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ORIGINAL ARTICLE

Evaluation of CD46 re-targeted adenoviral vectors for clinical
ovarian cancer intraperitoneal therapy
SL Hulin-Curtis1, H Uusi-Kerttula1, R Jones2, L Hanna2, JD Chester1,2 and AL Parker1

Ovarian cancer accounts for 4140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable
stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies
develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where
the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective,
adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors
known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified
and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical
ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative
transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via
CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (Po0.001), independent of FX and nAb
levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors
may represent a promising virotherapy for ovarian cancer.

Cancer Gene Therapy (2016) 23, 229–234; doi:10.1038/cgt.2016.22; published online 27 May 2016

INTRODUCTION
Ovarian cancer is the seventh most common cancer in women
worldwide, with nearly 239 000 new cases diagnosed in 2012
(http://www.cancerresearchuk.org/health-professional/ovarian-can
cer-statistics). The 5-year survival rates for ovarian cancer are poor
and have remained largely unchanged over the past 25 years. This
is due in part to the anatomical location of the ovaries, deep
within the pelvis contributing to an asymptomatic disease and
consequent late diagnosis.1 Although response to cytotoxic
chemotherapy is frequently observed, resistance to conventional
platinum-based therapies develop rapidly. New therapies for
relapsed, metastasized ovarian cancer are therefore urgently
required.
Ovarian cancer represents a potential candidate for virotherapy,

as local delivery to tumor metastases via the intraperitoneal route
is feasible, bypassing many of the requirements associated with
delivery via the bloodstream. Adenoviruses (Ads) have been
widely studied as promising new therapeutic agents for the
treatment of a variety of cancers.2 Of the 57 naturally occuring
different serotypes of human Ads, only those based on the species
C Ad5 have been extensively studied for virotherapeutic clinical
applications. Ad5 is clinically and experimentally well character-
ized, readily manipulated by genetic and chemical modification
and is easy to amplify to high titers of clinical-grade purity. To
date, however, even as adjunctive therapies the efficacy of Ad5
virotherapies have been modest and has been hampered by
several limitations that ultimately limit Ad efficacy.3,4 These
include a lack of selectivity to infect disease target cell types,5

neutralization by preexisting host-neutralizing antibodies
(nAbs) of the humoral immune system and sequestration within
non-target tissues. This occurs via interactions with host proteins

involved in blood clotting, (especially the liver, where Ad is
cleared).6,7

Ad5 efficacy is partly dependent on target cell entry via the
native primary receptor coxsackie virus and adenovirus receptor
(CAR).8 However, CAR expression is commonly downregulated in
many advanced cancers, including ovarian cancer,9–11 limiting the
clinical utility of Ad5-based vectors. Genetic and chemical
modification of Ad5, which has been de-targeted from the CAR
receptor but with re-targeted tropism toward alternative, differ-
entially expressed receptors, has been well studied12,13 and
represents a strategy for effective, targeted virotherapies.
Ad5 commonly causes upper respiratory and gastrointestinal

infections and thus preexisting nAbs are widespread in the
population.14 This results in rapid, efficient sequestration of
systemically delivered Ad5 vectors in vivo.3,4 Ascites, an accumula-
tion of fluid within the patient’s abdomen, is a common clinical
feature of ovarian cancer and a reservoir for nAbs. The presence of
nAbs represents a barrier to the efficacy of unmodified Ad5-based
virotherapies for peritoneal tumor deposits when delivered via
intraperitoneal installation.15 Conversely, nAbs to the rarer,
species B serotype Ad35 are seen in typically o10% of the
population.14,16,17 In case of kidney and urinary tract infections
and conjunctivitis,18 cell transduction by Ad35 is via the CD46
receptor,19 which is expressed on almost all nucleated cells and
commonly upregulated in cancer.20 Previous studies have
explored the possibility of pseudotyping the Ad5 vector with
fibers from group B Ads for improved gene delivery via the CD46
pathway21 and Ad35-based vectors22 have shown great promise
for gene transfer to a variety of cancer cells.23,24

