

 The Park, Cheltenham GL50 2RH

Innovative Methods for 3D Point Cloud
Processing of Large Data Sets and Its Practical

Implementations

Rishika Singh

PhD

31 August 2022

‘A thesis submitted to the University of Gloucestershire in accordance with the requirements

for the degree of Doctor of Philosophy in the School of Computing and Engineering.’

2 | P a g e

Abstract

Various point cloud processing applications demand fast and accurate results for extracting

feature information from the data. Given that point clouds are implemented in various fields,

this thesis focuses on the point clouds used by surveyors and civil engineers for geographic

information systems. Examples of point clouds used within the industry include urban sites,

city blocks, terrains for road development, construction sites, quarries, mines, etc.

The technological advancements (evolution of laser scanners) that allow the data to be captured

in millions created their own recurring problems. The algorithms developed in this thesis are

targeted at large point clouds containing various features and shapes. However, while capturing

the point clouds, several outliers and noise are captured with the regular data due to the

reflection of surfaces like glass and mirrors or weather conditions. Therefore, the detection and

deletion of these outliers and noise are required to address and simplify the feature detection

process. Hence, point cloud filtration is the first step of point cloud processing. After filtration,

the data is relatively smaller and free from outliers and noise. The next step is to detect and

extract the features from the point clouds and perform segmentation and other points analysis

techniques. This thesis proposes, designs, develops and implements the methods and

algorithms for robust and efficient point cloud processing. The processing includes

filtrations followed by detecting and extracting primitive shapes such as planes, edges and

cylinders.

Contributions: The first contribution of this thesis is the method of removing noise and

outliers using the designed tools. The second contribution is a novel PCA-based algorithm for

detecting edges and edge streams in point clouds. Finally, a voxel-based algorithm to detect

trunks and pole-like objects. These proposed methods and algorithms directly benefit the

processing of the point clouds with properties like filtration, extraction, segmentation,

clusterisation and accuracy. The results of the proposed methods and algorithms are

implemented on commercial software used by UK and worldwide users.

3 | P a g e

Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of the

University of Gloucestershire and is original except where indicated by specific reference in

the text. No part of the thesis has been submitted as part of any other academic award. The

thesis has not been presented to any other education institution in the United Kingdom or

overseas.

All views and opinions presented in this PhD thesis are solely mine and not, in any way, those

of the University of Gloucestershire.

Signed …………Rishika Singh……………….. Date……31/8/2022…………….

doi: 10.46289/9K7C33MM

4 | P a g e

Acknowledgements

First, I want to thank my supervisor Prof. Shujun Zhang, whose spirited enthusiasm for the

field and his dedication powered me with motivation. Without his proper guidance, inspiration,

and lots of scolding taught me a great deal and made this work possible.

I want to thank and express my gratitude to my former colleague and pops, Nigel Lorriman

who helped me a lot with my thesis proofreading and motivated me to keep going and never

give up.

I want to thank my papa Dr Shivesh Singh who encouraged me to start my research journey,

and my mummy Dr Rashmi Singh, who supported, inspired, and helped me by proofreading

my thesis with her expertise. Having professors in the family and growing up seeing them with

research papers, books and thesis have motivated me to achieve my goals.

My sister Devika Singh tried to inspire and encourage me as much as possible through all those

WhatsApp calls. It pushed me to action and, at the same time, filled me with positive energy.

Last but not least, I want to thank my husband, Harshit Srivastava, wholeheartedly for his

patience, motivation, support, love, and yet to improve cooking skills. I cannot thank you

enough for taking care of me while I was busy between my research and full-time job,

appreciating this work and listening to all my problems (although I know I put you to sleep

several times). This work would not have been possible without you.

5 | P a g e

Table of Contents

Abstract ... 2

Declaration.. 3

Acknowledgements .. 4

Table of Contents ... 5

List of Figures ... 12

List of Tables .. 20

List of Abbreviations ... 21

Glossary .. 24

Chapter 1 Introduction.. 26

1.1 Background .. 26

1.2 Research Motivation .. 31

1.3 Scope of Research .. 33

1.4 Aims & Research Objectives ... 34

1.5 Thesis Contributions to New Knowledge Generation.. 35

1.6 Thesis Structure .. 37

Chapter 2 Literature Review .. 39

2.1 Introduction .. 39

2.1.1 Brief Introduction of Point Cloud Capturing Technology....................................... 40

2.2 Processing Point Clouds ... 40

6 | P a g e

2.2.1 Outlier and Noise Presence.. 42

2.2.2 Semantic Segmentation ... 43

2.2.3 Feature Detection ... 44

2.2.4 Analysis and Semantic Interpretation .. 47

2.2.5 Knowledge-based Data-driven Point Cloud System ... 50

2.3 Outlier/Noise Removal ... 52

2.4 Edge Detection ... 58

2.5 Tree Trunk, Lamp Post and Pole Detection in Point Clouds ... 61

2.6 Research Gap Analysis... 62

2.6.1 Purpose of the new algorithm .. 65

2.7 Chapter Summary ... 65

Chapter 3 Research Methodology .. 66

3.1 Introduction .. 66

3.2 Processing... 67

3.3 Research Methodology ... 70

3.4 Methodology .. 71

3.4.1 Point Cloud Processing Categorization ... 73

3.4.2 Proposed Algorithms ... 75

3.5 Methods for Data Collection .. 75

3.6 Methods for Data Analysis ... 76

3.7 Methods for Algorithm Validation ... 76

7 | P a g e

3.8 Research Ethics .. 76

3.9 Chapter Summary ... 77

Chapter 4 A Method for Noise Removal and Outliers Filtering 78

4.1 Introduction .. 78

4.2 Analysis and Evaluation of Existing Methods ... 80

4.2.1 Existing Methods ... 80

4.2.2 Summary .. 90

4.2.3 Analysis of the Problems ... 92

4.3 A Method to Remove Noise and Filter Outliers .. 93

4.3.1 Overview ... 93

4.3.2 Tools .. 94

4.3.3 Stage 1: Outliers and Noise Types in Point Cloud .. 97

4.3.4 Stage 2: Applications to Denoise and Remove Outliers.. 101

4.4 Evaluation and Applications of Method on Commercial Software 107

4.4.1 Datasets .. 107

4.4.2 Parameter and Settings .. 108

4.4.3. Comparative Analysis... 110

4.4.4. Results Analysis ... 111

4.5 Chapter Summary ... 115

Chapter 5 A New PCA-Based Method for Edge and Edge Stream Detection 116

5.1 Introduction .. 116

8 | P a g e

5.2 Evaluation and Analysis of Existing Methods ... 117

5.2.1 Edge Detection .. 117

5.2.2 Region Growing Method For Edge Detection ... 122

5.2.3 Edge Detection in Other Fields .. 124

5.2.4 Principal Component Analysis and Extensions ... 125

5.2.5 Summary .. 131

5.3 A New PCA-based Method for Edge Detection .. 132

5.3.1 Overview ... 132

5.3.2 Important Terms .. 133

5.3.3 The Proposed Algorithm ... 136

5.3.4 Outlier Detection ... 146

5.3.5 Edge Sects.. 149

5.3.6 Edge Stream: Extension of Edge sects .. 150

5.4 Proposed Algorithm Implementation on Commercial Software 156

5.4.1 Key Features .. 157

5.4.2 System operations .. 158

5.4.3 SDE .. 161

5.4.4 RealWorld Scenarios ... 161

5.5 Evaluation... 165

5.5.1 Datasets for Evaluation: Point Clouds ... 166

5.5.2 Computation Parameters.. 168

9 | P a g e

5.5.3 Comparative Analysis.. 172

5.5.4 Accuracy Evaluation .. 181

5.6 Chapter Summary ... 183

Chapter 6 A New Voxel-Based Algorithm for Cylindrical Feature Detection in Urban

Point Clouds ... 185

6.1 Introduction .. 185

6.2 Analysis and Evaluation for Existing Methods: Pole-like Objects and Trees 186

6.2.1 Segmentation and Clustering Methods (Model fitting) ... 187

6.2.2 Semantic-Based ... 192

6.2.3 Slicing-Based Methods .. 196

6.2.4 Shape-Based Methods ... 197

6.2.5 Individual Tree Detection Methods in Forest Point Clouds 202

6.2.6 Urban or Street Trees Detection Methods in Urban Point Clouds 204

6.2.7 Summary .. 208

6.3 Proposed Algorithm for Trunk/Pole-like Object Detection ... 209

6.3.1 Overview ... 209

6.3.2 Terrain Extraction: Classification into Ground and Non-ground Points 211

6.3.3 Voxelization... 214

6.3.4 Seed Layer Identification ... 218

6.3.5 Clustering... 221

6.3.6 Extraction of Cylinder Objects .. 227

10 | P a g e

6.3.7 Tree and Pole Classification .. 232

6.3.8 Pseudo Algorithm .. 238

6.4 Proposed Algorithm Implementation on Commercial Software 239

6.4.1 Key Features .. 241

6.4.2 System Operations ... 242

6.4.3 SDE .. 245

6.4.4 RealWorld Scenarios ... 246

6.5 Evaluation and Validation of Proposed Algorithm .. 252

6.5.1 Test Datasets .. 252

6.5.2 Computation Parameters.. 254

6.5.3 Comparative Analysis: Detection and Classification Results 258

6.5.4 Processing Time .. 261

6.6 Discussion .. 262

6.7 Chapter Summary ... 263

Chapter 7 Software Implementation, Application and Case Study 264

7.1 Overview .. 264

7.2 Software Implementation ... 264

7.2.1 Software Development Models ... 265

7.2.2 Design Decision ... 269

7.2.3 Execution/Process .. 272

7.3 Application in MTSL Software .. 277

11 | P a g e

7.3.1 Brief History of MTSL .. 278

7.3.2 3D Vision: LSS point Cloud Software .. 280

7.4 Market Analysis ... 282

7.4.1 Workflow ... 282

7.4.2 Software in the Market .. 283

7.5 Case study .. 287

7.5.1 Dataset ... 287

7.5.2 Point Cloud Processing in 3D Vision .. 288

7.6 Chapter Summary ... 303

Chapter 8 Conclusion and Future Work ... 304

8.1 Achievements ... 305

8.2 Contribution to New Knowledge Generation... 307

8.3 Limitations and Future Work ... 308

Bibliography ... 310

12 | P a g e

List of Figures

Figure 1.1 Point Cloud of Celtic Manor Resort, Newport Wales .. 27

Figure 1.2 LiDar map of the moon surface during the Clementine mission launched by NASA

on January 25, 1994 (Source: Hamilton, 1995) ... 29

Figure 3.1 Point Cloud processing is categorised in this thesis into Filtration, Edge Detection,

