.  

7.4.1 Influence of Traffic Shapers and Schedulers on Mutual Controller 

Dependency 

The CBS is not suitable for automation applications because it distributes a burst of 

frames evenly over time. This would spoil the CD bursts with which the process data 

are transferred at the beginning of an application cycle, as outlined in Subsection 

2.2.3. Therefore, this is not considered here. 

One Layer 2 possibility to build an LDC for CD is to use the SPQ classical queuing 

method in combination with resource reservation. The latter is necessary to achieve 

deterministic behavior by excluding overload situations. A further requirement to 

reach deterministic behaviour is to assign this traffic class the highest QoS priority. 

Otherwise, frames would constantly be kept waiting in the output queue in favour of 

other higher-priority traffic spoiling determinism. As all ACs must be granted the 

possibility of using deterministic CD, they are all to be using the same high-priority 

traffic class. Thus, all the ACs CD traffic, which is subject to load control, is controlled 

via the same output queue in the bridges and bridged end stations. This creates 

varying latencies when the frames are transported through the network, which is 

unfavourable for the accurate design of applications.  

Therefore, the SPQ is generally, regardless of its properties as to LDC, a rather 

unfavourable selection in terms of multiple ACs, if their applications depend on 

deterministic behaviour without much jitter. Although a bounded latency can be 

guaranteed owing to stream reservation, a certain determinism, that is, a guaranteed 

latency with a certain tolerance for jitter, is difficult to achieve. Regarding LDC, with 

the SPQ, all frame load changes measured by an ACs load control are also visible for 

other ACs and their load controllers thus creating a mutual dependency. Thus, the 

distribution control will always influence the CD of others ACs by choosing a specific 

path, unless other measures are taken. One such measure would be to provide a clear 

path when a frame is transmitted onto the network. This can be achieved by a central 

frame transmission algorithm that is aware of the complete traffic in the network. 
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Such a CLDC is in the position to calculate the exact transmission point in time for all 

or for certain important traffic of high priority in the complete network. If this is 

applied on at least the highest-priority CD, the jitter for the single frames can be kept 

at a minimum. However, a central solution is not the focus of this thesis, because of 

the disadvantages listed in 7.2. The SPQ thus creates mutual dependencies in 

combination with DLDCs. 

EST allow the assignment of certain traffic to traffic classes. These can be assigned to 

dedicated gating windows in the network cycle as described in Subsections 2.2.3, 

5.3.4, and Section 5.6. This fact can be used to separate traffic in a time-multiplexed 

manner. If each AC, with its internal load distribution controllers, is assigned to a 

different gating window, the LDC would also be decoupled. This approach is further 

discussed in Subsection 7.4.3. 

The CQF traffic shaper typically works with smaller network cycle times, which are 

used to shift data frames from hop to hop in each network cycle, as explained and 

analysed in Subsections  2.2.3, 5.3.5, and 5.6. It also makes use of gating windows, 

similar to the EST, to reserve sending slots for traffic classes. Thus, in principle, it can 

also achieve the separation of traffic from different ACs in a time-multiplexed manner. 

The typical method for designing the CQF function is a one-buffer system, as described 

in IEEE 802.1Qch (2019). However, the traffic of several stream classes for several ACs 

cannot be separated into a single queue buffer. If each AC should be assigned a 

different stream class to achieve decoupling, different output queues must be 

emptied at different gating windows. This is why, at least with the classical CQF 

approach, working with a one-buffer system, there is also a mutual dependency 

between distribution load controllers residing on different ACs at the ring. One 

possibility to circumvent this would be to assign each controller different stream 

reservation classes combined with separate multiple CQF queuing systems. Multiple 

CQFs were also proposed by Finn (2019) for the separate handling of streams or 

stream classes.  A two buffer CQF system as described by IEEE 802.1Q (2022), Annex 

T, can differentiate between two different  stream classes, typically differentiated by 

priority, for two ACs without mutual influence. However, this requires an extension 

of the network cycle. The extension of the network cycle with the addition of further 
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ACs is also necessary with EST, but the EST method only needs one network cycle for 

all data traffic to traverse the complete network. In contrast, the CQF requires one 

network cycle per hop, which is a crucial disadvantage in terms of the implied higher 

dead time and the associated disadvantageous control behavior, as outlined in 

Chapter 5     . An alternative for a one queue buffer system to support further ACs 

including mutual independency would be the Per Stream Filtering and Policing (PSFP) 

feature belonging to the CQF shaper according to IEEE 802.1Qch (2019) . Using this, 

streams could be classified into Stream ID ranges, and not only Stream Classes 

differentiated via stream priority. Another aspect with multiple stream classes CQF is 

that it is a rather hardware resource-consuming requirement, as dedicated input 

filters in combination with buffers are required on each bridge. This is especially true 

if, for each stream class, a system of parallel input/output buffers for a better 

parallelism of the reception and sending phase shall be achieved, as proposed by Finn 

(2019). This could be problematic, as it is particularly for low-end bridges, not a matter 

of course to have these resources available. A clear advantage of the CQF is that it 

provides a rather easy to calculate delay, which depends mainly on hop count and 

network cycle time, as shown in Subsection 2.2.3 and Section 5.6. Thus, CQF always 

has the conflict of the need for small network cycles to obtain short end-to-end 

latency and the need for long network cycles to encompass all applications regardless 

of the length of their application cycle. However, in larger networks, this leads to long 

end-to-end delays which imply a need for a more sophisticated dead-time-

compensating control design. Summarising these CQF properties it must be stated 

that the EST is better suited for a solution with mutual controller independency than 

the CQF. 

In principle, the ATS is a combination of EST and asynchronously filled upstream 

buffers. Thus, it can also reach the separation of traffic in the same way as the EST, 

and also reach a mutual independency of load distribution controllers residing on 

different ACs. As outlined in Subsection 2.2.3, the difference is that the AST bridges 

are not synchronised. This means that the end-to-end latency from a controller to any 

maximum at a certain link is larger than with the EST, with the known disadvantages 

of the worse controllability of ATS LDC, as analysed in Section 4.6. Therefore, EST is 



  Page 256 

preferred over ATS, not only for the design of the optimal load distribution control 

solution for single AC, but also for a solution of mutual controller independency.  

Preemption has no influence on the mutual dependency of ACs load distribution 

control because it only influences the latency of the highest priority stream class. This 

is then preemptive, as it can interrupt lower-priority frame transmissions in favour of 

its own stream class frame transmission on a port.  

As a result of these considerations, Table 7.1 comprises the properties of the shapers 

and schedulers regarding their suitability to achieve mutual independency of load 

distribution controllers. It also contains strategies on how a distributed load 

distribution control solution based on the different shapers and schedulers can look 

like. 

Table 7.1: Load controller dependency properties of traffic shapers and traffic 
schedulers and cooperation solution strategies.  

Shaper/ 

Scheduler 

Controller 
Independency 

possible? 

Possible solution strategies for controller cooperation 

SPQ No To cope with the mutual controller dependencies, an obvious 
strategy would be as follows: guarantee that only one 
controller at a time is influencing the traffic distribution. 
Furthermore, the single controllers should have only 
influence on own traffic sources and traffic from certain fixed 
assigned communication partners. However, this solution is 
expected to take more time than solutions with mutual 
independencies as it needs to work step by step instead of 
the parallel processing of the independent controls. 

EST Yes EST supporting end stations, bridges, and bridged end 
stations are timely synchronised by PTP or gPTP. This fact 
can be used to reserve time slots within a network cycle 
for each AC and its load distribution controllers. Thus, the 
CD traffic of the different ACs can never influence each 
other if the ACs follow this assignment. On top of this, EST 
gating windows on output ports of the bridges can be 
used to secure that traffic reaching bridges outside the 
assigned time slots will be blocked by EST.   
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Shaper/ 

Scheduler 

Controller 
Independency 

possible? 

Possible solution strategies for controller cooperation 

CQF Yes In the same way as with the EST, with CQF, end stations, 
bridges, and bridged end stations are time synchronised 
and the same solutions as with the EST can be applied. 
The difference is that the gating windows are applied 
between each node (hop) instead of one window to cross 
the complete path. Thus, the hop-by-hop cyclic 
forwarding involves a higher delay than EST, making the 
CQF rather a second-choice candidate in combination 
with multiple-AC LDC. 

ATS Yes Considering the ATS in combination with multiple load 
controller cooperation, the crucial design feature is again 
the gating facilities at the output port. As with the EST 
and CQF, it can be used to separate the single ACs traffic 
classes to achieve a mutual independency. The single 
nodes are not timely synchronised as with EST and CQF. 
Therefore, an even higher and variable path delay must 
be accepted. This makes it much more difficult to apply 
flow control for higher bandwidth-consuming streams as 
discussed in Chapter 5     . These facts make the ATS a 
rather unattractive candidate for networks which should 
implement multiple-AC LDC.   

 

The above discussions and the given solutions in the table show that the SPQ can be 

used for a solution that tolerates and solves load distribution controller 

interdependencies. It has the advantage of the best bandwidth use among all the four. 

From the three shapers and schedulers EST, CQF, and ATS, which allow mutual load 

distribution controller independency by design, EST is clearly preferred for its 

minimum path delay capabilities. These allow for the most efficient flow control 

setups as shown in  Chapter 5     . The following subsections propose solutions for both 

the variants. 

7.4.2 A Solution Including Mutual Controller Dependencies 

If a traffic scheduler or shaper that implies load controller dependence, as is the case 

with the SPQ, needs to be selected as the hardware basis of the network domain for 

any reason, then a suitable method or algorithm to handle this dependence needs to 

be provided. This is hence forward named “Strict Priority Queuing based Distributed 

Load Distribution Control (SPQ-DLDC)” as a working title here for easier addressing. 
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As mentioned in the overview in Table 7.1, possible cooperation between the ACs 

can be achieved by timely decoupling of the ACs LDC process. Such a dependency 

compensation process, which must be in place at each controller in combination with 

the distributed approach, can be constructed as follows: 

1. Every bridge or bridged end station in the ring, for example, an AC, distributes 

its traffic situation at its ring ports for each traffic class, application cycle class, 

AC assignment, and direction into the network. This can be achieved via 

multicast load updates, which are subsequently consumed by the nodes in the 

network. These build the throughputs classified by the application cycle 

according to Equation (6-1). 

2. Every bridge or bridged end station, including all ACs, maintain a database that 

contains the traffic situation of the complete network.  

3. One station acting as a load control administrator manages a temporal 

optimisation sovereignty token for the ring and leases this temporarily to the 

ACs, for example, in a round-robin system. 

4. An AC receiving optimisation sovereignty checks whether it can improve the 

network load distribution either by maximum-reduction or optimum-

distribution optimisation, depending on the selected optimisation strategy, as 

outlined in Section 4.6. The overall load at disposition for CD load control within 

the network domain is given by:  

𝑴𝐶𝐷,𝑖𝑗 = 

[
 
 
 
 

𝜇𝐴𝐶1,1 . . . 𝜇𝐴𝐶1,𝛼𝑚𝑎𝑥

. . . . .

. . . . .
𝜇𝐴𝐶𝛾𝑚𝑎𝑥,1 . . . 𝜇𝐴𝐶𝛾𝑚𝑎𝑥,𝛼𝑚𝑎𝑥

     ]
 
 
 
 

 (7-1) 

The rows are indexed by the controller assignment and the columns by the 

application cycle classes. The latter are required to apply the optimised 

application cycle class dedicated single AC control method from Chapter 6      on 

every AC in the network domain. The maximum-reduction optimisation goal 

from Equation (6-2) is the goal for each AC: 
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minmax
𝑖,𝑗∈𝑽

𝜇𝑖𝑗,𝐴𝑝𝑝𝛼 ; Subject to:  ∀ 𝑒 ∈ 𝑬(𝐺);  𝛼 ∈ 𝑨;  𝐴𝐶𝛾 ∈ 𝑨𝑪 (7-2) 

 

The alternative optimum-distribution optimsation goal is changing in the same way 

from the form in Equations (4-5) and (4-6) to 

min∑ (𝜇𝑖𝑗,𝐴𝑝𝑝𝛼 − 𝜇𝑀,𝐴𝑝𝑝𝛼)2
𝑛

𝑖,𝑗=1
𝑖,𝑗∈𝑽

  (7-3) 

Subject to: 

∀ 𝑒 ∈ 𝑬(𝐺); 𝛼 ∈ 𝑨;  𝐴𝐶𝛾 ∈ 𝑨𝑪 
 

𝜇𝑀,𝐴𝑝𝑝𝛼 = 
∑ 𝜇𝑖𝑗,𝐴𝑝𝑝𝛼

 𝑛
𝑖,𝑗=1

2𝑛
 ;   𝑛 ∈ ℕ  (7-4) 

 

5. The optimisation process and core algorithm for an ACs LDC for one 

traffic class are shown in Figure 7.3. The solution described above can 

be classified into the category of dedicated algorithm controllers , as 

described in Subsection 2.3.3. This process cooperates with the load 

distribution control assembly setup consisting of the core PID 

distribution controller, PID flow controller, and packet controller , as 

described in Section 6.5. The maxima can be found by making a closed 

graph walk from each AC in each direction of the ring, where the AC 

represents the root of the graph. The optimisation algorithm enables the 

packet controller of the LDC circuit and feeds it with the Stream ID. This 

can then be used by the packet controller working as the flow controller 

output, thus achieving a reduction in the load difference for each 

application cycle class between the two paths originating from the AC 

currently being active. For a pure bridge or bridged end station not being 

an LDC container, the process shown in Figure 7.3 reduces to the first 

two tasks after initialisation, consisting of rolling mean building and 

distribution.  
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Figure 7.3: Dynamic load distribution control optimisation process and core 

algorithm 

6. If the AC has finished this optimisation interval for all its application cycle 

classes, it releases sovereignty to the administrator station, which leases it to 

the next station. 

7. The next AC then repeats this process until all ACs contributions reach a state 

without further improvements.  

8. New exogenous traffic interference into the ring from higher-level or lower-

level coupled networks, or from ACs with new applications, bring new load 

imbalances that lead to new optimisations. 

This optimisation strategy for finding better distributions towards a possibly 

optimum distribution can be classified as an “optimum-distribution” method, 

as described in Section 4.6. The described process demands that each AC is 

informed of which listeners in the network ring have subscribed to the CD 

streams it publishes. Moreover, each AC needs to know the distance (hop 
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count) to these listeners in each direction to assess whether the change of a 

stream or the division of a stream affects the maximum at the link in question.  

This also implies knowledge of the location of the maximum, and not only the 

direction. Such information is required to calculate what each change in 

direction would add to the other links load in the ring. With the described 

approach, an AC holding control sovereignty does not continue the 

optimisation until it has found an optimal solution, but rather applies the first 

found improvement. This ensures a fast application of this improvement 

instead of trying further possibilities with the risk of getting no better results, 

thus only wasting time. The alternative would be a more time-consuming 

calculation of all possibilities, leading to the advantage of finding the best 

result. Which of the two possibilities is advantageous in various si tuations can 

be the subject of further research, exceeding the focus of this thesis.  

A clear advantage of selecting the SPQ as the hardware basis is that the 

available bandwidth is optimally used. This is because no gating windows are 

reserved for certain ACs, which might only be partially used. This would mean 

that the bandwidth lies fallow and is wasted and not usable for other ACs. 

However, this could be counterbalanced with a flexible gating window length 

for the EST-based hardware. The length could be adjusted after the load 

measurement as shown in the next subsection with EST-DLDC. With SPQ-DLDC, 

ACs can use whatever amount of the overall bandwidth they need without being 

mindful of gating window limitations. Of course, one could assign such 

bandwidth usage limitations to single ACs without the presence of hardware 

limitations such as gating windows. However, this would spoil the optimal 

bandwidth utilisation advantage of the SPQ-DLDC. On the other hand, this 

waiving of the individual resource reservation limitation also poses a risk. 

Traffic control mechanisms or reservation mechanisms will then only check the 

maximum available overall bandwidth corruption and not the individual ones 

for the single load controllers. One AC cannot increase its admissible maximum 

bandwidth to the overall available bandwidth at the cost of reducing the 

available bandwidth for others without influencing the others. However, the 
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optimum bandwidth use advantage could outweigh this. In this case, the most 

sensible bandwidth limitation border for resource reservation for each load 

distribution controller for the SPQ hardware basis in analogy to Section 4.8 is 

given as follows:  

𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 = 𝐵𝑀𝑎𝑥 (7-5) 

where 𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 is the maximum reservation for single-path operation, 

and 𝐵𝑀𝑎𝑥 is the maximum overall bandwidth available, which is assumed to be 

1 Gbit/s for the networks used here.  

Moreover, the application cycle time also plays an important role in 

consideration of bandwidth use. With EST, long application cycles of multiple 

network cycles still make gating window reservations in every network cycle. 

However, these time slots are used only at the frequency of the application 

cycle. The result is worse bandwidth overall utilisation with solutions using 

gating windows. This is not the case with SPQ which is a further advantage of 

SPQ-DLDC.  

Another advantage is that no time synchronisation protocol is required for 

frame transmission within the assigned time slot. This also enables less-

expensive end stations to participate in the load-controlled network. This is 

often a crucial requirement for creating a MAN solution.  

Regarding the detailed design of one ACs load distribution control  for SPQ-

DLDC, the same principle of separated controllers for each or for the most 

important application classes, which are differentiated by their application 

cycle, applies, as outlined previously. With SPQ-DLDC, the application cycle of 

a certain CD has a further influence. As outlined in Section 5.2, the rolling mean 

measurement time interval must be longer than the CDs application cycle to 

avoid oscillation of the measured value. This also means that load distribution 

controllers residing on other ACs will measure an applied change to its full 

extent only after the rolling mean measurement time interval has passed. 

Therefore, an AC must wait for at least: 
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𝑇𝑃𝑎𝑠𝑠𝑇𝑜𝑘𝑒𝑛 ≥ 𝑇𝑀𝑒𝑎𝑛 (7-6) 

before passing the control sovereignty token back to administration and thus 

further to the next AC. 𝑇𝑃𝑎𝑠𝑠𝑇𝑜𝑘𝑒𝑛 is the token passing time interval to wait, and 

𝑇𝑀𝑒𝑎𝑛 is the rolling mean measurement time interval from Section 5.2, of the 

application cycle class of the CD for which a path change is currently ongoing. 

This ensures decoupling and prevents other controllers from reacting to traffic 

situations that are about to change. Otherwise, the load changes would 

oscillate. 

It is clear from these considerations, that the effort to compensate for the 

mutual dependency of load distribution controllers is extensive. The alternative 

is to exclude mutual dependencies from the start as discussed in the following 

subsection. 

7.4.3 A Solution Avoiding Mutual Controller Dependencies 

Summarising the discussion of the properties of the shapers and schedulers 

from Subsection 7.4.1, it can be stated that EST, CQF, and ATS are suited to 

achieve decoupled multiple ACs load control in combination with DLDC. Let us 

name these solutions EST-DLDC, CQF-DLDC, and ATS-DLDC respectively, in 

analogy to the SPQ-DLDC of Subsection 7.4.2 for easier addressing. The 

decoupling is achieved mainly by the reservation of time slots for the single 

AC’s CD traffic within a network cycle. It must be stressed that this network 

global time-slot reservation is applicable for both I-CD and NI-CD. This is the 

case even though the latter is not sent synchronously to a network global 

working clock. It is only sent cyclically with the cycles derived from a device-

local clock. However, NI-CD will be synchronised into the timing slots at the first 

bridge, that is, the edge bridge. The bridges themselves must be synchronised. 

The use of NI-CD allows for simpler and economical device design, saving cost 

sensitive devices the often tricky and demanding time synchronisation protocol 

support. The backside of the NI-CD is a higher latency as this waiting time at 



  Page 264 

the edge bridge for synchronisation to the time slots is added to the overall 

path delay.  

Theoretically, this reservation of the time slot for sending in combination with 

a time-synchronised transmission of frames by ACs or bridges would be 

sufficient to achieve decoupling. However, a further measurement to exclude 

possible timing slot corruptions by ACs is to use a reserved time-controlled gate 

opening, that is, the gating window, at the output port. The gating windows are 

assigned to the different traffic queues of the traffic classes, one for each AC. 