The presence of blood coagulation factor X (FX) is a significant
obstacle to the efficacy of Ad-mediated virotherapy.6,7 Following
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intravascular administration, the Ad5 hexon hypervariable regions
bind FX with very high affinity, forming a complex of virus and
clotting factor with heparan sulfate proteoglycan (HSPGs), which is
found on many cell types but in high abundance on hepatocytes.
The presence of FX in ascites could limit the transduction of
epithelial ovarian cancer (EOC) cells, either via facilitating entry
into non-target cells expressing HSPGs or, where no cells
expressing HSPGs are present, via steric hindrance of CAR-
mediated cell entry into tumor cells.
We hypothesized that the use of an Ad5-based vector with

ablated FX binding and pseudotyped with the Ad35 fiber
(Ad5T*F35++) with a 60-fold increased affinity for CD4625 will
reduce interactions with off-target cells and enhance EOC
transduction.

MATERIALS AND METHODS
Ethics approval
Ethics permission for the collection and cultivation of primary EOC cells
from ascites was granted through a Wales Cancer Bank application for
biomaterials, reference WCB 14/004. All patients gave written informed
consent for the use of their samples, prior to collection.

Generation of Ad vectors
Ad5.Luc vector was generated by AdZ homologous recombineering as
previously described.26 The Ad5 LacZ vector incorporating a mutation in
the hexon variable region (HVR7) and pseudotyped with the Ad35 fiber
Ad5CMV-HCR5*7*E451Q/F35++ (herein referred to as Ad5T*F35++) was
generated previously27 and was a kind gift from Professor Andrew Baker
(BHF Glasgow Cardiovascular Research Centre, Glasgow University,
Glasgow, UK).

Primary EOC cells
Ascites samples were collected from a total of 11 patients with varying
clinical stages of ovarian cancer (stage diagnosed at sample collection) at
the Velindre Cancer Centre, Cardiff, UK and anonymously coded. Ascites
was stored at 4 °C immediately after collection and processed within 24 h.
Approximately 400 ml of ascites was centrifuged at 1000 r.p.m. for 5 min to
separate primary EOC cells from the fluid. The supernatant was stored at
− 70 °C for subsequent use with autologous tumor cells. Red blood cell lysis
buffer (Sigma Aldrich, Gillingham, UK) was added to the pellet according to
the manufacturer's instructions, where appropriate. Tumor cell pellets were
frozen in 10% dimethyl sulfoxide and 90% autologous supernatant
(passage 0). A further 100 ml of ascites was used to generate primary
EOC cultures, by separating into 20-ml aliquots and adding to 20 ml of
complete (RPMI 1640) medium, supplemented with 10% (v/v) fetal calf
serum, 200 μM glutamine, 100 U ml− 1 penicillin, 100 μg ml− 1 streptomycin
and 10% (v/v) autologous ascitic fluid supernatant. Cells were maintained
at 37 °C and 5% CO2. The resulting primary cultures were passaged when
cells had reached confluence.

Cell lines
A549 (epithelial lung carcinoma cells) in RPMI 1640 medium, both
supplemented with 10% fetal calf serum, 2 mM L-glutamine, 100 U ml− 1

penicillin and 100 μg ml− 1 streptomycin. Cells were maintained at 37 °C
and 5% CO2. All reagents were purchased from Gibco or Thermo Scientific
(Paisley, UK).