Feature Extraction and Modelling ... 73

Figure 4.1 Example of outliers (in red circles) in point cloud data ... 79

Figure 4.2 Example of noise, such as moving people captured in point cloud data 80

Figure 4.3 Examples of (a) outliers and (b) noise are shown in red boxes and circles 94

Figure 4.4 Representation of points inside the search sphere .. 95

Figure 4.5 A 3D box (green) with six faces and a point cloud inside it 96

Figure 4.6 Highlighted box in Octree structure ... 97

Figure 4.7 Outlier/Noise classification according to their characteristics 97

Figure 4.8 Examples of (a) low-density and isolated points and (b) non-isolated high-density

points .. 99

Figure 4.9 Points are categorised based on their position in the point cloud 100

Figure 4.10 Overview of outliers/noise types and methods to remove them......................... 101

Figure 4.11 (a) A sphere representation in a point cloud (b) Example of lamp post captured by

sphere to delete and (c) Example of a tree captured by sphere to delete 103

Figure 4.12 Noise removal by using a 3D box .. 104

Figure 4.13 Octree structure with the eight octants at each layer .. 105

13 | P a g e

Figure 4.14 Octree boxes visually presented in a point cloud ... 106

Figure 4.15 Datasets (a) Dorchester and (b) University of Gloucestershire 107

Figure 4.16 In the point cloud, a box can be obtained using (a) its six phases or (b) selecting

baseline points .. 109

Figure 4.17 List of point groups and the number of points reported by Octree Box 110

Figure 4.18 Isolated and non-isolated outliers and noise captured by NR-S to remove 111

Figure 4.19 Examples of non-isolated noise (ghosts) successfully captured by NR-S to remove

.. 112

Figure 4.20 Noise removal by selection box on the busy street point cloud data.................. 113

Figure 4.21 Noise example on the footpath as people at the bus stop are captured 114

Figure 4.22 Isolated outliers example shown in an orange box ... 114

Figure 4.23 Captured and deleted outliers by OF-OB method .. 115

Figure 5.1 Procedure of PCA-Based edge detection algorithm ... 132

Figure 5.2 Edges defined by (a) (Boster, 2016) and (b) (Pierce, 2018) 133

Figure 5.3 Du (Du, 2020) defined edges as curves along the surface direction 134

Figure 5.4 Defined two types of edges (a) Edge sect and b) Edge Stream (the pink line) 135

Figure 5.5 (a) Search sphere on a given point cloud (b) Magnified image with its inside points

highlighted that are selected. .. 135

Figure 5.6 A flowchart diagram of the proposed algorithm. ... 136

Figure 5.7 Sphere in use (a) for sampling (b) to find the edges on stairs (c) to find edges between

wall and ground.. 138

14 | P a g e

Figure 5.8 PCA in 3D with highlighted arrows in red (PC1), blue (PC2), and green (PC3).

Source: (Cheng, 2022) ... 140

Figure 5.9 Best fit plane on the data presented as red points ... 142

Figure 5.10 Least Squares Fitting Perpendicular offset ... 143

Figure 5.11 Two planes’ normals 𝑛1 and 𝑛2 .. 144

Figure 5.12 (a) The origin axis X, Y, and Z of the points cloud and three principal components

and (b) the Best-fit plane with the white arrow showing the gradient of the plane. 147

Figure 5.13 (a) Blue dotted circle represents a live 3D search sphere, the solid red line is the

best-fit plane Pl1, and the solid green line is the best-fit plane Pl2. The black dots represent

points inside the sphere PNi red, and the green ellipse or circles represent the points belonging

to plane red or plane green. (b) Perpendicular regression method on each point dpi and dpj and

the outlier (green coloured) points are removed (c) Combining the diagram shown in a) and b).

.. 148

Figure 5.14 (a) The two planes, red and green, are the best fit planes derived from the proposed

algorithm, and (b) The intersection forms a blue line, and the green dots are edge sect points

.. 149

Figure 5.15 Resultants of PCA .. 150

Figure 5.16 Example of a road kerb with red points being the centre edge points of edge sects

.. 151

Figure 5.17 Edge points with the direction .. 153

Figure 5.18 Highlighted centre points detected by the proposed algorithm (a) Shows detected

planes with start, centre and end points (b) Stream of points detected 155

Figure 5.19 Edge sects extracted manually along kerb edges ... 157

Figure 5.20 This report is generated while the Edge/Edge stream option is in operation and

updates in real-time .. 158

15 | P a g e

Figure 5.21 (a) Select Find edge and Edge stream options from the dropdown menu of selection

mode and set the required Searchphere size (b) Example of finding edge between wall and

ground. The two colours represent defined best-fit planes, and the white line represents the

edge with a green dot in the centre (edge point) .. 159

Figure 5.22 User-controlled options for the proposed algorithm in 3DVision 160

Figure 5.23 Visual Studio 2022 used for implementation of the proposed algorithm 161

Figure 5.24 The point cloud data (a) shows the edge is difficult to identify because the second

plane data is missing (b) shows a whole circle of data is missing ... 162

Figure 5.25 Example of the edge stream affected due to the presence of trees and shrubs ... 163

Figure 5.26 Examples of obstacles such as (a) the lamppost and (b) the wall pillar 163

Figure 5.27 A tested predefined settings for obstacles and missing data according to the edge

features in the point cloud .. 165

Figure 5.28 University of Gloucestershire Park Campus .. 166

Figure 5.29 Datasets used for evaluation of proposed algorithm (a) Road data set, (b) MTSL

Car park data set, (c) Church data set, (d) Quarry data set, (e) University data set 168

Figure 5.30 User-controlled criteria for the proposed algorithm in 3DVision 169

Figure 5.31 Stopping criteria for an obstacle ... 171

Figure 5.32 Edge Stream detection along a curve of the bridge .. 171

Figure 5.33 Nurunnabi, West and Belton (2015a) demonstrated a plane fitted by different

algorithms with 20% cluster outliers. Planes: grey - PCA, red – RANSAC, green – MSAC,

blue – uLSIF, pink - qSp .. 175

Figure 5.34 The fitted plane is displayed in green, and the number of points sampled is

highlighted in white. A plane is fitted (a) on an uneven surface, (b) on the shrub and floor, (c)

on part of a tree trunk better to provide the photos of three objects, then point clouds, then fitted

planes with the point clouds. .. 176

16 | P a g e

Figure 5.35 Two sets of data simulations are represented in blue and orange. 178

Figure 5.36 The upper section of the image describes the 3D point cloud, and the lower section

demonstrates the 3D point cloud data cross-section. The green dots represent the edge points

calculated by regression of the proposed algorithm, and the pink circle demonstrates the centre

of the search sphere .. 182

Figure 6.1 Wang demonstrated different tilling along the road (Wang, Lindenbergh and

Menenti, 2017) ... 200

Figure 6.2 Example of a typical tree and man-made object, i.e. pole 209

Figure 6.3 The workflow of the proposed algorithm ... 211

Figure 6.4 Example of gridding in a point cloud ... 212

Figure 6.5 The Gridding example .. 213

Figure 6.6 Voxel grid representation along the X, Y and Z axis ... 215

Figure 6.7 Voxel Indexing represents its position in 3D by using x,y, and z values, as shown in

Figure 6.6 ... 216

Figure 6.8 Voxel 3D grids represented by different colours ... 216

Figure 6.9 (a) Ground voxels represented by red (b) Different ground levels shown on a cross-

section of a point cloud .. 219

Figure 6.10 Voxels on seed layer represented in green colour .. 220

Figure 6.11 Voxel neighbour search on single k layer... 222

Figure 6.12 Voxel neighbourhood search on k, k+1, k-1 .. 222

Figure 6.13 Voxel neighbourhood search .. 223

Figure 6.14 A section view of a tree in a point cloud .. 224

17 | P a g e

Figure 6.15 (a) The centre of the voxels, (b) Clustered voxels on the seed layer, (c) Zoomed

small area of (b) ... 225

Figure 6.16 Voxels centre are clustered in groups of Fig 6.15 (b) (a) Zoomed left side (b)

Zoomed right side .. 226

Figure 6.17 (a) Hypothetical example of clusters on a single layer (b) Shows the perimeter of

the clusters to calculate the area and compactness .. 227

Figure 6.18 Area calculated to measure compactness ... 229

Figure 6.19 Potential Clusters belonging to tree or pole ... 230

Figure 6.20 (a) Circle fitting on a pole (b) Circle fitting on a trunk 231

Figure 6.21 Potential trees and poles in green after circle fitting algorithm 231

Figure 6.22 Voxel groups of (a) Poles (b) Trunks ... 234

Figure 6.23 Upward region growing from the seed layer 𝐿𝑠 shown for pole and tree 235