This can be achieved using firmware for all three EST, CQF, and ATS schedulers 

in the TSN supporting bridge switch ASICs. As we have seen in the previous 

subsection, the SPQ shaper is not suitable for achieving this decoupled stream 

handling in combination with DLDC. This is because even scheduled 

transmission of frames does not guarantee uninfluenced transportation 

through the network. As outlined in the previous section, decoupling can be 

achieved only by applying control time slots instead of send time slots. Another 

crucial advantage of the EST-DLDC, CQF-DLDC, and ATS-DLDC is that separate 

queues are used for the gating windows. In contrast, with SPQ-DLDC, the 

streams of all ACs share the same queues in the bridges, implying that traffic 

interference arriving at any point in time thus influences the available load and 

the measured load for others. However, as already outlined in the previous 

section, in contrast to EST-DLDC, CQF-DLDC, and ATS-DLDC, SPQ and SPQ-DLDC 

manage without a time synchronisation protocol. 

Thus, EST, CQF, and ATS traffic shapers are suited to achieve decoupling of the 

load distribution controllers working at the same automation network ring. This 

thesis focuses on the EST-DLDC solution because of its very low latency 

advantage as described in Chapter 5     . However, any conclusions drawn for 

EST-DLDC regarding load control decoupling apply equally to CQF-DLDC and 

ATS-DLDC solutions. 

As stated above, decoupling is achieved by reserving dedicated stream classes 

and gating windows for each AC. Thereby, a time-multiplexed use of the 
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network is possible with each AC using a different time slot. This demands a 

time-synchronised sending of the I-CD or alternatively a cyclic sending of the 

NI-CD within each AC, and thus an application of a time synchronisation 

protocol such as IEEE 1588 (2019) or IEEE 802.1AS (2020) for the end stations 

(only for I-CD), bridges, and bridged end stations. Figure 7.4 depicts the 

solution. 

 

Figure 7.4: EST-DLDC solution for Automation Controller decoupling 

In the example in Figure 7.4, the I-CD and NI-CD gating window slots are 

reserved for four ACs, AC1 to AC4, located in a ring, as shown in Figure 7.2. 

Locating the NI-CD slot of an AC directly after the I-CD slot of the same AC has 

the advantage that the gate for the I-CD of that controller can stay open during 

the opening of the NI-CD gate. Thereby, possibly late frames of I-CD are not 

blocked, although this should theoretically not occur if the network has been 

designed properly and the resource reservations have not been exceeded. After 

all CD gating windows of a network cycle follows a common Best Effort (BE) 

traffic phase within that cycle for all non-CD traffic. The common BE phase 

instead of single BE phases after the CD gating windows has the advantage that 

large frames can also be transported without being constantly interrupted or 

queued in favor of the next I-CD phase of the next AC. An SPQ can be applied 

within the BE window. As with the mutual dependency solution SPQ-DLDC from 

Subsection 7.4.2, each AC in the EST-DLDC has separated load distribution 

controllers for each or for the most important application classes categorised 

by their application cycle membership. The difference to SPQ-DLDC is the 

crucial parameter of the maximum admissible bandwidth. The decoupling is 

achieved by limiting the bandwidth maximum by the relation of the length of 

the gating window to the network cycle length:  
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𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 = 𝐵𝑀𝑎𝑥  ⋅  
𝑇𝐺𝑊

𝑇𝑁𝑒𝑡𝑤
 (7-7) 

where 𝐵𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑎𝑡ℎ𝑅𝑒𝑠𝑀𝑎𝑥 is the maximum reservation for single-path operation, 

𝐵𝑀𝑎𝑥 is the maximum overall bandwidth for the path, 𝑇𝐺𝑊 is the gating window 

length of the stream class, and 𝑇𝑁𝑒𝑡𝑤 is the network cycle length. The lengths of the 

gating windows do not have to be fixed. They can be estimated at the time of 

engineering to meet the needs of individual ACs. Furthermore, a dynamic adaptation 

of the length could be applied in such a way that, for example, only partially used 

windows could be reduced or constantly full windows could be extended after such 

situations have been measured over a longer period. Figure 7.5 shows an illustration 

of an example of bandwidth use with the EST-DLDC. 

  

Figure 7.5: Illustration of EST-DLDC bandwidth use example 

In this example, only AC1 NI-CD and BE show proper utilisation of bandwidth because 

the unused bandwidth is small compared to the bandwidth used. This means that the 

gating window for AC1 NI-CD is slightly longer than that required to have some reserve 

bandwidth. The AC1 I-CD window length is not ideal and could be reduced. This could 
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also lead to a smaller network cycle length if it fits the end stations’ capabilities and 

needs. With respect to the bandwidth measurement interval, also with EST-DLDC, the 

bandwidth measurement interval must be a multiple of the longest application 

cycle class time 𝑇𝐴𝑝𝑝𝛼 as outlined in Section 6.5.  

If a certain transmission and gating window is reserved for only one ACs CD 

traffic class, then one could justifiably ask whether there can be any traffic 

interference at all in the ring within that traffic class. One could further argue 

whether then a DLDC is necessary at all. However, the answer to this question 

is still yes. One advantage, even without any interference, is that the DLDC 

automatically cares for a smooth load distribution from the start, saving the 

network administrator ’s effort into precise traffic engineering. In addition, 

unidirectional traffic to actuators or from sensors creates imbalances in the 

paths. This could happen within a stream class of an AC if this unidirectional 

traffic is assigned to this stream class, or it could be assigned to a reserved 

class. A common stream class is expected to be better suited. There are two 

reasons for this. First, the number of stream classes should be kept low for 

better bandwidth utilisation, as described by the incomplete use of gating 

windows above. Second, there are limited gating window configuration 

possibilities in the switch hardware. A further cause for load imbalances is that 

also seamless traffic, that is, traffic sent doubly in both directions, issued by 

ACs using the FRER, PRP, or HSR media redundancy protocols do not 

automatically leave a balanced network load distribution, as one might assume 

at first. This is evident in the example shown in Figure 7.6.  
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Figure 7.6: Automation setup with seamless traffic 

Let AC1 be a head or supervisory AC communicating seamlessly with three field 

level ACs, AC2 to AC4, each of which controls, for example, a machine or a 

smaller automation cell. AC2, AC3, and AC4 also communicate with each other 

(machine-to-machine, M2M). All communication is assumed to be bidirectional, 

that is, the AC1 delivers, for example, control setpoints or other output 

settings, and the communication partner answers with control actual values or 

other input data. If we assume that the communication of AC1 with the other 

ACs consumes a 5 percent load in both directions and M2M consumes a 2 

percent bidirectional load, we obtain a special case of homogenous load 

distribution over links L1 to L4 of 21 percent (see Annex 1 for detailed 

calculations). However, if we only had an asymmetrical communication load of 

AC1 to AC2, AC3, and AC4, assuming 5 percent from AC1 to others and 3 percent 

in the other direction, the load distribution is already inhomogeneous and 

justifies LDC. Figure 7.7 graphically shows the load distribution in the latter 

case. For detailed calculations, refer to Appendix 1. 
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 Figure 7.7: Example of load distribution of seamless communication with 

unsymmetric load. 

If we assume further unidirectional sensor/actuator CD streams without LDC, 

the load distribution can become further inhomogeneous. Therefore, non-

seamless CD traffic in the ring makes sense to be used as a means to achieve a 

more homogeneous load distribution. For example, let us assume further non-

seamless traffic between AC1 and AC2 in both directions. In the direction from 

AC1 to AC2, both directions have the same maximum of 21 percent already, and 

it would therefore be best to divide the additional load on both paths. In the 

direction from AC2 to AC1, it would be best to send the traffic counterclockwise 

over L1. This is the better selection, as it would help both to avoid creating a 

higher value over L2 and using the shortest path. In addition, the shortest path 

achieves a minimum delay on top of the favourable load distribution. Thus, the 

LDC with its integrated packet controller provides the best path selection for 

this non-seamless traffic. However, even if seamless traffic is distributed 

homogeneously, additional uncoordinated non-seamless traffic spoils the 

distribution without an LDC. Again, the load distribution control algorithm 

ensures that all single-path traffic will be split automatically between the two 

possible paths, thus avoiding the local maximum to be on either of the two 

paths nearest the controller. From a practical point of view, non-seamless 

traffic can be marked either as minimum-delay traffic or as load-distributable 

traffic. A packet controller in a load distribution controller can assign the 
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shortest path to the traffic with minimum-delay requirement and use load-

distributable traffic for load distribution optimisation purposes.  

Another traffic type to be considered with LDC is bidirectional traffic to smaller 

end stations that do not provide their own LDC, but are under control of an AC. 

For example, this could be a drive for motor control. The AC, with its load 

distribution controller, can choose the path towards the drive. For the CD traffic 

in the other direction, from drive to AC, such as actual values of the motor 

current, speed, or position values, the drive could select the reception port of 

the setpoints to be also the output port for actual values. Another solution can 

be that the AC manages the drive output port usage. This can be achieved by 

either a flag in the header of the CD or by a generally manageable object in an 

end station, the drive in this case, at the control plane level. Thus, the AC can 

influence the CD direction from the end station to the AC and thus include it in 

the LDC.  

A further advantage of the EST, CQF, or ATS decoupling of ACs is that the ACs 

are generally decoupled, not only from an LDC perspective. This is particularly 

important in the case of plant extensions. In this case, it is often an issue that 

newly added applications create changed traffic situations in a network. This 

can have an influence on applications that were previously operated without 

problems, such that they experience communication problems owing to the 

additional load. Previously deterministic traffic, could, for example, no longer 

be deterministic after the extension. This is especially risky with SPQ as a 

hardware basis. With the EST, CQF, or ATS decoupling possibilities, this problem 

is avoided as newly added ACs are assigned their own stream classes and thus 

their own gating windows without influencing the already established ones. 

Therefore, the bandwidth reserve should be considered when designing the 

network for an automation plant, that is, in this case, space for possibly new 

reserve gating windows within the network cycle. 

In combination with the network cycle length, one disadvantage or peculiarity 

of gating-window-based solutions must be discussed at this point. As outlined 
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in Section 4.7, the fastest application cycle occurrence in the network domain 

assigns the maximum network cycle length. Shorter network cycles are also 

possible. However, with the AC decoupling method, all ACs time slots for I-CD 

and NI-CD as well as the BE phase must fit into this network cycle. This relation 

is given by: 

𝑇𝐴𝑝𝑝𝑀𝑖𝑛 ≥  𝑇𝑁𝑒𝑡𝑤  ≥  𝑇𝐺𝑊 𝐵𝐸 + ∑(𝑇𝐺𝑊 𝐼𝐶𝐷𝑖 +

γ

𝑖=1

 𝑇𝐺𝑊 𝑁𝐼𝐶𝐷𝑖)  (7-8) 

where 𝑇𝐴𝑝𝑝𝑀𝑖𝑛 is the smallest application communication cycle in the network 

domain applying the EST-DLDC,  𝑇𝑁𝑒𝑡𝑤 is the network cycle, 𝑇𝐺𝑊 𝐵𝐸 is the gating 

window length for BE traffic, 𝑇𝐺𝑊 𝐼𝐶𝐷𝑖 the gating window length for the I-CD of 

one AC, 𝑇𝐺𝑊 𝑁𝐼𝐶𝐷𝑖 the gating window length for the NI-CD of one AC, and γ is the 

number of ACs in the EST-DLDC network domain. These two contradicting 

limiting preconditions have conflicting demands regarding the network cycle 

length. Thus, the selection of the network cycle might not be possible with fast 

application cycles, many ACs, or large CD traffic demands. A fact that defuses 

this is that multiple ACs typically appear only in controller-level rings which 

usually have slower application cycles than a field-level ring.  

Nevertheless, should such a conflict be present, a possible solution is to 

segment the controller level ring as shown in Figure 7.8. However, a necessary 

precondition for this is that the communication structure of the network allows 

a sensible separation into clusters of devices, forming separate rings for ACs 

that communicate more intensively with each other. The inter-communication 

between these clusters, that is, rings, should be as small as possible which then 

allows to keep the gating windows of ACs of the other ring small . 
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Figure 7.8: Segmentation of the controller level ring 

The top-most solution a.) in Figure 7.8 shows a single controller level ring, as it 

would be set up if the EST-DLDC is possible within the network cycle. Solution 

b.) shows the segmented controller level ring, resulting in two independent 

controller level rings that are redundantly interconnected via four bridges. This 

redundant interconnection can be achieved using suitable redundancy 

protocols such as RSTP/MSTP or MRP Interconnection to avoid broadcast 

domain loops on non-stream traffic levels, for example, for BE traffic. CD 

streams are not forwarded via FDB learning but are under path control and are 

thus not subject to RSTP/MSTP or MRP Interconnection path-changing 

redundancy protocol influences. The seamless inter-ring stream traffic uses the 

seamless FRER protocol for transport. Both rings can use the same 

communication cycle but with longer gating windows for ACs belong to the ring 

and smaller windows for those of the other ring. The advantage of solution b.) 

is that changes or errors in one ring do not influence link loads or load 

distribution of the other rings. However, its disadvantage is the higher cost for 

four additional bridges. Solution c.) also shows controller-level ring 

segmentation, but now with only partly independent rings at the lower cost of 
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only two interconnection bridges. This can also be achieved by applying either 

RSTP/MSTP or vendor-specific faster protocols especially tailored for 

automation purposes and involving shorter reconfiguration timings than RSTP 

in the case of network errors. However, the disadvantage of solution c.)  is that 

a missing link or device in one ring also induces load changes in the other ring. 

For example, if the link between AC4 and AC6 is lost, the traffic that used this 

link must be redirected to the path between AC4 and AC5. However, this path 

also has a common link with the path between AC1 and AC3, thereby 

influencing link load distributions of the other ring. 

7.5 Performance Considerations for Multiple Automation 

Controller Solutions 

With the SPQ-DLDC solution from Subsection 7.4.2, implying mutual load distribution 

controller dependency, control sovereignty is handed from AC to AC in a round-robin 

fashion. Each AC calculates its LDC according to the previously described algorithm. It 

has also been stated that the time to elapse before the token can be handed to the 

next AC depends on the application cycle of the controlled CD class which is shifted 

from one path to another because of the optimisation algorithm calculations. This is 

because the rolling mean measurement interval must have been elapsed for the next 

controller to measure the usual traffic distribution after the last change. The number 

of optimisation attempts required for each AC and application cycle class in the 

network to reach the final optimum load distribution in the network cannot be 

predicted. This is different for each network and depends on many factors, such as 

the overall amount of seamless and non-seamless streams, the location of the talkers 

and listeners, and the network size, that is, the number of nodes. Therefore, CD with 

long application cycles not only has a lower bandwidth consumption but also lower 

influence on the load distribution if it is changed. Their changes also require longer 

token passing time, and thus, a longer overall time to achieve the overall optimisation. 

Therefore, it is recommended that an SPQ-DLDC controller residing on an AC starts by 

first checking the CD streams with the fastest application cycle. This ensures a faster 

convergence time for the overall optimsation result.  
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With the solutions EST-DLDC, CQF-DLDC, and ATS-DLDC, which exclude mutual load 

distribution controller dependencies, the LDCs residing on the different ACs can work 

in parallel. This is because each AC works with a dedicated stream class for its CD 

streams which can then be kept in different transmission slots and gating window 

slots, as outlined in Subsection 7.4.3. Thus, the distribution load controls also operate 

in separate time slots and gating windows. Therefore, these three solutions are 

expected to converge much faster than with SPQ-DLDC method.  

Comparing simulations between the two described solutions are pointless for the 

following reasons: 

1. The parallel processing of EST-DLDC, CQF-DLDC, and ATS-DLDC, will in any way be 

faster than the subsequent processing of the same control loops with SPQ-DLDC. 

2. Quantitative convergence speed simulation results would be of low value. This is 

because they depend on many network parameters such as number of ACs, 

number of bridges, number of applications, application cycle intervals, and 

stream sizes of applications.  

7.6 Chapter Summary 

The optimised load distribution control method for a single AC in the field level-ring 

from Chapter 6     must be extended to be applied in a controller-level ring for 

machine-to-machine (M2M) communication with multiple ACs. There are two control 

strategies possible to control the load of multiple ACs. These are the Central Load 

Distribution Control (CLDC) and Distributed Load Distribution Control (DLDC). The 

CLDC is typically located on a CNC, which typically also performs other tasks such as 

network orchestration, nodes configuration, transmission scheduling, and resource 

reservations. The advantage of CLDC is that it can achieve an optimum load 

distribution because it has access to all traffic information and influence on all nodes 

in the entire network domain. One disadvantage is that constant reorganisation of the 

network with each change or extension of the setup would constantly disturb the 

established automation applications. Another disadvantage is the single point of 

failure of the CNC. Its loss would lead to a loss of the complete load-distribution 

function. With DLDC, the single load distribution controllers are located on various 



Page 275   

ACs and thus distributed in the network. Each AC is responsible only for its own CD 

traffic. Thus, the failure of one AC has only a limited influence on the overall load 

distribution optimisation function. For these reasons, DLDC is the preferred solution 

and is the basis for the solutions proposed in this chapter.  

Different traffic shapers and schedulers have different effects on the DLDC approach. 

With the SPQ as the hardware basis, a mutual dependency exists between the 

distributed load controllers. A DLDC solution based on SPQ is proposed and outlined, 

which is based on a step-by-step optimisation process handing over a control 

sovereignty from AC to AC in a round-robin system. Thus, the ACs SPQ-DLDC is timely 

decoupled. An algorithm for this SPQ-DLDC was proposed. 

A DLDC solution without mutual dependency among the load controllers is possible 

with EST, CQF and ATS hardware solutions. With all three shapers/schedulers, the 

time-synchronised controllers and bridges in the network enable a time-synchronised 

transmission of the CD traffic. In combination with the gating windows of 

shapers/schedulers, time-multiplexed forwarding within the network is possible. Each 

AC uses different stream classes for its CD, which are assigned to different time slots; 

thus, the ACs with their LDCs are decoupled and run in parallel. The EST-DLDC is 

preferable to the CQF-DLDC and ATS-DLDC for its lower end-to-end latency, allowing 

less complex flow control setups. The SPQ-DLDC makes better use of the available 

bandwidth as it lacks fixed reserved time slots and allows flexible bandwidth usage by 

all the ACs. In contrast, all ACs LDCs can operate in parallel when using EST-DLDC, CQF-

DLDC, or ATS-DLDC. Thus, these have a convergence speed advantage compared to 

the SPQ-DLDC.  

A comparative simulation of the two solutions is deliberately omitted because, by 

comparing parallel processing in contrast to sequential processing, the parallel 

solution with an identical network setup is expected to be faster. The speed 

differences will be different for each network detail difference.  Thus, a simulation 

would have a low orientation value. Therefore, it is not considered worthwhile. 
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Chapter 8      Conclusion and Further Work 

This chapter concludes the thesis with a summary of what has been achieved 

regarding the research objectives, as stated in the introduction. It also provides a 

presentation of the original contribution to the body of knowledge and an outlook for 

future work. 

8.1 Conclusion 

This thesis investigates the possibilities of load distribution control (LDC) in the 

complex TSN MAN landscape. It consists of four main chapters to answer the four 

research objectives. Each provides an original research work to contribute to the goal 

of finding solutions for an optimum distributed dynamic LDC method for a TSN MAN. 