Flow cytometric analysis of primary EOC cell receptor expression
Receptor expression was profiled essentially as previously described.15 In
brief, EOC cells (1.5 × 105 cells per well in a 96-well plate) were seeded and
washed in 200 μl of wash buffer (phosphate-buffered saline/1% bovine
serum albumin) and incubated with 100 μl of wash buffer containing 1:500
of mouse anti-human monoclonal antibody against CAR (RmcB, Millipore,
Watford, UK), 1:500 of mouse anti-human CD46 (MEM-258, Abcam,
Cambridge, UK) or mouse immunoglobulin G control antibody (Santa
Cruz Biotechnology, Heidelberg, Germany) for 1 h on ice. Cells were
washed three times and incubated with a 1:500 dilution of goat anti-
mouse Alexa Fluor 647 antibody (Invitrogen, Paisley, UK) for 1 h on ice.
Cells were fixed in 4% paraformaldehyde for a minimum of 10 min at 4 °C

for flow cytometry. In all, 2 × 104 gated events were acquired in channel
FL-4 on a BD Accuri C6 (BD Biosciences, San Jose, CA, USA) flow cytometer
and data were analyzed in the BD Accuri C6 software version 1.0.264.21
(Becton Dickinson, Franklin Lakes, NJ, USA).

FX enzyme-linked immunosorbent assay
The quantity of FX in cell-free ascites from each of 11 ovarian cancer
patients was determined using the Factor X Human ELISA Kit (Abcam)
according to the manufacturer's instructions with a Bio-Rad iMark
microplate reader (Bio-Rad, Hemel Hempstead, UK).

In vitro cell transduction assays
Assays were performed as previously described.15 In brief, cells were
seeded at a density of 2 × 104 cells per well in a 96-well plate. After 24 h,
cells were infected with virus at doses of 5000 and 10 000 virus particles
(vp) per cell in a total volume of 100 μl of serum-free medium and
incubated as above for 3 h. The medium was removed and replaced with
200 μl of complete medium (RPMI 1640 medium supplemented with
200 μM Glutamax, 10% (v/v) fetal calf serum, 100 U ml− 1 penicillin,
100 μg ml− 1 streptomycin and 10% (v/v) autologous supernatant) and
cultured for an additional 45 h. For luciferase assays, cells treated with Ad5.
Luc were lysed in 1 × Cell Culture Lysis Buffer (Promega, Southampton, UK)
and frozen at − 70 °C. The cells were thawed and 20 μl of cells was mixed
with 100 μl of luciferase assay reagent in a white 96-well plate. Luciferase
activity in relative light units (RLU) was measured immediately using a
multimode plate reader (FLUOstar Omega, BMG Labtech, Aylesbury, UK).
Samples were normalized for total protein content, as measured by
bicinchoninic acid assay in RLU per mg protein. For cells transduced with
the LacZ-containing Ad5T*F35++ vector, cells were lysed in β-Galactosi-
dase lysis buffer (Galacto-Light Plus Systems Chemiluminescent Reporter
Gene Assay System for the Detection of β-Galactosidase, Applied
Biosystems, Waltham, MA, USA) and frozen at − 70 °C. Cells were thawed
and 10 μl of cells mixed with 70 μl of β-Galactosidase reactant (1:100
Galacton-Plus and β-Galactosidase diluent, Applied Biosystems). Cells were
incubated at room temperature for 1 h and 100 μl of Tropix Accelerator II
(Applied Biosystems) was added to cells immediately prior to measure-
ment of β-Galactosidase activity. β-Galactosidase activity was measured in
RLU using the plate reader as described above. Samples were normalized
for total protein content as measured by bicinchoninic acid assay in RLU
per mg protein, using the plate reader as described above.

Cell transduction in the presence of FX and CD46 function
blocking
Cells were transduced as described above in either the presence
or absence of 10 μg ml− 1 of human FX (Haematologic Technologies,
Cambridge Bioscience, Cambridge, UK) or mouse anti-human anti-CD46
(MEM-258) antibody (Abcam), respectively. Mouse immunoglobulin G
antibody (Santa Cruz Biotechnology, Heidelberg, Germany) was used as a
control.

Ascitic fluid neutralization assay
A549 lung carcinoma cells were seeded at 2 × 104 cells per well in a 96-well
plate. Cells were infected with virus at a dose of 5000 vp per cell in serum-
free media together with a 1:40 dilution (2.5%) of supernatant derived
from ascites that contains nAbs. Cells were transduced as described above.