Figure 6.24 Distribution of Tree and pole cluster .. 236

Figure 6.25 Result of classification and true trees and pole detection................................... 237

Figure 6.26 Trunks and poles detected in 3D Vision shown in a fuchsia-coloured cylinder (a)

trunk detected (b) pole detected (c) trunk detected .. 241

Figure 6.27 User-controlled options for the proposed algorithm in 3D Vision 243

Figure 6.28 Visual Studio 2022 used for implementation of the proposed algorithm 245

Figure 6.29 A typical real-world user data in 3D Vision ... 246

Figure 6.30 Trunk detection (a) shows the hollow trunk, (b) shows a section through the trunk

in (a), and (c) shows the series of trunks and poles with the horizontal section through it ... 248

Figure 6.31 The trunk is present slightly above the ground in (a) and (b) 249

18 | P a g e

Figure 6.32 (a) Trunk detected with a point density of 5, (b) Pole detected with a point density

of 6 ... 250

Figure 6.33 Examples of trunk detected that is (a) closer to a fence, (b) closer to vegetation and

(c) vertical section of (b) .. 252

Figure 6.34 Datasets (a), (b) and (c) used to test and evaluate the proposed algorithm 254

Figure 6.35 User-controlled parameters to control the proposed algorithm 254

Figure 6.36 Software Parameters to control the detection algorithm by users 256

Figure 6.37 List of objects detected by the proposed algorithm and classified into trunk, pole

and others ... 257

Figure 6.38 (a) Trunk with no ground points (b) Building pillar detected as a trunk because of

similar RGB ... 263

Figure 7.1 Waterfall model (Jones Justin & Waddel Scott, 2019) .. 267

Figure 7.2 Spiral Model (Boehm, 1988) .. 267

Figure 7.3 Agile Scrum in a nutshell (What Is Scrum?, Accessed: 19 June 2022) 268

Figure 7.4 C# syntax example ... 271

Figure 7.5 Pseudo Code example for comparing two numbers ... 271

Figure 7.6 Visual Studio and C# coding .. 272

Figure 7.7 Software Development Cycle ... 273

Figure 7.8 LSS and 3D Vision Logo ... 277

Figure 7.9 A Digital terrain model in LSS ... 278

Figure 7.10 World heritage site “Gorham’s Cave” (Copyright @DroneSurv) visualised and

preserved with the help of LSS 3D Vision .. 280

19 | P a g e

Figure 7.11 Left hand is LSS, and the right hand is 3D Vision (point clouds)...................... 281

Figure 7.12 Workflow from scan to model for processing point clouds 283

Figure 7.13 Point cloud “Dorchester” in 3Dvision .. 288

Figure 7.14 Point cloud processing in this thesis ... 289

Figure 7.15 Using the “Search sphere” to remove noise ... 291

Figure 7.16 (a) Search sphere data inclusion (b) 3D Box data inclusion 292

Figure 7.17 Box used to remove noise close to other objects .. 293

Figure 7.18 Filtering outliers using Oct Boxes .. 294

Figure 7.19 Data with outliers and noise (before NR-S, NR-B and OF-OB) 295

Figure 7.20 After using NR-S, NR-B and OF-OB... 295

Figure 7.21 Edge detection (a) along the fence and footpath (b) along the building footprint

.. 296

Figure 7.22 Edge stream (a) Wall and footpath (b) Settings ... 298

Figure 7.23 Edge stream (a) Top of the kerb (b) Settings ... 299

Figure 7.24 Detected tree trunks highlighted by fuchsia cylinder ... 301

Figure 7.25 Detected pole structure highlighted by fuchsia cylinder 301

Figure 7.26 Digital Terrain Model (DTM) shown in LSS ... 302

Figure 7.27 Overlapped DTM in 3D Vision .. 302

20 | P a g e

List of Tables

Table 5.1 PCA definition in various fields .. 126

Table 5.2 Two planes detected (orange and blue) ... 155

Table 5.3 Point Cloud data sets.. 170

Table 5.4 First set with uneven sampled data (5-10% outliers) ... 173

Table 5.5 Second set with uneven sampled data (50-55% outliers) 174

Table 5.6 Algorithm’s measures in angle .. 177

Table 5.7 Plane detection in Seconds .. 180

Table 5.8 Measures to Calculate the Accuracy of Edge point Detected 183

Table 6.1 Point Cloud data sets with urban objects ... 259

Table 6.2 Precision, recall and overall accuracy of Dataset 1 – Drone data set 259

Table 6.3 Precision, recall and overall accuracy of Dataset 2 – Chateaudo set 260

Table 6.4 Precision, recall and overall accuracy of Dataset 3 – Dorchester set 260

21 | P a g e

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

AEC Architecture, Engineering and Construction

ANN Artificial Neural Network

ALS Aerial/Airborne Laser Scanning

BIM Building Information Modelling

BEV Bird’s Eye View

CAD Computer-Aided Design

CNN Convolution Neural Network

DEM Digital Elevation Model

DL Deep Learning

DTM Digital Terrain Model

DSM Digital Surface Model

EDM Electronic Distance Measurement

FN False Negatives

FP False Positives

FD Feature Detection

GCN Graph Convolution Network

GIS Geoinformation System

22 | P a g e

GM Gaussian Model

GNSS Global Navigation Satellite System

GPS Global Positioning System

HD High Definition

HT Hough Transform

IMU Inertial Measurement Unit

KNN K-Nearest Neighbour

LiDar Light Detection and Ranging

LSS Land Survey System

MLS Mobile Laser Scanning

NN Neural Network

IRLS Iteratively Reweighted Least Squares

PC Principal Component

PCS Point Cloud Segmentation

PCL Point Cloud Library

PCD Point Cloud Data

RAM Random Access Memory

RANSAC Random Sample Consensus

RGB Red, Green, Blue

SAN Spatial Aggregation Network

SDLC Software Development Life Cycle

23 | P a g e

SOR Statistical Outlier Removal

SVM Support Vector Machine

TN True Negative

TP True Positive

TLS Terrestrial Laser Scanning

UAV Unmanned Aerial Vehicle

24 | P a g e

Glossary

Following are the technical terminologies used in this thesis.

• Point cloud – A set of data points in space is called a point cloud (What Are Point

Clouds ?, 2018). Generally, point clouds are a 3D system where each point has its

cartesian coordinates (X, Y, Z) and represent the outer surface of objects.

• Laser Scanners – “Scanning is a popular land surveying method to accurately measure

and collect data from objects, surfaces, buildings and landscapes”. Laser scanners

collect information as point clouds using laser beams (What Is Laser Scanning and How

Can It Be Used ?, 2020). Then, the point cloud data is analysed to extract valid

information to create 3D models.

• Principal component analysis - Principal component analysis (PCA) is a statistical

procedure that uses an orthogonal transformation to convert a set of observations of

possibly correlated variables into a set of values of linearly uncorrelated variables called

principal components

• Point cloud processing – The process of extracting information from large point clouds

to convert it into models is point cloud processing. Typical point cloud processing

operations are classification, noise filtering (to clean or eliminate outliers),

segmentation, edge and boundary identification, feature recognition and modelling.

• Feature detection – In computer vision, feature detection refers to methods for

computing abstraction and valid information in relation to the objects. These objects

are the shapes and features extracted into models. Examples of shapes and features

include building footprints, pipes, kerbs, breaks of slope, building edges, rough

surfaces, trees, dip and volume of the terrain, utility holes, road furniture and road

marking.

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Correlation_and_dependence

25 | P a g e

• Geographical Information System (GIS) - A geographical information system is a

software application for capturing, storing, manipulating, analysing, managing and

presenting all spatial or geographical data types.

• Voxel – In 3D computer graphics, a voxel is a grid in 3D space. These fixed-sized grids

have the same length, width and depth. In this thesis, voxels are used for space

partitioning and clustering.

• Digitising – The process of extracting points or links from the point clouds to models

is called digitising.

• DTM - In 3D computer graphics, a digital terrain model is a mathematical

representation of the terrain or topographical surface of the earth to capture the unique

elevation (in the form of a grid in which a unique elevation value is assigned to each

pixel (Mallet and David, 2016).

• PointNet – It is a deep neural network that consumes the 3D point cloud and provides

a unified approach for tasks such as classification and segmentation (Qi et al., 2017)

26 | P a g e

Chapter 1 Introduction

1.1 Background

In recent years, as computer systems have become more powerful, their role continues to have

a profound impact in almost every field of human endeavour. Accordingly, the specialisms of

surveying and geoinformation systems have similarly evolved in line with those technological

advancements. Modern technologies, such as Global Positioning System (GPS), Geographic

Information Systems (GIS) and high-speed laser scanner systems, have resulted in more

accurate, higher resolution and faster surveying methods.

Surveying (Geomatics) is the branch of science that deals with collecting, analysing, and

interpreting data relating to the earth’s surface. The ancient Egyptians were the earliest

proponents of this practice as early as 1400 BC. They created perfectly aligned pyramids using

simple tools and basic geometry. They used ropes to measure distances by tying knots at

various intervals (Thank the Egyptians; The History of Surveying & Mapping, 2019). In 1576

Joshua Habermel invented a land surveying tool called the Theodolite, comprising a compass

and tripod (Avram et al., 2016). The first example of using laser scanners for measuring

buildings, together with basic tools for data analysis, appeared in 1977 (Thrun, Burgard and

Fox, 1998).

Laser scanners are used as a surveying tool in a variety of fields. The advancement of laser

scanners enabled surveyors to capture high-precision data in various environmental conditions

(Fröhlich and Mettenleiter, 2004). The introduction of airborne and terrestrial laser scanning

technology has enabled the collection of large 3D scanned data of urban scenes and landscapes.

These data, by their very nature, are very large. Therefore, computer software innovations

emerged to handle these large data.

