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Abstract 

Various point cloud processing applications demand fast and accurate results for extracting 

feature information from the data. Given that point clouds are implemented in various fields, 

this thesis focuses on the point clouds used by surveyors and civil engineers for geographic 

information systems. Examples of point clouds used within the industry include urban sites, 

city blocks, terrains for road development, construction sites, quarries, mines, etc. 

The technological advancements (evolution of laser scanners) that allow the data to be captured 

in millions created their own recurring problems. The algorithms developed in this thesis are 

targeted at large point clouds containing various features and shapes. However, while capturing 

the point clouds, several outliers and noise are captured with the regular data due to the 

reflection of surfaces like glass and mirrors or weather conditions. Therefore, the detection and 

deletion of these outliers and noise are required to address and simplify the feature detection 

process. Hence, point cloud filtration is the first step of point cloud processing. After filtration, 

the data is relatively smaller and free from outliers and noise. The next step is to detect and 

extract the features from the point clouds and perform segmentation and other points analysis 

techniques. This thesis proposes, designs, develops and implements the methods and 

algorithms for robust and efficient point cloud processing. The processing includes 

filtrations followed by detecting and extracting primitive shapes such as planes, edges and 

cylinders.  

Contributions: The first contribution of this thesis is the method of removing noise and 

outliers using the designed tools. The second contribution is a novel PCA-based algorithm for 

detecting edges and edge streams in point clouds. Finally, a voxel-based algorithm to detect 

trunks and pole-like objects. These proposed methods and algorithms directly benefit the 

processing of the point clouds with properties like filtration, extraction, segmentation, 

clusterisation and accuracy. The results of the proposed methods and algorithms are 

implemented on commercial software used by UK and worldwide users.  
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Glossary 

Following are the technical terminologies used in this thesis. 

• Point cloud – A set of data points in space is called a point cloud (What Are Point 

Clouds ?, 2018). Generally, point clouds are a 3D system where each point has its 

cartesian coordinates (X, Y, Z) and represent the outer surface of objects.  

 

• Laser Scanners – “Scanning is a popular land surveying method to accurately measure 

and collect data from objects, surfaces, buildings and landscapes”. Laser scanners 

collect information as point clouds using laser beams (What Is Laser Scanning and How 

Can It Be Used ?, 2020). Then, the point cloud data is analysed to extract valid 

information to create 3D models. 

 

• Principal component analysis - Principal component analysis (PCA) is a statistical 

procedure that uses an orthogonal transformation to convert a set of observations of 

possibly correlated variables into a set of values of linearly uncorrelated variables called 

principal components 

 

• Point cloud processing – The process of extracting information from large point clouds 

to convert it into models is point cloud processing. Typical point cloud processing 

operations are classification, noise filtering (to clean or eliminate outliers), 

segmentation, edge and boundary identification, feature recognition and modelling. 

 

• Feature detection – In computer vision, feature detection refers to methods for 

computing abstraction and valid information in relation to the objects. These objects 

are the shapes and features extracted into models. Examples of shapes and features 

include building footprints, pipes, kerbs, breaks of slope, building edges, rough 

surfaces, trees, dip and volume of the terrain, utility holes, road furniture and road 

marking. 

 

 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence
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• Geographical Information System (GIS) - A geographical information system is a 

software application for capturing, storing, manipulating, analysing, managing and 

presenting all spatial or geographical data types.  

 

• Voxel – In 3D computer graphics, a voxel is a grid in 3D space. These fixed-sized grids 

have the same length, width and depth. In this thesis, voxels are used for space 

partitioning and clustering.  

 

• Digitising – The process of extracting points or links from the point clouds to models 

is called digitising.  

 

• DTM - In 3D computer graphics, a digital terrain model is a mathematical 

representation of the terrain or topographical surface of the earth to capture the unique 

elevation (in the form of a grid in which a unique elevation value is assigned to each 

pixel (Mallet and David, 2016). 

 

• PointNet – It is a deep neural network that consumes the 3D point cloud and provides 

a unified approach for tasks such as classification and segmentation (Qi et al., 2017) 
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Chapter 1 Introduction 

 

1.1 Background 

In recent years, as computer systems have become more powerful, their role continues to have 

a profound impact in almost every field of human endeavour. Accordingly, the specialisms of 

surveying and geoinformation systems have similarly evolved in line with those technological 

advancements. Modern technologies, such as Global Positioning System (GPS), Geographic 

Information Systems (GIS) and high-speed laser scanner systems, have resulted in more 

accurate, higher resolution and faster surveying methods. 

Surveying (Geomatics) is the branch of science that deals with collecting, analysing, and 

interpreting data relating to the earth’s surface. The ancient Egyptians were the earliest 

proponents of this practice as early as 1400 BC. They created perfectly aligned pyramids using 

simple tools and basic geometry. They used ropes to measure distances by tying knots at 

various intervals (Thank the Egyptians; The History of Surveying & Mapping, 2019). In 1576 

Joshua Habermel invented a land surveying tool called the Theodolite, comprising a compass 

and tripod (Avram et al., 2016). The first example of using laser scanners for measuring 

buildings, together with basic tools for data analysis, appeared in 1977 (Thrun, Burgard and 

Fox, 1998). 

Laser scanners are used as a surveying tool in a variety of fields. The advancement of laser 

scanners enabled surveyors to capture high-precision data in various environmental conditions 

(Fröhlich and Mettenleiter, 2004). The introduction of airborne and terrestrial laser scanning 

technology has enabled the collection of large 3D scanned data of urban scenes and landscapes. 

These data, by their very nature, are very large. Therefore, computer software innovations 

emerged to handle these large data.  

The scanner-produced data is point clouds which provide the real-world context for recreating 

and extracting valid information about objects. Point clouds are like human vision as laser 

scanners typically have a limited field of view and partial perception of distant objects. The 
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scanned point density depends on the distance between the scanner and the object, the angle of 

incidence, and the environment or weather (Gargoum and El-Basyouny, 2019).    

Due to the complexity and geometric details captured by the point cloud, it becomes essential 

to extract important geometrical and non-geometrical information and identify or classify the 

features of these large data sets, which requires efficient and accurate point cloud processing. 

Therefore, point cloud processing is vital and uses various computation algorithms/methods 

for extracting features.  

With the increasing equipment complexity and powerful applications, the advancement of 

calculations and mathematical models has been developed. Mathematical advances are 

correlated to technology development. This thesis is a result of several years of research 

investigating solutions to the challenges that emerged while processing point clouds, primarily 

in the surveying industry.  

 

 

Figure 1.1 Point Cloud of Celtic Manor Resort, Newport Wales 
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Point Clouds: 

Point clouds are the real-world representation, as shown in Fig 1.1. A point cloud is a huge 

collection of individual points plotted in 3D space. These points are captured by 3D scanners; 

for example, a road is scanned, where each virtual point of the road point cloud represents a 

real-world point (Point Clouds for Beginners: Your Questions Answered, 2022). The scanner 

combines vertical and horizontal angles by the laser beam to calculate each point's 3D X, Y, 

and Z coordinates. These points generally contain the colour (RGB) and intensity values. 

Colour is usually captured by a separate camera-mounted inline with the scanner and added to 

each point post-capture. Intensity is recorded as the return strength of the laser beam. The lower 

intensity values indicate low reflectivity, while a high number indicates high reflectivity 

(Gregorius B, 2019). 

These details are converted into a digital 3D model that provides an accurate, detailed picture 

of the scanned object (Point Clouds for Beginners Your questions answered, 2022). A dense 

point cloud can capture every minute detail compared to a low-density point cloud. An example 

of the details shown in Fig 1.1, such as the wall’s texture and small clock features, can be seen 

if the point cloud data is zoomed in.  

The point clouds are 3D formats that support the rendering and navigation in 3D to virtually 

view the data on the computer screen from several angles and perspectives. The point cloud 

data set can be anything from manufactured parts of cars for quality inspection to large 

geographical areas or forests for inventories and detailed analysis. In geographic information 

systems, point clouds are captured to analyse terrain, non-terrain and elevation (buildings) data. 

 

History of Point Clouds: 

Since the 1960s, point clouds and laser scanners have been used in various industries. In 1971, 

the first publicly known LiDar surface mapping was achieved during the Apollo 15 lunar 

mission, where the Moon’s surface was mapped to create height maps (Kaula et al., 1973). 

By the 1980s, military and space agencies used them to scan the terrain. It was also used by 

aircraft to accurately plot their position and map in great detail (Rooms Filip, 2019). By the 

1990s, with the evolution of technology and computers, point clouds were introduced to various 
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industries such as architecture, engineering and archaeology. Everything in the real world can 

be scanned and transformed into point clouds, from landscapes to buildings to tiny 

archaeological artefacts (Senior, 2021). As a result, point clouds gained popularity quickly.  

 

 

Figure 1.2 LiDar map of the moon surface during the Clementine mission launched by NASA on January 25, 

1994 (Source: Hamilton, 1995) 

 

The point cloud applications and usages are as follows 1) Architects and construction 

professionals use AEC (Architecture, Engineering and Construction) software applications to 

map and extract real-world data 2) Archaeologists use point clouds to analyse the terrain 

surfaces or capture artefacts in detail 3) Medical professionals use point clouds for 

reconstructive treatments, and 4) Entertainment companies use point clouds for games and 

visualisation (Senior, 2021). 

 

Point Clouds Generation: 

There are two ways to capture point clouds 1) Laser Scanners and 2) Photogrammetry. As the 

name suggests, laser scanners collect data using rapid laser pulses to gather up to millions of 

accurate measurements per second, and the photogrammetry method uses overlapping 

photographs to construct it into 3D Space  (Higgins, 2021).  
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In photogrammetry, the objects are scanned once or multiple times, depending on the viewports 

of the scanned object. On the other hand, laser scanners require multiple scans because the laser 

beam only captures the data points of the 3D surface in a direct scanner’s line of sight. As a 

result, laser scanners generally have higher accuracy than photogrammetry scanners (Higgins, 

2021). These scans of different viewports are then merged or stitched to form a point cloud. 

The merging is also known as ‘Registration’. The laser scanners that capture the point clouds 

are terrestrial, airborne, mobile, or handheld.  

• Airborne laser scanners are usually used to capture the earth’s surface,  

• Mobile scanners are non-invasive and quickly capture the data ideal for asset 

management, utilities, planning, disaster management, tunnel, airport design,  

• The terrestrial scanner emits constant waves of varying lengths and is reflected back to 

the scanner. They are ideal for architectural construction, surveying, engineering, 

planning and forensics (O’Day, 2013) 

The point cloud data is stored in various formats. Some popular formats are ASCII, E57, PTS, 

FLS, LAS, LAZ, and TXT. In this thesis, the point clouds captured by laser scanners are used 

for the case study and testing of proposed algorithms.  

 

Point Cloud in Various Industries: 

It is a non-intrusive, accurate and the fastest way to capture lots of data for feature detection 

and analysis in 3D. Point cloud data is useful to a variety of industries. For example, museums 

and stadiums do not need to shut down to be measured, or a policeman captures a vehicle 

collision site to analyse the cause of the crash. Several industries use point clouds, such as 

• Land Surveying 

• Construction 

• Architecture 

• Environmental monitoring 

• City planning and Civil engineering 

• Manufacturing 

• Digital designs  
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• Archaeology 

• Visualisation 

Point cloud has become the primary way to collect data among construction and architecture 

industries, saving their time and on-site costs. Manufacturing industries adopt point clouds to 

design and model the parts for visualising and quality assessment. (Point Clouds for Beginners 

Your questions answered, 2022). In the construction industry, laser scanners are used to capture 

minute details of buildings, plan extensions, and renovate or document the progress of building 

projects (Nicole, 2021). 3D construction models and city development sites are helpful for 

planning and quality assurance at each stage of construction. The BIM (Building Information 

Model) has already become the standard for plotting and planning buildings (Thomson, 2019).  

 

1.2 Research Motivation  

Point clouds acquired from the real world have several challenges. The most significant 

challenge is the identification of objects, shapes or features of the real world in point clouds. 

The challenge does not depend on the acquisition process but on the point cloud’s natural 

property and lack of information connectivity (Schnabel, Klein and Gumhold, 2010). The 

complex geometrical shapes such as planes, cones, cylinders, and spheres are comparatively 

easier to detect as compared to other non-geometrical shapes such as vegetation, vehicles, 

ghosts (people walking by), and other man-made objects. However, identifying these objects 

and structures in point clouds is very complicated, especially when the objects on top hide the 

underlying surface information. In addition, real-world scans are infused with massive noise 

and outliers. The huge challenge is to differentiate between these and true points. The presence 

of inevitable noise and outliers is due to  

• reflective man-made surfaces such as mirrors, glasses on windows  

• dust 

• environmental conditions such as rain, lightning and wind 

• moving objects such as people on the road, birds, passing vehicles 
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The algorithms processing point clouds should provide the functions to tackle these noise and 

outliers. The scanners also generate range-dependent noise during the data collection as the 

scanner sensors are based on the time of flight, optical triangulation, and multiple frequency 

phase shifts. Noise level varies as it is mainly affected by the light source on the scanning 

surface  (Unnikrishnan, 2008). The divergence of the laser beam, either by reflection or if the 

light source causes point location uncertainty, can generate possible outliers or additional 

random errors across the point cloud. In addition, mixed pixel discrepancy is generated if more 

than one scanned surface is placed according to the line of sight. These mixed pixels are caused 

due to non-point spot size of the beam. Therefore, removing outliers or filtration of the point 

cloud is essential for fast and accurate geometrical object detection in point cloud processing 

(Tuley, Vandapel and Hebert, 2005). 

The traditional methods used by the existing geographical information system typically have 

issues such as (1) systems are manual, time-consuming and have low accuracy while 

processing point clouds, (2) lack accuracy in identifying and extracting the geometrical features 

from point clouds, (3) lack a robust method for solving the problems of noise and outliers, (4) 

lack graphical presentation functions, (5) have few functions for generating high-quality 

meshes, grids etc. from a point cloud (6) have limited functions for efficiently and effectively 

processing huge point clouds and (7) have issues associated with RGB and intensity processing  

(Remondino, 2004; Devore et al., 2013). 

Point clouds are generally very large, containing millions or billions of points, depending on 

the real-world scanned area. The density of point clouds can be selected in the scanner before 

scanning. The density varies with the distance. The area near the scanner will be denser than 

the area far from the scanner. Identifying and categorising the geometrical and non-geometrical 

shapes in high-density points is easier and more efficient than in low-density points, which is 

challenging due to missing points and gaps. The research continues in the field of surveying 

and engineering to produce efficient and robust methods.   

Therefore, it is essential and reasonable to investigate, design, and develop a robust algorithm/s 

that can handle the removal of noise and outliers, identify the objects in dense data sets, and 

categorise them accordingly.  
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1.3 Scope of Research 

Many researchers have developed various methods for extracting information and important 

features. Since scanning technologies have evolved in recent years, researchers have commonly 

used scanner data (point clouds) for the accurate and detailed extraction of 3D spatial 

information. Due to the nature of point clouds and their various applications in different 

industries, this thesis has to have a more focused scope. As mentioned above, the focus is on 

point cloud processing in order to extract features and information. As the market for point 

clouds expanded, so did the solution for processing the information in point clouds. However, 

the problem remains the same with the variety of software and free tools options: not efficiently 

extracting features and information from large data. This thesis presents and proposes 

algorithms/methods in later chapters to address and solve the problems. 

The thesis primarily focuses on point cloud processing from the surveyor’s and civil engineer’s 

view, concentrating more on the features that a surveyor and civil engineer would want to 

derive. The surveying and civil engineer users focus on feature extraction from point clouds 

into a survey (DTM), which can be modelled. This extraction is achieved through software by 

implementing various methods where the software controls the quality and appearance of the 

model. As surveying and civil industries are involved in planning and accessing the area, they 

expect the solution to be versatile and accurate (even by 1 mm). Examples of popular features 

are roads, kerbs, building footprints, trees, and poles rather than inside buildings or vehicles. 

For the collection of point clouds, two methods have prevailed. These methods are laser 

scanning and photogrammetry. Although both technologies are used for data acquisition, laser 

scanning is most popular for collecting urban and non-urban data sets.  

Terrestrial and aerial laser scanning has become the popular land surveying method (What Is 

Laser Scanning and How Can It Be Used?, 2020). Photogrammetry is unsuitable for the 

surveying world as photogrammetry is relatively inaccurate, more expensive, has poor textures, 

is slower than traditional mapping and requires many photos to generate the 3D model (Puzzo, 

2021). Therefore photogrammetry is not considered in the scope of this thesis.  
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As a note of clarification, wherever the term surveyor has been used, it exclusively means a 

land surveyor. The thesis focuses on the technology aspect of point cloud processing rather 

than the managerial aspect. Once the point clouds are collected, the results are large data sets.  

“The process of collecting, measuring and using these point clouds to design models of 

the target object or surface is called Point Cloud Processing” (What Is Point Cloud 

Processing and Why Is It Important?, 2019).  

The thesis presents proposed solutions for processing these point clouds (filtration, edge 

detection, and feature extraction) that could be adaptable in different scenes of point clouds 

(urban, forest, land, building and fields) with high accuracy, flexibility, efficiency and with less 

user intervention. 

 

1.4 Aims & Research Objectives 

The research motivation generates these research objectives. These objectives are formulated 

to guide the research: 

• RO1 – Identify, analyse, and evaluate the problems associated with existing methods 

and algorithms for 3D point cloud processing, including filtration, classification, edge 

detection and segmentation. 

 

• RO2 - Research, design, and develop a new method for filtration to remove bad points 

(outliers and noise) and conserve good points.  

 

• RO3 – Identify, analyse and evaluate the problems associated with existing methods 

and algorithms for feature extraction (edge detection and tree trunks and pole-like 

object detection). 

 

• RO4 – Research, design, develop and test a new PCA-based algorithm for 3D point 

cloud edge detection to improve the efficiency, accuracy and enhance user experiences. 

 

https://www.designlaunchers.com/what-is-3d-cad-modeling
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• RO5 – Research, design, develop and test a new Voxel-based algorithm for 3D point 

cloud feature extraction of tree trunks and pole-like objects to improve the efficiency, 

accuracy and enhance user experiences. 

 

These research objectives are most useful to the surveyors and civil engineers in the UK using 

geographic information systems (GIS) that help them to generate models such as DTM (digital 

terrain models), 3D surface models, quarry and earthworks design and BIM (building 

information modelling). Also, the users who generate the models use point clouds for quarry 

and mining, waste management, planning, collision investigation, dredging, and coastal 

defence.    

This thesis aims to propose, design, and develop new algorithms to efficiently and 

accurately perform point cloud processing to solve the research objectives. 

 

1.5 Thesis Contributions to New Knowledge Generation 

In this thesis, the key steps to point cloud processing has been shown and presented by the 

proposed methods and algorithms. The point cloud processing steps include the filtration 

methods, feature detection and extraction of edges. During the design and development of these 

methods, tools and techniques are used to analyse, evaluate and explain the real-world 

scenarios within point clouds.  

The principal contributions of the thesis are as follows: 

• An introduction, design, and development of methods to handle outliers and noise that 

are defined using the point’s characteristics in point clouds. This results in designing 

fast and easy tools for removing types of noise and outliers from various kinds of point 

cloud data. The proposed methods are “NR-S” (Noise Removal using Sphere), “NR-B” 

(Noise Removal using Box) and “OF-OB” (Outlier Filtration using Octree Boxes), 

which are applied by tools called search sphere, Octbox and 3D boxes. 

 



 

36 | P a g e  

 

• After removing the noise and outliers, the research and study of the feature extractions 

emerged. The first and topmost important feature that is highly demanded in the field 

of surveyors and civil engineers is edges. Hence, an efficient and robust “PCA-based 

algorithm for real-time Edge Detection” in the large point cloud data is proposed, 

designed, developed, and implemented. 

 

• The edge detection works in real-time in the 3D point clouds. However, the process is 

manual. To address this, the proposed algorithm for detecting edges is further extended 

to a method called “Edge Stream”. The edge stream is an automated version of finding 

the edge with user-controlled parameters.  

 

• Based on the study, the other important features are tree trunks and pole-like objects. 

To address that, a feature recognition algorithm for detecting cylindrical objects, trees 

and pole structures from urban point cloud data. This study led to the design, 

development, and implementation of the proposed Voxel-based algorithm to detect 

cylindrical objects in 3D point clouds. 

 

• While implementing the proposed algorithm for cylindrical feature detection, 

classification is required between ground and non-ground points as the important 

features to be detected are above the ground. Therefore, the sampling and extraction of 

ground points mean that the algorithm is only implemented on non-ground points, 

which saves a lot of computation time. Hence, a gridding system called “Terrain 

Extraction” has been introduced to address the issue and extract the ground point from 

3D point clouds. 

 

• The Voxel-based algorithm for detecting cylindrical features is implemented on large 

3D point clouds, which could take hours. Therefore, to address this issue and automate 

the process, efficient segmentation and clustering techniques are introduced to save 

computation time.  

The proposed methods/algorithms discussed and presented in this thesis are firstly 

implemented in LSS - 3DVision commercial software. The implementation solves the 

practical problems encountered by the software’s users (surveyors, civil engineers, 
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archaeologists etc.). The proposed algorithms and methods of this research are already used 

by 1000-1200 customers across the UK and Worldwide.  

 

1.6 Thesis Structure  

The introduction of point clouds and the challenges related to point cloud processing on real-

world data are presented in Chapter 1. The algorithms must be developed to provide the 

solution and address the problems associated with existing methods. This thesis focuses on 

point cloud filtration, point cloud segmentation, edge detection, and feature extraction methods. 

Chapter 2 presents and discusses existing novel methods to process point clouds. The 

algorithms proposed are based on:  

• point cloud registration,  

• existing point cloud processing methods,  

• existing point clouds filtration to remove outliers,  

• existing point cloud edge detection and  

• feature detection in point clouds.   

The literature illustrates the essential point cloud processing techniques/methods and the 

acceptance and use of point clouds to extract information to construct a 3D model. Therefore, 

it is vital to gain an understanding and knowledge of the existing method, especially from a 

land surveyor’s perspective.  

Chapter 3 covers the history of point clouds, the importance of point cloud processing and the 

current issues of processing point clouds, followed by the research method used in this thesis. 

Chapter 3 also presents the methodology of proposed algorithms, data collection and validation 

methods. As shown in Chapter 3, this thesis categorises point cloud processing into three 

stages. The research investigations and questions lead to discuss in the following chapters:  

• Filtration - Chapter 4 presents the research of the existing methods and performance in 

the surveying industry. Following this, it presents the filtration method of the outliers 

and noise. 
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• Edge detection - Chapter 5 presents the research and investigates the current edge 

detection methods. Following this, it introduces a new PCA-based method for detecting 

edges and edge streams. 

 

• Feature Extraction - Chapter 6 presents the research and investigates the current 

methods of cylindrical object recognition. Following this, it introduces a new voxel-

based method for tree trunks and pole-like object detection and classification. 

This is followed by a proposed algorithm implementation on the commercial software and a 

case study to demonstrate the point cloud processing and modelling in Chapter 7. Finally, the 

thesis is rounded off in Chapter 8 with the conclusion of the work, how it relates to research 

questions posed at the beginning and the key contributions of the thesis. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

Different techniques are available in remote sensing technology and image processing 

applications to obtain 3D models. Some of the popularly used methods include the technologies 

of LiDar, MLS, and others. This chapter reviews existing literature on the nuances of 3D feature 

extraction and processing on point cloud datasets obtained from aerial, terrestrial or mobile 

methods.  

The scope of this chapter’s literature domain is architecture, engineering, geomatics, 

construction and computer science. The chapter aims to investigate and distil the literature 

found into the research objectives that fill the gaps in knowledge by working through this 

thesis. 

Firstly, the chapter explains the technology used to capture point clouds. It is important to 

understand the technology to understand its issues clearly. The point cloud processing 

challenges are largely dependent on its capturing technologies. 

Next, the chapter reviews the 3D point cloud processing methods that face challenges in 

achieving accuracy on a large point cloud. Followed by the methods used by other researchers 

and algorithms found in the literature are reviewed to understand existing gaps and limitations 

in this area.   

The key steps involving point cloud processing are noise removal and feature detection. 

Therefore, the literature review assesses the approaches of the existing methods and algorithms. 

This is followed by the gap analysis of existing methods and the reason why there is a need for 

a new algorithm to capture and extract features from point clouds.      
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2.1.1 Brief Introduction of Point Cloud Capturing Technology  

Point clouds are datasets that represent objects in a coordinate system. A single point on an 

underlying sample surface or object can be represented by x, y and z geometric coordinates. 

Point clouds collate numerous spatial measurements into one dataset to represent them as a 

whole. In other words, point clouds provide 3D points to bring to life the object or underlying 

sample surface represented by x, y and z coordinates (Ma et al., 2018). Generation of point 

cloud datasets is possible through 3D-laser and LiDar (Light Detection and Ranging) scanners 

that are both terrestrial and aerial. Each has a different range and accuracy. Boehler and Marbs 

(2004, p. 292) defined scanning as 

“3D scanning (often called laser scanning) is a surface-based three-dimensional 

measurement technique. One scan result in a large quantity of points in a systematic 

pattern – also called point cloud. Final results after processing of the  raw  data  can  

be  line  drawings,  CAD  models,  3D  surface  models  (with  artificial  or photorealistic 

textures) or video animations.”  

Every point denotes one unique laser scan measurement (Achlioptas et al., 2018). Then, all the 

captured points are stitched together to create a complete scene through a process known as 

registration. Understanding real-world data has been enabled through technology using 

computational resources such as GPUs, 3D data processing using depth sensors and machine 

learning (ML) or deep learning (DL) methods (Guo et al., 2020). 

For this thesis’s evaluation and case study purposes, the data sets from both terrestrial and 

LiDar laser scanners are used.  

 

2.2 Processing Point Clouds 

Common problems with point cloud data are occlusions, in-depth discontinuities, shadows, 

poor texture, poor image quality and man-made objects. Aerial imagery space-born-based high-

resolution satellite imagery, terrestrial or aerial scanners, and handheld scanners are used to 

extract objects (buildings, trees, other features) in an area of investigation. In complex data 

such as city environments with dense or high-rise buildings, the major challenges are 
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occlusions (DeVore et al., 2013), reflections (Gao et al. 2022), passing vehicles and people 

(Balado et al., 2019; Scheiner et al., 2021), point density discontinuities (Rousell, 2014; Petras 

et al., 2023), shadows (Guislain et al., 2016), unfinished structures, and standard manufactured 

objects on the road (Shi et al., 2021; Zhang et al., 2019).  

The LiDar technology could support overcoming problems in 3D point cloud data and 

automatic registration for the extraction of buildings and roads in an urban environment. 

However, Hui et al. (2019) described the low filtering accuracy in airborne LiDar point cloud 

data from environments with complex terrain as challenging. Besides, aerial images do not 

have geodetic coordinates and have different types of geometric distortions. Due to this 

phenomenon, the point cloud data from LiDar is difficult to co-register in aerial images. 

Che, Jung and Olsen (2019) explained the general challenges in data processing for recognising 

objects and classifying point clouds. Some challenges include the effectiveness of data 

acquisition parameters, type of objects captured, problems in recognising more objects, 

achieving effectiveness and accuracy and issues with computation time in a large volume of 

data. Also, the data gathered by different sensors and platforms have different resolutions that 

can provide various types of information with redundancy. Hence, advanced algorithms have 

a more accurate capability and robust data processing modelling and analysis.  

MATLAB uses various methods for point cloud processing. MATLAB is an abbreviation for 

“matrix laboratory” which is a programming and numeric computing platform used by 

engineers and scientists to analyse data, develop algorithms and create models (MATLAB - 

MathWorks, Accessed: 12 February 2023). MATLAB provides the functionality to read, write, 

store, visualize, basic processing of point clouds and create geometric models. Gigli and 

Casagli (2011) used MATLAB to propose a new method based on the definition of least square 

fitting planes on the cluster of large point clouds extracted by moving a sampling cube. 

Similarly, Carrea et al., (2021) used MATLAB environment to manage large point cloud 

datasets for landslide and rockfall investigation analysis. MATLAB is used mainly for 

visualization and graphical presentation (histograms etc.) by Wang et al. (2011), Pepe and 

Prezioso (2015) and Catalucci et al. (2018). Erdélyi, Kopacik and Kyrinovic (2017) used 

MATLAB for the graphical user interface to process the data efficiently. 
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2.2.1 Outlier and Noise Presence  

Point cloud data gathered with 3D scanners, the technique that uses image capturing for 

reconstruction, is often corrupted with substantial outliers and noise. Ruchay, Dorofeev and 

Kalschikov (2019) stated that common noise reduction and outlier filtering approaches tend to 

reduce noise; however, the problem of removing the outliers contained in a raw point cloud is 

not handled efficiently. Therefore, Ruchay, Dorofeev and Kalschikov (2019) proposed 

multiple de-ionising methods to evaluate reconstruction accuracy, though noise and outlier 

filtering accuracy will depend on the point cloud’s density and quality. Outliers must be 

removed as they are persistent in every point cloud data set with varying point densities. 

Further, filtering outliers in point cloud data can support applications that use topographical 

maps in decision-making, managing natural hazards, analysis, and interpretation. 

According to Rodríguez et al. (2018), point clouds represented a large amount of data, and 

many coordinates are redundant. Hence, it is a requirement to filter the clouds before 

processing them. Importantly, the work is intensive when a large area is measured and may 

need multiple scanning to obtain an accurate 3D point cloud. Che, Jung and Olsen (2019) stated 

that a line-of-sight measurement is required, and laser scanners have a limited range in 

obtaining accuracy. Liu et al. (2018) explained that multiple scans at different angles are 

needed to map an area to capture objects. Outlier-filtered data facilitates analysing and 

interpreting the gaps effectively. In large-area scans, the problem of accuracy must be 

addressed. In addition, typical large data has the problems of sparse, irregular and unordered 

data structure in point clouds (Wu, Qi and Fuxin, 2019). Besides, applying convolution to point 

clouds is difficult (Wang and Solomon, 2019). 

Further, scanning an area containing objects such as trees, shrubs, buildings, etc., can be 

difficult in outdoor environments. Consequently, several algorithms have been developed to 

achieve accuracy in overcoming problems with stationary objects. This is also known as 

targetless scanning, which requires a significant amount of overlapped points to register 

accurately (Xiang, Qi and Li, 2019). 
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2.2.2 Semantic Segmentation 

Numerous algorithms to address problems of accurately registering point cloud data are 

proposed and demonstrated. Point cloud semantic segmentation techniques are used for 

learning methods, such as supervised machine learning and state-of-the-art deep learning to 

generate semantic information for each point (Xie, Tian and Zhu, 2020). Several algorithms 

have been proposed for semantic segmentation to produce a network to compute individual 

point features, such as PointNet, PointNet++, PointSIFT, etc. The convolution network, called 

Spatial Aggregation Network (SAN) by Cai et al. (2019), can operate on the local spatial 

structure information to accomplish efficiency and accuracy. Wu, Qi and Fuxin (2019) 

presented a novel convolution operation using a dynamic filter named PointConv. PointConv 

deals with the convolution kernels as non-linear functions. PointConv is implemented to create 

deep connected networks and experimented with ModelNet40, ShapeNet and ScanNet 

repositories to achieve semantic segmentation on 3D point clouds. Xin et al. (2019) proposed 

the Fermat Paths theory to capture light from the given visible scenario and unknown objects 

that are not in the camera’s line of sight (LOS). The Fermat-Flow determines the object shape 

in non-LOS and generates sparse scene reconstruction. Another algorithm (Young et al., 2020) 

provided accuracy in recovering shapes that range from diffuse to specular and are hidden 

around corners or behind a wall. The algorithm is developed to achieve micron-scale 

reconstruction and demonstrate mm-scale shape recovery.  

Wang and Solomon (2019) addressed the point cloud registration problem by finding rigid 

transformations by aligning one point cloud with another. Understanding global and domain 

features to facilitate rigid registration is provided using learned models. Roynard, Deschaud 

and Goulette (2018) described a Convolution Neural Network (CNN or ConvNet) based 

method to classify point clouds in urban or indoor scenes. The network is distinguished to 

determine point classification through the location of points in a multi-scale neighbourhood. 

Further, the method is reduced to the semantic 3D benchmark compared with other point cloud 

classification methods to show better performance; however, the method did not use the 

regularisation step.  

Javed, Meraz and Chakraborty (2020) reviewed the contributions related to classifying, 

segmenting, and traversing 3D-point cloud data. Two methods handle the important point of 

classification. The first method is based on projection, where the point cloud data is processed 
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to get an image (2D or 3D). Further represented and followed by applying deep learning (DL) 

techniques. The second method is to directly process the 3D point cloud data to obtain desired 

outcomes. Region-based methods or single shots must solve classification problems. In 

addition, the segmentation is categorised as semantic segmentation, instance segmentation and 

part segmentation. Algorithms are widely used to resolve the problems identified under 

classification, segmentation and tracking. For instance, a convolution or graph-based network 

algorithm in DL is used to address classification. To overcome the object detection problem, 

classification and bounding box regression algorithms are applied (Shi, Wang and Li, 2019). 

The segmentation problem is grouped into semantic (point-based), instance (proposal-based) 

and part segmentation (fully convolution network (SFCN) algorithm). For example, a 

framework named SqueezeSegV3 for adaptive convolution of efficient point cloud 

segmentation is available (Xu et al., 2020). The challenges with 3D shapes are that they can 

look different from different perspectives. However, Wang et al. (2018) presented a 3D shape 

segmentation using DL methods. These are problems in object generalisation to all its parts 

using the algorithms discussed.  

 

2.2.3 Feature Detection 

3D representation of data as point clouds is widely explored and researched in computer 

graphics and computer vision. Numerous developments show object representation using point 

clouds to solve classical scene challenges in 3D classification and segmentation (Zaganidis et 

al., 2018). Currently, 3D point clouds have improved in performance to achieve high levels of 

accuracy. This section explores and analyses the state-of-the-art techniques for feature 

detection in point clouds.  

Uy et al. (2019) introduced a dataset generated in a real-world scenario by scanning an indoor 

environment. The dataset known as ScanObjectNN is developed to resolve the problems in 

object classification in scenarios where the framing of objects is done in real-world settings. 

The method presented is intended to solve the object classification challenges in the cluttered 

background and achieve state-of-the-art performance in identifying objects through a proposed 

point cloud classification neural network (NN). The proposed NN provides a new dataset for 

the object using the scanned real-world environment. This dataset is further used in 
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classification by training and testing the dataset. A benchmark is obtained for existing object 

classification techniques on real-world and synthetic point cloud data. Lastly, the proposed 

network could provide a classification of objects in a real-world environment using the 

combination of the classification method and segmentation method. The ModelNet40 dataset 

is used as synthetic data in the study, and the ScanObjectNN dataset is generated from real-

world 3D scanning. However, from quantitative evaluations, real-world data object 

classification challenges must be resolved. The results of the benchmark provided up to 78.5% 

accuracy. The study revisits the state of art object classification methods. Although the results 

indicate that synthetic data provided the intended output regarding classification accuracy, on 

the other hand, it failed on real-world data, thus providing further research scope.  

Li, Chen and Lee (2018) presented an architecture known as a permutation invariant network 

named Self Organizing Network (SO-Net). The SO-Net will create the model for the spatial 

distribution of the point cloud to create one self-organising map (SOM). The SOM performs 

hierarchical feature extraction using a point-to-node kNN (k-nearest neighbour) search and 

adjustable receptive field overlap. A proposed point cloud auto-encoder is used for pre-training 

and improves the network performance in processing. The architecture is examined by 

comparing it with other state-of-the-art approaches in point cloud processing to show 

improvements in recognition tasks in point cloud feature classification. The results 

demonstrated that the proposed architecture provided significantly faster training speed in point 

cloud reconstructions. However, the method must be tested with convolutional neural network 

state-of-art computer vision algorithms for image recognition, object classification, semantic 

segmentation, etc.  

Many useful applications use point clouds, such as robot manipulation, geographical 

information systems (GIS), etc. Su et al. (2018) presented a new neural network architecture 

known as Sparse Lattice Network (SPLATNet) to improve point cloud processing. SPLATNet 

has many advantages, such as filtering neighbourhoods as in CNN architectures, handling 

sparsity in input point clouds by focusing on locations where data is available, computing the 

features based on the hierarchy and spatial input point clouds having sparse and efficient lattice 

filters. Moreover, the network architecture can map points in 2D into 3D space and vice-versa. 

SPLATNet architecture is experimented on two different benchmark datasets to compare with 

the state-of-the-art approaches in segmenting point cloud data. Nevertheless, the results 
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highlighted do not provide the potential for processing point cloud features such as texture, and 

classification accuracy is unavailable.   

Another framework by You et al. (2018) called PointView Network (PVNet) focused on data 

of point clouds and data having multi-views for creating 3D shape representation. The 

framework uses ModelNet40 datasets to integrate point cloud and multi-view data to achieve 

better performance in point cloud features. The framework is a convolution network different 

from other 3D deep models and employs global features at a high level of multi-view data to 

support the feature extraction of point cloud data. Further, the framework provides a method 

known as an embedding fusion to embed global features of multi-view models and generate 

attention-aware features of point cloud models. This approach is considered more efficient in 

representing discriminative details of 3D data. In addition, the model is different from other 

models as it efficiently explores the complementary relation between data in the point cloud 

and multi-view to represent 3D shape representation. The results indicated a promising 

potential for point cloud feature extraction (different geometric properties). The evaluation and 

effectiveness of this framework are based on missing data with an example of shapes such as 

a chair, lamp and bottle, etc., without testing on real-world data.  

Lu et al. (2019) introduced a framework that uses end-to-end learning to achieve registration 

accuracy for geometric methods in point clouds. The method is named DeepVCP, which 

implements different deep neural network structures to determine an end-to-end trainable 

network. The framework’s effectiveness is evaluated using KITTI and the Apollo-South Bay 

datasets (the vehicle dataset contains LiDar point clouds, images, and IMU data). The point 

cloud registration accuracy is achieved by learning-based keypoint detection, novel 

corresponding point generation and loss function. In this method, local similarity and global 

geometric constraints enable better accuracy. The results showed better performance compared 

with geometry-based techniques. The behaviour and insights of the framework are illustrated 

by visualisation and ablation analysis. The overall results indicate low registration errors, 

making this framework attractive for applications involving point cloud registration tasks. The 

framework has the potential to be used in LiDar point cloud registration which is the foundation 

of a variety of applications. The drawback of the method is that the classification is based on 

the point weighing layer and probability distribution rather than based on geometric feature 

distribution.  
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2.2.4 Analysis and Semantic Interpretation 

Many existing algorithms cannot automatically extract semantic information from the given 

scene. Also, shape analysis cannot be performed automatically on point cloud models. 

Williams and Ilies (2018) presented a method to analyse noisy point cloud data for real objects 

and objects that are incomplete. The method uses a heat diffusion kernel to build succinct shape 

signatures. Further, the method is designed to support a variety of clustering techniques that 

were earlier applied to mesh models. A Laplace-Beltrami convergent estimate operator for 

point clouds is implemented along with clustering techniques that work directly on point clouds 

to generate geometric features for various applications. One main advantage of this method is 

that it can operate directly on a point cloud model without surface reconstruction or meshing. 

Furthermore, the proposed technique is robust in handling incomplete point cloud data into 

semantically purposeful sub-shapes. 

Grilli et al. (2019) used the ML and DL methods to analyse features geometrically and classify 

cultural heritage environments in the point cloud data. The classification is performed to 

understand the applications developed for modelling. Hence, the method mainly explores the 

cultural heritage sector because other studies have not explored this area in a geospatial field. 

The method's first covariance matrix is used to extract features. Then, the impact of features 

calculated in spherical neighbourhoods is analysed by deriving radii values from simple 

proportional and dimension rules used in constructing classical architectures. The features are 

not required to be extracted at different scales to obtain an accurate classification. Next, the 

RANDOM forest classifier is used. Finally, the confusion matrix is used to evaluate the label 

generated by the classifier vs the manual. The methods developed used an adaptive size strategy 

to retrieve the best results. The disadvantage of the method is that the test set does not explain 

the size of the set used for testing. The results are needed to examine the effectiveness of the 

developed method using more complex structures.  

Wang, He and Ma (2019) proposed a model for semantic segmentation of point clouds to 

exploit local and global structures within the point cloud data. The model is based on contextual 

point representation in which each point is performed from one novel gated fusion of the point 

and its contextual points for enriching it. Qi et al. (2017) proposed a neural network called 

PointNet based on enriched representation. The PointNet module depends on a graph attention 

block to create and update each point representation in the local-point cloud structure. Finally, 
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the attention strategies to exploit global point cloud structure, spatial and channel-wise, are 

used to yield semantic labels for each point. The authors used the public cloud databases, 

S3DIS and ScanNet, to demonstrate the effectiveness of this model. This proposed model 

exploits the point cloud local and global structures using a PointNet module and attention 

structures (Wang, He and Ma, 2019). The superiority of this proposed model is demonstrated 

with existing datasets.  

Models are available to demonstrate the feature learning abilities with regular data structures. 

However, there are still multiple challenges in the case of irregular data structures due to the 

limitations of methods that represent data (Wang, He and Ma, 2019). According to Graham, 

Engelcke and Maaten (2018), to yield semantic segmentation, existing approaches transform 

the point clouds into 3D voxel grids or a collection of images for input into traditional CNNs. 

Further, the existing approaches for 3D representation can be categorised as (1) 3D-voxel 

based, (2) set-based and (3) multi-view based. In the 3D-voxel-based method, the point clouds 

are transformed into regular 3D voxel grids, followed by 3D CNN directly to the image (Jaritz, 

Gu and Su, 2019). The primary objective of voxel-based methods is to store and process 3D 

data. Examples of voxel-based approaches are Oct-Net, Kd-Net and O-CNN. A set-based 

method is used to learn the descriptions directly from unstructured or unordered point cloud 

data (Ku et al., 2020). Examples of set-based methods are PointNet, PointNet++ and 

PointCNN. As the name suggests, a multi-view method renders multiple images at different 

view angles from point clouds. Subsequently, the image is processed by traditional 2D CNN 

methods (Yang et al., 2018). However, the multi-view method is not popular because of the 

problem of not knowing the number of angles required to capture the 3D space and using image 

cause information loss. 

Balado et al. (2019) used point cloud data obtained from Mobile Laser Scanning (MLS) to 

segment the roadside components such as road surfaces, guardrails, fences, embankments, 

ditches, and borders. The PointNet model is used in the study for semantic segmentation of the 

road. The method is processed in two stages (1) the point cloud is segmented into sections 

along the trajectory of obtained samples by carefully distributing the road elements in each 

section (2) PointNet is applied to segment each sample further. The results provided indicate 

effective segmentation of a large number of objects. Furthermore, comparing ANN-based 

classification techniques and point-by-point extraction for segmenting road surfaces and fences 

provides accurate results.  
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Xie, Tian and Zhu (2020) stated that the DL techniques are useful in point clouds, 3D point 

cloud semantic segmentation (PCSS) and point cloud segmentation (PCS) and are popular 

areas for research in academia and other industry. There are many semantic segmentation 

techniques in the segmentation of point cloud data. The techniques are divided into four general 

categories. The categories are edge-based, region growing, model fitting and cluster. The edge-

based semantic segmentation involves the principle of locating the points with quick changes 

in their intensity and is identical to 2D image segmentation. The algorithm for edge-based 

segmentation consists of two important stages. The first stage is to detect the edges from which 

extraction of boundaries is completed from different regions. The second stage is to group the 

points that generate the last segments by aggregating points in boundaries in the given region 

(Landrieu and Simonovsky, 2018).  

In a Point Cloud Segmentation (PCS) review, Xie, Tian and Zhu (2020) defined PCS as 

grouping raw points into non-overlapping regions. For strong semantic knowledge of the 

points, the method divides the segmentation technique into four groups (1) edge-based, (2) 

region growing, (3) model fitting and (4) clustering-based. The edge-based approaches define 

objects’ shapes as edges move from 2D images to 3D point clouds. Region growing is a 

classical method of PCS that combines features in two regions or between two points to 

determine similarity to merge pixels (Xie, Tian and Zhu, 2020). The merging is possible if the 

points and regions are close spatially and have identical surface properties. For example, the 

features of 2D pixels, 3D pixels and 3D voxels are merged in region growth (Guo et al., 2017). 

Model fitting is a shape detection and extraction method that matches point clouds to different 

primitive geometric shapes. The model fitting is built on two algorithms, mainly Hough 

Transform (HT) and Random Sample Consensus (RANSAC) (Poux and Billen, 2019). Lastly, 

clustering-based methods are a mixture of various methods that aim to group points/spectral 

features/spatial distribution belonging to similar geometric features in unsupervised PCS. 

Therefore, clustering-based is used for irregular points belonging to features like vegetation. 

Examples of clustering-based approaches are K-means, mean shift and fuzzy clustering. 

Literature to explain the point cloud model as a structured graph for semantic segmentation is 

explored. Jiang et al. (2019) used semantic 3D scene labelling by investigating the relationship 

between each point and its neighbours through edges. A hierarchical graph framework is 

generated to include point features in the edge branch to generate and integrate the point and 

edge features. Landrieu and Simonovsky (2018) proposed a method SPGraph that deals with 
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large-scale point clouds. The semantic labels are predicted by first partitioning the points into 

geometrically homogeneous elements to develop a super-point graph and input to a graph 

convolution network (GCN) to predict semantic labels. Wang et al. (2018) explained that 

dynamic graph CNN (DGCNN) depends on edge-convolution operations to seize local shapes 

dynamically. Many methods are available in the literature, but it is important to note that most 

approaches use local relationships in the point cloud and not the global one.  

 

2.2.5 Knowledge-based Data-driven Point Cloud System 

Many applications consider point clouds as assets. However, inadequate semantic information 

within the point cloud ensembles raises technical limitations. Hence, connecting knowledge 

sources is time-consuming and a lengthy manual process, resulting in human errors. This 

problem requires a powerful domain-related data analysis method to develop coherent and 

structured information. Hence, point cloud processing can be used to create intelligent 

environments and knowledge discovery because object recognition and detection or 

classification of objects in datasets are important.  

Poux and Billen (2019) stated that knowledge discovery in decision-making systems is possible 

by automating data processing in the point cloud. The method proposes feature engineering 

based on voxel to qualify point clusters and support both classifications, viz. strongly, 

supervised or unsupervised. The variations in generalised feature levels that permit frameworks 

to interoperate are discussed. The authors recommend a shape-based feature set (SF1) to 

leverage raw X, Y, and Z attributes or the point cloud. Further, the relationship and topology 

found in voxel entities are derived to obtain the 3D structural connectivity feature set (SF2).  

Lastly, the knowledge-based decision tree is provided to allow classification based on 

infrastructure. Discussions are related to the synergy of SF1/SF2 on a new framework for 

semantic segmentation to constitute a higher representation semantically of point clouds in an 

associated cluster. The S3DIS dataset is used to benchmark this approach with novel and best-

performing DL methods. The results discussed explain good performance, ease of integration 

and high scores for classes that are dominant by planar and comparable with deep learning 

methods.  
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The work by Ponciano, Trémeau and Boochs (2019) aimed to overcome the constraints in 

training datasets in ML by presenting a semantic-guided approach. Semantic plays a key role 

in analysing the objects in data sets for related information. This approach also modifies the 

processing according to object diversity and data characteristics as a learning stage. It uses web 

technology such as SPARQL queries to discuss semantic segmentation through an ontological 

model. Further, the model permits the selection and execution of algorithms implemented 

dynamically. SPARQL links knowledge found in an ontological model and algorithms-enabled 

processing. 

Furthermore, the presented model can adapt a sequence of algorithms to an individual state in 

the process chain to make the solution more flexible and robust. The method accounts for data 

variation and objects representation to identify objects like walls, floors and ceilings 

successfully. The disadvantage of the method is that preset reasoning for points classification 

causes all points at the border of rooms to be not classified. In addition, it constantly has to 

update the knowledge-based for effective detection. 

Petrova et al. (2019) presented research on discovering new knowledge and making informed 

decisions using evidence. The research is made using sustainable building designs. The tasks 

include outlining and determining diverse data sources and types, indicating the method for 

data analysis, demonstrating knowledge discovery can be implemented in the semantic 

integration layer and supporting in design. The outcome of this research is a performance-based 

decision support system and semantic data modelling for a different design.  

Wengefeld et al. (2019) introduced an approach for the orientation of a person that is dependent 

on coloured point clouds. The classification approach is extended to the continuous domain to 

treat the real-time orientation estimation problem. The approach is compared with multi-class 

and regression problems. The results provided show promising data to compete with accuracies 

in the state-of-the-art and DL-based skeleton estimation approaches while the capability of 

standard CPU is maintained. Furthermore, this approach is verified for knowledge discovery 

of people orientation in human-robot interaction (HRI) tasks.  

Wen et al. (2020) proposed DL ‘Point2SpatialCapsule’ network to aggregate features and 

spatial relationships. This capsule aims to learn a better representation of discriminate shapes 

by combining all features with spatial relations of local regions in point clouds. This network 
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is an experimental model, and the results obtained show that the capsule has the potential to 

outperform other methods in 3D point cloud data. However, the model must be tested with 

real-time data to understand its effectiveness.  

 

2.3 Outlier/Noise Removal  

Raw point clouds are often very noisy and have outliers. The challenge is to remove the points 

that makeup noise and outliers. Han et al. (2017) described filtering as an area of intensive 

research and the vital processing stage for a wide range of applications. Various authors 

categorise the methods into groups that have the same criteria or adoption. Examples of such 

categories are presented below. 

Papadimitriou et al. (2003, p.315) divided the methods into five categories as follow:  

• Distribution-based methods are found in statistics books which identify the outliers 

based on a distribution model such as normals (Hawkins, 1980; Barnett Vic and Lewis 

Toby, 1994) 

 

• The depth-based approaches use computational geometry and convex hull on various 

layers to identify the outliers based on their position within the layers (Johnson, Kwok 

and Ng, 1998) 

 

• The clustering algorithm’s main purpose is to cluster the points; hence the outliers are 

just the by-product of clustering (Jain, Murty and Flynn, 2000) 

 

• The distance-based approaches use the distance with parameters to identify objects 

further to that distance as outliers but can create problems if the data set is dense or 

sparse. It was first proposed by Knorr and Ng (Knorr and Ng, 1997; Knorr, Ng and 

Tucakov, 2000) 

 

• The density-based approaches rely on the local outlier factor (LOF) of the object, which 

is the local density of its neighbourhood. Therefore, the objects with high LOF are 
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considered outliers. The density-based method was first proposed by Breunig et al. 

(2000). 

Schall, Belyaev and Seidel (2008) and Han et al. (2017) divided the existing methods into four 

categories. The first category is Statistical-based methods that utilise statistical concepts to 

filter outliers according to the point cloud used. Schall, Belyaev and Seidel (2005) used kernel-

based clustering to filter the outliers by defining the global probability distribution function for 

noisy points. Pauly, Mitra and Guibas (2004) presented a framework for analysing the shape 

and variability, i.e., uncertainty, by introducing statistical representation that quantifies each 

point’s likelihood of plane fitting through it.  

Jenke et al. (2006) introduced Bayesian statistics to produce a smooth point cloud from a noisy 

point set. The probability distribution specifies the measurement and reconstruction model 

(density prior, smoothness prior and prior for sharp features) of data defined by the statistical 

concept of finite-dimensional representation to remove noise from the point cloud. Esmeide 

and Nallig Eduardo (2006) proposed a new variant of principal component analysis, which uses 

weighing factors inversely proportional to the euclidean distance to the mean. Next, a weighted 

covariance matrix is calculated. Finally, corresponding to the largest eigenvalue, a plane is 

fitted. Both normal and smallest eigenvalues are used to preserve the sharpness of each point’s 

fitted plane to make it robust to outliers. Kalogerakis et al. (2009) delivered a statistical 

framework using Iteratively Reweighted Least Squares (IRLS) to estimate the curvature tensor 

and weight the assignment to each point neighbourhood. Both methods are used to correct the 

normals and help in outlier elimination and denoising the point clouds. Avron et al. (2010) 

introduced the 𝐿1-sparsity paradigm to denoise point clouds. The point orientation is restored 

and then calculated using local planarity criteria point position. This is extended by Sun, 

Schaefer and Wang (2015) to provide the 𝐿0 minimisation method, which applies the normal 

estimation and repositioning of points in order to denoise the point clouds.  

The second category is Neighbourhood-based techniques that filter the point using similarity 

measures between the point and its neighbours. Tomasi and Manduchi (1998) first introduced 

the bilateral filter that combines the grey levels and colours based on geometrical closeness. 

Paris and Durand (2006) extended Tomasi’s work and introduced a smoothing filter. 

Furthermore, the Paris and Durand method is extended to 3D mesh denoising by Fleishman, 

Drori and Cohen-Or (2003), Jones, Durand and Desbrun (2003) and Lee and Wang (2005). 
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Fleishman, Drori and Cohen-Or (2003) proposed an anisotropic mesh denoising algorithm, and 

Jones, Durand and Desbrun (2003) proposed a robust statistics approach based on local 

estimates of a surface. However, the methods by Jones et al. (2003), Fleishman et al. (2003) 

and Lee and Wang (2005) involved mesh generation, which is very noisy. Whereas Shi and 

Hernandez (Shi, Liang and Liu, 2011; Hernandez, Choi and Medioni, 2015) applied a bilateral 

filter on point clouds to overcome the problem. 

The third category is Projection-based approaches to filter points by adjusting each point using 

projection strategies. The least-squares fitting recently became one of the most interesting 

research topics. Levin (1998) first proposed the moving least squares method, and Alexa et al. 

(2001, 2003) were the first to implement it in computer graphics. The noise points are handled 

by iteratively projecting them on a fitted plane. The problem with moving-least-squares is that 

for finding the fitted plane, the process accommodates the non-linear optimisation, which 

increases computation time. Later Alexa and Adamson (2004) proposed a similar projection 

method which calculates the weighted position of a point, and a normal is calculated using 

weighted input normal. Amenta and Kil (2004) introduced a new variant called the energy 

function in moving least squares to produce a point on the surface. Fleishman, Cohen-Or and 

Silva (2005) proposed a robust moving-least-squares method based on a forward search 

paradigm to filter noise and outliers. Dey and Sun (2005) proposed a new variant of moving 

least squares, an adaptive moving least squares operator that uses local feature size. The 

purpose is to analyse the non-uniform density to provide the reconstruction of the surface 

within the point set. Adamson, Alexa and Berlin (2006) adopted the decomposition of objects 

into cell complexes in order to preserve the shape features. A method fitting a quadratic patch 

on each neighbourhood point was presented by Fua and Sander (1992). The method deals with 

outliers to preserve the curvature by measuring if two points are on the same local surface. 

Wang et al. (2013) extended the method by Fua and used clustering and adaptive scaling to 

compute the planes to all points. By iterating the process, non-feature points are identified, and 

noisy points are removed.  

The Fourth category is PDEs-based filtering techniques (Partial Differential Equations) which 

can be described as an extension of triangular meshes used for filtering in point clouds. Clarenz, 

Rumpf and Telea (2004) presented a framework for point cloud filtering using local finite 

matrices created from a single matrix.  
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To preserve non-linear features by using Anisotropic mean curvature is presented by 

Hildebrandt and Polthier (2004), which is further extended by Lange, Polthier and Berlin 

(2005). Taubin (1995) and Lange, Polthier and Berlin (2005) used directional and principal 

curvatures and a Weingarten map for outlier filtering. First, a Weingarten map is used to obtain 

the anisotropic geometric mean curvature flow. Then, the method uses the directional curvature 

to generate a Weingarten map to compute eigenvalues and eigenvectors corresponding to 

principal directions. Finally, anisotropic Laplacian is used to change the curvature information. 

This method is further extended to many methods. One of the examples of images in 3D point 

clouds by Lozes, Elmoataz and Lezoray (2014) represented point clouds using weighted 

arbitrary graphs considering the neighbouring point information. The Laplacian operator and 

PDEs operator are included in arbitrary graphs to filter the points in the point clouds (Ta, 

Elmoataz and Lézoray, 2011).  

According to Ge and Feng (2021), Hodge and Austin (2004), Mansur et al. (2005), Kriegel, 

Kröger Peer and Zimek (2010), methods are divided according to a single criterion and 

combined methods as follows: 

1. Single Criteria Methods identify outliers by using single criteria. 

• Distribution-based methods – points that deviate from a specific distribution are 

classified as outliers. The statistical outlier removal by Rusu et al. (2008) assumed 

normal distribution between a point and its neighbour, and the point that does not 

fit in a normal distribution is an outlier. Rousseeuw and Hubert (2011) fit a plane 

using the least trimmed squares estimator, and the points that have a large deviation 

from the plane are identified as outliers.  

 

• Proximity-based methods – points that are away from most of the other points are 

classified as outliers. Nurunnabi, West and Belton (2015) proposed two outlier 

detection methods that are successful in identifying and removing outliers 1) 

maximum consistency with minimum distance based on Z-score (MCMD_Z) and 

2) maximum consistency with minimum distance based on Mahalanobis distance 

(MCMD_MD).  
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• Density-based methods – points are assigned with probability values based on the 

density of their local neighbourhood. Those points that have a high probability value 

are classified as outliers. Local outlier factor (LOF) (Breunig et al., 2000), local 

correlation integral (LOCI) (Papadimitriou et al., 2003), and local outlier 

probability (LoOp) (Kriegel Hans Peter et al., 2009) are three examples of density-

based methods.  

 

• Cluster-based methods – points in small clusters that are away from other clusters 

are classified as outliers. Cluster-based local outlier factor (FindCBLOF) (He, Xu 

and Deng, 2003) is an example of a cluster-based method.  

 

• Depth-based methods – points outside the specified depth based on depth maps of 

geometric objects are classified as outliers. Wolff et al. (2016) proposed a depth 

map-based method for outlier detection.  

 

• Learning-based methods – the model is trained, and then the same model is used to 

determine the points as normal or outliers. For example, Rakotosaona et al. (2020) 

proposed a method called PointCleanNet, and Stucker et al. (2018) used the random 

forest to classify the outliers.  

 

• Graph-based methods – the relationship between two points is defined as an edge 

and each point as a node. Then, the graph is constructed, and the score is used to 

determine the outliers. For example, Hautamäki, Kärkkäinen and Fränti (2004) 

proposed a method that uses the k-nearest neighbour graph to identify the outliers.  

 

2. Combined Methods use several criterion methods and classify outliers into different 

types. The aim is to remove different types of outliers based on their characteristics in 

point clouds. Sotoodeh (2007) proposed a hierarchical outlier removal method, and 

Ning et al. (2018) proposed methods that use local density and deviation from the local 

fitted plane to remove outliers.  

The voxel grid and Quadtree are other methods for filtering noise and outlier points (Han et 

al., 2017). In voxel-based methods, for filtering outliers, a point is picked to calculate the 
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distance from all points inside each voxel. Whereas for quadtree, a data structure is used for 

neighbourhood search. Another method of filtering involves the RGB present in point clouds. 

Ruchay, Dorofeev and Kalschikov (2019) used point cloud data gathered using the RGB-D 

sensor to analyse the accuracy of 3D object reconstruction. Point cloud algorithms are applied 

to the dataset to remove outliers and noise. The algorithms of statistical outlier removal filter 

(SOR), radius outlier removal (ROR) filter, Voxel grid (VG) filter and 3D Bilateral filter 

(3DBF) are compared for their de-ionising effectiveness and algorithms are evaluated by 

applying them for their effectiveness in 3D object reconstruction. The ROR filter algorithm is 

explained to provide better results compared to point cloud de-ionising algorithms.  

Studies on outlier/ noise removal algorithms have been explored recently in industrial 

applications and reverse engineering Ning et al. (2018). Lan, Yew and Lee’s (2019) work 

involved a probabilistic approach for outlier feature matching and loop-closure in front-end 

data. The association of outliers and loop closure can fail the back-end optimisation of point 

cloud 3D reconstruction. The approach involves a Bayesian network and the Expectation-

Maximisation method. The outlier feature matches are suppressed on long-tail Cauchy 

distribution, and the outlier loop closure constraints are suppressed using a Cauchy-Uniform 

mixture model. The method is experimental and performs well on both indoor and outdoor 

datasets.  

Zeybek and Şanlıoğlu (2019) presented the implementation of four algorithms using 

commercial and open-source software to filter outliers and noise from point cloud data. The 

method’s input is UAV point cloud data on which these algorithms are applied in sequence:  

(1) multi-scale curvature classification (MCC), (2) surface-based filtering algorithm 

(FUSION), (3) progressive TIN-based and (4) physical simulation processing using cloth 

simulation filtering (CSF) algorithms. 

Finally, the results of the algorithms are validated with a reference dataset for accuracy. The 

work claims that these algorithms demonstrated similar results while extracting ground objects 

on distinct terrain features such as densely vegetated, flat/bare earth surfaces, and rough and 

complex landscapes. In addition, the CSF filtering method provided 93% classification on a 

flat surface. 
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Rakotosaona et al. (2019) used the DL (deep learning) architecture approach to estimate local 

shape properties in 3D point cloud data. Firstly, the outliers are discarded in the approach, and 

correction vectors that projected noisy points are estimated in the original clean surfaces. The 

approach is efficient in terms of variation in noise and outliers, and the DL can also handle 

large and dense point cloud data. The evaluation is performed using synthetic and real-time 

data, and the method can develop accurate surface reconstruction from a range of scans. The 

extremely noisy data and outliers are removed compared with other state-of-the-art methods. 

This method is simple and can be easily integrated with existing processing applications. The 

effectiveness of this approach must be tested on large datasets to evaluate its impact, as test 

samples were relatively small.  