In the first main chapter, Chapter 4, TSN MANs are analysed in terms of their potential 

to facilitate LDC systems. It shows that the prevalent TSN MAN topologies are ring and 

redundantly coupled rings. The best path establishment methods for the physical 

topology VLANs are SPBV for administration-involved assignment and ISIS-PCR for 

automated assignment. A distributed LDC approach is better suited for real dynamic 

load control. This should be located in an influential AC rather than in a bridge. Data 

priority or traffic class assignment strongly depend on the use of traffic shapers and 

schedulers. However, these are typically predetermined by the selection of the 

automation technology. Only a non-seamlessly transported CD is available for LDC, as 

the reduction in throughput is not an alternative for CD. This is also the reason that 

only distribution control and flow control are considered relevant for this study and 

no fairness flow reduction. Linear dynamic control is the most promising control 

method for TSN MAN because of the typically constant and known ingress data rates, 

fast communication cycles, and the small dead times of EST and SPQ which are 

preferred here. It should be combined with traffic engineering during the network 

planning and setup phase. The load distribution control task is based on the 

optimisation goal to minimise the maximum load peak along two possible paths 

within the automation ring. The flow control loop is a sub control loop of the complete 

distribution control. For the design of this, the application cycle time plays an 
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important role because the slowest application in the network domain assigns the 

minimum integration interval for data flow measurement. For stream resource 

reservation, it is recommended to work with pre-reserved reservations to fulfill 

demanding dynamic requirements. Furthermore, it reveals that network errors are 

best handled using pre-reservation or dynamic re-reservation. Thus, Chapter 4      

answers the main part of the first research objective to clarify the applicability of load 

distribution in TSN MANs. It also provides the foundations for answering the 

subsequent research objectives by clarifying the boundary conditions for LDC within 

MANs.  

The second research objective is addressed in Chapter 5     . The different influences 

of the traffic shapers and schedulers on data flow control were analysed and 

simulated. It is shown that EST, SPQ, and SPQ with Preemption are the best selections 

from a data flow control point of view for bigger TSN MAN or such comprising fast 

automation applications. CQF and ATS are only recommended for smaller TSN MAN 

with slower automation applications. 

In Chapter 6, the third research objective is developed. It proposes a new dedicated 

control method, that is optimised for TSN MANs with different application cycles of 

the automation tasks. Providing dedicated flow controllers for data flows of different 

application cycle times guarantees an optimised settling time for each application 

cycle time. This approach also implies a dedicated, per-application cycle class, rolling 

mean measurement of the CD traffic on each bridge or bridged end station. This 

design was verified by a network simulation. It is shown that multiple application-

cycle-class-dedicated control achieves a faster overall load distribution convergence 

than a single common flow controller.  

In the fourth and last main chapter, Chapter 7, the single controller solution is 

expanded to multiple controller solutions. Thereby, this chapter provides answers to 

the fourth research question. Two types of distributed load distribution control 

solutions for multiple ACs are possible. The essential differentiating criterion is the 

existence or lack of a mutual controller dependency. Concrete implementations were 

proposed for both types. The Strict Priority Queuing based distributed load 

distribution control (SPQ-DLDC) is the only representative of the type that has an 
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inherent mutual controller dependency. Mutual dependency must be seen as a 

disadvantage as it complicates control. However, a main advantage of SPQ-DLDC is its 

flexible bandwidth use, as it does not depend on gating windows, nor does it require 

a synchronised network cycle or synchronised end stations. With EST, CQF, and ATS, 

it is possible to build EST-DLDC, CQF-DLDC, and ATS-DLDC without mutual controller 

dependencies. This reduces the effort required for the multiple controller solution to 

the same effort that is necessary for a single load distribution controller without any 

dedicated algorithms to cope with mutual dependency. Comparing EST-DLDC, CQF-

DLDC, and ATS-DLDC, EST-DLDC is clearly preferred because of its very low end-to-end 

latency and, thus, associated more dynamic and economic control design possibilities. 

The crucial property for these DLDCs is that the bridges and end stations must be time-

synchronised. Combined with an AC-dedicated bandwidth-use measurement, a 

complete separation of the single ACs LDC can be achieved.  

8.2 The Contribution to the New Knowledge Generation 

The main contribution of this thesis is the presentation of possible solutions for an 

optimum load distribution control in manufacturing automation networks. In 

particular: 

• An analysis of the broad field of TSN automation networks with its technological 

diversity such as different TSN traffic shapers and schedulers, control location 

design possibilities, relevant network topologies, control setup design possibilities 

and characteristics, eligible traffic classes, automation applications influence, the 

role of stream reservation, and error mitigation strategies regarding their 

suitability and influence for load distribution control purposes. Thereby, a 

comprehensive picture of LDC possibilities within TSN MAN is provided. 

• A closed-loop load distribution control model for automation ring networks has 

been established and the influence of the different types of TSN traffic shapers 

and schedulers on data flow control are shown. Furthermore, a strong influence 

of the applications is demonstrated. Their application cycles determine the 

dynamics and stability of the load distribution control. The findings are validated 

through simulations.  
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• Recommendations are given for the use of TSN traffic shapers and schedulers in 

various TSN MAN. SPQ, SPQ with Preemption, and EST are the best shaper and 

scheduler selections in high dynamic networks and also in larger networks. CQF 

and ATS are to be preferred for larger networks with a high hop count or networks 

containing slow applications. 

• An optimised control method for load distribution control in automation networks 

is proposed. It considers the influence of the applications by providing dedicated 

load distribution controllers per application cycles or groups of application cycles. 

This achieves more dynamic load distribution convergence and robustness 

towards an appearance of new and slow applications. An ns-3 simulation code is 

provided, and the assumptions are validated through simulations. 

• Two load distribution control methods for multiple load distribution controllers 

residing on multiple ACs are provided. The first method, SPQ-DLDC. represents a 

solution based on SPQ traffic shaping, with its inherent mutual controller 

dependencies. The proposed method with its consecutive control sovereignty 

approach resolves these dependencies. The second method is suitable for EST, CQF 

and ATS schedulers and shapers which demand time-synchronised end stations, 

bridges, and bridged end stations. It achieves fast parallel controller calculations 

without mutual dependencies.  

8.3 Limitations and Further Work 

The prevailing automation solutions today are mostly application specific physical 

automation islands. This will continuously shift towards virtual applications running in 

virtual automation controllers hosted by industrial data centers or edge appliances. 

This requires increasing deterministic data communication from higher-level 

automation clouds or data centers down to edge controllers and field devices. 

Regarding load distribution, this also implies load distribution concepts not only on a 

horizontal basis within field-level communication rings or controller-level 

communication rings but also on a vertical basis between and through the hierarchical 

automation communication layers.   
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To take this development into account and to provide a fully applicable load 

distribution control for industrial manufacturing automation, further work that 

exceeds the focus and possibilities of this thesis is necessary. This would be in 

particular: 

• A redundant ring interconnection exists between a controller-level ring and a field-

level ring. If the controller level ring is segmented for the application of EST-DLDC 

as described in Subsection 7.4.3, then also a ring interconnection topology is part 

of the network topology. Each ring forms then a separate EST-DLDC domain. 

However, inter-ring communication will also be involved. The LDC concept should 

be expanded to cover such ring interconnection topologies.  

• For the control design of the application cycle class specific load distribution 

controllers, it is assumed that the AC has a CD traffic load within each application 

cycle traffic class to distribute. This may not always be the case in practice. The 

packet handler controls the number of data packets of data streams to be 

distributed. Therefore, a more sophisticated packet controller, capable of making 

distribution decisions across application cycle classes is necessary in the future. 

• For the EST-DLDC, a dynamic adaptation of the gating window lengths during 

runtime, depending on the traffic measurement statistics results, for better 

bandwidth use would be advantageous. 

• In Subsection 7.4.2, an optimsation algorithm for the SPQ-DLDC is proposed. This 

could stop at the first found improvement and bring it to the network. The 

alternative would be to search for the best improvement by calculating all 

possibilities. Comparative simulations on which strategy is advantageous, 

depending on various networks and traffic setups, would be useful. 
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Hagan, M. T., Demuth, H. B., & Jesús, O. D. (2002). An introduction to the use of neural 
networks in control systems. International Journal of Robust and Nonlinear Control, 
12(11), 959-985. https://doi.org/10.1002/rnc.727  

Han, Z., Kong, J., Wang, Z., Zhang, Y., Liu, K., Pan, L., . . . Wu, D. (2021). AI-based network 
topology optimization system. ITU Journal on Future and Evolving Technologies, 
2(4), 81-90. https://doi.org/10.52953/YXTB5085  

Hasegawa, G., Murata, M., & Miyahara, H. (2000). Fairness and stability of congestion 
control mechanisms of TCP. Telecommunication Systems, 15(1-2), 167-184.  

Hellmanns, D., Falk, J., Glavackij, A., Hummen, R., Kehrer, S., Durr, F., & Ieee International 
Conference on Industrial Technology Buenos Aires, A. F. F. (2020). On the 
Performance of Stream-based, Class-based Time-aware Shaping and Frame 
Preemption in TSN. In 2020 IEEE International Conference on Industrial Technology 
(ICIT) (pp. 298-303). IEEE. https://doi.org/10.1109/ICIT45562.2020.9067122  

Henderson, T., & Imputato, P. (2023). Proceedings of the 2023 Workshop on ns-3. Arlington, 
VA, USA. 

Ho, T. V., Deville, Y., Bonaventure, O., & François, P. (2011). Traffic engineering for multiple 
spanning tree protocol in large data centers. In. 23rd International Teletraffic, 
Congress. 

Huang, Y., Wang, S., Zhang, X., Huang, T., & Liu, Y. (2022). Flexible Cyclic Queuing and 
Forwarding for Time-Sensitive Software-Defined Networks. IEEE Transactions on 
Network and Service Management, PP(99). 
https://doi.org/10.1109/TNSM.2022.3198171  

Huawei. (2010). Shortest Path Bridging IEEE 802.1aq Tutorial and Demo. Retrieved 
2023/09/10 from 
https://archive.nanog.org/meetings/nanog50/presentations/Sunday/IEEE 8021aqSho
rtest Path.pdf 



  Page 284 

IEC 61158-5-10. (2023). Industrial communication networks –Fieldbus specifications. In Part 
5-10: Application layer service definition – Type 10 elements: International 
Electrotechnical Commission. 

IEC 61158-6-10. (2023). Industrial communication networks –Fieldbus specifications. In Part 
6-10: Application layer protocol specification – Type 10 elements: International 
Electrotechnical Commission. 

IEC 62439-2. (2021). Industrial communication networks - High availability automation 
networks - Part 2: Media Redundancy Protocol (MRP). In: International 
Electrotechnical Commission. 

IEC 62439-3. (2021). Industrial communication networks - High availability automation 
networks - Part 3: Parallel Redundancy Protocol (PRP) and High-availability 
Seamless Redundancy (HSR) In: International Electrotechnical Commission. 

IEC/IEEE 60802. (2018). TSN Profile for Industrial Automation, Use Cases. In. 

IEEE 802.1AS. (2020). IEEE Standard for Local and Metropolitan Area Networks—Timing 
and Synchronization for Time-Sensitive Applications. In. New York, USA: Institute of 
Electrical and Electronics Engineers (IEEE). 

IEEE 802.1BA. (2011). IEEE Standard for Local and Metropolitan Area Networks—Audio 
Video Bridging (AVB) Systems. In. New York, USA: Institute of Electrical and 
Electronics Engineers (IEEE). 

IEEE 802.1CB. (2017). IEEE Standard for Local and Metropolitan Area Networks—Frame 
Replication and Elimination for Reliability. In. New York, USA: Institute of Electrical 
and Electronics Engineers (IEEE). 

IEEE 802.1CS. (2019). Link-local Registration Protocol (LRP). In. New York, USA: Institute of 
Electrical and Electronics Engineers (IEEE). 

IEEE 802.1Q. (2022). IEEE Standard for Local and Metropolitan Area Networks—Bridges 
and Bridged Networks. In. New York, USA: Institute of Electrical and Electronics 
Engineers (IEEE). 

IEEE 802.1Q TSN TG. (2022). Time-Sensitive Networking (TSN) Task Group. In: Institute of 
Electrical and Electronic Engineers. 

IEEE 802.1Qav. (2009). IEEE Standard for Local and Metropolitan Area Networks—Virtual 
Bridged Local Area Networks. In Amendment: Forwarding and Queuing 
Enhancements for Time-Sensitive Streams. New York, USA: Institute of Electrical 
and Electronics Engineers (IEEE). 

IEEE 802.1Qbu. (2015). IEEE Standard for Local and Metropolitan Area Networks—Virtual 
Bridged Local Area Networks. In Amendment: Frame Preemption. New York, USA: 
Institute of Electrical and Electronics Engineers (IEEE). 

IEEE 802.1Qbv. (2015). IEEE Standard for Local and Metropolitan Area Networks—Virtual 
Bridged Local Area Networks. In Amendment: Enhancements for Scheduled Traffic. 
New York, USA: Institute of Electrical and Electronics Engineers (IEEE). 

IEEE 802.1Qca. (2015). IEEE Standard for Local and Metropolitan Area Networks—Bridges 
and Virtual Bridged Local Area Networks. In Amendment: Path Control and 
Reservation New York, USA: Institute of Electrical and Electronics Engineers (IEEE). 

IEEE 802.1Qcc. (2018). IEEE Standard for Local and Metropolitan Area Networks—Virtual 
Bridged Local Area Networks. In Amendment: Stream Reservation Protocol (SRP) 
Enhancements and Performance Improvements New York, USA: Institute of 
Electrical and Electronics Engineers (IEEE). 

IEEE 802.1Qch. (2019). IEEE Standard for Local and Metropolitan Area Networks—Virtual 
Bridged Local Area Networks. In Amendment 29: Cyclic Queuing and Forwarding 
New York, USA: Institute of Electrical and Electronics Engineers (IEEE). 



Page 285   

IEEE 802.1Qci. (2016). IEEE Standard for Local and Metropolitan Area Networks—Virtual 
Bridged Local Area Networks. In Amendment: Per-Stream Filtering and Policing New 
York, USA: Institute of Electrical and Electronics Engineers (IEEE). 

IEEE 802.1Qcr. (2020). IEEE Standard for Local and Metropolitan Area Networks—Bridges 
and Bridged Networks. In Amendment: Asynchronous Traffic Shaping New York, 
USA: Institute of Electrical and Electronics Engineers (IEEE). 

IEEE 802.1Qdd. (2023). IEEE Standard for Local and Metropolitan Area Networks—Bridges 
and Bridged Networks. In Amendment: Resource Allocation Protocol New York, 
USA: Institute of Electrical and Electronics Engineers (IEEE). 

IEEE 802.3br. (2016). IEEE Standard for Ethernet In Amendment 5: Specification and 
Management Parameters for Interspersing Express Traffic. New York, USA: Institute 
of Electrical and Electronics Engineers (IEEE). 

IEEE 1588. (2019). IEEE Standard for a Precision Clock Synchronization Protocol for 
Networked Measurement and Control Systems. In. New York, USA: Institute of 
Electrical and Electronics Engineers (IEEE). 

IETF RFC 793. (1981). Ttansmission Control Protocol. In Request for Comments: 793. USA, 
California: Information Sciences Institute, University of Southern California. 

IETF RFC 2001. (1997). TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast 
Recovery Algorithms. In Request for Comments: 2001: Internet Engineering Task 
Force. 

IETF RFC 2205. (1997). Resource ReSerVation Protocol (RSVP). In Request for Comments: 
2205: Internet Engineering Task Force. 

IETF RFC 3630. (2003). Traffic Engineering (TE) Extensions to OSPF Version 2. In Request 
for Comments: 3630: Internet Engineering Task Force. 

IETF RFC 5305. (2008). IS-IS Extensions for Traffic Engineering. In Request for Comments: 
5305: Internet Engineering Task Force. 

IETF RFC 5681. (2009). TCP Congestion Control. In Request for Comments: 5681. USA, 
Indiana: Purdue University. 

IETF RFC 6002. (2010). Generalized MPLS (GMPLS) Data Channel Switching Capable 
(DCSC) and Channel Set Label Extensions. In Request for Comments: 6002: 
Internet Engineering Task Force. 

IETF RFC 6582. (2012). The NewReno Modification to TCP's Fast Recovery Algorithm. In 
Request for Comments: 6582. Finland, Oulu: Oulu University. 

IETF RFC 8570. (2019). IS-IS Traffic Engineering (TE) Metric Extensions. In Request for 
Comments: 8570: Internet Engineering Task Force. 

IETF RFC 8578. (2019). Deterministic Networking Use Cases. In Request for Comments: 
8578: Internet Engineering Task Force. 

IETF RFC 8655. (2019). Deterministic Networking Architeture. In Request for Comments: 
8655: Internet Engineering Task Force. 

ISO/IEC 7498-1. (2000). Information technology — Open Systems Interconnection — Basic 
Reference Model: The Basic Model. In: International Organization for 
Standardization/ International Electrotechnical Commission. 

Jahde, S., Sakhtivel, S., Sudha, R. V., Verma, R. K., Walia, R., & Lokesh, M. R. (2021). SDN 
Network Load Balancing using Environmental Congenital ACO Methodology. 
International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS), 10. 
https://doi.org/10.31032/ijbpas/2021/10.11.1079  

Jain, R. (1998). Congestion control and traffic management in ATM networks: Recent 
advances and a survey. Computer Networks & ISDN Systems, 28.  



  Page 286 

Jong-Moon, C. (2000). Analysis of MPLS traffic engineering. In Proceedings of the 43rd IEEE 
Midwest Symposium on Circuits and Systems (Cat.No.CH37144) (pp. 550-553). 
https://doi.org/10.1109/MWSCAS.2000.952816  

Kanagarathinam, M. R., Singh, S., Sandeep, I., Kim, H., Maheshwari, M. K., Hwang, J., . . . 
Saxena, N. (2020). NexGen D-TCP: Next Generation Dynamic TCP Congestion 
Control Algorithm. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3022284  

Kandula, S., Katabi, D., S. Davie, B., & Charny, A. (2005). Walking the tightrope: Responsive 
yet stable traffic engineering (Vol. 35). Computer Communication Review. 
https://doi.org/10.1145/1080091.1080122  

Kandula, S., Katabi, D., Sinha, S., & Berger, A. (2007). Dynamic Load Balancing Without 
Packet Reordering. COMPUTER COMMUNICATION REVIEW, 37(2), 51-62.  

Kasoro, N. M., Kasereka, S. K., Alpha, G. K., & Kyamakya, K. (2021). ABCSS: A novel 
approach for increasing the TCP congestion window in a network. Procedia 
Computer Science, 191, 437-444. https://doi.org/10.1016/j.procs.2021.07.075  

Kaszkurewicz, E. (2010). A proposed solution for the load balancing problem on 
heterogeneous clusters based on a delayed neural network. International Journal of 
Intelligent Computing and Cybernetics, 3(1), 73-93. 
https://doi.org/10.1108/17563781011028550  

Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth-delay 
product networks. ACM SIGCOMM Computer Communication Review, 32(4), 89. 
https://doi.org/10.1145/964725.633035  

Katyal, M., & Mishra, A. (2014). A Comparative Study of Load Balancing Algorithms in Cloud 
Computing Environment. International Journal of Distributed and Cloud Computing, 
1(2).  

Kelly, F. P., Maulloo, A., & Tan, D. (1998). Rate control for communication networks: Shadow 
prices, proportional fairness and stability. Journal of Operations Research Society, 
49, 237-252.  

Kirrmann, H., & Dzung, D. (2006). Selecting a Standard Redundancy Method for Highly 
Available Industrial Networks. In 2006 IEEE International Workshop on Factory 
Communication Systems (pp. 386-390). IEEE. 
https://doi.org/10.1109/WFCS.2006.1704184  

Lemeshko, O., Vavenko, T., & Ovchinnikov, K. (2013). Design of multipath routing scheme 
with load balancing in MPLS-network. In 12th International Conference on the 
Experience of Designing and Application of CAD Systems in Microelectronics 
(CADSM) (pp. 211-213). IEEE.  