The scanner-produced data is point clouds which provide the real-world context for recreating

and extracting valid information about objects. Point clouds are like human vision as laser

scanners typically have a limited field of view and partial perception of distant objects. The

27 | P a g e

scanned point density depends on the distance between the scanner and the object, the angle of

incidence, and the environment or weather (Gargoum and El-Basyouny, 2019).

Due to the complexity and geometric details captured by the point cloud, it becomes essential

to extract important geometrical and non-geometrical information and identify or classify the

features of these large data sets, which requires efficient and accurate point cloud processing.

Therefore, point cloud processing is vital and uses various computation algorithms/methods

for extracting features.

With the increasing equipment complexity and powerful applications, the advancement of

calculations and mathematical models has been developed. Mathematical advances are

correlated to technology development. This thesis is a result of several years of research

investigating solutions to the challenges that emerged while processing point clouds, primarily

in the surveying industry.

Figure 1.1 Point Cloud of Celtic Manor Resort, Newport Wales

28 | P a g e

Point Clouds:

Point clouds are the real-world representation, as shown in Fig 1.1. A point cloud is a huge

collection of individual points plotted in 3D space. These points are captured by 3D scanners;

for example, a road is scanned, where each virtual point of the road point cloud represents a

real-world point (Point Clouds for Beginners: Your Questions Answered, 2022). The scanner

combines vertical and horizontal angles by the laser beam to calculate each point's 3D X, Y,

and Z coordinates. These points generally contain the colour (RGB) and intensity values.

Colour is usually captured by a separate camera-mounted inline with the scanner and added to

each point post-capture. Intensity is recorded as the return strength of the laser beam. The lower

intensity values indicate low reflectivity, while a high number indicates high reflectivity

(Gregorius B, 2019).

These details are converted into a digital 3D model that provides an accurate, detailed picture

of the scanned object (Point Clouds for Beginners Your questions answered, 2022). A dense

point cloud can capture every minute detail compared to a low-density point cloud. An example

of the details shown in Fig 1.1, such as the wall’s texture and small clock features, can be seen

if the point cloud data is zoomed in.

The point clouds are 3D formats that support the rendering and navigation in 3D to virtually

view the data on the computer screen from several angles and perspectives. The point cloud

data set can be anything from manufactured parts of cars for quality inspection to large

geographical areas or forests for inventories and detailed analysis. In geographic information

systems, point clouds are captured to analyse terrain, non-terrain and elevation (buildings) data.

History of Point Clouds:

Since the 1960s, point clouds and laser scanners have been used in various industries. In 1971,

the first publicly known LiDar surface mapping was achieved during the Apollo 15 lunar

mission, where the Moon’s surface was mapped to create height maps (Kaula et al., 1973).

By the 1980s, military and space agencies used them to scan the terrain. It was also used by

aircraft to accurately plot their position and map in great detail (Rooms Filip, 2019). By the

1990s, with the evolution of technology and computers, point clouds were introduced to various

29 | P a g e

industries such as architecture, engineering and archaeology. Everything in the real world can

be scanned and transformed into point clouds, from landscapes to buildings to tiny

archaeological artefacts (Senior, 2021). As a result, point clouds gained popularity quickly.

Figure 1.2 LiDar map of the moon surface during the Clementine mission launched by NASA on January 25,

1994 (Source: Hamilton, 1995)

The point cloud applications and usages are as follows 1) Architects and construction

professionals use AEC (Architecture, Engineering and Construction) software applications to

map and extract real-world data 2) Archaeologists use point clouds to analyse the terrain

surfaces or capture artefacts in detail 3) Medical professionals use point clouds for

reconstructive treatments, and 4) Entertainment companies use point clouds for games and

visualisation (Senior, 2021).

Point Clouds Generation:

There are two ways to capture point clouds 1) Laser Scanners and 2) Photogrammetry. As the

name suggests, laser scanners collect data using rapid laser pulses to gather up to millions of

accurate measurements per second, and the photogrammetry method uses overlapping

photographs to construct it into 3D Space (Higgins, 2021).

30 | P a g e

In photogrammetry, the objects are scanned once or multiple times, depending on the viewports

of the scanned object. On the other hand, laser scanners require multiple scans because the laser

beam only captures the data points of the 3D surface in a direct scanner’s line of sight. As a

result, laser scanners generally have higher accuracy than photogrammetry scanners (Higgins,

2021). These scans of different viewports are then merged or stitched to form a point cloud.

The merging is also known as ‘Registration’. The laser scanners that capture the point clouds

are terrestrial, airborne, mobile, or handheld.

• Airborne laser scanners are usually used to capture the earth’s surface,

• Mobile scanners are non-invasive and quickly capture the data ideal for asset

management, utilities, planning, disaster management, tunnel, airport design,

• The terrestrial scanner emits constant waves of varying lengths and is reflected back to

the scanner. They are ideal for architectural construction, surveying, engineering,

planning and forensics (O’Day, 2013)

The point cloud data is stored in various formats. Some popular formats are ASCII, E57, PTS,

FLS, LAS, LAZ, and TXT. In this thesis, the point clouds captured by laser scanners are used

for the case study and testing of proposed algorithms.

Point Cloud in Various Industries:

It is a non-intrusive, accurate and the fastest way to capture lots of data for feature detection

and analysis in 3D. Point cloud data is useful to a variety of industries. For example, museums

and stadiums do not need to shut down to be measured, or a policeman captures a vehicle

collision site to analyse the cause of the crash. Several industries use point clouds, such as

• Land Surveying

• Construction

• Architecture

• Environmental monitoring

• City planning and Civil engineering

• Manufacturing

• Digital designs

31 | P a g e

• Archaeology

• Visualisation

Point cloud has become the primary way to collect data among construction and architecture

industries, saving their time and on-site costs. Manufacturing industries adopt point clouds to

design and model the parts for visualising and quality assessment. (Point Clouds for Beginners

Your questions answered, 2022). In the construction industry, laser scanners are used to capture

minute details of buildings, plan extensions, and renovate or document the progress of building

projects (Nicole, 2021). 3D construction models and city development sites are helpful for

planning and quality assurance at each stage of construction. The BIM (Building Information

Model) has already become the standard for plotting and planning buildings (Thomson, 2019).

1.2 Research Motivation

Point clouds acquired from the real world have several challenges. The most significant

challenge is the identification of objects, shapes or features of the real world in point clouds.

The challenge does not depend on the acquisition process but on the point cloud’s natural

property and lack of information connectivity (Schnabel, Klein and Gumhold, 2010). The

complex geometrical shapes such as planes, cones, cylinders, and spheres are comparatively

easier to detect as compared to other non-geometrical shapes such as vegetation, vehicles,

ghosts (people walking by), and other man-made objects. However, identifying these objects

and structures in point clouds is very complicated, especially when the objects on top hide the

underlying surface information. In addition, real-world scans are infused with massive noise

and outliers. The huge challenge is to differentiate between these and true points. The presence

of inevitable noise and outliers is due to

• reflective man-made surfaces such as mirrors, glasses on windows

• dust

• environmental conditions such as rain, lightning and wind

• moving objects such as people on the road, birds, passing vehicles

32 | P a g e

The algorithms processing point clouds should provide the functions to tackle these noise and

outliers. The scanners also generate range-dependent noise during the data collection as the

scanner sensors are based on the time of flight, optical triangulation, and multiple frequency

phase shifts. Noise level varies as it is mainly affected by the light source on the scanning

surface (Unnikrishnan, 2008). The divergence of the laser beam, either by reflection or if the

light source causes point location uncertainty, can generate possible outliers or additional

random errors across the point cloud. In addition, mixed pixel discrepancy is generated if more

than one scanned surface is placed according to the line of sight. These mixed pixels are caused

due to non-point spot size of the beam. Therefore, removing outliers or filtration of the point

cloud is essential for fast and accurate geometrical object detection in point cloud processing

(Tuley, Vandapel and Hebert, 2005).

The traditional methods used by the existing geographical information system typically have

issues such as (1) systems are manual, time-consuming and have low accuracy while

processing point clouds, (2) lack accuracy in identifying and extracting the geometrical features

from point clouds, (3) lack a robust method for solving the problems of noise and outliers, (4)

lack graphical presentation functions, (5) have few functions for generating high-quality

meshes, grids etc. from a point cloud (6) have limited functions for efficiently and effectively

processing huge point clouds and (7) have issues associated with RGB and intensity processing

(Remondino, 2004; Devore et al., 2013).

Point clouds are generally very large, containing millions or billions of points, depending on

the real-world scanned area. The density of point clouds can be selected in the scanner before

scanning. The density varies with the distance. The area near the scanner will be denser than

the area far from the scanner. Identifying and categorising the geometrical and non-geometrical

shapes in high-density points is easier and more efficient than in low-density points, which is

challenging due to missing points and gaps. The research continues in the field of surveying

and engineering to produce efficient and robust methods.

Therefore, it is essential and reasonable to investigate, design, and develop a robust algorithm/s

that can handle the removal of noise and outliers, identify the objects in dense data sets, and

categorise them accordingly.

33 | P a g e

1.3 Scope of Research

Many researchers have developed various methods for extracting information and important

features. Since scanning technologies have evolved in recent years, researchers have commonly

used scanner data (point clouds) for the accurate and detailed extraction of 3D spatial

information. Due to the nature of point clouds and their various applications in different

industries, this thesis has to have a more focused scope. As mentioned above, the focus is on

point cloud processing in order to extract features and information. As the market for point

clouds expanded, so did the solution for processing the information in point clouds. However,

the problem remains the same with the variety of software and free tools options: not efficiently

extracting features and information from large data. This thesis presents and proposes

algorithms/methods in later chapters to address and solve the problems.