 

2.4 Edge Detection  

In 3D point-based extraction, algorithms extract the edges of roads, buildings and boundaries 

(Shirowzhan et al., 2019). In MLS, point clouds are effectively applied with Gaussian function 

derivatives to extract edges (Yadav and Singh, 2018). Also, MLS data can extract road edges 

in urban settings and is possible by an active parametrically contoured snake model (Nguyen 

et al., 2019). Furthermore, Zai et al. (2018) proposed an algorithm that generates super voxels 

to automatically extract road boundaries and pavement surfaces using MLS point clouds. Other 

methods to detect objects in urban settings include differential and regression filters on data 

collected from MLS 3D point clouds (Zeybek, 2021a). In addition, studies have identified that 

focus on unique objects on the road, such as trees, roadside traffic lights, buildings, etc. The 

availability of mobile laser scanning (MLS) techniques provides the potential for advanced 

mapping potential for effective data collection in geospatial applications. MLS systems provide 

the flexibility and ability to gather dense point cloud data with time efficiency measurements 

and cost-effectiveness. MLS platforms can be mounted on vehicles, including LiDar and 

advanced digital cameras integrated with centralised computing facilities for synchronising 

data and management (Rastiveis et al., 2020). In geometric designs, extracting different objects 

from point cloud data is important. For instance, the extraction of road surfaces, buildings, 

driving lanes, etc., is needed (Ma et al., 2018).  
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Unlike LiDar, aerial scanners cannot view beneath a vegetation canopy, resulting in sparse 

points on the earth’s surface. Yilmaz, Yilmaz and Güngör (2018) proposed a methodology 

involving image classification by a supervised method to filter 3D point clouds. The method 

involves overlapping a classified image with a point cloud to determine ground points for use 

in digital elevation model (DEM) generation. The method is evaluated qualitatively to show 

that filtering point cloud data has the potential to generate high-resolution DEM. The method 

overcomes aerial mapping application’s disadvantages in generating dense 3D point clouds.  

Chen et al. (2020) explained that photogrammetric techniques enable 3D meshes of aerial 

images. These photogrammetric point clouds do not provide interactions at the user or system 

level to distinguish between objects because they contain semantic information. However, 

these images are required for simulations and to develop a virtual environment. The essential 

requirement is to extract object information from segmenting generated point clouds and 

meshes. Therefore, to overcome these limitations, the method proposes a framework that can 

extract objects such as tree locations and related features and buildings. The framework will 

rank different point descriptors and evaluate supervised ML algorithms to segment 

photogrammetric point clouds. The framework must be verified with 3D point cloud data 

obtained in real-time and validated using data from the University of Southern California 

(USC) and the Muscatatuck Urban Training Center (MUTC).  

Building polygons are used as input in urban applications, but extraction of building edges is 

difficult, time-consuming and labour-intensive. Widyaningrum, Gorte and Lindenbergh (2019) 

proposed an approach to display building edge points using an ordered points-aided Hough 

Transform (OHT) to extract building outlines from aerial LiDar point cloud data. First, the 

method constructs an accumulator matrix based on a voting scheme in parametric line space. 

Second, the dominant building direction is determined using the variance of angles in each 

column. Finally, the hierarchical filtering and clustering approaches are applied to get an 

accurate line from detected hotspots and ordered points. The ordered point list matrix having 

ordered building edge points renders line segment detection, resulting in effective quality 

building roof polygons. The method is tested with different benchmark datasets in Vaihingen, 

Germany and Makassar, Indonesia. The results provided high accuracy, up to 96.1%. The 

method is also demonstrated with other existing datasets; however, the method is dependent on 

edge points for allocating outlines and therefore failed to detect curved outlines.  
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Becker et al. (2018) presented a technique for classification to extract point-wise semantic class 

labels from aerial 3D point cloud data (PCD). The method incorporates colour information to 

increase semantic feature detection accuracy significantly. This classification method is tested 

with four real-world photogrammetric datasets from Pix4Dmapper with varying point 

densities. The ML techniques and new features could accurately train classifiers to generalise 

unseen data while processing point clouds with 10 million points within three minutes. This 

approach and model have the potential to generate digital terrain models accurately based on 

simple heuristics. However, the functionality given to users to add their dataset to training data 

results in an inaccurate classifier.  

To research and discuss the creation of virtual environments using segmented data, Chen et al. 

2020) introduced a model ensembling framework to segment 3D photogrammetry point cloud 

to top-level terrain elements. The elements include humans, ground-level objects and trees, etc. 

The data are pre-processed with designed methods to resolve data segmentation challenges that 

show photogrammetric data quality problems. A large UAV-based database is created from 

UAV-gathered images to validate the framework and methods. Comparing the framework with 

existing point cloud segmentation algorithms provided outputs to show that the proposed 

framework can outperform other algorithms. This method segments photogrammetric 

generated point clouds to create workable virtual environments for simulation purposes.  

Besides, there is the challenge of change detection in the given environment. Tran, Ressl and 

Pfeifer (2018) suggested an approach to change detection (CD) of objects in a given 

environment. The method combines classification and CD as a single step and builds on the 

point cloud as an additional layer to obtain high-resolution geo-information from laser scans to 

match images. In this case, two-point clouds are made available as different epochs and ML is 

used as sample training data to identify if there is a change in the given location of the point as 

separate class information for each point. Based on supervised classification and applied to the 

entire area already generated as a point cloud. The approach provided good results to show 

changes in different classes such as a new tree, lost tree, lost building, new building, building 

and changed ground.  
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2.5 Tree Trunk, Lamp Post and Pole Detection in Point 

Clouds 

Recently algorithms have been developed for urban and forest data sets to identify trees and 

pole-like objects, such as marker poles, signs and lamp posts. However, the literature review 

suggests that algorithms developed for a particular type of data set have difficulty achieving 

reliable results for another type. In existing studies, algorithms include point cloud 

segmentation to identify the prominent tree points by grouping all the tree points like the top 

of the tree (Carr and Slyder, 2018). Algorithms using the k-NN approach classify ground, stem 

and crown. In the given scene, the algorithm computes eigenvectors to define axis direction, 

and eigenvalues will provide the variance of points along the axes. The stem structure is 

identified as vertical shapes, and 3D cylinders are applied in modelling individual sections of 

the stem. Weighting is implemented for more accuracy (Tuominen et al., 2018).  

The comparative shortest path algorithm is applied to TLS and MLS data to segment tree 

crowns based on ecology principles. The algorithm will detect tree trunks using density-based 

spatial clustering of applications with noise (DBASCAN) algorithm (Parkhan, 2019). The 

study by Chen et al. (2019) presented a point cloud classification algorithm that uses Mixed 

Kernel Function SVM to identify different ground objects. The algorithm effectively extracts 

objects such as trees compared to standard SVM methods.  

Using geometric features, separating wood and leaf components in point cloud data is analysed. 

An algorithm that combines classification and segmentation methods is developed and applied 

to data gathered from LiDar. K-means and random sampling consistency (RANSAC) 

algorithms are used to classify the wood and leaf components in the tree. The method has the 

potential for extracting wood from point cloud datasets obtained from terrestrial LiDar 

technology (Su et al., 2019). 

The use of the CNN technique is explained by Kumar et al. (2019) to develop three techniques, 

single CNN (SCN), multi-faceted CNN (MFC) and MFC with reproduction (MCFR), to 

classify MLS data automatically. These methods are applied to the KITTI dataset to accurately 

identify outdoor objects such as poles, trees, houses and lampposts (Kumar et al., 2019). 

Another method by Kang et al. (2018) proposed a voxel-based method for automatically 
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extracting 3D pole-type objects in urban data sets. A voxel-based shape recognition approach 

is used to generate pole-like object candidates. A circular model with an adaptive radius is used 

to detect and individualise pole-like objects. The method is applied to LiDar point cloud data. 

The proposed method can classify objects like lamp posts, utility poles, and tree trunks. Gupta 

et al. (2019) provided a method using voxel and connected component analysis to isolate and 

identify tree regions. Though this method provided partial accuracy, the method cannot 

separate all individual trees into a large clump.  

 

2.6 Research Gap Analysis 

Accurate reconstruction of 3D point clouds by extracting objects and surfaces is gaining 

popularity in architecture, surveying and algorithmic development (DL, ML), and AI 

techniques for automated detection and classification. However, to construct the models from 

the point clouds to capture 3D geometric features, the existing methods do not elaborate on the 

required needs and abstraction level suitable to form a model. This thesis discusses the 

requirements and desired outcomes of commercial clients in the domain of the surveying 

industry in Chapter 3.  

The innovation in laser scanning technology provides faster acquisition systems for collecting 

and capturing 3D and 2D images. The reason is the improvements in capture rate. However, 

the increase in data collection means the point clouds end up very large. Furthermore, because 

of this reason, it remains complex data with good visual representations. They are just a set of 

points without a way to extract information from the point cloud. Subsequently, allowing for 

the development of efficiencies in the geometry extraction of features from various scenes, 

including indoors and outdoors. However, the extraction process takes longer due to the 

complexity and large number of these data sets. Therefore, the main requirement is for a fast 

and automatic method that is also cost-efficient.  

The literature indicates that point cloud processing, including 3D classification, segmentation, 

and extraction, is automated up to a certain degree; however, a fully effective method is yet to 

be created. The extraction includes very simple geometry, and the methods are created 

especially for bespoke environments. The flexibility and effectiveness of the methods on 
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various kinds of point clouds are lacking. The thesis presents the algorithm/methods with 

flexibility, enabling users to use them in every environment. 

The literature suggests that existing methods implement various approaches for point cloud 

processing for academic purposes, i.e., the testing and implementations are performed on 

synthetic data, or a smaller sample set or dataset that are not available publicly. However, there 

is no proof of practical implementation of the currently proposed methods. This thesis not only 

proves the proposed method academically but also presents a commercial software application.  

The practicality and usage of the proposed algorithms/methods are designed by keeping the 

users in mind. The user’s top priority is achieving the results as quickly as possible with little 

user intervention (user clicks on software). As the proposed algorithms are part of the software, 

the performance and accuracy are performed for quality checks of the methods. The quality 

checks are presented via visual reports on the screen to ensure quality control.  

Many processes emerge from the literature for feature segmentation, representation of data, 

classification and feature detection methods. The challenge in segmentation is to group/cluster 

points that belong to the same geometry together. RANSAC is the popular choice for various 

methods of outliers and feature detection. Several researchers use deep learning and machine 

learning methods for semantic segmentation techniques. Along with the advancements in 

computers and technology for data storage and management, data processing is still a problem. 

As stated in the literature, they are handled by subsampling and partitioning due to the 

exceptional volume of point cloud data. These automatic processes are heavily data-driven 

methods which can result in huge computation times. Partitioning and subsampling are the 

measures used to reduce the number of points and, therefore, the processing time. Many 

approaches are reviewed, such as voxel-based methods that are used for subsampling. 

Therefore, a method to handle and sample unordered point clouds would be advantageous.  

From literature reviews, it is observed that existing methods that develop building models focus 

on semantic registration approaches for irregular shapes. In addition, a literature review of 

current problems in point cloud data processing indicates a need to filter and remove outliers 

from the dataset before they are further classified and processed. The problem of noisy data 

and the presence of outliers can result in limitations in achieving accuracy. Findings on point 

cloud features, analysis and semantic representation, point cloud processing and noise/outlier 
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removal provided several methods and techniques using synthetic and real-world data. 

However, in most of the existing methods, it is noted that they are experimental and cannot 

achieve the level of accuracy desired in real-world large point cloud data. In addition, the 

techniques found are not robust in noise removal or sparseness, leading to difficulties in object 

detection.  

Finally, the existing datasets test the methods and algorithms; most tests are experimental 

studies. Therefore, based on all these limitations of the current algorithms, a method must be 

developed to analyse point cloud data in the real world and resolve problems found in existing 

systems.  

An important feature missing is the ability to perform a quality check on the extracted features. 

In order to achieve that, the existing methods should be tested on point clouds derived from 

various sources. However, the accuracy of the required results has yet to be defined to compare 

applications (Tang et al., 2010). Furthermore, the results cannot be tested efficiently if a 

standard rule is missing. The accuracy for feature detection of geometrical shapes in point 

clouds faces challenges. The edge-based feature detection approaches are mostly oriented 

toward line tracing (Weber et al., 2012) without inspecting the points. This creates a problem 

in performance as the geometric properties are not analysed to deliver the edges. 

This thesis presents the algorithm which overcomes the issues of the current methods by 

completely examining the points that make the edges. The proposed method is flexible for users 

to take control, as discussed in Chapter 4. Other important features are trees, trunks, lamp posts 

and poles, considered cylindrical objects. Common challenges in detecting cylindrical objects 

are the ground/terrain slope and low point density. The ground slope affects the detection as 

their trunks are tilted. Additionally, as the laser scanner collects points from the ‘first return’ 

object, it can result in distorted and sparse low-density points. This thesis proposes an algorithm 

in Chapter 6 to solve the problem of low-density points and the ground slope of a given point 

cloud. 

The chapter aims to investigate and distil the literature found into the research objectives that 

fill the gaps in knowledge by working through this thesis. 
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2.6.1 Purpose of the new algorithm 

The proposed algorithms are designed and developed to solve the existing problems in point 

cloud processing methods. The new algorithm is a statistical procedure that uses multiple 

techniques to identify features. The primary contribution of the proposed approach is the 

connection of algorithms with processing. The process flow will allow the correction of 

scanned data by removing the outliers, obtaining edges and edge streams along the planar 

surfaces and finally detecting trunks and poles. In addition, the algorithm will include the 

classification of objects, analysis, filtering, segmentation, and model fitting on large real-world 

point cloud data sets, thus overcoming the limitations of existing algorithms.  

 

2.7 Chapter Summary  

The literature review section presents the common problems faced with identifying the 

accuracy of objects from scans in point clouds. Due to various factors such as sparseness, 

outliers, and distortion in the scanned point cloud, many techniques and methods are researched 

and proposed to overcome these limiting factors towards achieving accuracy. However, the 

evaluation highlights the common problems faced in point cloud data processing along with 

reviews related to current problems and issues identified from research. The algorithms 

reviewed are related to the semantic interpretation, outlier detection and removal, edge 

detection and identification of trees, lamp posts, and buildings.  

Reviews of existing research are performed to understand other researchers’ limitations in 

existing work. The outlier filtration methods are required to be easy to use, fast and accurately 

delete the noise and outlier points. The common challenges of edge detection algorithms are 

accuracy (detection of the edge point) and robustness to detect it in real-time and faster. After 

reviewing the feature detection algorithms, the common challenges are classification and 

isolating the trees and poles from other points with low density and gradient in the terrain. 

Finally, the existing gaps are summarised to justify the research, design, and development of a 

new algorithm to overcome existing limitations and achieve accuracy with efficiency. 
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Chapter 3 Research Methodology 

 

3.1 Introduction 

There are several traditional ways to capture data in geographical information systems, but 

these methods are tedious as they require manual processing of the geometrical points collected 

(Maguya et al., 2014). In geometry, a point is an exact location in space. A point has no size 

and is only a position defined in X, Y and Z coordinates. The recent development of laser 

scanner technologies quickly and accurately registered high-density scanned points to define 

the landscape, architectural and geographical information (Biosca & Lerma, 2008). This 

scanned data is called point clouds.  

A point cloud is the collection of several points in three-dimensional coordinates representing 

the external surface of scanned objects. The information captured, other than points and their 

coordinates, is colour information, i.e., R (red), G (green) and B (blue) and intensity value (the 

optical power of the backscattered echo of the emitted signal (Pfeifer et al., 2007)).  

Normally, point clouds are very large. The number of points in a point cloud may vary 

depending on the quality and resolution used while scanning (Borenstein, 2012). For example, 

two data sets captured for this thesis are: 

• 4 GB file size with 257 million points for the Church dataset  

• 14 GB file size with 581 million points for Fullwood Villa of the University of 

Gloucestershire data set. 

In addition, the geometrical points captured are not organised in an orderly manner, as are those 

in mechanical reverse engineering. Therefore, it is very difficult to manage and efficiently 

process large data, including filtration, classification, edge detection, segmentation and 

geometrical feature extraction.  
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Many previous types of research (academic and commercial) have been undertaken to process 

large point cloud data sets. Users in the surveying and civil industry currently use some existing 

systems/software in the market for processing point clouds. However, various problems 

emerge when applying these systems for point cloud data processing (Levente & Editors, 2015; 

Li, 2014; Remondino, 2004). The research suggests that existing software and methods are 

mainly manual, time-consuming, and dependent on user expertise. Thus, processing point 

cloud data for a geographical information system is still challenging. This opens a field for 

research into new techniques and methods. The new system should overcome the current flaws 

of manual processing and improve the total time required for producing geometrical models 

and feature detection from point clouds with minimum manual involvement (Govorcin, 

Pribicevic and Đapo, 2014).  

This thesis aims to research, design and develop new methods and algorithms to process point 

cloud data accurately and efficiently for geographical information systems. The main domains 

of the study are surveying, architecture, and civil engineering.  

 

3.2 Processing  

Point clouds are captured in detail as scanning technology becomes more sophisticated and 

portable. It is very common for point clouds to have more than a million points. Processing 

these large data sets is essential for highlighting, capturing and modelling real-world features. 

Technology advancement accommodates high-specification computers and data storage 

capacities are becoming more efficient and easier, allowing the point cloud data set to be very 

large, capturing every detail. Wang et al. (2021 p. 9581) described that 

“Due to the massive data, disorder, irregularity, sparsity, high resolution, and lack of 

topological relations or texture information, the Point Cloud data processing is 

complex and challenging.”  

As the data sets can be very large, the processing methods/algorithms must be efficient and 

robust.  
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The traditional methods used by the existing geographical information systems typically have 

issues such as (Remondino, 2004) 

1) systems are manual, time-consuming and have low accuracy while processing point 

clouds,  

2) lack of accuracy in identifying the geometrical features from point clouds, 

3) lack a robust method for solving the problems of noise and outliers, 

4) lack of graphical presentation functions, 

5) have few functions for generating high-quality meshes from a point cloud,  

6) have limited functions for efficiently and effectively processing huge point clouds and  

7) have issues associated with RGB and intensity processing.  

 

Noise 

Identifying geometrical objects or features from a point cloud is challenging because of the 

variable resolution of data, occlusions, missing data and noise (DeVore et al., 2013). The noise 

can be defined as the points not at the scanned line (Landa, Prochazka and Štastny, 2013). The 

main factor for 3D geometric information processing of point clouds is the surface shape 

irrespective of its appearance due to outliers. Therefore, the 3D point cloud processing 

algorithms need to be invariant to the density of the given point cloud (Unnikrishnan, 2008).  

Laser scanners also generate range-dependent noise during data collection as the scanner 

sensors are based on time of flight, optical triangulation, and multiple frequency phase shifts. 

Noise level varies as it is mainly affected by the light source on the scanning site (Unnikrishnan, 

2008). The divergence of the laser beam is either by reflection or if the light source causes 

point location uncertainty, which can generate possible outliers or additional random errors 

across the point cloud. 

In addition, mixed pixel discrepancy is generated if more than one scanned surface is placed 

according to the scanner’s line of sight. These mixed pixels are caused due to the non-point 

spot size of the beam. Therefore, removing outliers or filtration of the point cloud is essential 

for fast and accurate geometrical object detection in point cloud processing (Tuley, Vandapel 

and Hebert, 2005). 
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Edges  

This section concentrates on the challenges in edge detection in point clouds. Most existing 

methods separate the kerbs and incorrectly detect the edges using a height difference of 5 cm. 

However, the data between the kerb and the road could be missing, creating challenges to 

identification (Ibrahim and Lichti, 2012).  

Edge detection is much easier to implement on images but cannot be applied to 3D point clouds. 

Edge detection needs automation and optimisation and should be easy to use so that processing 

them would not require expertise and experience (Dolapsaki and Georgopoulos, 2021).  Several 

methods have been developed for edge detection using 3D geometric properties such as 

densities and elevation. However, challenges occur when data is missing (Soilán et al., 2019). 

Robust methods are identified and developed for point cloud processing: including feature 

detection and analysing gaps between data and outliers (Nurunnabi, West and Belton, 2015). 

PCA has been employed for various applications, from neuroscience to computer graphics, in 

all forms of analysis because of the method used for extracting relevant information from 

confusing data sets (Tipping & Bishop, 1999).  

PCA is a statistical procedure that uses an orthogonal transformation to convert a group of 

observations of possibly correlated variables into values of linearly uncorrelated variables 

called principal components. There will be three components in the analysis for this thesis as 

the points are three-dimensional. The transformation using the eigenvectors of the covariance 

matrix is defined so that the first principle has the largest variance across the data set, then the 

second and the third. The first and the second variance produced is enough to identify a planar 

surface.  

PCA is expected to be used for point classification, finding planes across the given data set, 

region growing methods where the data is missing and many more applications. However, PCA 

is sensitive to outliers and, where present, gives non-robust inaccurate results. In order to make 

the data outlier resistant, the principal components produced are used with robust methods 

(Nurunnabi, West and Belton, 2015).  
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Features 

Different methods have been proposed for feature detection and are used by the current 

systems. Feature recognition algorithms are used to identify and extract features from point 

clouds. These features can be anything from breaks of slope to building footprints, from 

vehicles to tracks, and from edges to corners. This section concentrates on the challenges 

current methods face in recognising tree trunks and poles in urban point cloud data. Due to the 

fact that such point clouds can be extremely large, the applied methods should be automatic 

and time-efficient (Lehtomäki et al., 2012). Another challenge is the variation in point density. 

The methods that implement the method by calculating points belonging to the same objects 

fail as a pole’s point density can be different on the z-axis than on the other axis. Also, these 

methods need high computation for higher accuracy (Hůlková, Pavelka and Matoušková, 

2018). 

In conclusion, to solve the above-discussed problems, new methods and algorithms will be 

proposed, designed, and developed for point cloud processing, including the classification of 

objects, analysing, filtering, segmenting, edge extraction, and modelling. The proposed new 

methods in further chapters (Chapter 4, Chapter 5 and Chapter 6) are anticipated to overcome 

the problems associated with existing geographic information systems and terrain modelling in 

the land surveyor and civil engineer domains. The proposed algorithms are effective and 

efficient for point clouds’ semi-automated/automated processing. The expected features and 

objects to be detected/identified inside huge point clouds are best-fit lines, best-fit planes, 

edges, edge points, boundaries, trunks, and pole structures in urban point clouds. 

 

3.3 Research Methodology 

The research paradigm is an important assumption about the way of viewing the research 

world, and it is the stance used to contextualise the research aim and present it logically (Grix, 

2019). According to Guba (Guba and Lincoln, 1994), paradigms can be characterised through 

ontology, epistemology and methodology. This research will follow a pragmatic paradigm. 

Pragmatism rejects the idea that the function of thought is to describe, represent, or mirror 
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reality. It advocates the use of mixed research methods “sidesteps the contentious issues of 

truth and reality” by Feilzer (2010, p. 3)  

and “focuses instead on what works as the truth regarding the research questions under 

investigation” (Tashakkori and Teddlie, 2010). Pragmatism places the research problem as the 

key concern and applies all the approaches to understand the problem. 

This thesis is mainly exploratory but is accompanied by experimental validation work through 

self-designed and developed software environments. The software in relation to the proposed 

research is pursued at McCarthy Taylor Systems Ltd (commercial partner for this research). 

The point cloud software is ‘3D Vision’; the other application for producing digital terrain 

models (DTMs) is called ‘LSS’. This element will adopt a quantitative approach as the main 

method of investigation to address the research objective with a “design, develop and test” 

technique. Both 3D Vision and LSS are used to implement the proposed algorithms and 

methods for point cloud processing (from filtration, feature detection, segmentation, edge 

detection and modelling).  

 

3.4 Methodology 

This section looks at approaches taken to investigate and answer the research questions 

mentioned in Chapter 1 through this thesis. The first research objective is to verify and 

investigate the existing algorithms and evaluate them. The objective is to understand what point 

cloud processing means, how point cloud processing has been applied to existing methods, and 

methods proposed to process the point cloud efficiently. A study has been conducted to identify 

the process, knowledge and technologies required to create models by processing point clouds. 

Researching this leads to answering the first research objectives. Literature on point clouds and 

how the information is extracted and processed helps to understand its development throughout 

the years.  

The second research objective is an outcome of the prior research on the first question. The 

main purpose of point cloud processing is the feature detection process to detect the specific 

acquisition context of the point cloud data from a laser scanner. Of course, the acquisition 

context is affected by various factors that affect the detection of the real object, such as 
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occlusions and incompleteness occurring due to the presence of reflective and transparent 

surfaces. Therefore, the first challenge in point cloud processing and extracting meaningful 

information is eliminating noise and outliers. Hence, the research question must be addressed 

by proposing a method for removing and filtering the noise and outliers.  

After filtering and removing the noise and outliers, the point clouds are left with good points 

and many features. This leads to the third research objective investigating the existing method 

and algorithms used to extract the features from these filtered point clouds. These features are 

dependent on the field of the user. For example,  

• a road surveyor is interested in features of road marking, kerbs, and road furniture,  

 

• a civil engineer is interested in extracting building footprints and a dip or slope, 

 

• a policeman is interested in finding the reason for the collision; therefore, he wants to 

extract features around the site, 

 

• A tree surveyor would want to extract trees so that they can preserve the mature trees. 

 

As point clouds are real-world sites, they can be very generalised. This thesis focuses on urban 

surveyors and civil engineers. The investigation identifies important features that a surveyor 

and civil engineer want to extract regularly on-site, resulting in the fourth and fifth research 

objectives.  

The knowledge gained from the third research objective led to the fourth and fifth research 

objectives. The fourth research objective is to identify the most user-required features extracted 

from any given point cloud. The answer to that question is Edges. The other important feature 

to extract is cylindrical objects in urban point clouds. These objects are tree trunks, traffic light 

poles, lamp posts and market poles.  

To answer and identify the fourth and fifth research objectives, an algorithm to find edges and 

cylindrical objects in point clouds is proposed. The comparison and research of these 

algorithms are presented in various case studies. The commercial software presents the 

algorithm to extract the feature from point clouds and convert it into DTMs. 
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3.4.1 Point Cloud Processing Categorization  

Point Cloud processing is the term used to process point clouds to extract meaningful 

information into models. These models can be line models or 3D surface models. In this thesis, 

point cloud processing is divided into the following categories: 

1) Point Cloud Filtration, which includes noise reduction/removal and outlier filtration 

(proposed new method discussed in Chapter 4) 

 

2) Edge Detection (PCA-based algorithm presented in Chapter 5) 

 

3) Feature detection (Voxel-based algorithm for identifying cylinders presented in 

Chapter 6) and segmentation (spatial partitioning) 

 

4) Modelling (DTM) 

 
 

 

Figure 3.1 Point Cloud processing is categorised in this thesis into Filtration, Edge Detection, Feature Extraction 

and Modelling 
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Once laser scanners have acquired 3D raw point cloud data, they need processing to extract 

useful information. The definition and categorisation of point cloud processing vary across 

different fields of research and domains. According to Galantucci and Percocol (2005), point 

cloud processing is divided into pre-processing, segmentation and surface reconstruction. Pre-

processing includes noise removal, data compression, smoothing, merging, and tessellation 

(Galantucci and Percocol, 2005). These processes are carried out before surface modelling and 

feature analysis in point cloud processing.  

The Point Cloud Library (PCL) is a standalone, large-scale, open-source project for point cloud 

processing and 3D geometry processing. According to PCL, point cloud processing consists of 

filtering, segmentation, feature estimation, object recognition, surface reconstruction, 3D 

registration and model fitting (Rusu and Cousins, 2011). Many point cloud processing software 

systems transform raw point cloud data into 3D images or BIM.   

In this thesis, point cloud processing is divided into four stages to transform the data into 

models, as shown in Figure 3.1: 

1. Filtration – proposed methods let users filter outliers (using Oct boxes) and remove 

noise (using search sphere and filter box) from point cloud data sets. 

 

2. Edge detection – proposed algorithm lets users find edges sects in realtime with the 

move of a cursor and automatically using edge stream. 

 

3. Cylindrical feature detection – proposed algorithm lets users automatically recognise 

and extract features such as tree trunks, poles, marker poles, traffic poles, and lamp 

posts from urban point cloud data sets. 

 

4. Models – let users extract information (points and links) from the point cloud by 

digitising to create DTMs and DSMs (3D surface models). 

The purpose of point cloud processing of data from laser scanners is to transform the scanned 

data into a model. For that process and the acquisition of objects, various algorithms are 

implemented. First, filter and eliminate the noise and outliers that are not part of the features. 

Second, extract features such as edges and edge streams (lines) from the data, reducing the 
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complexity of the next stage. Third, to segment and identify complex structures and 

calculations. Finally, feed the extracted information into the model to present the data. 

  

3.4.2 Proposed Algorithms 

The research is based on 3D computational geometry. The research establishes various 

mathematical models to propose, design and develop new methods and algorithms. PCA will 

be used with other methods. Along with PCA, other methods such as (1) Nearest cluster method 

-  is method that can be used to perform several types of agglomerative hierarchical clustering, 

in which a hierarchy of clusters is created by repeatedly merging pairs of smaller clusters to 

form larger clusters, (2) Voxelisation - is a spatial partitioning technique that transforms the 

points into voxels grids and estimates the geometries and attributes that are created by points 

inside the grid (Xu, Tong and Stilla, 2021), (3) Octree - is a tree data structure with exactly 

eight sub-nodes often used to partition a three-dimensional space by recursively subdividing it 

into eight octants. To achieve the objectives of the research, the above methods are used. 

 

3.5 Methods for Data Collection 

The research is based on extracting valid information from point clouds, so point cloud data 

plays a major role. Two types of point cloud data are used in this research.  

(1) The primary data were collected using a laser scanner (a laser scanner manufactured by 

FARO Technologies UK Ltd) to validate new algorithms and compare the effectiveness 

and efficiency with the existing implemented methods. 

(2) The secondary data was collected through a literature review of existing methods and 

algorithms for 3D point cloud processing and feature extraction (identification, analysis 

and modelling) of 3D objects. 
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3.6 Methods for Data Analysis  

Different approaches are defined for analysing the data (points) in the point cloud, including 

techniques to show high dimensional structure through low dimensional representation and 

assemble discrete points into a global structure. Some traditional techniques are (1) projections 

or axis-based technique, (2) eye view, (3) high dimensional analysis, and (4) structural analysis 

using simplicial chains for point cloud processing. However, the traditional techniques lack 

issues as described above. To overcome those issues, the proposed data analysis method for 

the thesis will use Principal Component Analysis’s eigenvalues and eigenvectors for the 

direction of the dominant data, which is further extendible for filtering, segmentation, and edge 

detection. 

 

3.7 Methods for Algorithm Validation  

The new methods are tested on several point cloud data sets to verify if they are more effective 

and efficient in identifying features such as planes, edges and cylinders. Also, the proposed 

new methods and algorithms are coded (using the computer language C#) and integrated into 

McCarthy Taylor Systems’ software application called 3D Vision. The methods are tested by 

the company’s existing users/clients (civil engineers, geologists and land surveyors). The 

user’s feedback is applied to improve the algorithms. 

 

3.8 Research Ethics 

The research follows the moral and ethical guidelines of the University of Gloucestershire. As 

the study involves point cloud software (licensed by McCarthy Taylor Systems Limited), the 

technology, process, and scanned data are strictly confidential, and information will only be 

used for academic purposes.  
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3.9 Chapter Summary 

Point Cloud processing methods are frequently developing and evolving as point clouds 

become popular. However, improving the efficiency and accuracy of feature recognition and 

extraction has been long highlighted as an issue across the surveying industry. Land surveyors 

are the collectors, suppliers and processors of these data and need a new method for 

transforming the 3D data into meaningful models. In addition, laser scanning technology has 

been specified as the preferred collection tool as the scanners are fast, portable and 

comprehensive in capturing the surrounding environment. 
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Chapter 4 A Method for Noise Removal 

and Outliers Filtering  

  

4.1 Introduction 

Point clouds are often collected at a site that can be indoors or outdoors. To capture point 

clouds, scanners emit laser beams that record the objects’ surface and are therefore affected by 

outliers and noise. The objects scanned are similar to the real world but with much distortion. 

The point cloud data set is affected by outliers as the laser scanners generate falsification points 

due to incorrect processing, scanner path reflection and unwanted objects. A typical point cloud 

scanned data usually is noisy, sparse and temporarily incoherent (Ning et al., 2018). In 

geoinformation systems, accuracy is an important aspect of designing and maintaining, which 

is highly affected by noise. System accuracy is measured in terms of absolute, relative and 

precision (Lewis, 2021). Therefore, removing noise and outliers is significant for accurate and 

efficient results. Rakotosaona et al. (2020) argued a point cloud data set clean-up method 

should balance between denoising and feature preservation. An outlier in point clouds fits a 

description by Hawkins M D (1980, p. 1)  

“An outlier is an observation which deviates so much from the other observations as to arouse 

suspicions that a different mechanism generated it”.  

In this thesis, Outliers and Noise are categorised as follows: 

1) Outliers are defined as isolated point/s, as shown in Fig 4.1.  

2) Noise is defined as a non-isolated points cluster that is not part of any relevant features 

or objects, as shown in Fig 4.2. 

The scanner generates millions of points, which requires high computation time to process all 

the points. Hence, removing these outliers and noise is necessary to analyse and process the 

point clouds efficiently. A proposed method uses applications to remove the outliers and noise 
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from the point clouds before processing the data to extract meaningful geoinformation. The 

method is tested on different data types. Each application has a unique implementation to 

remove the points that are considered outliers and noise. The analysis of related work is 

discussed and evaluated in Section 4.2. The proposed methods are presented in Section 4.3. 

Section 4.3.2 presents stage 1: the outlier/noise categories and Section 4.3.3 introduces stage 

2: the application’s distinctive suggested usage of the type of outlier and noise. Section 4.4 

presents the result analysis by demonstrating the proposed methods for the commercial 

software. Finally, Section 4.5 presents the conclusion of the methods. 

This chapter proposes three methods for noise removal and filtration of outliers. 

1) Noise Removal using Sphere (NR-S) 

2) Noise Removal using 3D Box (NR-B) 

3) Outlier Filtration using Octree Boxes (OF-OB) 

The noise removal and outlier filtration method from Chapter 4 is implemented on the data sets 

prior to implementing the proposed algorithms presented in Chapter 5 for edge detection and 

Chapter 6 for tree trunks and pole-like objects detection.  

 

 

Figure 4.1 Example of outliers (in red circles) in point cloud data 
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Figure 4.2 Example of noise, such as moving people captured in point cloud data 

 

4.2 Analysis and Evaluation of Existing Methods 

The filtration of outliers and noise is a continuing research problem in many fields of study, 

such as computational statistics, computer graphics etc. (Griffioen, 2018). In geoinformation 

systems, outliers/noise removal is the fundamental data processing task to ensure the quality 

of scanned point cloud data (Ning et al., 2018). Therefore, removing these points is essential. 

However, the points are classified and identified before removing them to separate the good 

points from the bad points (outliers/noise). This section presents and evaluates the existing 

methods of removing outliers, followed by a summary underlining the existing method’s 

drawbacks and problems.  

 

4.2.1 Existing Methods 

The existing methods are presented by dividing them into five categories. (1) Density-based 

methods by (Ning et al., 2018; Zhang Bibo et al., 2017; Li & Wei, 2021; Sotoodeh, 2006), (2) 
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Surface fitting methods by (Arvanitis et al., 2018; Jia et al., 2018; Nurunnabi et al., 2015a; 

Shao, Ijiri and Hattori, 2015; Y. Wang & Feng, 2015),  (3) The type-based method by (Ge and 

Feng, 2021), (4) Statistical Outlier removal (SOR) by (Balta et al., 2018; Pirotti et al., 2018; 

Rousseeuw & Hubert, 2018; Rousseeuw & Leroy, 1987; Yin, Wan and Liu, 2013; Zeybek, 

2021b),  (5) K-d tree-based by (Luo and Liao, 2010; Shen et al., 2011).  

 

1) Density-Based Methods 

Breunig et al. (2000) introduced the density-based Outlier detection algorithm based on 

knowledge discovery in database (KDD) applications. Sotoodeh (2006) proposed the outliers 

detection method based on the Breunig KDD algorithm. First, the algorithm calculates the local 

outlier factor for neighbourhood points within the defined distance. Then, the k-distance of a 

point, the k-distance neighbourhood of a point, the reachability distance between two points 

and the local reachability density of a point are calculated. The local outlier factor is calculated 

as the local reachability density of a point is inverse of the average reachability distance based 

on the nearest neighbour. The outlier factor of the point decides if the point is an outlier or not. 

Finally, the clusters of outliers are detected based on nearest neighbours. The advantage of the 

algorithm is that it uses the local behaviour of points that work for different densities. The 

disadvantage of the algorithm is that it detects the part of outliers, not all the outliers, due to 

point density similarities.  

The method by Li and Wei (2021) presented outlier removal from UAV point clouds. 

DBSCAN (density-based spatial clustering of applications with noise) is used to denoise the 

pylons and enhance the DBSCAN algorithm to denoise electricity transmission lines. The 

method first roughly classifies pylons and powerlines from vegetation and ground. Then, the 

pylons are extracted by projecting the point cloud on the XOY horizontal plane, followed by 

k-d tree implementation to search and group points. The search radius for the k-d tree is 

dependent on the size of pylons in different scenarios. The extraction of powerlines is 

accomplished based on height criteria. Next, the denoising algorithms are implemented. A k-d 

tree accelerated DBSCAN algorithm is used to cluster and denoise pylon points, followed by 

a statistical outlier removal (SOR) filtering method used to denoise the ground points. Principal 

Component Analysis (PCA) is then used to denoise powerlines. Separating powerline points 



 

82 | P a g e  

 

from noisy points becomes difficult because of the lean structure of powerlines. Therefore, 

separating and denoising are achieved by finding the principal axis between two pylons. The 

accuracy of the proposed method is 98%. However, the method lacks to provide the details of 

point-based rough classification. Also, the method is tested on a single point cloud dataset; 

hence, there is no adequate proof that the method will work on different point clouds. 

Zhang, Xiang and Zhang (2017) proposed a density-based approach to remove large-scale 

noise from point clouds. The method uses DBSCAN and is divided into three approaches 1) 

local consistency factor, 2) parameter estimation and 3) distance measure. The method starts 

with calculating the local consistency factor (LCF) to indicate the local density similarity of 

points. The dense points are closer to each other than sparse points; the LCF is distance-based 

on the mutual reachability distance of point sets with variable densities. Next is parameter 

estimation, which is assessed using reliable points from an inlier and trust points are found 

using these estimations. Next, a colour-based distance measured approach is implemented to 

classify inliers and outliers. The spatial and colour distances are combined to measure the 

difference between the two points. Then, the Gaussian kernel and spatial distance by LCF are 

compared to the group to reject the points. The final step is the density-based clustering method. 

The clusters are selected as inliers if they satisfy the density consistency. The advantage of this 

approach is that it automatically estimates the parameters to reduce user interactions, and 

screening reduces complexity. The disadvantage of the approach is that it is based on the 

assumption that objects will have the same point density. The point distance calculated between 

any two points has to be continuously picked at different points, which will take a lot of time, 

making the method slow and time-consuming.              

Ning et al. (2018) presented a method to remove outliers based on geometrical characteristics. 

The two geometrical characteristics are local density and deviation from the local fitting plane. 

The outliers are divided into three types: sparse, isolated and non-isolated. Firstly, the local 

density of points is analysed by calculating the local covariance matrix of each point in the k-

nearest neighbourhood. Then, the probability of a point belonging to an outlier is calculated. 

The local density only works on isolated and sparse outliers. Second, for non-isolated outliers, 

the local plane fitting method is applied as they are closer to objects. Finally, a local plane is 

fitted on the target outlier points by applying PCA. The fitted plane depends on the k-nearest 

neighbour value; if the value is bigger, it deforms the model, and if it is small, it does not fit 

the model. The limitation of the method is that it does not work on high-density data. Therefore, 
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the method gives good results for sparse and isolated outliers but not non-isolated outliers. 

Moreover, all the points in the model are analysed for the k-nearest neighbour, which costs 

more computation time. Also, the method does not present the test results on large point cloud 

data but is tested on sampled objects.  

 

2) Surface Fitting Methods 

Jia et al. (2018) proposed a method to filter the point cloud based on the surface variation. The 

method first estimates the normal vector using the weighted principal component analysis. 

Then, the weight of points in the neighbourhood is allocated based on the distance between 

points and the neighbourhood’s mean. The weighted analysis helps determine a point’s position 

in the neighbourhood and the distribution of outliers. Then, the surface variation factor of 

points is derived. Second, the point cloud model is divided into flat and mutant regions by 

comparing these derived surface variation factors of sample points with the average surface 

variant factor of the sampled k-nearest neighbouring points. The planar surfaces with small 

surface variations are flat regions, and large surface variations and more noise are mutant 

regions. Finally, an improved median filtering algorithm is applied to flat regions, and an 

improved bilateral filtering algorithm is applied to mutant regions to denoise. In the median 

filtering algorithm, all points in the neighbourhood are projected to the normal vector, and 

projected values are calculated and sorted. The position of a point is derived from the median 

point. In a bilateral algorithm, the sampling point is moved along the normal vector. The angle 

change between the neighbourhood point and sample point considers whether outliers influence 

the surface or not. The advantage of the method is that it considers two different types of 

surfaces for outlier removal. The disadvantage of the method is that it was tested on the sampled 

point cloud. Also, the method lacks 1) real point cloud data testing with different shape and 

size features and 2) no estimation of the time consumption for the applied method.  

Nurunnabi, West and Belton (2015a) proposed a method for outlier detection and surface 

normal-curvature estimation. The outliers are detected locally in their neighbourhood and 

removed for more accurate local saliency features. First, PCA is implemented to derive the 

local region by searching its local neighbourhood. Then, to search neighbourhood, k-Nearest 

Neighbourhood is applied to determine the k points with the least distance. Next, the maximum 
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consistency set is extracted by implementing the plane and calculating the orthogonal distance 

of all points to the plane. Next, the z-score, median, and absolute deviation produce a robust z-

score. In addition, another algorithm, Robust Mahalanobis Distance (RMD), is obtained by 

mean and covariance matrix. Finally, the two methods are used for outlier detection and result 

in points marked as inliers and outliers. The advantage of the method is that it is used for both 

outlier detection and saliency feature extraction by fitting a plane. However, the disadvantage 

is that the method lacks the ability to define the types of outliers detected.  

Another method by Wang and Feng (2015) used surface curvatures for outlier detection using 

majority voting. The outliers are divided into sparse, isolated or non-isolated. The method is 

focused on non-isolated outliers that are more challenging to detect. The voting scheme is used 

to differentiate between non-isolated surfaces and scanned surfaces. A surface is fitted on 

points with small variations stated as regular points. The regular points are identified by 

implementing PCA in each point’s k-nearest neighbourhood to record the surface variation. A 

minimal ellipsoid and fitted plane smoothness determine the local surface variation. The 

neighbourhood point’s curvature and noise information determine whether it is a sharp feature, 

smooth region, high noise level or high curvature. Next, a histogram is generated based on 

point population and surface variation. The histogram is used to classify regular and irregular 

points by Bi-means clustering.  

The method results in regular points with low variation and irregular points as outlier 

connection regions. These irregular points are analysed by a majority voting scheme to 

categorise each point as a good point or an outlier. For each irregular point, only neighbouring 

regular points are used as voters. Each voter evaluates if the irregular point fits into the local 

geometry. The voting average is considered, which results in isolated and sparse outliers. 

Finally, these outliers are removed using a clustering algorithm and boundary criteria to keep 

the good points. The advantage of the method is that 1) it can differentiate between non-isolated 

outliers and other types of outliers, and 2) it uses boundary criteria instead of cluster size. The 

disadvantage of the method is that using the boundary criteria could cut some good points. 

Also, the method compares each point’s neighbourhood twice, first to record the variation in 

the surface and second to each point’s neighbourhood during the voting scheme to check 

whether the point is an outlier or a good point. Hence, the method is not time efficient, and the 

test data are also limited. 
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Shao, Ijiri and Hattori (2015) used ellipse fitting for outlier removal. A point set is fitted with 

an ellipse to minimise the sum of inlier points to the ellipse curve projection distance. Firstly, 

the method starts with algebraic ellipse fitting based on Taubin’s method. Secondly, the 

Maximum-Likelihood-based (ML) method is used to refine the noise measurements. Thirdly, 

edge points are collected around the estimated centre point. Fourthly, three stages of the method 

are implemented. 

1) Clustering the data points based on proximity to derive the inliers. 

2) Searching the subsets to minimise the algebraic fitting distance. 

3) Refining the algebraic solution by geometric fitting. 

The clustering is accomplished based on the Euclidean distance from its neighbour. Breadth-

first searching is used to reduce the energy function and maximise the number of inliers. 

Finally, all the inlier points are refined based on geometrical parameters. The advantage of the 

method is grouping of inlier points by ellipse fitting. The disadvantage of the method is that it 

is not efficient to process large datasets. Furthermore, the method only works on the grouped 

outliers, not the isolated or closer object’s surface.  

Arvanitis et al. (2018) presented another method to detect outliers in urban environments. The 

detection is achieved by:  

1) Exploiting the spatial consistency of an object’s geometry 

2) The sparsity of outliers in the spatial domain 

Small clusters share the same geometrical information based on the analysis and observation 

in point clouds. Therefore, a spatial coherence matrix is calculated. Then, a cluster consisting 

of k-nearest neighbours for each point is created. Robust PCA (RPCA) is applied, resulting in 

low-rank and sparse component matrices. The low-rank matrix contains coordinates of scanned 

points, and the sparse matrix contains offsets of outliers and low-rank positions. Next, an 

Augmented Lagrange Multiplier (ALM) scheme is applied to optimise the convex matrix and 

optimise the iterations of the variables using an alternative direction. Next, various operators 

are calculated, such as 1) the shrinkage operator for element-wise application and 2) the 

singular value thresholding operator for enhancing runtime. Finally, the outliers are identified 

using a sparse matrix and are removed based on the selected threshold. The advantage of the 

method is that it can remove both large-scale and small-scale outliers. The disadvantage of the 
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method is that it uses a k-nearest neighbour search, which means that the computation time will 

be significant for huge point clouds as each point is clustered based on its nearest neighbour.  

 

3) Type-Based 

Ge and Feng (2021) proposed a type-based outlier removal framework (TBORF) method. The 

method is divided into two stages 1) Determine the input point cloud type with three metrics, 

and 2) Deal with outliers for each type. In the first stage, the three metrics are used to divide 

the input point clouds based on characteristics. The three metrics are point cloud thickness, 

uniformity and ambiguity. In addition, three metrics are independent of translation, rotation 

and scale.  

1) The geometric shape determines the thickness. 

2) The point distribution determines the uniformity. 

3) The discrimination index between outliers and regular points determines the 

ambiguity. 

The geometric shape to get the thickness is evaluated by support points. The support points are 

defined as the points that obey the planar distribution. The point distribution to get the 

uniformity of point clouds is achieved by calculating the distance between objects and the 

scanner. Fuzzy points determine the ambiguity of point clouds. In the second stage, according 

to quantitative results, the point cloud is classified into type 1, type 2, type 3 and type 4. 

Common characteristics of each type of point cloud are evaluated. Finally, outlier removal 

methods are implemented based on k-dist, local neighbour and Tukey’s fences by 1) the single-

criteria method and 2) some concepts in the type-based combined method. The single criteria 

methods to remove the outliers are:  

a) outlier detection via local neighbours’ gradient distance based on gradient distance 

which is the distance between a 3D point and its neighbours,  

b) outlier detection via local neighbours’ farthest distance which is the largest distance 

between outlier and regular points, and 

c) outlier detection via central limit theory, which computes the average gradient 

distance. 
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The advantage of the method is that the outliers are removed based on point cloud analysis, 

their distribution, the geometric shape of objects and distances of points to their neighbourhood 

and scanning system. The disadvantage is that the method can not automatically remove 

outliers depending on geometric shapes. Furthermore, the method is only focused on isolated 

outlier points.  

 

4) Statistical Outlier Removal 

The SOR methods remove outliers based on their distance in the point cloud. SOR also includes 

distance-based methods. Rousseeuw and Leroy (1987) first introduced the statistical outlier 

removal methods (Rousseeuw and Hubert, 2018). 

Zeybek (2021b) proposed a method that detects outliers based on the patterns of points. The 

method focuses on isolated outliers and isolated and clustered outliers. Firstly, statistical outlier 

removal filtering is implemented. Then, each point is analysed based on the distance from its 

neighbouring points to determine the distribution of points. Next, the points are clustered based 

on the Euclidean distance for isolated and clustered outliers. Then, Euclidean clustering, 

followed by the distance tolerance value, is applied. The SOR filtering is used with eigenvalue 

computation to identify the relationship between neighbouring points. Eigenvalues determine 

the shape characteristics. Secondly, the machine learning system reclassifies the filtered 

outliers. Finally, both a Random Forest and Support Vector Machine are used to classify the 

points as inliers and outliers. The advantage of the method is that it uses the geometrical shapes 

of the objects to classify them as inliers and outliers. The disadvantage of the method is that it 

cannot be used for random outliers close to objects as the method is not surface-based.   

Balta et al. (2018) introduced a method called Fast Cluster Statistical Outlier Removal 

(FCSOR), an extension of the statistical outlier removal method that uses voxels to subsample 

the data. The method is divided into two stages: data handling and filtering.  

1) Data handling - Voxels are used to downsample the point density. The sampling helps 

as density varies with range measurement. The point cloud is divided into 3D grids 

using the same size or the same number of voxels in each direction. Next, the centroid 

of each voxel is calculated and output.  
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2) Fast cluster statistical outlier removal – The 3D space is divided into clusters. Each 

point in the cluster calculates the euclidean distance to its k-nearest neighbour. Then, 

the points are added to the clusters based on the calculated distance. Next, the clusters 

are filtered by calculating the mean of clusters; if the mean is higher than average, that 

cluster is rejected.  

The method claims that it is faster than existing outlier removal methods; however, it 

implements the Euclidean distance that has to be calculated for each point to decide which 

cluster it belongs to. This process is very time-consuming; as the data set gets big, it will take 

longer to process as the method checks each point.   

Yin, Wan and Liu (2013) proposed another method of removing outliers by statistical analysis. 

The first step is pre-processing the point cloud by determining each point’s k-neighbours. Then, 

the Euclidean distance is estimated to determine the approximation of points. The second step 

is statistical analysis 1) Mean distance is calculated for each point to its neighbourhood points 

2) Estimating distribution based on mean distance. The third step is filtering. Finally, the points 

with a mean distance similar to their neighbours remained. The outliers are deleted based on 

the mean distance filtered by distance expectation and standard deviation. The advantage of 

the method is the implementation of squares calculus to save the implementation time as each 

point neighbour search is done. The disadvantage of the method is that not many data sets have 

been tested. Furthermore, the filtering is based on standard deviation, which is different for 

point cloud data sets. The method could not be implemented for large point cloud data because 

of the long computation time. 

Another method by Pirotti et al. (2018) presented outlier removal using two methods Statistical 

Outlier Removal (SOR) and Local Outlier Factor (LOF). First, four predictors are calculated 

two for each method – SOR and LOF of each point, and an absolute difference in their median 

SOR and LOF values. Median values reflect the correct distribution of points. Points with SOR 

and LOF values further away from the median are considered not outliers. SOR is a distance-

based method to access each point for an outlier. Then, the local density is calculated using the 

distance between a point and its nearest neighbour. Next, LOF is a method that assigns a score 

to each point based on its local density deviation among the neighbouring points. So, the outlier 

points have a lower density than the inlier points. Next, the number of neighbours is chosen 

based on the point cloud data set, which can vary. K-distance is calculated as every distance 
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between a point and the k-nearest point. Then, R-dist is the reachability distance of each point, 

and its k-neighbour is calculated. Next, the local reachability density (LRD) is calculated, 

which is the inverse of the average reachability distances of each point. Finally, the LOF value 

is calculated using LRD values to classify points as outliers. The method’s advantage is that 

the SOR and LOF combination is implemented to analyse the points based on their density and 

distribution. The disadvantage is that the method used to calculate the distance of each point 

and its nearest neighbour is correlated to the time consumption. If the point cloud data set is 

large, time consumption will be greater. Further, selecting the nearest neighbour number 

depends on the user’s knowledge and experience.  

 

5) K-d tree based  

Luo and Liao (2010) presented an algorithm to detect outliers using slicing, local distance-

based outlier factor and a k-d tree. First, the algorithm slices the point cloud based on the 

reference Z-axis and a group of planes perpendicular to the selected Z-axis. Then, the points 

whose distance to the slice plane is less than half of the slice interval are grouped. The k-d tree 

is built for those projected points to accelerate the neighbour query efficiency. Next, the local 

distance-based outlier factor (LDOF) is used for the outlier detection criteria. Then, the local 

distance of a point to its k-nearest neighbour is calculated and sorted. Next, the points with 

higher LDOF values are removed. Finally, all the slices are processed until a clean point cloud 

set is left. The advantage of the method is that the slicing helps to analyse the points. The 

disadvantage of the method is that it selects slicing intervals. Moreover, the algorithm lacks the 

evaluation of different point cloud data sets. Also, the algorithm requires iterations to clear the 

point cloud; these iterations are not specified clearly, such as stopping criteria are not defined, 

and the iterations are not tested for efficiency, i.e., time consumption.   

Shen et al. (2011) presented a k-d tree method to remove outliers. The k-d tree is a binary tree 

where each node is a k-dimension. Based on visual observation and analysis, the distance 

between the outlier and k-nearest points is larger than the distance between normal points and 

its k-nearest neighbour. Therefore, for outliers, k values are small. The outliers are defined 

using the following criteria: 
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1) According to the elevation histogram and threshold elimination, low and high 

outlier points, 

2) a k-d tree is constructed of the remaining points, 

3) The average distance between a point and its k-nearest neighbour is computed, 

4) The threshold is used to separate the normal points and outliers.  

The threshold is based on two values: the average distance histogram and the distance threshold 

to its k-nearest neighbour. The advantage of the method is using a k-d tree and elevation 

histograms to eliminate the outlier points. The disadvantage is that each point is checked for 

low or high outliers. Moreover, the k value assigned for the k-nearest neighbour is not defined 

and is implemented by trial and error.  

 

4.2.2 Summary 

This section presents the summary of the existing methods presented and reviewed in Section 

4.2.1. The method’s authors, their approach, the size of the data set used to present the method 

and other information like the type of scanner used to collect the data or the type of models are 

shown.  

 

Table 4.1 Summary of existing methods 

Authors Outlier Removal Methods 

Approach 

Data Set Size Other 

Zhang, Xiang and Zhang, 

2017 

Density-based and  

Clustering 

Artefact 125k pts, Plant 

379k pts 

Synthetic and real 

data models 

Li and Wei, 2021 Statistical based,  

Density-based, 

k-d tree-based 

Real-world data set – 

63 M pts 

 UAV 



 

91 | P a g e  

 

Sotoodeh, 2006 Density-based ALS – 11 M pts ALS and TLS 

Ning et al., 2018 Density-based and 

Plane fitting 

15k pts and large 58 M 

pts 

3D models 

Jia et al., 2018 Surface estimation Small data set Stanford Bunny  

Nurunnabi, West and Belton, 

2015a 

Distance-based and  

Surface plane fitting 

13k pts MLS 

Wang and Feng, 2015 Plane fitting and  

Clustering  

Gear – 280k pts, Room 

– 968k pts 

Digital camera 

LDI 

Shao, Ijiri and Hattori, 2015 Ellipse fitting Small data set Synthetic 

Arvanitis et al., 2018 Plane Fitting Urban data set LiDar 

Pirotti et al., 2018 Statistical Outlier Removal 

(SOR) and  

Local outlier factor 

99 M pts SFM and FCD 

Balta et al., 2018 Statistical Outlier Removal 

(SOR),  

Voxel-based 

8-9 M pts UGV 

Yin, Wan and Liu, 2013 Statistical Analysis 45 M pts - 

Zeybek, 2021b Statistical Outlier Removal 

(SOR) 

41 M pts, 26 M pts, and 

10 M pts 

ALS 

Ge and Feng, 2021 Type-based 110-140k pts Shapes  

Luo and Liao, 2010 k-d tree based 33 M pts Leica (TLS) 

Shen et al., 2011 k-d tree based Rural & Urban LiDar 



 

92 | P a g e  

 

Abbreviations used in Table 4.1 are as follows: 

• Pts- Points, TLS- Terrestrial Laser Scanner,  

• MLS- Mobile Laser Scanner,  

• ALS - Aerial Laser Scanner,  

• LiDar – Light Detection and Ranging (Aerial),  

• UGV - Unmanned Ground Vehicle (Terrestrial scanner),  

• UAV- Unmanned Aerial Vehicle (LiDar), 

• LDI – Laser Direct Imaging (Surveyor laser scanning system),  

• SFM- Structure From Motion (Photogrammetric),  

• FCD – Floating Car Data (Captures Road Networks) 

 

4.2.3 Analysis of the Problems 

In Section 4.2, the existing methods are analysed and discussed. Table 4.1 summarises the 

existing methods, approaches and point cloud data sets used for testing. The common problems 

of density-based, surface fitting, type-based, statistical-based and k-d tree-based methods have 

been identified. The methods lack a clear definition of outliers that have been identified and 

removed. In addition, several existing methods use k-nearest neighbour search for each point, 

which is very costly and time-consuming. Even with modern technology and high-specification 

computers, the point-based search within a radius has computation time problems. The larger 

the point cloud, the longer it will take to process each point, which is inefficient. 

Furthermore, the test data sets used by existing methods are not real-world point cloud data. 

The outliers of the real-world data set have different problems compared to synthetic data sets.  

To overcome the abovementioned problems, a method is proposed that is completely adaptable 

and flexible enough to detect all types of outliers. Moreover, the proposed method is adaptable 

to individual needs of removing outliers. For example, the outliers and noise can be buildings 

and vehicles for road surveyors, whereas, for BIM designers, the outliers can be passing people 

and trees.  
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4.3 A Method to Remove Noise and Filter Outliers 

4.3.1 Overview 

In Section 4.3, the proposed method is presented and discussed. The proposed method has been 

presented in two stages (1) Defining the outlier types based on three criteria, and (2) Based on 

the outlier type and density, three applications are implemented. The unwanted points in the 

data set outliers/noise are defined as follows in this thesis 

1) Outliers are global, isolated and scatter points in 3D with low point density, as shown 

in 4.3 (a). These sparse points could be close to objects or in space. 

2) Noises are local, non-isolated, present in point clusters in 3D and are not a meaningful 

feature for the 3D modelling. Noise is also dependent on the type of user using the point 

clouds. For example, noise can be building and vehicles for a tree surveyor, whereas a 

tree can be noise for an architect or civil engineer.  

This chapter presents a method for the outlier filtration and noise removal in two stages: (1) 

Stage 1 identifies the type of outlier or noise demonstrated in Section 4.3.2, and (2) Stage 2 

presents the applications based on the identified type used for noise removal and outlier 

filtration demonstrated in Section 4.3.3.  

 

 

(a) 
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(b) 

Figure 4.3 Examples of  (a) outliers and (b) noise are shown in red boxes and circles  

 

4.3.2 Tools 

This section presents the tools used in this thesis. The proposed algorithms and methods are 

academically discussed and presented; however, making user-friendly and easy-to-use systems 

for commercial applications is essential. The tools in this section are the bridge between the 

proposed algorithms and the commercial software. These tools are used to handle large point 

cloud data by sampling the points and providing faster calculation results on the points. For 

this chapter, three tools are presented for point cloud filtration.  

 

1) Search Sphere 

The search sphere is one of the tools invented for the first time in this thesis. The search sphere 

is versatile and has many applications. A search sphere is a method of sampling the point cloud 
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using a real-time 3D sphere. It is constantly searching for the points inside the sphere. The 

search sphere is rendered at the movement of the cursor in 3D space. The main reason for 

choosing the sphere for searching is because the sphere is the quickest to calculate inclusion 

compared to other geometric shapes such as cylinders, cubes and triangles. The principle of 

inclusion in 3D is checking that a point 𝑝(𝑥, 𝑦, 𝑧) is located inside or outside the boundaries of 

a geometrical shape, as shown in Fig 4.4.  

 

 

Figure 4.4 Representation of points inside the search sphere 

 

The proposed algorithm is part of commercial software and is a user-oriented solution.  Hence, 

the other reason for choosing a sphere for searching and sampling, unlike other geometrical 

solid shapes in three dimensions with length, width and height, a sphere can be defined just by 

a diameter. Therefore, it is suitable and easy to manage if the user wants to change the size, so 

they have to adjust one value (diameter) instead of three values. Moreover, as the point clouds 

are real-world data acquisitions, each point cloud is different from the others; thus, it is crucial 

to provide the flexibility to the user to change the size when required. The search sphere’s size 

is user changeable. The recommended size depends on the user’s applications and the size of 

the feature to be extracted. All the points inside the search sphere are highlighted as the chosen 

points are apparent. 
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2) 3D Box  

A box has the properties of six faces, eight vertices and twelve edges in 3D. The 3D box is 

used in this chapter to remove noise points shown in Fig 4.5. The reason that a 3D box is fit 

for the task is 1) it can cover a larger area as compared to the search sphere, 2) The six phases 

of the box give the user flexibility to manipulate the phases to cover the points of a particular 

object or area in the point cloud. An example of the 3D box is shown in Fig 4.5 and is presented 

in detail in Section 4.3.4. 

 

Figure 4.5 A 3D box (green) with six faces and a point cloud inside it 

 

3) OctBox  

The third tool used in this chapter is OctBox. This chapter presents the use of OctBox for the 

filtration of points for the first time. The literature suggests that this innovation is a new 

contribution and has never been used. OctBox is the 3D box constructed from the tree data 

structure of Octrees. The Octree structure is used to spatially divide the point cloud’s points for 

storing points and hierarchical information. The points stored in the trees are presented in a box 

which is then used to filter the points, as shown in Fig 4.6.  
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Figure 4.6 Highlighted box in Octree structure 

 

4.3.3 Stage 1: Outliers and Noise Types in Point Cloud 

Finding and removing outliers and noise in the point cloud could be challenging due to their 

nature of being dispersed and non-correlated. 

 

Figure 4.7 Outlier/Noise classification according to their characteristics 
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Therefore, the proposed method categorises the outliers and noise to understand well in order 

to use the applications presented in Section 4.3.3 accordingly. However, as discussed in Section 

4.2.3, the existing methods lack clear criteria for defining the outlier and noise within the same 

point data sets, leading to problems in their methods. Outliers are defined by three 

characteristics in this thesis to address these issues. The categories allow efficient organising 

of the outliers and noise to understand further to deal with them. These categories are:  

a) Points distribution 

b) Points proximity to other objects 

c) Points position 

 

4.3.3.1 Point’s Distribution  

The first categorisation is Distribution. The laser scanners collecting point cloud data sets use 

laser beams. Terrestrial laser scanners capture objects as their laser beams fall on the object’s 

surface and return the points. As a result, objects closer to the scanner have full coverage, i.e., 

high-density points, and the farthest object surface has less coverage, i.e., low-density points. 