Li, Y., Jiang, J., & Hong, S. H. (2022). Joint Traffic Routing and Scheduling Algorithm 
Eliminating the Nondeterministic Interruption for TSN Networks Used in IIoT. IEEE 
Internet of Things Journal, 9(19). https://doi.org/10.1109/JIOT.2022.3163411  

Linux. (2023). Load Balancing. LinuxVirtualServer.org. Retrieved 2023/09/08 from 
http://kb.linuxvirtualserver.org/wiki/Load balancing#Computing Load Balancing 

LNI4.0. (2023). Labs Network Industrie 4.0. Retrieved 2023/08/10 from https://lni40.de/ 

Lo Bello, L., & Steiner, W. (2019). A Perspective on IEEE Time-Sensitive Networking for 
Industrial Communication and Automation Systems. Proceedings of the IEEE, 
107(6), 1094-1120. https://doi.org/10.1109/JPROC.2019.2905334  

Lopez-Perez, D., Laselva, D., Wallmeier, E., Purovesi, P., Lunden, P., Virtej, E., . . . Ding, M. 
(2016). Long Term Evolution-Wireless Local Area Network Aggregation Flow Control. 
IEEE Access, 4. https://doi.org/10.1109/ACCESS.2016.2643690  

Lopez, V., Hernandez, J. A., Gonzalez de Dios, O., Fernandez Palacios, J., & Aracil, J. 
(2010). Multilayer Traffic Engineering for IP Over WDM Networks Based on Bayesian 
Decision Theory. IEEE/OSA Journal of Optical Communications and Networking, 
2(8). https://doi.org/10.1364/JOCN.2.000515  



Page 287   

Lu, Y., Fu, B., Xi, X., Zhang, Z., & Zhang, N. (2018). Medium Rate Control Method for Ship 
Mobile Network Traffic Generation. Journal of Coastal Research, 83(sp1), 261-266. 
https://doi.org/10.2112/SI83-042.1  

Ma, Y.-W., Chen, J.-L., Tsai, Y.-H., Cheng, K.-H., & Hung, W.-C. (2017). Load-Balancing 
Multiple Controllers Mechanism for Software-Defined Networking. Wireless Personal 
Communications : An International Journal, 94(4), 3549-3574. 
https://doi.org/10.1007/s11277-016-3790-y  

Mandić, Z., Stankovski, S., Ostojić, G., & Popović, B. (2022, 16-18 March 2022). Potential of 
Edge Computing PLCs in Industrial Automation. 2022 21st International Symposium 
INFOTEH-JAHORINA (INFOTEH),  

Mascolo, S. (2000). Smith's principle for congestion control in high-speed data networks. 
IEEE Transactions on Automatic Control, 45(2). https://doi.org/10.1109/9.839966  
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Appendix 1:  Load Calculations of Seamless 

Communication Use Case 

The following tables show the detailed calculation of the load for the example of 

seamless M2M communication as referred to in Section 7.4. The numbers in the cells 

represent used bandwidth in per cent. 

A symmetric load distribution is the result, if the traffic between two stations is equal 

in both directions as shown in Table 0.1. Each link has equal load sums of 21 per cent. 

Table 0.1: Example of effects of seamless symmetric traffic contribution 

Source->Sink/ 

Direction 

Link/Direction 

L1 /c L1 /cc L2 /c L2 /cc L3 /c L3 /cc L4 /c L4 /cc 

AC1->AC2 /c 5               

AC1->AC2 /cc       5   5   5 

AC1->AC3 /c 5   5           

AC1->AC3 /cc           5   5 

AC1->AC4 /c 5   5   5       

AC1->AC4 /cc               5 

AC2->AC1 /c     5   5   5   

AC2->AC1 /cc   5             

AC2->AC3 /c     2           

AC2->AC3 /cc   2       2   2 

AC2->AC4 /c     2   2       

AC2->AC4 /cc   2           2 

AC3->AC1 /c         5   5   

AC3->AC1 /cc   5   5         

AC3->AC2 /c 2       2   2   

AC3->AC2 /cc       2         

AC3->AC4 /c         2       

AC3->AC4 /cc   2   2       2 

AC4->AC1 /c             5   

AC4->AC1 /cc   5   5   5     
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AC4->AC2 /c 2           2   

AC4->AC2 /cc       2   2     

AC4->AC3 /c 2   2       2   

AC4->AC3 /cc           2     

Sum 21 21 21 21 21 21 21 21 

c: clockwise 

cc: counterclockwise 
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The asymmetric load distribution is the result, if the traffic between two stations is 

not equal in both directions as shown in Table 0.2. The link loads for the example differ 

between 15 and 21 per cent. 

Table 0.2: Example of effects of seamless asymmetric traffic contribution 

Source->Sink/ 

Direction 

Link/Direction 

L1 /c L1 /cc L2 /c L2 /cc L3 /c L3 /cc L4 /c L4 /cc 

AC1->AC2 /c 5               

AC1->AC2 /cc       5   5   5 

AC1->AC3 /c 5   5           

AC1->AC3 /cc           5   5 

AC1->AC4 /c 5   5   5       

AC1->AC4 /cc               5 

AC2->AC1 /c     3   3   3   

AC2->AC1 /cc   3             

AC2->AC3 /c     2           

AC2->AC3 /cc   2       2   2 

AC2->AC4 /c     2   2       

AC2->AC4 /cc   2           2 

AC3->AC1 /c         3   3   

AC3->AC1 /cc   3   3         

AC3->AC2 /c 2       2   2   

AC3->AC2 /cc       2         

AC3->AC4 /c         2       

AC3->AC4 /cc   2   2       2 

AC4->AC1 /c             3   

AC4->AC1 /cc   3   3   3     

AC4->AC2 /c 2           2   

AC4->AC2 /cc       2   2     

AC4->AC3 /c 2   2       2   

AC4->AC3 /cc           2     

Sum 21 15 19 17 17 19 15 21 

c: clockwise 

cc: counterclockwise 
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Appendix 2: Ns-3 Simulation Code 

This chapter provides supplementary documentation of the ns-3 network simulation setup for 

the validation use cases of Section 6.7. A detailed code print of the ns-3 C++ code follows. The 

structure of the data frames and most important data structures used for communication 

therein are shown in Figure 0.1. For the UML description of the modules refer to Section 6.7. 

Figure 0.1: The structure of the data frames and most important data structures for 

the simulation 



Code section: 

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ 

// This ns-3 simulation supplements the PhD thesis: 

// A method for optimum control of dynamic load distribution in time-sensitive communication networks for manufacturing automation 

// 

// Author: Thomas Weichlein, University of Gloucestershire, UK 

// 

// Details: 

// Network topology consists of a ring topology with 1 AC and 9 devices including integrated two port bridges (n1 to n9). 

// 

// This version supports the use cases (UC) according to thesis: UC1, UC2, UC3, UC4, UC5, UC6.1 .2 .3 .4, UC7, 

// 

// - UDP stream as Control data 1,2,4 and 8 ms from n0 (AC 10.1.1.0) to n9 (10.1.1.18) and from n0 (AC 10.1.1.20) to n1 (10.1.1.2) 

// - UDP stream as interference Control data 1 ms and 4 ms from n2 (PLC 10.1.1.4) to n4 (10.1.1.8) 

// - UDP stream as interference Control data 2 ms and 8 ms from n1 (PLC 10.1.1.2) to n5 (10.1.1.10) 

// - Separate Flow Controllers for each application communication cycle class of 1 ms, 2 ms, 4 ms, and 8 ms, 

// - DropTail queues  

// - Tracing of queues and packet receptions to file "LDCv011.tr" 

// - Creation of plot files 2D and 3D 

// 

// General hints: 

// - The start of the controllers must be adapted to the integration time of the rolling mean measurement, that is must be later, to 

avoid start jumps 

// e.g. 1 ms Int. Time : 0.01 (10 ms) start delay; 8 ms Int. Time : 0.02 (20 ms) start delay; 

// 

#include <iostream> 

#include <fstream> 
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#include <vector> 

#include "ns3/core-module.h" 

#include "ns3/network-module.h" 

#include "ns3/applications-module.h" 

#include "ns3/bridge-module.h" 

#include "ns3/csma-module.h" 

#include "ns3/internet-module.h" 

#include "ns3/netanim-module.h" 

#include "ns3/gnuplot.h" 

using namespace ns3; 

NS_LOG_COMPONENT_DEFINE ("LDCSim"); 

// Load Control is off? 

//#define NOCONTROL 

// Common Load Control for all app cycles? 

//#define COMMONCONTROL 

//If Load Control is on, include Distribution Controller? 

//#define DISTCTRL 

//switch on interferences? 

#define INTERFERENCE_1MS 

#define INTERFERENCE_2MS 

#define INTERFERENCE_4MS 

#define INTERFERENCE_8MS 

// kind of plot 

#define PLOT_2D 

//#define PLOT_3D 

#ifdef DISTCTRL 

#define FLOW_1MS_IN LDCcw1msApp->m_flowctrlin 

#else 

#define FLOW_1MS_IN CollAC1App->m_thp_array[ALLAPPSIND][CW][NNODES+1] 
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#endif 

//global simulation constants and variables: 

//general 

#define TAS_WINDOW_NS 200000  //Size of the TAS or EST Window in ns 

#define DATARATE  1000000000 //data rate in bit per second 

#define MIN_PACKET_SIZE 242 //for this simulation, otherwise 96 is minimum 

#define SIMSTART 0.0 //Time of general start of simulation 

#define SIMEND 0.4 //Time of general end of simulation 

#define LDC_ENDDELAY 0.008 //Delay to continue with throughput rolling mean measurement 

#define CTRL_SIMSTART 0.015 //Time of control start of simulation 

#define RM_1MS_DELAY 0.0008 //Delay to place the start of rolling mean measurement 

#define RM_2MS_DELAY 0.0007 //Delay to place the start of rolling mean measurement 

#define RM_4MS_DELAY 0.0006 //Delay to place the start of rolling mean measurement 

#define RM_8MS_DELAY 0.00055 //Delay to place the start of rolling mean measurement 

#define RM_ENDDELAY  0.0002 //Delay to continue with throughput rolling mean measurement 

#define COLL_STARTDELAY 0.00062 //Delay to start with throughput feedback collections 

#define COLL_ENDDELAY 0.008 //Delay to continue with throughput feedback collections 

#define CTRLRAMPSTEP 4  //Ramp of reference to avoid switch-on-jump 

#define DIST_STARTDELAY 0.00064 //Delay to start with distribution controller 

#define DIST_ENDDELAY 0.00 //Delay to continue with distribution controller 

#define FLOW_STARTDELAY 0.00068 //Delay to start with flow controller 

#define FLOW_ENDDELAY 0.001 //Delay to continue with flow controller 

#define CTRL_STARTDELAY_1  660000 //Offset to start with flow controller in ns for seamless interaction 

#define CTRL_STARTDELAY_2  700000 //Second offset to start with flow controller in ns for seamless interaction 

#define INTERFERENCE_START_1MS 0.05 //time to start with the 1 ms interference load step 

#define INTERFERENCE_START_2MS 0.15 //time to start with the 2 ms interference load step 

#define INTERFERENCE_START_4MS 0.25 //time to start with the 4 ms interference load step 

#define INTERFERENCE_START_8MS 0.35 //time to start with the 8 ms interference load step 

#define INTERFERENCE_STOP_1MS 0.4 //time to stop with the 1 ms interference load step 



Page 300 

//frames 

#define DF 1 //frame ID data frame 

#define FBF 2 //frame ID throughput feedback frame 

#define UDP 0x11 //UDP frame 

enum NODEID {N0, //Node ID node 0 which is always AC1 

 N1, //Node ID node 1 

 N2, //Node ID node 2 

 N3, //Node ID node 3 or AC2 depending on use case simulation 

 N4, //Node ID node 4 

 N5, //Node ID node 5 or ACC3 depending on use case simulation 

 N6, //Node ID node 6 

 N7, //Node ID node 7 

 N8, //Node ID node 8 or ACC4 depending on use case simulation 

 N9, //Node ID node 9 

 NNODES //Number of Nodes 

}; 

//rolling mean calculation 

#define RM_WINDOWSIZE 10000 //for now for 1ms, otherwise later calculate 

:5*32*TAS_WINDOW_NS/((1*8*MIN_PACKET_SIZE)) //The maximum window size for the rolling mean calculation in number of packets 

#define APPSPECIFIC 0 //access application cycle specific throughput measurement 

#define APPSCOLLECTIVE 1 //access all application cycle throughput measurement 

enum APPINDEX { 

APP1MSIND, 

APP2MSIND, 

APP4MSIND, 

APP8MSIND, 

APP16MSIND, 

APP32MSIND, 

ALLAPPSIND, //for measurement by rolling mean measurement at node over all application cycles 
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SUMAPPSIND, //for summing up at collection app over all application cycles 

NAPPSIND};  //to address the application cycle in arrays 

enum APPCYCLE { 

APP1MS = 1, 

APP2MS, 

APP4MS = 4, 

APP8MS = 8, 

APP16MS = 16, 

APP32MS = 32, 

ALLAPPS = 0xff 

};  //to configure the application cycle 

enum INTTIME { 

INT1MS = 1, 

INT2MS, 

INT4MS = 4, 

INT8MS = 8, 

INT16MS = 16, 

INT32MS = 32 

};  //to code the application cycle 

//distribution control and flow control 

enum DIRECTION {CW, //Clockwise direction for maximum calculation 

CCW, //Counterlockwise direction for maximum calculation 

NDIR}; //Number of Directions 

//plotting 

#define DATAPOINTS 400 //maximum number of data points for the plot file 

#define DATASTEP  1 //plot only every DATASTEP data point 

//Dynamic load Balancing specific classes 

//+++++++++++++++++++++++++++++++++++++++ 

//A LDCApp sends application frames in one direction of the ring and provides control facilities 
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class LDCApp : public Application 

{ 

public: 

static TypeId GetTypeId (void) 

  { 

static TypeId tid = TypeId ("LDCApp") 

.SetParent (Object::GetTypeId ()) 

.SetGroupName ("MyGroup") 

.AddConstructor<LDCApp> () 

.AddTraceSource ("NPackets", 

"Number of Packets to trace.", 

MakeTraceSourceAccessor (&LDCApp::NPackets), 

"ns3::TracedValueCallback::Int32") 

; 

return tid; 

  } 

 LDCApp (); 

 virtual ~LDCApp(); 

 void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t 

appcycle, uint32_t acid, bool externalref, float* extref, float* diffthp); 

 uint32_t plot_array [4][DATAPOINTS]; 

 TracedValue<int32_t> NPackets; 

 float*  m_diffthroughput; //difference of throughput 

 float  m_distctrlin;  //input for distribution control 

 float  m_distctrlout; //output from distribution control, input for flow control 

 float  m_flowctrlin; //flow control input  

 float  m_flowctrlout; //flow control output, to be translated into m_nPackets for send unit 

private: 

 virtual void StartApplication (void); 
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 virtual void StopApplication (void); 

 void ScheduleTx (void); 

 void ScheduleTxCycle (void); 

 void SendPacket (void); 

 void ReceivePacket (Ptr<Socket> socket); 

 void Control (void); 

 Ptr<Packet> m_packet; 

 Ptr<Socket> m_socket; 

 Address m_peer; 

 uint32_t m_packetSize; 

 uint32_t m_nPackets; 

 int32_t m_deltaPackets; 

 DataRate m_dataRate; 

 EventId m_sendEvent; 

 bool m_running; 

 uint32_t m_packetsSent; 

 uint32_t m_appcycle; 

 uint32_t m_appcycle_ind; 

 uint32_t m_acid; 

 uint32_t  m_totalsent; 

 uint32_t m_j;  //iterator for rolling mean 

 double  m_throughputs [2][NNODES]; //received throughput measurements from nodes 

 double  m_maxthroughput_cw;  //maximum throughput clockwise direction 

 double m_maxthroughput_ccw;  //maximum throughput countrclockwise direction 

 bool  m_externalref;  //use reference from coupled LDC 

 float*  m_extref;  //reference from coupled LDC flow controller output 

//  Gnuplot2dDataset  m_2ddataset; 

//  Gnuplot3dDataset  m_3ddataset; 

}; 
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LDCApp::LDCApp () 

  : m_diffthroughput(0), 

m_distctrlin (0), 

m_distctrlout (0), 

m_flowctrlin (0), 

m_flowctrlout (0), 

m_packet (0), 

m_socket (0), 

m_peer (), 

m_packetSize (0), 

m_nPackets (0), 

m_deltaPackets (0), 

m_dataRate (0), 

m_sendEvent (), 

m_running (false), 

m_packetsSent (0), 

m_appcycle (1), 

m_appcycle_ind (0), 

m_acid (1), 

m_totalsent (0), 

m_j (0), 

// m_throughputs (0), 

m_maxthroughput_cw (0), 

m_maxthroughput_ccw (0), 

m_externalref (false), 

m_extref (0) 

// m_2ddataset (), 

// m_3ddataset () 

{ 
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} 

LDCApp::~LDCApp() 

{ 

  m_socket = 0; 

} 

void 

LDCApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t appcycle, 

uint32_t acid,  bool externalref, float* extref, float* diffthp) 

{ 

  m_socket = socket; 

  m_peer = address; 

  m_packetSize = packetSize; 

  m_nPackets = nPackets; 

  m_dataRate = dataRate; 

  m_appcycle = appcycle; 

  m_acid = acid; 

  m_externalref = externalref; 

  m_extref = extref; 

  m_diffthroughput = diffthp; 

} 

void 

LDCApp::StartApplication (void) 

{ 

  m_running = true; 

  m_packetsSent = 0; 

  m_socket->Bind (); 

  m_socket->Connect (m_peer); 

  uint8_t buffer[3]; 

  buffer[0]= (uint8_t) DF; //data frame 
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  buffer[1]= (uint8_t) m_acid; //automation controller id for packet 

  buffer[2]= (uint8_t) m_appcycle; //application cycle in ms for packet 

  uint8_t* buf = buffer; 

  m_packet = Create<Packet> (buf, m_packetSize); 

  SendPacket (); 

} 

void 

LDCApp::StopApplication (void) 

{ 

  m_running = false; 

  NS_LOG_INFO ("LDCApp: Total packets sent: " << m_totalsent); 

  if (m_sendEvent.IsRunning ()) 

{ 

Simulator::Cancel (m_sendEvent); 

} 

  if (m_socket) 

{ 

m_socket->Close (); 

} 

} 

void 

LDCApp::SendPacket (void) 

{ 

//  Ptr<Packet> packet = Create<Packet> (m_packetSize); 

  m_socket->Send (m_packet); 

  m_totalsent++; 

  //to test trace: 

  //++m_nPackets; 

  //NPackets = m_nPackets; 
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  //  //this->m_2ddataset.Add (static_cast<double> (Simulator::Now ()), m_nPackets); 

  //if (m_nPackets == 5) 

  //   m_nPackets = 2; 

  // NS_LOG_INFO ("Sending App: = " << this); 

  if (++m_packetsSent < m_nPackets + m_deltaPackets) 

{ 

ScheduleTx (); 

} 

  else 

  { 

  ScheduleTxCycle (); 

  } 

} 

//Schedule sending within the communication cycle 

void 

LDCApp::ScheduleTx (void) 

{ 

  if (m_running) 

{ 

  if (m_packetsSent == 1) 

  { 

//Schedule value update and convertion before and after flow controller 

Time tNextControl_1 (CTRL_STARTDELAY_1); 

m_sendEvent = Simulator::Schedule (tNextControl_1, &LDCApp::Control, this); 

Time tNextControl_2 (CTRL_STARTDELAY_2); 

m_sendEvent = Simulator::Schedule (tNextControl_2, &LDCApp::Control, this); 

  } 

//Schedule next frame 

Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ()))); 
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m_sendEvent = Simulator::Schedule (tNext, &LDCApp::SendPacket, this); 

  //NS_LOG_INFO ("ScheduleTx in " << tNext); 

} 

} 

//Schedule sending for the application cycle 

void 

LDCApp::ScheduleTxCycle (void) 

{ 

  if (m_running) 

{ 

Time tNextCycle (Seconds ((m_appcycle/static_cast<double> (1000))- m_packetsSent * (m_packetSize * 8 / static_cast<double> 

(m_dataRate.GetBitRate ())) ) ); 

m_sendEvent = Simulator::Schedule (tNextCycle, &LDCApp::SendPacket, this); 

  //NS_LOG_INFO ("ScheduleTxCycle in " << tNextCycle); 

} 

  plot_array[0][m_j] = m_appcycle *(m_j+1); 

  plot_array[1][m_j] = m_nPackets; 

  if (m_j <= DATAPOINTS) m_j++; 

  m_packetsSent = 0; 

} 

//Handle references and outputs, make LDC coupling, convert flow controller output into number of packets 

void 

LDCApp::Control (void) 

{ 

if (!m_externalref) 

{ 

#ifdef DISTCTRL 

m_distctrlin = (*m_diffthroughput)* (float)(-1); 

m_flowctrlin = m_distctrlout - (*m_diffthroughput); 
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// m_flowctrlin = m_distctrlout - ((*m_diffthroughput) * (float)(-1)); 

#else 

m_flowctrlin = (*m_diffthroughput)* (float)(-1); 

#endif 

NS_LOG_INFO ("diffthroughput is " << (*m_diffthroughput)); 

} 

else 

{ 

//Coupled to other LDC on node. No own distribution or flow control. Take result from other leading flow controller 

output 

m_flowctrlout = *m_extref * (float)(-1); 

} 

//simulate with or without load control 

#ifdef NOCONTROL 

m_deltaPackets = 0; 

#else 

//Calculate packets and change algebraic sign as a positive difference means a reduction for this direction 

// m_deltaPackets = (m_flowctrlout * (float)(-1))/(0.0001 * m_packetSize * 8); 

m_deltaPackets = m_flowctrlout/(0.0001 * m_packetSize * 8); 

//a controller can only compensate load differences within the border of its own introduced load 

if (m_deltaPackets > (int32_t)m_nPackets) 

{ 

m_deltaPackets = m_nPackets -3; 

} 

if (m_deltaPackets <= ((int32_t)m_nPackets * (-1))) 

{ 

m_deltaPackets = (m_nPackets * (-1)) + 3; 

} 

NS_LOG_INFO ("delta packets is " << m_deltaPackets); 
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#endif 

} 

#if 0 

static void 

CwndChange (uint32_t oldCwnd, uint32_t newCwnd) 

{ 

  NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd); 

} 

//static void 

//RxDrop (Ptr<const Packet> p) 

//{ 

//  NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ()); 

//} 

void 

 IntTrace (int32_t oldValue, int32_t newValue) 

 { 

   std::cout << "Traced Test " << oldValue << " to " << newValue << std::endl; 

 } 

#endif 

// The RollMeanApp builds the rolling mean measurement of throughput on a node (bridged device) 

// For each app cycle class there will be one necessary as they finally will use different integration times. 