The thesis primarily focuses on point cloud processing from the surveyor’s and civil engineer’s

view, concentrating more on the features that a surveyor and civil engineer would want to

derive. The surveying and civil engineer users focus on feature extraction from point clouds

into a survey (DTM), which can be modelled. This extraction is achieved through software by

implementing various methods where the software controls the quality and appearance of the

model. As surveying and civil industries are involved in planning and accessing the area, they

expect the solution to be versatile and accurate (even by 1 mm). Examples of popular features

are roads, kerbs, building footprints, trees, and poles rather than inside buildings or vehicles.

For the collection of point clouds, two methods have prevailed. These methods are laser

scanning and photogrammetry. Although both technologies are used for data acquisition, laser

scanning is most popular for collecting urban and non-urban data sets.

Terrestrial and aerial laser scanning has become the popular land surveying method (What Is

Laser Scanning and How Can It Be Used?, 2020). Photogrammetry is unsuitable for the

surveying world as photogrammetry is relatively inaccurate, more expensive, has poor textures,

is slower than traditional mapping and requires many photos to generate the 3D model (Puzzo,

2021). Therefore photogrammetry is not considered in the scope of this thesis.

34 | P a g e

As a note of clarification, wherever the term surveyor has been used, it exclusively means a

land surveyor. The thesis focuses on the technology aspect of point cloud processing rather

than the managerial aspect. Once the point clouds are collected, the results are large data sets.

“The process of collecting, measuring and using these point clouds to design models of

the target object or surface is called Point Cloud Processing” (What Is Point Cloud

Processing and Why Is It Important?, 2019).

The thesis presents proposed solutions for processing these point clouds (filtration, edge

detection, and feature extraction) that could be adaptable in different scenes of point clouds

(urban, forest, land, building and fields) with high accuracy, flexibility, efficiency and with less

user intervention.

1.4 Aims & Research Objectives

The research motivation generates these research objectives. These objectives are formulated

to guide the research:

• RO1 – Identify, analyse, and evaluate the problems associated with existing methods

and algorithms for 3D point cloud processing, including filtration, classification, edge

detection and segmentation.

• RO2 - Research, design, and develop a new method for filtration to remove bad points

(outliers and noise) and conserve good points.

• RO3 – Identify, analyse and evaluate the problems associated with existing methods

and algorithms for feature extraction (edge detection and tree trunks and pole-like

object detection).

• RO4 – Research, design, develop and test a new PCA-based algorithm for 3D point

cloud edge detection to improve the efficiency, accuracy and enhance user experiences.

https://www.designlaunchers.com/what-is-3d-cad-modeling

35 | P a g e

• RO5 – Research, design, develop and test a new Voxel-based algorithm for 3D point

cloud feature extraction of tree trunks and pole-like objects to improve the efficiency,

accuracy and enhance user experiences.

These research objectives are most useful to the surveyors and civil engineers in the UK using

geographic information systems (GIS) that help them to generate models such as DTM (digital

terrain models), 3D surface models, quarry and earthworks design and BIM (building

information modelling). Also, the users who generate the models use point clouds for quarry

and mining, waste management, planning, collision investigation, dredging, and coastal

defence.

This thesis aims to propose, design, and develop new algorithms to efficiently and

accurately perform point cloud processing to solve the research objectives.

1.5 Thesis Contributions to New Knowledge Generation

In this thesis, the key steps to point cloud processing has been shown and presented by the

proposed methods and algorithms. The point cloud processing steps include the filtration

methods, feature detection and extraction of edges. During the design and development of these

methods, tools and techniques are used to analyse, evaluate and explain the real-world

scenarios within point clouds.

The principal contributions of the thesis are as follows:

• An introduction, design, and development of methods to handle outliers and noise that

are defined using the point’s characteristics in point clouds. This results in designing

fast and easy tools for removing types of noise and outliers from various kinds of point

cloud data. The proposed methods are “NR-S” (Noise Removal using Sphere), “NR-B”

(Noise Removal using Box) and “OF-OB” (Outlier Filtration using Octree Boxes),

which are applied by tools called search sphere, Octbox and 3D boxes.

36 | P a g e

• After removing the noise and outliers, the research and study of the feature extractions

emerged. The first and topmost important feature that is highly demanded in the field

of surveyors and civil engineers is edges. Hence, an efficient and robust “PCA-based

algorithm for real-time Edge Detection” in the large point cloud data is proposed,

designed, developed, and implemented.

• The edge detection works in real-time in the 3D point clouds. However, the process is

manual. To address this, the proposed algorithm for detecting edges is further extended

to a method called “Edge Stream”. The edge stream is an automated version of finding

the edge with user-controlled parameters.

• Based on the study, the other important features are tree trunks and pole-like objects.

To address that, a feature recognition algorithm for detecting cylindrical objects, trees

and pole structures from urban point cloud data. This study led to the design,

development, and implementation of the proposed Voxel-based algorithm to detect

cylindrical objects in 3D point clouds.

• While implementing the proposed algorithm for cylindrical feature detection,

classification is required between ground and non-ground points as the important

features to be detected are above the ground. Therefore, the sampling and extraction of

ground points mean that the algorithm is only implemented on non-ground points,

which saves a lot of computation time. Hence, a gridding system called “Terrain

Extraction” has been introduced to address the issue and extract the ground point from

3D point clouds.

• The Voxel-based algorithm for detecting cylindrical features is implemented on large

3D point clouds, which could take hours. Therefore, to address this issue and automate

the process, efficient segmentation and clustering techniques are introduced to save

computation time.

The proposed methods/algorithms discussed and presented in this thesis are firstly

implemented in LSS - 3DVision commercial software. The implementation solves the

practical problems encountered by the software’s users (surveyors, civil engineers,

37 | P a g e

archaeologists etc.). The proposed algorithms and methods of this research are already used

by 1000-1200 customers across the UK and Worldwide.

1.6 Thesis Structure

The introduction of point clouds and the challenges related to point cloud processing on real-

world data are presented in Chapter 1. The algorithms must be developed to provide the

solution and address the problems associated with existing methods. This thesis focuses on

point cloud filtration, point cloud segmentation, edge detection, and feature extraction methods.

Chapter 2 presents and discusses existing novel methods to process point clouds. The

algorithms proposed are based on:

• point cloud registration,

• existing point cloud processing methods,

• existing point clouds filtration to remove outliers,

• existing point cloud edge detection and

• feature detection in point clouds.

The literature illustrates the essential point cloud processing techniques/methods and the

acceptance and use of point clouds to extract information to construct a 3D model. Therefore,

it is vital to gain an understanding and knowledge of the existing method, especially from a

land surveyor’s perspective.

Chapter 3 covers the history of point clouds, the importance of point cloud processing and the

current issues of processing point clouds, followed by the research method used in this thesis.

Chapter 3 also presents the methodology of proposed algorithms, data collection and validation

methods. As shown in Chapter 3, this thesis categorises point cloud processing into three

stages. The research investigations and questions lead to discuss in the following chapters:

• Filtration - Chapter 4 presents the research of the existing methods and performance in

the surveying industry. Following this, it presents the filtration method of the outliers

and noise.

38 | P a g e

• Edge detection - Chapter 5 presents the research and investigates the current edge

detection methods. Following this, it introduces a new PCA-based method for detecting

edges and edge streams.

• Feature Extraction - Chapter 6 presents the research and investigates the current

methods of cylindrical object recognition. Following this, it introduces a new voxel-

based method for tree trunks and pole-like object detection and classification.

This is followed by a proposed algorithm implementation on the commercial software and a

case study to demonstrate the point cloud processing and modelling in Chapter 7. Finally, the

thesis is rounded off in Chapter 8 with the conclusion of the work, how it relates to research

questions posed at the beginning and the key contributions of the thesis.

39 | P a g e

Chapter 2 Literature Review

2.1 Introduction

Different techniques are available in remote sensing technology and image processing

applications to obtain 3D models. Some of the popularly used methods include the technologies

of LiDar, MLS, and others. This chapter reviews existing literature on the nuances of 3D feature

extraction and processing on point cloud datasets obtained from aerial, terrestrial or mobile

methods.

The scope of this chapter’s literature domain is architecture, engineering, geomatics,

construction and computer science. The chapter aims to investigate and distil the literature

found into the research objectives that fill the gaps in knowledge by working through this

thesis.

Firstly, the chapter explains the technology used to capture point clouds. It is important to

understand the technology to understand its issues clearly. The point cloud processing

challenges are largely dependent on its capturing technologies.

Next, the chapter reviews the 3D point cloud processing methods that face challenges in

achieving accuracy on a large point cloud. Followed by the methods used by other researchers

and algorithms found in the literature are reviewed to understand existing gaps and limitations

in this area.

The key steps involving point cloud processing are noise removal and feature detection.

Therefore, the literature review assesses the approaches of the existing methods and algorithms.

This is followed by the gap analysis of existing methods and the reason why there is a need for

a new algorithm to capture and extract features from point clouds.

40 | P a g e

2.1.1 Brief Introduction of Point Cloud Capturing Technology

Point clouds are datasets that represent objects in a coordinate system. A single point on an

underlying sample surface or object can be represented by x, y and z geometric coordinates.

Point clouds collate numerous spatial measurements into one dataset to represent them as a

whole. In other words, point clouds provide 3D points to bring to life the object or underlying

sample surface represented by x, y and z coordinates (Ma et al., 2018). Generation of point

cloud datasets is possible through 3D-laser and LiDar (Light Detection and Ranging) scanners

that are both terrestrial and aerial. Each has a different range and accuracy. Boehler and Marbs

(2004, p. 292) defined scanning as

“3D scanning (often called laser scanning) is a surface-based three-dimensional

measurement technique. One scan result in a large quantity of points in a systematic

pattern – also called point cloud. Final results after processing of the raw data can

be line drawings, CAD models, 3D surface models (with artificial or photorealistic

textures) or video animations.”