Similarly, mobile and handheld laser scanners capture variable density points due to changes 

in the movement and geometry of data acquisition sensors or vehicles (Nurunnabi, West and 

Belton, 2015a). Therefore, point cloud points have variable density and distribution of points.  

The density and distribution of points are denoted by a characteristic called ‘scatter’ or 

‘cluster’. If the points are scattered, i.e., low-density points, they are classified as outliers. 

Furthermore, if the points are in the cluster, i.e., high density, they are classified as noise. An 

example of low and high-density points is shown in Fig 4.8, where the objects away from the 

scanner have low-density points, and objects close have high-density points. 

 

4.3.3.2 Point’s Proximity 

The next point categorisation is Proximity. Laser scanners often scan and capture a lot of data 

around the important features in geoinformation systems. These features are buildings, road 

features, trees, kerbs and other meaningful objects in the point cloud data. Therefore, it is 

important to differentiate the points that are closer to these features and objects of interest. The 
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proximity of the points is denoted by a characteristic called ‘isolated’ or ‘non-isolated’. If the 

points are closer to the objects of interest, they are classified as non-isolated points. Whereas 

if the points are far away from these objects of interest, they are classified as isolated points. A 

good example of point proximity is shown in Fig 4.8. All isolated points are considered outliers, 

and non-isolated points as noise.  

 

 

(a) 

 

(b) 

Figure 4.8 Examples of (a) low-density and isolated points and (b) non-isolated high-density points 
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4.3.3.3 Point’s Position 

The final category for point classification is Position. The points have information on whether 

the distribution is high or low and isolated or non-isolated. The other important information 

about a point is the position of points related to other points in the point cloud. It is essential to 

determine the position to decide if the point is an outlier or a regular point. Therefore, the 

position of points is denoted by low, high and median.  

A median is calculated to find all the points’ centre of gravity. If the point is closer to the 

median, it also means that they will be non-isolated. Therefore, these points are considered 

noise. Whereas if the points are away from the median, low or high points are considered 

outliers. An example is shown in Fig 4.9. 

 

 

Figure 4.9 Points are categorised based on their position in the point cloud 
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4.3.4 Stage 2: Applications to Denoise and Remove Outliers 

After identifying the outliers and noise, the next stage is removing them. The outliers and noise 

removal will help fast processing and more accurate results for meaningful feature detection. 

The human eye and observation skills are far beyond compared to any algorithms. Therefore, 

for removing the noise and filtering the outliers, three methods are proposed that remove them 

in real-time. The user manually handles the application to navigate the outliers and noise in 3D 

point clouds. 

For filtering these outliers, Outlier Filtration using Octree Boxes (OF-OB) is used as it can 

capture the isolated and scattered points with their high or low position with respect to the 

whole point cloud. On the other hand, Noise is the group of points that are non-isolated, 

clustered and present closer to the median of the point cloud. Therefore, Noise Removal using 

a Sphere (NR-S) and Noise Removal using a 3D Box (NR-B) are used to remove the noise. 

NR-S and NR-B are user-controlled and can be efficiently used for non-isolated noise removal. 

The classification of the outliers and noise is shown in Fig 4.10 and the respective methods to 

remove them. 

 

 

Figure 4.10 Overview of outliers/noise types and methods to remove them 
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4.3.4.1 Noise Removal using Sphere (NR-S) 

The sphere in the 3D point cloud is used in real-time to navigate and delete the points in the 

point cloud. The sphere can be set manually using the mouse cursor to any position. The points 

in the sphere are highlighted to display the points selected, as shown in Fig 4.11 (a). Therefore, 

removing the points that are closer to other objects is easier to grab using NR-S, an example 

shown in Fig 4.11 (b) and (c). 

 

 

(a) 

 

(b) 



 

103 | P a g e  

 

 

(c) 

Figure 4.11 (a) A sphere representation in a point cloud (b) Example of lamp post captured by sphere to delete 

and (c) Example of a tree captured by sphere to delete 

 

4.3.4.2 Noise Removal using 3D Box (NR-B) 

The 3D Box is used to filter out the non-isolated clustered points. The box has six phases and 

can be manually set to the position of the points to be deleted. An example is shown in Fig 4.12 

of a non-isolated car, a noise and non-feature that is not required to process the point cloud.  

Conversely, the ground underneath the car is an important feature and can be used during the 

extraction of the terrain. Therefore, the NR-B is used to delete the cars/vehicles and save the 

ground points underneath them.  
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Figure 4.12 Noise removal by using a 3D box 

 

 

4.3.4.3 Outlier Filtration using Octree Boxes (OF-OB) 

The next application is OF-OB, which is used on outliers that are isolated, scattered and 

positioned high or low with respect to the whole point cloud. For outlier filtration, an octree is 

applied. An Octree is a tree/hierarchical structure. The hierarchical tree results in a recursive 

decomposition of a cubic region into eight equally sized octants, which are cubic regions 

(Boulic and Renault, 1991). These cubic regions are denoted as nodes. Each node has eight 

children except the end nodes, and the root of the octree refers to the entire volume. Octrees 

are generally used to partition a three-dimensional space by recursively dividing the nodes into 

eight child nodes and each of those eight nodes into eight other child nodes (Eder J, 1992). 

An example is shown in Fig 4.13, where nodes are divided into child nodes until an empty node 

or maximum resolution node is denoted as a leaf node. The condition where the nodes do not 

further divide are 1) empty nodes shown by a cross and 2) full nodes shown by a circle on the 

nodes. Octrees are the 3D analogue of quadtrees (space is recursively subdivided into four sub-

regions). The most common approach to managing octrees is pointer-based. The pointer-based 

octrees save the node’s position by a pointer for each child node. Another approach is the linear 

octree which traverses and saves all the tree’s nodes. The problem is remembering the pointer 

to access the right node, which could be tricky. Therefore, a naming convention is the better 

choice to be called as ZYX-convention. The binary number 1-8 describes the nodes (Eder J, 

1992). 
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Figure 4.13 Octree structure with the eight octants at each layer 

 

Many research studies included Octrees for various reasons in different fields. Examples 

include: 

• representing spatial relationships of geometrical objects,  

 

• 3D graphics for texturing objects (Lefebvre, Hornus and Neyret Fabrice, 2002),  

 

• isosurface generation by passing information between octree neighbours (Wilhelms 

Jane and Gelder Allen, 2000),  

 

• spatial indexing for accelerating isosurface extraction (Shi and Jaja, 2006; Schön et al., 

2013), 

 

• compressing 3D data to generate volumetric 3D environment models keeping them 

compact (Hornung et al., 2013),  

 

• creating 3D mesh for 3D data generating polyhedral Delaunay meshes (Contreras and 

Hitschfeld-Kahler, 2014), 

 

• the generation of Hexahedral element meshes (Schneiders, Schindler and Weiler, 1996; 

Zhang, Liang and Xu, 2013; Turner, Moxey and Peiró, 2015), 

 

• nearest neighbour search methods for efficient searching within the radius 

(Sankaranarayanan, Samet and Varshney, 2007; Behley, Steinhage and Cremers, 2015), 

 



 

106 | P a g e  

 

• region-growing methods and segmentation in point clouds (Vo et al., 2015),  

 

• octree data structure where each node is a voxel and is used for ray tracing (Laine and 

Karras, 2010), 

 

• collision detection for virtual surgery systems (Hu et al., 2020), 

 

• downsampling the point cloud for plane-fitting (El-Sayed et al., 2018). 

 

In this thesis, the outliers are filtered using the octree nodes. An example of outlier filtration is 

shown in Fig 4.14. The different coloured boxes represent different layers of the octree nodes. 

The bigger boxes are initial layers that are not further divided as the number of points in the 

boxes is less than the minimum threshold for octree octant nodes. The smaller boxes were 

further divided into layers of octant nodes.  

The nodes’ colour on each layer is based on rainbow colours, i.e., red, orange, yellow, green, 

blue and purple for layer 𝑙 = {𝑙0, 𝑙1, 𝑙2, … 𝑙𝑛  }. The user may control the number of outliers to 

delete them. For example, the scattered points present at low and high positions can be deleted 

using the approximate number to remove them.  

 

 

Figure 4.14 Octree boxes visually presented in a point cloud 
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4.4 Evaluation and Applications of Method on Commercial 

Software 

This section evaluates and demonstrates the usage and functionality of the outlier filtration and 

noise removal methods. The methods are evaluated in terms of speed, accuracy and flexibility 

to be efficient on data sets collected by aerial, terrestrial and mobile laser scanners. The 

examples of datasets used are presented in Section 4.4.1. This section tests the three proposed 

methods using commercial software called ‘LSS-3D Vision’.  LSS is the commercial partner 

of this thesis, and all the proposed algorithms are implemented in it. The parameter and settings 

used in the software are presented in Section 4.4.2. Section 4.4.3 presents the comparative 

analysis of the proposed methods with existing methods. Section 4.4.4 discusses the results of 

the proposed methods.  

 

 

                                         (a)                                                                                      (b) 

Figure 4.15 Datasets (a) Dorchester and (b) University of Gloucestershire 

 

4.4.1 Datasets 

The datasets used for the evaluation and validation are generated using terrestrial laser scanners 

or LiDar scanners. The FARO terrestrial laser scanner captures the point clouds; the model is 

FOCUS 350. The focus scanner has a range of up to 350 metres for long-range measurements, 

and the measurement speed is up to 976,000 points/second. This model has an integrated GPS 
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and GLONASS receiver, allowing for the absolute positioning of the scan location (Focus - 

FARO® Knowledge Base, 2016). The resolution of the scanner can also be changed. 

 Leica RTC360 3D is a LiDar laser scanner that captures point cloud data for up to 130 metres 

with 2 million points/second measurement speed. This model has multi-sensors GPS, compass, 

height sensor and dual-axis compensator (Leica RTC360 3D Laser Scanner | Leica 

Geosystems, 2018). 

Data sets used for evaluation are (a) Dorchester data set and (b) University data set. The FARO 

laser scanner captured the University data set, and the Leica laser scanner captured the 

Dorchester data set. The scanned datasets consist of points in 3D (x, y, z) along with each 

point’s R, G, and B and an intensity value.  

The point cloud data set description is as follows:  

i. Dorchester data set – is a scanned urban site captured by Leica. It has 161 

million points. 

 

ii. University data set – is scanned University of Gloucestershire’s building in the 

park campus and has 580.94 million points. 

 

4.4.2 Parameter and Settings 

This section demonstrates the parameter that the user can set to control the performance of the 

proposed filtering methods. All three methods have different default values and settings in the 

commercial environment.  

These settings offer the flexibility of filtering the noise and outliers for the desired results in 

various point cloud data sets. 

1. NR-S – The default setting for the sphere size is set to 1 metre. For most cases, the 1m 

sphere covers the maximum area for removing non-isolated noise and isolated outliers.   
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2. NR-B – For the control of the box, there are two options. The first option provides 

flexibility for the user to manipulate the size of the box by grabbing the box phase, as 

shown in Fig 4.16 (a). All six phases are resizable. For example, if the noise objects are 

on the ground’s surface, such as a vehicle, the box bottom phase can be set just above 

the ground, saving the ground from deletion and getting rid of a vehicle. The second 

option is to set the box baseline points to form a box with a height and width. The height 

and width are always the same creating the selection box a cube by default. However, 

the box is not always a cube as it allows users to select two baseline points, i.e., the box 

can be cuboid as well. The ‘To’ and ‘From’ points can be set using X, Y, and Z 

coordinates to form a box, as shown in Fig 4.16 (b). 

 

 

                                   (a)                                                                               (b) 

Figure 4.16 In the point cloud, a box can be obtained using (a) its six phases or (b) selecting baseline points 

 

3. OF-OB – The parameter for outlier filtration is controlled by searching the total number 

of points in the Octree box. The limitation on point numbers provides the user to either 

pick the outliers with even one point in a box or find isolated point clusters. The points 

that are clustered in the Octree box are listed with the number of points inside for quality 

check before the deletion of points, as shown in Fig 4.17.  
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Figure 4.17 List of point groups and the number of points reported by Octree Box 

 

4.4.3. Comparative Analysis 

Many approaches and methods are available. Some of the issues with the currently existing 

methods are discussed in Section 4.2. A comparison of the proposed method to other methods 

is made in this section. In comparing methods, the common pattern observed is that the existing 

methods do not apply to all kinds of point cloud data. For example, the method by Li and Wei 

(2021) only considered UAV point clouds, Sotoodeh (2006), Zeybek (2021b) and Griffioen 

(2018) considered aerial laser scanner data, Nurunnabi, West and Belton (2015a) only 

considered mobile laser scanned data and Arvanitis et al. (2018) and Shen et al. (2011) 

considered LiDar point cloud data. On the other hand, the proposed method in this thesis can 

be implemented on any point cloud data, regardless of how they are captured, including UAV, 

LiDar, MLS, ALS and TLS. 

The comparative analysis highlights that the existing methods also lack the definition of outlier 

or noise. Without defining them, providing solutions is not very helpful. The definition not 

only explains the context but also helps the user to implement the tools accordingly. This gives 

the user more control and flexibility to use the outlier filtration and noise removal on the range 

of different point cloud data. 
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The testing and evaluation of all three proposed methods (NR-S, NR-B and OF-OB) are 

performed on real clients’ data which are typical of that collected by surveyors and engineers. 

The existing methods use synthetic data for verification, which does not prove whether the 

method would work on large or real-world data.  

The advantage of the proposed method is that the tools used for outlier filtration and noise 

removal are adaptable according to the size of the object. For example, the sphere (NR-S) size 

can be changed to remove objects from moving people to trees, the box (NR-B) size can be 

used to remove from buildings to large areas, and for Octbox (OF-OB), the number of points 

inside the boxes can be a user-defined value to filter those points. 

 

4.4.4. Results Analysis 

The implementation to remove the noise and filter outliers by three proposed methods is tested. 

The methods are reliable for deleting outliers and noise points, isolated and non-isolated, and 

low or high-density points. NR-S method works best for the removal of both isolated and non-

isolated outliers. The isolated noise with low or high point density near the object’s surface that 

results from a reflection can be easily removed by NR-S. Furthermore, NR-S is also very handy 

for removing non-isolated noise. For example, a reflected surface that is very close to the 

ground. The intention is to remove the noise without removing the ground points, as shown in 

Fig 4.18. 

 

 

Figure 4.18 Isolated and non-isolated outliers and noise captured by NR-S to remove 
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Figure 4.19 Examples of non-isolated noise (ghosts) successfully captured by NR-S to remove 

 

The NR-S method is ideal to remove noise that is isolated such as buildings, trees etc. and non-

isolated noise such as ghosts. The ghost is the term used in geoinformation systems for the 

moving or passing-by people that are captured by laser scanners. These ghosts are non-isolated 

noise close to important features like trees or buildings. Therefore, removing ghosts is essential. 

The example of ghosts is shown in Fig 4.19.  

The NR-B method works best for the larger patch of isolated and non-isolated noise and 

outliers. The noise and outliers captured from an urban scanned point cloud are usually large 

compared to the non-urban sites. The reason is that when the data is captured, it does not 

exclude non-stationary objects. This noise and outliers can be the reflection from the window 

or mirrored surface, moving vehicles, ghosts, and weather conditions, which can capture the 

raindrops as noise.  

The NR-B method is perfect for removing large noise and outliers. A step-by-step process of 

removing is demonstrated in Fig 4.20. Fig 4.20 (a) shows a patch of Dorchester data set inside 
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the box that displays the noise caused by moving people and vehicles. The next Fig 4.20 (b) 

shows the selection by the box above the ground that is noise. Finally, Fig 4.20 (c) shows that 

the noise is removed. Fig 4.20 shows that the NR-B isolates the non-isolated noise and removes 

it without deleting the ground points. Another example of such noise is shown in Fig 4.21, 

where a scanner captures the people waiting at the bus stop. In this case, the people/ghosts are 

the noise removed using the NR-B method. 

 

 

Figure 4.20 Noise removal by selection box on the busy street point cloud data  
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Figure 4.21 Noise example on the footpath as people at the bus stop are captured 

 

The OF-OB method works best for isolated outliers, as shown in Fig 4.22. The example shows 

reflected points from the scanner positioned below the point cloud. OF-OB captures these 

scattered, isolated points efficiently. For flexibility, the user can define the number of points 

inside each cluster. The example in Fig 4.22 has the total number of points set to 50, i.e., each 

node in Octree that has points less than equal to 50 is detected and removed.  

 

 

Figure 4.22 Isolated outliers example shown in an orange box 

 

Before removing points, the octree boxes are represented to display nodes detected that have 

up to the equal number of points defined by the user, as shown in Fig 4.23. Once the user is 

happy with the visuals that demonstrate the capturing of the outliers, they are deleted.  
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Figure 4.23 Captured and deleted outliers by OF-OB method 

 

4.5 Chapter Summary 

The comparison and analysis of existing methods to the proposed methods for point cloud 

filtration demonstrate that the proposed methods are capable of deleting all kinds of noise and 

outliers. Also, the proposed methods work on any point cloud without worrying about which 

laser scanner is used to collect it.  

The main aim is to smooth the data by filtering and removing points to preserve the important 

feature details. The three different proposed methods, NR-S, NR-B and OF-OB, work 

efficiently for noise removal and outlier filtration of the point that is either isolated or non-

isolated and has a high or low density. First, the outliers and noise are defined for easier 

classification and removal. Next, the points are classified based on point density, location and 

proximity. This provides the user with the clarity to understand the point’s properties and use 

the appropriate method to remove them. The number of points deleted (using NR-S, NR-B and 

OF-OB) is dependent on the diameter of the sphere and the size of the boxes selected by the 

user. 

There could be various possibilities to extend current methods that could not be implemented 

due to the time restriction to finish the thesis. However, the proposed methods are part of 

commercial software and will grow exponentially. For example, the search sphere can be 

automated to delete more points in one go. In addition, the Octbox to filter points can be 

implemented with PCA to fit the plane inside the boxes and analyse the points inside in a more 

sophisticated manner.   
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Chapter 5 A New PCA-Based Method for 

Edge and Edge Stream Detection 

 

5.1 Introduction 

The detection and modelling of the features from the urban point cloud are of great interest in 

the surveying and engineering industries. The important features in a typical urban point cloud 

data are walls, roofs, marker poles, lamp posts and kerbs, windows, buildings, trees, and 

vehicles. Apart from these features, edges and boundaries of the features are considered the 

basic requirements in urban scenes. For example, a surveyor will be interested in the edges of 

buildings, windows and doors, edges of the top and bottom of the kerb, edges of footpaths and 

many more. Bazazian and Parés (2021 p.1) defined edges as  

“Edges in 3D point clouds are considered as remarkably meaningful features due to 

their capability of representing the topological shape of a set of points.” 

As 3D point clouds have become popular, edge and boundary detection has become an essential 

research topic. Edges and boundaries are important geometrical features in an urban scene, 

including artificial objects (Nie, 2016). Therefore, the prominent edge detection method is 

expected to accurately extract the edges with correct alignment. Moreover, the challenges 

continue as the edge detection methods are not properly evaluated to prove that they work on 

large point cloud data. In addition, limited studies and research are available on 3D edge 

extraction from point clouds as 3D data is more challenging. Most of the research is based on 

2D image edge extraction, such as Robert edge detection, Sobel edge detection, Prewitt edge 

detection, Kirsh edge detection, Robinson edge detection, Marr-Hildreth edge detection, LoG 

edge detection and Canny edge detection (Mahmood, 2017).  

To address the abovementioned problems, a new robust PCA-based 3D method is proposed to 

detect an edge that is then extended and automated to detect boundaries. First, the analysis and 

evaluation of the existing methods to extract the edge in remote sensing, photogrammetry, and 

geoinformation are presented and reviewed in Section 5.2. Then, a new proposed PCA-based 
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method is presented in Section 5.3. Next, the new method’s evaluation in terms of low-cost 

computation, high accuracy, and efficiency is discussed in Section 5.4. The validation and 

application of the new method in a commercial software environment are presented in Section 

5.5. Also, Section 5.5 states the problems like shadows, gaps and missing data using the 

proposed method on different point cloud data. Finally, the findings are concluded in Section 

5.6. 

 

5.2 Evaluation and Analysis of Existing Methods 

5.2.1 Edge Detection  

One of the problems in reverse engineering is that it is extremely difficult, if not impossible, to 

detect sub-regions robustly and automatically in the tessellated model with low computational 

efforts. Galantucci and Percoco (2005) proposed a multilevel automatic algorithm for edge 

detection in polygonised point clouds to overcome the problem. The aim is to obtain a Solid-

to-Layer (STL) model. The algorithm uses the tessellated point cloud to attain the STL model 

by implementing a heuristic problem-solving technique to detect possible edge features in a 

given point cloud. Then, STL is divided into two models with different levels of detail (LOD). 

Points belonging to both models are ordered for recording the relation between points in the 

triangle connection. For each point around the low LOD, all the surrounding points are detected 

for both models, but there is no defined relationship between the original and subdivided 

models. After clustering the points, edge detection is achieved on a low LOD model. The 

contour evolves after finding the edge points at each iteration, and as the points are detected, 

they are aggregated into a growing contour. Finally, Gaussian curvature at the contour point is 

calculated. When the algorithm is finished, there are two sets of results, the first is the edge 

points, and the second is the connection between them (Galantucci and Percoco, 2005). The 

problem with the algorithm is that it assumes that each edge point has a neighbouring point that 

belongs to an edge. Hence the formulated contour cannot always produce accurate results.  

Park and Jun (2002) proposed an artificial neural network to identify the tessellated point cloud 

features after an edge detection phase. The methodology first generates triangle meshes to 

identify boundaries. Then, this boundary meshes are connected in a loop segmented into sub-
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regions. Finally, the sub-regions are merged into a single feature using an artificial neural 

network. The scanned points on feature-based reverse engineering systems reconstruct 

standard mechanical engineering products. Another approach uses the data from a coordinate 

measuring machine (CMM) to slice it in three orthogonal directions. A 2D NURBS spline is 

fitted on each slicing plane to calculate maximum curvature points. The points detected 

represent the object’s edge (Chen and Liu, 1997). However, the results conflict with whether 

they belong to an edge or a boundary as there are no clear definitions of an edge or boundary 

presented. Also, a robust algorithm is required to check if edge points belong to an edge or not. 

Existing research considers statistical and geometrical methods for estimating the typical edges 

to detect the edge’s sharpness. The main challenge is to estimate the normal on the detected 

edge feature points as the points are highly dependent on the neighbourhood employed for edge 

detection. For example, the neighbourhood might be surrounded by points that belong to a 

different edge surface. Hence, giving incorrect points belonging to an edge (Bazazian, Casas 

and Ruiz-Hidalgo, 2015). In (Weber, Hahmann and Hagen, 2010b, 2010a; Weber et al. 2012), 

normal estimation is achieved using Delaunay triangulation, a technique for converting point 

clouds into 3D surfaces by building a network of triangles over existing vertices of the point 

cloud. The challenge of this technique is that it is susceptible to the points located around the 

edges. Additionally, this technique’s computational process is costly and difficult to implement 

in real-world large point cloud data applications. 

Among various methods for extracting an edge’s sharpness, robust statistics are used by 

Fleischman, Cohen-Or and Silva (2005). The method applies a statistical method that segments 

neighbouring points into regions on the same surface. The neighbouring points are computed 

using moving least squares (MLS). As the method tries to fit a model in the data which may 

contain outliers, it uses a forward search method to identify the masked outliers. The masked 

outliers are those points that usually cannot be identified from the statistics of the model, which 

is fitted in the entire model set. These masked outliers can be a single point that affects the least 

squares calculation to unwanted results, therefore are very hard to detect. The forward search 

algorithm starts with an outlier-free small subset, and then to proceed through data, one sample 

is added in each iteration to refine the model. The initial model is computed using the Least 

Median of Squares (LMS) algorithm with a small 𝐾 value where 𝐾 is the randomly selected 

sample points. Forward search can monitor multiple parameters to differentiate influential 

points from outliers. Typically, forward search adds good samples first until all are exhausted 
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when outliers are added. The residual plot is used here to identify outliers. As the search 

proceeds, the good sample sets are added first, followed by the outliers. The residual plot is 

monitored to identify the residual threshold level. As soon as the outliers enter the sample set, 

this is visible in the residual plot, where the residual of the outliers decreases and the residual 

of good samples increases. Thus, as the residual reaches the threshold level, the samples are 

considered outliers after that level. 

Iterative refitting is applied to the data set 𝑆. The next step is to remove the samples that are 

fitted 𝑆 = 𝑆/𝑆₁. This process is repeated until 𝑆 is empty. The iterative refitting algorithm 

finally captures and identifies edges in the noisy data. The algorithm’s limitation is that its 

forward search uses 𝐾 value as the sample set of points (Fleischman, Cohen-Or and Silva, 

2005). If the value of 𝐾 is small, the algorithm works, and if the value of 𝐾 is large, iterations 

are needed. However, for large data sets, the algorithm becomes sensitive to noise. As noisy 

data have ambiguity between the smooth region and sharp features or if the sample density 

signal-to-noise ratio is too low, the algorithm may classify the smooth region containing the 

sharp feature as an edge. Additionally, the position of the reconstructed edge will not be reliable 

if the two sides of the edge incline towards being collinear.  

Extending the Fleischman et al. technique, Daniels et al. (2008) extracted the curves of the 

features on the reconstructed point sampled surface. A robust method that extracts shape edges 

in the model produces a set of connected and smoothed polylines identified as sharp features. 

The algorithm uses a robust moving least-squares (RMLS) framework to approximate the 

neighbouring surfaces. It also uses kernel regression to extend MLS further. An unorganised 

set of points computes 𝑆 by moving least squares (MLS) defined by the projection operator. 

From these, points 𝑃 near the potential features are extracted. This algorithm applies uniform 

noise by shifting a point at a random vector length. Robust MLS is used to fit multiple surfaces 

to neighbourhood points and project each point onto its adjacent intersection between two 

surfaces. The division of points produces a primary set of polylines that are then reconstructed 

to fill the feature gaps (Daniels et al., 2008). The technique’s benefit is demonstrated in three 

applications. These applications include surface segmentation, surface reconstruction and 

shape compression. The surface segmentation process defines multiple surface regions, which 

are feature aligned by comparing Euclidean distance between the neighbours. Depending on a 

feature polyline’s specified distance, the algorithm flags all points as boundaries or unvisited 
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points. The algorithm visits unvisited points and merges boundary points into the nearest point 

group. After segmentation, surface reconstruction is carried out by producing a high-quality 

mesh. 

The algorithm uses MLS to produce models with a smooth sharp mesh. In addition, surface 

compression is carried out for fast transmission and efficient storage (Daniels et al., 2008). The 

limitations are that the algorithm uses MLS and RMLS; the calculation is considerably time-

consuming. Like Fleishman et al. and Daniel et al. techniques, Oztireli, Guennebaud and Gross 

(2009) applied an algorithm based on robust MLS called novel MLS. Novel MLS includes 

built-in methods for handling outliers and high-frequency features, controlling the sharpness 

of the feature, spare sampling more frequently, and implementing novel MLS is easy and 

efficient as it is pure computation without any processing. Furthermore, the MLS surface is 

stated in local kernel regression, implemented by implicit moving least-squares (IMLS)—

combining these two results in novel robust IMLS. 

Surface Segmentation and in-line segmentation are also used to extract edges in point clouds. 

Demarsin et al. (2007) used segmentation to find sharp features using a graph approach with a 

minimum spanning tree. The method delivers a set of candidate points that represents feature 

lines. These feature lines are used to create a closed curve network. This algorithm applies the 

region growing method with normal estimation to cluster the points, reducing point cloud size. 

The method constructs a connected graph, where vertex and edges connecting 2 clusters are 

formed. Since the connected graph may contain smaller clusters with unwanted gaps, each 

cluster’s size is considered. The method adds the edge of neighbouring small clusters, which 

results in an extended graph. Edges of small clusters could identify the sharp feature line’s 

location; therefore, a minimum spanning tree is constructed. The weights of edges are 

calculated between small clusters. The weight results in a graph with reduced edges of a larger 

cluster. This graph is called the pruned graph. The graph may contain many short undesirable 

branches that must be removed since they do not correspond to actual features. The unwanted 

branches are removed by comparing with a threshold parameter resulting in a graph with 

exactly one incident edge. The algorithm, therefore, uses each endpoint with an appropriate 

point to reconstruct closed lines. As a final step, smoothing is performed to detect a smooth 

graph with sharp features (Demarsin et al., 2007). 
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Xu et al. (2015) proposed surface segmentation and edge detection on heritage fractured 

fragments by merging faces based on normal vectors. Xu et al. method primarily focuses on 

surface segmentation and edge detection from geometrical features (also fragmented surfaces), 

and then face and edge characters are merged into fractured surfaces. The method segments a 

surface to extract the edge feature lines on the triangular meshes. Firstly, the Laplace operator 

reduces noise by implementing a clustering algorithm based on vertex normal vector to find a 

rough surface segmentation. Secondly, an integral invariant is introduced to calculate surface 

roughness. The local bending energy function is defined by the ratio of vector differences and 

distance between the vertices, which demonstrate local roughness. The original and fractured 

surface points are differentiated using threshold values based on roughness. Then, an accurate 

surface segmentation is applied by merging faces as per face normal and roughness. The 

process is iterative and continues until the algorithm converges. Finally, edge feature lines are 

attained based on the segmentation of the surface (Xu et al., 2015). The limitation of the method 

is that it only focuses on cultural relic fragments. The method depends on sampling normal 

vectors for clustering, assuming the point cloud data does not have any data gaps or overlapping 

geometry features, which will produce wrong clustering results. Also, there are no explanations 

of the set threshold values, which could be different for various point cloud data. 

Lin et al. (2015) proposed a method that can be used to extract plane intersection line segments 

from unfiltered extensive point cloud data. This approach extracts a point set from a straight 

linear structure in 3D. Then, the 3D line support region and the line segment half-planes 

(LSHP) are merged, providing a geometrical shape, and making the line segment more correct 

and consistent. Next, the corresponding 2D line regions have been used to determine the 

projection direction of the 3D region; after that, V shape extraction from the projected point 

sets. The V shape consists of points that share a common endpoint. In order to extract the V 

shape, dynamic programming is performed. Once the V shape is determined, the point set is 

divided into two groups, and the 3D line segment is divided into two groups. Then, the two 

groups are fitted separately by two planes. Finally, the region growing method is applied to 

find the boundary of 3D line regions after constructing the LSHP structure. The method extracts 

the line segments from urban point clouds but cannot achieve high performance as this method 

fails to identify the boundary of 3D planes, the small region planes are difficult to detect, and 

if the data is complex with vegetation, it becomes difficult to fit planes (Lin et al. 2015). 
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5.2.2 Region Growing Method For Edge Detection 

As mentioned in Section 5.2.1, the region growing algorithm is proposed by many authors. 

Region Growing is a method that segments point clouds into clusters and classifies regions 

with sharp edges by analysing the normals of the points. Gumhold, Wang and MacLeod (2001) 

used the Riemannian tree to build the information and then analyse the neighbourhood with 

PCA. A Riemannian graph contains data points to 𝑘 nearest neighbours. The advantage of the 

Riemannian graph is that it can handle noisy data, and computation time is comparatively less.  

The method directly extracts feature lines from the point cloud. The approach has two phases: 

(1) uses the points on the edge of the neighbour graph to assign penalty weights that are likely 

to be part of the feature. A feature pattern set is followed by extracting a subgraph that decreases 

the edge penalty weights. A Neighbour graph identifies points that are probably nearest to each 

point or close to the underlying surface and connects them to form a graph. The graph helps 

faster local computation and acts as a domain to identify feature patterns. After the neighbour 

graph is generated, 𝑘 neighbours of each data point are analysed and classified into surface 

points, potential border points and potential crease points. Potential border points and potential 

crease points are assigned a penalty function, which helps measure the likelihood of data on a 

border or a crease.  

(2) The next phase is to extract feature line patterns using the penalty function computed in the 

previous stage. Given penalty functions, the minimum spanning pattern on the neighbour graph 

subsets is calculated, resulting in cycles that contain more edges than a user-defined constant. 

Thus, this spanning pattern contains multiple short branches along with the edge. These short 

branches are removed from the minimum spanning pattern. In the feature recovery stage, the 

neighbourhood grouping is finished to recover the corner locations. Crease lines near the 

junctions are reconstructed according to the grouping near the junctions. Delaunay filtering is 

used to construct surface models.  

The algorithm works with round edges, but the edges are undetected if implemented to 

singleton points (for example, peak points on a cow’s horn) or sharp points as meshing is 

complicated with polygon faces (Gumhold, Wang and MacLeod, 2001).   
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Weber, Hahmann and Hagen (2010b) proposed a method to detect particularly sharp or point-

sampled features in geometry. The method proposes to compute Gauss map clustering on all 

the neighbouring points to find which points lie on the sharp edge features. Further, jump edge 

filtering is used to reduce noise from the point cloud. The method starts with implementing the 

𝑘𝑑-tree for performance purposes by searching the 𝑘-nearest neighbour of the points. 

Afterwards, the triangles are formed by a point and its two nearest neighbours. Feature 

detection is performed by analysing the clustering of the normals on the Gauss Map. Since 

different features will result in different clustering of normals, noise in the point cloud can be 

easily identified as normals of the triangles formed with noise points. These noise points will 

not be part of another normal cluster and thus can be ignored. The cluster formation and 

direction denote whether the feature is sharp or curved. If there are two or more distinguishable 

clusters, it signifies a pointed feature and in case of no clustering and distribution of points on 

the Gaussian map signifies a curved or smooth feature. The method merges separate clusters 

into larger clusters by calculating the distance between the clusters, and the process will stop 

once the distance crosses a certain threshold. The result is the point cloud with sharp marked-

up features. The advantage of the algorithm is that it implements adaptive local parameters for 

different regions of point clouds. The disadvantage is that only line types and corners are 

detected. Also, the test dataset was minimal to accurately estimate the time consumption on the 

large point cloud dataset.  

Feng, Taguchi and Kamat (2014) proposed an algorithm to detect multiple planes in the scene 

in real-time. The algorithm starts by dividing the point cloud into non-overlapping point groups 

and forming a graph whose node and edge represent a group of points. Non-overlapping points 

give the algorithm the advantage of not detecting the boundaries of the planes. This graph is 

subjected to agglomerative hierarchical clustering (AHC) to merge nodes belonging to a similar 

plane until a point is reached when plane fitting mean squared error (MSE) is beyond a 

threshold. AHC extracts the coarse planes by removing nodes with a high mean square error, 

nodes with missing data, nodes containing depth discontinuities and nodes that lie at the 

boundary between two planes. The algorithm saves total computational time by not estimating 

the normal of each point like other algorithms.  In AHC, initially, a node with minimum MSE 

is identified, and then the neighbouring node is searched, resulting in minimum plane fitting 

MSE. If the minimum merging MSE exceeds a threshold, the plane segment is identified and 

extracted from the graph. The extracted planes are further refined using pixel-wise region 
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growing. The extracted planes on point clouds are impressive. However, the algorithm is tested 

on limited data and node size selection is unclear. 

 

5.2.3 Edge Detection in Other Fields 

Since the scanners collect data in 3D, the processing is performed in 3D Datasets. However, 

Lin et al. (2017) stated that  

“Sometimes to detect the corresponding points between two shapes, of an object 

efficiently the 3D shapes are converted into 2D images.” 

The transformation is fast and efficient. Unlike point clouds with 3D points, an image only has 

2D coordinate points. Ando (2000) proposed an algorithm to extract the edges, corners, vertices 

and ridges in the 2D image, corresponding to 1D and 2D gaps in the intensity surface. In order 

to extract edges, the algorithm is divided into two nonparametric stages. The first stage is the 

image field categorisation based on the gradient distribution in order of its dimensionality. The 

image field categorisation is based on two operators: uni-directionally varying region (Univar) 

and Omni-directionally varying region (Omnivar).  

As the Omnivar also includes uni-directionally, the second stage is dedicated to the detailed 

analysis of the informative axis of Univar and Omnivar to find edges, corners, vertex and 

ridges. The analysis includes the Gaussian curvature of the correlation function for texture 

analysis and the covariance matrix of the gradient vector, followed by the canonical correlation 

analysis. The analysis leads to an algorithm further classifying Edge/Ridge localisation by 

gradient projection and Corner/Vertex localisation by angular gradient projection. The 

algorithm assumes that the integration area is small, and the image is continuously 

differentiable. The presence of gaps in the image leads to imprecise results (Ando, 2000). 

Lee, Koo and Jeong (2006) proposed another algorithm that separates the row and column 

edges from an edge image using primitive shapes. The aim is to extract straight lines from 

images. The edge images consist of various line segments such as curves, lines or arcs, 

categorised in rows and columns in digital coordinates. The detected edges in rows and 

columns are then labelled. Some edge pixels are labelled as both row and column. Therefore, 
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there are four types of labels: row, column, both, and single. The 8-neighbour connectivity is 

applied to extract the basic types of the straight line. 

On each label, PCA is applied to extract eigenvectors and eigenvalues. The eigenvector helps 

determine the direction of the pixel distribution of a line, and the eigenvalue helps determine 

the distribution time. The lines extracted are then tested for their straightness and angle. To 

take into account noise effects, a threshold is determined based on the small eigenvalues of the 

lines. The absolute threshold results in a small number of accurate straight lines, and the relative 

threshold results in more lines with inaccuracy (Lee, Koo and Jeong, 2006). The pros of the 

algorithm are that it adjusts the threshold to reduce the noise effects, and the con is that it 

depends on the threshold value to find precise straight lines. However, the edge labelling and 

composition of the line take a lot of processing time. Also, the labelling could be ambiguous if 

the angle difference is negligible between two straight lines. 

 

5.2.4 Principal Component Analysis and Extensions 

5.2.4.1 PCA 

Principal component analysis (PCA) is a mathematical, statistical method that converts a set of 

observations of a larger number of correlated variables (Kabacoff, 2019) into a smaller number 

of linearly uncorrelated variables using orthogonal transformations (Suryanarayan and Mistry, 

2016).  

In linear algebra, an orthogonal transformation preserves the length of vectors and angles 

between vectors. The set of uncorrelated variables is known as principal components. Principal 

components are always less than the original number of observations.  

The first principal component is defined on the largest possible variance, and then the 

succeeding components with the largest variance under the constraint that it is orthogonal to 

the preceding components. The resultant vector direction is an uncorrelated orthogonal set.  
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Table 5. 1 PCA definition in various fields 

Year Name  PCA relation Field 

1901 Pearson, 1901 Pearson first introduced PCA as a fitting linear 

subspace method to multivariate data by minimising 

chi distance. 

Mechanics 

1933 Hotelling, 1933 Independently developed a method that explains the 

concept of uncorrelated linear combinations of original 

measurements by decreasing each variation  

Mechanical 

Engineering 

1983, 

1993 

Golub and Van, 

1983;  

Stewart, 1993 

Singular Value Decomposition (SVD) is a factorisation 

of a matrix that generalises the eigen decomposition of 

the normal square matrix to any matrix  

Mathematics 

1996 Golub, Hoffman and 

Stewart, 1987 

PCA is the Eigenvalue Decomposition (EVD) of XTX  Linear 

Algebra 

1997 Nievergelt, 1997 Schmidt–Mirsky theorem to identify the nearest matrix 

whose singular value  

Psychometrics 

2000 Chatterjee, 2000 PCA, known as Proper Orthogonal Decomposition 

(POD), is an elegant method of data analysis to obtain 

low-dimensional approximate descriptions of high-

dimensional processes. 

Mechanical 

Engineering 

2009 Monahan et al., 2009 Empirical Orthogonal Functions analysis decomposes 

a data set in orthogonal basis functions. 

Geophysics, 

Signal 

processing 

2001 Dony, 2001 PCA, known as Karhunen-Loève Transform (KLT), is 

a linear combination of orthogonal functions. KLT is 

used for compressing and summarising information  

Image 

Processing 

2013 Gie Yong and Pearce, 

2013 

A related statistical method in machine learning and 

data mining is known as Factor Analysis 

Machine 

learning and 

data mining 

2014 Kadam, 2014 A method for face recognition using PCA and discrete 

cosine transform 

Face 

Recognition 

 

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/w/index.php?title=Schmidt%E2%80%93Mirsky_theorem&action=edit&redlink=1
https://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem


 

127 | P a g e  

 

PCA is adaptable in various science disciplines for multivariate analysis, as shown in Table 

5.1. It has been used in biology, chemistry, demography, agriculture, oceanography, 

psychology, quality control, genetics, geology, ecology and food research. PCA has also been 

used in economics and finance to study stock market changes (Suryanarayana and Mistry, 

2016). In computer science, PCA is used as a tool for data analysis and for making predictive 

models. PCA can be calculated in two ways:  

1) depending on semi-definite matrices, eigenvalue decomposition of the data 

covariance matrix and 

2) depending on rectangular matrices, the Singular value decomposition of the data 

matrix by normalising or using Z scores of each data attribute (Abdi and Williams, 

2010).  

In terms of handling the variables while calculating PCA, it can be generalised as 

correspondence analysis (CA) in order to handle qualitative variables and as multiple factor 

analysis (MFA) in heterogeneous sets of variables (Abdi and Williams, 2010). As a result of 

the method, PCA produces component scores called factor scores (the transformed variable 

values corresponding to a particular data point) and loadings (the weight by which each 

standardised original variable should be multiplied to get the component score) (Shaw, 2003).  

PCA’s fundamental concept is to reduce the data set’s dimensions, which have many 

uncorrelated variables. From the geometric viewpoint, the computation of PCA is to minimise 

the variance. Its operations reveal the internal structure of data variance. If the original 

uncorrelated data set is imagined as a set of coordinates in high-definition data space, PCA can 

be used for a low-dimensional view, a projection of the objects when viewed from the most 

explanatory viewpoint. To achieve the projection by using only the first few principal 

components to reduce the dimensionality of the transformed data.  

Like PCA, Factor analysis aims to reduce the dimensionality of the data set, but the approaches 

to achieve is entirely different from PCA. Factor analysis searches for joint variations in 

response to unobserved latent variables (the variable that is not directly observed but inferred 

from other measured variables). The information gained about the latent variables is used to 

reduce the variables in the data set. It incorporates more domain-specific assumptions about 

the underlying structure (Young and Pearce, 2013). As PCA defines a new orthogonal 

https://en.wikipedia.org/wiki/Predictive_modeling
https://en.wikipedia.org/wiki/Predictive_modeling
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coordinate system that optimally describes the variance in a single dataset similarly, canonical 

correlation analysis (CCA) defines coordinate systems that optimally describe the cross-

covariance between two datasets (Barnett and Preisendorfer, 1987). 

 

5.2.4.2 Principal Component Analysis Extensions 

PCA with a wide variety of extensions have been proposed; this section discusses some of 

them. Feature extraction using PCA has been used in various applications such as pattern 

recognition, noise detection, and image indexing. Scholkop, Smola and Muller (2012) 

introduced a new method called Kernel PCA (KPCA). KPCA is an extension of PCA to handle 

the data points in nonlinear space and better understand the extracted nonlinear features. KPCA 

uses the kernel method, which can be applied to any algorithms formulated for the dot product. 

The utility of KPCA is pattern recognition using a linear classifier. Nonlinear data is fed into 

high dimensional space, which allows it to behave linearly, and therefore, nonlinear mapping 

never happens. The use of a kernel means that all the points are represented using the distance 

calculated to all other points to form a kernel matrix. To this matrix, eigenvalue decomposition 

(EVD) has been applied. Since the kernel components are not linear, the limitation of KPCA 

is that it will not result in principal components by itself, but the data projection will be on 

those components (Scholkop, Smola and Muller, 2012; Oreifej, 2013). The advantages of 

KPCA are that nonlinear components result in better recognition rates and the possibility of 

using more components to increase performance with minimal computational cost.  

The traditional approach to PCA calculation lacks the probabilistic model for the observed data 

set. So, Lawley (1953) and Anderson & Rubin (1956) investigated PCA from a probabilistic 

point of view, and their research was later extended to Probabilistic PCA by Tipping (Tipping 

and Bishop, 1999). They demonstrated  

“How principal component analysis may be viewed as a maximum-likelihood procedure based 

on probability density model of observed data” that enables the comparison with other 

probabilistic algorithms.  

The Gaussian noise model is applied with eigenvalues and eigenvectors of the sample 

covariance matrix. In addition, the Expectation Maximisation algorithm (EM) is used for 

https://en.wikipedia.org/wiki/Canonical_correlation
https://en.wikipedia.org/wiki/Canonical_correlation
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finding the principal axis by iteratively maximising the likelihood function. Therefore, EM 

makes Probabilistic PCA more efficient with larger data dimensionalities. Furthermore, 

probabilistic PCA demonstrates the capacity to handle the data with missing values since it is 

a generative model. The applications of the algorithm are the visualisation of data and image 

compression (Tipping and Bishop, 1999).  

Many applications, such as computer vision and image processing, have problems with 

subspace segmentation. To overcome the problem, PCA has been extended to generalised PCA 

(GPCA). GPCA is the algebraic-geometric approach for subspace segmentation of the data 

points (Vidal, Ma and Sastry, 2005).  

The GPCA approach includes the collection of polynomials from data and then evaluating their 

derivatives at data points to determine the subspaces passing through that point. PCA for noise 

in the exponential family, the method has probabilistic interpretation using a Poisson 

distribution which generates each data point with a mean parameter. It uses Poisson distribution 

with loss function without any constraints on matrices. PCA minimises the squared loss 

function as assumed in the Gaussian noise model. However, the Poisson distribution may better 

fit better integers, and the Bernoulli distribution may better fit binary data. The similarity of 

these distribution methods is the density function which can also be calculated as a member of 

the exponential family and could be extended to PCA algorithms (Collins, Dasgupta and 

Schapire, 2001; Oreifej, 2013).  

All of the above extensions of PCA have certain limitations and associated problems. The 

drawbacks of KPCA are that it is highly dependent on nonlinear data and hence will never 

produce a linear PCA component. KPCA is also not suitable for identifying the kernel function. 

Probabilistic PCA lacks the distribution parameters of noise and is more beneficial for data 

compression. On the other hand, GPCA works efficiently on small data sets, and the robustness 

is not strong for outliers. Also, GPCA is more used in image processing. Therefore, it is 

essential to propose an algorithm to overcome the robustness of noise/outliers for efficient 

feature detection in the large 3D point cloud with low computation cost. 
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5.2.4.3 Principal Component Analysis Existing Applications 

Nurunnabi, Belton and West (2012) proposed a method using PCA to segment point cloud 

data. Nurunnabi et al. statistically robust segmentation help to identify the underlying patterns 

in an unsupervised nonparametric fashion. The algorithm uses a minimum covariance 

determinant to produce a local covariance matrix. The PCA-based segmentation applications 

on terrestrial laser scanning datasets deliver good results for multi-planar surface extraction. 

However, the proposed algorithm does not potentially work for non-planar complex surface 

reconstruction. Belton and Bae (2009) proposed an automatic method for detecting roadside 

kerbs on urban point cloud data sets. The algorithm is divided into multiple phases to achieve 

detection.  

1) The first step is segregating the road surface and other surfaces using statistical 

classification and segmentation. Next, the points that belong to the road surface are 

sampled and approximated using this technique.  

 

2) After identifying the road surface points, the orientation and direction of the kerb at 

the candidate points are estimated using PCA on the local neighbourhood. 

 

3) The candidate points are fitted with a kerb profile based on the derived cross-section 

and neighbouring properties.  

 

4) The profile is incrementally chased along the kerb using candidate points to 

determine the kerb’s path along the roads.  

The algorithm results in a line representation of the kerb feature (Belton and Kwang-Ho, 2009). 

Bazazian, Casas and Ruiz-Hidalgo (2015) proposed sharp edge detection using a Gauss map 

clustering method. The algorithm uses the analysis from the eigenvalue of the covariance 

matrix defined by each point’s k-nearest neighbour. First, PCA is applied to each cluster in 

local squares. After each point, a normal estimation of the k-nearest neighbour is applied to 

those sample points. Finally, the nearest neighbours are clustered by normal. The method is 

fast and accurate in small dihedral angles for detecting edges but is sensitive to the noise in the 

neighbourhood. The algorithm also lacks the threshold required for multi-scale analysis.  
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5.2.5 Summary 

Section 5.2 analyses and evaluates the existing algorithms and methods for edge detection in 

point clouds. Followed by PCA in different fields and the existing algorithms using PCA 

extensions and applications have also been presented and reviewed.  

It has been identified that there is a lack of algorithms or methods that can be used to produce 

adequate results on three-dimensional point cloud data. The findings include the lack of 

evidence of implementing the existing algorithms on large point cloud data. The algorithm 

must be cost-efficient because the point clouds could be massive with billions of points (disk 

storage of 150 GB or more).  

The existing algorithms lack the verification of the processing time and demonstrate how large 

or small the point cloud data was. The existing algorithms also fail to produce results in the 

presence of different obstacles. Obstacles are very common in real-world point cloud data. 

Examples of obstacles include a gap, the shadow of the objects, the reflection of lights/rays, 

the elimination of unwanted feature detection, and the missing part of point cloud data. 

Another common challenge is eliminating the outliers/noise while detecting features in the 

point cloud. The existing PCA methods and extensions overcome some of the outlier’s 

problems; however, there is no evidence of a single method/algorithm working on different 

types of the point cloud, such as urban point clouds, terrain point clouds, handheld point clouds 

and airborne or LiDar point clouds with efficient computation for processing large point cloud 

data.  

Therefore, it is necessary to propose, design, and develop a robust, accurate, and efficient 

method for edge detection in large 3D point cloud data with a minimum computational cost. 

Section 5.3 proposes a PCA-based edge detection method with real-time implementations on 

larger point clouds in the commercial environment.  
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5.3 A New PCA-based Method for Edge Detection 

5.3.1 Overview 

This section proposes a new PCA-based algorithm to detect the edges of different objects in 

the raw point cloud with efficiency, accuracy, and robustness. The procedure of the proposed 

algorithm is shown in Fig. 5.1. 

The algorithm is designed to detect 3D edges on raw point cloud data, i.e., not filtered data, 

which may contain outliers and noises. The proposed algorithm consists of five stages: (1) the 

first stage is to sample the raw point cloud using the search sphere in a real-time large 3D point 

cloud (2) the second stage is to apply PCA to the sampled point cloud data in the search sphere 

and to extract the normal from PCA (3) the third stage is to categorise all the points as Plane1, 

and Plane2 through iterations (4) the fourth stage is to remove the points in both categories 

according to the threshold (5) the fifth stage is to identify the edges by intersecting two planes.  

 

 

Figure 5.1 Procedure of PCA-Based edge detection algorithm 
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5.3.2 Important Terms  

Different notations of edges have been studied in geometry, image processing, reverse 

engineering and topology. Mathematically in three-dimension, an Edge is defined as a line 

segment where the two surfaces meet. In geometrical 3D shapes, any line connecting two 

corners is called an edge, or any two connected surfaces also form an edge (Boster, 2016), 

shown in Fig 5.2 (a). Pierce (2018) defined an edge as a line segment on the boundary joining 

vertex (corner points) to another, as shown in Fig 5.2 (b).  

 

 

                                                                       (a)                                              (b)                        

Figure 5.2 Edges defined by (a) (Boster, 2016) and (b) (Pierce, 2018) 

 

In relation to point clouds, many studies have defined edges. Edges are defined as the curves 

along the surface directions that change abruptly—the edges by edge point representation are 

shown in Fig 5.3 (Du, 2020). These edge points are crucial for point cloud shape analysis. 

Wang and Shan (2009) defined edges in two types: jump and crease. Jump edges are defined 

as discontinuities in height values, and crease edges are formed when two surfaces meet. 

According to Farin, Hoschek and Kim (2002), an edge is a real analytic curve with finite length, 

whose limits of tangents are endpoints, and sharp edges are computed by surface-surface 

interaction. In addition, the extracted edge points are used in point cloud processing methods 

such as segmentation (Gilani, Awrangjeb and Lu, 2018) (Wang and Shan, 2009), mesh 

generation (Salman et al., 2010) and resampling (Huang, 2013). 
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Figure 5.3 Du (Du, 2020) defined edges as curves along the surface direction  

 

Using words like corners and boundaries can be confusing, and many interpretations of edges 

in different fields exist. To avoid any misunderstanding, in this thesis, two kinds of edges are 

defined for a typical point cloud as follows: 

• The first kind of edge is called Edge Sect. An edge sect is an intersection line of any 

two planar surfaces. The intersection line can be formed on a planar surface, sharp 

edges line, break lines of a slope, walls and footpaths. Fig. 5.4 (a) shows the example 

of two different planar surfaces. The intersection of these surfaces is called Edge Sect. 

 

• The second kind of edge is called an Edge Stream. An edge stream is generally used 

to find edges without any gaps. The Edge stream could be defined as the series of 

intersection lines (edges) forming a stream of defined edges of consecutive planar 

surfaces. The point clouds have many disturbances; therefore, the edge stream must 

stop when there is any presence of disruptions like a large angular gap between two 

planar surfaces if the data is missing due to the shadow of other objects or due to abrupt 

changes in the direction of the normal of the planar surfaces in the point cloud. 

Examples of Edge Streams detection include road kerbs, building boundaries, roof 

edges, walls and floor plan outlines. An example of edge stream detection is shown in 

Fig. 5.4 (b) on the road kerb.  
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                             (a)                                                                                        (b) 

Figure 5.4 Defined two types of edges (a) Edge sect and b) Edge Stream (the pink line) 

 

Another essential method this thesis defines is the search sphere. A search sphere is a powerful 

tool used in various techniques in the thesis, such as the Search sphere used to delete points, as 

discussed in Chapter 4.  This chapter uses the sphere to search and detect edge sects and 

streams. A Search sphere is a method of sampling the point cloud using a real-time 3D sphere. 

The search sphere moves along the cursor in 3D space in real-time, as shown in Fig. 5.5. The 

search sphere’s size is user changeable, giving the flexibility to make the sphere big or small 

according to the point cloud data. The recommended size depends on the user’s applications 

and the size of the feature to be extracted. All the points inside the search sphere are highlighted 

as the chosen points are apparent.  

 

 

                                                    (a)                                                                 (b)  

Figure 5.5 (a) Search sphere on a given point cloud 

(b) Magnified image with its inside points highlighted that are selected. 
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5.3.3 The Proposed Algorithm 

In this section, the procedure of the proposed algorithm will be presented. A flowchart diagram 

of the proposed algorithm is shown in Fig. 5.6. The algorithm is applied to detect edge sects 

and edge streams in any given point cloud. The output is the intersection of two best-fit planes 

in the given point cloud data feature.  

 

 

Figure 5.6 A flowchart diagram of the proposed algorithm.  
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5.3.3.1 Data Sampling 

In the first phase, the whole raw point cloud data 𝑃(𝑥, 𝑦, 𝑧) = {1,……𝑁𝑖} is sampled in real-time 

by using the search sphere. All the points in point clouds have RGB and intensity values. 

However, the point’s RGB and intensity are not used for implementing the proposed algorithm, 

just the X, Y, and Z values. Point clouds are generally large; therefore, point clouds must be 

sampled first. For example, a dataset used in this thesis for evaluation, i.e., University of 

Gloucestershire Park Campus data (Fullwood house), has 580.94 billion points and a church 

data set with 257 million points. For this purpose, the search sphere is used. A search sphere 

moves in real-time along the cursor wherever the mouse cursor is pointed to in the point cloud 

data. An example in Fig 5.7(a) shows that a green dot in the centre is where the mouse cursor 

is currently pointing in 3D space. The fuchsia-coloured points are the sampled points inside 

the sphere.  The user sets the size of the search sphere, which directly depends on the size of 

the feature to be extracted. In the point cloud where the edge sects and edge stream are essential 

to detect are building walls, footpaths, kerbs, slope-break in any terrain data, stairs and 

windows. For example, edges found on the stair in the University of Gloucestershire Park 

Campus data set are shown in Fig 5.7 (b). All the sampled points inside the search sphere are 

labelled as 𝑆𝑆₀. Also, these points are highlighted to make the selected sampled points evident.  

 

 

                                              (a)                                                                            (b)  
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(c) 

Figure 5.7 Sphere in use (a) for sampling (b) to find the edges on stairs 

(c) to find edges between wall and ground 

 

 

5.3.3.2 PCA Implementation 

The second phase is PCA implementation, which plays a significant role in the algorithm. PCA 

is defined by Jolliffe I.T (2002) as an “orthogonal linear transformation that transforms the 

data to a new coordinate system such that the greatest variance by some scalar projection of 

the data comes to lie on the first coordinate (called the first principal component), the second 

greatest variance on the second coordinate, and so on.”  

The goal is to transform a given D-dimension of data set 𝑋 =  {𝑥𝑖 ……… . 𝑥𝑛} of a new 

dimension 𝑝. The data is organised next. The data comprises a set of observations of 

𝑝 variables. To reduce the dimension of the data so that each observation can be described 

as 𝑝 < 𝐷. Further, the data are arranged as a set of  data vectors {𝑥𝑖 ……… . 𝑥𝑛} where 𝑥𝑖 

representing a group of observations of 𝑝 variables. Next, the mean is calculated for each 

dimension, as shown in Equation 5.1 for 𝑋. 

𝑋̅ =  
1

𝑁
 ∑𝑥𝑖

𝑁

𝑖=1

                                                                   (5.1) 

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Coordinate_system
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Then the Standardization of the data is performed by subtracting the mean from the original 

data (from each element) and represented as ‘data adjusted’. Where the array is formed by  

(𝑥 − 𝑥̅, 𝑦 − 𝑦̅, 𝑧 − 𝑧̅  ). The length of data adjusted is same as the original data. 

The covariance matrix is a 𝑚 × 𝑚 symmetric matrix where 𝑚 is the number of dimensions 

that have the covariances associated with all possible pairs of the initial variables (Jaadi, 2022). 

For this thesis, the data used is three-dimensional; therefore, the covariance matrix is a 3×3 

matrix.  

Covariance Matrix: 

[

𝐶𝑜𝑣(𝑥, 𝑥) 𝐶𝑜𝑣(𝑥, 𝑦) 𝐶𝑜𝑣(𝑥, 𝑧)
𝐶𝑜𝑣(𝑦, 𝑥) 𝐶𝑜𝑣(𝑦, 𝑦) 𝐶𝑜𝑣(𝑦, 𝑧)
𝐶𝑜𝑣(𝑧, 𝑥) (𝐶𝑜𝑣(𝑧, 𝑦) 𝐶𝑜𝑣(𝑧, 𝑧)

]                                                (5.2) 

 

The covariance matrix is denoted as Equation 5.3. 

𝐶 = 
1

𝑁
 ∑(𝑝𝑖 − 𝑝 ) (𝑝𝑖 − 𝑝 )

𝑇
𝑁

𝑖 = 1

                                                 (5.3) 

 

where 𝐶 is the conjugate transpose operator, 𝑁 is the total number of points, 𝑝𝑖 is the feature 

component and 𝑝̅ is the mean of all the points, and 𝑇 denotes the transpose matrix. Eigenvectors 

1, 2, 3 and eigenvalues 1 ,2  , 3 are computed from the covariance matrix to determine the 

data’s principal components. Principal components are new variables constructed as linear 

combinations or mixtures of the initial variables (Jaadi, 2022).  The principal components are 

uncorrelated, with maximum information in the first component, then the maximum remaining 

information in the second and then the third. Once the eigenvalues are sorted such that 1 ≥

 2  ≥ 3. 

The correlation between variables 𝑥𝑖 and principal component 𝜑𝛼 is given by Equation 5.4 

(Aluja-Banet, Morineau and Sanchez, 2018). 
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𝑐𝑜𝑟(𝛼, 𝑗) =  ∑𝑝𝑖 (
𝑥𝑖𝑗

𝑠𝑗
)(

𝜑𝑖𝛼

√𝛼

)

𝑛

𝑖=1

                                                     (5.4) 

 

 

 Figure 5.8 PCA in 3D with highlighted arrows in red (PC1), blue (PC2), and green (PC3). Source: (Cheng, 2022) 

 

Example: 

Suppose the data set is 2D with variable m, n, and the eigenvectors and eigenvalues of the 

Covariance matrix are as follows: 

𝑣1 =  [
0.677
0.735

]                      1 = 1.28 

𝑣2 =  [
−0.735
0.677

]                     2 = 0.049 

After sorting the eigenvalues in descending order 1   2 the eigenvector corresponding to the 

first principal component is 𝑣1 the second principal component corresponds to 𝑣2. To 

determine the variance in percentage in the above example, each component is divided by the 

total eigenvalues, which results in PC1 with 96% and PC2 with 4% variance of the data.  
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After applying PCA to the sample of the point cloud data set, the results are the following: 

• Mean of the array of points inside the sample data set (sphere), 

 

• Principal components (PC) – First PC is found where the maximum variation lies, the 

second PC with less variation than the first and third. All three PCs are orthogonal to 

each other and transform into a new coordinate system, 

 

• Eigenvectors – direction cosine of each principal component, 

 

• Eigenvalues – a scalar derivation from eigenvectors. 

The implementation of PCA for the proposed algorithm starts by calculating the mean of all 

sampled points labelled as 𝑆𝑆₀ . PCA is then applied to the sampled points 𝑆𝑆₀. For all 3D 

points 𝑆𝑆₀, the covariance matrix is computed by using Equation 5.1, and the eigenvectors 𝑉1
⃗⃗  ⃗, 

𝑉2
⃗⃗  ⃗ and 𝑉3

⃗⃗  ⃗ and eigenvalues 𝜆1, 𝜆2 and 𝜆3  are also obtained. The three principal components 

𝑝𝑐1⃗⃗ ⃗⃗ ⃗⃗ , 𝑝𝑐2⃗⃗ ⃗⃗ ⃗⃗   and 𝑝𝑐3⃗⃗ ⃗⃗ ⃗⃗  . are derived through a transformation in a way that the first principal 

component 𝑝𝑐1⃗⃗ ⃗⃗ ⃗⃗  has the most significant possible variance succeeding second  𝑝𝑐2⃗⃗ ⃗⃗ ⃗⃗   and third 𝑝𝑐3⃗⃗ ⃗⃗ ⃗⃗   

with the highest possible variances. Since the three components are orthogonal to each other, 

the third principal component is the normal  𝑛̂ to the plane of the first and second principal 

components. Based on the extracted normal and the origin, the first plane is fitted on all points 

in 𝑆𝑆₀. 