// But have with "getall" also the possibility to capture all app cycle class frames for the common control use case which is to 

improve. 

class RollMeanApp : public Application 

{ 

public: 

static TypeId GetTypeId (void) 

  { 

static TypeId tid = TypeId ("RollMeanApp") 
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.SetParent (Object::GetTypeId ()) 

.SetGroupName ("MyGroup") 

.AddConstructor<RollMeanApp> () 

  ; 

return tid; 

  } 

  RollMeanApp (); 

  virtual ~RollMeanApp(); 

  void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, DataRate dataRate, uint32_t direction, uint32_t appcycle, 

uint32_t inttime, uint32_t node, bool getall); 

  void CheckInPacket (ns3::Ptr<const ns3::Packet>); 

  float p_throughput[2][DATAPOINTS]; // in percent, one array for app cycle class, one for all app cycle class measurement 

private: 

  virtual void StartApplication (void); 

  virtual void StopApplication (void); 

  void Calculate (void); 

  Ptr<Packet> m_packet; 

  Ptr<Socket> m_socket; 

  Address m_peer; 

  uint32_t m_packetSize; 

  uint8_t m_buffer [4 + 10 * sizeof(float)]; 

  uint32_t m_nPackets; 

  DataRate m_dataRate; 

  EventId m_sendEvent; 

  uint32_t m_windowSize;  //number of measurement values in the storage window 

  uint32_t m_direction;   //clockwise or counterclockwise 

  uint32_t m_appcycle; //app cycle class to capture 

  uint32_t   m_inttime; // integration time for rolling mean measurement 

  bool   m_getall;  //if true the throughput is measured over all application cycles 
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  uint32_t  m_node;  //node number in the ring 

  uint32_t m_j;  // check in iterator for explicit app cycle 

  uint32_t m_k;  // check in iterator for all app cycle 

  struct   rm_array_t {uint32_t nbytes[RM_WINDOWSIZE]; Time timestamp[RM_WINDOWSIZE];}; 

  rm_array_t   m_rm_array [2/*Number of ACIDs*/][2/* one for appcycle class and one for all frames*/]; 

  bool m_running; 

  uint32_t   m_totalcheckedin; 

  uint32_t   m_totalallcheckedin; 

  Time   m_currenttime; 

  Time   m_windowstart; 

  Time   m_windowupperpart; 

  Time   m_windowstarttime; 

  Time   m_arraystarttime; 

  Time   m_simulatorlast; 

  uint32_t   m_appcycle_ind; 

  EventId m_calcEvent; 

  uint32_t   m_datapoint; 

  uint32_t  m_i;             //loopcounter for debugging 

  uint32_t   m_bytes; 

  uint32_t   m_prevsize; 

}; 

RollMeanApp::RollMeanApp () 

: m_packet (0), 

m_socket (0), 

m_peer (), 

m_packetSize (0), 

m_nPackets (0), 

m_dataRate (0), 

m_sendEvent (), 
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m_windowSize (RM_WINDOWSIZE), 

m_direction (0), 

m_appcycle (1), 

m_inttime (0), 

m_getall (false), 

m_node (0), 

m_j (0), 

m_k (0), 

m_running (false), 

m_totalcheckedin (0), 

m_totalallcheckedin (0), 

m_currenttime (0), 

m_windowstart (0), 

m_windowupperpart (0), 

m_windowstarttime (0), 

m_arraystarttime (0), 

m_simulatorlast (0), 

m_appcycle_ind (0), 

m_calcEvent (), 

m_datapoint (), 

m_i (0), 

m_bytes (0), 

m_prevsize (0) 

{ 

} 

RollMeanApp::~RollMeanApp() 

{ 

} 

//so far not needed: 
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void 

RollMeanApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, DataRate dataRate, uint32_t direction, uint32_t 

appcycle, uint32_t inttime, uint32_t node, bool getall) 

{ 

  m_socket = socket; 

  m_peer = address; 

  m_packetSize = packetSize; 

  m_dataRate = dataRate; 

  m_direction = direction; 

  m_appcycle = appcycle; 

  m_inttime = inttime; 

  m_node = node; 

  m_getall = getall; 

} 

void 

RollMeanApp::StartApplication (void) 

{ 

  m_running = true; 

  m_socket->Bind (); 

  m_socket->Connect (m_peer); 

  m_buffer[0]= (uint8_t) FBF; //Feedback frame 

  m_buffer[1]= (uint8_t) m_appcycle; //application cycle in ms for packet 

  m_buffer[2]= (uint8_t) m_direction; //clockwise or conterclockwise 

  uint8_t* buf = &m_buffer[0]; 

  m_packet = Create<Packet> (buf, m_packetSize); 

  Time tNext (/*m_inttime **/ 1000000/*Seconds ((uint32_t) 0.005)*/);  //First calculation 

  m_calcEvent = Simulator::Schedule (tNext, &RollMeanApp::Calculate, this); 

//  NS_LOG_INFO ("Calculate RM in " << tNext); 

//  NS_LOG_INFO (Simulator::Now () << "   " << Simulator::Now().GetSeconds()); 
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} 

void 

RollMeanApp::StopApplication (void) 

{ 

  m_running = false; 

  NS_LOG_INFO ("Total app specific packets checked in: " << m_totalcheckedin); 

  NS_LOG_INFO ("Total all apps packets checked in: " << m_totalallcheckedin); 

  if (m_sendEvent.IsRunning ()) 

{ 

Simulator::Cancel (m_sendEvent); 

} 

  if (m_socket) 

{ 

m_socket->Close (); 

} 

#if (0) 

  for (uint32_t i=0; i < 50; i++) //Check just a few entries visually 

  { 

  NS_LOG_INFO ("rm_array entry number: " << i); 

  NS_LOG_INFO ("rm_array bytes = " << m_rm_array[0][0].nbytes[i]); 

  NS_LOG_INFO ("rm_array timestamp = " << m_rm_array[0][0].timestamp[i] << std::endl); 

  } 

#endif 

} 

// Calculate the rolling means of all application cycles and VLANs 

void 

RollMeanApp::Calculate (void) 

{ 

// one calculation for app cycle class and one for all app cycles 
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for (uint32_t c = 0; c < 2; ++c) 

{ 

m_currenttime = (Simulator::Now ()); 

m_arraystarttime = m_rm_array[0][c].timestamp[0]; 

m_bytes = 0; 

m_i = 0; 

uint32_t ind = 0; 

if (c==0) 

{ 

ind = m_j; //app cycle specific calculation 

} 

if (c==1) 

{ 

ind = m_k; //calculation over all app cycles 

} 

if ((m_currenttime- (Time)m_inttime * 1000000) >= m_arraystarttime) //window is fully within array 

{ 

m_windowstarttime = m_currenttime - (Time)m_inttime * 1000000; 

for (uint32_t i = ind; m_rm_array[0][c].timestamp[i] > m_windowstarttime; --i) 

{ 

m_bytes = m_bytes + m_rm_array[0][c].nbytes[i]; 

m_i++; 

} 

  NS_LOG_INFO ("RollMeanApp: Sum of " << m_i << "packets"); 

} 

else //window suffered a turnover within array or has just started 

{ 

for (int32_t i = ind; i >= 0; --i) 

{ 
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m_bytes = m_bytes + m_rm_array[0][c].nbytes[i]; 

m_i++; 

} 

if (m_rm_array[0][c].timestamp[RM_WINDOWSIZE-1] > (Time)(0)) // turnover 

{ 

m_windowupperpart = m_currenttime - m_rm_array[0][c].timestamp[RM_WINDOWSIZE-1]; 

m_windowstarttime = m_rm_array[0][c].timestamp[RM_WINDOWSIZE-1] - ((Time)(m_inttime * 1000000) - m_windowupperpart); 

for (uint32_t i = RM_WINDOWSIZE-1; m_rm_array[0][c].timestamp[i] >= m_windowstarttime; --i) 

{ 

m_bytes = m_bytes + m_rm_array[0][c].nbytes[i]; 

m_i++; 

} 

} 

NS_LOG_INFO ("RollMeanApp: Sum of " << m_i << "packets"); 

} 

p_throughput [c][m_datapoint]= ((float)m_bytes * 8)/(m_inttime * 10000)/* 5 * 1000000 ns per ms divided by 100 is 1 

per cent*/; 

NS_LOG_INFO ("RollMeanApp: Throughput = " << p_throughput[c][m_datapoint] << " %" << std::endl); 

m_i = 0; 

} 

if(m_running) 

{ 

  Time tNext (1000000); //next calculation (is not integration time but calc cycle 

  m_calcEvent = Simulator::Schedule (tNext, &RollMeanApp::Calculate, this); 

//   NS_LOG_INFO ("Calculate in " << tNext << std::endl); 

} 

//For now, send the throughput circle frame here directly to AC1, Later on only to the next node. 

//Later on also one frame per direction and app cycle which comes with different rolling mean apps. 

//*(((float*)(&m_buffer[4])) + m_node) = p_throughput [0][m_datapoint]; 
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// Send app cycle class throughput measurement 

// *((uint8_t*)(&m_packet[0x2b])) = (uint8_t)m_appcycle; 

// *(((float*)((uint8_t*)(&m_packet[0x2e]))) + m_node) = p_throughput[0] [m_datapoint]; 

// *((uint8_t*)((&m_packet->m_buffer)+1)) = (uint8_t)m_appcycle; 

// *(((float*)((uint8_t*)(&m_packet->m_buffer[3]))) + m_node) = p_throughput[0] [m_datapoint]; 

m_buffer[1] = (uint8_t) m_appcycle; 

*(((float*)(&m_buffer[4])) + m_node) = p_throughput [0] [m_datapoint]; 

uint8_t* buf = &m_buffer[0]; 

m_packet = Create<Packet> (buf, m_packetSize); 

m_socket->Send (m_packet); 

// NS_LOG_INFO ("Packet UID " << m_packet->GetUid()); 

// NS_LOG_INFO ("Packet RefCnt " << m_packet->GetReferenceCount() << std::endl); 

// Send overall app cycle class throughput measurement out of the 8 ms app cycle measurement 

if (m_appcycle == APP8MS) 

{ 

m_buffer[1] = ALLAPPS; 

*(((float*)(&m_buffer[4])) + m_node) = p_throughput [1][m_datapoint]; 

m_packet = Create<Packet> (buf, m_packetSize); 

m_socket->Send (m_packet); 

// NS_LOG_INFO ("Packet UID " << m_packet->GetUid()); 

// NS_LOG_INFO ("Packet RefCnt " << m_packet->GetReferenceCount() << std::endl); 

} 

if(m_datapoint < DATAPOINTS) 

{ 

m_datapoint++; 

} 

} 

void 

RollMeanApp::CheckInPacket ( Ptr<const Packet> pPacket) 
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{ 

  uint8_t buffer [0x30]; 

  uint8_t* p_buf = buffer; 

  Ptr<const Packet> ppacket = pPacket; 

  ppacket->CopyData (p_buf, 0x30); 

//   NS_LOG_INFO ("tx callback: pointer = " << *ppacket << std::endl << std::endl ); 

//   std::cout << "send callback: pointer = " << *ppacket; 

//   NS_LOG_INFO ("tx callback: packet size = " << ppacket->GetSize()); 

//   NS_LOG_INFO ("Check In App: = " << this); 

  if (m_running) 

  { 

  // fetch only UDP  process data 

if (buffer[0x17] == UDP) 

  { 

  //fetch only data frames 

  if (buffer[0x2a] == DF) 

  { 

 //check into first buffer if of this explicit app cycle 

  if (buffer[0x2c] == m_appcycle) 

{ 

  if (m_j == m_windowSize -1) 

  { 

  m_j = 0; 

//   NS_LOG_INFO ("iterator m_j turnover, set to " << m_j); 

  } 

  else 

  { 

  m_j++; 

  } 
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  m_rm_array[(buffer[0x2b])-1/*ACID*/][0].nbytes[m_j] = ppacket->GetSize(); 

  m_rm_array[(buffer[0x2b])-1/*ACID*/][0].timestamp[m_j] = (Simulator::Now ()); 

  m_totalcheckedin++; 

} 

#if 0 

 /*Check all frames into second buffer for common throughput measurement?*/ 

  if ((buffer[0x2c] == APP1MS) || (buffer[0x2c] == APP2MS) || (buffer[0x2c] == APP4MS) || (buffer[0x2c] == 

APP8MS) || (buffer[0x2c] == APP16MS) || (buffer[0x2c] == APP32MS)) 

{ 

  if (m_getall) 

  { 

if (m_k == m_windowSize -1) 

{ 

m_k = 0; 

// NS_LOG_INFO ("iterator m_k turnover, set to " << m_k); 

} 

else 

{ 

m_k++; 

} 

m_rm_array[(buffer[0x2b])-1/*ACID*/][1].nbytes[m_k] = ppacket->GetSize(); 

m_rm_array[(buffer[0x2b])-1/*ACID*/][1].timestamp[m_k] = (Simulator::Now ()); 

m_totalallcheckedin++; 

  } 

} 

#endif 

#if 0 

  if (((ppacket->GetSize() != m_prevsize)&& (m_prevsize !=0))|| (ppacket->GetSize() == 0)) 

{ 
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  NS_LOG_INFO ("Error packet size: previous size = " << m_prevsize << " ,current size is " << ppacket->GetSize() 

<< std::endl); 

  } 

m_prevsize = ppacket->GetSize(); 

#endif 

#if 0 

  NS_LOG_INFO ("rm_array bytes = " << m_rm_array[0][0].nbytes[m_j]); 

  NS_LOG_INFO ("rm_array timestamp = " << m_rm_array[0][0].timestamp[m_j]); 

  NS_LOG_INFO ("delta time = " << m_rm_array[0][0].timestamp[m_j] - m_simulatorlast); 

  NS_LOG_INFO ("iterator m_j = " << m_j << std::endl); 

  m_simulatorlast = Simulator::Now (); 

#endif 

  } 

  } 

  } 

} 

// The PIDCtrlApp implements the PID Controller 

class PIDCtrlApp : public Application 

{ 

public: 

static TypeId GetTypeId (void) 

  { 

static TypeId tid = TypeId ("PIDCtrlApp") 

.SetParent (Object::GetTypeId ()) 

.SetGroupName ("MyGroup") 

.AddConstructor<PIDCtrlApp> () 

  ; 

return tid; 

  } 
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  PIDCtrlApp (); 

  virtual ~PIDCtrlApp(); 

  void Setup (double kp, double ki, double kd, uint32_t intstep, double thres, float* ref, float* out, std::string type); 

  float     p_throughput[DATAPOINTS]; // in percent 

private: 

  virtual void StartApplication (void); 

  virtual void StopApplication (void); 

  void Calculate (void); 

  double   m_ref;  //input 

  uint32_t   m_rampcnt;  //counter to avoid start-up-jumps by ramping up reference. 

  Double   m_threshold; //threshold to damp responsiveness 

  double  m_kp; //Proportional factor 

  double m_ki; //Integral factor 

  double m_kd; //Differential factor 

  float    m_out;  //Output 

  bool   m_running; 

  EventId    m_calculateEvent; 

  Double   m_int;  //integral sum up 

  Double   m_lastint;  //last integral sum up 

  Double   m_lasttime;  //point in time of last calculation 

  uint32_t   m_intstep;  //integration time step in ns, that is calculation cycle for PID controller 

  double   m_lastref;  //reference at last calculation 

  float*   m_refptr; //pointer to controller reference input 

  float*   m_outptr; //pointer to controller output 

  std::string m_type; //type of PID (distribution or flow control) 

}; 

PIDCtrlApp::PIDCtrlApp () 

  : m_ref (0), 

m_rampcnt (0), 
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m_threshold (0), 

m_kp (0), 

m_ki (0), 

m_kd (0), 

m_out (0), 

m_running (false), 

m_calculateEvent (), 

m_int (0), 

m_lastint (0), 

m_lasttime (0), 

m_intstep (0), 

m_lastref (0), 

m_refptr (0), 

m_outptr (0), 

m_type () 

{ 

} 

PIDCtrlApp::~PIDCtrlApp() 

{ 

} 

void 

PIDCtrlApp::Setup (double kp, double ki, double kd, uint32_t intstep, double thres, float* ref, float* out, std::string type) 

{ 

  m_kp = kp; 

  m_ki = ki; 

  m_kd = kd; 

  m_intstep = intstep; 

  m_threshold = thres; 

  m_refptr = ref; 
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  m_outptr = out; 

  m_type = type; 

} 

void 

PIDCtrlApp::StartApplication (void) 

{ 

  m_running = true; 

  Time tNext (1000000/*m_intstep*/); 

  m_calculateEvent = Simulator::Schedule (tNext, &PIDCtrlApp::Calculate, this); 

//NS_LOG_INFO ("Calculate PIDCtrl in " << tNext); 

} 

void 

PIDCtrlApp::StopApplication (void) 

{ 

  m_running = false; 

} 

// Calculate the PID Controller 

// used for distribution control and flow control 

void 

PIDCtrlApp::Calculate (void) 

{ 

#if 1 

NS_LOG_INFO ("PID Type is " << m_type); 

NS_LOG_INFO ("Reference is " << *m_refptr); 

//avoid "switch-on-jumps": ramp up reference at control start. 

m_ref = *m_refptr; 

if (m_rampcnt == 0) 

{ 

m_ref = m_ref/CTRLRAMPSTEP; 
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m_rampcnt++; 

} 

else 

{ 

m_ref = m_ref * (m_rampcnt/CTRLRAMPSTEP); 

if (m_rampcnt < CTRLRAMPSTEP) 

{ 

m_rampcnt++; 

} 

} 

if (fabs(m_ref) > m_threshold) 

{ 

m_int = m_lastint + (m_ki * (m_ref) * (Simulator::Now ().GetSeconds() - m_lasttime)); 

*m_outptr = m_kp * m_ref + m_int + ((m_ref - m_lastref)/(Simulator::Now ().GetSeconds() - m_lasttime) * m_kd);

NS_LOG_INFO ("Time is " << Simulator::Now ().GetSeconds()); 

NS_LOG_INFO ("integral difference is " << (m_ki * m_ref * (Simulator::Now ().GetSeconds() - m_lasttime))); 

NS_LOG_INFO ("integral new sum is " << m_int); 