Every point denotes one unique laser scan measurement (Achlioptas et al., 2018). Then, all the

captured points are stitched together to create a complete scene through a process known as

registration. Understanding real-world data has been enabled through technology using

computational resources such as GPUs, 3D data processing using depth sensors and machine

learning (ML) or deep learning (DL) methods (Guo et al., 2020).

For this thesis’s evaluation and case study purposes, the data sets from both terrestrial and

LiDar laser scanners are used.

2.2 Processing Point Clouds

Common problems with point cloud data are occlusions, in-depth discontinuities, shadows,

poor texture, poor image quality and man-made objects. Aerial imagery space-born-based high-

resolution satellite imagery, terrestrial or aerial scanners, and handheld scanners are used to

extract objects (buildings, trees, other features) in an area of investigation. In complex data

such as city environments with dense or high-rise buildings, the major challenges are

41 | P a g e

occlusions (DeVore et al., 2013), reflections (Gao et al. 2022), passing vehicles and people

(Balado et al., 2019; Scheiner et al., 2021), point density discontinuities (Rousell, 2014; Petras

et al., 2023), shadows (Guislain et al., 2016), unfinished structures, and standard manufactured

objects on the road (Shi et al., 2021; Zhang et al., 2019).

The LiDar technology could support overcoming problems in 3D point cloud data and

automatic registration for the extraction of buildings and roads in an urban environment.

However, Hui et al. (2019) described the low filtering accuracy in airborne LiDar point cloud

data from environments with complex terrain as challenging. Besides, aerial images do not

have geodetic coordinates and have different types of geometric distortions. Due to this

phenomenon, the point cloud data from LiDar is difficult to co-register in aerial images.

Che, Jung and Olsen (2019) explained the general challenges in data processing for recognising

objects and classifying point clouds. Some challenges include the effectiveness of data

acquisition parameters, type of objects captured, problems in recognising more objects,

achieving effectiveness and accuracy and issues with computation time in a large volume of

data. Also, the data gathered by different sensors and platforms have different resolutions that

can provide various types of information with redundancy. Hence, advanced algorithms have

a more accurate capability and robust data processing modelling and analysis.

MATLAB uses various methods for point cloud processing. MATLAB is an abbreviation for

“matrix laboratory” which is a programming and numeric computing platform used by

engineers and scientists to analyse data, develop algorithms and create models (MATLAB -

MathWorks, Accessed: 12 February 2023). MATLAB provides the functionality to read, write,

store, visualize, basic processing of point clouds and create geometric models. Gigli and

Casagli (2011) used MATLAB to propose a new method based on the definition of least square

fitting planes on the cluster of large point clouds extracted by moving a sampling cube.

Similarly, Carrea et al., (2021) used MATLAB environment to manage large point cloud

datasets for landslide and rockfall investigation analysis. MATLAB is used mainly for

visualization and graphical presentation (histograms etc.) by Wang et al. (2011), Pepe and

Prezioso (2015) and Catalucci et al. (2018). Erdélyi, Kopacik and Kyrinovic (2017) used

MATLAB for the graphical user interface to process the data efficiently.

42 | P a g e

2.2.1 Outlier and Noise Presence

Point cloud data gathered with 3D scanners, the technique that uses image capturing for

reconstruction, is often corrupted with substantial outliers and noise. Ruchay, Dorofeev and

Kalschikov (2019) stated that common noise reduction and outlier filtering approaches tend to

reduce noise; however, the problem of removing the outliers contained in a raw point cloud is

not handled efficiently. Therefore, Ruchay, Dorofeev and Kalschikov (2019) proposed

multiple de-ionising methods to evaluate reconstruction accuracy, though noise and outlier

filtering accuracy will depend on the point cloud’s density and quality. Outliers must be

removed as they are persistent in every point cloud data set with varying point densities.

Further, filtering outliers in point cloud data can support applications that use topographical

maps in decision-making, managing natural hazards, analysis, and interpretation.

According to Rodríguez et al. (2018), point clouds represented a large amount of data, and

many coordinates are redundant. Hence, it is a requirement to filter the clouds before

processing them. Importantly, the work is intensive when a large area is measured and may

need multiple scanning to obtain an accurate 3D point cloud. Che, Jung and Olsen (2019) stated

that a line-of-sight measurement is required, and laser scanners have a limited range in

obtaining accuracy. Liu et al. (2018) explained that multiple scans at different angles are

needed to map an area to capture objects. Outlier-filtered data facilitates analysing and

interpreting the gaps effectively. In large-area scans, the problem of accuracy must be

addressed. In addition, typical large data has the problems of sparse, irregular and unordered

data structure in point clouds (Wu, Qi and Fuxin, 2019). Besides, applying convolution to point

clouds is difficult (Wang and Solomon, 2019).

Further, scanning an area containing objects such as trees, shrubs, buildings, etc., can be

difficult in outdoor environments. Consequently, several algorithms have been developed to

achieve accuracy in overcoming problems with stationary objects. This is also known as

targetless scanning, which requires a significant amount of overlapped points to register

accurately (Xiang, Qi and Li, 2019).

43 | P a g e

2.2.2 Semantic Segmentation

Numerous algorithms to address problems of accurately registering point cloud data are

proposed and demonstrated. Point cloud semantic segmentation techniques are used for

learning methods, such as supervised machine learning and state-of-the-art deep learning to

generate semantic information for each point (Xie, Tian and Zhu, 2020). Several algorithms

have been proposed for semantic segmentation to produce a network to compute individual

point features, such as PointNet, PointNet++, PointSIFT, etc. The convolution network, called

Spatial Aggregation Network (SAN) by Cai et al. (2019), can operate on the local spatial

structure information to accomplish efficiency and accuracy. Wu, Qi and Fuxin (2019)

presented a novel convolution operation using a dynamic filter named PointConv. PointConv

deals with the convolution kernels as non-linear functions. PointConv is implemented to create

deep connected networks and experimented with ModelNet40, ShapeNet and ScanNet

repositories to achieve semantic segmentation on 3D point clouds. Xin et al. (2019) proposed

the Fermat Paths theory to capture light from the given visible scenario and unknown objects

that are not in the camera’s line of sight (LOS). The Fermat-Flow determines the object shape

in non-LOS and generates sparse scene reconstruction. Another algorithm (Young et al., 2020)

provided accuracy in recovering shapes that range from diffuse to specular and are hidden

around corners or behind a wall. The algorithm is developed to achieve micron-scale

reconstruction and demonstrate mm-scale shape recovery.

Wang and Solomon (2019) addressed the point cloud registration problem by finding rigid

transformations by aligning one point cloud with another. Understanding global and domain

features to facilitate rigid registration is provided using learned models. Roynard, Deschaud

and Goulette (2018) described a Convolution Neural Network (CNN or ConvNet) based

method to classify point clouds in urban or indoor scenes. The network is distinguished to

determine point classification through the location of points in a multi-scale neighbourhood.

Further, the method is reduced to the semantic 3D benchmark compared with other point cloud

classification methods to show better performance; however, the method did not use the

regularisation step.

Javed, Meraz and Chakraborty (2020) reviewed the contributions related to classifying,

segmenting, and traversing 3D-point cloud data. Two methods handle the important point of

classification. The first method is based on projection, where the point cloud data is processed

44 | P a g e

to get an image (2D or 3D). Further represented and followed by applying deep learning (DL)

techniques. The second method is to directly process the 3D point cloud data to obtain desired

outcomes. Region-based methods or single shots must solve classification problems. In

addition, the segmentation is categorised as semantic segmentation, instance segmentation and

part segmentation. Algorithms are widely used to resolve the problems identified under

classification, segmentation and tracking. For instance, a convolution or graph-based network

algorithm in DL is used to address classification. To overcome the object detection problem,

classification and bounding box regression algorithms are applied (Shi, Wang and Li, 2019).

The segmentation problem is grouped into semantic (point-based), instance (proposal-based)

and part segmentation (fully convolution network (SFCN) algorithm). For example, a

framework named SqueezeSegV3 for adaptive convolution of efficient point cloud

segmentation is available (Xu et al., 2020). The challenges with 3D shapes are that they can

look different from different perspectives. However, Wang et al. (2018) presented a 3D shape

segmentation using DL methods. These are problems in object generalisation to all its parts

using the algorithms discussed.

2.2.3 Feature Detection

3D representation of data as point clouds is widely explored and researched in computer

graphics and computer vision. Numerous developments show object representation using point

clouds to solve classical scene challenges in 3D classification and segmentation (Zaganidis et

al., 2018). Currently, 3D point clouds have improved in performance to achieve high levels of

accuracy. This section explores and analyses the state-of-the-art techniques for feature

detection in point clouds.

Uy et al. (2019) introduced a dataset generated in a real-world scenario by scanning an indoor

environment. The dataset known as ScanObjectNN is developed to resolve the problems in

object classification in scenarios where the framing of objects is done in real-world settings.

The method presented is intended to solve the object classification challenges in the cluttered

background and achieve state-of-the-art performance in identifying objects through a proposed

point cloud classification neural network (NN). The proposed NN provides a new dataset for

the object using the scanned real-world environment. This dataset is further used in

45 | P a g e

classification by training and testing the dataset. A benchmark is obtained for existing object

classification techniques on real-world and synthetic point cloud data. Lastly, the proposed

network could provide a classification of objects in a real-world environment using the

combination of the classification method and segmentation method. The ModelNet40 dataset

is used as synthetic data in the study, and the ScanObjectNN dataset is generated from real-

world 3D scanning. However, from quantitative evaluations, real-world data object

classification challenges must be resolved. The results of the benchmark provided up to 78.5%

accuracy. The study revisits the state of art object classification methods. Although the results

indicate that synthetic data provided the intended output regarding classification accuracy, on

the other hand, it failed on real-world data, thus providing further research scope.