 

5.3.3.3 Plane Detection 

The third phase is to find the best-fit plane on the sampled data in 𝑆𝑆₀. After the extraction of 

the normal and the origin, a plane is fitted on the points 𝑆𝑆₀. A plane is 3D is defined by 

Equation 5.5  

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0                                                           (5.5) 

 



 

142 | P a g e  

 

and with the origin and normal, the plane equation is presented in Equation 5.6 

𝑛⃗  .  𝑂(𝑥, 𝑦, 𝑧) = 0                                                               (5.6) 

where 𝑛⃗  is the directional vector of the normal and 𝑂(𝑥, 𝑦, 𝑧) is the origin. The best-fit plane 

is fitted on the sampled data inside the sphere.  

 

 

Figure 5.9 Best fit plane on the data presented as red points  

 

The points which form the fitted plane could also contain outliers, which can cause the plane’s 

misfit on the sampled data. Therefore, the next step is to filter all the outlier points. A threshold 

is applied based on distance calculation to achieve the outlier removal from each point to the 

fitted plane. The threshold is the standard deviation value. The result of the threshold is plane 

𝑃𝑙1. Furthermore, all the points remaining are classified as outliers. To these outlier points, 

PCA is applied again to find the normal 𝑛̂ for the second plane. Based on the distance 

calculation threshold from all the remaining points (not including the first plane points), 

outliers are separated and resulting in the second plane 𝑃𝑙2. The distance of the points 

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) to the plane 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 is Equation 5.7. 

∆ =  
|𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 + 𝐷|

√𝐴2 + 𝐵2 + 𝐶2
                                                  (5.7) 
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The algorithm includes the perpendicular least squares fitting method, which is superior to 

vertical and gives more accurate results. 

 

 

Figure 5.10 Least Squares Fitting Perpendicular offset 

 

The perpendicular regression is implemented with the least squares fitting that calculates the 

distance of a point from a plane. Then, all points’ distance is calculated to the planes as shown 

in Fig 5.11 and minimises the squared distance to the planes. The coefficient of perpendicular 

offset to the plane 𝑧 =  𝑎0 + 𝑏0𝑥 + 𝑐0𝑦 is given by Equations 5.8 and 5.9 (Sampaio, 2006)  

 

𝑎 =  
𝑎𝑚

𝑛𝑧0 
  ,      𝑏 =  −

𝑛𝑥0

𝑛𝑧0 
   , 𝑐 = − 

𝑛𝑦0

𝑛𝑧0 
                                       (5.8) 

 

𝑛𝑥0 = 
−𝑏0

√1 + 𝑏0
2 + 𝑐0

2  
   ,  𝑛𝑦0 = 

−𝑐0

√1 + 𝑏0
2 + 𝑐0

2  
   , 

 𝑛𝑧0 = 
1

√1 + 𝑏0
2 + 𝑐0

2  
                                                        (5.9) 
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where 𝑎𝑚 is intercept after convergence, where 𝑑0 = 
𝑎0

√1+𝑏0
2+𝑐0

2  

 is the distance of the plane 

from the origin and 𝑛𝑥0, 𝑛𝑦0 and 𝑛𝑧0 are direction cosine of the unit vector 𝑛0⃗⃗⃗⃗  normal to the 

plane.  

 

Figure 5.11 Two planes’ normals 𝑛1⃗⃗⃗⃗  and 𝑛2⃗⃗⃗⃗  

 

5.3.3.4 Classification 

The fourth phase is to classify all the points through iterations. The points are classified into 

three groups. As discussed in Section 5.3.3.3, two planes are fitted on the sampled data as  𝑃𝑙1 

and 𝑃𝑙2. The leftover points marked as outliers in the search sphere 𝑆𝑆₀ are re-evaluated to fit 

the sample points. The outlier points are reallocated to respective planes based on the threshold. 

After a few iterations, the points nearest to either 𝑃𝑙1 or 𝑃𝑙2 are marked as 0 and 1, and all the 

remaining points are marked as 2. The details are explained in Section 5.5.4. The points marked 

with 0 are the best-fit plane points for the first plane 𝑃𝑙1 , 1 for best-fit plane points for the 

second plane 𝑃𝑙2 and 2 for the outlier points. 

The final phase is to extract the edge. The intersection of two best-fit planes results in an edge 

sect. The edge sects consist of three points: starting, centre and endpoints. The three points play 

an essential role in edge stream detection, as explained in Section 5.3.5.  
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5.3.3.5 Best Fit Planes Algorithm 

 

Input: Point cloud =𝑃(𝑥, 𝑦, 𝑧) = {1,…… .𝑁𝑖}. 

1: Edge points {E}←∅ 

2: For i= 0 to size {[𝑃]}do 

3:  Mark {[𝑃]} as 𝑃₀ 

4:  Calculate mean {M} ← 𝑋̅, 𝑌,̅ 𝑍̅ 

5:                            Calculate Covariance Matrix {C}←
1 0 0
0 1 0
0 0 1

 

6:                            Calculate eigenvalues Matrix {Eᶹ} ← {0, 0, 0}  

                                                and eigenvector Matrix {V} ← {0,0, 0} 

7:                            Perpendicular offset ←𝑜𝑠𝑡⃗⃗⃗⃗⃗⃗  and distance 𝑑 

8:                            Mark 𝑃₀ based on Threshold 𝜖 (inliers) and rest 𝑃₁ 

9:                            Continue 

10:           End If 

11:          𝑃₀← {0, 0, 0}, or 𝑃₁← {0, 0, 0} 

12:         Compute 𝑃𝑙1 and 𝑃𝑙2 

13.         Compute line 𝑙 

14:         Return Edge points{E} 
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5.3.4 Outlier Detection 

Once PCA has been applied to the sampled points inside the search sphere, as discussed in 

Section 5.3.3. Each point PNi inside the search sphere is analysed. Further, based on its distance 

to either plane, the point is included in the best-fit plane calculation for the respective plane. 

As PCA does not deal with the noise (Sengupta and Mitra, 1997), the proposed algorithm is 

combined with the least squares perpendicular regression method in order to obtain the best-

fit planes 𝑃𝑙1 and 𝑃𝑙2 in the given data set. Perpendicular offset is calculated for all the points 

𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) labelled as 𝑆𝑆₀ using Equations (5.10) – (5.12) 

𝑃𝑙𝑑𝑖𝑟 = (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥 ×  𝑝𝑐.⃗⃗⃗⃗  ⃗ 𝑥𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦 ×  𝑝𝑐.⃗⃗⃗⃗  ⃗ 𝑦𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧 ×  𝑝𝑐.⃗⃗⃗⃗  ⃗ 𝑧𝑖)              (5.10) 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥 ×  𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦 × 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧 ×  𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧)            (5.11) 

𝑜𝑠𝑡 ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  
((𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥 ×  𝑝𝑖. 𝑥𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦 ×  𝑝𝑖. 𝑦𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧 ×  𝑝𝑖. 𝑧𝑖) − 𝑃𝑙𝑑𝑖𝑟 )

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
            (5.12) 

where 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗  is the vector of the third principal component, 𝑝𝑐⃗⃗⃗⃗  is the vector of the point cloud 

data and  𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗  ⃗ is the vector of perpendicular offset of all points to the respective planes, as shown 

in Fig 5.12.  

 

(a) 
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(b) 

Figure 5.12 (a) The origin axis X, Y, and Z of the points cloud and three principal components and (b) the Best-

fit plane with the white arrow showing the gradient of the plane. 

 

The  𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗  ⃗ vector of every point is calculated from the first fitted plane (𝑑𝑝𝑖 = perpendicular 

distance of each point to plane one) and stored in 𝑃0 and for the second fitted plane (𝑑𝑝𝑗 = 

perpendicular distance of each point to plane two) stored as 𝑃1. Standard deviation is calculated 

for the points inside 𝑃0 and 𝑃1. Based on the 𝜖 threshold, points are removed from 𝑃0 and 𝑃1. 

The threshold value is calculated using the standard deviation 𝜎 of all points by Equation 5.13. 

𝜎 =  √
∑(𝑣𝑖 − 𝜇)2

𝑁
                                                            (5.13) 

where 𝑣𝑖 is the perpendicular distance of each point from the plane, 𝜇 is the mean of all the 

perpendicular distances, 𝑁 is the total number of points’ distances. All the removed points from 

𝑃0 and 𝑃1 are re-evaluated by  𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗  ⃗ vector of all the points in the search sphere 𝑆𝑆₀.  

As shown in Fig 5.13(a), the blue dotted circle is a 3D real-time search sphere 𝑆𝑆₀ where all 

the points are assessed based on the  𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗  ⃗ vector and a 𝜖 threshold. The point is then considered 

in the first or second plane calculation. After a few iterations, all the points in 𝑃0 are labelled 

as ‘0’, points in 𝑃1 are labelled as ‘1’, and all the remaining points are labelled ‘2’. The points 
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labelled as ‘2’ are considered outliers. Two best-fit planes are 𝑃𝑙1 and 𝑃𝑙2 generated from the 

points labelled ‘0’ and ‘1’, as shown in Figures 5.13 (b) and (c). 

 

 

(a) 

  

(b)      (c) 

 

Figure 5.13 (a) Blue dotted circle represents a live 3D search sphere, the solid red line is the best-fit plane Pl1, and 

the solid green line is the best-fit plane Pl2. The black dots represent points inside the sphere PNi red, and the green 

ellipse or circles represent the points belonging to plane red or plane green. (b) Perpendicular regression method 

on each point dpi and dpj and the outlier (green coloured) points are removed (c) Combining the diagram shown 

in a) and b). 
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5.3.5 Edge Sects  

As discussed above, the proposed algorithm implementations can be extended further to obtain 

two best-fit planes 𝑃𝑙1 and 𝑃𝑙2 from the sampled point cloud data shown in Fig.5.14 (a). Planes 

are called best fit as they best fit the given dataset until all the points satisfy the threshold and 

are grouped as mentioned above.  

The points are grouped as 𝑃₀ and 𝑃₁ based on their offset distance 𝑑𝑝𝑖 and 𝑑𝑝𝑗 from each plane, 

respectively, as shown in Fig 5.13, the rest of the points are considered outliers. The 

intersection of two best-fit planes produces an edge sect. An edge sect is presented using an 

example to show the edge points, as shown in Fig. 5.14 (b) as follows: 

a) A centre point, 

b) Start point, and 

c) End point. 

 

 

                                 (a)                                                                                       (b)  

Figure 5.14 (a) The two planes, red and green, are the best fit planes derived from the proposed algorithm, and 

(b) The intersection forms a blue line, and the green dots are edge sect points 
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5.3.6 Edge Stream: Extension of Edge sects 

Applying the proposed algorithm for edge detection method (PCA) inside the search sphere. 

The result is two planes, three edge points and two sets of PCs (principal components). From 

the edge start point, as shown in Fig 5.14, the edges are detected in real-time, and their results 

are shown in Fig 5.15. 

• Three principal components  

 

• Three eigenvalues 

 

• X, Y, Z components of the start point 𝑥1, 𝑦1, 𝑧1 , centre point and end point. 

 

 

Figure 5.15 Resultants of PCA 
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Figure 5.16 Example of a road kerb with red points being the centre edge points of edge sects 

 

The edges have three points. Figure 5.16 presents centre points found from the edge line inside 

the sphere as input for edge stream detection. The extension of edge sects is applied by using 

the following equation: 

(

𝑥2

𝑦2

𝑧2

) = 𝑇 (

𝑑𝑙
𝑑𝑙
𝑑𝑙
1

)                                                                  (5.14) 

where T is a transportation matrix and is defined in Equation 5.15 

𝑇 =  [

cos 𝜃1𝑥 0 0
0 cos 𝜃1𝑦 0

0 0 cos 𝜃1𝑧

𝑥1

𝑦1

𝑧1

]                                             (5.15) 

The proposed algorithm is applied and results in the first centre edge point. If considering only 

centre points, the result points along the kerb are shown in Fig 5.16. The second centre point 

has another two sets of principal direction vectors, eigenvalues and x, y, z components (similar 

to the first centre edge point) and so on for each centre edge point. For the principal vector, Let 

 𝑉⃗ 1,𝑓 = (𝑥1,𝑓 , 𝑦1,𝑓 , 𝑧1,𝑓) be the first principal vector of plane 1 

    𝑉⃗ 1,𝑠 = (𝑥1,𝑠 , 𝑦1,𝑠 , 𝑧1,𝑠) be the second principal vector of plane 1 

𝑉⃗ 1,𝑡 = (𝑥1,𝑡 , 𝑦1,𝑡 , 𝑧1,𝑡) be the third principal vector of plane 1 
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 𝑉⃗ 2,𝑓 = (𝑥2,𝑓 , 𝑦2,𝑓 , 𝑧2,𝑓) be the first principal vector of plane 2 

     𝑉⃗ 2,𝑠 = (𝑥2,𝑠 , 𝑦2,𝑠 , 𝑧2,𝑠) be the second principal vector of plane 2 

 𝑉⃗ 2,𝑡 = (𝑥2,𝑡 , 𝑦2,𝑡 , 𝑧2,𝑡) be the third principal vector of plane 2 

 

Obtain the angle between 𝑉1
⃗⃗  ⃗ and 𝑉2

⃗⃗  ⃗ by applying dot product  

cos 𝜃 =  
𝑉1
⃗⃗  ⃗  ∙  𝑉2

⃗⃗  ⃗ 

|𝑉1
⃗⃗  ⃗  𝑉2

⃗⃗  ⃗ |
                                                                (5.16) 

Until θ  θt, the procedure will determine the next point where the sphere’s centre is 

positioned. Thus, Equation 5.14 will now become 5.17, and Equation 5.15 will become 5.18. 

(

𝑥𝑖+1

𝑦𝑖+1

𝑧𝑖+1

) = 𝑇 (

𝑑𝑙
𝑑𝑙
𝑑𝑙
1

)                                                                  (5.17) 

 

𝑇 =  [

cos 𝜃𝑖𝑥 0 0
0 cos 𝜃𝑖𝑦 0

0 0 cos 𝜃𝑖𝑧

𝑥𝑖

𝑦𝑖

𝑧𝑖

]                                             (5.18) 

While continuing with the above procedure, certain checks need to be performed: 

• Register the number of points in the sub-sampled point cloud within the sphere, which 

is denoted by 𝑁𝑖1 and 𝑁𝑖2 

 

• The average is calculated for 𝑁𝑖1 and 𝑁𝑖2 where 𝑇𝑁𝑂𝑃 is the total number of points as 

shown below: 

𝑁1𝑎 = ∑
𝑁𝑖1

𝑇𝑁𝑂𝑃 

𝑀𝑖

𝑖=1

                                                               (5.19) 

 

𝑁2𝑎 = ∑
𝑁𝑖2

𝑇𝑁𝑂𝑃 

𝑀𝑖

𝑖=1

                                                               (5.20) 
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• Calculate the ratios: 

𝛾1 = 
𝑁𝑖+1,1

𝑁1𝑎
                                                                 (5.21) 

 

𝛾2 = 
𝑁𝑖+1,2

𝑁2𝑎
                                                                 (5.22) 

To determine 𝑇 when 𝛾1 𝛾1𝑇 or 𝛾2 𝛾2𝑇 

 

• If 𝛾1 𝛾1𝑇, it signifies that the shape of plane 1 changes sharply, and the point detected 

by Equations 5.17 and 5.18 is not an actual point in the point cloud. Thus, Equations 

5.17 and 5.18 should be modified as follows: 

 

(

𝑥𝑖+1

𝑦𝑖+1

𝑧𝑖+1

) = 𝑇1𝑇 (

𝑑𝑙
𝑑𝑙
𝑑𝑙
1

)                                                                  (5.23) 

𝑇1 = [
cos 𝛽 −sin 𝛽 0
−sin 𝛽 cos 𝛽 0

0 0 1

]                                                             (5.24) 

and 𝛽 is the angle between 𝑉𝑃𝑖𝑃𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑉𝑃𝑖𝑃𝑖+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    in the third principal direction at the                

point 𝑃𝑖  

 

Figure 5.17 Edge points with the direction  



 

154 | P a g e  

 

 

• 𝛽 can be determined by iteration trials. The process to determine 𝛽 is as follows: 

❖ Let 𝛽 = 0  for Vector 𝑉𝑃𝑖𝑃𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

 

❖ Increase 𝛽 by 𝑑𝛽 (𝑑𝛽 is the radius of the user-defined size of the sphere) 

 

❖ Calculate 𝛾1 

 

❖ If 𝛾1 𝛾1𝑇, then register the coordinates of the point 𝑃𝑖+1 

 

❖ Apply the edge detection method.   

 

• If 𝛾2 𝛾2𝑇, it signifies that the shape of plane 2 changes sharply, and the point detected 

by Equations 5.1 and 5.18 is not an actual point. The rotation axis should be the third 

principal direction vector of point Pi  

 

• If both 𝛾1 𝛾1𝑇 and 𝛾2 𝛾2𝑇, it signifies that the shape of both planes changes sharply. 

The rotation axis to be used will be the cross product of the third principal direction 

vector of Point Pi  

Once 𝑃𝑖+1 has been detected by the above steps, the procedure is repeated until it can no longer 

find the points.  

 

5.3.6.1 Stopping Criteria 

The series of edge points are detected using an edge stream. The edge stream is powerful and 

continues even in the presence of obstacles. Therefore, a stopping criterion is implemented to 

control and provide accurate results. Figure 5.18 shows an example of centre points detected 

along the wall and the footpath.  
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                                           (a)                                                                                   (b) 

Figure 5.18 Highlighted centre points detected by the proposed algorithm (a) Shows detected planes with start, 

centre and end points (b) Stream of points detected 

 

 

Table 5. 2 Two planes detected (orange and blue)  

Points 

in 

Plane 

Iter. 

(best-

fit 

plane)    

Standard 

Deviation 

(m) 

Mean Perp 

Dist (m) 

Max Perp 

Dist (m) 

Min Perp Dist 

(m) 

Time 

(Iter.) 

Time 

(ms) 

3236 1 0.0419408  0.0896429 0.3115862 9.2745118102

6254E-08 

4 68 

5105 2 0.0515273  0.0878875 0.3087326 5.2209042226

5999E-07  

4 68 

5074 3 0.0515421  0.0880621 0.3090510 3.0703541520

9336E-14  

4 68 

5062 4 0.05153760  0.0881201 0.3091568 8.0679611830

6324E-07  

4 68 

5059 5 0.05153700  0.0881372 0.3091868 1.4270513525

5466E-07  

4 68 

14142 1 0.06832822  0.0473381 0.2882325 8.2573150749

1804E-06  

7 68 

9036 2 0.03106678  0.0460698 0.2923764 3.2582134241

6892E-10  

7 68 

9068 3 0.03117444  0.0461259 0.2925754 4.3029257327

3945E-12  

7 68 

9080 4 0.03118604  0.0461348 0.2925759 1.0030596919

0162E-10  

7 68 

9083 5 0.03119782  0.0461314 0.292590697 2.3855995520

8919E-06 

7 68 

 



 

156 | P a g e  

 

Table 5.2 shows group 𝑃₀ as an orange colour and group 𝑃₁ as blue colour going through each 

iteration as the number of points has been best fitted to each group. In this example, the 

iterations are set from 1 to 5. The iterations end when the number of points in the plane (either 

𝑃𝑙1 or 𝑃𝑙2) starts repeating itself, i.e., all the points are successfully assigned to a group, and 

therefore no point in carrying on the iterations. The computer used to run the proposed 

algorithm specification is as follows: Intel Core i7 processor running at 2.60 GHz using 16 GB 

RAM running on 64-bit Windows 11 version 22H2. 

The example shown in Table 5.2 stops at the fifth iteration. Other measures for quality control 

of best-fit planes are standard deviation, perpendicular distance:  minimum, maximum and 

mean, time duration for finding points in each plane, time duration for each iteration and total 

time in milliseconds. The stopping criteria for edge detection are: 

• The number of points in the planes is repeated in i or i-1 iterations.  

 

• When the angle between the two planes is greater than the specified angle 

 

• When the angle between consecutive edges is less than the specified angle  

 

• When the total distance of the edge stream is not a multiplier of the search sphere size  

 

5.4 Proposed Algorithm Implementation on Commercial 

Software   

The application of the proposed algorithm on commercial software is discussed in this section. 

The commercial software is called “LSS - 3D Vision”. However, manually extracting and 

accurately identifying the edge features using the number of points along the edges of a surface 

in a point cloud proved tricky and time-consuming.  

Therefore, the aim was to produce automated results of finding edges using a 3D sphere for 

kerb edges, walls, stairs etc. Hence, the edge streams are designed and developed. Edge steam 

is the first innovative method in the industry. 
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Figure 5.19 Edge sects extracted manually along kerb edges 

 

5.4.1 Key Features 

This section describes the application for finding the edges in LSS software and intends to 

provide the background of technical terms and reports used by the algorithm. An edge is 

calculated in real-time using the search sphere by moving the cursor in the 3D space within the 

point cloud. This search sphere is placed along the edge of a feature where two surfaces are 

present to identify an edge. All points inside the search sphere (commercially called 

“Searchphere™” in the LSS software) are divided into two planes, the intersection of which is 

identified as an Edge. The key features to operate the edge/edge stream commands within the 

software are: 

• Search sphere options selection – The users must select the edge/edge stream option 

from the search sphere settings. 

• Search sphere size – The users need to set the size of the sphere. Otherwise, the default 

size will be used.  

• Edge detection Report – The edge report explains the edge/edge stream details, as 

shown in Figure 5.20. 
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The description of terminology used in the report of Find Edge/Edge Stream: 

• Points in Plane –Indicates the number of points found in each iteration, 

 

• Iterations – Iteration number for regression (maximum 5 per edge),  

 

• Standard Deviation – Calculated with the perpendicular distance of each point in the 

search sphere to each plane,  

 

• Mean Perp Dist – Mean of all the perpendicular distances, 

 

• Max Perp Dist – Largest perpendicular distance, 

 

• Min PerpDist – Smallest perpendicular distance,  

 

• Calculation time – Total time taken for iterations of each plane. 

 

 

Figure 5.20 This report is generated while the Edge/Edge stream option is in operation and updates in real-time 

 
 

5.4.2 System operations 

This section describes the commands in the 3DVision software of LSS. For the Edge option, 

the selection mode is selected as “Find Edge”, and a search sphere size is set.  The setting of 

size and search sphere mode is shown in Fig 5.21 (a), with an example in Fig 5.21(b). 

The user needs to select an appropriate search sphere size because the calculation is based on 

the points inside the sphere. Therefore, an appropriate size must be used to identify and extract 

the feature. For example, to find the top of a kerb, the sphere size is best kept below the height 

of the kerb itself to avoid points from outside the feature weighting the results.  
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(a) 

 

(b) 

Figure 5.21 (a) Select Find edge and Edge stream options from the dropdown menu of selection mode and set 

the required Searchphere size (b) Example of finding edge between wall and ground. The two colours represent 

defined best-fit planes, and the white line represents the edge with a green dot in the centre (edge point) 

 

For finding edge streams, the selection mode is selected as “Edge Stream.” And search sphere 

size is set similar to the edge. In addition, the edge stream option has a separate list of options 

shown in Fig 5.22. 
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Algorithm Settings – The proposed algorithm in the commercial environment allows the users 

to set the parameters to find the best results in different data sets. The recommended or default 

parameters are shown in Fig 5.22; these settings could be changed according to the point cloud 

data used. This algorithm’s feature has practical value for users, providing flexibility in 

different data sets. For example, a building wall data set differs from a quarry data set. 

 

 

Figure 5.22 User-controlled options for the proposed algorithm in 3DVision 

 

Setting Parameters – Figure 5.22 demonstrates the parameters that could be set according to 

the point cloud data used to detect the edge sects and edge stream. The first two parameters: 

(a) the angle between two planes that define the edge and (b) the angle between two consecutive 

edge sects is most important as it gives the flexibility of detecting different features (like the 

wall, kerb, slope, etc.) by manipulating these two parameters. Both parameters are used as 

stopping criteria for the proposed algorithm. The angles can be set to 30, 45, 60 and 90 degrees. 

The reason for choosing these angles was that they cover all the edge features to be detected in 

typical urban and quarry point cloud data. The third parameter (repeat every) gives the 

flexibility to obtain the edge points in the stream at a defined number. The fourth parameter 

provides the flexibility to obtain the edge points according to the set distance (metres). The 

fifth parameter is the search sphere size (metre), which plays a significant role in edge 

detection. The sphere size should be set according to the feature. The distance depends on the 

search sphere size; therefore, the actual distance between edge points is also shown in Figure 

5.22.  
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5.4.3 SDE 

The software development environment (SDE) used for the proposed algorithm is Microsoft 

Visual Studio 2022 version 17.4.4, the language is C# (pronounced as C sharp) version 10 and 

.Net Framework 4.8. The algorithm is implemented in the backend, which users access as the 

front-end interface, as shown in Fig 5.23. 

 

 

Figure 5.23 Visual Studio 2022 used for implementation of the proposed algorithm 

 

5.4.4 RealWorld Scenarios 

This section demonstrates how effectively the proposed algorithm detects edges in the presence 

of gaps, shadows, and obstacles. The challenges of existing methods are highlighted in Section 

5.2. The important concern in civil engineering and surveying is reliably identifying gaps or 

obstacles in the point cloud data. When the scanner collects the point cloud data, the point 

density varies. The point density is the number of points collected per unit area. The area near 

the scanner usually has a high point density, and the area further from the scanner has a low 

point density. Higher point density means more points per unit area, which will help more 

accurate edge detection. However, the scanned points with low point density make it very 
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difficult to detect edges because of gaps or shadows in the data. The missing point cloud data 

could either be because of the shadow of an object or because the scanner density is decreased 

as the distance increases, creating a gap between the point cloud data. The other concern is the 

presence of obstacles. These obstacles could be part of urban data such as road furniture, lamp 

post, marker pole, electric unit, bins on the road, vehicles and vegetation. 

 

5.4.4.1 Gap Shadow and Missing Point Cloud Data 

Figure 5.24 illustrates the presence of low point density and a gap because of missing point 

cloud data. Edge detection could be challenging due to missing points, gaps, the reflection of 

points and scattered data (presence of trees). Therefore, relevant sanity checks are important to 

overcome these problems. An example of such data is shown in Fig 5.24. To overcome such 

problems, calculate the angles between two best-fit planes and the edges. For example, in Fig 

5.24 (b), all the two best plane angles are calculated as the edges detected are along the wall 

and the path using the edge stream. If angles are greater than the average angles computed, 

then the edge stream detection is stopped—the criteria to effectively identify when the edge 

stream identification stops on its own.  

 

 

(a)                                               (b) 

Figure 5.24 The point cloud data (a) shows the edge is difficult to identify because the second plane data is 

missing (b) shows a whole circle of data is missing 
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Figure 5.25 Example of the edge stream affected due to the presence of trees and shrubs 

 

The other typical problem in the point cloud is the presence of vegetation. Figure 5.25 

demonstrates a situation where vegetation, such as shrubs and small plants, can cause problems 

while detecting the edge. The real-time search sphere can trap vegetation and detect an 

inaccurate edge in these conditions. To avoid or prohibit false edge point results, the angle 

criteria play a very important role. The stopping criteria are the angle between two planes and 

the edges set according to the obstacles.   

 

5.4.4.2 Obstacles Identification 

The other common problem in urban point cloud data is various objects affecting edge 

detection. These objects include an electric pole, marker pole, electric box, bins, pillars on the 

wall etc., as shown in Fig 5.26. The solution for this problem is (i) calculating the angle between 

two best-fit planes and (ii) the angle between two consecutive edge lines.  

 

(a)                                                                                        (b) 

Figure 5.26 Examples of obstacles such as (a) the lamppost and (b) the wall pillar 
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A few recommended settings have been tested on several point cloud data. The proposed 

algorithm detects obstacles and gaps for a wall when the angle between edges is set to 45 

degrees, the angle between planes is set to 60 degrees, and the search sphere size is set to 0.5 

metres. For kerb edge detection, the angle between edges and the angle between the planes is 

set to 60 degrees with a search sphere size of 0.09 metres. Setting a small search sphere size 

for a kerb is because the actual kerb size should be approximately similar to the search sphere 

size. Every three points are selected for a kerb detection repeat because the search sphere size 

is so small that it could detect hundreds of points. For quarry data (mineral extraction or mine), 

the angle between edges is set to 45 degrees, and the angle between planes is set to 60 degrees. 

The search sphere size is 0.4 metres; the repeat of every point is set to 1. 

 

 

(a) 

 

(b) 
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(c) 

Figure 5.27 A tested predefined settings for obstacles and missing data according to the edge features in the 

point cloud 

 

Together with the options and criteria, these settings are very useful for the users of LSS 

software in geographic information systems. The flexibility of the system allows them to 

extract edge and edge streams from difficult terrain to urban features in real-time. For example, 

the edges detected can be controlled by two values: 1) angle between edges and 2) angles 

between planes. In addition, the number of detected edge points can be filtered using the repeat 

every point option, and the distance between consecutive detected points can be set. Users save 

these criteria settings as personalised feature names for future use.  

 

5.5 Evaluation  

In this section, the proposed PCA-based algorithm is demonstrated and evaluated (validation) 

in terms of accuracy, robustness, breakpoints, classification of outliers and inliers, and 

computation speed using various point cloud datasets. The primary purpose of this section is 

to demonstrate the proposed algorithm’s efficient computation time and an analysis of the 

accuracy of real-time point cloud data. The Edge stream is used for evaluation as it is a semi-

automatic process and comprises edge sects.  
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5.5.1 Datasets for Evaluation: Point Clouds 

The datasets used for the valuation and validation are generated using terrestrial laser scanners 

or LiDar scanners. For terrestrial laser scanners, the FARO scanner model FOCUS 350 is used. 

The focus scanner range is up to 350 metres for long-range measurements, and the 

measurement speed is up to 976,000 points/second. In addition, the focus has integrated GPS 

and Glonass, allowing position detection (Focus - FARO® Knowledge Base, 2016). The 

resolution of the scanner is up to 165 megapixels. For the LiDar laser scanner, Leica RTC360 

3D Laser Scanner captures point cloud data for up to 130 metres with two million points/second 

measurement speed. In addition, the Leica scanner has multi-sensors GPS, compass, height 

sensor and dual-axis compensator (Leica RTC360 3D Laser Scanner | Leica Geosystems, 

2018). 

 

Figure 5.28 University of Gloucestershire Park Campus 

 

Fig 5.29 illustrates five data sets that have been used to evaluate the proposed algorithm. Data 

sets are road, car park, church, quarry and University of Gloucestershire Park Campus data set 

(University data set). For this thesis, several point cloud data sets have been collected in 

collaboration with the University of Gloucestershire (UOG). The University data set was 

captured in front of Fullwood House of the Park Campus, as shown in Fig 5.28. The MTSL car 

park data set was captured in the front building of McCarthy Taylor Systems Ltd. (MTSL). 

The church data set was captured in Birdlip, Gloucestershire. The car park, church and 
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University data set were captured by the FARO laser scanner. The road and quarry data set 

were captured by the Leica laser scanner. The scanned datasets consist of points in 3D (x, y, z) 

along with each point’s R, G, B and an intensity value. The point cloud data set description is 

as follows:  

1. Road data set – an urban data set with features like tunnels, roads, marker posts, kerb 

etc. It has a total point count of 21.43 million. 

2. MTSL Car park data set – a scanned car park with features like vehicles, buildings, 

roads and vegetation. It has 78.76 million points. 

3. Church data set – a scanned church and surrounding vegetation. It has 257 million 

points. 

4. Quarry data set – a scan of active quarry with 159 million points. 

5. University data set – is captured in the University of Gloucestershire campus and has 

580.94 million points. 

 

 

                                  (a)                                                                             (b) 

 

                                  (c)                                                                              (d) 
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      (e) 

Figure 5.29 Datasets used for evaluation of proposed algorithm (a) Road data set, (b) MTSL Car park data set, 

(c) Church data set, (d) Quarry data set, (e) University data set 

 

5.5.2 Computation Parameters 

This section implements the proposed algorithm for commercial software. The computation 

evaluation is based on algorithm settings, the performance of the proposed algorithm and 

default parameters.  

 

Performance of Algorithm: The proposed algorithm has been tested on these five datasets. 

The algorithm’s outcome in terms of performance is shown in Table 5.3. Furthermore, it is 

tested on the following point cloud data sets: (1) Church data set is a scanned church and 

surrounding vegetation. It has 257 million points, and the file size is 5.13 gigabytes (GB), (2) 

MTSL car park data set is a scanned car park with features like vehicles, buildings, roads and 

vegetation. It has 78.76 million points with 2.19 gigabytes file size, (3) Road data set is an 

urban data set with features like tunnels, roads, marker posts, kerb etc. It has a total point count 

of 21.43 million with 0.53 gigabytes file size, (4) Quarry data Set is a real-world quarry with 

stockpiles. It has 159 million points with 3.17 gigabytes file size, and (5) the University data 

set is the real-world campus with buildings, vegetation and terrain. It has 581 million points 

with 14.24 gigabytes file size. 
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Figure 5.30 User-controlled criteria for the proposed algorithm in 3DVision 

 

The parameters are different for different data sets. The points inside the search sphere depend 

on the selected size and point density. The sphere sizes in Table 5.3 are different as each data 

set has different features for edge detections. The size parameters are selected based on the 

detected feature to make edge sects evident. For example, the edge detected in the church data 

set was between the church wall and the ground; therefore, the size is set to 0.3 metres, which 

covers more area and is not very small. The wall and ground are almost perpendicular in the 

church dataset, the angle between planes is set to 90 degrees, and the angle between edges is 

set to 45 degrees as the wall and ground are almost flat. In this example, both stopping criteria 

are used for edge stream detection a) if the angle between planes is greater than 90 degrees and 

b) if the angle between the edges is less than 45 degrees.  

In the car park data set, the edge feature is also the building wall and the road; therefore, the 

angle between planes is set to 90 degrees, the same as the church data set, and the edge angle 

is set to 30 degrees because of building wall beams. 

In the road data set, because of various road furniture like a lamp post and a marker pole, the 

angle between the plane is set to 60 degrees, the edge angle is set to 45 degrees, and the search 

sphere size is set to 0.5. Both angles were set to 60 degrees in the university data set as the edge 

detection was inside a room to find the floor plan. The room has few obstructions and very 

high point count density; therefore, the search sphere size is set to 0.3 metres.  
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In the quarry data set, the angle between planes is set to 45 degrees, and the angle between 

edges is set to 60 degrees. The plane angle is less than the angle between edges as the edges 

are picked for a stockpile and break of slope. For these features, the search sphere size is set to 

0.5 metres. 

The proposed algorithm has been implemented to find edge sects and edge streams using the 

data with the parameter listed in Table 5.3. A difference in calculation time can be observed. 

The car park data with 4,489 points in 0.3 search sphere size takes 6 ms to find the edge 

compared to Quarry 380 points in 0.5 search sphere size takes 9 ms because of the space 

between the points. If the plane’s surface points are not flat, the algorithm time is extended to 

fit the planes on the points.  

 

Table 5. 3 Point Cloud data sets 

 

The algorithm is demonstrated in Fig 5.31 and Fig 5.32 as an example of edge stream detection. 

In Fig 5.31 example, the presence of the bin is an obstacle. Therefore, the stopping criteria are 

used to stop and exclude the noise points of obstacles. The parameters used in this example are 

0.2 mm of search sphere as the points are dense, and the angle between edges and planes is set 

Point Cloud Average 

points in 

search 

sphere 

Calculation 

Time in 

milliseconds 

Angle 

between the 

edges 

Angle 

between 

planes 

Search 

Sphere Size 

Distance in 

metres 

Church 47,789 8 45 90 0.3 1.8 (2m) 

Car Park 4,489 6 30 90 0.3 1.8 (2m) 

Road 2,234 4 45 60 0.5 4.8 (5m) 

University 16,262 14 60 60 0.3 1.8 (2m) 

Quarry 380 9 60 45 0.5 2 (1m) 
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to 60 degrees as there can be many obstacles. Similarly, in Fig 5.32 example, to determine the 

edge on the curve, the angle between the edge is set to 45 degrees and angle between planes is 

set to 60 degrees and the search sphere size is set to 0.5 mm as from two surfaces to find planes 

one surface has low-density points.   

 

 

Figure 5.31 Stopping criteria for an obstacle 

 

 

Figure 5.32 Edge Stream detection along a curve of the bridge 
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5.5.3 Comparative Analysis 

The proposed algorithm is evaluated based on accuracy, breakdown points, robustness, 

computation speed, and classification into outliers and inliers from collected point cloud data 

sets. The proposed algorithm is compared with different edge detection algorithms RANSAC, 

MSAC, RSPCA, uLSIFand qSp (Nurunnabi, West and Belton, 2015a, 2015b). A planar surface 

is fitted on the sampled data with other methods to evaluate the proposed method’s 

performance with other edge detection algorithms. To evaluate the plane’s accuracy, the angle 

𝜃 is calculated between the plane with outliers and the resultant plane without the outliers.  

Nurunnabi, West and Belton (2015a) simulated 1000 sets of 50 synthetic 3D points with 10-20 

% outliers created by the Gaussian normal distribution algorithm for fitting a regular plane. 

After which various descriptive measures of mean, minimum, maximum and Standard 

deviation of  𝜃 have been calculated. The proposed PCA-based algorithm is tested in two sets 

of 10 simulations to calculate mean, minimum, maximum and Standard deviation of  𝜃 similar 

to the provided data by Nurunnabi, West and Belton (2015a) to compare effectively. The 

proposed algorithm is evaluated on point cloud data set by generating real-time 𝜃 between the 

plane and without the outlier. The 𝜃 is calculated by the following equation, 

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑛̂1   ×   𝑛̂2)                                                  (5.25) 

where 𝑛̂1 and 𝑛̂2 are two unit normals from the fitted planes with and without outliers. As the 

data set on which the algorithm is implemented is not synthetic, the number of points to fit the 

plane may vary. Further, based on the values of average 𝜃 for all the algorithms, the comparison 

of the accuracy and robustness is easily identified.  

A regular plane is fitted on synthetic data in other methods. For the proposed algorithm, only 

the first (from the two best-fit planes detected) best-fit plane is used to evaluate and compare 

with other methods. Angle 𝜃 is calculated as the angle between the first plane and the best-

fitted plane. In other words, the angle between planes with and without outliers. The real point 

cloud data simulation and theta calculation are shown in Table 5.4 and Table 5.5.  
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5.5.3.1 Test Set with Outliers 

Two data sets have been used to analyse and compare with different algorithms. The datasets 

have been selected from 5 point cloud data sets mentioned in Section 5.5.1.  

The two sets are:  

1) The first data set has a cluster of points sampled using a search sphere with 

minimum or no outliers and noise in the data, shown in Table 5.4.  

2) The second data set has a cluster of points with outliers shown in Table 5.5. The 

outliers present in the sampled data are vegetation, people passing by, and road 

furniture.  

The proposed algorithm is tested and compiled on a computer with hardware and software 

configurations as follows: Intel Core i7 processor running at 2.60 GHz using 16 GB RAM 

running on 64-bit Windows 11 version 22H2. The proposed algorithm was also tested on a 

virtual machine and another machine with Windows 8. The timings were same and are not 

affected by the Windows version.  

  

Table 5. 4 First set with uneven sampled data (5-10% outliers) 
 

NOP 

Plane 

1 

NOP 

Plane 

5 

Theta (Cos) Theta 

𝜽 = 𝒂𝒓𝒄𝒄𝒐𝒔(𝒏̂𝟏   ×   𝒏̂𝒊) 

Speed 

in ms 

Outliers Inliers Accuracy 

1 1926 179 0.99998611 0.301987701 2 1747 179 90.70612669 

2 7665 309 0.99962216 1.575089629 6 7356 309 95.96868885 

3 1399 13 0.99998855 0.274183167 1 1386 13 99.07076483 

4 1648 73 0.99962931 1.560114531 2 1575 73 95.57038835 

5 1375 55 0.9999945 0.19002869 1 1320 55 96 

6 1485 107 0.999986 0.303181121 2 1378 107 92.79461279 



 

174 | P a g e  

 

7 2088 92 0.9999547 0.545366391 2 1996 92 95.59386973 

8 20595 755 0.999999999 0.002562345 4 19840 755 96.33406167 

9 1188 49 0.999554097 1.711094386 1 1139 49 95.87542088 

10 2437 71 0.999971032 0.436111897 1 2366 71 97.08658186 

 

 

Table 5. 5 Second set with uneven sampled data (50-55% outliers) 
 

NOP 

Plane 

1 

NOP 

Plane 

5 

Theta (Cos) Theta 

𝜽 = 𝒂𝒓𝒄𝒄𝒐𝒔(𝒏̂𝟏   ×   𝒏̂𝒊) 

Speed 

in ms 

Outliers Inliers Accuracy 

1 4209 93 0.99997776 0.38212533 8 4116 93 97.79044904 

2 5519 113 0.99982064 1.085192839 4 5406 113 97.95252763 

3 1957 52 0.99941825 1.954460433 3 1905 52 97.34287174 

4 5561 59 0.99909865 2.432859272 5 5502 59 98.93903974 

5 1203 32 0.99957931 1.662010429 1 1171 32 97.33998337 

6 3783 163 0.99917771 2.323699148 4 3620 163 95.69125033 

7 2127 45 0.97348845 13.2226765 1 2082 45 97.88434415 

8 32613 1212 0.99967288 1.465558027 16 31401 1212 96.28369055 

9 11475 313 0.99996876 0.452891608 7 11162 313 97.27233115 

10 25921 486 0.99913442 2.384089572 20 25435 486 98.12507234 

 



 

175 | P a g e  

 

5.5.3.2 Types of Data 

The planes fitted by different algorithms (PCA, RANSAC, MSAC, RPCA, uLSIF, qSp) and 

the proposed PCA-based method are shown in Table 5.6 and Fig 5.33. The following results 

have been taken from Nurunnabi, West and Belton (2015a) as a case study to evaluate the 

proposed algorithm against the other algorithms. All the existing algorithms have been 

evaluated by fitting the plane on the synthetic data set, but the proposed algorithm’s fitted plane 

is tested on the real point cloud data. The real data are more challenging compared to synthetic 

data sets due to their large size. However, for comparison, the number of points is 

approximately the same. Given that the proposed algorithm is finding the edge in real-time 

compared to the one-off implementation by Nurunnabi et al.. The data sets mentioned in 

Section 5.5.1 are used that have several edge features than synthetic data. Therefore, for this 

thesis, the point cloud data used for evaluation is the same data used by surveyors and engineers 

regularly.  

 

 

Figure 5.33 Nurunnabi, West and Belton (2015a)  demonstrated a plane fitted by different algorithms with 20% 

cluster outliers. Planes: grey - PCA, red – RANSAC, green – MSAC, blue – uLSIF, pink - qSp   

 

For the comparison, the size of the sphere has been set to 1  metre in the real-world point cloud. 

The reason for choosing a 1 metre size is that the number of points inside the sphere can be 

matched with the synthetic data. The angle 𝜃 between planes is calculated in degrees in two 

types of data sets. The first data set has a cluster of points sampled using search sphere (a) 
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without any outliers in the data, and the second set of data has a cluster of points (b) with 

outliers. The second data set has a plane fitted on sampled data using the proposed algorithm. 

An example of such data is shown in Fig 5.34.  

 

 

(a)                                                                               (b) 

 

                                                                  (c) 

Figure 5.34 The fitted plane is displayed in green, and the number of points sampled is highlighted in white. A 

plane is fitted (a) on an uneven surface, (b) on the shrub and floor, (c) on part of a tree trunk better to provide 

the photos of three objects, then point clouds, then fitted planes with the point clouds. 

  

The planes fitted by different methods are shown in Fig 5.34, in which the plane from the robust 

methods is only the one with the perfectly fitted plane. The planes fitted by the proposed 

algorithm are shown in Fig 5.34 
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(a) the presence of 5 to 10% outliers on real point cloud data with an uneven surface,  

(b) shows the presence of vegetation such as small plants or shrubs when sampling the 

data with 50-55% outliers and  

(c) shows the presence of an obstacle, such as a person or a marker pole, with 50% 

outliers.  

Mean maximum, minimum, median and standard deviation are calculated from synthetic and 

real point cloud data simulation. The results, as shown in Table 5.6, indicates that the proposed 

algorithm has lower values than others. The PCA method has the largest measures of all the 

other algorithms. The proposed algorithm has a minimum quartile range of 0.253 (QR = 3rd – 

1st). RPCA and the proposed algorithm result in better robustness than RANSAC, MSAC and 

uLSIF. 

 

Table 5. 6 Algorithm’s measures in angle 

 

Methods Mean Min. Max Median SD QR 

PCA 31.038 3.807 52.690 34.973 3.973 4.758 

RANSAC 1.186 0.000 6.367 0.832 1.167 1.618 

MSAC 1.1485 0.000 7.378 0.687 1.215 1.605 

RPCA 0.694 0.022 2.698 0.599 0.489 0.550 

uLSIF 4.3235 0.562 17.938 5.731 2.304 2.769 

qSp 14.377 0.017 43.968 30.262 15.302 30.168 

MCMD_MD 0.518 0.008 2.18 0.451 0.377 0.411 

Proposed Method 0.689 0.002 1.711 0.369 0.55 0.253 
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The proposed algorithm has measured angles that are very close to RPCA, as shown in Table 

5.6. However, calculating the angles (minimum, maximum, median, and quartile range) 

indicates that the proposed algorithm is better than RPCA. PCA has the worst results as it is 

sensitive to outliers. So, if a breaking point is calculated for PCA, it would be 0%, as it will 

stop even in the presence of just one outlier. After PCA, uLSIF results in 4.3 degrees mean and 

17.9 degrees maximum. uLSIF and qSp also did not perform well. The maximum, median, 

standard deviation and quartile range are very high for qSp. MSAC and RANSAC results are 

almost equal. MCMD_MD performed well as compared to the proposed algorithm in terms of 

standard deviation however the method was not applied in real-time or on a large point cloud 

data set. The proposed algorithm has the best result minimum quartile range, which means that 

the proposed algorithm produces more robust results than other algorithms. Also, the proposed 

algorithm was implemented on real-world point cloud data and in real-time, which is more 

challenging. The next sections will evaluate the proposed algorithm accuracy analysis and 

speed for simulated data. The plotting of the two sets of simulations based on Table 5.4 and 

Table 5.5 is represented in Fig 5.35. The first set of sampled data had 10-15 % outliers 

compared to the second set of data with more than 50-55 % outliers. 

 

 

Figure 5.35 Two sets of data simulations are represented in blue and orange.  
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5.5.3.3 Evaluation of Accuracy in the Presence of Outliers 

This section investigates the performance of all methods mentioned above and classifies them 

as inliers and outliers. The total points from the search sphere are classified as outliers or inliers. 

The data from Nurunnabi, West and Belton (2015a) are used for the accuracy analysis between 

the proposed algorithm and other methods. The accuracy of the algorithms is defined as 

Accuracy =
 TN + TP

Total number of points 
×  100                                    (5.26) 

 

where TP is true positive points identified as inliers and TN are true negative points identified 

as outliers  

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑒𝑡𝑖𝑣𝑒 =  𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠                         (5.27) 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =  points identified as inliers                                (5.28) 

 

where true positive is the number of points correctly identified as inliers in percentage, and a 

true negative is the number of points identified as outliers in percentage. 

In the first set of data with 5-10% outliers, the accuracy ranges between 90 – 99% of the total 

points. The minimum is 90%, and the maximum is 99%.  

The second data has 50 -55% outliers, and the accuracy range lies between 97- 98% of the total 

points. The minimum is 97%, and the maximum is 985. The data is shown in Table 5.4 and 

Table 5.5. 

Therefore, the proposed PCA-based algorithm accurately rejected more points when the data 

sampled uneven surfaces to fit the plane best. As a result, the fitted plane by the proposed 

algorithm identifies the best-fit plane on every data despite the outliers. The results at different 

outliers present in the data demonstrate that the proposed algorithm is highly accurate.   
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5.5.3.4 Speed Analysis 

The processing time in the point cloud is a very important aspect of any computing algorithm. 

The important advantage of the proposed PCA-based algorithm is computation time. The speed 

analysis is performed on the two data sets mentioned in Section 5.5.4.2. A regular plane is 

fitted through the data sets, and the calculation time to find the best-fit plane is represented in 

milliseconds in Table 5.7. Table 5.7 demonstrates the first set of data with 10% outliers and 

the second set representing more than 50% outliers.  

 

Table 5. 7 Plane detection in Seconds 

Methods Detection Time in Seconds 

RANSAC 0.0934 0.3640 

RPCA 0.7990 0.7937 

uLSIF 0.0405 0.0409 

MCMD_MD 0.0054 0.0395 

Proposed Algorithm 0.001 0.02 

 

The minimum time is one millisecond, i.e., 0.001s, and the maximum is 20 milliseconds, i.e., 

0.02s. The comparison is performed with different algorithms, with 10% outliers. The resultant 

time of the proposed algorithm is 0.001 seconds, less than the other algorithms. RPCA has a 

maximum time of 0.799 and MCMD_MD in 0.005s, uLSIF in 0.0430s and RANSAC in 

0.0734s (Nurunnabi, West and Belton, 2015a). The resulting time in seconds for 50 to 55% 

outliers of the proposed algorithm averages 0.02 milliseconds less than MCMD_MD of 0.0395. 

The other algorithms have similar results RANSAC in 0.3640 and ulSIF in 0.04909. RPCA has 

a maximum time of 0.7937, similar to 10% outliers. The computer used to run the proposed 

algorithm specification is as follows: Intel Core i7 processor running at 2.60 GHz using 16 GB 

RAM running on 64-bit Windows 11 version 22H2. 
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5.5.4 Accuracy Evaluation  

The proposed algorithm accuracy is investigated by calculating the error distance measure, as 

listed in Table 5.8. The proposed algorithm has calculated two measures using the cross-section 

of sampled data inside the search sphere to analyse the resultant edge point. 

 The two measures are:    

• the actual centre point (edge point) of the search sphere.  

 

• the centre point generated by the proposed algorithm. 

 

In Fig 5.36, there are two sections: the upper section is 3D point cloud data, and the lower 

section is the cross-section of the 3D data inside the green cube. The projection of the 3D green 

cube on the Y-X plane is represented in Fig 5.36, lower section. The green dots represent the 

edge points in the upper section (3D point cloud).  

The proposed algorithm identifies all the green dots as an edge stream. In the lower section, 

the pink circle represents the search sphere. The red point of the pink circle represents the actual 

centre of the sphere, and the green dot inside the pink circle represents the edge point calculated 

by the proposed algorithm.  

For evaluating the accuracy of the calculated (green point) by the proposed algorithm shown 

in Fig 5.36, a set of edge points have been tested on the real point cloud data to find the error 

distance ∆d between the edge point generated by the proposed algorithm and the cross section's 

actual centre inside the search sphere. ∆d represents the distance between the two points.  

The edge point is a calculated point that may or may not necessarily be an actual 3D point but 

will best fit the available data. Table 5.8 lists five points of real point cloud data that compare 

the edge and actual centre points on the cross-section.  
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∆X, ∆Y and ∆Z are calculated, which is the difference between the two point’s X, Y and Z 

components. The minimum distance is 0.038549, and the maximum is 1.0535, with ∆Y of 

0.019 and 0.053, respectively.  

 

 

Figure 5.36 The upper section of the image describes the 3D point cloud, and the lower section demonstrates the 

3D point cloud data cross-section. The green dots represent the edge points calculated by regression of the 

proposed algorithm, and the pink circle demonstrates the centre of the search sphere 

 

The results shown in Table 5.8 display that the proposed algorithm efficiently best fits the 

planes on the data points to derive the edge points. Furthermore, the edge point is not influenced 

by the gravity of the points inside the search sphere. Therefore, the proposed algorithm proves 

the accuracy and correctness of the point detected. 

 



 

183 | P a g e  

 

Table 5. 8 Measures to Calculate the Accuracy of Edge point Detected 

 

5.6 Chapter Summary 

In this chapter, the algorithm applies a robust and statistical approach for identifying the edges 

between two surfaces in 3D point cloud data. The proposed algorithm is robust, efficient and 

accurate. The proposed algorithm first applies the best-fit plane to most of the data. Then, each 

local point is calculated to best fit the plane from the plane’s point of interest. Secondly, each 

point is identified as an outlier or inlier based on its distance from the plane. Results show 

accuracy and fast computation times. However, the computation time is relatively greater when 

outliers increase. Also, the search sphere size plays an important role in Edge stream detection. 

The results are performed on real point cloud data and the algorithm is performed on large data 

sets. The advantages of the proposed algorithm are compared to other algorithms include (i) 

  Point 1 Point 2 Point 3 Point 4  Point 5 

Actual centre point of 

Y-X cross-section 

plane inside the 

search sphere 

X 382897.509 382897.668 382897.901 382898.081 382898.496 

Y 398119.407 398119.707 398120.073 398120.403 398121.129 

Z 25.854 25.881 25.881 25.885 25.905 

Edge point generated 

by the proposed 

algorithm 

X 382897.454 382897.662 382897.864 382898.069 382898.463 

Y 398119.343 398119.688 398120.047 398120.339 398121.076 

Z 25.848 25.848 25.873 25.881 25.905 

Error ∆X 0.055 0.006 0.037 0.012 0.033 

∆Y 0.064 0.019 0.026 0.064 0.053 

∆Z 0.006 0.033 0.008 0.004 0 

Error in distance ∆d ∆d 0.084599 0.038549 0.045924 0.065238 1.053517 
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the accuracy to identify the outliers, (ii) efficiency when applied on a large data set, and (iii) 

the faster computation time than PCA, RPCA, RANSAC, uLSIF and qSp, (iv) easy to use, (v) 

simplicity. The proposed algorithm could further be used for feature detection, segmentation 

and region-growing algorithms. 

Edge detection can be further developed to find the edges in the whole point cloud 

automatically; the future of edge detection can also be extended to corner detection, where 

instead of two planes, it identifies three planes as it is very difficult to find a corner with the 

two planes. 

One of the dependencies of the proposed algorithm is the user. The stopping criteria depend on 

the angle of planes and edges that have been set. The angles set completely depend on the 

user’s experience using the algorithm for the obstacles and missing data in their designated 

point cloud. 
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Chapter 6 A New Voxel-Based Algorithm 

for Cylindrical Feature Detection in Urban 

Point Clouds 

  

6.1 Introduction 

Among different datasets, one of the essential ones is the urban point cloud. With technologies, 

there has been increased demand within the surveying industry to process these data 

automatically. Urban point clouds are detailed and contain various objects with meaningful 

geometrical and physical information that must be extracted. For example, buildings, vehicles, 

vegetation, street furniture, ground, road markings, and maintenance holes are all objects 

requiring identification. In addition, these objects have disparities: noise, size, incomplete 

structures, different point densities, holes and gradients. Therefore, the automatic extraction of 

these objects from 3D point clouds for urban cartography is extremely attractive and high in 

demand because it tremendously decreases the resources needed to analyse the data for 

subsequent uses in city management and planning functions (Lam et al., 2010; Sahin et al., 

2012).  

Among various urban objects, trees play an important role. Therefore, a tree survey report is 

beneficial in different ways. For example, a digital model of the street tree could play an 

essential role in environmental analysis or tree management, hazard analysis of a nearby 

building, urban landscape beauty, etc. Furthermore, poles are also important street furniture. 

These pole structures include marker poles, lamp posts, square poles, traffic signs and 

streetlights documented as road inventory (Landa and Ondroušek, 2016). Therefore, accurately 

detecting the location of the trees and pole structures is an essential aspect of the ecological 

and surveying field. In forestry, the volume of trees is often used to determine the health of the 

trees. In urban data, trees and poles are often surveyed for risk and hazard analysis, damage 

control, and logging accounts for tree growth. 
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This chapter proposes a new automatic voxel-based detection algorithm for cylindrical features 

such as tree trunks and pole-like objects in urban point clouds. The proposed algorithm detects 

trunks and pole objects with different shapes, girth, slopes, and low-density points.  The 

algorithm consists of six stages: 

1) Extraction of ground and non-ground points 

2) Voxelization 

3) Removing the ground points and detecting the seed layer 

4) Clustering of the neighbourhood 

5) Detection of cylindrical features 

6) Classification of detected objects into trunk, pole and other features 

The algorithm has been tested on different data sets. The analysis and evaluation of the related 

work for detecting the pole-like objects in urban data are given in Sections 6.2.1 - 6.2.4, and 

the detection of tree trunks in urban or forest data sets is provided in Section 6.2.5. A new 

proposed algorithm (voxel-based algorithm for cylindrical object detection) is presented in 

Section 6.3, with the classification of the objects in Section 6.3.7. The implementation of the 

proposed algorithm is presented in Section 6.4 with real-world scenarios encountered by 

surveyors and civil engineers. The evaluation of the proposed algorithm is presented in Section 

6.5. Discussion is presented in Section 6.6 of the proposed algorithm’s advantages and 

limitations. Finally, the chapter summary is presented in Section 6.6.  

 

6.2 Analysis and Evaluation for Existing Methods: Pole-like 

Objects and Trees  

Processing point cloud data consists of filtering, segmenting and transferring the information. 

The segmentation algorithms are widely used to divide the point cloud data into groups or 

regions to extract meaningful information belonging to a feature (Tombari, Cavallari and 

Stefano, 2016). Besides segmentation, shape and semantics-based methods are frequently used 

to detect trees and poles in urban data. In this Section, the existing methods are analysed and 

evaluated in detail, starting with pole-like structure detection by segmentation, semantics, 

slicing and shape-based, followed by individual tree detection in urban and forest data sets. 
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6.2.1 Segmentation and Clustering Methods (Model fitting) 

This section discusses and presents the existing object detection methods based on 

segmentation. These segmented groups are clustered, or a model is fitted to extract the features 

from the point cloud. Lehtomäki et al. (2010) developed a method to detect pole-like objects 

in a road environment. The algorithm starts by segmenting the 3D scan line individually. Short 

distance adjacent points on the scan line are gathered in one sweep. The isolated poles (away 

from building vegetation) are captured by one sweep forming a profile point group. The 

possible pole-like structures are exacted by segmenting each profile into point groups. The long 

groups are discarded, and only short groups are considered. Next, the short point groups are 

clustered by searching groups in the horizontal plane to find the candidate pole cluster. A group 

is selected as a seed group on each profile.  

All the groups adjacent to it are compared. If a group is found above a seed group, they become 

part of the same cluster. The clustering could divide the clusters into several sub-clusters, and 

therefore, the next phase of the algorithm merges clusters. The merging criteria are clusters that 

are pole-like and vertically oriented. The clusters classified as poles and non-poles are based 

on shape, length, orientation and point density. The pole candidate must satisfy the following 

criteria 1) the cluster should be along the main axis 2) a minimum of three sweeps in a cluster 

3) pole-like shape 4) the main axis should be close to vertical 5) the presence of not too many 

points around the cluster in the local neighbourhood. The method can find 77.7% of poles and 

correctness of 81.0% in suburban areas. The disadvantage of using the scan line segmentation 

is that if there are outliers or shadows in a sweep, the point groups are split into many small 

groups. Therefore, poles with vegetation behind, parked cars, scattered points and oblique poles 

cannot be detected. 

Pu et al. (2011) presented a method for recognising the road structures captured by mobile laser 

scanners. The framework starts by dividing the point cloud data into road sections. Then, each 

road is segmented with the surface growing algorithm based on planar seed surface detection 

in Hough space. Next, the parts are classified as ground surface, on-ground, and off-ground 

objects. The on-ground points are further used for detailed feature recognition. Next 

knowledge-based feature segmentation is applied to the segments based on geometric attributes 

as  
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1) size – length, width, height, area or volume 

2) shape 

3) orientation  

4) position 

5) colour 

6) topological relationships – angle and intersect. 

Objects with planar features are detected based on classes such as geometric fitting, recognising 

rectangles, circles and triangles. The pole-like structures are identified by a percentile-based 

algorithm that slices vertically in 2D. A rectangle is fitted in each slice. The rectangle’s centre 

point and diagonal length are compared to all the slices in percentile. The difference in 

neighbouring slices is checked if the centre position and diagonal length are within the 

threshold and the slice is part of the segment. Finally, if the count reaches a certain number, 

the object is classified as pole-like, and if the rectangle diagonal exceeds the maximum length, 

the slice is discarded. The objects on the ground are identified, such as traffic signs, trees, 

building walls and barriers. The results show that the recognition is 86% for poles and 64% for 

trees. However, the problem with the algorithm is that rough classification assumes that ground 

segments are large planes across the data, which might not be true for all point cloud data sets. 

Yokoyama et al. (2011) proposed a method for recognising pole-like structures from scanned 

point clouds. The process is based on Laplacian smoothing using a k-nearest neighbours graph. 

The first step is the segmentation of input point clouds. Golovinskiy, Kim and Funkhouser 

(2009) used the segmentation method by connecting the nearest neighbour points. The outcome 

is a sequentially generated k-nearest neighbour graph. Next, Laplacian smoothing is applied to 

each segment to improve the recognition rate. Smoothing helps in removing noise and shape 

degeneration. The disadvantage of smoothing is that the algorithm cannot identify pole-like 

objects, such as trees, as the branching information will be lost. Laplacian smoothing is applied 

to overcome the preserving endpoints, which is an operation that relocates a point to the centre 

of the neighbours. Then each point is classified into points belonging to pole-like, planar or 

other objects. Each segment’s degree of pole-like shape is evaluated, and pole-like segments 

are selected based on the threshold. The threshold is the height of the pole and the minimum 

number of points. The degree is calculated by:  
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𝑓𝑛 = (𝑤1

𝐶𝑛

𝑆𝑛
+ 𝑤2

𝐷𝑛

𝐶𝑛
) ×

100

𝑤1 + 𝑤2
                                                 (6.1) 

 

where  𝑤1 and 𝑤2 are weights, 𝑆𝑛  is a set of points in a segment, 𝐶𝑛 is a set of points on pole-

like objects included in 𝑆𝑛 and 𝐷𝑛 is a set of points that are vertical and included in 𝐶𝑛 

(Yokoyama et al., 2011). The average accuracy is 97.4 %. However, the disadvantage of the 

algorithm is that the pole with a nearby hedge or tree was undetectable as pole-like objects’ 

detection depends on the correct segments. 

Yokoyama et al. (2013) further extended the method to classify pole objects more effectively. 