Statistical analyses
Results represent data expressed as the mean± s.e.m. from experiments
performed in triplicate. Differences in the number of ascites samples used
for experiments was due to limited availability of samples. Statistical
significance was calculated using two-sample, two-tailed t-tests (Excel
software, Microsoft Ltd, Reading, UK). Po0.05 was considered statistically
significant.

RESULTS
Expression of Ad receptors on EOC cells
Expression profiles of the native Ad5 receptor CAR and the Ad35
receptor CD46 were characterized on primary EOC cells cultured
from the ascites of seven ovarian cancer patients (Figure 1).
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Primary EOC cells demonstrated variable CAR expression, ranging
from low (30%) to high (99%) expression, while CD46 was
expressed at high levels in all samples (Table 1).

Analysis of levels of FX in clinical ascites samples
FX has previously been shown to limit the bioavailability of Ad5 in
the bloodstream and redirect viral tropism via HSPGs. We sought
to establish whether FX could be detected in the ascites from
patients with ovarian cancer by enzyme-linked immunosorbent
assay, to establish whether FX might be a potential barrier to Ad
transduction of tumor cells when delivered intraperitoneally. We
were able to detect significant levels of FX present in all the
samples tested, with concentrations varying from 13% to 53% of
levels seen in normal (pooled) serum (n= 5) (Figure 2).

EOC cell transduction by pseudotyped Ad5T*F35++ vector
The capacity of the parental Ad5 (control) vector and the hexon-
mutated, pseudotyped vector Ad5T*F35++ to transduce EOC cells
was investigated in vitro (Figure 3). We observed an increase in

transduction of EOCs by Ad5T*F35++ vector (5000 vp per cell) in
comparison to the parental Ad5 vector, although this did not
reach statistical significance (P= 0.06). At 10 000 vp per cell,
Ad5T*F35++ transduction was significantly increased by 7.6-fold
(Po0.001) in comparison to the Ad5 vector.

CD46 receptor usage by Ad5T*F35++ vector in transducing EOC
cells
To confirm that the Ad5T*F35++ vector transduces EOC cells via
the CD46 receptor, we blocked CD46 receptors by preincubating
EOC cells with anti-CD46 antibody MEM-258 for 1 h, prior to the
addition of the Ad5T*F35++ vector (Figure 4). Our results confirm

Figure 1. Flow cytometric plots showing the expression profiles of coxsackie and adenovirus receptor (CAR) and CD46 expression on primary
epithelial ovarian cancer (EOC) cells. Primary EOC cells were cultured ex vivo from seven ovarian cancer patients and stained for the expression
of CAR (red) and CD46 (blue) using mouse anti-human monoclonal antibody against CAR or CD46 (anti-CD46 antibody, MEM-258) as
determined by flow cytometry. Immunoglobulin G controls are shown in black.

Table 1. Characterization of ex vivo primary epithelial ovarian cancer
cell receptor expression (%)

Patient ID Disease stage CAR CD46

OAS001 2 95 100
OAS002 3 67 100
OAS003 1 40 100
OAS004 4 30 100
OAS006 98 100
OAS008 3 92 100
OAS009 1 99 99

Abbreviation: CAR, coxsackie virus and adenovirus receptor.

Figure 2. Factor X (FX) is present in significant levels in the ascites
fluid derived from ovarian cancer patient clinical isolates. The ascites
fluid from six ovarian cancer patients was assayed for coagulation FX
by enzyme-linked immunosorbent assay.
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that cellular transduction of Ad5T*F35++ in EOC cells was
significantly reduced (Po0.001) in the presence of anti-CD46-
blocking antibody.

Evaluation of Ad vector neutralization in the presence of ascitic
fluid
To investigate whether pseudotyping Ad5 with the Ad35 fiber
alters the potential for neutralization by nAbs in ascites,
Ad5T*F35++ transduction experiments were performed in the
presence of 2.5% ascitic fluid (Figure 5). A549 cells were used
(CARhigh/CD46high) consistent with previously published protocols.
Cell transduction of the Ad5T*F35++ vector in the presence of
ascites was not significantly affected implying that FX in the ascitic
fluid does not hinder cellular entry of the modified virus.