Li, Chen and Lee (2018) presented an architecture known as a permutation invariant network

named Self Organizing Network (SO-Net). The SO-Net will create the model for the spatial

distribution of the point cloud to create one self-organising map (SOM). The SOM performs

hierarchical feature extraction using a point-to-node kNN (k-nearest neighbour) search and

adjustable receptive field overlap. A proposed point cloud auto-encoder is used for pre-training

and improves the network performance in processing. The architecture is examined by

comparing it with other state-of-the-art approaches in point cloud processing to show

improvements in recognition tasks in point cloud feature classification. The results

demonstrated that the proposed architecture provided significantly faster training speed in point

cloud reconstructions. However, the method must be tested with convolutional neural network

state-of-art computer vision algorithms for image recognition, object classification, semantic

segmentation, etc.

Many useful applications use point clouds, such as robot manipulation, geographical

information systems (GIS), etc. Su et al. (2018) presented a new neural network architecture

known as Sparse Lattice Network (SPLATNet) to improve point cloud processing. SPLATNet

has many advantages, such as filtering neighbourhoods as in CNN architectures, handling

sparsity in input point clouds by focusing on locations where data is available, computing the

features based on the hierarchy and spatial input point clouds having sparse and efficient lattice

filters. Moreover, the network architecture can map points in 2D into 3D space and vice-versa.

SPLATNet architecture is experimented on two different benchmark datasets to compare with

the state-of-the-art approaches in segmenting point cloud data. Nevertheless, the results

46 | P a g e

highlighted do not provide the potential for processing point cloud features such as texture, and

classification accuracy is unavailable.

Another framework by You et al. (2018) called PointView Network (PVNet) focused on data

of point clouds and data having multi-views for creating 3D shape representation. The

framework uses ModelNet40 datasets to integrate point cloud and multi-view data to achieve

better performance in point cloud features. The framework is a convolution network different

from other 3D deep models and employs global features at a high level of multi-view data to

support the feature extraction of point cloud data. Further, the framework provides a method

known as an embedding fusion to embed global features of multi-view models and generate

attention-aware features of point cloud models. This approach is considered more efficient in

representing discriminative details of 3D data. In addition, the model is different from other

models as it efficiently explores the complementary relation between data in the point cloud

and multi-view to represent 3D shape representation. The results indicated a promising

potential for point cloud feature extraction (different geometric properties). The evaluation and

effectiveness of this framework are based on missing data with an example of shapes such as

a chair, lamp and bottle, etc., without testing on real-world data.

Lu et al. (2019) introduced a framework that uses end-to-end learning to achieve registration

accuracy for geometric methods in point clouds. The method is named DeepVCP, which

implements different deep neural network structures to determine an end-to-end trainable

network. The framework’s effectiveness is evaluated using KITTI and the Apollo-South Bay

datasets (the vehicle dataset contains LiDar point clouds, images, and IMU data). The point

cloud registration accuracy is achieved by learning-based keypoint detection, novel

corresponding point generation and loss function. In this method, local similarity and global

geometric constraints enable better accuracy. The results showed better performance compared

with geometry-based techniques. The behaviour and insights of the framework are illustrated

by visualisation and ablation analysis. The overall results indicate low registration errors,

making this framework attractive for applications involving point cloud registration tasks. The

framework has the potential to be used in LiDar point cloud registration which is the foundation

of a variety of applications. The drawback of the method is that the classification is based on

the point weighing layer and probability distribution rather than based on geometric feature

distribution.

47 | P a g e

2.2.4 Analysis and Semantic Interpretation

Many existing algorithms cannot automatically extract semantic information from the given

scene. Also, shape analysis cannot be performed automatically on point cloud models.

Williams and Ilies (2018) presented a method to analyse noisy point cloud data for real objects

and objects that are incomplete. The method uses a heat diffusion kernel to build succinct shape

signatures. Further, the method is designed to support a variety of clustering techniques that

were earlier applied to mesh models. A Laplace-Beltrami convergent estimate operator for

point clouds is implemented along with clustering techniques that work directly on point clouds

to generate geometric features for various applications. One main advantage of this method is

that it can operate directly on a point cloud model without surface reconstruction or meshing.

Furthermore, the proposed technique is robust in handling incomplete point cloud data into

semantically purposeful sub-shapes.

Grilli et al. (2019) used the ML and DL methods to analyse features geometrically and classify

cultural heritage environments in the point cloud data. The classification is performed to

understand the applications developed for modelling. Hence, the method mainly explores the

cultural heritage sector because other studies have not explored this area in a geospatial field.

The method's first covariance matrix is used to extract features. Then, the impact of features

calculated in spherical neighbourhoods is analysed by deriving radii values from simple

proportional and dimension rules used in constructing classical architectures. The features are

not required to be extracted at different scales to obtain an accurate classification. Next, the

RANDOM forest classifier is used. Finally, the confusion matrix is used to evaluate the label

generated by the classifier vs the manual. The methods developed used an adaptive size strategy

to retrieve the best results. The disadvantage of the method is that the test set does not explain

the size of the set used for testing. The results are needed to examine the effectiveness of the

developed method using more complex structures.

Wang, He and Ma (2019) proposed a model for semantic segmentation of point clouds to

exploit local and global structures within the point cloud data. The model is based on contextual

point representation in which each point is performed from one novel gated fusion of the point

and its contextual points for enriching it. Qi et al. (2017) proposed a neural network called

PointNet based on enriched representation. The PointNet module depends on a graph attention

block to create and update each point representation in the local-point cloud structure. Finally,

48 | P a g e

the attention strategies to exploit global point cloud structure, spatial and channel-wise, are

used to yield semantic labels for each point. The authors used the public cloud databases,

S3DIS and ScanNet, to demonstrate the effectiveness of this model. This proposed model

exploits the point cloud local and global structures using a PointNet module and attention

structures (Wang, He and Ma, 2019). The superiority of this proposed model is demonstrated

with existing datasets.

Models are available to demonstrate the feature learning abilities with regular data structures.

However, there are still multiple challenges in the case of irregular data structures due to the

limitations of methods that represent data (Wang, He and Ma, 2019). According to Graham,

Engelcke and Maaten (2018), to yield semantic segmentation, existing approaches transform

the point clouds into 3D voxel grids or a collection of images for input into traditional CNNs.

Further, the existing approaches for 3D representation can be categorised as (1) 3D-voxel

based, (2) set-based and (3) multi-view based. In the 3D-voxel-based method, the point clouds

are transformed into regular 3D voxel grids, followed by 3D CNN directly to the image (Jaritz,

Gu and Su, 2019). The primary objective of voxel-based methods is to store and process 3D

data. Examples of voxel-based approaches are Oct-Net, Kd-Net and O-CNN. A set-based

method is used to learn the descriptions directly from unstructured or unordered point cloud

data (Ku et al., 2020). Examples of set-based methods are PointNet, PointNet++ and

PointCNN. As the name suggests, a multi-view method renders multiple images at different

view angles from point clouds. Subsequently, the image is processed by traditional 2D CNN

methods (Yang et al., 2018). However, the multi-view method is not popular because of the

problem of not knowing the number of angles required to capture the 3D space and using image

cause information loss.

Balado et al. (2019) used point cloud data obtained from Mobile Laser Scanning (MLS) to

segment the roadside components such as road surfaces, guardrails, fences, embankments,

ditches, and borders. The PointNet model is used in the study for semantic segmentation of the

road. The method is processed in two stages (1) the point cloud is segmented into sections

along the trajectory of obtained samples by carefully distributing the road elements in each

section (2) PointNet is applied to segment each sample further. The results provided indicate

effective segmentation of a large number of objects. Furthermore, comparing ANN-based

classification techniques and point-by-point extraction for segmenting road surfaces and fences

provides accurate results.

49 | P a g e

Xie, Tian and Zhu (2020) stated that the DL techniques are useful in point clouds, 3D point

cloud semantic segmentation (PCSS) and point cloud segmentation (PCS) and are popular

areas for research in academia and other industry. There are many semantic segmentation

techniques in the segmentation of point cloud data. The techniques are divided into four general

categories. The categories are edge-based, region growing, model fitting and cluster. The edge-

based semantic segmentation involves the principle of locating the points with quick changes

in their intensity and is identical to 2D image segmentation. The algorithm for edge-based

segmentation consists of two important stages. The first stage is to detect the edges from which

extraction of boundaries is completed from different regions. The second stage is to group the

points that generate the last segments by aggregating points in boundaries in the given region

(Landrieu and Simonovsky, 2018).

In a Point Cloud Segmentation (PCS) review, Xie, Tian and Zhu (2020) defined PCS as

grouping raw points into non-overlapping regions. For strong semantic knowledge of the

points, the method divides the segmentation technique into four groups (1) edge-based, (2)

region growing, (3) model fitting and (4) clustering-based. The edge-based approaches define

objects’ shapes as edges move from 2D images to 3D point clouds. Region growing is a

classical method of PCS that combines features in two regions or between two points to

determine similarity to merge pixels (Xie, Tian and Zhu, 2020). The merging is possible if the

points and regions are close spatially and have identical surface properties. For example, the

features of 2D pixels, 3D pixels and 3D voxels are merged in region growth (Guo et al., 2017).

Model fitting is a shape detection and extraction method that matches point clouds to different

primitive geometric shapes. The model fitting is built on two algorithms, mainly Hough

Transform (HT) and Random Sample Consensus (RANSAC) (Poux and Billen, 2019). Lastly,

clustering-based methods are a mixture of various methods that aim to group points/spectral

features/spatial distribution belonging to similar geometric features in unsupervised PCS.