First, the attached parts of the pole are recognised by applying RANSAC. The points within a 

distance threshold from a fitting line are identified as supporter points. The iterations of the k-

nearest search extract various segments of the attached parts. Then, shape features are evaluated 

based on the membership value of the utility pole, lamp post, and street sign. The value is 

calculated by: 

1) the number of attached parts (utility pole has more attached parts than lamp post and 

street signs) 

2) the height 

3) the part types. 

The next step is to use the context features evaluated using the pole’s relative position and local 

distribution. Both shape and context features contribute to the calculated membership value to 

classify the pole-like objects into utility poles, lamp posts and street signs. The classification 

accuracy for pole-like object detection using shape features is 66.7%, and the classification 

accuracy using shape features and context features is 81.5%. The disadvantage of the algorithm 

is that the detection depends on specific criteria such as height and shape; therefore, it is not 

flexible enough to accurately identify all pole-like objects. 

Tombari et al. (2014) proposed another algorithm to detect pole-like structures in an urban 

environment. First, using RANSAC, the point cloud is reduced by removing all the planar 

surfaces, such as building façades and ground regions. More than one plane is detected due to 

noise; therefore, the plane with the most normal consensus is the dominant plane. Second, on 
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each non-removed point, a local feature is computed to emphasise the poleness of a point’s 

neighbourhood and is categorised by a support vector machine (SVM). The SVM provides a 

score for a point’s probability of either belonging to a pole or not. After the categorisation, a 

semantic clustering depending on Markov Random Field is conducted using a connected point 

cloud graph. Finally, all the points in the reduced point cloud are clustered as poles or not poles, 

based on the constant classifier’s output and point connectivity. Spin image descriptors were 

computed to reject the presence of false positives. The advantage is that the plane could be 

fitted on one point instead of 3 points and the point’s neighbourhood. The algorithm’s 

disadvantage is that the spin image computation to define pole and non-pole structures does 

not work in the presence of vegetation near the pole structure. Also, the algorithm is tested on 

a limited point cloud dataset. 

Cabo et al. (2014) proposed an algorithm to identify pole-like objects from street furniture. The 

3D point cloud is divided into 3D cubes called voxels. A centre point and the number of points 

in voxels are stored. The algorithm is implemented on voxel’s generated simplified version of 

the point cloud. Horizontal fragments of voxel points are analysed and segmented. Next, 2D 

fragments referenced for pole-like objects are grouped. The 2D fragments are isolated as 

potential elements using criteria. The criteria are calculated by fitting rings of two different 

radii. If the isolated voxel cluster is within the inner and outer ring, it is considered a pole 

object. Finally, these 2D fragment groups of a pole are converted to 3D voxel representation 

from the original point cloud. The advantage is that the algorithm uses voxels for efficient 

access to points. The disadvantage of the algorithm is that it works in 2D to identify poles; 

hence, there is no account for poles with gradients. Furthermore, the poles are not detected in 

overlapped regions and the presence of other closer objects. 

Another voxel-based method by Hackel et al. (2016) proposed a method to extract semantic 

information about objects in scanned data and convert point clouds into geometric 

representations using changing density. The method first down-samples the point cloud (with 

a voxel-grid filter and replacing points inside the voxel with their centroid) to generate a multi-

scale pyramid and computes separate search structures per scale level. Approximation makes 

the process of multi-scale neighbourhoods fast. The Neighbourhood calculation is achieved 

using the method to configure the most suitable k-d tree. Next, 3D features based on 

eigenvalues and eigenvectors are extracted, which leads to the description of surface properties. 

Hackel et al. (2016) method modified SHOT and SC3D methods and used a reduced point 
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cloud to speed up the process. An approximate Signature of Histogram of Orientation (A-

SHOT) and approximate Shape Context 3D (A-SC3D) are created for more complex objects, 

especially near contour edges. Next, a random forest classifier was applied to predict 

conditional probabilities of different class labels and mark every point based on semantic class. 

These classes are building façades, ground, cars, motorcycles, traffic signs, pedestrians and 

vegetation. Although mobile mapping data results had high accuracy of 97.6%, the accuracy 

achieved on Terrestrial Laser scans with base features is 90.3%, further reducing accuracy 

when larger classes are tested. Furthermore, the computation time is not great for the test data 

set as it takes 90 minutes to segment 30 million points. 

Wu et al. (2017) presented a super voxel-based method for automatically locating and 

extracting street light poles. The method has five steps (1) preprocessing, (2) localization, (3) 

segmentation, (4) feature extraction, and (5) classification. First, raw point clouds are divided 

into segments along the scanner line trajectory. Then, RANSAC is used to remove the points 

that are part of the ground.  The remaining point segments are voxelized by VCCS (Papon et 

al., 2013). Second, the localization method is proposed to identify the pole objects in three 

steps: localization map generation, the ball falling and position detection. Third, super voxels 

are segmented using guided localization. Then, the pole objects are extracted based on their 

characteristics and the calculated barycenter. This helps in adding and expanding voxels to 

obtain the lamp part. Fourth, feature extraction is done by dividing the feature into the pole and 

global features. Finally, pole-like objects are classified using a support vector machine and 

random forest. The advantage of the method is that it is tested on a large point data set of 701 

million points with 98.8% localization achieved. The disadvantage of the method is that the 

processing time is too long.  

Yadav et al. (2015) proposed an automatic method for Pole-shaped Objects (PSOs) on the 

LiDar point cloud by MLS. The method is divided into three parts: (1) gridding, (2) vertical 

segmentation and (3) region growing. First, the input point cloud data is projected onto a plane. 

Then, regular square grids of the projected data are generated at a predefined size of 𝑚 × 𝑚 

in 2D along the X and Y axis. Second, the segmentation is performed on the grouped data by 

rearranging the data points in increasing Z values. The sorted Z values are segmented and 

divided into the minimum and maximum Z values. The user defines the number of segments 

and the height of the segment. The third step is a region growing method, applied by finding 

the neighbouring points of the seed point as the centre using the k-d tree. PCA is implemented 
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to analyse the data with cylindrical clusters based on the user-defined threshold of maximum 

normalized eigenvalue and angle between the z-axis and eigenvector. Finally, pole objects are 

detected by applying the second and third steps on each square grid. The method can detect 

with 95.12% correctness. However, the disadvantage of methods is the inexperience of users 

in deciding the number of segments and their height. The outliers are removed by only 

considering the 100 points from the top, which is not a powerful way to deal with outliers. The 

limitations are the detection of pole structure overlapping with other objects, pole’s upper part 

extraction and automatic recognition classification of objects. 

Xiao et al. (2016) presented a system for car park monitoring. The method starts by classifying 

the points into the ground, building façades and street objects and then segmenting using state-

of-the-art methods. Then, each segment is used to extract the geometric features by fitting the 

vehicle model to obtain its orientation and position. Then the vehicle features are classified. 

The system is able to find and locate the vehicles. Also, categorise them. However, the method 

is based on supervised learning and is only limited to the training sets.  

 

6.2.2 Semantic-Based 

This object detection method is based on rules on prior knowledge of objects. Lam et al. (2010) 

proposed an approach for extracting features like roads and attaching features of interest to the 

road. The method assumes that the road is not flat and divides it into sections to fit the plane. 

The method addresses this; the method implements two solutions 1) applying RANSAC 

followed by least squares to estimate the local plane on a 3D subsection bounding box, and 2) 

Kalman filter is applied to monitor the changes of the local planes. For extraction of road 

structures, the least squares fit an estimated 3D line. If the 3D line with enough number of 

points is located, it is identified as a pole structure. In addition, a threshold value of radius and 

if it is perpendicular to the road surface is applied to determine the poles. The advantage of the 

method is that it extracts the road and other features even in the presence of cars and trees. The 

disadvantage of the method is that the plane fitting does not work on curved roads due to the 

scale factor. In addition, the method is implemented on a 1.4 million point cloud. Hence, there 

is no proof of its effectiveness in terms of accuracy and time on a larger dataset.  



 

193 | P a g e  

 

Fan, Yao and Tang (2014) proposed a method based on a priori knowledge of urban point 

clouds. The method is achieved in three stages 1) pre-processing, 2) detecting seed points of 

man-made objects and 3) Distinguishing and identifying the seed points belonging to different 

types of objects. First, the point cloud is divided into three layers in terms of vertical height 

using a height histogram. Second, each layer’s seed points belonging to man-made objects are 

identified using a line filter called binarizing spatial accumulation map. These seed points are 

further analysed to be classified. Finally, points belonging to an object are retrieved based on 

categorized seed points. The advantage of the method is that the detection rate achieved is up 

to 83%, and classification accuracy is up to 92.37%. The limitation of the method is that objects 

are identified wrongly because of height criteria (truck identified as a house), fences are 

scattered points which are unable to detect, and low-density features are unable to be identified.  

Teo and Chiu (2015) proposed a coarse-to-fine approach for extracting pole-like objects from 

the point cloud. The method works in 3 stages – data pre-processing, coarse-to-fine 

segmentation and pole-like object detection. First, the pre-processing stage focuses on the 

region of interest (ROI) selection and building façade removal. Parts of the road are identified 

based on pre-defined road width and length, and points located 15m above the ground are 

selected as façades. Second, coarse-to-fine segmentation is accomplished, which involves three 

major steps: (1) voxel scale segmentation, (2) point-scale segmentation, and (3) overlapped 

object segmentation. The methods at this stage extract man-made and non-man-made pole-like 

objects. Voxel scale segmentation simplified irregular points through voxel space and removed 

any non-pole-like objects. 

All voxels which do not contain any points are deleted. Next, euclidean clustering of voxels is 

applied, after which points in the voxels are segmented into individual objects. Point scale 

segmentation takes the output of voxel scale segmentation and removes local ground points 

using the plane detection method based on RANSAC. Then Euclidean clustering of points is 

applied to extract individual objects based on tolerance distance. Point scale segmentation 

cannot address overalled objects, which are then processed by overlapped object segmentation 

step. In this step, based on ground height, the method selects points lower than breast height to 

detect individual stems. Coarse-to-fine segmentation separates objects on the ground but may 

contain non-pole-like objects, like walls and vehicles. Next, pole-like road object detection in 

which pole parameters such as location, radius, and height are calculated, and non-pole-like 

objects are filtered based on height, position, shape and cross-section. The method achieved an 
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accuracy of about 90%, which is more efficient than a single-scale framework. However, false 

positives were caused due to mixed objects, occlusion, and circular man-made columns like 

bus stations. Due to insufficient point density, different objects were mixed and misclassified 

as poles. The method also falsely detected low vegetation and banners, and errors were caused 

due to the complex road area environment. 

A method to use hierarchical extraction to detect urban objects by Yang et al. (2015) is 

proposed. The method first generates multi-scale voxels. Then, all the voxels are traversed to 

calculate the distance between each voxel centroid. If the distance is less than the threshold, 

the voxels are grouped. These voxels are then analysed to find linear, planar, and volumetric 

geometric shapes. Next, the normal and principal directions are calculated, followed by RGB 

and intensity. There is no restriction on super voxel size; the smaller voxel estimates are correct 

compared to larger voxel sizes. Therefore, two different voxels are created and integrated from 

different original voxel sizes to overcome the size problem. Hence, this results in similar 

geometric structures in each super voxel. The next step segments the super voxels by 

combining graph-based segmentation with multiple cues. A set of rules is defined to merge the 

segments into units with similar urban objects. The calculated saliency includes the height of 

the segment, the angle between the vertical and normal direction, the angle between the 

principal and vertical direction and the number of neighbouring segments. Finally, it extracts 

and classifies urban objects in hierarchical order placed by the saliency of segments. The 

advantage is that the proposed method is very effective as it does not just extract the objects 

but also classifies them in order. The disadvantage is that the super voxels are segmented using 

the geometrical attributes that do not account for overlapping structures in the voxel. Also no 

indication of the reason for threshold distance selection. 

Yan et al. (2016) presented a workflow for automatically extracting highway poles and towers. 

The method starts with automatic filtration to separate ground and non-ground points. The 

filtering is based on measuring slope changes in points and their neighbouring points and the 

skewness of all points. Skewness is calculated as  

𝑠𝑘 =  
1

𝑁. 𝜎3
 ∑( 𝑠𝑖 − 𝜇𝛼)3

𝑁

𝑖=1

                                                  (6.2) 
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where 𝑁 is the total number of points with 𝑖 = {1,2,3… . . , 𝑁}, 𝑠𝑖 is the length of the total 

number of points, 𝜎 and 𝜇𝛼 are standard deviation and arithmetic mean (Yan et al.,2016). 

If 𝑠𝑘 is greater than zero, the point is classified as the non-ground point. The isolated points 

data produces a digital elevation model to normalise all the above-ground points. A density-

based spatial clustering algorithm of application with noise (DBSCAN) groups non-ground 

points into clusters. DBSCAN requires two parameters: 

• the number of minimum points to form a cluster and  

• the radius to contain that minimum number of objects.  

Next, a set of rules based on the structure’s height and projected horizontal area are set to 

identify potential poles and light towers. Then the least squares circle fits to find the circle of 

the pole. Finally, cleaned light poles and towers are extracted. The method uses a very 

sophisticated way to separate the ground points. However, the problem with the method is that 

the road signs and light towers can be of various sizes, and the set of decision rules is not 

flexible. Furthermore, the large dataset implementation means more computing time for 

clustering the points in the algorithm. 

Yan et al. (2017) also presented a workflow for detecting and classifying pole-like structures 

in motorway environments. The first step is data processing, separating the ground points based 

on local minimum height and clustering non-ground points into segments. K-d tree is used to 

organize the points and is clustered based on the Euclidean distance between the neighbours. 

The overlapped segments containing pole-like road objects are further separated by comparing 

the minimum boundary rectangle and the candidate’s height. Next, a weighted graph is 

calculated. An iterative min-cut-based segmentation approach is applied to minimize the sum 

of all weights. The object is divided into ten slices across Z into the foreground and background 

clusters. After the clustering, pole-like object detection is achieved using prior and shape 

information. Prior information is the object’s size, and shape information is where the objects 

must be vertical. Finally, pole-like structure classification is achieved using objects' features 

and a random forest classifier. The algorithm’s accuracy for the two datasets is 94.9% and 

97.8%. However, due to their short height, the proposed algorithm failed to detect pole-like 

objects in the presence of vegetation and signs. The height criteria should be flexible to 

accommodate all pole height structures to detect them.  
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6.2.3 Slicing-Based Methods 

This section analyses existing methods like structure detection based on horizontal or vertical 

slicing. Like Tombari et al. (2014), Huang and You (2015) proposed a system that uses an 

SVM classifier. The method starts with the horizontal slicing of the Z layer. Next, clustering is 

performed based on the Euclidean distance to each slice. Each slice could have potential 

characteristics identified by a pole seed generation. Pole seed depends on two criteria based on 

the bounding box property of each candidate cluster. The generation is calculated by: 

i. the cross-section area 

ii. the segment length  

The result is the candidate poles. Next, bucket augmentation is performed on pole seeds to 

locate the attached structures. The seed trunk segment’s centre is considered a pole bucket, and 

other points in the range are added to the pole cluster. The next step is to ensure that the 

candidate clusters contain just pole points, not the ground or other closer objects. In order to 

fulfil the criteria, the ground (lowest part of the pole) and the disconnected regions are trimmed. 

Finally, the clusters are classified into four categories lights, poles, signs and others, according 

to their height. The disadvantage of the method is that it assumes that the horizontal slice 

always has a pole-like structure. Therefore, lacking an extensive search for contextual 

information on detected features. For example, the trees are confused with poles if they have 

similar structures.  

Landa and Ondroušek (2016) proposed another method to detect pole-like structures by 

horizontal sections. Firstly, the point cloud is processed by eliminating the lowest points, 

ground points, and highest points, anything above 12 metres (pole height). After that, outliers 

are removed based on a statistical analysis of neighbourhood points. Next is the division of 

point clouds into horizontal sections. Finally, each section is segmented by Euclidian distance. 

The resultant 3D points are based on centroid Cm(x,y,z) and the maximum distance between 

the centroid and any subsequent section point. Points inside the sections are then classified as 

pole structures based on directional vector, the difference in z coordinates and distance from 

the centroid. The algorithm reduces false positives. The advantage of the method is the 

interconnectivity of all the objects inside the point cloud. However, the disadvantage is that 

more pole object detection was missed due to the similarity because the false-positive algorithm 
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was implemented. The method could be more effective by segmenting or analysing the feature 

to classify it more efficiently. Also, the processing time was excessive (2 hours 35 minutes). 

 

6.2.4 Shape-Based Methods 

This Section analyses the existing methods of pole-like structure detection based on their shape 

in the point cloud. Golovinskiy, Kim and Funkhouser (2009) proposed a system to recognise 

objects in a 3D point cloud of the urban environment. The method consists of 4 steps – 

Locating, segmenting, extraction, and classification. The method uses multiple alternatives for 

each step and evaluates all alternatives to find the most efficient and accurate method for each 

step. The system was trained using truth data set and then was used to recognise objects in a 1 

billion point data set. The results indicated labelling 65% of the small objects. Firstly, the 

localisation step cluster nearby points to form sets of potential objects of interest locations 

where density is highest. Next, points close to the ground are filtered out and removed from 

isolated points. Any points belonging to buildings (large connected components) are removed 

too. Next, for each location, the algorithm tries to differentiate between points near the object 

from those that are background clusters through segmentation. Segmentation also identifies 

object shapes used in the next step and assigns points to objects when they have been classified.  

After segmentation, potential objects are extracted, describing the shape and context. This step 

also distinguishes objects from one another and their backgrounds. To identify the shape, 

multiple quantities are evaluated at this step, like the number of points, volume, average height, 

and standard deviation. Next, to evaluate context, the position of the object relative to its 

environment is used as a cue to identify its type. After extraction, objects were classified with 

respect to the manually labelled training set of object locations. The result is that easy object 

shape features were identified with 54% precision which was enhanced to 64% by adding 

segmentation and contextual features. The major bottleneck of the method recognition 

performance is feature extraction and classification. Better shape descriptors, contextual cues 

and classifiers need to be enhanced to improve the performance of the system discussed. The 

entire process of recognising objects in 1 billion points of point cloud took 46 hours on 3GHz 

PC – 15 hours on pre-processing, 6 hours for the location step, 15 hours for segmentation, 6 

hours to extract features and 4 hours to classify. This clearly shows that the system can 
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recognise with decent accuracy but will take a long processing time for real-world point cloud 

data sets. 

El-Halawany and Lichti (2011) proposed a method of point cloud processing to detect road 

poles and evaluate their dimensions from the unorganised point cloud. The method applies 3D 

segmentation and extracts poles using local neighbourhoods and analysing eigenvalues. The 

method consists of 2 phases – the first phase examines the effect of the density of point cloud 

and neighbour size on segmentation and the second phase is the extraction of different poles 

and determining their radius and position. A K-d tree is applied in the first phase to organise 

the point cloud and accelerate the search process. Then, PCA analysis is performed on the 

neighbourhood to classify groups as linear and planar features. In the second phase, each pole 

is extracted using distance-based region growing. To deal with noise, two methods are 

implemented (1) intensity-based outlier removal and (2) the relation between the radius of the 

pole and its eigenvalue. In the first method, low-intensity points were removed by analysing 

the distribution of intensity values for the whole point cloud, improving cylinder fitting results. 

The second method does not remove any low-intensity points, but many circles are simulated 

with different radii and compared with eigenvalues of the cross-section to evaluate the mean 

radius difference.  

The result showed dense point clouds gave better segmentation results than low-density point 

clouds. The results were analysed with different k-neighbourhood sizes and the accuracy of 

pole detection, which varied a lot. The method cannot assign a neighbourhood size to all data 

sets as it is relevant to the density of point cloud data. Further, this method is also inefficient 

in extracting pole features close to the ground due to the inclusion of pavement points in 

neighbourhood search, which affects eigenvalues. In addition, after isolating linear features, 

the pole structure was incomplete. The evaluation of the radius of poles based on intensity 

succeeded in giving the exact radius for the flagpole and sign pole, while eigen-radius 

successfully gave the correct radius for the street pole. However, both methods failed to 

evaluate the correct radius for the traffic light. The method concludes that the intensity-based 

method can be used in lower radius poles, and the eigen-radius method can be used for higher 

radius poles. The method is tested in a relatively small point cloud dataset (1 million and 4.8 

million points) with no proof of processing time, which makes it unclear whether this method 

is efficient enough to be used in bigger point clouds and its impact on processing time and 

accuracy. 
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Bremer, Wichmann and Rutzinger (2013) presented a method to classify pole-like objects using 

rotation and scale invariant points. Single objects like poles are classified by connected 

components and Dijkstra-path analysis, while tree and artificial objects are separated using a 

graph-based approach. The method achieved an accuracy of 90%. The method focuses on 

artificial pole-based objects like lamps and traffic signs and natural pole-like structures like 

trees. Each point local neighbour based on a pre-defined radius is identified and encoded into 

a covariance matrix from which three eigenvalues and three eigenvectors are computed. Based 

on eigenvalues, the points are classified into primitive classes (linear, planar and volumetric) 

based on the eigenvalue pattern of each class. Some classes like linear and planar were further 

categorised based on orientation (horizontal, vertical and other). Object classification is then 

accomplished using primitive classification to aggregate and separate semantic groups. 

Minimum cluster sizes were also introduced to reduce noise.  

Eigenvalue-based classification has its advantages and disadvantages. With a 0.1 metre radius 

search, classification was appropriate for small geometrical patterns but strongly sensitive to 

scanning patterns and differences in point densities. For example, detecting thick tree trunks is 

impossible through 0.1 metre search radius classification. On the other hand, a 0.5 metre radius 

offers better results for larger poles. It also deals with lower point densities and detects planar 

features. However, planar objects were incorrectly classified as undefined in areas with low 

point density. Furthermore, the method demonstrated classification to separate eight classes 

and focus on pole-like objects. As a result, planar object groups were handled less accurately 

and would require a more intelligent and thresholdless solution. 

Rodríguez-Cuenca et al. (2016) proposed a method to detect and classify urban objects. The 

methods start with pre-processing in two stages: 

1) transforming the reference frame into a local cartesian coordinated system and 

2) removing the parts of the cloud that will not be used for detection.  

These points are removed by indexing vertical and large surfaces, and the connected 

components are segmented on the same surface. The geometric indexing merges the 

information of each point’s normal vector and roughness value. The indexing is then extracted 

using two threshold values from the vertical and horizontal surfaces. Next, an octree level and 

a minimum number of points per segment are used to segment based on prior knowledge 
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resulting in three groups – original, building facade and road point clouds. Next, the point 

clouds obtained are analysed in a 3D vertical pillar pattern to connect the ground level to detect 

pole structure. The Reed and Xiaoli anomaly detection algorithm applies the height difference 

and spatial dispersion vertically and horizontally. The results of the algorithm are vertical urban 

elements. Finally, the vertical elements are classified by descriptors of the roughness and 

cylindrical coordinate scattering of radial distance. The quality rates tested in the two data sets 

are 94.3% and 95.7%. The advantage of the method is that it considers the slope and is not 

dependent on the scan trajectory as the original coordinates are transformed. The disadvantage 

is that the method could not detect the tree structures with low-density point clouds and the 

trunks found on the tilted ground. 

Wang, Lindenbergh and Menenti (2017) proposed an algorithm to identify lamp posts and 

traffic signs in urban road environments gathered by mobile laser scanning. Before the method, 

the raw data is pre-processed in two parts, 1) tiling and 2) separation of ground and non-ground 

points. Then, these tiles are created, dividing the data in the direction of the scanning trajectory. 

SBET is Smoothed Best Estimation of Trajectory whose points are used in tile calculations.  

 

 

Figure 6.1 Wang demonstrated different tilling along the road (Wang, Lindenbergh and Menenti, 2017) 
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The next step is the voxelization of non-ground points, and the connected voxels are grouped 

into clusters to form candidate objects. The next is the dimensionality analysis of each voxel, 

followed by eigen-based shape descriptors. Then, significant eigenvector points in each voxel 

are mapped into a triangle of sphere icosahedron, also called the eigen sphere of the voxel 

cluster. Finally, the repeated subdivision of voxels is performed until matched candidates, and 

training objects are found. The algorithm works well with the given descriptors of poles and 

road signs; however, point density and other closer objects affect the pole and sign 

identification. Therefore, the method will not work if the point density is low or the presence 

of noise. For example, a lamp or a tree on the roadside is not detected because of their closeness. 

A similar approach to detect pole-like objects by Shi et al. (2018) started with pre-processing 

point clouds that remove outliers, voxelization, downsample and filter ground point. The 

outliers caused by the laser beam and differences in object surface are essential to remove, 

resulting in wrong surface normals and curvature. The outliers are removed by calculating the 

mean distance and standard deviation. A k-d tree is used to structure the points. Afterwards, 

the model is gridded into voxels, and the point nearest to the voxel’s centre is kept. The next 

step is filtering ground points using fabric on an inverted surface. The interaction between the 

distribution node and LiDar points generates a surface compared to the original points to 

classify ground and non-ground points. On non-ground points, a second voxelization is 

performed. Pole-like structures extracted by spatial independence analysis, i.e. analyzing the 

number of empty neighbourhood voxels. The next step is applying RANSAC for cylinder 

feature detection. The voxels are verified to either belong to pole-like objects by PCA or not. 

Moreover, the region growing method is used to extract the complete structure of the pole-like 

object. Finally, detected pole-like structures are automatically classified into three categories 

streetlamps, traffic signs and poles by 3D shape and height matching. The advantage of the 

algorithm is that the dataset is downsampled and cleared of any noise. Also, the second 

voxelization is helpful for the k-nearest search of neighbouring voxels. The disadvantage is 

similar to Tombari’s method as the practical implementation is only tested on limited datasets 

with a lack of variety of data sets that the algorithm can use. The method also assumes that all 

pole and cylinder objects are stand-alone and have no vegetation or building points near them. 

The template of the pole-like shapes is fixed; hence if there is a variation in shape or height, it 

cannot be detected. 



 

202 | P a g e  

 

6.2.5 Individual Tree Detection Methods in Forest Point Clouds 

Tree detection is essential for various applications like 3D construction for the city. In this 

section, the existing method of tree detection is discussed and analysed. Existing methods to 

detect individual trees (Trunk and foliage) are proposed and discussed by Monnier (Monnier, 

Vallet and Soheilian, 2012), Wu (Wu et al., 2013), Li (Li et al., 2016), Safaie (Safaie et al., 

2021), Wu 2018, (Lalonde, Vandapel and Hebert, 2006) and Belton (Belton, Moncrieff and 

Chapman, 2013). Other methods to detect trees and poles together discussed by Pu (Pu et al., 

2011), Cabo (Cabo et al., 2014), Yang (Yang et al., 2015), Rodríguez-Cuenca (Rodríguez-

Cuenca et al., 2016), Li (Li et al., 2019), Li (Li and Cheng, 2022), and Kang (Kang et al., 

2018). 

Lalonde, Vandapel and Hebert (2006) proposed an approach to process point clouds to identify 

tree stems for forest inventory. The approach starts with point-wise classification by feature 

extraction, feature distribution and online classification. The input point cloud is divided into 

linear, solid, and scattered classes. First, the expectation-maximization algorithm calculates the 

centroid, principal axes and covariances. The second step is point cloud segmentation based on 

the direction of features, normals and regions. The third step is an interpretation based on the 

data’s context knowledge, such as size, smoothness, continuity, direction, spatial and 

classification and relationship. The last step is high-level scene modelling by fitting geometric 

shapes to extracted components. The cylinder is fitted to the points in 2D projection and 3D. 

The 3D fitting increases estimation accuracy. The advantage of the proposed method is that it 

is generic and could be applied to ariel and ground scanned data. The disadvantage of the 

method is that it lacks the evaluation of the filtering, and the criteria to remove ground points 

are not explained. 

Belton, Moncrieff and Chapman (2013) introduced the method for processing trees using 

gaussian mixture models. The method first classifies the features in the point cloud by PCA. 

PCA gives the variance in the direction of eigenvectors and the distribution of neighbourhood 

points. A variable neighbourhood size (radii value) determines the feature resolution. Next, the 

points are clustered using the Gaussian mixture model. After applying different neighbourhood 

radii values, the resulting cluster is manually analyzed to categorize them as leaves, tree trunks, 

and branches. The multiple clusters are combined into a single model for the same class. 

Further, the classified data is examined based on two characteristics 1) tree structure generation 
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and 2) volume measurement of carbon capture. For tree structure generation, a horizontal slice 

produces a skeleton. Each slice is examined to be clustered, and an ellipse is found. The ellipse 

centre is used as a node graph, a cyclic detection algorithm to find common nodes and merge 

them to find a tree structure. The total volume is calculated by cylinder fitting as it is an 

important attribute for carbon capture and is used in predicting climate change. Belton’s 

method delivers a Gaussian mixture model to separate leaves from the rest of the tree but does 

not provide evidence of tree detection in any large point cloud data or the applications of the 

method on various types of data sets. 

Amiri et al. (2017) proposed a three-tiered tree detection method in forested areas that work on 

point, segments, and object levels. In the first level, all the points in the forest scene scanned 

data are evaluated to belong to a tree or not. The features are grouped into their categories 1) 

point feature histograms is a local neighbourhood shape descriptor to distinguish between 

different surfaces using surface normals, 2) covariance features derived from eigenvalues of 

the local neighbourhood covariance matrix, and 3) normalized heights. Next is the segment 

level, where the cylindrical neighbourhood is applied by orthogonal distance regression. The 

results are classified into positive groups that could contain a part of the tree stem and negative 

groups that could contain vegetation and branches. Then, segmented features are divided into 

a modified version of the cylindrical shape context and angular deviation of the segment axes 

from the Z-axis. The last level is the object level, where the segmented and point-level features 

are merged to recreate the individual tree. The positive segments are merged using hierarchical 

clustering based on the aggregate distance matrix between clusters. The final step is stem line 

fitting using orthogonal distance. The method’s classification precision is achieved at 0.86 and 

0.85 for two samples. However, the method lacks to present cylindrical object detection on 

low-density point clouds. Also, the clustering of the segments could be enhanced if the tree 

locations are considered. 

Wu Rongren et al. (2018) presented a method for detecting tree stems and diameter breast 

height (DBH) estimation in a forest environment on the point cloud data captured by the 

terrestrial laser scanner. The method starts by preprocessing, i.e., removing ground points from 

raw point clouds. Next, the stem points are differentiated from non-stem points by calculating 

normals. The normal vector of k-nearest points belonging to a tree is a small absolute value 

compared to tree crowns and bushes. Then, the derived tree points are divided into voxels. A 

downward growing method within voxels is implemented to identify tree stems that stop at the 
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bottom layer. The derived stems are horizontally sliced at a height of 1.3 metres. All the point’s 

normal vectors in the slice are computed. Finally, the tree stem is considered whose normal 

vectors are perpendicular to the plane. The method could detect 17 out of 21 trees. However, 

the method does not account for the reflected noise points and low-density tree stems; therefore, 

the proposed method lacks to detect trees with noise and fewer points. 

 

6.2.6 Urban or Street Trees Detection Methods in Urban Point Clouds 

Monnier, Vallet and Soheilian (2012) presented a method to detect trees in complex urban 

environments. The method is divided into two parts, separating the points belonging to trees 

and the individual trees within these points. Firstly, the scan points are classified according to 

their geometrical shape. A local descriptor is used for the classification by Demantke et al. 

(2011), which started by applying a principal component analysis of their neighbourhood. Each 

neighbourhood is categorized by three descriptors linear, planar and volumetric. The linear 

descriptor is used for small trunks and posts, the planar descriptor is used for building façades, 

and the volumetric descriptor is used for tree leaf foliage and balconies. The results of 

descriptors are very noisy, so probabilistic relaxation is applied. The probability depends on 

the distance between the point and its neighbours and a compatibility matrix. The descriptors 

are not robust enough to identify tree trunks and posts; therefore, next step is to apply another 

cylindrical descriptor. Next, tree detection is achieved in four steps:  

1) Vertical accumulation of each descriptor into a horizontal grid is achieved by creating 

accumulation maps,  

2) Spatial filtering using smoothing by Gaussian kernel, hysteresis thresholding, 

connected component computation, size filtering, and morphological dilation, 

3) Combination of masks to retrieve individual trunks,  

4) Tree foliage separation from other objects and other trees by associating each pixel to 

the nearest trunk. 

The accuracy of the method is 80%. The disadvantage of the method is that each point is 

analyzed with descriptors or the distance between its neighbours. The calculations are 

extremely cost-inefficient (computing time) as the point cloud could be very large.  
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Wu et al. (2013) presented a voxel-based marked neighbouring search (VMNS) method for 

detecting street trees. The method starts with the voxelization of point cloud data dividing the 

space in cuboids. The location of voxels is indexed based on their length, width, and height. 

The voxel height varies till layer six corresponds to 1.2 - 1.4 metres. The values for each voxel 

unit are calculated. Next is the voxel’s neighbourhood search, which leads to the seed voxel 

selection. The search for tree objects starts with seed voxels. The voxels are traversed to find 

the connected voxels, marked and grouped. The grouped tree voxels are selected based on 1) 

geometric properties such as the area and shape of voxels and 2) morphological attributes such 

as the number of voxels in a group and compact index. The next step is top-down radius 

constrained searching and marking to identify the tree’s trunk and further by bottom-up 

neighbourhood competing for search and marking to identify the tree crown. The competing 

search is applied to differentiate the overlapping tree crowns. The marked voxel group results 

in potential trees are estimated based on tree height, crown diameter, breast height, and base 

height. The other pole-like objects are eliminated based on crown diameter and tree height 

threshold. The case study resulted in 98% of correctness rates. The method cannot detect trees 

with lower heights and if they have multiple stems. 

Li et al. (2016) proposed a similar method to Wu et al. (2013) that follows the dual growing 

methods for separating individual trees. The method is divided into three stages: trunk shape 

growing and segmentation, crown voxel growing, and refinement to obtain trees. The method 

starts by separating ground and non-ground points. The individual trees are extracted from non-

ground points. Next, the candidate cluster containing trees is extracted by local surface normals 

based on their Euclidean distance. Then, the candidate tree cluster is voxelized. The seed layer 

is found by dividing the candidate tree by half. The artificial objects are rejected from the 

candidate tree cluster by comparing a crown with a round cross-section and a trunk with a 

smaller diameter and cylindrical shape. The horizontal convex hull is calculated from the points 

in the voxel group at each layer. The upward cross-sectional analysis is performed to determine 

the tree trunks. The convex hull of seed and up traced voxels are compared by area, perimeter 

and diameter. Also, the crown’s minimum required diameter, minimum roundness degree, and 

a maximum ratio of geometric parameters are used to find the crown. The down tracing process 

is used to determine the trunks.  

Next, the crown parts are further analyzed for crown voxel growing. The voxels are considered 

crown voxels if the layer has the same row and columns and unusual shapes in cross-section 
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areas. After the voxel grows, two overlapping crowns are segmented based on fewer area 

increments as the changes are observed in cross-sections. Finally, the seed selection and trunk 

point growing are applied in iterations to extract individual trees. The advantage of the method 

is to distinguish between trees and other objects and to be able to extract the whole tree. The 

correctness in tree extraction is 96%, and completeness in tree detection is 98%. The 

disadvantage is that the tested datasets have high-density points, directly affecting the crown 

separation process. The method for separating candidate tree clusters depends on surface 

normals which are not cost-efficient as the point clouds could be very large. 

Kang et al. (2018) proposed a voxel-based method for extracting and classifying pole-like 

objects. The method starts by dividing data into 3D grids called voxels. Each point is grouped 

and indexed. Next, PCA is applied to analyze the dimensionality of the voxels and find the 

predominant direction for linear, planar and spherical. MRF shape detection optimizes the 

voxels, i.e., the contextual information for the direction and classification (labels linear and 

non-linear). Pole-like are vertical and isolated compared to building façades and tree canopies. 

Therefore, the non-ground points are divided into slices on the selected interval. Adjacent slices 

are clustered together based on the circular model with an adaptive radius. The model has two 

concentric circles that compare the geometric centre and any point inside the inner circle to a 

threshold to determine a pole-like object. The individual poles are extracted by the vertical 

region growing method as 1) Starts with one voxel of the pole-like object, 2) Vertically growing 

from the seed voxel, and 3) Growing continues until the distance between the segmented object 

and nearest voxel exceeds a threshold, and 4) Repeated until all voxels of pole-like are 

traversed. 

Further, the extracted objects are classified by semantic rules. The classification is based on 

height (classify trees and poles). Another rule is 2D projected point distribution; if the 

distribution exceeds the threshold, it is considered a tree, otherwise considered poles. The 

precision of the method’s detection is 85.3%, 94.1% and 92.3% for the three datasets. The 

disadvantage is that the voxel-based recognition fails to capture trees of large trunk diameter 

as it is focused on pole-like objects. The method also assumes the poles as isolated objects 

without noise, which might not be true in the urban point cloud. 

Safaie et al. (2021) proposed a method for efficiently creating a tree inventory of roadside trees 

in point clouds using raster images. The method filters the ground points to start with by using 
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tile sections. The points in each Section are divided into left-side and right-side. Then, each 

side’s low height points are filtered. The next step is trunk Extraction 1) trunk positioning and 

2) elevation range. A trunk portion is considered for locating tree positions at adjacent 

horizontal intervals. The detection of circles is done from raster images by the Hough transform 

algorithm. The circles are validated as trunks by range and number of layers. Elevation range 

extraction is achieved by cylindrical buffering in trunk position, elevation sectioning, raster 

binary image creation, altitude density histogram and density threshold. Next is foliage 

extraction, which is based on the following 1) determining the initial range – A Voronoi 

tessellation is applied on the extracted trunk 2) extracting the foliage points 3) altitude 

sectioning 4) density image generation for each section 5) precise boundary detection using 

active contours. The geometric region-based active contour is applied to the groups. After 

separating trunk and foliage points, the final step is characteristics measuring. The 

characteristics measures calculated for each tree are:  

a) planimetric coordinates, which is tree location found by the lowest height circle,  

 

b) trunk height calculated by the difference between the maximum and minimum trunk 

heights,  

 

c) trunk diameter calculated for each tree,  

 

d) foliage height calculated by the height difference between the maximum and minimum 

foliage heights,   

 

e) maximum foliage diameter, which is the maximum diameter of all peripheral circles, 

 

f) total tree height  

 

g) distance from the road edge 

 

The proposed method works well by extracting the trees in the urban road dataset. The 

algorithm identified all the trees in the dataset despite the foliage overlapping. The 

disadvantage is that the ground removing method assumes the ground to be flat, whereas the 

ground could have a gradient in the real world. Also, the method lacks considering the scenarios 

where trees could be of different shapes and have low point density. 
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6.2.7 Summary 

In Section 6.2, the existing methods are analysed and discussed. The section starts with the 

methods to detect pole-like structures in point clouds divided into four categories: 

segmentation-based, semantic-based, slicing-based and shape-based and followed by 

reviewing the methods to detect trees in the forest and urban or roadside scenarios. The 

common problems with methods have been identified. For example, the existing methods lack 

the ability to identify pole-like structures in low-density point clouds, are affected by noise (the 

presence of noise and other close objects), do not elaborate on the specific criteria and do not 

account for the presence of a gradient in the data. Another challenge is computation time. In 

reality, point clouds can be very large, with billions or trillions of points, so the methods were 

shown to be practically inefficient in terms of time.  

A common issue with terrestrial scanners is that the point density thins out as the scanner scans 

to the farthest points. Therefore, the analysis of existing methods concluded a particular 

problem: the poles or trunks furthest away from the scanner are undetected as the point density 

is very low. Another common problem with existing methods is that they fail to detect pole-

like structures and trunks in the presence of noise. When the other objects were present close 

to the pole or trunks, they were undetected, i.e., the presence of noise or outliers. Also, they are 

undetected when other objects close to the pole and trunk overlap.  

Another common challenge is not specifying and providing evidence on selecting individual 

criteria and threshold values to explain the selection reason for these values. The point cloud 

data is scanned data from the real world and therefore has a high probability that the ground 

level has slopes and dips; however, the existing methods assume that the ground level is always 

flat. Hence, there is no account for the presence of a gradient in any of the methods. Therefore, 

the voxel-based algorithm is proposed, designed and developed as a robust, accurate and 

efficient method to detect trunks and poles in large point cloud data to overcome the drawbacks 

of existing algorithms as stated above. Section 6.3 presents the proposed algorithm on large-

scale data in a commercial environment.  

 



 

209 | P a g e  

 

6.3 Proposed Algorithm for Trunk/Pole-like Object Detection 

6.3.1 Overview 

This section proposes an algorithm to detect cylindrical objects in urban point cloud data. These 

objects can be tree trunks or man-made street objects like utility poles, lamp posts, traffic lights, 

streetlights, etc. The data collection is accomplished by various laser scanning systems like 

airborne, terrestrial and mobile. Moreover, the algorithm is generic, i.e., can be applied to any 

scanned data. Most poles and trees have a generally circular cross-section and a cylindrical 

shape. Therefore, the algorithm aims to detect cylindrical objects. A typical tree and a pole in 

the point cloud are shown in Fig 6.2. The tree is divided into two parts: tree trunk and tree 

foliage. The proposed algorithm detects the trunk and pole and classifies them. 

 

  

Figure 6.2 Example of a typical tree and man-made object, i.e. pole 
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The proposed new voxel-based algorithm addresses the disadvantages of existing methods 

discussed in Section 6.2.7. The functional requirements of the proposed algorithm are that it 

works on terrestrial and LiDar scanned point clouds, works with low-density points, identifies 

the slopes on the ground level and is efficient in terms of computation time. The proposed 

algorithm is divided into six stages: 

1) Pre-processing – Terrain extraction, Ground and Non-ground Points Classification. 

 

2) Voxelization - Voxel Bounding Extent, Voxel 3D Indexing and Generating 3D grids. 

 

3) Seed layer - DBH (Diameter of Breast Height) estimation to find the seed layer. 

 

4) Clustering - Neighbourhood Searching and Approximation and Marked Grouping. 

 

5) Cylindrical feature extraction - Potential clusters filtration by Compact Index, Area 

and Geometric Primitive Modelling - Circle fitting in 2D. 

 

6) Trunk and pole classification 

a) Shape-based rules – Pole and tree isolation and 2D Voxel distribution, 

 

b) Intensity and colour-based rules, 

 

c) Semantic rules – Voxel Dimensionality analysis, Adaptive radius to classify 

pole or tree, upward region growing. 

 

The overall workflow of the proposed algorithm is shown in Fig 6.3. The input data is either 

raw point cloud data or sampled data, and the output is the centre and radius of the detected 

cylindrical object classified as a trunk or pole-like object.  
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Figure 6.3 The workflow of the proposed algorithm 

 

6.3.2 Terrain Extraction: Classification into Ground and Non-ground 

Points 

The first stage is Terrain Extraction, which uses gridding to identify the ground and non-

ground. The point cloud consists of extraordinarily complex data with various objects and 

information. As the proposed algorithm focuses on extracting cylindrical features such as tree 
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trunks and pole structures that are not part of the ground, the ground level is removed for 

downsampling and reducing the points. The removal of ground points i.e., reducing the total 

number of points leads to the proposed algorithm’s high computation efficiency and thus saves 

time. 

 

 

Figure 6.4 Example of gridding in a point cloud  

 

The example in Fig 6.4 shows the grids implemented on the real point cloud data. Fig 6.4 does 

not show all grids to prevent confusion. The ground points are always inlined with the x and 

y-axis of the reference coordinate system. The problem is that there is no procedure to identify 

the ground level on Z-axis. The minimum Z level will not necessarily be the ground as the 

point clouds are similar to the real world, which means there are good chances for the presence 

of a dip or slope on the ground. Therefore, an approach allows users to click on the ground near 

the tree or pole structure to derive the Z value. Then, the user clicked Z value is fed as input 

for the next phase of the algorithm. However, there are problems with ground user selection 

are: 
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• The ground level picked may not be the same for the whole point cloud, i.e., it can have 

gradients.   

• Users may have to click several times to input the Z value; hence, more clicks in terms 

of usability. 

• Lack of experience of users as to where to click to derive the correct Z value. For 

example, if the click should be under the tree or on the street to get the correct ground 

level.  

• When the point cloud data set has flat ground, the algorithm works perfectly; however, 

when the data has a gradient, the algorithm will not work.  

 

This thesis proposes “Terrain Extraction”, a new technique designed first time to extract terrain 

from point clouds. The solution for the above problems is Terrain Extraction applied to classify 

ground and non-ground points to overcome the problems. The terrain extraction automatically 

extracts the ground level with or without slopes. The functional requirements and advantage of 

applying terrain extraction is that the algorithm: 

1) Works automatically without the user intervention. 

2) Fewer user clicks.  

3) Detects terrain with gradients.  

4) Classify ground and non-ground. 

5) Lowest and Highest Z levels. 

 

 

Figure 6.5 The Gridding example 
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The process starts by gridding the whole point cloud data vertically, as shown in Fig 6.5. A 

grid has eight corners with length, width, and height. The height 𝑍ℎ of the grid is 

𝑍ℎ = 𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛                                                           (6.3) 

 

The length and width are set similar to the voxel size discussed in Section 6.3.3. During 

gridding, points inside grids are searched for all grids. The algorithm for searching points inside 

the grid is adapted from Sunday (2021). The algorithm starts by accumulating all the points in 

the grid along the x, y and z-axis. Then, every point inside the grid is traversed to find the 

lowest point inside the grid. Finally, the derived lowest points of all the grids are passed for the 

next stage, i.e., Voxelization.  

 

6.3.3 Voxelization  

The second stage is Voxelization. Voxels are used widely for spatial sampling, grouping, and 

partitioning. Voxelization is used for different purposes such as detecting non-static objects 

(pedestrians) by Schauer and Nüchter (2018), voxels and k-means clustering (Tazir, Checchin 

and Trassoudaine, 2016) used for colour-based reduction and segmentation. Many scholars 

used voxels to segment point clouds, such as Xie, Tian and Zhu’s (2020) point-based labelling 

method through voxels. Xu et al. (2018) used a probabilistic connectivity model for 

segmentation. Voxel-based four planes congruent set is proposed for estimating transform by 

Xu et al. (2019) and voxel-based shape recognition in point clouds by Wang et al. (2016). 

Voxels are also used in griding and region growing methods, as explained by Li and Sun 

(2018). 

In this thesis, Voxelization is a spatial partitioning technique that divides the whole point cloud 

data into 3D cubes, similar to Wu et al. (2013) and Cabo et al. (2014). These 3D cubes are 

called voxels. Each voxel has a length, width and height equal to the voxel size. In addition, 

each voxel has an index value to identify among the other voxels. All the empty voxels are 

removed, and the voxels are created from the lowest points derived from the first stage. The 

details are explained in Section 6.3.3.1 – 6.3.3.3.  
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6.3.3.1 Voxel Bounding Extent 

Size defines the bounding extent of a voxel. Each voxel has a length, width and height that 

defines the voxels, as shown in Fig 6.6. The size is chosen based on the type of the point cloud. 

For example, quarry data with fewer details can be divided into large voxels, but urban data 

with many intricate details to capture should have smaller voxels. The terrain extraction grid 

size is the same as the voxel size to save computation time, and the search within the grid is 

accurate and fast. If the size is different, the search must be performed repetitively, costing 

more as the point cloud could be very dense.  

 

 

Figure 6.6 Voxel grid representation along the X, Y and Z axis  

 

6.3.3.2 Voxel Indexing 

Voxel indexing is important to identify the voxels in the point cloud. The indexing also 

provides the facility to capture points inside the given voxel. The voxel index is based on the 

voxel position in a 3D grid and is denoted by 𝑉(𝑖,𝑗,𝑘) where 𝑖 is for columns, 𝑗 is for rows, and 

𝑧 is for layers. The columns 𝑖 are along the X-axis, rows 𝑗 are along the Y-axis, and layers 𝑧 are 
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along Z-axis. The voxel index helps identify any voxel in the 3D grid and its points. Voxel 

indexing plays a key role in clustering for the neighbourhood. 

 

Figure 6.7 Voxel Indexing represents its position in 3D by using x,y, and z values, as shown in Figure 6.6 

 

6.3.3.3 Generating 3D Grids 

The voxels in the 3D grid are generated based on the size and indexed based on location, as 

shown in Fig 6.8. The voxels are generated from the resultant lowest points of Terrain 

Extraction for the proposed algorithm. The different colours represent the voxels on different 

layers.  

 

Figure 6.8 Voxel 3D grids represented by different colours 
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The voxels are generated using Equations 6.4 – 6.6 presented below:  

𝑣𝑥 = (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (
(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)

𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒
)                                                (6.4) 

 

𝑣𝑦 =  (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (
(𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)

𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒
)                                                (6.5) 

 

𝑣𝑧 =  (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (
(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)

𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒
)                                               (6.6) 

 

where 𝑣𝑥 is the voxels generated along the x-axis, 𝑣𝑦 is the voxels along the y-axis, and 𝑣𝑧 is 

the voxels along the z-axis. 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑎𝑥  are the maximum coordinate bounds and  

𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑍𝑚𝑖𝑛 are the minimum coordinates in the point clouds. The voxel size is selected 

based on the point cloud. The voxels are generated along the three-axis; however, there are 

conditions when the three axes are not the same sized. For example, a point cloud of the road 

or railway is generally longer along one axis. Therefore, padding of the voxel is implemented 

to solve the problem using Equations 6.7 – 6.9. For padding the grid, an extra voxel is created 

as follows: 

𝐸𝑥 =  (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) − 𝑣𝑥 ∗ 𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒                                        (6.7) 

𝐸𝑥 > 0 , 𝑣𝑥 → 𝑣𝑥 + 1 

 

𝐸𝑦 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) − 𝑣𝑦 ∗ 𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒                                         (6.8) 

𝐸𝑦 > 0 , 𝑣𝑦 → 𝑣𝑦 + 1 

 

𝐸𝑧 =  (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) − 𝑣𝑧 ∗ 𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒                                          (6.9) 

𝐸𝑧 > 0 , 𝑣𝑧 → 𝑣𝑧 + 1 
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where 𝐸𝑥 calculates along the x-axis, 𝐸𝑦 calculates along the y-axis, and 𝐸𝑧 calculates along 

the z-axis. If 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧 are greater than zero, a voxel is added along the axis. 

 

6.3.4 Seed Layer Identification 

The third stage is seed layer identification—the first stage results in the lowest ground points. 

In the second stage, the voxels are formed from all the lowest points found as a result of stage 

1. In the third stage, all the lowest ground voxels (points) are removed, and the DBH level is 

estimated from each lowest ground voxel to identify the seed layer voxels. The seed layer 

voxels play an important role in identifying trunks and poles. Sections 6.3.4.1 and 6.3.4. 

explains the usage and working of the seed layer in detail. 

 

6.3.4.1 Removing the Ground Points  

After implementing Terrain Extraction, all the lowest points are captured. Those lowest points 

are then included in the bounding extent of a voxel during the voxelization stage. All the grids 

created by Terrain Extraction are traversed to find all the lowest voxels with the lowest point 

of the grid, as shown in Fig 6.9 (a) as red-coloured voxels.  

 

   

(a) 
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(b) 

Figure 6.9 (a) Ground voxels represented by red  

(b) Different ground levels shown on a cross-section of a point cloud 

 

Red coloured voxels represent ground voxels, and everything above the red voxels is 

considered non-ground points. Once the ground voxels are derived, every point inside them is 

removed as they are considered ‘ground points’. Removing ground points saves a lot of 

computation time and fewer points to the cluster that belongs to the trunk or pole. Further, it 

will also help identify the trunks, as shown in Fig 6.9 (b) and poles that are not on flat ground.  

Fig 6.9 (b) presents the example of different ground levels in a typical point cloud. Therefore, 

Terrain Extraction extracts these different ground levels or lowest points in this example and 

is classified as ground voxels. Finally, the proposed algorithm is implemented on non-ground 

voxels. 
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6.3.4.2 DBH Seed Layer 

Next, the seed layer is identified after extracting all the ground voxels. The voxels are divided 

along the z-axis, as shown in Fig 6.9(a), to demonstrate the ground voxels in layers. In the 

example, the ground voxels are between 𝑍2 and 𝑍4 layer. A tree in the typical point cloud is 

defined by a tree trunk and a crown, shown in Fig 6.2. Compared to the crown part and trunk 

is composed of fewer voxels. The points on the trunk and poles are spatially separated from 

other trunks and poles. Therefore, a seed layer divides the tree into two parts and the poles.  

The trunk diameter is measured using DBH in arboriculture for different purposes of urban and 

forest trees. By British standards, the DBH is 1.4 metres from the ground level. Therefore, the 

seed layer is calculated at 1.4 metres above the ground layer height. As shown in Fig 6.10, the 

seed layer, denoted by green coloured voxels calculated using DBH 1.4 metres above the 

ground layer, is denoted by red coloured voxels. After voxel extraction on the seed layer, these 

voxels are fed for the next part of the proposed algorithm: clustering. A dotted yellow line is 

drawn in Fig 6.9 (b) to demonstrate different ground levels and the importance of extracting 

the ground with slope to detect the trunks on the DBH height. 

 

 

Figure 6.10 Voxels on seed layer represented in green colour 
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6.3.5 Clustering  

The fourth stage of the proposed algorithm is clustering. Clustering is used in various fields 

like social networks, market behaviour analysis, risk assessment, robotics, and recurring 

patterns in financial transactions. In geoinformation systems, clustering divides or groups the 

points with similar observations for data analysis (Poux, 2020). Various authors accomplish 

the clustering of points in point clouds in different ways. An example of clustering is normal 

difference clustering by Ioannou et al. (2012) to process unorganized point clouds, spectral 

clustering by Teng et al. (2010) to connect each point with neighbours based on similarities, 

clustering based on the geometric description by Weinmann et al. (2017), clustering based on 

colour (Tazir, Checchin and Trassoudaine, 2016) and density (Aljumaily, Laefer and Caudra, 

2017).  

The clustering in this thesis is based on voxels. The resulting seed layer voxels are clustered 

based on the nearest neighbour search.  

 

6.3.5.1 Neighbourhood Approximation and Grouping 

The voxels are created in columns 𝑖, rows 𝑗 and layers 𝑧 along the X, Y, and Z-axis. The 

origin of voxelization is 𝑉(0,0,0) which is the three-axis minimum point. The clustering of 

voxels is performed by neighbourhood searching, where a voxel is denoted by 𝑉(𝑖,𝑗,𝑘). The 

first step is to mark all the voxels as 0 for empty and 1 for non-empty. By quick traversing of 

voxels, the voxels with points are marked as 1 and voxels without points are marked as 0. All 

the empty voxels are removed.  

Next, the search starts with the origin in all the voxels marked as 1. The voxels are searched 

for their eight neighbours on a single layer 𝑘. The eight neighbours are shown in Fig 6.11. If 

the voxel 𝑉(𝑖,𝑗,𝑘) is searched along the x-axis or columns 𝑖 and along the y-axis or rows 𝑗 the 

searching of voxels can be divided into two types  

a) edge voxels (shown in Fig 6.11) 

b) corner voxels (shown in Fig 6.12) 
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The edge voxels are those voxels that are connected by edges like 𝑉(𝑖,𝑗+1,𝑘), 𝑉(𝑖−1,𝑗,𝑘), 𝑉(𝑖+1,𝑗,𝑘) 

and 𝑉(𝑖,𝑗−1,𝑘). The corner voxels are those which share a corner with the voxel like 𝑉(𝑖−1,𝑗+1,𝑘), 

𝑉(𝑖+1,𝑗+1,𝑘), 𝑉(𝑖−1,𝑗−1,𝑘) and 𝑉(𝑖+1,𝑗,𝑘). 

 

 

Figure 6.11 Voxel neighbour search on single k layer 

 

The search must be extended to multiple layers as the ground has a gradient. The proposed 

algorithm focuses on identifying the trunks and poles on the ground with a slope. Therefore, 

the search is performed on three layers 𝑉(𝑖,𝑗,𝑘), 𝑉(𝑖,𝑗,𝑘−1) and 𝑉(𝑖,𝑗,𝑘+1). The original layer of the 

voxel, plus a layer above and below, as shown in Fig 6.12. 

 

 

Figure 6.12 Voxel neighbourhood search on k, k+1, k-1 
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Every voxel shares a maximum of eight neighbours on a layer and 26 neighbour voxels when 

searched on three layers as mentioned above. The search must be fast and accurate; therefore, 

few measures are taken, as shown in Fig 6.13. The rules are if the voxel for the nearest 

neighbour search is the origin, then instead of searching eight neighbours, only three 

neighbours are searched, i.e., two edge voxels and one corner voxel. Similar rule for 𝑉(𝑖𝑛,𝑗𝑛,𝑘)  

the last corner voxel in 𝑖 columns and 𝑗 rows. The voxels on the edge of the 3D grid search for 

three edge voxels and two corner voxels, as shown in Fig 6.13 (c) and (d). 

 

 

                  (a)                                  (b)                                       (c)                                                (d) 

Figure 6.13 Voxel neighbourhood search  

 

The clustering of voxels focuses on the points while removing ground points. However, the 

clustering results in incorrect ground removal in the case of hollow features. The main cause 

of hollow features is the scanning systems that capture an object’s surface points. For example, 

any feature in the point cloud is hollow when it does not have points inside, so the lowest points 

inside the feature would not belong to the actual ground, as shown in Fig 6.14.     

Therefore, the grouping of voxels checks for the sudden change in the Z layer direction and 

distance to overcome the problem. The ground layer voxels are compared with neighbouring 

ground voxels based on a distance threshold 𝑇ℎ𝑑 in the Z-axis direction. An example is shown 

in Fig 6.14, a vertical section of a tree displays that a tree is hollow in the middle. The terrain 

extraction results produce ground points around the tree with a similar z value, but the lowest 

point inside the tree does not belong to the ground. To overcome the threshold 𝑇ℎ𝑑 is 

implemented. Any lowest points greater than the threshold are not considered ground points. 
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Figure 6.14 A section view of a tree in a point cloud 

 

6.3.5.2 Cluster Groups  

The nearest neighbour search of voxels is implemented, resulting in the voxel clusters on the 

seed layer. Furthermore, the voxel clusters are assigned a group number to identify the clusters. 

To demonstrate the clustering and grouping, Fig 6.15 (a) shows the centre of all voxels on the 

seed layer, and Fig 6.15(b) shows the grouping of clusters on the seed layer.  

 

 

(a) 
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(b) 

 

(c) 

Figure 6.15 (a) The centre of the voxels, (b) Clustered voxels on the seed layer, (c) Zoomed small area of (b)  

 

Voxels are grouped in the seed layer along the column (X-axis), row (Y-axis) and layer (Z-

axis) of the voxel grid. The proposed algorithm starts from the origin to cluster the voxels, as 
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explained in Section 6.3.4.1. While searching in the voxel grid, every voxel is grouped into a 

cluster. Each cluster has a unique group number to identify it among the other clusters. The 

naming of groups starts from ∑𝐺 = { 𝐺1, 𝐺2……𝐺𝑁} in column vice manner. The rule for 

allotting the groups in the cluster is that: 

a) if a current cluster has an assigned group or not; if it doesn’t, it is assigned one. 

b) if the nearest neighbour in the cluster has a group assigned, the current cluster will have 

the same group number. 

c) if the nearest neighbour in the cluster has no group assigned, then the group number is 

assigned by an increment of one. 

d) the voxels on a layer above and below are also searched and assigned a group number. 

The first group is assigned as G1. Then, as the cluster progressed, the group numbers were 

assigned to each cluster, as shown in Fig 6.16. The cluster groups in this example are 59 groups 

in total. 

 

 

   (a)                                                                                              (b) 

Figure 6.16 Voxels centre are clustered in groups of Fig 6.15 (b)  (a) Zoomed left side (b) Zoomed right side 
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6.3.6 Extraction of Cylinder Objects 

The next stage of the proposed algorithm is the extraction of potential clusters that belong to a 

trunk and pole. Then, the clustered group from the previous stage are analysed and filtered. 

These filtered groups are potential groups belonging to the trunk or pole, as presented in 

Sections 6.3.6.1 and 6.3.6.2. 

 

6.3.6.1 Extraction of Potential Voxels 

In the example shown in Fig 6.16, there are 59 cluster groups. The clusters on the seed layer 

could belong to many point cloud features, such as a building, trees, vehicles, shrubs and 

ghosts. To make the proposed algorithm faster and more efficient the voxel clusters are filtered 

based on  

a) Area 

b) Compactness 

c) Number of voxels (NOV) in a cluster 

 

 

               (a)                                                                                     (b) 

Figure 6.17 (a) Hypothetical example of clusters on a single layer 

(b) Shows the perimeter of the clusters to calculate the area and compactness 
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Fig 6.17 shows a hypothetical example of the cluster groups along the x and y axis on the seed 

layer. The potential trunk and pole clusters have less area than the clusters that belong to 

buildings or other objects. Each voxel cluster is counted for the number of voxels in it. If the 

number is more than the threshold 𝑇ℎ𝑛𝑜𝑣 the group is not considered. The threshold is 

knowledge-based and selected based on different test point cloud data for trunk and pole 

clusters. 

The area and compactness of clusters belonging to a trunk or pole are comparatively less than 

other voxel groups. As both are cylindrical shapes, a circle is the best shape fitted along the x 

and y axis. The two attributes are computed for each voxel group. For the area 𝐴, the following 

parameters are calculated 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 along x-axis, 𝑌𝑚𝑎𝑥, 𝑌𝑚𝑖𝑛 along y-axis and 𝑛 is the 

number of voxels in each voxel group as shown in Equation 6.10.  

 

𝐴 = 𝑛 ∗ (( 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) ∗ ( 𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛))                                (6.10) 

𝑑𝑖𝑎 = √( 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
2 + ( 𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)

2                                (6.11) 

𝐶𝐴 =  𝜋 ∗ (
𝑑𝑖𝑎

2
)
2

                                                                    (6.12) 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝐴

𝐶𝐴
                                                                  (6.13) 

 

The second attribute is compactness, defined in Equation 6.13. For compactness, 𝑑𝑖𝑎 the 

diameter and the circle area 𝐶𝐴 are calculated by Equations 6.11 and 6.12. The compactness 

value is higher when a voxel group is close to the circular shape. Therefore, if the threshold 

𝑇ℎ𝑐𝑜𝑚 for the compactness is close to 1, it is a perfect circle, or if the compactness is close to 

0, it is not a circle. The compactness is calculated using equations 6.8 – 6.10. An example of 

voxel groups on a hypothetical seed layer is shown in Fig 6.18. In Fig 6.18, groups G6 and G1 

are non-circle whose compactness is less than the threshold 𝑇ℎ𝑐𝑜𝑚 and G5 and G4 compactness 

are greater than the threshold 𝑇ℎ𝑐𝑜𝑚 which means the G5 and G4 are clusters that belong to a 

trunk or pole. 
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Figure 6.18 Area calculated to measure compactness 

 

Following the calculation of all attributes for each cluster, the potential voxels are selected:  

1) if the number of voxels is smaller than 𝑇ℎ𝑛𝑜𝑣 i.e., 𝑇ℎ𝑛𝑜𝑣 is a given threshold to limit 

the number of voxels and  

2) if the compactness is greater than 𝑇ℎ𝑐𝑜𝑚 i.e., 𝑇ℎ𝑐𝑜𝑚 is a given threshold for 

compactness.  