NS_LOG_INFO ("differential part is  " << ((m_ref - m_lastref)/(Simulator::Now ().GetSeconds() - m_lasttime) * m_kd)); 

m_lastref = m_ref; 

m_lasttime = Simulator::Now().GetSeconds(); 

m_lastint = m_int; 

} 

NS_LOG_INFO ("Output is " << *m_outptr << std::endl); 

if(m_running) 

{ 

  Time tNext (1000000/*m_intstep*/); 

  m_calculateEvent = Simulator::Schedule (tNext, &PIDCtrlApp::Calculate, this); 

//   NS_LOG_INFO ("Calculate PID in " << tNext); 

} 
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#endif 

} 

//A collector application receives the throughput feedbacks from the nodes, compares and provides 

//the difference as input for the distribution control 

class CollApp : public Application 

{ 

public: 

static TypeId GetTypeId (void) 

  { 

static TypeId tid = TypeId ("CollApp") 

.SetParent (Object::GetTypeId ()) 

.SetGroupName ("MyGroup") 

.AddConstructor<CollApp> (); 

#if 0 

  .AddTraceSource ("NPackets", 

"Number of Packets to trace.", 

MakeTraceSourceAccessor (&CollApp::NPackets), 

"ns3::TracedValueCallback::Int32") 

; 

#endif 

return tid; 

  } 

 CollApp (); 

 virtual ~CollApp(); 

 void Setup (uint32_t node); 

 void ReceivePacket (ns3::Ptr<const ns3::Packet>); 

 void Compare (void); 

  //array of throughputs per direction, app, and node. forelast element to hold maximum 

  //last element to hold the difference to the other direction 
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  float   m_thp_array [NAPPSIND][NDIR][NNODES+2]; 

float plot_array [NAPPSIND][NDIR][DATAPOINTS]; 

//  TracedValue<int32_t> NPackets; 

private: 

  virtual void StartApplication (void); 

  virtual void StopApplication (void); 

  bool   m_running; 

  EventId m_compEvent; 

  uint32_t   m_node; 

  uint32_t   m_appcycle_ind; 

  uint32_t   m_datapoint; 

} 

; 

CollApp::CollApp () 

  : m_running (false), 

m_compEvent (), 

m_node (0), 

m_appcycle_ind (0), 

m_datapoint (0) 

{ 

} 

CollApp::~CollApp() 

{ 

} 

void 

CollApp::Setup (uint32_t node) 

{ 

  m_node = node; 

} 
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void 

CollApp::StartApplication (void) 

{ 

  m_running = true; 

  //initialize throughput matrix 

  for (uint32_t k = APP1MSIND; k < NAPPSIND; ++k) 

{ 

for (uint32_t j = CW; j < NDIR; ++j) 

{ 

for (uint32_t i = N0; i < NNODES + 2; ++i) 

{ 

m_thp_array [k][j][i] = 0; 

} 

} 

} 

  //initialize plot array 

  for (uint32_t k = APP1MSIND; k < NAPPSIND; ++k) 

{ 

for (uint32_t j = CW; j < NDIR; ++j) 

{ 

for (uint32_t i = 0; i < DATAPOINTS; ++i) 

{ 

plot_array [k][j][i] = 0; 

} 

} 

} 

  Time tNext (1000000); //10 ms after simulation start 

  m_compEvent = Simulator::Schedule (tNext, &CollApp::Compare, this); 

//  NS_LOG_INFO ("Compare throughputs " << tNext); 
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} 

void 

CollApp::StopApplication (void) 

{ 

  m_running = false; 

} 

//Receive Callback routine for the reception of nodes throughput feedbacks 

void 

CollApp::ReceivePacket (ns3::Ptr<const ns3::Packet> pPacket) 

{ 

  uint8_t buffer [110]; //need at least 42 Bytes plus Header 24 Bytes 

  uint8_t* p_buf = buffer; 

  Ptr<const Packet> ppacket = pPacket; 

  ppacket->CopyData (p_buf, ppacket->GetSize()); 

// NS_LOG_INFO ("size of float is = " << sizeof(float) << std::endl ); 

//    NS_LOG_INFO ("rx callback: pointer = " << *ppacket << std::endl << std::endl ); 

//    std::cout << "rx callback: pointer = " << *ppacket; 

// NS_LOG_INFO ("Check In App: = " << this); 

  if (m_running) 

  { 

  // fetch only UDP process data 

if (buffer[0x17] == UDP) 

  { 

  //analyse throughput feedback frames and copy throughputs into array. 

  if (buffer[0x2a] == FBF) 

  { 

  switch (buffer[0x2b]/*APPID*/) 

  { 

  case APP1MS: 
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 m_appcycle_ind = APP1MSIND; 

 break; 

  case APP2MS: 

 m_appcycle_ind = APP2MSIND; 

 break; 

  case APP4MS: 

 m_appcycle_ind = APP4MSIND; 

 break; 

  case APP8MS: 

 m_appcycle_ind = APP8MSIND; 

 break; 

  case APP16MS: 

 m_appcycle_ind = APP16MSIND; 

 break; 

  case APP32MS: 

 m_appcycle_ind = APP32MSIND; 

 break; 

  case ALLAPPS: 

 m_appcycle_ind = ALLAPPSIND; 

 break; 

  default: 

break; 

} 

for (uint32_t i = N0; i < NNODES; ++i) 

{ 

m_thp_array [m_appcycle_ind][buffer[0x2c]][i] = *((float*) (&buffer [0x2e + (i * sizeof(float))])); 

#if 1 

NS_LOG_INFO ("+++++ CollApp: +++++ " ); 

uint32_t temp = *((uint32_t*)(&buffer[0x2b])); 
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NS_LOG_INFO ("App cycle " << temp << "ms"); 

temp = *((uint32_t*)(&buffer[0x2c])); 

NS_LOG_INFO ("Direction " << *((uint32_t*)(&buffer[0x2c]))); 

NS_LOG_INFO ("throughput of node " << i << " :" << m_thp_array [m_appcycle_ind][*((uint8_t*)&buffer[0x2c])][i]); 

NS_LOG_INFO ("rx callback: packet size = " << ppacket->GetSize() << std::endl); 

#endif 

} 

  } 

  } 

  } 

#if 0 

  if (packet->GetSize () > 0) 

{ 

  NS_LOG_INFO ("Received packet "); 

} 

#endif 

/*For further extensions: Make a coll app including forwarding for ACs, and a similar only forwarding app for nodes. 

Create two circling throughput collection frames cw and ccw. Create a pass-further method with parameter direction. 

In AC 1 make a buffer turnover of a buffer containing IP addresses in succession (to know where to pass to) 

*/ 

} 

// Compare the nodes throughputs 

void 

CollApp::Compare (void) 

{ 

//sum up over the single application cycles per node and direction to build the overall bandwidth consumption (throughput) for app 

dedicated control. 

#if 1 

float sum = 0; 
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for (uint32_t i = N0; i < NNODES; ++i) 

{ 

for (uint32_t j = CW; j < NDIR; ++j) 

{ 

for (uint32_t k = APP1MSIND; k < (NAPPSIND-2); ++k) 

{ 

sum = sum + m_thp_array [k][j][i]; 

} 

m_thp_array [SUMAPPSIND][j][i] = sum; 

#if 0 

NS_LOG_INFO ("+++++ CollApp: for Plot+++++ " ); 

NS_LOG_INFO ("data point " << m_datapoint); 

NS_LOG_INFO ("Sum of Node " << i); 

NS_LOG_INFO ("for direction " << j); 

NS_LOG_INFO ("Sum" << " :" << sum); 

#endif 

sum = 0; 

} 

} 

#endif 

//find maximum of each direction and application cycle and all application cycles and build and store difference 

#if 1 

float max=0; 

static bool  take = false; 

for (uint32_t k = APP1MSIND; k < (NAPPSIND - 0); ++k) 

{ 

for (uint32_t j = CW; j < NDIR; ++j) 

{ 

for (uint32_t i = N0; i < NNODES; ++i) 
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{ 

if (m_thp_array [k][j][i] > max) 

{ 

max = m_thp_array [k][j][i]; 

} 

} 

m_thp_array [k][j][NNODES] = max; 

if (m_datapoint < DATAPOINTS) 

{ 

plot_array [k][j][m_datapoint] = max; 

} 

max = 0; 

m_thp_array [k][j][NNODES + 1] = 0; 

} 

// only compare if both directions throughputs are available already 

if ((m_thp_array [k][CW][NNODES] != 0) && (m_thp_array [k][CCW][NNODES] != 0)) 

{ 

m_thp_array [k][CW][NNODES + 1] = (m_thp_array [k][CW][NNODES] - m_thp_array [k][CCW][NNODES])/2; 

NS_LOG_INFO ("maximum clockwise " << " :" << m_thp_array [k][CW][NNODES]); 

NS_LOG_INFO ("maximum counterclockwise " << " :" << m_thp_array [k][CCW][NNODES]); 

} 

} 

if (take == true) //store only every 2nd sample as CollApp is processed twice per millisecond for fast reaction 

{ 

take = false; 

m_datapoint++; 

} 

else 

{ 
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take = true; 

} 

if (m_running) 

{ 

Time tNext (500000/*m_intstep/2*/); 

m_compEvent = Simulator::Schedule (tNext, &CollApp::Compare, this); 

// NS_LOG_INFO ("Compare throughputs " << tNext); 

} 

#endif 

} 

//A TrafficApp only sends frames in one direction of the ring, usually to simulate traffic interference 

class TrafficApp : public Application 

{ 

public: 

static TypeId GetTypeId (void) 

  { 

static TypeId tid = TypeId ("TrafficApp") 

.SetParent (Object::GetTypeId ()) 

.SetGroupName ("MyGroup") 

.AddConstructor<TrafficApp> () 

.AddTraceSource ("NPackets", 

"Number of Packets to trace.", 

MakeTraceSourceAccessor (&LDCApp::NPackets), 

"ns3::TracedValueCallback::Int32") 

; 

return tid; 

  } 

 TrafficApp (); 

 virtual ~TrafficApp(); 



Page 335 

 void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t 

appcycle, uint32_t acid); 

 TracedValue<int32_t> NPackets; 

private: 

 virtual void StartApplication (void); 

 virtual void StopApplication (void); 

 void ScheduleTx (void); 

 void ScheduleTxCycle (void); 

 void SendPacket (void); 

 Ptr<Packet> m_packet; 

 Ptr<Socket> m_socket; 

 Address m_peer; 

 uint32_t m_packetSize; 

 uint32_t m_nPackets; 

 DataRate m_dataRate; 

 EventId m_sendEvent; 

 bool m_running; 

 uint32_t m_packetsSent; 

 uint32_t m_appcycle; 

 uint32_t m_acid; 

 uint32_t  m_totalsent; 

//  Gnuplot2dDataset  m_2ddataset; 

//  Gnuplot3dDataset  m_3ddataset; 

}; 

TrafficApp::TrafficApp () 

  : m_packet (0), 

m_socket (0), 

m_peer (), 

m_packetSize (0), 
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m_nPackets (0), 1141 

m_dataRate (0), 1142 

m_sendEvent (), 1143 

m_running (false), 1144 

m_packetsSent (0), 1145 

m_appcycle (1), 1146 

m_acid (0), 1147 

m_totalsent (0) 1148 

{ 1149 

} 1150 

TrafficApp::~TrafficApp() 1151 

{ 1152 

  m_socket = 0; 1153 

} 1154 

void 1155 

TrafficApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate, uint32_t 1156 

appcycle, uint32_t acid) 1157 

{ 1158 

  m_socket = socket; 1159 

  m_peer = address; 1160 

  m_packetSize = packetSize; 1161 

  m_nPackets = nPackets; 1162 

  m_dataRate = dataRate; 1163 

  m_appcycle = appcycle; 1164 

  m_acid = acid; 1165 

} 1166 

void 1167 

TrafficApp::StartApplication (void) 1168 

{ 1169 
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  m_running = true; 

  m_packetsSent = 0; 

  m_socket->Bind (); 

  m_socket->Connect (m_peer); 

  uint8_t buffer[3]; 

  buffer[0]= (uint8_t) DF; //data frame 

  buffer[1]= (uint8_t) m_acid; //id for packet (0xff for interference) 

  buffer[2]= (uint8_t) m_appcycle; //application cycle in ms for packet 

  uint8_t* buf = buffer; 

  m_packet = Create<Packet> (buf, m_packetSize); 

  SendPacket (); 

} 

void 

TrafficApp::StopApplication (void) 

{ 

  m_running = false; 

  NS_LOG_INFO ("TrafficApp: Total packets sent: " << m_totalsent); 

  if (m_sendEvent.IsRunning ()) 

{ 

Simulator::Cancel (m_sendEvent); 

} 

  if (m_socket) 

{ 

m_socket->Close (); 

} 

} 

void 

TrafficApp::SendPacket (void) 

{ 
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  m_socket->Send (m_packet); 

  m_totalsent++; 

  if (++m_packetsSent < m_nPackets) 

{ 

ScheduleTx (); 

} 

  else 

  { 

  ScheduleTxCycle (); 

  } 

} 

//Schedule sending within the communication cycle 

void 

TrafficApp::ScheduleTx (void) 

{ 

  if (m_running) 

{ 

//Schedule next frame 

Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ()))); 

m_sendEvent = Simulator::Schedule (tNext, &TrafficApp::SendPacket, this); 

  //NS_LOG_INFO ("ScheduleTx in " << tNext); 

} 

} 

//Schedule sending for the application cycle 

void 

TrafficApp::ScheduleTxCycle (void) 

{ 

  if (m_running) 

{ 
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Time tNextCycle (Seconds ((m_appcycle/static_cast<double> (1000))- m_packetsSent * (m_packetSize * 8 / static_cast<double> 

(m_dataRate.GetBitRate ())) ) ); 

m_sendEvent = Simulator::Schedule (tNextCycle, &TrafficApp::SendPacket, this); 

  //NS_LOG_INFO ("ScheduleTxCycle in " << tNextCycle); 

} 

 m_packetsSent = 0; 

} 

int  

main (int argc, char *argv[]) 

{ 

  // 

  // explicit debugging for selected modules 

  // 

#if 1 

  LogComponentEnable ("LDCSim", LOG_LEVEL_ALL); 

#endif 

#if 0 

  LogComponentEnable ("CsmaNetDevice", LOG_LEVEL_ALL); 

#endif 

#if 0 

  LogComponentEnable ("OnOffApplication", LOG_LEVEL_ALL); 

#endif 

#if 0 

  LogComponentEnable ("Ipv4EndPoint", LOG_LEVEL_ALL); 

#endif 

#if 0 

  LogComponentEnable ("UdpSocketImpl", LOG_LEVEL_ALL); 

#endif 

#if 0 
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  LogComponentEnable ("Simulator", LOG_LEVEL_ALL); 

#endif 

#if 0 

  LogComponentEnable ("Application", LOG_LEVEL_ALL); 

#endif 

#if 0 

  LogComponentEnable ("OnOffApplication", LOG_LEVEL_ALL); 

#endif 

  // 

  //command-line arguments 

  // 

  CommandLine cmd (__FILE__); 

cmd.Parse (argc, argv);

  // 

  // Explicitly create the nodes required by the topology (shown above). 

  // 

  NS_LOG_INFO ("rolling mean window size = " << RM_WINDOWSIZE); 

  NS_LOG_INFO ("Create nodes."); 

  Ptr<Node> AC1 = CreateObject<Node> (); 

  Ptr<Node> n1 = CreateObject<Node> (); 

  Ptr<Node> n2 = CreateObject<Node> (); 

  Ptr<Node> n3 = CreateObject<Node> (); 

  Ptr<Node> n4 = CreateObject<Node> (); 

  Ptr<Node> n5 = CreateObject<Node> (); 

  Ptr<Node> n6 = CreateObject<Node> (); 

  Ptr<Node> n7 = CreateObject<Node> (); 

  Ptr<Node> n8 = CreateObject<Node> (); 

  Ptr<Node> n9 = CreateObject<Node> (); 

  NS_LOG_INFO ("Build Topology"); 
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  CsmaHelper csma; 

  csma.SetChannelAttribute ("DataRate", StringValue ("1000Mbps")); 

  csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (0.002))); 

  // Create the NetDevice containers for the csma links 

  NetDeviceContainer Lan1Devices; 

  NetDeviceContainer Lan2Devices; 

  NetDeviceContainer Lan3Devices; 

  NetDeviceContainer Lan4Devices; 

  NetDeviceContainer Lan5Devices; 

  NetDeviceContainer Lan6Devices; 

  NetDeviceContainer Lan7Devices; 

  NetDeviceContainer Lan8Devices; 

  NetDeviceContainer Lan9Devices; 

  NetDeviceContainer Lan10Devices; 

  // put the nodes into containers for the LAN segments 

  NodeContainer Lan1 (AC1, n1); 

  NodeContainer Lan2 (n1, n2); 

  NodeContainer Lan3 (n2, n3); 

  NodeContainer Lan4 (n3, n4); 

  NodeContainer Lan5 (n4, n5); 

  NodeContainer Lan6 (n5, n6); 

  NodeContainer Lan7 (n6, n7); 

  NodeContainer Lan8 (n7, n8); 

  NodeContainer Lan9 (n8, n9); 

  NodeContainer Lan10 (n9, AC1); 

  NodeContainer Seg1 (AC1, n1, n2, n3, n4); 

  NodeContainer Seg2 (n5, n6, n7, n8, n9); 

  NodeContainer AllSeg (Seg1, Seg2); 

  // positions for the use of NetAnim 
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  AnimationInterface::SetConstantPosition (Lan1.Get (0), 10, 50); 

  AnimationInterface::SetConstantPosition (n1, 20, 30); 

  AnimationInterface::SetConstantPosition (n2, 30, 30); 

  AnimationInterface::SetConstantPosition (n3, 40, 30); 

  AnimationInterface::SetConstantPosition (n4, 50, 30); 

  AnimationInterface::SetConstantPosition (n5, 60, 50); 

  AnimationInterface::SetConstantPosition (n6, 50, 70); 

  AnimationInterface::SetConstantPosition (n7, 40, 70); 

  AnimationInterface::SetConstantPosition (n8, 30, 70); 

  AnimationInterface::SetConstantPosition (n9, 20, 70); 

//Create the csma links 

  Lan1Devices = csma.Install (NodeContainer (Lan1.Get (0), Lan1.Get (1))); 

  Lan2Devices = csma.Install (NodeContainer (Lan2.Get (0), Lan2.Get (1))); 

  Lan3Devices = csma.Install (NodeContainer (Lan3.Get (0), Lan3.Get (1))); 

  Lan4Devices = csma.Install (NodeContainer (Lan4.Get (0), Lan4.Get (1))); 

  Lan5Devices = csma.Install (NodeContainer (Lan5.Get (0), Lan5.Get (1))); 

  Lan6Devices = csma.Install (NodeContainer (Lan6.Get (0), Lan6.Get (1))); 

  Lan7Devices = csma.Install (NodeContainer (Lan7.Get (0), Lan7.Get (1))); 

  Lan8Devices = csma.Install (NodeContainer (Lan8.Get (0), Lan8.Get (1))); 

  Lan9Devices = csma.Install (NodeContainer (Lan9.Get (0), Lan9.Get (1))); 

  Lan10Devices = csma.Install (NodeContainer (Lan10.Get (0), Lan10.Get (1))); 

  //build new device containers for the bridge devices 

NetDeviceContainer Bridge_n1Devices; 

NetDeviceContainer Bridge_n2Devices; 

NetDeviceContainer Bridge_n3Devices; 

NetDeviceContainer Bridge_n4Devices; 

NetDeviceContainer Bridge_n5Devices; 

NetDeviceContainer Bridge_n6Devices; 

NetDeviceContainer Bridge_n7Devices; 
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NetDeviceContainer Bridge_n8Devices; 

NetDeviceContainer Bridge_n9Devices; 

NetDeviceContainer AllDevices; 

Bridge_n1Devices.Add (Lan1Devices.Get(1)); 

Bridge_n1Devices.Add (Lan2Devices.Get(0)); 

Bridge_n2Devices.Add (Lan2Devices.Get(1)); 

Bridge_n2Devices.Add (Lan3Devices.Get(0)); 

Bridge_n3Devices.Add (Lan3Devices.Get(1)); 

Bridge_n3Devices.Add (Lan4Devices.Get(0)); 

Bridge_n4Devices.Add (Lan4Devices.Get(1)); 

Bridge_n4Devices.Add (Lan5Devices.Get(0)); 

Bridge_n5Devices.Add (Lan5Devices.Get(1)); 

Bridge_n5Devices.Add (Lan6Devices.Get(0)); 

Bridge_n6Devices.Add (Lan6Devices.Get(1)); 

Bridge_n6Devices.Add (Lan7Devices.Get(0)); 

Bridge_n7Devices.Add (Lan7Devices.Get(1)); 

Bridge_n7Devices.Add (Lan8Devices.Get(0)); 

Bridge_n8Devices.Add (Lan8Devices.Get(1)); 

Bridge_n8Devices.Add (Lan9Devices.Get(0)); 

Bridge_n9Devices.Add (Lan9Devices.Get(1)); 

Bridge_n9Devices.Add (Lan10Devices.Get(0)); 

AllDevices.Add (Lan1Devices.Get(0)); 

AllDevices.Add (Lan1Devices.Get(1)); 

AllDevices.Add (Lan2Devices.Get(0)); 

AllDevices.Add (Lan2Devices.Get(1)); 

AllDevices.Add (Lan3Devices.Get(0)); 

AllDevices.Add (Lan3Devices.Get(1)); 

AllDevices.Add (Lan4Devices.Get(0)); 

AllDevices.Add (Lan4Devices.Get(1)); 



Page 344 

AllDevices.Add (Lan5Devices.Get(0)); 

AllDevices.Add (Lan5Devices.Get(1)); 

AllDevices.Add (Lan6Devices.Get(0)); 

AllDevices.Add (Lan6Devices.Get(1)); 

AllDevices.Add (Lan7Devices.Get(0)); 

AllDevices.Add (Lan7Devices.Get(1)); 

AllDevices.Add (Lan8Devices.Get(0)); 

AllDevices.Add (Lan8Devices.Get(1)); 

AllDevices.Add (Lan9Devices.Get(0)); 

AllDevices.Add (Lan9Devices.Get(1)); 

AllDevices.Add (Lan10Devices.Get(0)); 

AllDevices.Add (Lan10Devices.Get(1)); 

  // 

  // Create the bridge NetDevice for packet switching. 