DISCUSSION
Ad5 is the most commonly used Ad vector for virotherapy
applications. However, downregulated expression of the native
Ad5 cell entry receptor CAR in many tumor cells, coupled with the
high affinity binding of Ad5 to FX mediates off-target effects that
may result in dose-limiting toxicities. Ad vector neutralization by
preexisting ascites-resident nAbs4,15,18,28 greatly limits the efficacy

of Ad5-based vectors for ovarian cancer treatment by intraper-
itoneal delivery.
The aim of this study was to characterize ascites samples

from ovarian cancer patients and the EOC cells derived from
these samples in order to develop a rational approach for
intraperitoneally delivered virotherapy. To the best of our knowl-
edge, this is the first report of significant levels of FX in the ascites
of ovarian cancer patients. This has implications for the clinical
potential of intraperitoneal delivery of Ad5 vectors, as Ad5 has the
potential for transducing off-target cells owing to its ability to use
both CAR and HSPGs (via FX binding) for cell entry and to
potentially transduce the liver (should leakage of the vector into
the bloodstream occur).
We show that expression of CAR in EOC cells is highly variable,

ranging from low (30%) to high (99%) expression, possibly
correlating to disease stage, potentially limiting the efficacy of
Ad5 vectors for patients whose tumors have low CAR expression.
However, CD46 expression was constitutively high on EOC cells
derived from all seven ovarian cancer patients in our cohort. To
exploit the constitutive high levels of expression of CD46 on EOC
cells, we evaluated the targeting potential of the Ad5T*F35++
vector, which is pseudotyped with the Ad35 fiber and therefore
potentially able to transduce cells expressing CD46. We demon-
strate a significant, CD46-dependent increase in EOC cell
transduction with Ad5T*F35++ infection in EOC cells in compar-
ison to the parental Ad5 control vector. This effect is blocked by
anti-CD46 antibody but not by ascitic fluid containing FX (and
nAbs), confirming that the enhanced transduction achieved by
Ad5T*F35++ is achieved via pseudotyping, rather than by ablation
of FX binding.
Ad35-based vectors have shown potential for delivery of gene

transfer to cancer cells.23,24 Earlier studies report that Ad5-based
vectors pseudotyped with the Ad35 fiber show improved infection
of colon (HT29) and ovarian (SKOV3) cancer cells23 and primary
ovarian cancer cells using an oncolytic Ad5/F35 in vitro.29 Ad35
demonstrated high cytotoxicity in cancer cell lines compared with
other group C and B viruses but a lack of oncolytic activity
in vivo.30 This may be context-dependent owing to conditions of
the tumor microenvironment and requires further vector optimi-
zation. A recent report demonstrated that infections of paclitaxel-
resistant ovarian cancer cell models with Ad11 and Ad35 oncolytic

Figure 3. In vitro epithelial ovarian cancer (EOC) cell transduction by
Ad5T*F35++. Primary EOC cells were infected with Ad5 (luciferase
expressing) or Ad5T*F35++ (β-Galactosidase expressing) at 5000 and
10 000 virus particles (vp) per cell. Cell transduction was measured
by luciferase and β-Galactosidase activity 48 h postinfection and
normalized for protein content by bicinchoninic acid assay. RLU,
relative light units. *Po0.05.

Figure 4. Ad5T*F35++ vector uptake is blocked by anti-CD46
function antibody MEM-258. Primary epithelial ovarian cancer
(EOC) cells were infected with Ad5 (luciferase expressing) or
Ad5T*35++ (β-galactosidase expressing) at 5000 virus particles per
cell in the presence or absence of anti-CD46 (MEM-258) antibody
(10 μg ml− 1). Cell transduction was measured by luciferase and β-
Galactosidase activity 48 h postinfection and normalized for protein
content by bicinchoninic acid assay. RLU, relative light units.
*Po0.05.