When implemented in the example shown in Fig 6.15, results are shown in Fig 6.19. As a result, 

the cluster groups are reduced from 59 groups to 11 potential groups. Therefore, area 

compactness and the number of voxels of each cluster play an important role in the proposed 

algorithm for increasing efficiency and robustness.  
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Figure 6.19 Potential Clusters belonging to tree or pole 

 

6.3.6.2 Circle Fitting  

The next stage is circle fitting on the potential groups. The trunks and poles can be 

differentiated from other objects based on cylindrical shapes. As the clusters can be on different 

layers and have up to three z-layer values (the clustering is implemented on k, k+1 and k-1), 

the circle is fitted in 2D, considering only the x and y values.  

Various researchers implement the techniques of circle fitting methods. For example, Pratt 

circle fitting is more an extension of Kasa's (1976) circle fit which is more biased towards the 

small circle or incomplete arc. However, Kasa’s is not robust as Pratt’s method. Taubin circle 

fit is like Pratt’s method but is comparatively faster and more accurate. Hence, for this reason, 

the combination of methods is implemented for circle fitting in this thesis.  

The 2D circle fitting is implemented using a hyper fitting algorithm by Chernov Nikolai (2012), 

a combination of Pratt’s (1987) and Taubin’s (1991) circle fit algorithms. 
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                                             (a)                                                                              (b) 

Figure 6.20 (a) Circle fitting on a pole (b) Circle fitting on a trunk 

 

An example of a hyper circle fitting on the voxels belonging to the possible tree trunk and a 

pole is shown in Fig 6.20 (a)(b). Further, Fig 6.21 demonstrates the cluster groups filtered by 

circle fitting in green and the rejected groups in red. From 11 potential groups, circle fitting 

results in 6 cluster groups. 

 

 

Figure 6.21 Potential trees and poles in green after circle fitting algorithm 
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6.3.7 Tree and Pole Classification 

The last stage of the proposed algorithm is classification. The section focus on classifying the 

voxel groups that are filtered as potential groups by earlier stages of the algorithm. The 

classification is demonstrated in the example shown in Fig 6.21 with the six resulting cluster 

groups. The point cloud has various objects similar to the trunk and pole, such as a moving 

person, a part of a building, a tripod used for scanning the point cloud data or bushes/shrubs. 

The human eye can detect these objects much more quickly based on knowledge and 

understanding of the feature’s shape; however, the proposed algorithm needs to learn to 

identify and classify the objects based on certain rules. Each voxel cluster is analysed based on 

the rules as follows: 

1) Semantic rules  

2) Shape-based rules  

3) Intensity and colour-based rules 

 

6.3.7.1 Semantic Rules  

Semantic rules are based on the prior knowledge of the objects, i.e., trunks and poles. To 

differentiate between trunks and poles, voxel dimensionality 𝑆𝑉𝐷, the adaptive radius of the 

voxel cluster 𝑆𝐴𝑅 and upward region growing 𝑆𝑅𝐺 are applied in this section. 

 

1)  Voxel Dimensionality Analysis 

The first rule applied is Principal component analysis (PCA) to evaluate each voxel group’s 

dimensionality 𝑆𝑉𝐷 (Demantké et al., 2011). PCA is widely used to analyse and reduce the 

dimensionality of datasets with interrelated variables while retaining the variation present by 

principal components (Dubey, 2018). In addition, PCA is used as a popular approach to identify 

the structure of points as linear, planar or volumetric. For example, PCA was used for shape 

identification by Yang and Dong (2013), Kang et al. (2018), Shi et al. (2018), Yokoyama et al. 

(2013) and Yang et al. (2015), whereas PCA was used for dimensional identification by 

Demantké et al. (2011), Monnier, Vallet and Soheilian (2012) and Huang and You (2015). 
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In this thesis, PCA is applied in Chapter 5 for edge detection. In this chapter, PCA is applied 

to analyse the dimension of the points inside the voxels. The first step is to calculate the 

covariance matrix using Equation 6.14 

𝐶 =  
1

𝑁
 ∑(𝑝𝑖 − 𝑝 ) (𝑝𝑖 − 𝑝 )

𝑇
𝑁

𝑖 = 1

                                         (6.14) 

where 𝑝𝑖 is the   𝑖 𝑡ℎ point in 𝑁 , and 𝑝̅ is the mean calculated by 𝑝̅ =  
1

𝑁
 ∑  𝑝𝑖𝑖 = 1  and 𝑁 is 

the number of points in voxels. The eigenvalues 𝜆1, 𝜆2 and 𝜆3 are obtained from 𝐶 where 𝜆1 is 

the largest variant than 𝜆2 and smallest is 𝜆3. If  λ1  λ2λ3 0, PCA is applied to determine 

the dimensions inside the voxels as linear, planar and scattered. The dimension analysis symbol 

is 𝑆𝑉𝐷. The voxel is considered linear if (λ1 − λ2) / λ1, planar if (λ2 − λ3) / λ1 and scattered 

if ( λ3) / λ1. The following rules are applied:  

• If cluster groups have scattered data – rejected, 

 

• If cluster groups have all planar data – considered, 

 

• If cluster groups have all linear data – considered, 

 

• If cluster groups have linear and planar data – considered, 

 

• If cluster groups have linear and scattered – rejected. 

 

The volumetric voxels are discarded as the trunks and poles never have scattered data. Only 

voxels with tree foliage and noise have the scatter dimensions. All the linear and planar 

dimension voxels are considered, and the rest are discarded.  

 

2) Adaptive Radius of Trunk and Pole 

The second rule applied is the adaptive radius 𝑆𝐴𝑅. A circle is applied from the centre of the 

voxel clusters, and the radius is stored to compare. As poles are man-made objects, the radius 

for poles is fixed, as shown in Fig 6.22 (a). After testing on various datasets, the pole clusters 
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are always a cluster of four voxels or less. On the other hand, the voxel cluster of tree trunks is 

variable. Fig 6.22 (b) shows that the radius of trunks is usually larger than poles.  

 

 

                                (a)                                                                                  (b) 

 

Figure 6.22 Voxel groups of (a) Poles (b) Trunks 

 

3) Upward Region Growing 

The third rule applied is an upward region growing 𝑆𝑅𝐺 on the seed layer of potential voxel 

clusters. The upward region growing starts from the seed layer 𝐿𝑠 along Z-axis, analysing all 

the voxels clusters vertically on each layer. Poles are always symmetrical and have an almost 

equal number of voxel clusters on each layer. In contrast, the trees start scattering due to the 

presence of foliage and branches. Fig 6.23 shows the example of the voxel clusters on the pole 

and trunk from the seed layer (red) compared with the clusters above the seed layer. 
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If the voxel cluster growing above the seed layer 𝐿𝑠 is equal to the number of voxels in the seed 

layer identified as a pole. If the voxel cluster growing upward from the seed layer 𝐿𝑠 is 

increasing, i.e., the number of voxels in 𝐿𝑠+1, 𝐿𝑠+2 are increasing, then it is identified as a tree 

trunk.  

 

 

Figure 6.23 Upward region growing from the seed layer 𝐿𝑠 shown for pole and tree 

 

6.3.7.2 Shape-Based Rules 

Shape-based rules are based on the shape of the objects, i.e., trunks and poles. To differentiate 

between trunks and poles, object isolation criteria 𝑆𝐼𝑆𝑂 and the distribution area of voxels 𝑆𝐷 

are applied in this section. 
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1) Object Isolation Criteria 

The first shape-based rule is the isolation criteria 𝑆𝐼𝑆𝑂. Many researchers used the isolation 

criteria in the study for identifying objects, especially poles (Arastounia & Oude Elberink, 

2016; Li et al., 2019; Ordóñez et al., 2017; Li et al., 2016; Wu et al., 2017). The pole is usually 

isolated from other road features. If the potential voxel group are separated and isolated, it is 

classified as a pole.  

 

2) Distribution Area of Voxels 

The second rule is the distribution area of the voxel cluster 𝑆𝐷. If observed orthogonally along 

the x and y-axis, the voxel clusters will have a distribution that could indicate whether the voxel 

belongs to the pole or a trunk. If the voxel distribution is more, it is classified as a trunk or if 

smaller than it is classified as a pole.  

 

  

Figure 6.24 Distribution of Tree and pole cluster 
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6.3.7.3 Intensity and Colour-Based Rules 

The differentiation between the trunk and pole rule is based on intensity and colour values. The 

sum of all the intensities 𝑆𝐼 and colours 𝑆𝐶 are calculated in potential voxel groups. The pole 

as a man-made object is more reflective and therefore has more intensity value, whereas the 

trunk has lower intensity. Hence, colours are often a shade of brown for the trunk, whereas 

poles have more distinctive colours than trunks.  

The result of potential voxels is shown in Fig 6.25 after applying trunk and pole classification. 

Implementing the same example shown in Fig 6.21 with six potential groups, the groups are 

reduced to 3 voxel groups.  Section 6.4 demonstrates the proposed algorithm implementation 

presented in this section on commercial software 3D Vision. 

 

 

Figure 6.25 Result of classification and true trees and pole detection 
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6.3.8 Pseudo Algorithm 

The proposed algorithm can robustly identify cylindrical shapes with various radii and tilt 

angles in the point cloud. The workflow of the proposed algorithm is shown in Fig 6.3. In this 

thesis, the voxel size is fixed for any input point cloud. After many iterations, the voxel is 

selected as 0.2 metres for the proposed algorithm. A size bigger than 0.2 did not have enough 

details captured in it, and less than 0.1 was time-consuming. 

 

 

 

Input: Point cloud =𝑃(𝑥, 𝑦, 𝑧) = {1,…… .𝑁𝑖}. 

1: For algorithm 0.2, voxel size is selected because a higher number affected the tree girth 

detection as the hollow ground beneath can produce no centre point. At 0.2, it worked efficiently 

for almost all data types.  

2: Terrain extraction - Scan each voxel from the bottom and find the first one with data, which is 

recorded as ground level 

3: Whole data is viewed vertically to find all the points as ground and add to the data.  

4: It starts from Z0 to Z6 or Z8 as the seed layer. According to DHB, the trunk width is usually 

taken at 1.4 metres. 

5: Seed voxels are clustered on the same layer and a layer above and below by neighbour search. 

The clusters are then marked. 

6: The DBH does not consider the seed layer’s points if the ground is hollow. Therefore, the seed 

layer clusters are extended on the same layer. 

7: The clusters use a circle fitting algorithm to find whether the actual circle can fit. As a tree 

might not be a perfect circle, only 70-80% circle is considered. 

8: All the groups with near circles, compactness and area are selected. Then, the centre and the 

radius are calculated. 

9: Each cluster is then classified as trunk, pole and others 

 

 

Algorithm for Trunk and Pole Detection 
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Input: Voxel clusters 

1: Check if the voxels are within the circle radius threshold input by the user (Adaptive radius) 

2: Check for vertical upward region growing on the seed layer  

If (voxels are present) 

{    

3: Check the voxel cluster’s RGB and intensity (input by training data) 

4: Checks for the area distribution of voxels 

5: PCA analysis and Standard deviation (for checking distribution linearity)  

6: Isolation criteria  

} 

      6: Result: Pole, trunk or other 

 

 

6.4 Proposed Algorithm Implementation on Commercial 

Software 

The popular and most captured point clouds are for urban sites. These data cover the street 

scene or a city block. However, the level of detail can be very complex and processing these 

data is challenging.  This section aims to demonstrate the implementation of the proposed 

voxel-based algorithm on commercial software, “3D Vision”. 

For demonstrating the implementation, the following datasets are used 1) Dorchester and 2) 

Car park. In Section 6.4.1, the key features of the proposed algorithm are presented on the 

software 3D Vision and followed by the software’s UI parameters to control and manage the 

algorithm according to the point cloud type presented in Section 6.4.2. Next, Section 6.4.3 

shows the software development environment used to implement the algorithm. Finally, in 

Algorithm for Trunk and Pole Classification 
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Section 6.4.4. demonstrate the real-world scenarios and challenges encountered by users, and 

the proposed algorithm can handle and extract the cylindrical features efficiently.  

 

 

(a) 

 

 

(b) 
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(c) 

Figure 6.26 Trunks and poles detected in 3D Vision shown in a fuchsia-coloured cylinder (a) trunk detected (b) 

pole detected (c) trunk detected  

 

6.4.1 Key Features 

This section presents the key features of the 3D Vision software for triggering and using the 

proposed algorithm. The trunks and poles are detected by clicking on a start button under the 

“Tree Trunk and Pole-like Objects Detection Options”.  

The algorithm is then triggered and starts the process; meanwhile, the users are shown a 

progress bar indicating that the algorithm is taking place in the background. Once the algorithm 

finishes, it lists the number of trunks, poles and other objects detected in the point cloud. The 

list presents a centre and radius for each detected cylindrical object. These centres and radii are 

then sent to the LSS DTM survey for modelling by users (surveyor and civil engineer).  

How are the cylindrical objects detected in point clouds? 
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• It starts with terrain extraction as the separation of ground and non-ground points are 

essential for further process. 

• All the non-terrain data is segmented using voxels (After many iterations, the voxel is 

selected as 0.2 metres for the proposed algorithm. The size bigger than 0.2 did not have 

enough details captured in it, and less than 0.1 was time-consuming). 

• The seed layer is detected by implementing the DBH. 

• The clustering of voxels takes place on the same layer and a layer above and below. 

• The compact ratio and circle fitting algorithm are applied. 

• Results in all the cylindrical objects.  

The results of cylindrical objects are not very useful to the user as cylindrical objects in a typical 

point cloud can be anything. Therefore, proper classification is required for the users to be able 

to model the feature extracted. The classification divides all detected cylindrical objects into 1) 

Trunks, 2) Poles, and 3) Others. The classification starts by 

• Semantic rules – voxels dimension, adaptive radius and upward region growing.  

• Shape-based rules – isolation criteria and distribution of voxels. 

• Colour-based and intensity-based. 

 

6.4.2 System Operations 

This section describes the commands in the 3D Vision software of LSS. For trunk and pole 

detection, a list of parameters is set. If users do not change and select, it will be set to default 

values. The appropriate parameters may change from the point cloud of a city scene to the other 

point cloud of an urban scene in residential development.  

Algorithm Settings – The proposed algorithm in the commercial environment allows the users 

to set the parameters to find the best results in given data sets. The parameters enable flexibility 

for the user to use the algorithm according to their requirements. For example, a user might be 

interested in just the trunks so they can specify the parameter to accommodate that; on the other 

hand, a user might be just interested in pole-like structures. The recommended default 

parameters are shown in Fig 6.27.   
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Figure 6.27 User-controlled options for the proposed algorithm in 3D Vision 

 

Setting Parameters – Figure 6.27 demonstrate the parameters that could be set according to 

the point cloud used to detect the trunks and pole-like objects. For these, users must select the 

parameters in UI.  
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The first parameter is 1) ‘Minimum Number of Points in a Voxel’ for handling point densities 

inside the voxel. This parameter allows the trunks and pole-like objects to be detected even 

with minimum point density. The laser scanners collecting point cloud data sets use laser beams 

that fall on the object’s surface and return the points. The objects close to the scanner have full 

coverage, i.e., high-density points, and the farthest object surface has less coverage, i.e., low-

density points. Therefore, point cloud points have variable density and distribution of points. 

One of the major problems with the existing methods is that they are unable to detect trunks 

and poles where the point densities are low. The parameter ‘minimum number of points in a 

voxel’ will allow the user to set the number as low as possible to detect variable densities.  

The other options are 2) ‘Minimum Diameter’, 3) ‘Maximum Diameter’, 4) ‘Circle and Cluster 

Centre Distance Threshold’, 5) ‘Minimum DBH’, and 6) ‘Maximum DBH’.  

The parameters minimum and maximum trunk diameter allow users to control the width 

(cylindrical) of the detected objects. The trunks generally have variable widths, whereas the 

pole-like structures have similar widths. Depending on the type of the point clouds, the user 

can either have mature or new trees. This parameter will help differentiate between mature 

trees to conserve and new trees for a user such as a tree surveyor. 

The next parameter is distance thresholds. The threshold specifies the distance between a fitted 

circle on the clustered group of points and the actual centre of the group. The fitted circle on 

the clustered group could either be very large or very small. Therefore, this parameter is used 

to control the trunks that are detected. For example, if the distance between the fitted circle and 

cluster centre is large, it is either an anomaly or a very large tree, whereas if the distance 

between the fitted circle and cluster centre is small, it is a comparatively compact tree trunk.  

Lastly, two parameters control the Diameter Breast Height (DBH) of the tree trunk measured 

by surveyors and civil engineers. The British standard DBH is 1.4 metres above ground level 

(Measuring Trees · The Tree Register, 2022). This parameter will help the user specify the 

range above ground level to measure the trunk and pole diameter at that height.  

The next option is two buttons 1) Pick trunks RGB and 2) Pick pole-like objects RGB. This 

parameter is used to train the algorithm with the set of RGB present in that typical point cloud. 

RGB is very powerful and is used to differentiate between different features. 
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The last section is the Resultant Objects list. All the cylindrical objects detected in the point 

clouds are listed in this section and are classified into three groups (a) trunks, (b) poles (c) 

others. This classification helps the user to choose the object of interest. Furthermore, the user 

can choose the items and send them to LSS for creating a DTM survey by using the “Send 

Selected to LSS” button. 

 

6.4.3 SDE 

The software development environment (SDE) used for the proposed algorithm is Microsoft 

Visual Studio 2022 version 17.4.4, the language is C# (pronounced as C sharp) version 10 and 

.Net Framework 4.8. The algorithm is implemented in the back-end, which users access as the 

front-end interface, as shown in Fig 6.28. 

 

 

Figure 6.28 Visual Studio 2022 used for implementation of the proposed algorithm  
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6.4.4 RealWorld Scenarios  

This section demonstrates how effectively the proposed algorithm works to detect the trunks 

and pole-like objects in real-world scenarios, such as the presence of gaps, detection in slope, 

low point density, and objects closer to the trunks. An example of real-world data is shown in 

Fig 6.29. In addition, this section aims to demonstrate that the proposed algorithms can be used 

to overcome the existing methods’ challenges highlighted in Section 6.2.7.  

 

 

Figure 6.29 A typical real-world user data in 3D Vision 

 

6.4.4.1 In the Presence of Gap 

Figure 6.30 illustrates the presence of a gap or data missing. This is very common due to the 

nature of laser scanners. As the laser scanner picks the surface of objects and depending on the 

scanner position, often the objects are not fully captured, i.e., only part of the object visible 

from the direction of the scanner is captured. The examples of half trunk and pole are shown 

in Fig 6.30. To overcome such problems, the proposed algorithm uses terrain extraction in 

order to capture all the points on the same level, which then highlights the gaps. These are 
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further analysed within voxel clusters to determine the gap/missing points by fitting the circle 

and calculating the compact ratio (the compactness close to a circle). For example, Fig 6.30 (a) 

shows the trunk that has been detected (as a fuchsia colour cylinder is present around it) that 

has a hollow ground. To show the details of the captured ground, Fig 6.30 (b) and (c) presents 

the data from a section through the trunk. The proposed algorithm was able to detect the trunk 

with zero points below it. 

 

 

(a)  

 

(b) 
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(c) 

Figure 6.30 Trunk detection (a) shows the hollow trunk, (b) shows a section through the trunk in (a), and (c) 

shows the series of trunks and poles with the horizontal section through it  

 

6.4.4.2 Detection on Slope 

Figure 6.31 illustrates the presence of a slope. Another challenge of existing methods is that 

they assume that all the trunks and pole objects will be on flat ground. Whereas in the real 

world, this is not the case; the reason includes terrain being on a slope or the ground under the 

trunk being covered in a pile of leaves (depending on which time of year the point cloud is 

captured). To overcome such problems, the criteria minimum and maximum DBH are very 

effective as the seed layer is between them. The example is shown in Fig 6.31 (a), where the 

scanner has not properly captured the trunk points due to the wall in front or the pile of leaves. 

Fig 6.31 (b) shows a section through this tree, showing the trunk above ground level.  
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(a) 

 

 

(b) 

Figure 6.31 The trunk is present slightly above the ground in (a) and (b) 
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6.4.4.3 Low Point Density  

One of the most common challenges of existing methods is they are unable to identify pole-

like objects and trunks in cases of low-density data. The point density option (minimum number 

of points in a voxel) is implemented to overcome this problem in the proposed algorithm. When 

performing clustering, the point density specifies the number of points within each voxel. The 

example shown in Fig 6.32 demonstrates that the proposed algorithm is able to detect the trunk 

Fig 6.32 (a) with a point density of 5 and a pole example in Fig 6.32 (b) which is detected with 

a point density of 6. Hence the point density option provides the flexibility to the user to choose 

the number of points that they want to be detected by the proposed algorithm.  

 

 

                                              (a)                                                                                             (b) 

Figure 6.32 (a) Trunk detected with a point density of 5, (b) Pole detected with a point density of 6 

 

6.4.4.4 Objects closer to trunks  

The proposed algorithm is able to detect the trunks and pole-like objects closer to other objects 

in point clouds. One of the challenges of the existing methods is that the detected objects that 

are closer to other features, i.e., not isolated, are not detected. Non-isolated objects are difficult 

to find as the points are to be differentiated between the required feature and others. The 

proposed methods of clustering and the training data of the objects allow for the differentiation 
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between two objects. The example in Fig 6.33 (a) shows that the proposed algorithm could 

detect a trunk closer to a fence. A similar example, in Fig 6.33 (b), shows that the proposed 

algorithm was able to detect the trunk close to shrubs or vegetation near it. A detailed section 

view of Fig 6.33 (b) is shown in Fig 6.33 (c).  

 

 

(a) 

 

(b) 
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(c) 

Figure 6.33 Examples of trunk detected that is (a) closer to a fence, (b) closer to vegetation and 

(c) vertical section of (b) 

 

6.5 Evaluation and Validation of Proposed Algorithm 

This section evaluates and demonstrates the proposed voxel-based algorithm for precision and 

recall quality for the number of trunks and poles detected. Further, the detection speed and 

classification accuracy are analysed and compared with the existing methods.  

 

6.5.1 Test Datasets  

Both terrestrial and aerial laser scanners capture datasets used for testing. The FARO scanner 

model FOCUS 350 is used. The focus scanner ranges up to 350 metres for long-range 

measurements, and the measurement speed is up to 976,000 points/second. Focus has 

integrated GPS and Glonass, allowing detecting positions (Focus - FARO® Knowledge Base, 

2016). The resolution of the scanner can also be changed. LiDar laser scanner, Leica RTC360 
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3D Laser Scanner captures point cloud data for up to 130 metres with 2 million points/second 

measurement speed. Leica scanner has multi-sensors GPS, compass, height sensor and dual-

axis compensator (Leica RTC360 3D Laser Scanner, Leica Geosystems, 2018). The test dataset 

includes an urban scene or city block (trunk and pole structures). Data sets that have been used 

to evaluate the proposed algorithm, as shown in Fig 6.34 (a), (b) and (c), are: 

(a) Chateaudo LiDar data set was captured by Faro and has 27.1 million points. 

  

(b) Drone data set was captured by photogrammetry and aerial LiDar and has 20.2 

million points. It is secondary data set by Zegaoui (2018) downloaded for the 

evaluation of the proposed algorithm.  

 

(c) Dorchester data set was captured by Leica and has 161 million points. 

The scanned datasets consist of points in 3D (x, y, z) along with each point’s R, G, B and an 

intensity value.  

 

 

(a) 
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                                         (b)                                                                                     (c) 

Figure 6.34 Datasets (a), (b) and (c) used to test and evaluate the proposed algorithm 

 

6.5.2 Computation Parameters 

This section demonstrates the parameter that can be set and controlled by users for the 

performance of the proposed algorithm. Figures 6.35 and 6.36 show the default values of the 

parameters in the commercial environment. The parameter settings allow the flexibility of 

detecting the trunks and poles, which could differ according to the different point cloud data 

sets. 

 

(a)                                                                           

 

(b) 

Figure 6.35 User-controlled parameters to control the proposed algorithm  
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The “Point Density Option” parameter is shown in Fig 6.35 (a). Point density is important 

because it will allow the users to detect cylindrical objects in various ranges of density. The 

laser scanner beams pick a higher density of closer objects and a lower density of distant 

objects, i.e., the trees or poles that are picked far off could have lower point densities. The 

higher-density trunks and poles are easier to detect than low-density ones (as the algorithm will 

have enough points to detect the trunk/pole). In addition, this is one of the great challenges of 

existing methods to be able to find trees and poles with lower densities. Hence, this parameter 

helps users specify the minimum number of points in a voxel in order to detect trunks and poles 

with very low densities (which helps pick the trunk/pole even with minimum points shown in 

Section 6.4.4.3). Practically testing the minimum number of points in voxel parameters on 

various point clouds, the default value is set to 25, and the lowest density on a trunk/pole was 

5.  

The next parameter is "Training Data”, shown in Fig 6.35 (b), which allows the user to train 

the proposed algorithm according to the RGB values captured by the scanner. This group 

contains two buttons 1) Pick trunks RGB and 2) Pick pole-like objects RGB. This parameter is 

used in the classification of pole objects and trunks. The point cloud RGB can vary due to many 

factors like environment, weather and obstacles, especially when captured outdoors. Therefore, 

colours are not always realistic; however, they can be used to classify different features. For 

example, a tree can be white, purple or green, which depends on the time of day, weather and 

reflection etc.  

Therefore, to overcome this problem, these parameters will allow the user to tag the objects 

and define the colours to identify them. The process is simple when the user triggers the pick 

trunks RBG or pick pole-like objects button, and it will allow the user to navigate within a 

scene in the point cloud and identify the tree trunks or pole-like objects by clicking on it. This 

process will register the colours for trunks and pole objects as training data which is then used 

with other criteria to classify all detected objects in three (trunks, poles and other) categories. 

Further, this option allows the user to detect the tree and pole-like objects in various point 

clouds with different coloured objects as it is not restrictive. 
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Figure 6.36 Software Parameters to control the detection algorithm by users 

 

The next parameters are a set of “Options” shown in Fig 6.36 grouped together to control the 

detection. In this group, the first two parameters are maximum and minimum diameters. These 

two parameters allow users to choose the diameter of detected trunks or poles. This parameter 

is more useful to the tree surveyor as they might want to differentiate between an old tree and 

a new tree. The default for the minimum diameter is 0.1 metres as it can also detect slim pole-

like objects with trunks. The maximum diameter default is set to 0.5 metres which can 

accommodate the trunks in urban areas.  

The next parameter is the distance threshold between the fitted circle and the voxel cluster 

centre. The voxel cluster centre is calculated by the gravity of all points in the cluster, and on 

the other hand, the fitted circle on the points can be small or large depending on the points’ 

alignment. Therefore, this parameter helps the user to specify the difference and control the 

type of trunks and poles they want to be detected. The default is set to 1.2 metres, which is big 

enough to accommodate all types of trunks and poles.  

The next two parameters are maximum and minimum diameter breast height (DBH) values. 

This parameter will provide the flexibility to users to detect trunks and poles at what height. 

The British standard in the surveying industry is 1.4 metres; therefore, the default is set between 

1.2 – 1.5 metres.  
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After implementing the proposed algorithm and classification algorithm, the resultant objects 

are listed in the software’s user interface for visualization, as shown in Fig 6.37. The resultant 

objects are listed in 3 groups:  

• Trunk,  

• Pole  

• Other 

When the user clicks on any listed object, the object is highlighted by a fuchsia-coloured 

cylinder to represent the detection. The other category, further analysed by the proposed 

algorithm, lists the objects that fit the pole or trunk description. This classification result 

enables users to override objects’ detection and classification according to the point cloud data.  

 

 

Figure 6.37 List of objects detected by the proposed algorithm and classified into trunk, pole and others 
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6.5.3 Comparative Analysis: Detection and Classification Results 

The algorithm results are tested using standard metrics described by Yan et al. (2017), Yang et 

al. (2015), Landa and Ondroušek (2016), and Kang et al. (2018). The detected features are 

categorised as True Positive (TP), False Positive (FP), False Negative (FN) and True Negative 

(TN). The thesis uses Yan et al. (2017) and Wu et al. (2017) methods to evaluate the proposed 

algorithm using precision, recall, quality and 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 values. 

1) TP – The features are correctly detected. 

2) FP – The features are falsely detected. 

3) FN – The features are undetected. 

4) TN – The features correctly detected as others, neither trunk nor pole. 

Based on these values, precision, recall, quality and F1 measure (Wu et al., 2017) are calculated 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 %                                                        (6.12) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 %                                                        (6.13) 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 %                                                        (6.14) 

𝐹1𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                      (6.15) 

 

The correctly detected trunks and poles are considered true positives, and undetected pole-like 

objects and trunks are considered false negatives. The objects that are falsely detected as 

trunk/poles are considered false positives. The number of objects present in each dataset is 

listed in Table 6.1. The objects are divided into two categories high-density objects (HDO) and 

low-density objects (LDO). The objects that are fully captured and have a high density of points 

are HDO, and the objects with very few points and not fully captured are LDO. The objects in 

the datasets are listed below: 
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a) Drone Dataset – 20.2 million points -7 trees and 10 poles 

b) Chateaudo LiDar Dataset – 27.1 million points - 49 trees, 13 poles and 5 other objects 

– persons, buildings etc 

c) Dorchester Dataset - 161 million points – 23 trees, 18 poles and 15 other objects - 

buildings and enclosures 

 

Table 6. 1 Point Cloud data sets with urban objects 

 

The detected objects are listed in Tables 6.2, 6.3 and 6.4 for three datasets. The interested user 

objects are classified into poles and trunks. The precision, recall, quality and 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

are calculated using Equations 6.12, 6.13, 6.14 and 6.15.   

Table 6. 2 Precision, recall and overall accuracy of Dataset 1 – Drone data set 

 

Point Cloud Marker poles, 

Utility Pole, 

Traffic Signs 

(LDO) 

Marker poles, 

Utility Pole, 

Traffic Signs 

(HDO) 

Slim 

Trees 

(LDO) 

Mature 

Trees 

(HDO) 

Others 

(Building, 

enclosure) 

TOTAL 

Drone 7 3 1 6 2 17 

Chateaudo 13 0 49 0 5 67 

Dorchester 6 12 5 18 7 41 

Pole  Trunks 

TP 8 Precision 80.0% TP 7 Precision 100.0% 

FP 2 Recall 100% FP 0 Recall 100.0% 

FN 0 Quality 80.0% FN 0 Quality 100.0% 

TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 88.9% TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 100.0% 
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Table 6. 3 Precision, recall and overall accuracy of Dataset 2 – Chateaudo set 

 

Table 6. 4 Precision, recall and overall accuracy of Dataset 3 – Dorchester set 

 

A comparative analysis of previous data has been performed. The studies focused on detecting 

multiple poles classification and tree classifications. Even though the data sets used in their 

studies are different, the comparison is performed with the proposed algorithm.  

Cabo et al. (2014) achieved an average recall of 92.3% and a precision of 83.8% for detecting 

pole-like objects on two datasets with 4.6 and 41.5 million points. Li, Li and Li (2016) achieved 

recall values between 94.6% to 97.7% and precision values between 79% to 100% on three 

datasets with 12, 7.1 and 8.3 million points. Teo and Chiu (2015) achieved a recall of 95.5% 

and a precision of 95.6% on two datasets with 5 and 6 million points. The pole detection of the 

proposed algorithms achieved recall values of 100%, 81.8% and 100.0% and trunk detection 

recall values of 91.3%, 95.6% and 100.0% in the three datasets mentioned above with 20.2, 

21.1 and 161 million points. The precision values achieved pole detection of 80.0%, 81.8% and 

Pole  Trunks 

TP 9 Precision 81.8% TP 43 Precision 89.6% 

FP 2 Recall 81.8% FP 5 Recall 95.6% 

FN 2 Quality 69.2% FN 2 Quality 86.0% 

TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 81.8% TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 92.5% 

Pole  Trunks 

TP 16 Precision 94.1% TP 21 Precision 95.5% 

FP 1 Recall 100.0% FP 1 Recall 91.3% 

FN 0 Quality 97.1% FN 2 Quality 87.5% 

TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 97.0% TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 93.3% 
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94.1% and achieved trunk detection precision values of 89.6%, 95.5% and 100.0% in the three 

datasets mentioned above. The recall and precision value ranges are slightly higher compared 

to the other methods, and the datasets are bigger than the existing methods.  

The accuracy achieved by Rodríguez-Cuenca et al. (2016) is 94.35% and 95.0% in the two 

datasets. Guan et al. (2016) achieved an accuracy of 88.9% for classifying the traffic light poles 

and light poles. Yan et al. (2016) achieved an overall accuracy of 91% in detecting multiple 

pole-like objects. Yang and Dong (2013) achieved a recall of 84.2% for tree trunks and the 

recall values for poles is 89.6% and 90.2%. The achieved precision value of 85.4% for trunks 

and 86.3% and 89.2% for poles. Yang et al. (2015) achieved a recall of 91.0% for tree trunks 

and 94.1% for poles. The achieved precision value for the trunk is 91% and 93.5% for the 

poles. The proposed algorithm achieved an accuracy of 70.0%, 80.0% and 94.1% in pole 

detection and an accuracy of 100.0%, 86.0% and 87.5% in trunk detection with large datasets. 

 The 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 achieved by the proposed algorithm for pole is 81.8%, 88.9% and 97.0%, 

and for trunk detection, the values are 91.5%, 93.3% and 100.0%. The proposed method can 

identify all kinds of poles with low and high-density points with overall high accuracy.   

 

6.5.4 Processing Time 

This section records the computation/processing time the proposed algorithm achieves in 

minutes. The method is implemented in C# on a desktop-based application. The processing 

times of the proposed algorithm are recorded using the commercial software 3D Vision. Wu et 

al. (2017) subdivided the data set into ten subsets for faster evaluation, whereas the proposed 

algorithm is implemented on the whole dataset without subsampling. The size of the datasets 

is not the same in this comparative study. However, times can be compared in terms of the 

number of points taken to detect and classify objects in the point cloud. Landa and Ondroušek’s 

(2016) method’s processing time was 2 hr 35mins, Hackel et al. (2016) 90 min for segmenting 

30 million points, and Yan et al. (2017) presented a computation time of 121.55 minutes for 

processing 180 million points. On the other hand, the computation time of the proposed 

algorithm for 161 million points (Dorchester Dataset) is 6.5 minutes.  
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6.6 Discussion 

The proposed algorithm shows promising results for automatically detecting cylindrical objects 

in urban point clouds. The advantages of the method are: (1) the use of terrain extraction for 

fast and quick retrieval of ground points. (2) elimination of lengthy segmentation processes 

such as euclidian distance segmentation, which does not work in highly populated 

environments (Landa and Ondroušek, 2016). The proposed algorithm implements voxels 

(voxel grids), a relatively quick segmentation technique. (3) Voxel-based clustering method 

works effectively on a current layer and accommodates the voxels in a layer above and below. 

(4) Effective in real-world scenarios.   

During the implementation of the proposed algorithm on the commercial software, real-world 

scenarios are tested, such as the presence of gaps (no points present), the presence of slope on 

the ground, the presence of low-density point objects and other objects closer to the objects of 

interest (trunk and pole-like objects). As a result, the algorithm works efficiently to detect and 

classify the trunk and polelike objects of point clouds.  

Furthermore, the parameters provide the flexibility to detect the features of interest in several 

kinds of point clouds. The evaluation showed the recall, precision and quality values, indicating 

that most pole-like objects and trunks are detected. Based on the three datasets, the average 

recall values of the pole and trunk are 91.6% and 92.8%, the average precision values of the 

pole and trunk are 91.5%, and 97.2 and the average quality values of the pole and trunk are 

84.4% and 90.6%. These are very high numbers, given that the dataset was large.  

The limitations of the proposed algorithm are missing ground points and RGB-based 

classification. The trunks or pole objects that do not have ground points are unable to detect as 

the terrain extraction algorithm cannot detect any points to implement DBH for the seed layer, 

as shown in Fig 6.38 (a). Furthermore, the wrong classification was achieved because the user-

selected trunk RGB is very close to the building pillar RGB as shown in Fig 6.38 (b).  
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                                      (a)                                                                                           (b) 

Figure 6.38 (a) Trunk with no ground points (b) Building pillar detected as a trunk because of similar RGB 

 
 

6.7 Chapter Summary 

The proposed algorithm detects trunks and pole-like structures by segmenting the ground and 

non-ground points and removing the ground. First, Voxelization is applied on the non-ground 

points to fasten the search. Next, the seed layer is identified to start the neighbourhood search 

to cluster the voxel groups. Next, the potential cluster groups are selected by filtering based on 

area, compactness and distribution. Finally, the resulting voxel groups are classified as trunk, 

pole or other in the point cloud. The proposed method works efficiently and quickly as it is not 

dependent on prior knowledge and is automated by implementing various parameters and 

segmentation. However, the algorithm does not work when the ground points are absent. 

However, this can be enhanced by traversing the voxel cluster groups on the same level.   The 

results conclude that the proposed method is robust, fast, efficient and automatically detects 

and classify trunks and poles. Moreover, the algorithm works well with low-density points and 

features on gradients.  

Further enhancements and research of the proposed algorithm could be extended to offer a 

more detailed classification of objects in the classes, such as the type of tree, type of pole, 

vehicles and buildings. 
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Chapter 7 Software Implementation, 

Application and Case Study 

 

7.1 Overview 

This chapter discusses the implementation and application of this thesis’s proposed algorithms 

and presents a case study on commercial software. The software is called LSS and 3D Vision 

(https://www.dtmsoftware.com, Accessed: 18 June 2022).  

Section 7.2 presents the proposed algorithm projects’ implementation and models used to 

design and develop. Section 7.2 presents the software life cycle model implemented, including 

the requirement, design analysis, development, testing, and release. The presentation of the 

programming language C# and software development environment visual studio was chosen 

as it supports good 3D graphics libraries. The section also discusses the execution process 

involved with each software project life cycle, including project management, quality 

assurance, program UI intuitiveness, and reusability of programming. The next Section, 7.3, 

introduces the commercial software ‘LSS’, its brief history, and the journey to point clouds 

product ‘3D Vision’ by the company McCarthy Taylor Systems Ltd (MTSL). Section 7.4 

presents the market research in the surveying and civil engineering industry, the workflow 

used, and the software provided by different companies and users in the UK. Section 7.5 

presents the case study on the 3D Vision software product and its implementation of point 

cloud processing using UI parameters. Finally, Section 7.6 provides the chapter summary. 

 

7.2 Software Implementation 

The field of computer science software engineering is well-developed. Software engineering 

can be defined as follows by Tucker (2021). 
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“Software engineering is the discipline concerned with the application of theory, knowledge, 

and practice to building reliable software systems that satisfy the computing requirements of 

customers and users.”  

Software engineering is used for software development with proper tools, techniques and 

methods. However, development is a large task requiring accurate engineering and 

management techniques to make it cost-efficient and reliable.  

Large-scale software projects are usually divided into phases for the effortless delivery of the 

product. Since this thesis is also part of a commercial product, the proposed algorithms were 

separate projects delivered using software models presented in Section 7.2.1, followed by 

programming languages and SDE decisions (Section 7.2.2), and the execution process involved 

within projects (Section 7.2.3). This section explains and summarises the software 

development and design of the proposed algorithms.  

 

7.2.1 Software Development Models 

According to Ruparelia, the models are linear, iterative, and combination. Linear models are 

sequential models, meaning when one stage finishes, the other stage starts, whereas iterative 

models enable revisiting all the stages in the future (Ruparelia, 2010). Software development 

models are used to design, develop and release this thesis’s proposed methods/algorithms. 

Examples of software development models are waterfall, unified, rapid, incrementing, spiral, 

v and w models.  

• Waterfall Model – is a linear sequential where each phase is specialised to a task and is 

dependent on the result of the previous one. Waterfall has six stages: analysis, 

requirements, design specifications, development, testing and integration, and 

deployment shown in Fig 7.1 

 

• B-Model – is an extension of the waterfall model to ensure the constant improvement 

of the software in the development stage (Ruparelia, 2010) 

 

https://www.merriam-webster.com/dictionary/discipline
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• Incremental Model – is an iterative model and can be perceived as a 3D waterfall model 

where the z-axis represents the number of iterations to improve the functionality 

(Ruparelia, 2010) 

 

• V-Model – is folded in half. The left half represents the evolution of user requirements, 

and the right half represents the integration and verification of the system (Ruparelia, 

2010) 

 

• Spiral Model – is used for risk management that combines an iterative development 

process and the waterfall model (Boehm, 1988). It consists of four quadrants, as shown 

in Fig 7.2:  

▪ identifying and understanding the requirements,  

▪ performing the risk analysis 

▪ building the prototype 

▪ evaluation of software performance 

 

• Wheel and Spoke Model – is a bottom-up approach that establishes the system’s 

requirements and initial design. Then, it creates a prototype for implementation and 

verifies against the requirements, then feedback is constant during the development 

cycle and the stages after use to create a more refined prototype (Ruparelia, 2010) 

 

• Rapid Application Development Model – is used for prototyping and iterative with no 

specific planning. The model emphasises coming up with the prototype rather than 

planning tasks (What Is Rapid Application Development?, (Accessed: 19 June 2022)) 

 

• Unified Process Model – is a user-driven and iterative model. It specifically addresses 

problems related to object-oriented software consisting of four stages: inception, 

elaboration, construction and transition.  

 

• Agile – is the practice of managing a project by breaking it into several phases. The 

development happens in small projects and is released with small changes. Agile 

method types are extreme programming (XP), joint application development (JAD), 
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lean development (LD) and scrum. Scrum is short sprints, and progress is monitored 

daily (Ruparelia, 2010) 

 

 

Figure 7.1 Waterfall model (Jones Justin & Waddel Scott, 2019) 

 

 

Figure 7.2 Spiral Model (Boehm, 1988) 
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A brief introduction to the software development models mentioned above are commonly used 

to develop the software life cycle. After careful analysis and consideration for this thesis, both 

the spiral model and agile scrum are used to develop the proposed algorithms. The advantage 

of the spiral model includes that the software prototype is produced at an early stage of 

development, risk handling, flexibility, good for complex projects, strong approval and 

documentation and customer satisfaction (Upadhyay Raj Kumar, 2020).  

On the other hand, the advantage of Agile Scrum is that the development cycle is iterative, 

provides a learning experience, can be revisited, projects are delivered quickly and tested, and 

is customer feedback oriented (Mixing Agile and Waterfall, 2021). The models constitute a 

system which defines the software design phase. The software design phase is responsible for 

the overall software architecture and execution of software functions.  

 

 

Figure 7.3 Agile Scrum in a nutshell (What Is Scrum?, Accessed: 19 June 2022) 
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7.2.2 Design Decision  

7.2.2.1 Programming Language 

A programming language is a computer or constructed language designed to communicate 

instructions to computers (Ogala, Ogala and Onyarin, 2020). Syntax is the set of rules that 

defines the instructions, a combination of symbols and words in a structure’s statements or 

expressions (Woz U, 2020). For this thesis, C# is used as a programming language for coding 

the proposed algorithm. C# is read as C sharp. It is an object-oriented programming language. 

The primary architects of C# were Anders Hejlsberg (lead architect at Microsoft), Peter Golde, 

Eric Gunnerson, Peter Sollichy and Scott Wiltamuth. It was first introduced in 2000 at the 

Professional Developer Conference (PDC) (Ogala, Ogala and Onyarin, 2020). Microsoft also 

introduced C# with the .NET framework and Visual Studio. In 1999, Anders Hejlsberg formed 

a team to build a new language called COOL (C-like Object Oriented Language) (Hamilton, 

2008). Later, before publicly announcing, Microsoft renamed the language as C#, inspired by 

a musical notation of a sharp symbol that indicates the note should be a semitone higher in 

pitch (Kovacs, 2007).  

The reason for choosing C# is to be consistent with the commercial software in MTSL (3D 

Vision) that already uses C# in desktop applications with the abovementioned benefits. 

Furthermore, C# also provides metaprogramming, classes with properties, methods, functions, 

namespace, memory access, exception, polymorphism, functional; programming, inheritance, 

and supports different libraries.  

Benefits of using C# (Hejlsberg et al., 2011) are: 

1. Component-oriented programming, 

2. Garbage collection – unused objects in the memory are automatically deleted, 

3. Exception handling – structural approach for error detection, 

4. Unified type-safe system – all primitive types inherit from the root Object type, 

5. Supports both user-defined reference types and value types, permitting dynamic 

allocation, 

6. Supports versioning, 

7. Portability, as it supports Common Language Infrastructure (CLI). 
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Another reason for choosing C# is its cross-platform, simple, modern OOPs language which is 

very popular in the game development industry. Furthermore, it supports 3D graphics 

functionality, providing a full-featured gaming development platform. As point clouds are 3D 

data, the development platform must provide options for navigation, viewports and projections. 

In addition, C# works well with OpenGL. The 3D aspect is handled by OpenGL, which is 

cross-language and cross-platform programming for rendering 2D and 3D graphics. This 

thesis’s algorithms (projects) are handled using the OpenGL library, which provides 

functionality like rendering and drawing shapes and setting camera positions and projections 

in 3D.  

C# applications can be desktop-based. The high-end programs in the 3D better run on desktop 

vs on mobile or tablet. The surveying and civil industry users are using more windows OS 

applications; therefore, C# was the right fit. Furthermore, the language lessons are easily 

accessible to anyone on the internet.  

 

C# Syntax 

The basic syntax for introducing the C# language is shown in Fig 7.4. In OOPs language, a 

program consists of various objects interacting with each other using actions. These actions are 

methods (C# - Basic Syntax, Accessed: 14 July 2022). In addition, C# has reserved predefined 

words called keywords. The program always starts by including the “using” keyword. Using is 

used to call system libraries or any third-party library that supports C#. These libraries give 

functions and classes for various actions. Next, the namespace is used to arrange the classes, 

structures, interfaces, enum and delegates (V.S. Rajesh, 2005). Finally, the class is declared 

using the keyword “Class” and a unique name within the namespace. Inside the class, the 

methods, functions and variables are declared. The output of the example program in Fig 7.4 

is “Thesis on Point Clouds”, as it uses the system library to call the Console.Writeline, which 

prints any text in double quotes.  
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Figure 7.4 C# syntax example  

 

C# Example 

The source code file can be saved on a computer with the ‘.cs’ file extension. The file extension 

helps open the file from anywhere on the computer. The example in Fig 7.5 is saved as 

‘Testing.cs’. The example presents a class called CompareNumbers that is used to compare 

two numbers. The ‘result’ method passes any two numbers, and the class compares them. The 

output in this example is ‘Number2 which is higher.  

 

 

Figure 7.5 Pseudo Code example for comparing two numbers 
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7.2.2.2 Programming Environment  

The programming environment allows the combination of hardware and codes to be built into 

applications. The developer typically uses an Integrated Development Environment (IDE). For 

this thesis, the IDE used is Visual Studio 2019 and 2022. Visual Studio was announced at the 

same time as C# and .Net in 2000 at the Professional Developer Conference (PDC) (Ogala, 

Ogala and Onyarin, 2020). The Visual Studio environment with C# coding is shown in Fig 7.5. 

 

 

Figure 7.6 Visual Studio and C# coding  

 

7.2.3 Execution/Process 

The software development method generally consists of a ‘life cycle’ for the final product. 

Hence, they are called software development life cycle (SDLC). The SDLC has several phases: 

requirements gathering, analysing, specification, design, outputs, developing, validation, 

deployment, testing and maintenance. Several SDLC models are used in software development. 

They describe the steps involved in the cycle. In this thesis, the execution of software projects 

is divided into phases or stages to manage the elements of the projects more efficiently (Jevtic, 

2019). As shown in Fig 7.7 for this thesis, the projects are divided into nine stages as follows: 
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1) Planning,  

2) Requirement gathering,  

3) Design,  

4) Develop,  

5) Build,  

6) Test,  

7) Document,  

8) Release  

9) Maintain 

 

 

Figure 7.7 Software Development Cycle 
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The development phase involves the users for constant feedback. Then, the methods and 

algorithms are refined and fine-tuned until a satisfactory system is developed. Therefore, the 

software development is gradual and goes through these stages shown in Fig 7.7.  

For this thesis, an outline of the development phases is explained, from planning to 

maintenance of the software. The process is iterative and was applied to each project while 

working on the proposed algorithms. 

The first stage is the planning stage, where general market research is accomplished. It is very 

important as the point cloud is an emerging technology with a competitive market. The next 

stage is requirement gathering, accomplished by speaking to the users, reviewing the wishlist 

items and involving the stakeholders. The overall project design is dependent on the 

requirements. Once the requirements are listed, a prototype design is initially fabricated. The 

design involves the UI options, messaging between applications and intuitiveness of the 

software. The next stage is development, where the software design is converted into programs. 

Before the next stage of software build, the written code in the development stage is tested by 

the developer, called unit testing. Once the program passes the unit testing, the various units 

are integrated to form a build. The build has a unique version number supplied to other testers, 

and the stakeholder and each unit are tested individually. The initial build helps with the 

evaluation at an early stage, including any design (UI) changes.  

Next, the project’s documentation is processed with explanations and flow charts for other 

developers to understand. Finally, after all the stages are processed without impediments, the 

developed project is released as a final version to every user with a version number. The last 

stage is maintaining the software’s released version, including support and bug reports (if any) 

found.  

Apart from the development cycle, some important aspects of software development are project 

management, design quality, program reliability and efficient coding. 

 

7.2.3.1 Project Management  

Project management is important and plays a crucial role in software development and delivery. 

With respect to the business, the goal is to complete the project on schedule and within budget. 
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The commercial environment mainly drove this thesis project which enforces prompt and 

reliable software delivery. The project had intangible deadlines because of the pressure from 

customers and their expectations. The thesis project timeline was difficult to estimate, 

particularly when using new technologies. The user feedback and input were also very 

important, which took a lot of time. Thus, designing, developing and estimating were iterative 

to achieve the project milestones. The development progress of the projects was monitored by 

using Agile scrum.  

 

7.2.3.2 Quality  

Two of the important factors in this project are quality and accuracy. Land surveyors and civil 

engineers rely on the software to provide them with accurate results. The proposed algorithms 

are modified and tested for accuracy. The quality check reports are presented for the users to 

check and verify.  

The quality also depends on understandability and adaptability: 1) Understandability means 

understanding the design, documentation, and complexity, and 2) Adaptability means easy 

changes. This project is both understandable and adaptable. The variable name in the code aims 

to be clear and presented by comments for in-depth understanding. In order that a third party 

(or any other developers) can understand the code, comments and documentation are included. 

 

7.2.3.3 Program Reliability or Intuitiveness 

Software intuitiveness and reliability are very important aspects. The software’s prominence is 

at stake if it fails to impress the users. In general, a program can be reliable by avoiding crashes 

and bugs. Having said that, software completely free from bugs is an exception; therefore, the 

solution has to be interactive, informing the users about the bugs and adding facilities to handle 

them in the system. Certain programming techniques, such as defence programming, combine 

checks for faults and fault recovery in the program (Sommerville, 1996). This thesis uses a 

defensive programming approach to aim and anticipate errors and potential bugs before and 

accommodate those in the code. For example, all the inputs would have a default value if the 
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users did not set it. C# is also very good at handling exceptions and type-safe (for casting 

objects). 

Software intuitiveness helps users with little or no experience understand the logistics and 

access the software commands. All the commands and operations are accessible either by 

mouse clicks or user input. This allows the user to be in control. 

For this thesis, the proposed algorithms are provided with minimum user clicks and user input 

values for edge detection and trunks and poles detection, as point clouds can be unpredictable 

given the variety of data. Therefore, the users are in control of the data. Also, all parts of the 

program must work to maintain a high level of reliability and user perception. For example, if 

an error occurs continuously and the program fails to work, this may hurt user confidence and 

willingness to use the software. 

  

7.2.3.4 Reusable Code 

The algorithms and methods for this thesis aim to provide code that can be used again. In order 

to achieve this, individual reusable components are produced that are accessible on a global 

level. It is called block coding, where important calculations are coded in functions and 

methods separated (in blocks) that are accessible globally to other developers. For example, 

the code is made into functions so that other developers can use it as needed, such as 

mathematical calculation functions. 

 

7.2.3.5 Testing 

All algorithms and methods presented in this thesis are thoroughly tested. The testing is 

performed on three levels 1) Unit Testing, 2) Acceptance Testing and 3) User-based testing.  

The unit testing is at the developer level, where a unit, i.e., a function, is tested. The functions 

are the basic building block of the software, and many functions are written together to perform 

a functionality (Singh, 2020).  
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Next is acceptance testing, which can be performed by any stakeholder involved in the 

development process. For this thesis project, colleagues in McCarthy Taylor Systems Ltd 

performed acceptance testing. Acceptance testing is carried out by a series of commands to 

achieve the desired results and satisfy the business requirements. The tester performs this and 

checks the working and performance of the software function.  

Last is user-based testing. User-based testing involves real users after the first deployment of 

the software functions. These users are selected to perform testing on a beta version of the 

software that includes new functionalities before the release. This is very helpful as it provides 

insight into how the user interacts with the product, which helps design better UI elements, 

fine-tune functionality and identify bugs. The feedback from users is used to improve the 

functionalities following which the alpha release of software happens.  

This thesis used all three levels of testing before releasing the methods and algorithms to the 

wider user base. The user-based testing is also part of the spiral model mentioned in Section 

7.2.1, which ensures that the software is maintained, improvised and amended based on the 

requirement changes from the users. 

 

7.3 Application in MTSL Software 

McCarthy Taylor Systems Ltd (MTSL) is an independent software company developing 

software for a wide range of industries such as land surveying, mineral extraction, hydrographic 

design, surveying, civil engineering, construction, landscape architecture, consultancy, air and 

collision investigation, geotechnical engineering, waste management and archaeology 

(https://www.dtmsoftware.com, Accessed: 18 June 2022). LSS is the DTM software, and 3D 

Vision is the point cloud product. 

  

        

Figure 7.8 LSS and 3D Vision Logo 
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7.3.1 Brief History of MTSL  

MTSL was started in 1985 with the “LSS” software, which stands for Land Surveying 

Software. LSS is a cost-efficient, straightforward software package for surveyors, designers 

and engineers (Civil and mineral). In 1995, MTSL evolved and became popular in several 

industries. The company is headquartered in Birdlip, Gloucestershire.  

LSS is a powerful windows-based software to produce a digital terrain model supporting 

Electronic Distance Measurement (EDM) or Global Positioning System (GPS) instruments and 

Computer-Aided Design (CAD) systems imports. These models could contain contours, break 

lines, elevation data, vegetation and building/building footprints. LSS offered an efficient way 

to convert all that data into a 3D terrain model. LSS pioneered the concept of real-time 3D 

terrain modelling, which was only possible through its high-speed triangulation algorithms.   

 

 

Figure 7.9 A Digital terrain model in LSS  
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In the early 2000s, a technology arrived which would transform the survey market, “laser 

scanners”. Laser scanners were capable of collecting a cloud of 3D points in a fraction of the 

time it took to survey previously. The latest scanners can collect more than one million points 

a second. Although the challenge now was to process these huge amounts of data to generate a 

3D CAD drawing (the ultimate deliverable).  

At this point, the laser scanner manufacturers had a stranglehold on the software market 

because they were the only ones who could process their own scanner’s data. As a result, they 

charged many £’000 for each copy, in addition to the £50,000 - £100,000 cost of the scanner. 

By 2012, LSS started to work with these datasets, and the company embarked on an ambitious 

product development project. In 2015, a Knowledge Transfer Partnership (KTP), funded by the 

UK government (Innovate UK), began to start the point cloud’s feature detection project. I 

joined MTSL as part of Innovate UK and began my journey with point clouds and in the 

company. Point Cloud solution called “3D Vision” was released in April 2017 to widespread 

acclaim and is available with LSS. The largest point cloud so far processed by LSS contains 

100 billion points.  

Drones started to capture point clouds, which photogrammetry software then processes. LSS 

can read these files to generate a 3D terrain model and allow the surveyor to draw lines in 3D 

directly from the point cloud. Building Information Modelling (BIM) systems for all 

construction, maintenance and refurbishment contracts is a high priority for the UK 

Government, but there is a great deal of confusion over its practical implementation. LSS 

bridges the gap between engineer and client by providing leading-edge data exchange 

solutions.  

As a result, LSS has become an essential business tool for hundreds of organisations. LSS 

products are LSS Solo (basic level), LSS Vista (mid-level), LSS Elite (advanced level), 3D 

Vision (point clouds), 3D View, LSS Unity, LSS Education, LSS Police (used for collision and 

police incident investigation) and LSS Toolkit.  
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Figure 7.10 World heritage site “Gorham’s Cave” (Copyright @DroneSurv) visualised and preserved with the 

help of LSS 3D Vision 

 

7.3.2 3D Vision: LSS point Cloud Software 

The 3D Vision supports various import formats. For example, users can create Point Clouds 

from E57, LAS, LAZ, FARO FLS, Leica Geosystems PTS, XYZ and ASCII. The data can be 

with or without Intensity (a single numeric value which can be used to colourise the data) and 

with or without RGB colouration. Point Cloud provides the real-world context for recreating 

and extracting valid information about objects. For example, in Geoinformation systems for 

landscape design, planning, and urban scenes, point cloud data is usually collected to capture 

the scenes. Then, the scenes are processed to extract important and useful information. Some 

commands in 3DV (https://www.dtmsoftware.com, Accessed: 18 June 2022) are: 

1) Eraser tool to remove unwanted points, 2) Extract a terrain from the Point cloud to create an 

LSS DTM survey 3) Use the Point Cloud application as a 3D digitiser to extract 3D lines and 

points 4)Create elevations and topographical surveys 5) “LSS 3D VisionTM” application is a 

free Point Cloud viewer 6) Generate Orthophotos from any Point Cloud 7) World’s first 

“SearchphereTM” technology to find points  8) Display an LSS survey in 3D 9) Query 

coordinates and distances 10) View vertical and horizontal slices 11 ) Vertical and horizontal 
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heatmaps that show deviation from vertical or horizontal planes and 12) The over-display helps 

users see the extracted information in 3D 

LSS is widely used for landscape design. The point clouds extract information, such as trees, 

hedges, buildings, kerbs, crest and toe of banks, walls, roofs, marker poles and lamp posts, 

vehicles, break lines, etc. LSS will represent these features on-screen and on the final plotted 

output as user-defined symbols and line styles to create elevation and topographical surveys. 

Fig 7.11 shows an example of LSS on the left-hand side with extracted DTM model, and on 

the right-hand side is 3D Vision with a point cloud open. LSS and 3D Vision are two separate 

applications. Both are connected via a pipeline that sends and receives messages to sync the 

location and various functions. The features are extracted from the point cloud into LSS in the 

form of points and links. For example, a survey or DTM in LSS represents contours, levels, 

buildings, trees and roads. 

 

 

Figure 7.11 Left hand is LSS, and the right hand is 3D Vision (point clouds)  
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7.4 Market Analysis 

The global 3D scanning market is projected to grow by 16.3% at a CAGR, valued at $3.72 

billion in 2020, to $16.66 billion by 2030 (Wood, 2022b). Europe’s 3D scanner market was 

valued at $316 million in 2020 and is expected to grow to $669 million by 2027, translating 

into a CAGR of 11% (Wood, 2022a). A major part of the market would be in North America 

(29%), followed by Europe (28%) and Asia (28%).  

Growth in the scanning market is predominantly due to the surging need for highly accurate 

3D data and the increasing need to capture a large volume of 3D data for analysis and modelling 

(Wood, 2022b). Growth can also be attributed to the wide application of point cloud in 

industries from engineering and manufacturing to healthcare, high investment in research and 

development, and advancement in 3D modelling and mapping technology. The 3D scanners 

market size, however, decreased during the global pandemic but is now back on track and 

expected to grow from 2021 onwards (Wood, 2022a). Given the high demand for 3D scanners 

and advancements in modelling technology, the 3D point cloud processing software market is 

bound to grow at a similar rate or higher as software demand is highly correlated to 3D scanner 

use. Furthermore, point clouds are becoming increasingly popular, and there is a “point cloud 

boom” at the moment by the recent developments in point cloud software (Cropp, 2021). 

Each software is different as the new capabilities, and innovative thinking spurred. The market 

is very competitive. The new scanning technologies are becoming integral to many diverse 

projects (Cropp, 2021). As for the software, innovation is vital to accommodate the new 

scanning technologies. With a wide range of software with various options to process point 

clouds, it is essential to understand the industry’s workflow.  

 

7.4.1 Workflow 

The workflow of a typical user in the software industry (surveying, civil engineering) to process 

the data from a scanner to a model has to pass the data through various software and solutions, 

as shown in Fig 7.12. First, the data is collected using a scanner or drone. Then the user inputs 

these raw files into the scanner or drone company’s software provided by hardware companies. 
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These are used to register different raw files together, called registration. After registration, 

they can view the file and manipulate the data using cropping and deleting points. When the 

user is happy with the file, the data is exported into desired file formats. Second, the data is 

imported into point cloud processing software, which is used to extract meaningful information 

of the features or terrain to create models such as DTM or DSM (Digital Surface Model). Third, 

the data is imported into CAD from this processing software. CAD is popular because it allows 

the user to accurately visualise and present information on the particular area they are 

surveying. AutoCAD (Autodesk Corporation) is a common software used within the industry; 

therefore, it is easier to pass the model to clients, other surveyors, and engineers using its 

formats. Finally, users end up with a CAD model. 

 

 

Figure 7.12 Workflow from scan to model for processing point clouds 

 

This thesis concentrates on point cloud processing, which converts point clouds into models.  