  // Each node contains a bridge thereby forming the ring with two-port devices. 

  // 

  BridgeHelper Bridge_n1, Bridge_n2, Bridge_n3, Bridge_n4, Bridge_n5; 

  BridgeHelper Bridge_n6, Bridge_n7, Bridge_n8, Bridge_n9; 

  Bridge_n1.Install (n1, Bridge_n1Devices); 

  Bridge_n2.Install (n2, Bridge_n2Devices); 

  Bridge_n3.Install (n3, Bridge_n3Devices); 

  Bridge_n4.Install (n4, Bridge_n4Devices); 

  Bridge_n5.Install (n5, Bridge_n5Devices); 

  Bridge_n6.Install (n6, Bridge_n6Devices); 

  Bridge_n7.Install (n7, Bridge_n7Devices); 

  Bridge_n8.Install (n8, Bridge_n8Devices); 

  Bridge_n9.Install (n9, Bridge_n9Devices); 

  // Add internet stack to the nodes. Stack is per node, not per NetDevice (interface) 

  InternetStackHelper internet; 
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  internet.Install (AllSeg); 

  // "hardware" in place.  Add IP addresses. 

  // IP address is per NetDevice (interface) starting from PLC with 10.1.1.1 

  // n1 clockwise (cw): 10.1.1.2 n6 cw:  10.1.1.12 

  // n1 counterclockwise (ccw): 10.1.1.3 n6 ccw: 10.1.1.13 

  // n2 cw: 10.1.1.4 n7 cw:  10.1.1.14 

  // n2 ccw: 10.1.1.5 n7 ccw: 10.1.1.15 

  // n3 cw: 10.1.1.6 n8 cw:  10.1.1.16 

  // n3 ccw: 10.1.1.7 n8 ccw: 10.1.1.17 

  // n4 cw: 10.1.1.8 n9 cw:  10.1.1.18 

  // n4 ccw: 10.1.1.9 n9 ccw: 10.1.1.19 

  // n5 cw: 10.1.1.10 PLC cw: 10.1.1.20 

  // n5 ccw: 10.1.1.11 PLC ccw:10.1.1.1 

  //  etc.... 

  NS_LOG_INFO ("Assign IP Addresses."); 

  Ipv4AddressHelper ipv4; 

  ipv4.SetBase ("10.1.1.0", "255.255.255.0"); 

  ipv4.Assign (AllDevices); 

  //  

  // Create router nodes, initialize routing database and set up the routing 

  // tables in the nodes.  We excuse the bridge nodes from having to serve as 

  // routers, since they don't even have internet stacks on them. 

  // 

  //Ipv4GlobalRoutingHelper::PopulateRoutingTables (); 

   NS_LOG_INFO ("Create Applications."); 

   uint16_t port = 9;   // Discard port (RFC 863) 

   //*************Create AC 1 Applications************ 

   //************* 1 ms clockwise round the ring************ 

#if (1) 
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   Ptr<Socket> LDCcw1msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCcw1msApp = CreateObject<LDCApp> (); 

   Lan1.Get (0)->AddApplication (LDCcw1msApp); 

   LDCcw1msSocket->BindToNetDevice (Lan1Devices.Get(0)); 

   LDCcw1msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCcw1msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 

   //   Add the throughput collection and maximum calculation app. 

   Ptr<CollApp> CollAC1App = CreateObject<CollApp> (); 

   Lan1.Get (0)->AddApplication (CollAC1App); 

   Lan1Devices.Get (0)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App)); 

   CollAC1App->Setup(N0); 

   CollAC1App->SetStartTime (Seconds (SIMSTART + COLL_STARTDELAY)); 

   CollAC1App->SetStopTime (Seconds (SIMEND + COLL_ENDDELAY)); 

#ifndef NOCONTROL 

#ifdef COMMONCONTROL 

   //install and setup distribution controller for all app cycles 

   Ptr<PIDCtrlApp> DistCtrlAC1_AllApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (DistCtrlAC1_AllApp); 

   DistCtrlAC1_AllApp->Setup (0.2, 40, 0/*0.00001*/, 1000000, 0.0, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

   DistCtrlAC1_AllApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY)); 

   DistCtrlAC1_AllApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY)); 

   //install and setup flow controller 

   Ptr<PIDCtrlApp> FlowCtrlAC1_AllApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (FlowCtrlAC1_AllApp); 

   FlowCtrlAC1_AllApp->Setup (0.6, 48/*85*/, 0.000/*0.00029*/, 1000000, 0.0, &LDCcw1msApp->m_flowctrlin , &LDCcw1msApp-

>m_flowctrlout, "Flow");

   FlowCtrlAC1_AllApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY)); 

   FlowCtrlAC1_AllApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY)); 
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   LDCcw1msApp->Setup (LDCcw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 222, 40, DataRate ("1Gb/s"), 

APP1MS, 1, false, 0, &CollAC1App->m_thp_array[ALLAPPSIND][CW][NNODES+1]); 

#endif 

#ifndef COMMONCONTROL 

   //install and setup distribution controller 

   Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp); 

   DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

   DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY)); 

   DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY)); 

   //install and setup flow controller 

   Ptr<PIDCtrlApp> FlowCtrlAC1_1msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (FlowCtrlAC1_1msApp); 

   FlowCtrlAC1_1msApp->Setup (0.4,140, 0.00002, 1000000, 0.0, &LDCcw1msApp->m_flowctrlin , &LDCcw1msApp->m_flowctrlout, "Flow"); 

   FlowCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY)); 

   FlowCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY)); 

   LDCcw1msApp->Setup (LDCcw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 222, 15, DataRate ("1Gb/s"), 

APP1MS, 1, false, 0, &CollAC1App->m_thp_array[APP1MSIND][CW][NNODES+1]); 

#endif 

#endif 

   NS_LOG_INFO ("Application 1 ms clockwise created."); 

#endif 

   //************* 2 ms clockwise round the ring************ 

#if (1) 

   Ptr<Socket> LDCcw2msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCcw2msApp = CreateObject<LDCApp> (); 

   Lan1.Get (0)->AddApplication (LDCcw2msApp); 

   LDCcw2msSocket->BindToNetDevice (Lan1Devices.Get(0)); 
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   LDCcw2msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCcw2msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 

#if 0 

   //install and setup distribution controller 

   Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp); 

   DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

   DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY)); 

   DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY)); 

#endif 

   //install and setup flow controller 

   Ptr<PIDCtrlApp> FlowCtrlAC1_2msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (FlowCtrlAC1_2msApp); 

   FlowCtrlAC1_2msApp->Setup (0.4, 145, 0.00002, 1000000, 0.0, &LDCcw2msApp->m_flowctrlin , &LDCcw2msApp->m_flowctrlout, "Flow"); 

   FlowCtrlAC1_2msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY)); 

   FlowCtrlAC1_2msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY)); 

   LDCcw2msApp->Setup (LDCcw2msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 223, 15, DataRate ("1Gb/s"), 

APP2MS, 1, false, 0, &CollAC1App->m_thp_array[APP2MSIND][CW][NNODES+1]); 

   NS_LOG_INFO ("Application 2 ms clockwise created."); 

#endif 

   //************* 4 ms clockwise round the ring************ 

#if (1) 

   Ptr<Socket> LDCcw4msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCcw4msApp = CreateObject<LDCApp> (); 

   Lan1.Get (0)->AddApplication (LDCcw4msApp); 

   LDCcw4msSocket->BindToNetDevice (Lan1Devices.Get(0)); 

   LDCcw4msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCcw4msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 
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#if 0 

   //install and setup distribution controller 

   Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp); 

   DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

   DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY)); 

   DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY)); 

#endif 

   //install and setup flow controller 

   Ptr<PIDCtrlApp> FlowCtrlAC1_4msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (FlowCtrlAC1_4msApp); 

   FlowCtrlAC1_4msApp->Setup (0.4, 160, 0.00002, 1000000, 0.0, &LDCcw4msApp->m_flowctrlin , &LDCcw4msApp->m_flowctrlout, "Flow"); 

   FlowCtrlAC1_4msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY)); 

   FlowCtrlAC1_4msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY)); 

   LDCcw4msApp->Setup (LDCcw4msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 224, 20, DataRate ("1Gb/s"), 

APP4MS, 1, false, 0, &CollAC1App->m_thp_array[APP4MSIND][CW][NNODES+1]); 

   NS_LOG_INFO ("Application 4 ms clockwise created."); 

#endif 

   //************* 8 ms clockwise round the ring************ 

#if (1) 

   Ptr<Socket> LDCcw8msSocket = Socket::CreateSocket (Lan1.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCcw8msApp = CreateObject<LDCApp> (); 

   Lan1.Get (0)->AddApplication (LDCcw8msApp); 

   LDCcw8msSocket->BindToNetDevice (Lan1Devices.Get(0)); 

   LDCcw8msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCcw8msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 

#if 0 

   //install and setup distribution controller 
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   Ptr<PIDCtrlApp> DistCtrlAC1_1msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (DistCtrlAC1_1msApp); 

   DistCtrlAC1_1msApp->Setup (0.2, 40, 0.00001, 1000000, 0.01, &LDCcw1msApp->m_distctrlin /*&CollAC1App-

>m_thp_array[APP1MS][CW][NNODES+1]*/ , &LDCcw1msApp->m_distctrlout, "Distribution");

   DistCtrlAC1_1msApp->SetStartTime (Seconds (CTRL_SIMSTART+ DIST_STARTDELAY)); 

   DistCtrlAC1_1msApp->SetStopTime (Seconds (SIMEND + DIST_ENDDELAY)); 

#endif 

   //install and setup flow controller 

   Ptr<PIDCtrlApp> FlowCtrlAC1_8msApp = CreateObject<PIDCtrlApp> (); 

   Lan1.Get (0)->AddApplication (FlowCtrlAC1_8msApp); 

   FlowCtrlAC1_8msApp->Setup (0.4, 220, 0.00002, 1000000, 0.0, &LDCcw8msApp->m_flowctrlin , &LDCcw8msApp->m_flowctrlout, "Flow"); 

   FlowCtrlAC1_8msApp->SetStartTime (Seconds (CTRL_SIMSTART+ FLOW_STARTDELAY)); 

   FlowCtrlAC1_8msApp->SetStopTime (Seconds (SIMEND+ FLOW_ENDDELAY)); 

   LDCcw8msApp->Setup (LDCcw8msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.18"), port)), 225, 25, DataRate ("1Gb/s"), 

APP8MS, 1, false, 0, &CollAC1App->m_thp_array[APP8MSIND][CW][NNODES+1]); 

   NS_LOG_INFO ("Application 8 ms clockwise created."); 

#endif 

   //************* 1 ms counterclockwise round the ring************ 

   Ptr<Socket> LDCccw1msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCccw1msApp = CreateObject<LDCApp> (); 

   LDCccw1msApp->Setup (LDCccw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 211, 15, DataRate ("1Gb/s"), 

APP1MS, 1, true, &LDCcw1msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP1MS][CCW][NNODES+1]); 

   Lan1.Get (0)->AddApplication (LDCccw1msApp); 

   LDCccw1msSocket->BindToNetDevice (Lan10Devices.Get(1)); 

   LDCccw1msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCccw1msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 

   Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App)); 

   NS_LOG_INFO ("Application 1 ms counterclockwise created."); 

   //************* 2 ms counterclockwise round the ring************ 
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#if 1 

   Ptr<Socket> LDCccw2msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCccw2msApp = CreateObject<LDCApp> (); 

   LDCccw2msApp->Setup (LDCccw2msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 212, 15, DataRate ("1Gb/s"), 

APP2MS, 1, true, &LDCcw2msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP2MS][CCW][NNODES+1]); 

   Lan1.Get (0)->AddApplication (LDCccw2msApp); 

   LDCccw2msSocket->BindToNetDevice (Lan10Devices.Get(1)); 

   LDCccw2msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCccw2msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 

   Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App)); 

   NS_LOG_INFO ("Application 2 ms counterclockwise created."); 

   //************* 4 ms counterclockwise round the ring************ 

   Ptr<Socket> LDCccw4msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCccw4msApp = CreateObject<LDCApp> (); 

   LDCccw4msApp->Setup (LDCccw4msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 213, 20, DataRate ("1Gb/s"), 

APP4MS, 1, true, &LDCcw4msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP4MS][CCW][NNODES+1]); 

   Lan1.Get (0)->AddApplication (LDCccw4msApp); 

   LDCccw4msSocket->BindToNetDevice (Lan10Devices.Get(1)); 

   LDCccw4msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCccw4msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 

   Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App)); 

   NS_LOG_INFO ("Application 4 ms counterclockwise created."); 

   //************* 8 ms counterclockwise round the ring************ 

   Ptr<Socket> LDCccw8msSocket = Socket::CreateSocket (Lan10.Get (1), UdpSocketFactory::GetTypeId ()); 

   Ptr<LDCApp> LDCccw8msApp = CreateObject<LDCApp> (); 

   LDCccw8msApp->Setup (LDCccw8msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port)), 214, 25, DataRate ("1Gb/s"), 

APP8MS, 1, true, &LDCcw8msApp->m_flowctrlout, &CollAC1App->m_thp_array[APP8MS][CCW][NNODES+1]); 

   Lan1.Get (0)->AddApplication (LDCccw8msApp); 

   LDCccw8msSocket->BindToNetDevice (Lan10Devices.Get(1)); 
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   LDCccw8msApp->SetStartTime (Seconds (SIMSTART)); 

   LDCccw8msApp->SetStopTime (Seconds (SIMEND + LDC_ENDDELAY)); 

   Lan10Devices.Get (1)->TraceConnectWithoutContext ("MacRx", MakeCallback (&CollApp::ReceivePacket, CollAC1App)); 

   NS_LOG_INFO ("Application 8 ms counterclockwise created."); 

#endif 

   //*************Create Interference Loads************ 

   //************* Interference 1 on n2 clockwise to n4, cycle 1 ms ************ 

#ifdef INTERFERENCE_1MS 

   Ptr<Socket> IFn2n4cw1msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<TrafficApp> IFn2n4cw1msApp = CreateObject<TrafficApp> (); 

   IFn2n4cw1msApp->Setup (IFn2n4cw1msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.8"), port)), 200, 15, DataRate 

("1Gb/s"), APP1MS, 1); 

   Lan2.Get (0)->AddApplication (IFn2n4cw1msApp); 

   IFn2n4cw1msSocket->BindToNetDevice (Lan2Devices.Get(0)); 

   IFn2n4cw1msApp->SetStartTime (Seconds (INTERFERENCE_START_1MS)); 

   IFn2n4cw1msApp->SetStopTime (Seconds (SIMEND/*INTERFERENCE_STOP_1MS*/)); 

   NS_LOG_INFO ("Interference clockwise from n2 to n4 created."); 

#endif 

   //************* Interference 2 on n2 clockwise to n4, cycle 2 ms ************ 

#ifdef INTERFERENCE_2MS 

   Ptr<Socket> IFn2n4cw2msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<TrafficApp> IFn2n4cw2msApp = CreateObject<TrafficApp> (); 

   IFn2n4cw2msApp->Setup (IFn2n4cw2msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.8"), port)), 200, 20, DataRate 

("1Gb/s"), APP2MS, 1); 

   Lan2.Get (0)->AddApplication (IFn2n4cw2msApp); 

   IFn2n4cw2msSocket->BindToNetDevice (Lan2Devices.Get(0)); 

   IFn2n4cw2msApp->SetStartTime (Seconds (INTERFERENCE_START_2MS)); 

   IFn2n4cw2msApp->SetStopTime (Seconds (SIMEND)); 

   NS_LOG_INFO ("Interference clockwise from n2 to n4 created."); 
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#endif 

   //************* Interference 3 on n1 clockwise to n5, cycle 4 ms ************ 

#ifdef INTERFERENCE_4MS 

   Ptr<Socket> IFn1n5cw4msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<TrafficApp> IFn1n5cw4msApp = CreateObject<TrafficApp> (); 

   IFn1n5cw4msApp->Setup (IFn1n5cw4msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.10"), port)), 200, 30, DataRate 

("1Gb/s"), APP4MS, 1); 

   Lan2.Get (0)->AddApplication (IFn1n5cw4msApp); 

   IFn1n5cw4msSocket->BindToNetDevice (Lan2Devices.Get(0)); 

   IFn1n5cw4msApp->SetStartTime (Seconds (INTERFERENCE_START_4MS)); 

   IFn1n5cw4msApp->SetStopTime (Seconds (SIMEND)); 

   NS_LOG_INFO ("Interference clockwise from n1 to n5 created."); 

#endif 

   //************* Interference 4 on n1 clockwise to n5, cycle 8 ms ************ 

#ifdef INTERFERENCE_8MS 

   Ptr<Socket> IFn1n5cw8msSocket = Socket::CreateSocket (Lan2.Get (0), UdpSocketFactory::GetTypeId ()); 

   Ptr<TrafficApp> IFn1n5cw8msApp = CreateObject<TrafficApp> (); 

   IFn1n5cw8msApp->Setup (IFn1n5cw8msSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.10"), port)), 200, 40, DataRate 

("1Gb/s"), APP8MS, 1); 

   Lan2.Get (0)->AddApplication (IFn1n5cw8msApp); 

   IFn1n5cw8msSocket->BindToNetDevice (Lan2Devices.Get(0)); 

   IFn1n5cw8msApp->SetStartTime (Seconds (INTERFERENCE_START_8MS)); 

   IFn1n5cw8msApp->SetStopTime (Seconds (SIMEND)); 

   NS_LOG_INFO ("Interference clockwise from n1 to n5 created."); 

#endif 

   //*************Create rolling mean throughput measurement applications************ 