Figure 5. Transduction of the Ad5T*F35++ vector is not significantly
neutralized by ascitic fluid. A549 cells were transduced with Ad5
and Ad5T*F35++ vectors (5000 viral particles per cell) in the
presence of serum-free media or 2.5% ascitic fluid supernatant from
ovarian cancer patients (OAS000–OAS004). Luciferase (Ad5.luc) and
β-Galactosidase (Ad5T*F35++) activity was measured 48 h postinfec-
tion and normalized for protein content by bicinchoninic acid assay.
Transduction (%) is presented normalized to Ad5 and Ad5T*F35++
transduction in serum-free media. RLU, relative light units.

CD46 re-targeted Ad as ovarian cancer virotherapy
SL Hulin-Curtis et al

232

Cancer Gene Therapy (2016), 229 – 234 © 2016 Nature America, Inc.



Ads were significantly more effective.31 Furthermore, pseudotyp-
ing with the Ad35 fiber had no effect on in vitro transduction in
Chinese Hamster Ovary CHO-CD46 cells in the presence of FX.32

This is thought to be due to an over-riding effect of high affinity
binding of Ad35 with CD46, an effect abrogated in CHO wild-type
receptor cells lacking CD46. Others have suggested that Ad5/F35
virus particles accumulate in the late endosome resulting in
delayed trafficking to the nucleus (reduced transduction) and
exocytosis into the extracellular medium. This suggests that the
Ad35 fiber dominates internalization and trafficking, despite
hexon and HSPG interactions via FX binding.33 Although it is
largely accepted that FX:hexon binding dictates liver tropism, it is
reported that, upon viral cell entry, this interaction may also
activate the host immune system via the Toll-like receptor 4/tumor
necrosis factor receptor-associated factor 6/nuclear factor-ĸB
pathway.34 On the other hand, a report has suggested that
‘coating’ of Ad by FX actually shields the Ad from immune-
mediated neutralization in vivo and therefore represents a
protective mechanism for preserving the Ad.35 These studies are
controversial and may reflect context-dependent tumor micro-
environments. However, this highlights the potential clinical utility
of Ad35 fiber-pseudotyped vectors.
We previously reported a significant decrease in Ad5 EOC cell

transduction in the presence of ascitic fluid owing to preexisting
nAbs and show that genetic modification of the Ad5 fiber knob
can facilitate evasion of nAbs in some patient samples.15 Others
have demonstrated that approximately 33% of serum samples
from patients undergoing coronary artery bypass graft surgery
reduced Ad5 transduction by at least 90%, whereas Ad5T*F35++
transduction was neutralized by only 18% of their serum
samples.36 In this study, we evaluated the transduction capability
of the Ad5T*F35++ vector that does not bind FX, for consideration
as a candidate virotherapy for intraperitoneal delivery, circum-
venting the limitations associated with systemic delivery. We
performed cell transduction experiments in A549 cells that
express high levels of CAR and CD46.36 Collectively, our data
show no difference in neutralization of the Ad5T*F35++ vector in
the presence of 2.5% ascitic fluid in comparison to the Ad5
parental vector.
In summary, we demonstrate that ascites of ovarian cancer

patients at various stages of the disease contains significant levels
of FX, precluding the use of the Ad5 vector for intraperitoneal Ad
delivery. EOC cells derived from the ascites show variable
expression of CAR but ubiquitous expression of the Ad35 receptor
CD46, suggesting that pseudotyping with Ad35 fibers may
enhance the efficiency of viral transduction. The FX binding-
ablated, re-targeted Ad5T*F35++ vector presumed to use the
CD46 receptor for cell entry instead of CAR demonstrated
significantly increased EOC cell transduction in comparison to
the parental Ad5 vector. There was blocking of this effect by anti-
CD46 antibody but no significant neutralization of the Ad5T*F35+
+ vector incubated in the presence of ascitic fluid. This study
demonstrates the Ad5T*F35++ vector as a potential virotherapy
for ovarian cancer and warrants further investigation.
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