 

7.4.2 Software in the Market   

Point cloud processing software tools are globally available to analyse point clouds. However, 

for this thesis, the market analysis and software market focus solely on UK-based companies. 

The point cloud processing market is generally divided into two parts 1) Hardware company 

products and 2) Software company products. As LSS is commercially used to implement this 

thesis’s algorithms, the focus is on software companies. 
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Following is an overview of the software provided by hardware and software companies to 

handle point clouds from raw files to models. 

 

7.4.2.1 Hardware Companies 

The hardware or scanner companies also provide solutions to import raw files after scanning, 

register multiple clouds, clean the data, and export the files in their supported formats. 

Examples of such software are:   

❖ Autodesk – Recap, 

❖ Revit and AutoCAD,  

❖ Bentley – Pointools, 

❖ Leica – Cyclone, 

❖ Faro – Scene, 

❖ Riegl – RiSCAN PRO, 

❖ Trimble – RealWorks,  

❖ Trimble Business Center (TBC), 

❖ GeoSLAM, 

❖ NavVis and 

❖ Z+F. 

Hardware companies are producing software so that the user can handle their raw point cloud 

files. However, to maintain customer stickiness, they provide basic functionalities such as point 

cloud registration, removing outliers, chopping the data, viewing the data in 3D, etc. Point 

clouds are captured from multiple scanner station sites.  

In order to produce a single point cloud, registration is performed to merge multiple station 

data into one. The problem with software is that they are mainly focused on viewing and 

managing the data; they are not capable of performing the complex options for feature 

extraction and other point cloud processing process. Hence, software products are required for 

point cloud processing. 
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7.4.2.2 Software Companies 

Software companies provide solutions to process and extract information from the exported 

files from hardware solutions, as data will be nothing without appropriate software to process 

it. The software solutions support the file formats from the hardware solutions to import the 

files, and then the commands and options allow the user to extract the information, save and 

export it into CAD to model or deliver as it is. Some software in the UK market are as follows: 

❖ Vercator,  

❖ TopoDoT,  

❖ 3DReshaper, 

❖ EdgeWise,  

❖ PointCAB, 

❖ PointFuse,  

❖ VEESUS,  

❖ Terra3D and  

❖ LSS – 3D Vision. 

Software companies provide complex functionality, unlike hardware companies’ software. 

However, the problem with the software company products is that they are more focused on 

particular features, i.e., not all the software can perform all tasks a user might need. For 

example,   

1) EdgeWise is an exclusive solution that provides automatic building floor extraction, 

2) PointCAB is a tool that is focused on the extraction of sketches such as elevation 

profile, panorama view, measure distance etc.,  

3) PointFuse is software focused on extracting pipes from the building and industrial sites,  

4) Vercator is focused on the segmentation of points,  

5) 3DReshaper focused on segmentation as well,  

6) TopoDOT specialises in break line extraction and rail, 

7) VEESUS is a software focused on visualisation than the extraction of features and  

8) Terra3D focus only on railway asset extraction and management.  



 

286 | P a g e  

 

On the other hand, LSS 3D Vision implements the proposed algorithms and methods that will 

allow the user to filter out an outlier, noise removal, edge detection, trunk and pole-like object 

detection, segmentation, sampling, and modelling.  

 

7.4.2.3 Free  

There are free software other than hardware and software companies that are not commercial 

and are available for free. Open source or free point cloud processing software are standalone 

packages. 

• Software such as  

 

➢ CloudCompare – open-source software for viewing, editing and processing 

point clouds. 

 

➢ MeshLab – open-source tool for creating 3D meshes and triangulation of point 

clouds. 

 

➢ Euclidean – 3D graphics engine that renders point clouds to images. 

 

• Libraries such as 

  

➢ PCL – Point cloud Library is a standalone large-scale open project for 2D/3D 

image and point cloud processing. It is written in C++. 

 

CloudCompare and MeshLab are open-source software which is contributed by various 

developers around the world. However, these free software and libraries are effective but not 

as compared to paid software as they lack speed and efficiency, and there is no proper 

documentation to use these.  
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7.5 Case study  

The case study is conducted to demonstrate the practical application of the three proposed 

algorithms and methods in this thesis using the 3D vision software. This case study focuses on 

key problems in a typical point cloud processing and answers the research questions presented 

in Chapter 1.  

A point cloud can be very large, and the processing of the point cloud will depend on the size 

and complexity of the data (What is a Point Cloud Survey?, 2021). A point cloud can contain 

many millions or billions of points; therefore, processing can take many hours or days. To 

address these problems, removing noise and outliers is essential to speed up the process, as the 

number of points can be reduced significantly by focusing only on the good points. After 

cleaning up, the data is ready to extract information. The information is the features such as 

kerb, road, building floorplan, trees, etc. The solutions in the software (3D Vision) are user 

oriented. The main requirement throughout is to maintain a high degree of accuracy, but it must 

also be fast, robust and easy to use. The case study is performed on a dataset to demonstrate 

3D Vision for Point Cloud Processing. Firstly, by removing noise and filtering outliers, data is 

cleared of bad points or points that are not part of relevant features. Secondly, extracting edge 

sects and edge streams on the data and finally using segmentation to identify the tree trunks 

and pole objects.      

 

7.5.1 Dataset 

The point cloud data “Dorchester” used in this study was captured with the Leica RTC360 3D 

laser scanner. The scanner was released in 2018, and the data was captured in 2019. The 

scanner takes less than two minutes to complete a full dome scan at 6mm point spacing at 10 

metres. The field of view is 360 degrees with a range of 0.5 - 130m. It collects 2 million points 

per sec. The accuracy is 1.9mm at 10m, 2.9 mm at 20m and 5.3mm at 40m. The data are 

generated in E57 file format, with a medium density of 6mm @10m. Other options are low 

12mm @10m and high density 3mm @10m. The data is automatically registered using a VIS 

app that tracks multiple scans in the correct position, and by selecting the scans, they can be 
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linked together. The VIS app also puts the scans together in the correct orientation and 

alignment.  

 

 

Figure 7.13 Point cloud “Dorchester” in 3Dvision 

 

7.5.2 Point Cloud Processing in 3D Vision 

For this section, urban point cloud “Dorchester” is used to demonstrate the implementations of 

the proposed point cloud processing methods on the commercial software 3D Vision. 

Dorchester is a town in Dorset, England. The point cloud is captured on a busy road in 

Dorchester. It is an urban scene with features such as roads, buildings, street and street 

furniture, bins, lamps, trees, bus stops, etc. The raw point cloud was captured in several 

different areas on the site. Lastly, they were linked together to form this dataset. The Dorchester 

data set has 161 million points.  

As discussed in Chapter 3, this thesis presents point cloud processing methods/algorithms for 

filtration, edge detection, feature extraction and modelling. The Dorchester data set is used to 

show each of these processes in 3D Vision. 
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Figure 7.14 Point cloud processing in this thesis 

The outline of the point cloud processing is as follows: 

      Filtration 

➢ Identify the outlier and noise as mentioned in Chapter 4 according to their distribution, 

proximity and position. 

➢ The noise removal and outlier filtering are performed using NR-S, NR-F and OF-OB.  

Edge Detection 

➢ Once the data is clean, it is ready for feature extraction.  

➢ Select points using the search sphere to identify the edges. 

➢ Set the parameters for the edge stream. 

➢ Apply edge stream to the features where long line tracing is required. 

Feature Extraction 

➢ Set the parameters for the trunk and poles. 

➢ Segmentation using voxels.  

➢ Apply the algorithm to extract the tree trunk and pole-like objects.  

Modelling 

➢ Repeat until the points are extracted into DTM. 
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1) Outlier and Noise Filtration 

For processing, the first stage is to remove the noise and filter the outliers from the point cloud. 

The Dorchester point cloud is shown in Fig 7.13. The scanning can cause the presence of 

outliers and noise. Generally, outliers and noise are due to reflection on the surfaces like mirrors 

and moving vehicles or people. The search sphere is used to remove points, as shown in Fig 

7.15 (a); a set of outlier points are deleted using NR-S by selecting a 5m size. The sphere size 

5m is selected as the outliers were far apart and proved to be a quicker and more efficient way 

of deleting points.  

In Fig 7.15 (b) and (c), the search sphere size is 10m because a larger set of noise points is 

selected for deletion. For example, Fig 7.15 (b) presents a large set of tree points picked by a 

scanner between the buildings. As the tree points shown in the example are outside of the study 

area (where objects beyond the surveyed street are glimpsed by the scanner), they are classified 

as noise and have to be removed for efficient feature extraction. Similarly, the example shown 

in Fig 7.15 (c) is deleted as it is a part of the building that is not required as the main feature 

and is far away from the actual scanning site.  

 

 

(a) 
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(b) 

 

(c) 

Figure 7.15 (a), (b) and (c) demonstrates the “Search sphere” to remove noise 

 

The NR-B is used next to remove the noise spread on a larger area. In addition, the NR-S is 

click-heavy for the users and too manual for the deletion of points in a large spread. An example 

of NR-B is shown in Fig 7.16 (b) to cover a larger area at once, which is difficult to cover by 

NR-S in Fig 7.16 (a).  
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(a) 

 

(b) 

Figure 7.16 (a) Search sphere data inclusion (b) 3D Box data inclusion 

 

NR-B is ideal for deleting the large area and for deleting the noise closer to the important 

features. The NR-B is also used heavily to remove unwanted features treated as noise, such as 
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vehicles and man-made road objects like bins. The examples of using NR-B to remove vehicles 

and bins are shown in Fig 7.17 (a) and (b).  

  

 

(a) 

 

(b) 

Figure 7.17 Box used to remove noise close to other objects (a) removal of cars (b) removal of bin 
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(a) 

 

 

(b) 

Figure 7.18 Filtering outliers using Oct Boxes demonstrating in (a) and (b) 

 

Next, the outliers that are scattered all over are deleted using OF-O, shown in Fig 7.18. The 

points inside the box are set to 100 based on Dorchester point cloud data experience and 

detected points approximately by zooming in the outlier’s groups. The number varies for every 

point cloud; therefore, the system provides users with the flexibility to alter the number 

accordingly. A comparison illustrates how the proposed methods worked with noise removal 
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and outlier filtering. Fig 7.19 shows the data before implementing proposed methods with bad 

points (outlier or noise), and Fig 7.20 shows the data after using the NR-S, NR-B and OF-OB. 

 

 

Figure 7.19 Data with outliers and noise (before NR-S, NR-B and OF-OB) 

 

Figure 7.20 After using NR-S, NR-B and OF-OB 

 



 

296 | P a g e  

 

2) Edge Sects and Edge Stream 

Once the outliers and noise points are deleted, the data is clean and ready to extract essential 

features. One of the essential features of point clouds is edges. The edges are extracted from 

different parts of the point cloud.  

 

(a) 

 

(b) 

Figure 7.21 Edge detection (a) along the fence and footpath (b) along the building footprint 
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In the Dorchester point cloud data, an example is presented where the edges are extracted 

between a house fence and footpath shown in Fig 7.21 (a); the search sphere size is set as 0.5m 

as the fence and footpath are large areas that may not need very detailed points extracted. 

Furthermore, the points extracted depend on the users and their projects. The edges between 

the fence and footpath or wall and footpath are generally used for maintenance and hazard 

analysis. Another example shown in Fig 7.21 (b) is the edge extraction of the building footprint. 

Building footprints are of interest to surveyors and engineers. The search sphere size is set to 

0.2m as detailed edge point extraction is required. 

The edge stream example is demonstrated in Fig 7.22, with edges that run from one point from 

a bin to another point with a curve. The proposed algorithm is able to detect all the points on 

the edge of a feature. A total of 17 edge points are detected in the example as green points. In 

Fig 7.22 (a), the right side represents the edge stream option in the point cloud, and the left side 

represents the extracted edge points in DTM. Fig 7.22 (b) shows the settings used to detect the 

edge points for Fig 7.22 (a). The angle between edges and planes is set at 45 and 60 degrees, 

respectively. The reason is that walls are nearly perpendicular to the footpath, although they 

have a curve, so in order to follow the curve, the angle between edges is set to 45. The sphere 

size is 0.2 m to get the detail of the curve along the wall. 

 

 

(a) 
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(b) 

Figure 7.22 Edge stream (a) Wall and footpath (b) Settings 

 

Another example is shown in Fig 7.23, which extracts the edge points from the top of a kerb. 

Again, the extracted edge points are shown on the left side, and the right side demonstrates the 

extracted kerbs in point cloud data.  

Kerbs are popular features of urban point clouds. The users (surveyors and civil engineers) are 

interested in extracting both the top and bottom of the kerb. The kerb features are a large part 

of city management projects. In this example, the top of the kerb is presented.  

The kerb is a relatively small feature compared to the wall in Fig 7.22; therefore, the sphere 

size is set to 0.09m which fits correctly on the edge of the kerbs. The angle between edges and 

planes is set to 60 degrees as the kerbs are straight and without sudden changes or obstacles. 

The ‘Repeat Every’ parameter is set to 3 as with the small sphere, there could be hundreds of 

points within a small distance. This parameter is a user preference as to how many points each 

metre could have. The settings allow changing and saving user-defined features and their 

angles on every point cloud data.  
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(a) 

 

 

(b) 

Figure 7.23 Edge stream (a) Top of the kerb (b) Settings 

 

3) Tree trunks and Pole like objects  

Next, after edge points detection and extraction, the next popular feature in urban point clouds 

is trees and poles. Taking advantage of 3D point clouds and visualisation, the trees and pole 

objects are used extensively in city models, city management, risk analysis, classification and 
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road management. The Dorchester point cloud is used to present an example of tree trunk 

detection in Fig 7.24 and Pole object detection in Fig 7.25. Each detected trunk and pole centre 

and radius is extracted into the DTM. The tree trunks and pole parameters are set as follows; 

• The minimum number of points in the voxel is set as 25 because, in this dataset, it 

is clear that trees/poles have high-density points and therefore do not need any lower 

than 25.  

• The minimum and maximum trunk diameters are set as 0.1m to 2m as some 

Dorchester trees are old with a huge girth.  

• The distance threshold between the circle and the voxel cluster centre is set as 0.5m. 

Anything bigger will include larger tree trunks, and anything lower will include 

slim trunks and poles with a smaller radius.  

• The DBH (Diameter at breast height) for trunks and poles are set between 1.2m and 

1.5m, as the average British standard for DBH is 1.4m.  

Fig 7.24 (a) shows a roadside tree trunk, and Fig 7.24 (b) shows a tree inside a property. Fig 

7.25 shows a pole structure detected on a roadside. The parameters for poles are the same as 

the proposed algorithm accommodates both trunks and poles within the parameter settings.  

 

 

(a) 
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(b) 

Figure 7.24 Detected tree trunks highlighted by fuchsia cylinder 

 

 

Figure 7.25 Detected pole structure highlighted by fuchsia cylinder 

 

4) DTM 

Lastly, all the information is extracted into a DTM from point clouds. DTM is a digitised 

version of a map generated using points, links and surfaces. The point clouds are data in 3D 

space, but the extraction into DTM defines those features and maps them so that they can be 
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registered and used for analysis. The surveyors and civil engineers utilise the results of DTM 

to distribute them to their clients to show and demonstrate data before commencing any 

projects. The example of DTM is shown in Fig 7.26, and Fig 7.27 shows the Dorchester point 

cloud overlapped by the DTM in Fig 7.26.  

 

 

Figure 7.26 Digital Terrain Model (DTM) shown in LSS 

 

Figure 7.27 Overlapped DTM in 3D Vision 
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7.6 Chapter Summary 

This chapter demonstrates the implementation of the proposed methods/algorithms on the 

commercial software LSS and its point cloud product 3D Vision. Each project (proposed 

method) was implemented using a software development cycle and a model. The spiral model 

has been used for the software development project previously, and recently agile scrum has 

been implemented to deliver software projects in sprints. The programming language C# is 

discussed, which is used to accomplish the coding for all the proposed methods and algorithms. 

The code reusability was kept in mind for future proofing of the solutions used by other 

developers. Project management and quality analysis have been achieved when executing each 

project. While designing the user interface, user intuitiveness is the priority, with less user 

intervention and easy-to-use commands while running the program.  

The proposed methods and algorithms are implemented on software called ‘LSS’, a powerful 

Land Surveying Software and its point cloud product ‘3D Vision’. The market analysis is 

provided to show the understanding of the market. The types of software used by surveyors 

and civil engineers in the industry in the UK are presented by categorising as hardware 

companies, software companies and free (non-commercial) software solutions for point clouds.  

Lastly, a case study is presented by implementing various point cloud processing stages to 

process point cloud data. The processing starts with noise removal and outlier filtration. Once 

the data is clean, the feature detection and extraction methods are applied, leading to the next 

stage to detect the edge and edge stream. Furthermore, the trunks and pole objects are detected 

from the point clouds to be modelled into the DTM.  
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Chapter 8 Conclusion and Future Work 

 

 

This thesis aims to understand the challenges current point cloud processing methods face and 

design and develop solution/s to accommodate them. Point cloud processing became essential 

with the emergence of scanning technology, which generates huge datasets. Point clouds can 

contain anything from a few hundred to billions of points. As technology advanced, these 

numbers rose, the challenge being handling and using these data for rightful purposes. 

However, the process of extracting information from geometrical and non-geometrical features 

from ubiquitous point clouds is challenging. To this end, a set of research questions emerged 

by undertaking a literature review of existing methods, as presented in Chapter 2, which directs 

the research to find solutions to the problems. The problems that formed the research question 

are as follows: 

1. The challenges for surveyors and civil engineers to process 3D point clouds. 

2. The challenges in feature detection from point clouds. 

3. The challenges during the filtration, classification, and edge detection. 

The conclusion of these research questions is described in Section 8.1. After which, eight key 

contributions of this thesis are described in Section 8.2 and followed by future works of 

proposed methods and algorithms in Section 8.3.  

Point cloud processing is the process of extracting features from a point cloud into a meaningful 

model. This thesis divides point cloud processing into a number of techniques and methods. 

First is Filtration, where the outliers and noise points are filtered. The second is Edge 

Detection, where edges of different features are detected. The third is Feature detection by 

segmentation and extracting the features, and finally extracting all information into the DTM 

model.  
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8.1 Achievements  

The surveying industry is one of the professions that require continuous data acquisition at 

every step of the project lifecycle, from building plans to road surveys. Therefore, properly 

accessing, implementing and managing the data is very important. Unfortunately, the current 

algorithms have limitations and issues that prohibit the users from working efficiently. The 

research and research objectives (carried out in Chapter 2) resulted in designing and developing 

the proposed algorithms to solve the challenges. As a result, the proposed novel and robust 

algorithms and methods will allow the users to overcome the challenges and use the application 

in point clouds.  

The first research objective was to identify and evaluate 3D point cloud processing challenges 

with current methods. Surveyors and civil engineers use laser scanning as the preferred tool to 

capture the data because of its portability, comprehension and precision. More and more, laser 

scanning has become popular without a proper workflow. Processing these data (point cloud) 

requires accurate analysis and procedures. The scanner technology innovations and detailed 

capturing of data resulted in very large point clouds. The common challenge is to process these 

huge datasets accurately and quickly. 

The most obvious and immediate step for processing large point clouds is to remove the bad 

points. The bad points are not part of the important features and deleting them would reduce 

the point cloud size and enable faster processing. These bad points are noise/outliers that are 

relatively present within the good points (points that belong to an important feature). The 

challenge of the existing method is to remove these noise/outliers efficiently to preserve the 

primitive shapes and geometrical features. This results in the second research objective, which 

is to design and develop a method to overcome the problems of separating outlier/noise. 

Despite saying that separating is the key, the problem lies with the points that are in very close 

approximation to the primitive features in the point cloud. This led to the development of the 

tools mentioned in Chapter 4 NR-S, NR-B and OF-OB to remove noise and filter outliers.  

Then after the cleaning of data, the important element is extracting the features; this becomes 

the third research objective to research/investigate the existing methods and identify their 

limitations. A considerable amount of point cloud acquisition is in the built environment, such 

as city scenes, residential areas, construction sites, city roads etc. Therefore, the features within 
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these environments become important to detect and extract for modelling. However, there are 

also several drawbacks inherent to feature detection in point clouds. The most common 

problem with the detection is that laser scanners cannot offer a full-scale representation of an 

object (360 degrees in 3D) unless the scanner has been positioned in multiple locations in order 

to view all objects from all angles, which is not usually cost-effective. Therefore, the detection 

algorithms must compensate for the fact that only half of an object may exist in the point cloud 

(such as a tree trunk or lamppost). 

Another common problem is the presence of gaps, blank spaces and missing data. These gaps 

are due to laser beams not penetrating objects because obstacles in the line of sight create a 

shadow (gap) in point clouds. An intention to overcome these issues led to the fourth and fifth 

research objectives presented in Chapters 5 and 6.  

Several important features are present within the point cloud, but edges are most important for 

surveyors and civil engineers. Edges of various features like buildings, kerbs, roofs etc., are 

useful. The second feature is trunks and poles, which play an important role in city planning 

and management. Therefore, this led to feature recognition algorithms presented in Chapters 5 

and 6. The geometrical and non-geometrical shapes in point clouds are mostly user-controlled 

settings for detection algorithms that are intuitive as they are directly related to the feature’s 

geometric properties, like distance and orientation. This is the key to successfully 

implementing an efficient and user-friendly system. The user settings and parameters also 

provide the flexibility to implement the proposed algorithm in a wide variety of situations, 

including the built environment, construction projects, quarry operations, forestry and the 

undeveloped natural environment. As a result, the proposed methods and algorithms are able 

to deliver great completeness and correct feature detection with high accuracy. In addition to 

the advantages, the proposed method works directly on the point clouds that are real-world 

scans; no data conversion or manipulation is required compared to many existing methods that 

were tested on synthetic data. Furthermore, the academic research in the industry for feature 

detection algorithms provides theoretical implementations, whereas the proposed methods and 

algorithms are implemented practically on commercial software used by large UK-based 

organisations. 
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8.2 Contribution to New Knowledge Generation 

In summary, there are eight key contributions in this thesis for point cloud processing, 

including filtration, segmentation, edge detection and cylindrical feature detection, as follows: 

• A tool called Search Sphere is introduced for the first time for various applications in 

this thesis. The search sphere is used for the analysis of the inclusion points and also to 

sample the points.  

 

• A tool called OctBox is introduced and used to analyse points which are derived from 

the Octree structure. This thesis presents the first-ever use of Octree to define the 

bounding of a 3D box to filter outliers.  

 

• A 3D Box tool is introduced that can handle the points inside by changing dynamically 

to remove noise from the point clouds. 

 

• A PCA-based Algorithm for Edge Detection has been introduced, discussed, 

analysed and implemented on the commercial software product 3D Vision. The 

algorithm is the first PCA application of the best-fit planes for obtaining an edge.  

 

• The robust Edge Stream Method (extension of Edge detection) is introduced, 

analysed, and implemented on the commercial software 3D Vision. Edge stream allows 

the automatic extraction of several edges along a line of any feature.  

 

• A gridding system called Terrain Extraction is introduced, which is used to separate 

the ground and non-ground points of point clouds. Terrain extraction sub-samples the 

points to achieve further analysis of points. Ground points act as a terrain for different 

types of point cloud data. On the other hand, non-ground points are used to implement 

feature detection algorithms that are not part of the terrain.   

 

• A segmentation and clustering technique using voxels has been introduced for fast 

extracting and finding neighbouring points in the point clouds.  
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• A Voxel-based Algorithm to find Cylindrical Objects has been introduced, 

discussed, analysed and implemented on the commercial software product 3D Vision. 

The algorithm can identify trunks and pole-like objects in point clouds. 

 

8.3 Limitations and Future Work 

While this thesis demonstrated the excellence of point cloud processing methods and 

algorithms, there are still possibilities to carry out future research in this area. The biggest 

challenge is to process millions of points in point clouds captured by new scanning 

technologies. Point cloud processing steps address this, which converts the point clouds into a 

model.  

The important point cloud processing step is the filtration of noise and outliers. Due to time 

constraints, the proposed method’s limitation is that the tools are used manually. The points 

are analysed and categorised by users, which means that the proposed method is fast and 

flexible to various point clouds. However, due to the method being manual, it can be click-

heavy to use. Therefore, the proposed methods can be further improved in order to detect them 

automatically by analysing the points and their neighbours using the proposed tool in Chapter 

4. For example, the clustering techniques described in Chapter 6 can be implemented in Oct 

Boxes for a detailed analysis of the points cluster. Furthermore, the grouping of points 

belonging to the same object can solve the problem of noise detection (points that are close to 

the features to be extracted), such as vegetation near a building.  

Another important step of point cloud processing is feature detection. Various steps are 

involved in detecting the features, such as outlier and noise filtration, segmentation of the 

points for classification, clustering of the points, and modelling. With respect to feature 

detection, there are several features of importance in a typical point cloud that can become vital 

in point cloud processing. The future work will involve the detection and extraction of other 

features like building floorplan, vehicles, road markings etc. Examples of a few future work 

items are listed below.  

Firstly, the visualisation of the detected features can be improved to demonstrate to the users 

very clearly which points belong to which feature. The easiest way to categorise points is during 
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the acquisition process and to specify the points at that moment. This process can be repeated 

until all the points are classified properly.  

Secondly, while the proposed algorithm in this thesis is very effective in finding the edges, in 

the future, edge detection can be extended to find corners with the detection of three planes. 

The current limitation of the proposed edge detection methods (edge detection and edge stream 

options) is that they cannot detect the points of the corner features because the method was 

designed to extract the edges based on two surfaces. The future work will be implementing 

corner detection (by extending the current work to detect three surfaces), which would also be 

relevant in the edge stream algorithm, potentially making it more efficient.  

Thirdly, a large number of point clouds are captured in man-made environments like cities, 

industrial areas, development sites, etc. It is essential to capture the features in these areas. 

There are several options for future work on the cylindrical detection algorithm presented in 

Chapter 6. The trunks can be extended to detect the foliage of the tree, providing the users with 

the parameters of the whole tree, such as crown height and spread. The advantage of tree 

detection is that the users can either use it to map the trees in the area or to delete the trees that 

are classified as noise. As for the pole-like objects, the future prospect is to classify them further 

into individual profiles, including utility poles, streetlights, traffic lights, road signs, flag poles 

and parking meters. The profiling can be done by saving the templates of all possible structures 

in a typical point cloud. After that, these templates are compared against the detected structures 

and are then classified.   

Finally, other areas of point cloud processing could benefit from feature detection. 

Segmentation and region growing methods can be used to solve real-world point cloud scenario 

problems such as filling the gaps, categorising the features and data thinning.  

 

 

 

 

 



 

310 | P a g e  

 

Bibliography 

Abdi, H. and Williams, L.J. (2010) ‘Principal Component Analysis’, Wiley Interdisciplinary 

Reviews: Computational Statistics, 2(4), pp. 433–459. doi: 10.1002/wics.101. 

Achlioptas, P., Diamanti, O., Mitliagkas, I. and Guibas, L (2018) ‘Learning Representations 

and Generative Models for 3D Point Clouds’, in International conference on machine 

learning. PMLR, pp. 40–49. doi: 10.48550/arXiv.1707.02392. 

Adamson, A., Alexa, M. and Berlin, T.U. (2006) ‘Point-Sampled Cell Complexes’, ACM 

SIGGRAPH, pp. 671–680. doi: 10.1145/1179352.1141940. 

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. and Silva, C.T. (2001) ‘Point Set 

Surfaces Related Papers Computing and Rendering Point Set Surfaces Point Set 

Surfaces’, in IEEE Proceedings Visualization 2001. VIS ’01, pp. 21–29. doi: 

10.1109/VISUAL.2001.964489. 

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. and Silva, C.T. (2003) 

‘Computing and Rendering Point Set Surfaces’, IEEE Transactions on Visualization and 

Computer Graphics, 9(1), pp. 3–15. doi: 10.1109/TVCG.2003.1175093. 

Alexa, M. and Adamson, A. (2004) ‘On Normals and Projection Operators for Surfaces 

Defined by Point Sets’, Eurographics Symposium on Point-Based Graphics, pp. 149–

155. 

Aljumaily H, Laefer D and Cuadra D (2017) ‘Urban Point Cloud Mining Based on Density 

Clustering and MapReduce’, ASCE Journal of Computing in Civil Engineering, 31(5) 

04017021. 

Aluja-Banet T, Morineau A and Sanchez G (2018) Formulas for PCA - PCA for Data 

Science, Book: Principal Component Analysis for Data Science. Available at: 

https://pca4ds.github.io/formulas-for-pca.html (Accessed: 21 July 2022). 

Amenta, N. and Kil, Y.J. (2004) ‘Defining Point-set Surfaces’, in ACM Transactions on 

Graphics, pp. 264–270. doi: 10.1145/1015706.1015713. 

https://doi.org/10.1002/wics.101
https://pca4ds.github.io/formulas-for-pca.html


 

311 | P a g e  

 

Amiri, N., Polewski, P., Yao, W., Krzystek, P. and Skidmore, A.K. (2017) ‘Detection of 

Single Tree Stems in Forested Areas from High Density ALS Point Clouds Using 3d 

Shape Descriptors’, in ISPRS Annals of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences. Copernicus GmbH, pp. 35–42.  doi: 10.5194/isprs-annals-

IV-2-W4-35-2017. 

Ando, S. (2000) ‘Image Field Categorization and Edge/Corner Detection from Gradient 

Covariance’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(2), 

pp. 179–190 doi: 10.1109/34.825756. 

Arvanitis, G., Lalos, A.S., Moustakas, K. and Fakotakis, N. (2018) ‘Outliers Removal of 

Highly Dense and Unorganized Point Clouds Acquired by Laser Scanners in Urban 

Environments’, in Proceedings - 2018 International Conference on Cyberworlds, CW 

2018. Institute of Electrical and Electronics Engineers Inc., pp. 415–418. doi: 

10.1109/CW.2018.00080. 

Avram, D., Bratosin, I., Ilie, D. CALIN, L. (2016) ‘Surveying Theodolite Between Past and 

Future’, Journal of Young Scientist, 4, pp 129-134. ISSN 2284-8017. 

Avron, H., Sharf, A., Greif, C. and Cohen-Or, D.  (2010) ‘ℓ1-Sparse Reconstruction of Sharp 

Point Set Surfaces’, ACM Transactions on Graphics, 29(5), pp 135:1-135:12. doi: 

10.1145/1857907.1857911. 

Balado, J., Martínez-Sánchez, J., Arias, P. and Novo, A. (2019) ‘Road Environment Semantic 

Segmentation with Deep Learning From MLS Point Cloud Data’, Sensors (Switzerland), 

19(16), 3466. doi:10.3390/s19163466. 

Balta, H., Velagic, J., Bosschaerts, W., de Cubber, G. and Siciliano, B. (2018) ‘Fast 

Statistical Outlier Removal Based Method for Large 3D Point Clouds of Outdoor 

Environments’, in IFAC-Papers On Line. Elsevier B.V., pp. 348–353. doi: 

10.1016/j.ifacol.2018.11.566. 

Barnett T. P and Preisendorfer, R. (1987) ‘Origins and Levels of Monthly and Seasonal 

Forecast Skill for United States Surface Air Temperatures Determined by Canonical 

Correlation Analysis’, Monthly Weather Review, 115(9), pp. 1825–1850. doi: 

10.1175/2010JCLI3527.1 



 

312 | P a g e  

 

Barnett Vic and Lewis Toby (1994) Outliers in Statistical Data. 3rd edn. New York: Wiley.  

Bazazian, D., Casas, J.R. and Ruiz-Hidalgo, J. (2015) ‘Fast and Robust Edge Extraction in 

Unorganized Point Clouds’, in 2015 International Conference on Digital Image 

Computing: Techniques and Applications (DICTA). Adelaide, Australia: IEEE, pp. 1–8. 

doi: 10.1109/DICTA.2015.7371262. 

Bazazian, D. and Parés, M.E. (2021) ‘EDC-net: Edge Detection Capsule Network for 3D 

Point Clouds’, Applied Sciences (Switzerland), 11(4), pp. 1–16. doi: 

10.3390/app11041833. 

Becker, C., Rosinskaya, E., Häni, N., d’Angelo, E. and Strecha, C. (2018) ‘Classification of 

Aerial Photogrammetric 3D Point Clouds’, Photogrammetric Engineering and Remote 

Sensing, 84(5), pp. 287–295. doi: 10.14358/PERS.84.5.287. 

Behley, J., Steinhage, V. and Cremers, A.B. (2015) ‘Efficient Radius Neighbor Search in 

Three-dimensional Point Clouds’, IEEE International Conference on Robotics and 

Automation (ICRA). IEEE, pp. 3625–3630. doi: 10.1109/ICRA.2015.7139702 

Belton, D. and Kwang-Ho, B. (2009) ‘Tracking Roadside Kerbs in Terrestrial Laser Scanner 

Point Clouds Using Principal Component Analysis’, in Proceedings of the Surveying & 

Spatial Sciences Institute Biennial International Conference. The Institute, pp. 219–229. 

Belton, D., Moncrieff, S. and Chapman, J. (2013) ‘Processing Tree Point Clouds using 

Gaussian Mixture Models’, in ISPRS Annals of the Photogrammetry, Remote Sensing 

and Spatial Information Sciences. Copernicus GmbH, pp. 43–48. doi: 

10.5194/isprsannals-II-5-W2-43-2013. 

Biosca, J.M. and Lerma, J.L. (2008) ‘Unsupervised Robust Planar Segmentation of 

Terrestrial Laser Scanner Point Clouds Based on Fuzzy Clustering Methods’, ISPRS 

Journal of Photogrammetry and Remote Sensing, 63(1), pp. 84–98. doi: 

10.1016/j.isprsjprs.2007.07.010. 

Boehler, W. and Marbs, A. (2004) ‘3D Scanning and Photogrammetry for Heritage 

Recording: A Comparison’, in Proc. 12th International Conference on Geoinformatics − 

Geospatial Information Research, pp. 7–9. 



 

313 | P a g e  

 

Boehm, B.W. (1988) ‘A Spiral Model of Software Development and Enhancement’, 

Computer, 21(5), pp. 61–72. doi: 10.1109/2.59. 

Borenstein, G. (2012) Making Things See 3D Vision with Kinect, Processing, Arduino, and 

MakerBot. 1st edn. Canada: Maker Media Inc. 

Boster, M. (2016) What is an Edge in Math? Study.com. Available at: 

https://study.com/academy/lesson/what-is-an-edge-in-math.html (Accessed: 9 January 

2019). 

Boulic, R. and Renault, O. (1991) ‘3D Hierarchies for Animation’, in Magnenat-Thalmann 

Nadia and Thalmann Daniel (eds) New Trends in Animation and Visualization. England: 

John Wiley & Sons ltd, pp. 59–78. 

Bremer, M., Wichmann, V. and Rutzinger, M. (2013) ‘Eigenvalue and Graph-based Object 

Extraction from Mobile Laser Scanning Point Clouds’, in ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences. Copernicus GmbH, 

pp. 55–60. doi: 10.5194/isprsannals-II-5-W2-55-2013. 

Breunig, M.M., Kriegel, H.-P., Ng, R.T. and Sander, J. (2000) ‘LOF: Identifying Density-

Based Local Outliers’, in Proceedings of the 2000 ACM SIGMOD international 

conference on Management of data - SIGMOD ’00. New York, New York, USA: ACM 

Press, pp. 93–104. doi: 10.1145/342009.335388. 

C# - Basic Syntax (2022) Tutorials point. Available at: 

https://www.tutorialspoint.com/csharp/csharp_basic_syntax.htm (Accessed: 14 July 

2022). 

Cai, G., Jiang, Z., Wang, Z., Huang, S., Chen, K., Ge, X. and Wu, Y. (2019) ‘Spatial 

aggregation net: Point cloud semantic segmentation based on multi-directional 

convolution’, Sensors (Switzerland), 19(19). doi: 10.3390/s19194329. 

Cabo, C., Ordoñez, C., García-Cortés, S. and Martínez, J. (2014) ‘An Algorithm for 

Automatic Detection of Pole-like Street Furniture Objects from Mobile Laser Scanner 

Point Clouds’, ISPRS Journal of Photogrammetry and Remote Sensing, 87, pp. 47–56. 

doi: 10.1016/j.isprsjprs.2013.10.008. 

https://www.tutorialspoint.com/csharp/csharp_basic_syntax.htm


 

314 | P a g e  

 

Carr, J.C. and Slyder, J.B. (2018) ‘Individual Tree Segmentation from a Leaf-off 

Photogrammetric Point Cloud’, International Journal of Remote Sensing, 39(15–16), pp. 

5195–5210. doi: 10.1080/01431161.2018.1434330. 

Carrea, D. et al. (2021) ‘Matlab virtual toolbox for retrospective rockfall source detection and 

volume estimation using 3d point clouds: A case study of a subalpine molasse cliff’, 

Geosciences (Switzerland), 11(2), pp. 1–19. doi: 10.3390/geosciences11020075. 

Catalucci, S. et al. (2018) ‘Comparison between point cloud processing techniques’, 

Measurement, 127, pp. 221–226. doi: 10.1016/J.MEASUREMENT.2018.05.111. 

Chatterjee, A. (2000) ‘An Introduction to the Proper Orthogonal Decomposition’, Current 

Science, 78(7), pp. 808–817.  

Che, E., Jung, J. and Olsen, M.J. (2019) ‘Object Recognition, Segmentation, and 

Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review’, 

Sensors (Switzerland), 19(4), p. 810. doi: 10.3390/s19040810. 

Chen, C., Li, X., Belkacem, A.N., Qiao, Z., Dong, E., Tan, W. and Shin, D. (2019) ‘The 

Mixed Kernel Function SVM-Based Point Cloud Classification’, International Journal 

of Precision Engineering and Manufacturing, 20(5), pp. 737–747. doi: 10.1007/s12541-

019-00102-3. 

Chen, M., Feng, A., McAlinden, R. and Soibelman, L. (2020) ‘Photogrammetric Point Cloud 

Segmentation and Object Information Extraction for Creating Virtual Environments and 

Simulations’, Journal of Management in Engineering, 36(2), p. 04019046. doi: 

10.1061/(asce)me.1943-5479.0000737. 

Chen, Y.H. and Liu, C.Y. (1997) ‘Robust Segmentation of CMM Data Based on NURBS’, 

The International Journal of Advanced Manufacturing Technology, 13(8), pp. 530–534. 

doi: 10.1007/BF01176296. 

Cheng C. (2022) ‘Principal Component Analysis (PCA) Explained Visually with Zero Math’, 

Towards Data Science, 3 February. Available at: 

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-

with-zero-math-1cbf392b9e7d (Accessed: 21 July 2022). 

https://doi:10.1080/01431161.2018.1434330
https://doi.org/10.3390/geosciences11020075
https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d


 

315 | P a g e  

 

Chernov N. (2012) Circular and Linear Regression: Fitting Circles and Lines by Least 

Squares: C++ Codes for Fitting Ellipses, Circles, Lines. 1st edn. New York: Chapman & 

Hall/CRC.  

Clarenz, U., Rumpf, M. and Telea, A. (2004) ‘Fairing of point based surfaces’, in 

Proceedings of Computer Graphics International Conference, CGI, pp. 600–603. doi: 

10.1109/CGI.2004.1309272. 

Collins, M., Dasgupta, S. and Schapire, R.E. (2001) ‘A Generalization of Principal 

Component Analysis to the Exponential Family’, Advances in Neural Information 

Processing Systems, 13(23). doi: 10.7551/mitpress/1120.003.0084. 

Contreras, D. and Hitschfeld-Kahler, N. (2014) ‘Generation of Polyhedral Delaunay Meshes’, 

23rd International Meshing Roundtable (IMR23), 82, pp. 291–300. doi: 

10.1016/j.proeng.2014.10.391 

Cropp C. (2021) ‘The Most Popular Types of Point Cloud Processing Software’, Vercator 

Blog. Available at: https://info.vercator.com/blog/popular-point-cloud-processing-

software (Accessed: 14 July 2022). 

Daniels, J., Tilo Ochotta, I.·, Ha, L.K., Cláudio, · and Silva, T. (2008) ‘Spline-Based Feature 

Curves from Point-Sampled Geometry’, Visual Computer, 24(6), pp. 449–462. doi: 

10.1007/s00371-008-0223-2 

Demantké, J., Mallet, C., David, N. and Vallet, B. (2011) ‘Dimensionality Based Scale 

Selection in 3D LIDAR Point Clouds’, ISPRS - International Archives of the 

Photogrammetry Remote Sensing and Spatial Information Sciences, 38(5), pp. 97–102. 

doi: 10.5194/isprsarchives-XXXVIII-5-W12-97-2011. 

Demarsin, K., Vanderstraeten, D., Volodine, T. and Roose, D. (2007) ‘Detection of Closed 

Sharp Edges in Point Clouds using Normal Estimation and Graph Theory’, CAD 

Computer Aided Design, 39(4), pp. 276–283. doi: 10.1016/j.cad.2006.12.005. 

DeVore, R., Petrova, G., Hielsberg, M., Owens, L., Clack, B. and Sood, A. (2013) 

‘Processing Terrain Point Cloud Data’, Society for Industrial and Applied Mathematics 

(SIAM) Journal on Imaging Science, 6(1), pp. 1–31. doi: 10.1137/110856009. 

https://info.vercator.com/blog/popular-point-cloud-processing-software
https://info.vercator.com/blog/popular-point-cloud-processing-software


 

316 | P a g e  

 

Dey, T.K. and Sun, J. (2005) ‘An Adaptive MLS Surface for Reconstruction with 

Guarantees’, in Eurographics Symposium on Geometry Processing. Austria. doi: 

10.2312:SGP:SGP05:043-052 

Dolapsaki, M.M. and Georgopoulos, A. (2021) ‘Edge Detection in 3D Point Clouds Using 

Digital Images’, ISPRS International Journal of Geo-Information, 10(4). doi: 

10.3390/ijgi10040229. 

Dony, R.D. (2001) ‘Karhunen-Loève Transform’, The transform and data compression 

handbook, 1(34), p. 29. 

Du, L. (2020) Edge Detection in 3D Point Clouds for Industrial Applications. University of 

Toronto. 

Dubey A. (2018) The Mathematics Behind Principal Component Analysis, Towards Data 

Science. Available at: https://towardsdatascience.com/the-mathematics-behind-principal-

component-analysis-fff2d7f4b643 (Accessed: 18 February 2022). 

Eder J. (1992) ‘Octree’, ACM Transactions on Graphical, 11(3). Available at: 

https://www.cg.tuwien.ac.at/studentwork/VisFoSe98/eder/octree.htm (Accessed: 18 

March 2022). 

El-Halawany, S.I. and Lichti, D.D. (2011) ‘Detection of Road Poles from Mobile Terrestrial 

Laser Scanner Point Cloud’, in 2011 International Workshop on Multi-Platform/Multi-

Sensor Remote Sensing and Mapping, M2RSM 2011. doi: 

10.1109/M2RSM.2011.5697364. 

El-Sayed, E., Abdel-Kader, R.F., Nashaat, H. and Marei, M. (2018) ‘Plane Detection in 3D 

Point Cloud using Octree-balanced Density Down-sampling and Iterative Adaptive Plane 

Extraction’, IET Image Processing, 12(9), pp. 1595–1605. doi: 10.1049/iet-

ipr.2017.1076. 

Erdélyi, J. et al. (2017) ‘Automation of point cloud processing to increase the deformation 

monitoring accuracy’, Applied Geomatics, 9(2), pp. 105–113. doi: 10.1007/s12518-017-

0186-y. 

https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643
https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643
https://www.cg.tuwien.ac.at/studentwork/VisFoSe98/eder/octree.htm
https://doi.org/10.1049/iet-ipr.2017.1076
https://doi.org/10.1049/iet-ipr.2017.1076


 

317 | P a g e  

 

Esmeide, L.N. and Nallig Eduardo, L.N. (2006) ‘Point Cloud Denoising Using Robust 

Principal Component Analysis.’, in Proceedings of the First International Conference on 

Computer Graphics Theory and Applications. Setúbal, Portugal, pp. 51–58. doi: 

10.5220/0001358900510058 

Fabio R. (2004) ‘From Point Cloud to Surface: The Modeling and Visualization Problem’, in 

ISPRS WG V/6 Workshop Visualization and Animation of Reality-based 3D Models. doi: 

10.3929/ethz-a-004655782. 

Fan, H., Yao, W. and Tang, L. (2014) ‘Identifying Man-made Objects Along Urban Road 

Corridors from Mobile Lidar Data’, IEEE Geoscience and Remote Sensing Letters, 

11(5), pp. 950–954. doi: 10.1109/LGRS.2013.2283090. 

Farin, G., Hoschek, J. and Kim, M.-S. (2002) Handbook of Computer Aided Geometric 

Design. 1st edn. Amsterdam: Elsevier Science. 

Feilzer, M.Y. (2010) ‘Doing Mixed Methods Research Pragmatically: Implications for the 

Rediscovery of Pragmatism as a Research Paradigm’, Journal of Mixed Methods 

Research, 4(1), pp. 6–16. doi: 10.1177/1558689809349691. 

Feng, C., Taguchi, Y. and Kamat, V.R. (2014) ‘Fast Plane Extraction in Organized Point 

Clouds Using Agglomerative Hierarchical Clustering’, in IEEE International Conference 

on Robotics and Automation (ICRA). Hong Kong, China: IEEE, pp. 6218–6225. doi: 

10.13140/2.1.2125.1204 

Fleishman, S., Cohen-Or, D. and Silva, Cláudio T (2005) ‘Robust Moving Least-squares 

Fitting with Sharp Features’, ACM Transactions on Graphics, 24(3), pp. 544–552. doi: 

10.1145/1073204.1073227. 

Fleishman, S., Drori, I. and Cohen-Or, D. (2003) ‘Bilateral Mesh Denoising’, ACM 

SIGGRAPH, 22(3), pp. 950–953. doi: 10.1145/1201775.882368 

Focus (2016) FARO® Knowledge Base. Available at: 

https://knowledge.faro.com/Hardware/3D_Scanners/Focus (Accessed: 10 January 2022). 

https://knowledge.faro.com/Hardware/3D_Scanners/Focus


 

318 | P a g e  

 

Fröhlich, C. and Mettenleiter, M. (2004) ‘Terrestrial Laser Scanning - New Perspective in 3D 

Surveying’, International archives of photogrammetry, remote sensing and spatial 

information sciences, 36(8), pp. 7–13. 

Fua, P. and Sander, P. (1992) ‘Reconstructing Surfaces from Unstructured 3D Points’, in 

Second European Conference on Computer Vision (ECCV’90). 

Galantucci, L.M. and Percocol, G. (2005) ‘A Multilevel Approach to Edge Detection in 

Tessellated Point Clouds’, CIRP Annals, 54(1), pp. 127–130. doi: 10.1016/S0007-

8506(07)60065-1. 

Gao, Rui, Mengyu Li, Seung-Jun Y., and Kyungeun C. (2022) ‘Reflective Noise Filtering of 

Large-Scale Point Cloud Using Transformer’, Remote Sensing, 14(3) 577. doi: 

10.3390/rs14030577. 

Gargoum, S. and El-Basyouny, K. (2019) ‘Effects of LiDAR Point Density on Extraction of 

Traffic Signs: A Sensitivity Study’, Transportation Research Record, 2673(1), pp. 41–

51. doi: 10.1177/0361198118822295. 

Ge, L. and Feng, J. (2021) ‘Type-based Outlier Removal Framework for Point Clouds’, 

Information Sciences, 580, pp. 436–459. doi: 10.1016/j.ins.2021.08.090. 

Gie Yong, A. and Pearce, S. (2013) ‘A Beginner’s Guide to Factor Analysis: Focusing on 

Exploratory Factor Analysis’, Tutorials in Quantitative Methods for Psychology, 9(2), 

pp. 79–94. doi: 10.20982/TQMP.09.2.P079 

Gigli, G. and Casagli, N. (2011) ‘Semi-automatic extraction of rock mass structural data from 

high resolution LIDAR point clouds’, International Journal of Rock Mechanics and 

Mining Sciences, 48(2), pp. 187–198. doi: 10.1016/j.ijrmms.2010.11.009. 

Gilani, S.A.N., Awrangjeb, M. and Lu, G. (2018) ‘Segmentation of Airborne Point Cloud 

Data for Automatic Building Roof Extraction’, GIScience and Remote Sensing, 55(1), 

pp. 63–89. doi: 10.1080/15481603.2017.1361509. 

Golovinskiy, A., Kim, V.G. and Funkhouser, T. (2009) ‘Shape-based Recognition of 3D 

Point Clouds in Urban Environments’, in Proceedings of the IEEE International 

Conference on Computer Vision, pp. 2154–2161. doi: 10.1109/ICCV.2009.5459471. 

https://doi.org/https:/doi.org/10.1016/S0007-8506(07)60065-1
https://doi.org/https:/doi.org/10.1016/S0007-8506(07)60065-1


 

319 | P a g e  

 

Golub, G.H., Hoffman, A. and Stewart, G.W. (1987) ‘A Generalization of the Eckart-Young-

Mirsky Matrix Approximation Theorem’, Linear Algebra and its Applications, 88, pp. 

317–327. 

Golub, G.H. and van Loan, C. (1983) Matrix Computations. 3rd edn. London: The John 

Hopkins Press. 

Govorcin, M., Pribicevic, B. and Đapo, A. (2014) ‘Comparison and Analysis of Software 

Solutions for Creation of a Digital Terrain Model Using Unmanned Aerial Vehicles’, in 

14th International Multidisciplinary Scientific GeoConference SGEM 2014. doi: 

10.13140/2.1.2352.4803. 

Graham, B., Engelcke, M. and van der Maaten, L. (2018) ‘3D Semantic Segmentation with 

Submanifold Sparse Convolutional Networks’, in Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition. IEEE Computer 

Society, pp. 9224–9232. doi: 10.1109/CVPR.2018.00961. 

Graham L. (2021) Point Cloud Noise, GeoCue Group. Available at: 

https://geocue.com/resources/article/point-cloud-noise/ (Accessed: 28 February 2022). 

Gregorius B (2019) LiDAR Intensity: What is it and What are it’s applications? Geodetics. 

Available at: https://geodetics.com/lidar-intensity-applications/ (Accessed: 11 June 

2022). 

Grilli, E., Farella, E.M., Torresani, A. and Remondino, F. (2019) ‘Geometric Features 

Analysis for the Classification of Cultural Heritage Point Clouds’, in International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - 

ISPRS Archives. International Society for Photogrammetry and Remote Sensing, pp. 

541–548. doi: 10.5194/isprs-archives-XLII-2-W15-541-2019. 

Guan, H., Yu, Y., Li, J. and Liu, P. (2016) ‘Pole-Like Road Object Detection in Mobile 

LiDAR Data via Supervoxel and Bag-of-Contextual-Visual-Words Representation’, 

IEEE Geoscience and Remote Sensing Letters, 13(4), pp. 520–524. doi: 

10.1109/LGRS.2016.2521684. 

https://geocue.com/resources/article/point-cloud-noise/
https://geodetics.com/lidar-intensity-applications/


 

320 | P a g e  

 

Guba, E.G. and Lincoln, Y. (1994) ‘Competing Paradigms in Qualitative Research’, in Major 

paradigms and perspectives, pp. 105–117. 

Guislain, M. et al. (2016) ‘Detecting and Correcting Shadows in Urban Point Clouds and 

Image Collections’, in 2016 Fourth International Conference on 3D Vision (3DV). 

Stanford, USA: IEEE, pp. 537–545. doi: 10.1109/3DV.2016.63. 

Gumhold, S., Wang Ý, X. and MacLeod Þ, R. (2001) ‘Feature Extraction from Point Clouds’, 

In Proceedings of the 10th International Meshing Roundtable, pp. 293–305. 

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. and Bennamoun, M. (2021) ‘Deep Learning for 

3D Point Clouds: A Survey’, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 43(12), pp. 4338–4364. doi: 10.1109/TPAMI.2020.3005434. 

Gupta, A., Byrne, J., Moloney, D., Watson, S. and Yin, H. (2018) ‘Automatic Tree 

Annotation in LiDAR Data’, in Proceedings of the 4th International Conference on 

Geographical Information Systems Theory, Applications and Management - GISTAM. 

Scitepress, pp. 36–41. doi: 10.5220/0006668000360041. 

Hackel, T., Wegner, J.D., Schindler, K., Hackel, T. and Wegner, J.D. (2016) ‘Fast Semantic 

Segmentation of 3D Point Clouds with Strongly Varying Density’, in ISPRS Annals of 

Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech 

Republic, pp. 177–184. doi: 10.3929/ethz-b-000126659. 

Hamilton C. (1995) Lunar Image Map, Views of the Solar System. Available at: 

https://solarviews.com/cap/moon/moonmap.htm (Accessed: 16 July 2022). 

Hamilton N. (2008) The A-Z of Programming Languages: C#, ComputerWorld. Available at : 

https://www2.computerworld.com.au/article/261958/a-z_programming_languages_c_/ 

(Accessed: 26 June 2022). 

Han, X.F., Jin, J.S., Wang, M.J., Jiang, W., Gao, L. and Xiao, L. (2017) ‘A Review of 

Algorithms for Filtering the 3D Point Cloud’, Signal Processing: Image Communication, 

57, pp. 103–112. doi: 10.1016/j.image.2017.05.009. 

https://solarviews.com/cap/moon/moonmap.htm
https://www2.computerworld.com.au/article/261958/a-z_programming_languages_c_/


 

321 | P a g e  

 

Hautamäki, V., Kärkkäinen, I. and Fränti, P. (2004) ‘Outlier Detection Using k-Nearest 

Neighbour Graph’, in Proceedings - International Conference on Pattern Recognition, 

pp. 430–433. doi: 10.1109/ICPR.2004.1334558. 

Hawkins M D (1980) Identification of Outliers. 1st edn. London: Chapman & Hall. doi: 

10.1007/978-94-015-3994-4 

He, Z., Xu, X. and Deng, S. (2003) ‘Discovering Cluster-based Local Outliers’, Pattern 

Recognition Letters, 24(9–10), pp. 1641–1650. doi: 10.1016/S0167-8655(03)00003-5. 

Hejlsberg Anders, Torgersen Mads, Wiltamuth Scott and Golde Peter. (2011) The C# 

Programming Language. 4th edn. Boston: Pearson Education Inc.  

Hernandez, M., Choi, J. and Medioni, G. (2015) ‘Near Laser-scan Quality 3-D Face 

Reconstruction from a Low-quality Depth Stream’, Image and Vision Computing, 36, pp. 

61–69. doi: 10.1016/j.imavis.2014.12.004. 

Higgins S. (2021) Everything you need to know about point clouds, NavVis Blog. Available 

at: https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-

navvis (Accessed: 15 May 2022). 

Hildebrandt, K. and Polthier, K. (2004) ‘Anisotropic Filtering of Non‐linear Surface 

Features’, Computer Graphics Forum, pp. 391–400. 

Hodge, V.J. and Austin, J. (2004) ‘A Survey of Outlier Detection Methodologies’, Artificial 

Intelligence Review, 22(2), pp. 85–126. doi: 10.1023/B:AIRE.0000045502.10941.a9. 

Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C. and Burgard, W. (2013) ‘OctoMap: 

An Efficient Probabilistic 3D Mapping Framework Based on Octrees’, Autonomous 

Robots, 34(3), pp. 189–206. doi: 1007/s10514-012-9321-0. 

Hotelling, H. (1933) ‘Analysis of a Complex of Statistical Variables into Principal 

Components’, Journal of Educational Psychology, 24(6), pp. 417–441. doi: 

10.1037/H0071325. 

https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-navvis
https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-navvis


 

322 | P a g e  

 

Hu, Y., Yan, Z., Yin, Z. and Du, Z. (2020) ‘Collision Detection Based on Octree for Virtual 

Surgery System’, in IOP Conference Series: Materials Science and Engineering. 

Institute of Physics Publishing. doi: 10.1088/1757-899X/768/7/072107. 

Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U. and Zhang, H. (2013) ‘Edge-aware 

Point Set Resampling’, ACM Transactions on Graphics, 32(1), pp. 1–12. doi: 

10.1145/2421636.2421645. 

Huang, J. and You, S. (2015) ‘Pole-like Object Detection and Classification from Urban 

Point Clouds’, in Proceedings - IEEE International Conference on Robotics and 

Automation. Institute of Electrical and Electronics Engineers Inc., pp. 3032–3038. doi: 

10.1109/ICRA.2015.7139615. 

Hui, Z., Jin, S., Cheng, P., Ziggah, Y.Y., Wang, L., Wang, Y., Hu, H., Hu, Y. (2019) ‘An 

Active Learning Method for DEM Extraction from Airborne LiDAR Point Clouds’, 

IEEE Access, 7, pp. 89366–89378. doi: 10.1109/ACCESS.2019.2926497. 

Hůlková, M., Pavelka, K. and Matoušková, E. (2018) ‘Automatic Classification of Point 

Clouds for Highway Documentation’, Acta Polytechnica, 58(3), pp. 165–170. doi: 

10.14311/AP.2018.58.0165. 

Ibrahim, S. and Lichti, D. (2012) ‘Curb-based Street Floor Extraction from Mobile Terrestrial 

Lidar Point Cloud’, ISPRS - International Archives of the Photogrammetry Remote 

Sensing and Spatial Information Sciences, XXXIX-B5, pp. 193–198. doi: 

10.5194/isprsarchives-XXXIX-B5-193-2012. 

Ioannou, Y., Taati, B., Harrap, R. and Greenspan, M. (2012) ‘Difference of Normals as a 

Multi-scale Operator in Unorganized Point Clouds’, in Proceedings - 2nd Joint 

3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and 

Transmission, 3DIMPVT 2012. IEEE Computer Society, pp. 501–508. doi: 

10.1109/3DIMPVT.2012.12. 

Jaadi Z. (2022) ‘A Step-by-Step Explanation of Principal Component Analysis (PCA)’, Built 

In. Available at: https://builtin.com/data-science/step-step-explanation-principal-

component-analysis (Accessed: 19 January 2022). 

https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis


 

323 | P a g e  

 

Jain, A.K., Murty, M.N. and Flynn, P.J. (2000) ‘Data Clustering: A Review’, ACM 

computing surveys (CSUR), 31(3), pp. 264–323. doi: 10.1145/331499.331504 

Jaritz, M., Gu, J. and Su, H. (2019) ‘Multi-view Pointnet for 3D Scene Understanding’, in 

Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 

2019. Institute of Electrical and Electronics Engineers Inc., pp. 3995–4003. doi: 

10.1109/ICCVW.2019.00494. 

Javed, M., Meraz, M. and Chakraborty, P. (2020) ‘A Quick Review on Recent Trends in 3D 

Point Cloud Data Compression Techniques and the Challenges of Direct Processing in 

3D Compressed Domain’, ArXiv, abs/2007. 

Jenke, P., Wand, M., Bokeloh, M., Schilling, A. and Straßer, W. (2006) ‘Bayesian Point 

Cloud Reconstruction’, Computer Graphics Forum, 25(3), pp. 379–388. doi: 

10.1111/j.1467-8659.2006.00957.x 

Jevtic G. (2019) What is SDLC? Phases of Software Development & Models, PhoenixNAP 

Blog. Available at: https://phoenixnap.com/blog/software-development-life-cycle 

(Accessed: 25 June 2022). 

Jia, C.C., Wang, C.J., Yang, T., Fan, B.H. and He, F.G. (2018) ‘A 3D Point Cloud Filtering 

Algorithm based on Surface Variation Factor Classification’, in Procedia Computer 

Science. Elsevier B.V., pp. 54–61. doi: 10.1016/j.procs.2019.06.010. 

Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.W. and Jia, J. (2019) ‘Hierarchical Point-Edge 

Interaction Network for Point Cloud Semantic Segmentation’, in Proceedings of the 

IEEE International Conference on Computer Vision. Institute of Electrical and 

Electronics Engineers Inc., pp. 10432–10440. doi: 10.1109/ICCV.2019.01053. 

Johnson, T., Kwok, I. and Ng, R. (1998) ‘Fast Computation of 2-Dimensional Depth 

Contours’, KDD, pp. 244–228. 

Jolliffe I.T (2002) Principal Component Analysis. 2nd edn. New York: Springer-Verlag. 

Jones J. and Waddel S. (2019) The Cascading Costs of Waterfall, Medium Operating 

Company. Available at: https://medium.com/@joneswaddell/the-cascading-costs-of-

waterfall-5c3b1b8beaec (Accessed: 19 June 2022). 

https://phoenixnap.com/blog/software-development-life-cycle
https://medium.com/@joneswaddell/the-cascading-costs-of-waterfall-5c3b1b8beaec
https://medium.com/@joneswaddell/the-cascading-costs-of-waterfall-5c3b1b8beaec


 

324 | P a g e  

 

Jones, T.R., Durand, F. and Desbrun, M. (2003) ‘Non-Iterative, Feature-Preserving Mesh 

Smoothing’, ACM Transactions on Graphics, 22(3), pp. 943–949. doi: 

10.1145/882262.882367. 

Kabacoff Robert (2019) ‘Chapter 14. Principal components and factor analysis’, in R in 

Action. 3rd edn. Shelter Island: Manning Publications. 

Kadam, K.D. (2014) ‘Face Recognition using Principal Component Analysis with DCT’, 

International Journal of Engineering Research and General Science, 2(4), pp 276 -280.  

Kalogerakis, E., Nowrouzezahrai, D., Simari, P. and Singh, K. (2009) ‘Extracting Lines of 

Curvature from Noisy Point Clouds’, CAD Computer Aided Design, 41(4), pp. 282–292. 

doi: 10.1016/j.cad.2008.12.004. 

Kang, Z., Yang, J., Zhong, R., Wu, Y., Shi, Z. and Lindenbergh, R. (2018) ‘Voxel-Based 

Extraction and Classification of 3-D Pole-Like Objects from Mobile LiDAR Point Cloud 

Data’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 11(11), pp. 4287–4298. doi: 10.1109/JSTARS.2018.2869801. 

Kaula W, Schubert G, Lingenfelter R, Sjogren W and Wollenhaupt W. (1973) ‘Lunar 

Topography from Apollo 15 and 16 Laser Altimetry’, Proceedings of the Lunar Science 

Conference, 3, pp. 2811–2819. 

Knorr, E.M. and Ng, R.T. (1997) ‘A Unified Notion of Outliers: Properties and 

Computation’, KDD, 97, pp. 219–222.   

Knorr, E.M., Ng, R.T. and Tucakov, V. (2000) ‘Distance-based Outliers: Algorithms and 

Applications’, The VLDB Journal, 8, pp. 237–253. 