   //*** on n3 clockwise*** 

#if 1 

   // 1 ms integration time 
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   Ptr<RollMeanApp> RollMeanAC1APP1I1_n3d1App = CreateObject<RollMeanApp> (); 

   Lan4.Get (0)->AddApplication (RollMeanAC1APP1I1_n3d1App); 

   Ptr<Socket> RollMeanAC1APP1I1_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP1I1_n3d1App->Setup (RollMeanAC1APP1I1_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)), 

60, DataRate ("1Gb/s"), CW, APP1MS, INT1MS, N3, true); 

   RollMeanAC1APP1I1_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0)); 

   RollMeanAC1APP1I1_n3d1App->SetStartTime (Seconds (SIMSTART + RM_1MS_DELAY)); 

   RollMeanAC1APP1I1_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 

   NS_LOG_INFO ("Rolling mean 1 ms on node 3 clockwise created."); 

   Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP1I1_n3d1App)); 

#if 1 

   // 2 ms integration time 

   Ptr<RollMeanApp> RollMeanAC1APP2I2_n3d1App = CreateObject<RollMeanApp> (); 

   Lan4.Get (0)->AddApplication (RollMeanAC1APP2I2_n3d1App); 

   Ptr<Socket> RollMeanAC1APP2I2_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP2I2_n3d1App->Setup (RollMeanAC1APP2I2_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)), 

60, DataRate ("1Gb/s"), CW, APP2MS, INT2MS, N3, true); 

   RollMeanAC1APP2I2_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0)); 

   RollMeanAC1APP2I2_n3d1App->SetStartTime (Seconds (SIMSTART + RM_2MS_DELAY)); 

   RollMeanAC1APP2I2_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 

   NS_LOG_INFO ("Rolling mean 2 ms on node 3 clockwise created."); 

   Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP2I2_n3d1App)); 

   // 4 ms integration time 

   Ptr<RollMeanApp> RollMeanAC1APP4I4_n3d1App = CreateObject<RollMeanApp> (); 

   Lan4.Get (0)->AddApplication (RollMeanAC1APP4I4_n3d1App); 

   Ptr<Socket> RollMeanAC1APP4I4_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP4I4_n3d1App->Setup (RollMeanAC1APP4I4_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)), 

60, DataRate ("1Gb/s"), CW, APP4MS, INT4MS, N3, true); 

   RollMeanAC1APP4I4_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0)); 
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   RollMeanAC1APP4I4_n3d1App->SetStartTime (Seconds (SIMSTART + RM_4MS_DELAY)); 

   RollMeanAC1APP4I4_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 

   NS_LOG_INFO ("Rolling mean 4 ms on node 3 clockwise created."); 

   Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP4I4_n3d1App)); 

   // 8 ms integration time 

   Ptr<RollMeanApp> RollMeanAC1APP8I8_n3d1App = CreateObject<RollMeanApp> (); 

   Lan4.Get (0)->AddApplication (RollMeanAC1APP8I8_n3d1App); 

   Ptr<Socket> RollMeanAC1APP8I8_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP8I8_n3d1App->Setup (RollMeanAC1APP8I8_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), port)), 

60, DataRate ("1Gb/s"), CW, APP8MS, INT8MS, N3, true); 

   RollMeanAC1APP8I8_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0)); 

   RollMeanAC1APP8I8_n3d1App->SetStartTime (Seconds (SIMSTART + RM_8MS_DELAY)); 

   RollMeanAC1APP8I8_n3d1App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 

   NS_LOG_INFO ("Rolling mean 8 ms on node 3 clockwise created."); 

   Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP8I8_n3d1App)); 

#endif 

#endif 

#if 0 

// 32 ms integration time 

Ptr<RollMeanApp> RollMeanAC1APP32I32_n3d1App = CreateObject<RollMeanApp> (); 

Lan4.Get (0)->AddApplication (RollMeanAC1APP32I32_n3d1App); 

Ptr<Socket> RollMeanAC1APP32I32_n3d1AppSocket = Socket::CreateSocket (Lan4.Get (0), UdpSocketFactory::GetTypeId ()); 

RollMeanAC1APP32I32_n3d1App->Setup (RollMeanAC1APP32I32_n3d1AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.20"), 

port)), 60, DataRate ("1Gb/s"), CW, APP1MS, 32/*INT8MS*/, N3, true); 

RollMeanAC1APP32I32_n3d1AppSocket->BindToNetDevice (Lan4Devices.Get(0)); 

RollMeanAC1APP32I32_n3d1App->SetStartTime (Seconds (SIMSTART /* + RM_1MS_DELAY*/)); 

RollMeanAC1APP32I32_n3d1App->SetStopTime (Seconds (SIMEND /*+ RM_ENDDELAY*/)); 

NS_LOG_INFO ("Rolling mean on node 3 clockwise created."); 
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Lan4Devices.Get (0)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, 

RollMeanAC1APP32I32_n3d1App)); 

#endif 

#if (0) 

#endif 

   //*** on n7 counterclockwise*** 

#if 1 

   // 1 ms integration time 

   Ptr<RollMeanApp> RollMeanAC1APP1I1_n7d0App = CreateObject<RollMeanApp> (); 

   Lan7.Get (1)->AddApplication (RollMeanAC1APP1I1_n7d0App); 

   Ptr<Socket> RollMeanAC1APP1I1_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP1I1_n7d0App->Setup (RollMeanAC1APP1I1_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)), 

60, DataRate ("1Gb/s"), CCW, APP1MS, INT1MS, N7, true); 

   RollMeanAC1APP1I1_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1)); 

   RollMeanAC1APP1I1_n7d0App->SetStartTime (Seconds (SIMSTART + RM_1MS_DELAY)); 

   RollMeanAC1APP1I1_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 

   NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created."); 

   Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP1I1_n7d0App)); 

#endif 

#if 1 

   // 2 ms integration time 

   Ptr<RollMeanApp> RollMeanAC1APP2I2_n7d0App = CreateObject<RollMeanApp> (); 

   Lan7.Get (1)->AddApplication (RollMeanAC1APP2I2_n7d0App); 

   Ptr<Socket> RollMeanAC1APP2I2_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP2I2_n7d0App->Setup (RollMeanAC1APP2I2_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)), 

60, DataRate ("1Gb/s"), CCW, APP2MS, INT2MS, N7, true); 

   RollMeanAC1APP2I2_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1)); 

   RollMeanAC1APP2I2_n7d0App->SetStartTime (Seconds (SIMSTART + RM_2MS_DELAY)); 

   RollMeanAC1APP2I2_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 
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   NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created."); 

   Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP2I2_n7d0App)); 

   // 4 ms integration time 

   Ptr<RollMeanApp> RollMeanAC1APP4I4_n7d0App = CreateObject<RollMeanApp> (); 

   Lan7.Get (1)->AddApplication (RollMeanAC1APP4I4_n7d0App); 

   Ptr<Socket> RollMeanAC1APP4I4_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP4I4_n7d0App->Setup (RollMeanAC1APP4I4_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)), 

60, DataRate ("1Gb/s"), CCW, APP4MS, INT4MS, N7, true); 

   RollMeanAC1APP4I4_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1)); 

   RollMeanAC1APP4I4_n7d0App->SetStartTime (Seconds (SIMSTART + RM_4MS_DELAY)); 

   RollMeanAC1APP4I4_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 

   NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created."); 

   Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP4I4_n7d0App)); 

   // 8 ms integration time 

   Ptr<RollMeanApp> RollMeanAC1APP8I8_n7d0App = CreateObject<RollMeanApp> (); 

   Lan7.Get (1)->AddApplication (RollMeanAC1APP8I8_n7d0App); 

   Ptr<Socket> RollMeanAC1APP8I8_n7d0AppSocket = Socket::CreateSocket (Lan7.Get (1), UdpSocketFactory::GetTypeId ()); 

   RollMeanAC1APP8I8_n7d0App->Setup (RollMeanAC1APP8I8_n7d0AppSocket, Address (InetSocketAddress (Ipv4Address ("10.1.1.1"), port)), 

60, DataRate ("1Gb/s"), CCW, APP8MS, INT8MS, N7, true); 

   RollMeanAC1APP8I8_n7d0AppSocket->BindToNetDevice (Lan7Devices.Get(1)); 

   RollMeanAC1APP8I8_n7d0App->SetStartTime (Seconds (SIMSTART + RM_8MS_DELAY)); 

   RollMeanAC1APP8I8_n7d0App->SetStopTime (Seconds (SIMEND + RM_ENDDELAY)); 

   NS_LOG_INFO ("Rolling mean on node 7 counterclockwise created."); 

   Lan7Devices.Get (1)->TraceConnectWithoutContext ("MacTx", MakeCallback (&RollMeanApp::CheckInPacket, RollMeanAC1APP8I8_n7d0App)); 

#endif 

  NS_LOG_INFO ("Configure Tracing."); 

  // 

  // Configure tracing of all enqueue, dequeue, and NetDevice receive events. 

  // Trace output will be sent to the file .tr" 
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  // 

  AsciiTraceHelper ascii; 

  csma.EnableAsciiAll (ascii.CreateFileStream ("LDCv011.tr")); 

  // 

  // tcpdump traces; each interface will be traced. 

  // The output files will be named: 

  //     LDCv011-<nodeId>-<interfaceId>.pcap 

  // and can be read by the "tcpdump -r" command (use "-tt" option to 

  // display timestamps correctly) 

  // 

  csma.EnablePcapAll ("LDCv011", false); 

#if 0 

  // Set the bounding box for animation 

  //csma.BoundingBox (1, 1, 100, 100); 

  std::string animFile = "dlb-animation.xml" ;  // Name of file for animation output 

  // Create the animation object and configure for specified output 

  AnimationInterface anim (animFile); 

  //Create link description for NetAnim 

  anim.UpdateNodeDescription (PLC, "PLC"); 

  //Create link description for NetAnim 

  anim.UpdateLinkDescription (PLC, n1, "Link 1");//#Todo: Check cms helper why not serving xml file with link info like ptp 

  anim.EnablePacketMetadata (); // Optional 

  anim.EnableIpv4L3ProtocolCounters (Seconds (0), Seconds (0.1)); // Optional 

#endif 

  // 

  // Run Simulation. 

  // 

  NS_LOG_INFO ("Run Simulation."); 

  Simulator::Run (); 
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//  std::cout << "Animation Trace file created:" << animFile.c_str ()<< std::endl; 

  //*********** Create data files for plot*************** 

   std::ofstream data_uc7p1_2D; 

   data_uc7p1_2D.open ("data_uc7p1_2D.txt"); 

  // std::ofstream data_uc6p4_3D; 

  // data_uc6p4_3D.open ("data_uc6p4_3D.txt"); 

#ifdef PLOT_2D 

   // 2D plots 

// the 32 ms integration time collective measurement 

   for (uint32_t j = 0; j < DATAPOINTS -4; j = j + DATASTEP) 

{ 

   //stop for zero values before end 

//    if (CollAC1App->plot_array[SUMAPPSIND][j] != 0) 

//    { 

   //for result over all apps load documentation 

   data_uc7p1_2D << j << " " << CollAC1App->plot_array[SUMAPPSIND][CW][j] << " " << CollAC1App-

>plot_array[SUMAPPSIND][CCW][j]<< std::endl ;

   //for single app cycle optimization 

   //data_uc7p1_2D << j << " " << RollMeanAC1APP2I2_n3d1App->p_throughput[0][j] << " " << RollMeanAC1APP2I2_n7d0App-

>p_throughput[0][j]<< std::endl ;

//    } 

} 

#if 0 

   // the contribution to the 3D comparison plot 

   for (uint32_t j = 0; j < DATAPOINTS -4; j = j + DATASTEP) 

{ 

   //stop for zero values before end 

   if (RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0) 

{ 
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   data_uc6p4_3D << "4" << " " << j << " " << RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] << " " << 

RollMeanAC1APP1I8_n7d0App->p_throughput[APPSCOLLECTIVE][j]<< std::endl ; 

   } 

} 

   data_uc6p4_3D << std::endl; 

#endif 

#endif 

#ifdef PLOT_3D 

   // 3D plots 

   // the 1 ms integration time collective measurement 

   for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP) 

{ 

   //stop for zero values before end 

   if (RollMeanAC1APP1I1_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0) 

   { 

   data_cw << "1" << " " << j << " " << RollMeanAC1APP1I1_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ; 

   } 

} 

   data_cw << " " << std::endl ; 

   // the 2 ms integration time collective measurement 

for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP) 

{ 

if (RollMeanAC1APP1I2_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0) 

   { 

data_cw << "2" << " " << j << " " << RollMeanAC1APP1I2_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ; 

   } 

} 

data_cw << " " << std::endl ; 

// the 4 ms integration time collective measurement 



Page 361 

for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP) 

{ 

  if (RollMeanAC1APP1I4_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0) 

   { 

  data_cw << "4" << " " << j << " " << RollMeanAC1APP1I4_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ; 

   } 

} 

data_cw << " " << std::endl ; 

// the 8 ms integration time collective measurement 

for (uint32_t j = 0; j < DATAPOINTS -1; j = j + DATASTEP) 

{ 

if (RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] != 0) 

   { 

data_cw << "8" << " " << j << " " << RollMeanAC1APP1I8_n3d1App->p_throughput[APPSCOLLECTIVE][j] << std::endl ; 

   } 

} 

data_cw << " " << std::endl ; 

#endif 

   data_uc7p1_2D.close(); 

//   data_uc6p4_3D.close(); 

   //*********** Create 2D plot file *************** 

#if 1 

  std::ofstream PlotFile_cw; 

  PlotFile_cw.open ("PlFile_uc7p1_2D.plt"); 

  PlotFile_cw << "set terminal png" << std::endl; 

  PlotFile_cw << "set output \"Plot_uc7p1_2D.png\"" << std::endl; 

  PlotFile_cw << "set title \"Throughput, 1 AC, Mixed Appl. Interf., Dedicated Flow Control\"" << std::endl; 

  PlotFile_cw << "set xlabel \"Simulation time t in ms\"" << std::endl; 

  PlotFile_cw << "set ylabel \"Throughput Âµ(t) in %\"" << std::endl; 
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  PlotFile_cw << "set xrange [0:400]" << std::endl; 

  PlotFile_cw << "set yrange [0:25]" << std::endl; 

  //PlotFile_cw << "set grid" << std::endl; 

#endif 

#if 0  //with smoothing 

  PlotFile_cw << "plot \"data_cw.txt\" using 1:2 smooth acsplines with linespoint title \"clockwise at n3\" lw 2 pi 10,\ 

  \"data_cw.txt\" using 1:3  smooth acsplines with linespoint title \"counterclockwise at n7\" lw 2 pi 10" << std::endl; 

#endif 

#if 0  //without smoothing 

  PlotFile_cw << "plot \"data_cw.txt\" using 1:2 with linespoint title \"clockwise at n3\" lw 2 pi 10,\ 

  \"data_cw.txt\" using 1:3  with linespoint title \"counterclockwise at n7\" lw 2 pi 10" << std::endl; 

#endif 

#if 0 

  PlotFile_cw << "plot \"data_cw.txt\" using 1:2 with linespoint title \"clockwise n3\" lw 2,\ 

  \"data_cw.txt\" using 1:3 with linespoint title \"counterclockwise n7\" lw 2,\ 

  \"data_cw.txt\" using 1:4 with linespoint title \"counterclockwise n8\" lw 2,\ 

  \"data_cw.txt\" using 1:5 with linespoint title \"counterclockwise n9\" lw 2" << std::endl; 

#endif 

#if 0 

  //*********** Create 3D plot file *************** 

  std::ofstream PlotFile3D_cw; 

  PlotFile3D_cw.open ("PlFile_uc6p4_3D.plt"); 

  PlotFile3D_cw << "set terminal png font \"arial,10\"" << std::endl; 

  PlotFile3D_cw << "set output \"Plot_uc6p4_3D.png\"" << std::endl; 

  PlotFile3D_cw << "set title \"Throughput, 1 AC, Mixed Appl., 8 to 32 ms RM-Int., Flow Control\"" << std::endl; 

  PlotFile3D_cw << "set xlabel \"\\n x: Sub-use-case Nr. 6.x\" rotate parallel" << std::endl; 

  PlotFile3D_cw << "set ylabel \"\\n y: Simulation time t in ms\" rotate parallel" << std::endl; 

  PlotFile3D_cw << "set zlabel \"z: Throughput Âµ(t) in %\" rotate parallel" << std::endl; 

  PlotFile3D_cw << "set xrange [0:5]" << std::endl; 
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  PlotFile3D_cw << "set yrange [0:400]" << std::endl; 

  PlotFile3D_cw << "set zrange [0:25]" << std::endl; 

  PlotFile3D_cw << "set grid x y z vertical" << std::endl; 

  PlotFile3D_cw << "set xyplane at 0" << std::endl; 

  PlotFile3D_cw << "set view 70,55,1" << std::endl; 

#endif 

 #if 0 

 std::ofstream PlotFile_cw; 

 PlotFile_cw.open ("PlFile_cw.plt"); 

 PlotFile_cw << "set terminal png" << std::endl; 

 PlotFile_cw << "set output \"NPackets_cw.png\"" << std::endl; 

 PlotFile_cw << "set title \"Throughput, 1 AC, Mixed Appl., 1 to 8 ms RM-Int., No Control\"" << std::endl; 

 PlotFile_cw << "set xlabel \"\\n x: Integration interval T_i_n_t in ms\" rotate parallel" << std::endl; 

 PlotFile_cw << "set ylabel \"\\n y: Simulation time t in ms\" rotate parallel" << std::endl; 

 PlotFile_cw << "set zlabel \"z: Throughput Âµ(t) in %\" rotate parallel" << std::endl; 

 PlotFile_cw << "set xrange [0:8.5]" << std::endl; 

 PlotFile_cw << "set yrange [0:100]" << std::endl; 

 PlotFile_cw << "set zrange [0:25]" << std::endl; 

 PlotFile_cw << "set grid x y z vertical" << std::endl; 

 PlotFile_cw << "set xyplane at 0" << std::endl; 

#endif 

#if 1  //2D with smoothing 

 PlotFile_cw << "plot \"data_uc7p1_2D.txt\" using 1:2 smooth acsplines with linespoint title \"clockwise at n3\" lw 2 pi 10,\ 

 \"data_uc7p1_2D.txt\" using 1:3  smooth acsplines with linespoint title \"counterclockwise at n7\" lw 2 pi 10" << std::endl; 

#endif 

#if 0  //3D without smoothing (not available in 3D) 

 PlotFile3D_cw << "splot \"data_uc6p1_3D.txt\" using 1:2:3 with linespoint title \"uc6.1: No Ctrl., 8 ms RM-Int\" lw 2 pi 80,\ 

 \"data_uc6p2_3D.txt\" using 1:2:3 with linespoint title \"uc6.2: Flow Ctrl., 8 ms RM-Int\" lw 2 pi 80,\ 

 \"data_uc6p3_3D.txt\" using 1:2:3 with linespoint title \"uc6.3: Flow Ctrl., 32 ms RM-Int, no opt\" lw 2 pi 80,\ 
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 \"data_uc6p4_3D.txt\" using 1:2:3 with linespoint title \"uc6.4: Flow Ctrl., 32 ms RM-Int, opt\" lw 2 pi 80" << 

std::endl; 

#endif 

#if 0  //3D without smoothing (not available in 3D 

 PlotFile_cw << "splot \"data_cw.txt\" using 1:2:3 with linespoint title \"clockwise at n3\" lw 1.5 pi 10" << std::endl; 

#endif 

#if 0 

 PlotFile_cw << "plot \"data_cw.txt\" using 1:2 with linespoint title \"clockwise n3\" lw 2,\ 

 \"data_cw.txt\" using 1:3 with linespoint title \"counterclockwise n7\" lw 2,\ 

 \"data_cw.txt\" using 1:4 with linespoint title \"counterclockwise n8\" lw 2,\ 

 \"data_cw.txt\" using 1:5 with linespoint title \"counterclockwise n9\" lw 2" << std::endl; 

#endif 

 PlotFile_cw.close(); 

// PlotFile3D_cw.close(); 

  Simulator::Destroy (); 

  NS_LOG_INFO ("Done."); 

} 