Kovacs J. (2007) C#/.NET History Lesson, Weblog. Available at: 

http://jameskovacs.com/2007/09/07/cnet-history-lesson/ (Accessed: 26 June 2022). 

Kriegel Hans Peter, Kröger Peer, Schubert Erich and Zimek Arthur. (2009) ‘LoOP: Local 

Outlier Probabilities’, in Proceedings of the 18th ACM conference on Information and 

knowledge management. Association for Computing Machinery, pp. 1649–1652. doi: 

10.1145/1645953.1646195 

http://jameskovacs.com/2007/09/07/cnet-history-lesson/
https://doi.org/10.1145/1645953.1646195


 

325 | P a g e  

 

Kriegel, H.-P., Kröger Peer and Zimek, A. (2010) ‘Outlier Detection Techniques’, in The 

2010 SIAM International Conference on Data Mining, pp. 1–76.  

Ku, T., Veltkamp, R.C., Boom, B., Duque-Arias, D., Velasco-Forero, S., Deschaud, J.E., 

Goulette, F., et al. (2020) ‘SHREC 2020: 3D Point Cloud Semantic Segmentation for 

Street Scenes’, Computers and Graphics (Pergamon), 93, pp. 13–24. doi: 

10.1016/j.cag.2020.09.006. 

Kumar, B., Pandey, G., Lohani, B. and Misra, S.C. (2019) ‘A Multi-faceted CNN 

Architecture for Automatic Classification of Mobile LiDAR Data and an Algorithm to 

Reproduce Point Cloud Samples for Enhanced Training’, ISPRS Journal of 

Photogrammetry and Remote Sensing, 147, pp. 80–89. doi: 

10.1016/j.isprsjprs.2018.11.006. 

Laine, S. and Karras, T. (2010) ‘Efficient Sparse Voxel Octrees’, in ACM SIGGRAPH 

Symposium on Interactive 3D Graphics and Games (I3D). 

Lalonde, J.-F., Vandapel, N. and Hebert, M. (2006) Automatic Three-Dimensional Point 

Cloud Processing for Forest Inventory. The Robotics Institute, Carnegie Mellon 

University.  

Lam, J., Kusevic, K., Mrstik, P., Harrap, R. and Greenspan, M. (2010) ‘Urban Scene 

Extraction from Mobile Ground Based LiDAR Data’, in International Symposium on 3D 

Data Processing Visualization and Transmission. IEEE, pp. 1–8.  

Lan, Z., Yew, Z.J. and Lee, G.H. (2019) ‘Robust Point Cloud Based Reconstruction of Large-

scale Outdoor Scenes’, in Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 9682–9690. doi: 

10.1109/CVPR.2019.00992. 

Landa, J. and Ondroušek, V. (2016) ‘Detection of Pole-like Objects from LIDAR Data’, 

Procedia - Social and Behavioral Sciences, 220, pp. 226–235. doi: 

10.1016/j.sbspro.2016.05.494. 



 

326 | P a g e  

 

Landa, J., Prochazka, D. and Štastny, J. (2013) ‘Point Cloud Processing for Smart Systems’, 

Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(7), pp. 2415–

2421. doi: 10.11118/actaun201361072415. 

Landrieu, L. and Simonovsky, M. (2018) ‘Large-Scale Point Cloud Semantic Segmentation 

with Superpoint Graphs’, in Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 4558–4567. doi: 

10.1109/CVPR.2018.00479. 

Lange, C., Polthier, K. and Berlin, Tu (2005) ‘Anisotropic Smoothing of Point Sets’, 

Computer Aided Geometric Design, 22(7), pp. 680–692. doi: 10.1016/j.cagd.2005.06.010 

Lee, K.-W. and Wang, W.-P. (2005) ‘Feature-Preserving Mesh Denoising via Bilateral 

Normal Filtering’, in Ninth International Conference on Computer Aided Design and 

Computer Graphics, pp. 6–11. doi: 10.1016/j.patrec.2006.04.016 

Lee, Y.S., Koo, H.S. and Jeong, C.S. (2006) ‘A Straight Line Detection using Principal 

Component Analysis’, Pattern Recognition Letters, 27(14), pp. 1744–1754. doi: 

10.1016/j.patrec.2006.04.016. 

Lefebvre, S., Hornus, S. and Neyret Fabrice (2005) ‘Octree Textures on the GPU’, in GPU 

gems, pp. 595–613.  

Lehtomäki, M., Jaakkola, A., Hyyppä, J., Kukko, A. and Kaartinen, H.  (2010) ‘Detection of 

Vertical Pole-like Objects in a Road Environment using Vehicle-based Laser Scanning 

Data’, Remote Sensing, 2(3), pp. 641–664. doi: 10.3390/rs2030641. 

Lehtomäki, M., Jaakkola, A., Hyyppä, J., Kukko, A. and Kaartinen, H.  (2012) ‘Performance 

Analysis of a Pole and Tree Trunk Detection Method for Mobile Laser Scanning Data’, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, XXXVIII-5/W12, pp. 197–202. doi: 10.5194/isprsarchives-

xxxviii-5-w12-197-2011. 

Leica RTC360 3D Laser Scanner (2018) Leica Geosystems. Available at: https://leica-

geosystems.com/products/laser-scanners/scanners/leica-rtc360 (Accessed: 10 January 

2022). 

https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360
https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360


 

327 | P a g e  

 

Levente, L.B. and Editors, T. (2015) Handling Uncertainty and Networked Structure in 

Robot Control. 1st edn. Springer Cham. doi: 10.1007/978-3-319-26327-4. 

Levin, D. (1998) ‘The Approximation Power of Moving Least-Squares’, MATHEMATICS 

OF COMPUTATION, 67(224), pp. 1517–1531. doi: 10.1090/S0025-5718-98-00974-0 

Li, G. (2014) Automatic Detection of Temporary Objects in Mobile LiDar Point Clouds. 

University of Twente. 

Li, J., Chen, B.M. and Lee, G.H. (2018) ‘SO-Net: Self-Organizing Network for Point Cloud 

Analysis’, in Proceedings of the IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition. IEEE Computer Society, pp. 9397–9406. doi: 

10.1109/CVPR.2018.00979. 

Li, J. and Cheng, X. (2022) ‘Supervoxel-based Extraction and Classification of Pole-like 

Objects from MLS Point Cloud Data’, Optics and Laser Technology, 146. doi: 

10.1016/j.optlastec.2021.107562. 

Li, L., Li, D., Zhu, H. and Li, Y. (2016) ‘A Dual Growing Method for the Automatic 

Extraction of Individual Trees from Mobile Laser Scanning Data’, ISPRS Journal of 

Photogrammetry and Remote Sensing, 120, pp. 37–52. doi: 

10.1016/j.isprsjprs.2016.07.009. 

Li, L., Li, Y. and Li, D. (2016) ‘A Method Based on an Adaptive Radius Cylinder Model for 

Detecting Pole-like Objects in Mobile Laser Scanning Data’, Remote Sensing Letters, 

7(3), pp. 249–258. doi: 10.1080/2150704X.2015.1126377. 

Li, M. and Sun, C. (2018) ‘Refinement of LiDAR Point Clouds using a Super Voxel Based 

Approach’, ISPRS Journal of Photogrammetry and Remote Sensing, 143, pp. 213–221. 

doi: 10.1016/j.isprsjprs.2018.03.010. 

Li, Y., Wang, W., Li, X., Xie, L., Wang, Y., Guo, R., Xiu, W. and Tang S. (2019) ‘Pole-like 

Street Furniture Segmentation and Classification in Mobile LiDAR Data by Integrating 

Multiple Shape-descriptor Constraints’, Remote Sensing, 11(24). doi: 

10.3390/rs11242920. 



 

328 | P a g e  

 

Li, Y. and Wei, L. (2021) ‘An Outlier Removal Method from UAV Point Cloud Data for 

Transmission Lines’, in 2021 Computing, Communications and IoT Applications 

(ComComAp). IEEE, pp. 238–241. doi: 10.1109/ComComAp53641.2021.9652941. 

Lin Chien-Chou, Yen-Chou T., Jhong-Jin L. and Yong-Sheng C. (2017) ‘A Novel Point 

Cloud Registration using 2D Image Features’, EURASIP Journal on Advances in Signal 

Processing, 5, pp 1- 11. doi: 10.1186/s13634-016-0435-y 

Lin, Y., Wang, C., Cheng, J., Chen, B., Jia, F., Chen, Z. and Li, J. (2015) ‘Line Segment 

Extraction for Large Scale Unorganized Point Clouds’, ISPRS Journal of 

Photogrammetry and Remote Sensing, 102, pp. 172–183. doi: 

10.1016/j.isprsjprs.2014.12.027. 

Liu, J., Skidmore, A.K., Jones, S., Wang, T., Heurich, M., Zhu, X. and Shi, Y. (2018) ‘Large 

off-nadir Scan Angle of Airborne LiDAR Can Severely Affect the Estimates of Forest 

Structure Metrics’, ISPRS Journal of Photogrammetry and Remote Sensing, 136, pp. 13–

25. doi: 10.1016/j.isprsjprs.2017.12.004. 

Lozes, F., Elmoataz, A. and Lezoray, O. (2014) ‘Partial Difference Operators on Weighted 

Graphs for Image Processing on Surfaces and Point Clouds’, IEEE Transactions on 

Image Processing, 23(9), pp. 3896–3909. doi: 10.1109/TIP.2014.2336548. 

LSS (2020) DTMSoftware.com. Available at: https://www.dtmsoftware.com/ (Accessed: 18 

June 2022). 

Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P. and Song, S. (2019) ‘DeepVCP: An End-to-End 

Deep Neural Network for Point Cloud Registration’, in Proceedings of the IEEE 

International Conference on Computer Vision. Institute of Electrical and Electronics 

Engineers Inc., pp. 12–21. doi: 10.1109/ICCV.2019.00010. 

Luo, D. and Liao, L. (2010) ‘Mining Outliers from Point Cloud by Data Slice’, in 

Proceedings - 2010 International Conference on Artificial Intelligence and Education, 

ICAIE 2010. IEEE, pp. 663–666. doi: 10.1109/ICAIE.2010.5641031. 

https://www.dtmsoftware.com/


 

329 | P a g e  

 

Ma, L., Li, Y., Li, J., Wang, C., Wang, R. and Chapman, M.A. (2018) ‘Mobile Laser Scanned 

Point-clouds for Road Object Detection and Extraction: A Review’, Remote Sensing, 

10(10), p. 1531. doi: 10.3390/rs10101531. 

Maguya, A.S., Junttila, V. and Kauranne, T. (2014) ‘Algorithm for Extracting Digital Terrain 

Models under Forest Canopy from Airborne LiDAR Data’, Remote Sensing, 6(7), pp. 

6524–6548. doi: 10.3390/rs6076524. 

Mahmood, R. (2017) Edge Detection in Unorganized 3D Point Cloud. Laurentian University. 

Mallet, C. and David, N. (2016) ‘Digital Terrain Models Derived from Airborne LiDAR 

Data’, Optical Remote Sensing of Land Surface: Techniques and Methods, pp. 299–319. 

doi: 10.1016/B978-1-78548-102-4.50007-7. 

Mansur, M.O., Noor, M., Sap, M. and Malaysia, U.T. (2005) ‘Outlier Detection Technique in 

Data Mining: A Research Perspective’, in Postgraduate Annual Research Seminar, CMS 

press, pp. 23–31. doi: 10.1007/978-3-030-05127-3_2 

MATLAB MathWorks, Available at: https://uk.mathworks.com/products/matlab.html  

(Accessed: 12 February 2023). 

Measuring Trees · The Tree Register (2022) The Tree Register of the British Isles. Available 

at: https://www.treeregister.org/more/measuring-trees/ (Accessed: 29 March 2022). 

Mixing Agile and Waterfall (2021) Adobe Experience Cloud. 

Monahan, A.H., Fyfe, J.C., Ambaum, M.H.P., Stephenson, D.B. and North, G.R. (2009) 

‘Empirical Orthogonal Functions: The Medium is the Message’, Journal of Climate, pp. 

6501–6514. doi: 10.1175/2009JCLI3062.1. 

Monnier, F., Vallet, B. and Soheilian, B. (2012) ‘Trees Detection from Laser Point Clouds 

Acquired in Dense Urban Areas by a Mobile Mapping System’, ISPRS Annals 

Photogrammetry Remote Sensing and Spatial Information Sciences, 1(3), pp. 245–250. 

doi: 10.5194/isprsannals-I-3-245-2012. 

Nguyen, T.H., Daniel, S., Gueriot, D., Sintes, C. and Caillec, J.-M. le. (2019) ‘Unsupervised 

Automatic Building Extraction Using Active Contour Model on Unregistered Optical 

https://uk.mathworks.com/products/matlab.html
https://www.treeregister.org/more/measuring-trees/


 

330 | P a g e  

 

Imagery and Airborne LiDAR Data’, International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, XLII(2), pp. 181–188. doi: 

10.5194/isprs-archives-XLII-2-W16-181-2019. 

Nicole (2021) What are Point Clouds?, PointCab Blog. Available at: https://pointcab-

software.com/en/2021/09/01/what_are_point_clouds/ (Accessed: 29 Dec 2021). 

Nievergelt, Y. (1997) ‘Schmidt-Mirsky Matrix Approximation With Linearly Constrained 

Singular Values’, Linear algebra and its applications, 261(1–3), pp. 207–219. doi: 

10.1016/S0024-3795(96)00403-X. 

Ning, X., Li, F., Tian, G. and Wang, Y. (2018) ‘An Efficient Outlier Removal Method for 

Scattered Point Cloud Data’, PLOS ONE, 13(8). doi: 10.1371/journal.pone.0201280 

Nurunnabi, A., Belton, D. and West, G. (2012) ‘Robust Segmentation in Laser Scanning 3D 

Noisy Point Cloud Data’, in Proceedings of the International Conference on Digital 

Image Computing Techniques and Applications (DICTA). Fremantle, WA: IEEE, pp. 1–

8. doi: 10.1109/DICTA.2012.6411672. 

Nurunnabi, Abdul, West, G. and Belton, D. (2015a) ‘Outlier Detection and Robust Normal-

curvature Estimation in Mobile Laser Scanning 3D Point Cloud Data’, Pattern 

Recognition, 48(4), pp. 1404–1419. doi: 10.1016/j.patcog.2014.10.014. 

Nurunnabi, A, West, G. and Belton, D. (2015b) ‘Robust Methods for Feature Extraction from 

Mobile Laser Scanning 3D Point Clouds’, in Research Locate, pp. 109–120.  

O’Day E. (2013) 3D Laser Scanning: Different Type of Scanners, Ideate. Available at: 

https://www.ideateinc.com/blog/2013/07/3d-laser-scanning-different-type-of (Accessed: 

30 April 2022). 

Ogala, J., Ogala, B. and Onyarin, J. (2020) ‘Comparative Analysis of C, C++, C# and JAVA 

Programming Languages’, Global Scientific Journals, 8(5), pp. 1899–1913.  

Oreifej, O. (2013) Robust Subspace Estimation Using Low-Rank Optimization: Theory and 

Applications. University of Central Florida. 

https://pointcab-software.com/en/2021/09/01/what_are_point_clouds/
https://pointcab-software.com/en/2021/09/01/what_are_point_clouds/
https://www.ideateinc.com/blog/2013/07/3d-laser-scanning-different-type-of


 

331 | P a g e  

 

Oztireli, C., Guennebaud, G. and Gross, M. (2009) ‘Feature Preserving Point Set Surfaces 

based on Non-Linear Kernel Regression’, Computer Graphics Forum, 28(2), pp. 493–

501. doi: 10.1111/j.1467-8659.2009.01388.x 

Papadimitriou, S., Kitagawa, H., Gibbons, P.B. and Faloutsos, C. (2003) ‘LOCI: Fast Outlier 

Detection Using the Local Correlation Integral’, in Proceedings - International 

Conference on Data Engineering, pp. 315–326. doi: 10.1109/ICDE.2003.1260802. 

Papon, J., Abramov, A., Schoeler, M. and Worgotter, F (2013) ‘Voxel Cloud Connectivity 

Segmentation - Supervoxels for Point Clouds’, in Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, pp. 2027–2034. doi: 

10.1109/CVPR.2013.264. 

Paris, S. and Durand, F. (2006) ‘A Fast Approximation of the Bilateral Filter Using a Signal 

Processing Approach’, in European conference on computer vision. Springer, Berlin, 

Heidelberg, pp. 568–580. 

Park S and Jun Y (2002) ‘Automated Segmentation of Point Data in a Feature-based Reverse 

Engineering System’, Proceedings of the Institution of Mechanical Engineers Part B 

Journal of Engineering Manufacture, 216(3), pp. 445–461. doi: 

10.1243/0954405021519951. 

Parkhan M J (2019) Combined use of Airborne Laser Scanning and Hyperspectral Imaging 

for Forest Inventories. EPFL, Switzerland. doi: 10.5075/EPFL-THESIS-9033 

Pauly, M., Mitra, N.J. and Guibas, L.J. (2004) ‘Uncertainty and Variability in Point Cloud 

Surface Data’, Eurographics Symposium on Point-Based Graphics, pp. 77–84. doi: 

10.2312/SPBG/SPBG04/077-084 

Pearson, K. (1901) ‘On lines and Planes of Closest Fit to Systems of Points in Space’, The 

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 

pp. 559–572. doi: 10.1080/14786440109462720. 

Pepe, M. and Prezioso, G. (2015) ‘A Matlab geodetic software for processing airborne 

LIDAR bathymetry data’, in International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences - ISPRS Archives. International Society for 



 

332 | P a g e  

 

Photogrammetry and Remote Sensing, pp. 167–170. doi: 10.5194/isprsarchives-XL-5-

W5-167-2015. 

Petras, V. et al. (2023) ‘Point Density Variations in Airborne Lidar Point Clouds’, Sensors, 

23(3), p. 1593. doi: 10.3390/s23031593. 

Petrova, E., Pauwels, P., Svidt, K. and Jensen, R.L. (2019) ‘Towards Data-driven Sustainable 

Design: Decision Support Based on Knowledge Discovery in Disparate Building Data’, 

Architectural Engineering and Design Management, 15(5), pp. 334–356. doi: 

10.1080/17452007.2018.1530092. 

Pfeifer, N., Wien, T.U., Fan, H., Dorninger, P. and Haring, A (2007) ‘Investigating 

Terrestrial Laser Scanning Intensity Data: Quality and Functional Relations’, 

Researchgate, pp. 328–337.  

Pierce, R. (2018) Vertices, Edges and Faces, Maath is Fun. Available at: 

https://www.mathsisfun.com/geometry/vertices-faces-edges.html (Accessed: 20 

November 2018). 

Pirotti, F., Ravanelli, R., Fissore, F. and Masiero, A. (2018) ‘Implementation and Assessment 

of Two Density-based Outlier Detection Methods Over Large Spatial Point Clouds’, 

Open Geospatial Data, Software and Standards, 3(1). doi: 10.1186/s40965-018-0056-5. 

Point Clouds for Beginners: Your Questions Answered (2022) GeoSlam. Available at: 

https://geoslam.com/point-clouds/ (Accessed: 20 May 2021). 

Ponciano, J.J., Trémeau, A. and Boochs, F. (2019) ‘Automatic Detection of Objects in 3D 

Point Clouds Based on Exclusively Semantic Guided Processes’, ISPRS International 

Journal of Geo-Information, 8(10), 442. doi: 10.3390/ijgi8100442. 

Poux, F. and Billen, R. (2019) ‘Voxel-based 3D Point Cloud Semantic Segmentation: 

Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods’, ISPRS 

International Journal of Geo-Information, 8(5), 213. doi: 10.3390/ijgi8050213. 

Poux F. (2020) Fundamentals to Clustering High-Dimensional Data: 3D Point Clouds, 

Towards Data Science. Available at: https://towardsdatascience.com/fundamentals-to-

https://doi.org/10.5194/isprsarchives-XL-5-W5-167-2015
https://doi.org/10.5194/isprsarchives-XL-5-W5-167-2015
https://www.mathsisfun.com/geometry/vertices-faces-edges.html
https://geoslam.com/point-clouds/
https://towardsdatascience.com/fundamentals-to-clustering-high-dimensional-data-3d-point-clouds-3196ee56f5da


 

333 | P a g e  

 

clustering-high-dimensional-data-3d-point-clouds-3196ee56f5da (Accessed: 13 February 

2022). 

Pratt, V. (1987) ‘Direct Least-Squares Fitting of Algebraic Surfaces’, Computer Graphics, 

21(4), pp. 145–152. 

Pu, S., Rutzinger, M., Vosselman, G. and Oude Elberink, S. (2011) ‘Recognizing Basic 

Structures from Mobile Laser Scanning Data for Road Inventory Studies’, ISPRS Journal 

of Photogrammetry and Remote Sensing, 66(6 SUPPL.). doi: 

10.1016/j.isprsjprs.2011.08.006. 

Qi, C.R., Su, H., Mo, K. and Guibas, L.J. (2017) ‘PointNet: Deep Learning on Point Sets for 

3D Classification and Segmentation’, in Proceedings - 30th IEEE Conference on 

Computer Vision and Pattern Recognition, CVPR 2017. Institute of Electrical and 

Electronics Engineers Inc., pp. 77–85. doi: 10.1109/CVPR.2017.16. 

Rakotosaona, M.-J., la Barbera, V., Guerrero, P., Mitra, N.J. and Ovsjanikov, M. (2020) 

‘PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds’, 

Computer Graphics Forum, 39(1), pp. 185–203. doi: 10.1111/cgf.13753. 

Rastiveis, H., Shams, A., Sarasua, W.A. and Li, J. (2020) ‘Automated Extraction of Lane 

Markings from Mobile LiDAR Point Clouds Based on Fuzzy Inference’, ISPRS Journal 

of Photogrammetry and Remote Sensing, 160, pp. 149–166. doi: 

10.1016/j.isprsjprs.2019.12.009. 

Remondino, F. (2004) ‘International Archives of the Photogrammetry’, International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 

XXXIV-5/W10. doi: 10.3929/ethz-a-004655782. 

Rodríguez, A.S., Rodríguez, B.R., Rodríguez, M.S. and Sánchez, P.A. (2018) ‘Laser 

Scanning and its Applications to Damage Detection and Monitoring in Masonry 

Structures’, in Long-term Performance and Durability of Masonry Structures: 

Degradation Mechanisms, Health Monitoring and Service Life Design. Woodhead 

Publishing, pp. 265–285. doi: 10.1016/B978-0-08-102110-1.00009-1. 

https://towardsdatascience.com/fundamentals-to-clustering-high-dimensional-data-3d-point-clouds-3196ee56f5da


 

334 | P a g e  

 

Rodríguez-Cuenca, B., García-Cortés, S., Ordóñez, C. and Alonso, M.C. (2015) ‘Automatic 

Detection and Classification of Pole-like Objects in Urban Point Cloud Data using an 

Anomaly Detection Algorithm’, Remote Sensing, 7(10), pp. 12680–12703. doi: 

10.3390/rs71012680. 

Rooms F. (2019) Point Clouds from the Clouds, Bricsys CAD Blog. Available at: 

https://blog.bricsys.com/point-cloud-lidar-airborne-mapping/ (Accessed: 7 June 2022). 

Rousell, A. (2014) ‘Influence of point cloud density on the results of automated Object-Based 

building extraction from ALS data’, in AGILE conference Castellon, Spain. Castellón.  

Rousseeuw Peter and Leroy Annick (1987) Robust Regression and Outlier Detection. Third. 

Toronto, Canada: John Wiley and Sons Inc. doi: 10.1002/0471725382. 

Rousseeuw, P.J. and Hubert, M. (2011) ‘Robust Statistics for Outlier Detection’, Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), pp. 73–79. doi: 

10.1002/widm.2. 

Rousseeuw, P.J. and Hubert, M. (2018) ‘Anomaly Detection by Robust Statistics’, Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2). doi: 

10.1002/widm.1236. 

Roynard, X., Deschaud, J.-E. and Goulette, F. (2018) ‘Classification of Point Cloud Scenes 

with Multiscale Voxel Deep Network’, arXiv:1804.03583. doi: 

10.48550/arXiv.1804.03583 

Ruchay, A. N., Dorofeev, K.A. and Kalschikov, V. v. (2019) ‘Accuracy Analysis of 3D 

Object Reconstruction using Point Cloud Filtering Algorithms’, in Proceedings of the 5th 

Information Technology and Nanotechnology (ITNT-2019), pp. 169–174. doi: 

10.18287/1613-0073-2019-2391-169-174. 

Ruparelia, N.B. (2010) ‘Software Development Lifecycle Models’, ACM SIGSOFT Software 

Engineering Notes, 35(3), pp. 8–13. doi: 10.1145/1764810.1764814. 

Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M. and Beetz, M. (2008) ‘Towards 3D Point 

Cloud Based Object Maps for Household Environments’, Robotics and Autonomous 

Systems, 56(11), pp. 927–941. doi: 10.1016/j.robot.2008.08.005. 

https://blog.bricsys.com/point-cloud-lidar-airborne-mapping/


 

335 | P a g e  

 

Rusu, R.B. and Cousins, S. (2011) ‘3D is Here: Point Cloud Library (PCL)’, in IEEE 

International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 1-4, 

doi: 10.1109/ICRA.2011.5980567.  

Ruwen Schnabel, D.-I., Klein, R. and Gumhold, S. (2010) Efficient Point-Cloud Processing 

with Primitive Shapes, University Bonn. 

Safaie, A.H., Rastiveis, H., Shams, A., Sarasua, W.A. and Li, J. (2021) ‘Automated Street 

Tree Inventory using Mobile LiDAR Point Clouds based on Hough Transform and 

Active Contours’, ISPRS Journal of Photogrammetry and Remote Sensing, 174, pp. 19–

34. doi: 10.1016/j.isprsjprs.2021.01.026. 

Sahin, C., Alkis, A., Ergun, B., Kulur, S., Batuk, F. and Kilic, A. (2012) ‘Producing 3D City 

Model with the Combined Photogrammetric and Laser Scanner Data in the Example of 

Taksim Cumhuriyet Square’, Optics and Lasers in Engineering, 50(12), pp. 1844–1853. 

doi: 10.1016/j.optlaseng.2012.05.019. 

Salman, N., Yvinec, M., Merigot, Q. (2010) ‘Feature Preserving Mesh Generation from 3D 

Point Clouds’, Computer Graphics Forum, 29(5), pp. 1623–1632. Oxford, UK: 

Blackwell Publishing Ltd.  

Sampaio, J.H.B. (2006) ‘An Iterative Procedure for Perpendicular Offsets Linear Least 

Squares Fitting with Extension to Multiple Linear Regression’, Applied Mathematics and 

Computation, 176(1), pp. 91–98. doi: 10.1016/j.amc.2005.09.054. 

Sankaranarayanan, J., Samet, H. and Varshney, A. (2007) ‘A Fast all Nearest Neighbor 

Algorithm for Applications Involving Large Point-Clouds’, Computers and Graphics 

(Pergamon), 31(2), pp. 157–174. doi: 10.1016/j.cag.2006.11.011. 

Schall, O., Belyaev, A. and Seidel, H.-P. (2005) ‘Robust Filtering of Noisy Scattered Point 

Data’, in Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, pp. 

71–144. doi: 10.1109/PBG.2005.194067 

Schall, O., Belyaev, A. and Seidel, H.P. (2008) ‘Adaptive Feature-preserving Non-local 

Denoising of Static and Time-varying Range Data’, CAD Computer Aided Design, 40(6), 

pp. 701–707. doi: 10.1016/j.cad.2008.01.011. 



 

336 | P a g e  

 

Schauer, J. and Nüchter, A. (2018) ‘Removing Non-static Objects from 3D Laser Scan Data’, 

ISPRS Journal of Photogrammetry and Remote Sensing, 143, pp. 15–38. doi: 

10.1016/j.isprsjprs.2018.05.019. 

Schneiders, R., Schindler, R. and Weiler, F. (1996) ‘Octree-based Generation of Hexahedral 

Element Meshes’, in Proceedings of the 5th International Meshing Roundtable. doi: 

10.1142/S021819590000022X 

Scheiner, N. et al. (2021) ‘Object detection for automotive radar point clouds – a 

comparison’, AI Perspectives, 3(1). doi: 10.1186/s42467-021-00012-z. 

Scholkopf, B., Smola, A. and Muller Klaus (1997) ‘Kernel Principal Component Analysis’, 

in Gerstner W., Germond A., Hasler M. and Nicoud JD. (eds) International conference 

on artificial neural networks. Berlin Heidelberg: Springer, pp. 583–588. doi: 

10.1007/BFb0020217. 

Schön, B., Mosa, A.S.M., Laefer, D.F. and Bertolotto, M. (2013) ‘Octree-based Indexing for 

3D Pointclouds within an Oracle Spatial DBMS’, Computers and Geosciences, 51, pp. 

430–438. doi: 10.1016/j.cageo.2012.08.021. 

Schwaber K. and Sutherland J. (2020) What is Scrum? The Scrum Guide. Available at: 

https://www.scrum.org/resources/what-is-scrum (Accessed: 19 June 2022). 

Sengupta, A.M. and Mitra, P.P. (1997) ‘Distributions of Singular Values for Some Random 

Matrices’, Physical review. E, Statistical physics, plasmas, fluids, and related 

interdisciplinary topics, 60, p. 3389. doi: 10.1103/PhysRevE.60.3389. 

Senior M. (2021) The Future of Point Cloud Processing and 3D Models, Geo Insight - GEO 

BUSINESS. Available at: https://www.geobusinessshow.com/the-future-of-point-cloud-

processing-and-3d-models/ (Accessed: 7 June 2022). 

Serifoglu Yilmaz, C., Yilmaz, V. and Güngör, O. (2018) ‘Investigating the Performances of 

Commercial and Non-commercial Software for Ground Filtering of UAV-based Point 

Clouds’, 39(15–16), pp. 5016–5042. doi: 10.1080/01431161.2017.1420942. 

Shao, M., Ijiri, Y. and Hattori, K. (2015) ‘Grouped Outlier Removal for Robust Ellipse 

Fitting’, in Proceedings of the 14th IAPR International Conference on Machine Vision 

https://www.scrum.org/resources/what-is-scrum
https://www.geobusinessshow.com/the-future-of-point-cloud-processing-and-3d-models/
https://www.geobusinessshow.com/the-future-of-point-cloud-processing-and-3d-models/


 

337 | P a g e  

 

Applications, MVA 2015. Institute of Electrical and Electronics Engineers Inc., pp. 138–

141. doi: 10.1109/MVA.2015.7153152. 

Shaw, P.J.A. (2003) Multivariate statistics for the Environmental Sciences, New York. John 

Wiley & Sons Inc. 

Shen, J., Liu, J., Zhao, R. and Lin, X. (2011) ‘A Kd-tree-based Outlier Detection Method for 

Airborne LiDAR Point Clouds’, in 2011 International Symposium on Image and Data 

Fusion, ISIDF Tengchong, China, 2011, pp. 1-4. doi: 10.1109/ISIDF.2011.6024307. 

Shi, B.Q., Liang, J. and Liu, Q. (2011) ‘Adaptive Simplification of Point Cloud Using k-

Means Clustering’, CAD Computer Aided Design, 43(8), pp. 910–922. doi: 

10.1016/j.cad.2011.04.001. 

Shi, Q. and Jaja, J. (2006) ‘Isosurface Extraction and Spatial Filtering Using Persistent Octree 

(POT)’, IEEE Transactions on Visualization and Computer Graphics, 12(5), pp 1283-

1290. doi: 10.1109/TVCG.2006.157. 

Shi, S. Wang Z., Shi J., Wang X., and Li H. (2021) ‘From Points to Parts: 3D Object 

Detection from Point Cloud with Part-aware and Part-aggregation Network’, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 43, pp. 2647-2664. doi: 

10.1109/TPAMI.2020.2977026. 

Shi, S., Wang, X. and Li, H. (2019) ‘PointRCNN: 3D Object Proposal Generation and 

Detection from Point Cloud’, in IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), pp. 770–779. doi: 10.48550/arXiv.1812.04244 

Shi, Z., Kang, Z., Lin, Y., Liu, Y. and Chen, W. (2018) ‘Automatic Recognition of Pole-like 

Objects from Mobile Laser Scanning Point Clouds’, Remote Sensing, 10(12), pp. 1-23. 

doi: 10.3390/rs10121891. 

Shirowzhan, S., Sepasgozar, S.M.E., Li, H., Trinder, J. and Tang, P. (2019) ‘Comparative 

Analysis of Machine Learning and Point-based Algorithms for Detecting 3D Changes in 

Buildings Over Time Using Bi-temporal Lidar Data’, Automation in Construction, 105, 

pp. 102841. doi: 10.1016/j.autcon.2019.102841. 



 

338 | P a g e  

 

Singh S. (2020) ‘What is Testing in Software? — The Three Main Types of Testing 

Explained in Simple English’, Level Up Coding. Available at: 

https://levelup.gitconnected.com/what-is-testing-in-software-the-three-main-types-of-

testing-explained-in-simple-english-da0fec7ae5d6 (Accessed: 7 August 2022). 

Soilán, M., Sánchez-Rodríguez, A., del Río-Barral, P., Perez-Collazo, C., Arias, P. and 

Riveiro, B. (2019) ‘Review of Laser Scanning Technologies and their Applications for 

Road and Railway Infrastructure Monitoring’, Infrastructures, 4(4), p. 58. doi: 

10.3390/infrastructures4040058. 

Sotoodeh, S. (2006) ‘Outlier Detection in Laser Scanner Point Clouds’, International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 

36(5), pp. 297–305. doi: 10.3929/ETHZ-B-000037220 

Sotoodeh, S. (2007) ‘Hierarchical Clustered Outlier Detection in Laser Scanner Point 

Clouds’, International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 36(3/W52), pp. 383–388. doi: 10.3929/ethz-b-000004210. 

Stewart, G.W. (1993) ‘On early History of the Singular Value Decomposition’, SIAM 

Review, Society for Industrial and Applied Mathematics, 35(4), pp. 551–566. doi: 

10.1137/1035134. 

Stucker, C., Richard, A., Wegner, J.D. and Schindler Photogrammetry, K.  (2018) 

‘Supervised Outlier Detection in Large-scale MVS Point Clouds for 3D City Modeling 

Applications’, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 4, pp. 263–273. doi: 10.3929/ethz-b-000271685. 

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H. and Kautz, J. (2018) 

‘SPLATNet: Sparse Lattice Networks for Point Cloud Processing’, in Proceedings of the 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE 

Computer Society, pp. 2530–2539. doi: 10.1109/CVPR.2018.00268. 

Su Zhonghua, Li Shihua, Liu Hanhu and Liu Yuhan. (2019) ‘Extracting Wood Point Cloud of 

Individual Trees Based on Geometric Features’, IEEE Geoscience and Remote Sensing 

Letters, 16(8), pp. 1294–1298. doi: 10.1109/LGRS.2019.2896613. 

https://levelup.gitconnected.com/what-is-testing-in-software-the-three-main-types-of-testing-explained-in-simple-english-da0fec7ae5d6
https://levelup.gitconnected.com/what-is-testing-in-software-the-three-main-types-of-testing-explained-in-simple-english-da0fec7ae5d6


 

339 | P a g e  

 

Sun, Y., Schaefer, S. and Wang, W. (2015) ‘Denoising Point Sets via L0 Minimization’, 

Computer Aided Geometric Design, 35–36, pp. 2–15. doi: 10.1016/j.cagd.2015.03.011. 

Sunday, D. (2021) Practical Geometry Algorithms with C++ Code. 1st edn. Amazon KDP. 

Suryanarayana, T.M.V. and Mistry, P.B. (2016) ‘Principal Component Analysis in Transfer 

Function’, in SpringerBriefs in Applied Sciences and Technology. Springer Verlag, pp. 

17–25. doi: 10.1007/978-981-10-0663-0_2. 

Ta, V.T., Elmoataz, A. and Lézoray, O. (2011) ‘Nonlocal PDEs-based Morphology on 

Weighted Graphs for Image and Data Processing’, IEEE Transactions on Image 

Processing, 20(6), pp. 1504–1516. doi: 10.1109/TIP.2010.2101610. 

Tang, P., Huber, D., Akinci, B., Lipman, R. and Lytle, A. (2010) ‘Automatic Reconstruction 

of as-built Building Information Models from Laser-scanned Point Clouds: A Review of 

Related Techniques’, Automation in Construction, 19(7), pp. 829–843. doi: 

10.1016/j.autcon.2010.06.007. 

Tapken P. (2019) ‘The Rising Demand for Total Stations and Terrestrial Laser Scanners’, 

GIM International, 5 February. Available at: https://www.gim-

international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-

laser-scanners (Accessed: 14 July 2022). 

Tashakkori, A. and Teddlie, C. (2010) ‘The Past and Future of Mixed Methods Research: 

From Triangulation to Mixed Model Design’, in Handbook of Mixed Methods in Social 

and Behavioural Research. 2nd edn. CA: SAGE. 

Taubin, G. (1991) ‘Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves 

Defined by Implicit Equations with Applications to Edge and Range Image 

Segmentation’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 

13(11), pp. 1115–1138. doi: 10.1109/34.103273. 

Taubin, G. (1995) ‘Estimating the Tensor of Curvature of a Surface from a Polyhedral 

Approximation’, in IEEE International Conference on Computer Vision. IEEE, pp. 902–

907. doi: 10.1109/iccv.1995.466840. 

https://www.gim-international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-laser-scanners
https://www.gim-international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-laser-scanners
https://www.gim-international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-laser-scanners


 

340 | P a g e  

 

Tazir, M.L., Checchin, P. and Trassoudaine, L. (2016) ‘Color-based 3D Point Cloud 

Reduction’, in 2016 14th International Conference on Control, Automation, Robotics 

and Vision (ICARCV), pp. 1–7. doi: 10.1109/ICARCV.2016.7838685. 

Teng, M., Zhuangzhi, W., Lu, F., Pei, L. and Xiang, L. (2010) ‘Point Cloud Segmentation 

Through Spectral Clustering’, in 2nd International Conference on Information Science 

and Engineering, ICISE2010, China. IEEE, pp. 1–4. doi: 10.1109/ICISE.2010.5690596. 

Teo, T.A. and Chiu, C.M. (2015) ‘Pole-Like Road Object Detection from Mobile Lidar 

System Using a Coarse-to-Fine Approach’, IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 8(10), pp. 4805–4818. doi: 

10.1109/JSTARS.2015.2467160. 

Thank the Egyptians; The History of Surveying & Mapping (2019) DRMPerspective. 

Available at: https://drmp.com/drmperspective?id=895612/thank-the-egyptians-the-

history-of-surveying-mapping (Accessed: 16 July 2022). 

Thomson C. (2019) 6 industries that need to understand point clouds, VEERCATOR. 

Available at: https://info.vercator.com/blog/6-industries-that-need-to-understand-point-

clouds-in-2019 (Accessed: 29 April 2022). 

Thrun, S., Burgard, W. and Fox, D. (1998) ‘A Probabilistic Approach to Concurrent Mapping 

and Localization for Mobile Robots’, Autonomous Robots, 5(3–4), pp. 253–271. doi: 

10.1023/a:1008806205438. 

Tipping, Michael E. and Bishop, C.M. (1999) ‘Probabilistic Principal Component Analysis’, 

Journal of the Royal Statistical Society. Series B: Statistical Methodology, 61(3), pp. 

611–622. doi: 10.1111/1467-9868.00196. 

Tomasi, C. and Manduchi, R. (1998) ‘Bilateral Filtering for Gray and Color Images’, in Sixth 

International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, 

India, pp. 839–846. doi: 10.1109/ICCV.1998.710815 

Tombari, F., Fioraio, N., Cavallari, T., Salti, S., Petrelli, A. and di Stefano, L. (2014) 

‘Automatic Detection of Pole-like Structures in 3D Urban Environments’, in IEEE 

https://drmp.com/drmperspective?id=895612/thank-the-egyptians-the-history-of-surveying-mapping
https://drmp.com/drmperspective?id=895612/thank-the-egyptians-the-history-of-surveying-mapping
https://info.vercator.com/blog/6-industries-that-need-to-understand-point-clouds-in-2019
https://info.vercator.com/blog/6-industries-that-need-to-understand-point-clouds-in-2019


 

341 | P a g e  

 

International Conference on Intelligent Robots and Systems. Institute of Electrical and 

Electronics Engineers Inc., pp. 4922–4929. doi: 10.1109/IROS.2014.6943262. 

Tombari, F., Cavallari, T. and Stefano, L. di (2016) ‘Poles from Point Clouds’, GIM 

International, pp. 1–13.  

Tran, T.H.G., Ressl, C. and Pfeifer, N. (2018) ‘Integrated Change Detection and 

Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds’, Sensors 

(Switzerland), 18(2), 448. doi: 10.3390/s18020448. 

Tucker A. (2021) ‘Computer Science - Programming Languages’, Encyclopedia  Britannica. 

Available at: https://www.britannica.com/science/computer-science/Programming-

languages (Accessed: 18 June 2022). 

Tuley, J., Vandapel, N. and Hebert, M. (2005) ‘Analysis and Removal of Artifacts in 3-D 

LADAR Data’, in Proceedings - IEEE International Conference on Robotics and 

Automation, pp. 2203–2210. doi: 10.1109/ROBOT.2005.1570440. 

Tuominen, S., Näsi, R., Honkavaara, E., Balazs, A., Hakala, T., Viljanen, N. and Pölönen, I., 

et al. (2018) ‘Assessment of Classifiers and Remote Sensing Features of Hyperspectral 

Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a 

Forest Area of High Species Diversity’, Remote Sensing, 10(5). doi: 

10.3390/rs10050714. 

Turner, M., Moxey, D. and Peiró, J. (2015) ‘Automatic Mesh Sizing Specification of 

Complex Three Dimensional Domains using an Octree Structure’, 24th International 

Meshing Roundtable (IMR24). 

Unnikrishnan, R. (2008) ‘Statistical Approaches to Multi-scale Point Cloud Processing’, 

Wwwoldricmuedu, The Robotics Institute Carnegie Mellon University (May), pp. 1-146. 

Upadhyay Raj K. (2020) ‘Advantages and Disadvantages of using Spiral Model’, 

GeeksforGeeks. Available at: https://www.geeksforgeeks.org/advantages-and-

disadvantages-of-using-spiral-model/ (Accessed: 19 June 2022). 

Uy, M.A., Pham, Q.-H., Hua, B.-S., Nguyen, D.T. and Yeung, S.K. (2019) ‘Revisiting Point 

Cloud Classification: A New Benchmark Dataset and Classification Model on Real-

https://www.britannica.com/science/computer-science/Programming-languages
https://www.britannica.com/science/computer-science/Programming-languages
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-using-spiral-model/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-using-spiral-model/


 

342 | P a g e  

 

World Data’, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 

pp. 1588–1597. doi:10.1109/ICCV.2019.00167. 

Vidal, R., Ma, Y. and Sastry, S.S. (2005) ‘Generalized Principal Component Analysis’, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 27(12), pp. 1945–1959. doi: 

10.1007/978-981-10-2915-8_7. 

Vo, A.V., Truong-Hong, L., Laefer, D.F. and Bertolotto, M. (2015) ‘Octree-based Region 

Growing for Point Cloud Segmentation’, ISPRS Journal of Photogrammetry and Remote 

Sensing, 104, pp. 88–100. doi: 10.1016/j.isprsjprs.2015.01.011. 

V.S. R. (2005) ‘Working with Namespaces in C#’, C# Corner. Available at: https://www.c-

sharpcorner.com/article/working-with-namespaces-in-C-Sharp/  (Accessed: 14 July 

2022). 

Wang, J. and Shan, J. (2009) ‘Segmentation of LiDAR Point Clouds for Building Extraction’, 

in American Society for Photogramm. Remote Sens. Annual Conference, Baltimore, pp. 

9–13. 

Wang, J., Yu, Z., Zhu, W. and Cao, J. (2013) ‘Feature-preserving Surface Reconstruction 

from Unoriented, Noisy Point Data’, Computer Graphics Forum, 32(1), pp. 164–176. 

doi: 10.1111/cgf.12006. 

Wang, J., L., R. and Menenti, M. (2017) ‘SigVox – A 3D Feature Matching Algorithm for 

Automatic Street Object Recognition in Mobile Laser Scanning Point Clouds’, ISPRS 

Journal of Photogrammetry and Remote Sensing, 128, pp. 111–129. doi: 

10.1016/j.isprsjprs.2017.03.012. 

Wang, P., Gan, Y., Shui, P., Yu, F., Zhang, Y., Chen, S. and Sun, Z. (2018) ‘3D shape 

Segmentation via Shape Fully Convolutional Networks’, Computers and Graphics 

(Pergamon), 70, pp. 128–139. doi: 10.1016/j.cag.2017.07.030. 

Wang, W., Zhang, Y., Ge, G., Jiang, Q., Wang, Y. and Hu, L. (2021) ‘A Hybrid Spatial 

Indexing Structure of Massive Point Cloud Based on Octree and 3D R*-Tree’, Applied 

Sciences (Switzerland), 11(20), pp. 9581. doi: 10.3390/app11209581. 

https://www.c-sharpcorner.com/article/working-with-namespaces-in-C-Sharp/
https://www.c-sharpcorner.com/article/working-with-namespaces-in-C-Sharp/
https://doi.org/https:/doi.org/10.3390/app11209581


 

343 | P a g e  

 

Wang, X., Zhou K., Yang J., and Lu Y. (2011) ‘MATLAB tools for lidar data conversion, 

visualization, and processing’, in International Symposium on Lidar and Radar Mapping 

2011: Technologies and Applications. SPIE, pp. 82860M. doi: 10.1117/12.912529. 

Wang, X., He, J. and Ma, L. (2019) ‘Exploiting Local and Global Structure for Point Cloud 

Semantic Segmentation with Contextual Point Representations’, in NeurIPS, pp. 1–11. 

doi: 10.48550/arXiv.1911.05277.  

Wang, Y. and Feng, H.Y. (2015) ‘Outlier Detection for Scanned Point Clouds using Majority 

Voting’, CAD Computer Aided Design, 62, pp. 31–43. doi: 10.1016/j.cad.2014.11.004. 

Wang, Y., Cheng, L., Chen, Y., Wu, Y. and Li, M. (2016) ‘Building Point Detection from 

Vehicle-borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis’, 

Remote Sensing, 8(5). doi: 10.3390/rs8050419. 

Wang, Y. and Solomon, J. (2019) ‘Deep Closest Point: Learning Representations for Point 

Cloud Registration’, in Proceedings of the IEEE International Conference on Computer 

Vision. IEEE, pp. 3522–3531. doi: 10.1109/ICCV.2019.00362. 

Weber, C., Hahmann, S. and Hagen, H. (2010a) ‘Methods for Feature Detection in Point 

Clouds’, in Visualization of Large and Unstructured Data Sets - Applications in 

Geospatial Planning, Modeling and Engineering (IRTG 1131 Workshop), VLUDS 2010, 

pp. 90–99. doi: 10.4230/OASIcs.VLUDS.2010.90. 

Weber, C., Hahmann, S. and Hagen, H. (2010b) ‘Sharp Feature Detection in Point Clouds’, in 

SMI 2010 - International Conference on Shape Modeling and Applications, Proceedings. 

IEEE Computer Society, pp. 175–186. doi: 10.1109/SMI.2010.32. 

Weber, C., Hahmann, S., Hagen, H. and Bonneau, G.P. (2012) ‘Sharp Feature Preserving 

MLS Surface Reconstruction Based on Local Feature Line Approximations’, Graphical 

Models, 74(2). doi: 10.1016/j.gmod.2012.04.012ï. 

Weinmann, M., Jutzi, B., Mallet, C. and Weinmann, M. (2017) ‘Geometric Features and 

Their Relevance for 3D Point Cloud Classification’, in ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences. Copernicus GmbH, 

pp. 157–164. doi: 10.5194/isprs-annals-IV-1-W1-157-2017. 



 

344 | P a g e  

 

Wen, X., Han, Z., Liu, X. and Liu, Y.S. (2019) ‘Point2SpatialCapsule: Aggregating Features 

and Spatial Relationships of Local Regions on Point Clouds using Spatial-aware 

Capsules’, IEEE Transactions on Image Processing, 29, pp. 8855–8869. doi: 

10.1109/TIP.2020.3019925. 

Wengefeld, T., Lewandowski, B., Seichter, D., Pfennig, L. and Gross, H.-M. (2019) ‘Real-

time Person Orientation Estimation using Colored Pointclouds’, in 2019 European 

Conference on Mobile Robots (ECMR), pp. 1–7. doi: 10.1109/ECMR.2019.8870914. 

What are Point Clouds ? (2018) Tech 27 Stay connected with the latest in Industrial AI, Smart 

Engineering & IoT. Available at: https://tech27.com/resources/point-clouds/ (Accessed: 

11 June 2022). 

What is a Point Cloud Survey? (2021) SkyKam. Available at: https://skykam.co.uk/what-is-a-

point-cloud/ (Accessed: 14 July 2022). 

What Is Laser Scanning and How Can It Be Used? (2020) TopoDot blog. Available at: 

https://blog.topodot.com/what-is-laser-scanning-and-how-can-it-be-used/ (Accessed: 29 

May 2022). 

What Is Point Cloud Processing and Why Is It Important? (2019) TopoDot Blog. Available 

at: https://blog.topodot.com/what-is-point-cloud-processing-and-why-is-it-important/  

(Accessed: 7 June 2022). 

What is Rapid Application Development?, The Economic Times. Available at: 

https://economictimes.indiatimes.com/definition/rapid-application-development  

(Accessed: 19 June 2022). 

Widyaningrum, E., Gorte, B. and Lindenbergh, R. (2019) ‘Automatic Building Outline 

Extraction from ALS Point Clouds by Ordered Points Aided Hough Transform’, Remote 

Sensing, 11(14), 1727. doi: 10.3390/rs11141727. 

Wilhelms Jane and Gelder Allen (2000) ‘Octree for Faster Isosurface Generation’, IEEE 

Transactions on Medical Imaging, 19, pp. 739–758. doi: 10.1145/130881.130882.  

https://tech27.com/resources/point-clouds/
https://skykam.co.uk/what-is-a-point-cloud/
https://skykam.co.uk/what-is-a-point-cloud/
https://blog.topodot.com/what-is-laser-scanning-and-how-can-it-be-used/
https://blog.topodot.com/what-is-point-cloud-processing-and-why-is-it-important/
https://economictimes.indiatimes.com/definition/rapid-application-development


 

345 | P a g e  

 

Williams, R.M. and Ilieş, H.T. (2018) ‘Practical Shape Analysis and Segmentation Methods 

for Point Cloud Models’, Computer Aided Geometric Design, 67, pp. 97–120. doi: 

10.1016/j.cagd.2018.10.003. 

Wolff, K., Kim, C., Zimmer, H., Schroers, C., Botsch, M., Sorkine-Hornung, O. and Sorkine-

Hornung, A. (2016) ‘Point Cloud Noise and Outlier Removal for Image-Based 3D 

Reconstruction’, in 2016 Fourth International Conference on 3D Vision (3DV). IEEE, 

pp. 118–127. doi: 10.1109/3DV.2016.20. 

Wood L. (2022a) European 3D Scanner Market - Forecasts from 2022 to 2027, 

Researchandmarkets.com. Available at: 

https://www.researchandmarkets.com/reports/5576399/european-3d-scanner-market-

forecasts-from-2022 (Accessed: 14 July 2022). 

Wood L. (2022b) The Global 3D Scanning Market Will Grow to USD 16.66 Billion by 2030, 

at a CAGR of 16.3%, BusinessWire. Available at: 

https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-

Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---

ResearchAndMarkets.com (Accessed: 14 July 2022). 

Woz U. (2020) What is Syntax in Computer Programming?, Woz U. Available at: 

https://woz-u.com/blog/what-is-syntax-in-computer-programming/ (Accessed: 29 July 

2022). 

Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C. and Huang, Y., et al. (2013) ‘A Voxel-

based Method for Automated Identification and Morphological Parameters Estimation of 

Individual Street Trees from Mobile Laser Scanning Data’, Remote Sensing, 5(2), pp. 

584–611. doi: 10.3390/rs5020584. 

Wu, F., Wen, C., Guo, Y., Wang, J., Yu, Y., Wang, C. and Li, J. (2017) ‘Rapid Localization 

and Extraction of Street Light Poles in Mobile LiDAR Point Clouds: A Supervoxel-

based Approach’, IEEE Transactions on Intelligent Transportation Systems, 18(2), pp. 

292–305. doi: 10.1109/TITS.2016.2565698. 

Wu Rongren, Yiping Chen, Wang Cheng and Li Jonathan. (2018) ‘Estimation of Forest Trees 

Diameter from Terrestrial Laser Scanning Point Clouds Based on a Circle Fitting 

https://www.researchandmarkets.com/reports/5576399/european-3d-scanner-market-forecasts-from-2022
https://www.researchandmarkets.com/reports/5576399/european-3d-scanner-market-forecasts-from-2022
https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---ResearchAndMarkets.com
https://woz-u.com/blog/what-is-syntax-in-computer-programming/


 

346 | P a g e  

 

Method’, in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing 

Symposium. IEEE, pp. 2813–2816. doi: 10.1109/IGARSS.2018.8517303. 

Wu, W., Qi, Z. and Fuxin, L. (2019) ‘PointCONV: Deep Convolutional Networks on 3D 

Point Clouds’, in Proceedings of the IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition. IEEE Computer Society, pp. 9613–9622. doi: 

10.1109/CVPR.2019.00985. 

Xiang, C., Qi, C.R. and Li, B. (2019) ‘Generating 3D Adversarial Point Clouds’, in 

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition. IEEE Computer Society, pp. 9128–9136. doi: 10.1109/CVPR.2019.00935. 

Xiao, W., Vallet, B., Schindler, K. and Paparoditis, N. (2016) ‘Street-side Vehicle Detection, 

Classification and Change Detection using Mobile Laser Scanning Data’, ISPRS Journal 

of Photogrammetry and Remote Sensing, 114, pp. 166–178. doi: 

10.1016/j.isprsjprs.2016.02.007. 

Xie, Y., Tian, J. and Zhu, X.X. (2020) ‘Linking Points with Labels in 3D: A Review of Point 

Cloud Semantic Segmentation’, IEEE Geoscience and Remote Sensing Magazine, 1 

December, pp. 38–59. doi: 10.1109/MGRS.2019.2937630. 

Xin, S., Nousias, S., Kutulakos, K.N., Sankaranarayanan, A.C., Narasimhan, S.G. and 

Gkioulekas, I. (2019) ‘A Theory of Fermat Paths for Non-Line-of-Sight Shape 

Reconstruction’, in Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, pp. 6800–6809. doi: 10.1109/CVPR.2019.00696. 

Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K. and Tomizuka, M. (2020) 

‘SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud 

Segmentation’, in European Conference on Computer Vision. Springer, Cham, pp. 1–19. 

doi: 10.48550/arXiv.2004.01803. 

Xu, J., Zhou, M., Wu, Z., Shui, W. and Ali, S. (2015) ‘Robust Surface Segmentation and 

Edge Feature Lines Extraction from Fractured Fragments of Relics’, Journal of 

Computational Design and Engineering, 2(2), pp. 79–87. doi: 

10.1016/j.jcde.2014.12.002. 



 

347 | P a g e  

 

Xu, Y., Boerner, R., Yao, W., Hoegner, L. and Stilla, U. (2019) ‘Pairwise Coarse 

Registration of Point Clouds in Urban Scenes using Voxel-based 4-Planes Congruent 

Sets’, ISPRS Journal of Photogrammetry and Remote Sensing, 151, pp. 106–123. doi: 

10.1016/j.isprsjprs.2019.02.015. 

Xu, Y., Tuttas, S., Hoegner, L. and Stilla, U. (2021) ‘Voxel-based Segmentation of 3D Point 

Clouds from Construction Sites using a Probabilistic Connectivity Model’, Pattern 

Recognition Letters, 102, pp. 67–74. doi: 10.1016/j.patrec.2017.12.016. 

Xu, Y., Tong, X. and Stilla, U. (2021) ‘Voxel-based Representation of 3D Point Clouds: 

Methods, Applications, and its Potential use in the Construction Industry’, Automation in 

Construction, 126. doi: 10.1016/j.autcon.2021.103675. 

Yadav, M., Husain, A., Singh, A.K. and Lohani, B. (2015) ‘Pole-shaped Object Detection 

using Mobile Lidar data in Rural Road Environments’, in ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences. Copernicus GmbH, 

pp. 11–16. doi: 10.5194/isprsannals-II-3-W5-11-2015. 

Yan, L., Li, Z., Liu, H., Tan, J., Zhao, S. and Chen, C.(2017) ‘Detection and Classification of 

Pole-like Road Objects from Mobile LiDAR Data in Motorway Environment’, Optics 

and Laser Technology, 97, pp. 272–283. doi: 10.1016/j.optlastec.2017.06.015. 

Yan, W.Y., Morsy, S., Shaker, A. and Tulloch, M. (2016) ‘Automatic Extraction of Highway 

Light Poles and Towers from Mobile LiDAR Data’, Optics and Laser Technology, 77, 

pp. 162–168. doi: 10.1016/j.optlastec.2015.09.017. 

Yang, B. and Dong, Z. (2013) ‘A Shape-based Segmentation Method for Mobile Laser 

Scanning Point Clouds’, ISPRS Journal of Photogrammetry and Remote Sensing, 81, pp. 

19–30. doi: 10.1016/j.isprsjprs.2013.04.002. 

Yang, B., Dong, Z., Zhao, G. and Dai, W. (2015) ‘Hierarchical Extraction of Urban Objects 

from Mobile Laser Scanning Data’, ISPRS Journal of Photogrammetry and Remote 

Sensing, 99, pp. 45–57. doi: 10.1016/j.isprsjprs.2014.10.005. 



 

348 | P a g e  

 

Yang, Z.X., Tang, L., Zhang, K. and Wong, P.K. (2018) ‘Multi-View CNN Feature 

Aggregation with ELM Auto-Encoder for 3D Shape Recognition’, Cognitive 

Computation, 10(6), pp. 908–921. doi: 10.1007/s12559-018-9598-1. 

Yin, Y., Wan, W. and Liu, R. (2013) ‘Filtering Outliers using Statistical Analysis on 

Neighbors Distances’, in IET International Conference on Smart and Sustainable City 

2013 (ICSSC 2013). IEEE, pp. 149–152. doi: 10.1049/cp.2013.1993. 

Yokoyama, H., Date, H., Kanai, S. and Takeda, H. (2011) ‘Pole-like Objects Recognition 

from Mobile Laser Scanning Data using Smoothing and Principal Component Analysis’, 

ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial 

Information Sciences, 38(5), pp. 115–120. doi: 10.5194/isprsarchives-XXXVIII-5-W12-

115-2011. 

Yokoyama, H., Date, H., Kanai, S. and Takeda, H. (2013) ‘Detection and Classification of 

Pole-like Objects from Mobile Laser Scanning Data of Urban Environments’, 

International Journal of CAD/CAM, 13(1), pp. 1–10. doi: 

10.1016/j.optlastec.2017.06.015 

You, H., Ji, R., Feng, Y. and Gao, Y. (2018) ‘PVNet: A Joint Convolutional Network of 

Point Cloud and Multi-view for 3D Shape Recognition’, in MM 2018 - Proceedings of 

the 2018 ACM Multimedia Conference. Association for Computing Machinery, Inc, pp. 

1310–1318. doi: 10.1145/3240508.3240702. 

Young, S.I., Lindell, D.B., Girod, B., Taubman, D. and Wetzstein, G. (2020) ‘Non-line-of-

sight Surface Reconstruction using the Directional Light-cone Transform’, in 

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, pp. 1404–1413. doi: 10.1109/CVPR42600.2020.00148. 

Zaganidis, A., Sun, L., Duckett, T. and Cielniak, G. (2018) ‘Integrating Deep Semantic 

Segmentation into 3-D Point Cloud Registration’, IEEE Robotics and Automation 

Letters, 3(4), pp. 2942–2949. doi: 10.1109/LRA.2018.2848308. 

Zai, D., Li, J., Guo, Y., Cheng, M., Lin, Y., Luo, H. and Wang, C. (2018) ‘3-D Road 

Boundary Extraction from Mobile Laser Scanning Data via Supervoxels and Graph 



 

349 | P a g e  

 

Cuts’, IEEE Transactions on Intelligent Transportation Systems, 19(3), pp. 802–813. 

doi: 10.1109/TITS.2017.2701403. 

Zegaoui Younes (2018) LIRMM-BL 3D Urban Object Scan Dataset, LIRMM.fr. Available at: 

http://www.lirmm.fr/~zegaoui/#download (Accessed: 20 February 2022). 

Zeybek, M. (2021a) ‘Extraction of Road Lane Markings from Mobile Lidar Data’, in 

Transportation Research Record. SAGE Publications Ltd, pp. 30–47. doi: 

10.1177/0361198120981948. 

Zeybek, M. (2021b) ‘Inlier Point Preservation in Outlier Points Removed from the ALS Point 

Cloud’, Journal of the Indian Society of Remote Sensing, 49(10), pp. 2347–2363. doi: 

10.1007/s12524-021-01397-4. 

Zeybek, M. and Şanlıoğlu, İ. (2019) ‘Point Cloud Filtering on UAV based Point Cloud’, 

Measurement: Journal of the International Measurement Confederation, 133, pp. 99–

111. doi: 10.1016/j.measurement.2018.10.013 

Zhang Bibo, Xiang Bin and Zhang Lin (2017) ‘Parameter-Free Outlier Removal of 3D Point 

Clouds with Large-Scale Noises’, in 17th International Symposium on Communications 

and Information Technologies (ISCIT), Cairns, QLD, Australia, 2017, pp. 1-6, doi: 

10.1109/ISCIT.2017.8261207. 

Zhang, Y. et al. (2019) ‘Data-driven point cloud objects completion’, Sensors (Switzerland), 

19(7), 1514. doi: 10.3390/s19071514. 

Zhang, Y., Liang, X. and Xu, G. (2013) ‘A Robust 2-Refinement Algorithm in Octree and 

Rhombic Dodecahedral Tree Based All-Hexahedral Mesh Generation’, Computer 

Methods in Applied Mechanics and Engineering, 256, pp. 88–100. doi: 

10.1016/j.cma.2012.12.020 

 

http://www.lirmm.fr/~zegaoui/#download