Therefore, clustering-based is used for irregular points belonging to features like vegetation.

Examples of clustering-based approaches are K-means, mean shift and fuzzy clustering.

Literature to explain the point cloud model as a structured graph for semantic segmentation is

explored. Jiang et al. (2019) used semantic 3D scene labelling by investigating the relationship

between each point and its neighbours through edges. A hierarchical graph framework is

generated to include point features in the edge branch to generate and integrate the point and

edge features. Landrieu and Simonovsky (2018) proposed a method SPGraph that deals with

50 | P a g e

large-scale point clouds. The semantic labels are predicted by first partitioning the points into

geometrically homogeneous elements to develop a super-point graph and input to a graph

convolution network (GCN) to predict semantic labels. Wang et al. (2018) explained that

dynamic graph CNN (DGCNN) depends on edge-convolution operations to seize local shapes

dynamically. Many methods are available in the literature, but it is important to note that most

approaches use local relationships in the point cloud and not the global one.

2.2.5 Knowledge-based Data-driven Point Cloud System

Many applications consider point clouds as assets. However, inadequate semantic information

within the point cloud ensembles raises technical limitations. Hence, connecting knowledge

sources is time-consuming and a lengthy manual process, resulting in human errors. This

problem requires a powerful domain-related data analysis method to develop coherent and

structured information. Hence, point cloud processing can be used to create intelligent

environments and knowledge discovery because object recognition and detection or

classification of objects in datasets are important.

Poux and Billen (2019) stated that knowledge discovery in decision-making systems is possible

by automating data processing in the point cloud. The method proposes feature engineering

based on voxel to qualify point clusters and support both classifications, viz. strongly,

supervised or unsupervised. The variations in generalised feature levels that permit frameworks

to interoperate are discussed. The authors recommend a shape-based feature set (SF1) to

leverage raw X, Y, and Z attributes or the point cloud. Further, the relationship and topology

found in voxel entities are derived to obtain the 3D structural connectivity feature set (SF2).

Lastly, the knowledge-based decision tree is provided to allow classification based on

infrastructure. Discussions are related to the synergy of SF1/SF2 on a new framework for

semantic segmentation to constitute a higher representation semantically of point clouds in an

associated cluster. The S3DIS dataset is used to benchmark this approach with novel and best-

performing DL methods. The results discussed explain good performance, ease of integration

and high scores for classes that are dominant by planar and comparable with deep learning

methods.

51 | P a g e

The work by Ponciano, Trémeau and Boochs (2019) aimed to overcome the constraints in

training datasets in ML by presenting a semantic-guided approach. Semantic plays a key role

in analysing the objects in data sets for related information. This approach also modifies the

processing according to object diversity and data characteristics as a learning stage. It uses web

technology such as SPARQL queries to discuss semantic segmentation through an ontological

model. Further, the model permits the selection and execution of algorithms implemented

dynamically. SPARQL links knowledge found in an ontological model and algorithms-enabled

processing.

Furthermore, the presented model can adapt a sequence of algorithms to an individual state in

the process chain to make the solution more flexible and robust. The method accounts for data

variation and objects representation to identify objects like walls, floors and ceilings

successfully. The disadvantage of the method is that preset reasoning for points classification

causes all points at the border of rooms to be not classified. In addition, it constantly has to

update the knowledge-based for effective detection.

Petrova et al. (2019) presented research on discovering new knowledge and making informed

decisions using evidence. The research is made using sustainable building designs. The tasks

include outlining and determining diverse data sources and types, indicating the method for

data analysis, demonstrating knowledge discovery can be implemented in the semantic

integration layer and supporting in design. The outcome of this research is a performance-based

decision support system and semantic data modelling for a different design.

Wengefeld et al. (2019) introduced an approach for the orientation of a person that is dependent

on coloured point clouds. The classification approach is extended to the continuous domain to

treat the real-time orientation estimation problem. The approach is compared with multi-class

and regression problems. The results provided show promising data to compete with accuracies

in the state-of-the-art and DL-based skeleton estimation approaches while the capability of

standard CPU is maintained. Furthermore, this approach is verified for knowledge discovery

of people orientation in human-robot interaction (HRI) tasks.

Wen et al. (2020) proposed DL ‘Point2SpatialCapsule’ network to aggregate features and

spatial relationships. This capsule aims to learn a better representation of discriminate shapes

by combining all features with spatial relations of local regions in point clouds. This network

52 | P a g e

is an experimental model, and the results obtained show that the capsule has the potential to

outperform other methods in 3D point cloud data. However, the model must be tested with

real-time data to understand its effectiveness.

2.3 Outlier/Noise Removal

Raw point clouds are often very noisy and have outliers. The challenge is to remove the points

that makeup noise and outliers. Han et al. (2017) described filtering as an area of intensive

research and the vital processing stage for a wide range of applications. Various authors

categorise the methods into groups that have the same criteria or adoption. Examples of such

categories are presented below.

Papadimitriou et al. (2003, p.315) divided the methods into five categories as follow:

• Distribution-based methods are found in statistics books which identify the outliers

based on a distribution model such as normals (Hawkins, 1980; Barnett Vic and Lewis

Toby, 1994)

• The depth-based approaches use computational geometry and convex hull on various

layers to identify the outliers based on their position within the layers (Johnson, Kwok

and Ng, 1998)

• The clustering algorithm’s main purpose is to cluster the points; hence the outliers are

just the by-product of clustering (Jain, Murty and Flynn, 2000)

• The distance-based approaches use the distance with parameters to identify objects

further to that distance as outliers but can create problems if the data set is dense or

sparse. It was first proposed by Knorr and Ng (Knorr and Ng, 1997; Knorr, Ng and

Tucakov, 2000)

• The density-based approaches rely on the local outlier factor (LOF) of the object, which

is the local density of its neighbourhood. Therefore, the objects with high LOF are

53 | P a g e

considered outliers. The density-based method was first proposed by Breunig et al.

(2000).

Schall, Belyaev and Seidel (2008) and Han et al. (2017) divided the existing methods into four

categories. The first category is Statistical-based methods that utilise statistical concepts to

filter outliers according to the point cloud used. Schall, Belyaev and Seidel (2005) used kernel-

based clustering to filter the outliers by defining the global probability distribution function for

noisy points. Pauly, Mitra and Guibas (2004) presented a framework for analysing the shape

and variability, i.e., uncertainty, by introducing statistical representation that quantifies each

point’s likelihood of plane fitting through it.

Jenke et al. (2006) introduced Bayesian statistics to produce a smooth point cloud from a noisy

point set. The probability distribution specifies the measurement and reconstruction model

(density prior, smoothness prior and prior for sharp features) of data defined by the statistical

concept of finite-dimensional representation to remove noise from the point cloud. Esmeide

and Nallig Eduardo (2006) proposed a new variant of principal component analysis, which uses

weighing factors inversely proportional to the euclidean distance to the mean. Next, a weighted

covariance matrix is calculated. Finally, corresponding to the largest eigenvalue, a plane is

fitted. Both normal and smallest eigenvalues are used to preserve the sharpness of each point’s

fitted plane to make it robust to outliers. Kalogerakis et al. (2009) delivered a statistical

framework using Iteratively Reweighted Least Squares (IRLS) to estimate the curvature tensor

and weight the assignment to each point neighbourhood. Both methods are used to correct the

normals and help in outlier elimination and denoising the point clouds. Avron et al. (2010)

introduced the 𝐿1-sparsity paradigm to denoise point clouds. The point orientation is restored

and then calculated using local planarity criteria point position. This is extended by Sun,

Schaefer and Wang (2015) to provide the 𝐿0 minimisation method, which applies the normal

estimation and repositioning of points in order to denoise the point clouds.

The second category is Neighbourhood-based techniques that filter the point using similarity

measures between the point and its neighbours. Tomasi and Manduchi (1998) first introduced

the bilateral filter that combines the grey levels and colours based on geometrical closeness.

Paris and Durand (2006) extended Tomasi’s work and introduced a smoothing filter.

Furthermore, the Paris and Durand method is extended to 3D mesh denoising by Fleishman,

Drori and Cohen-Or (2003), Jones, Durand and Desbrun (2003) and Lee and Wang (2005).

54 | P a g e

Fleishman, Drori and Cohen-Or (2003) proposed an anisotropic mesh denoising algorithm, and

Jones, Durand and Desbrun (2003) proposed a robust statistics approach based on local

estimates of a surface. However, the methods by Jones et al. (2003), Fleishman et al. (2003)

and Lee and Wang (2005) involved mesh generation, which is very noisy. Whereas Shi and

Hernandez (Shi, Liang and Liu, 2011; Hernandez, Choi and Medioni, 2015) applied a bilateral

filter on point clouds to overcome the problem.

The third category is Projection-based approaches to filter points by adjusting each point using

projection strategies. The least-squares fitting recently became one of the most interesting

research topics. Levin (1998) first proposed the moving least squares method, and Alexa et al.

(2001, 2003) were the first to implement it in computer graphics. The noise points are handled

by iteratively projecting them on a fitted plane. The problem with moving-least-squares is that

for finding the fitted plane, the process accommodates the non-linear optimisation, which

increases computation time. Later Alexa and Adamson (2004) proposed a similar projection

method which calculates the weighted position of a point, and a normal is calculated using

weighted input normal. Amenta and Kil (2004) introduced a new variant called the energy

function in moving least squares to produce a point on the surface. Fleishman, Cohen-Or and

Silva (2005) proposed a robust moving-least-squares method based on a forward search

paradigm to filter noise and outliers. Dey and Sun (2005) proposed a new variant of moving

least squares, an adaptive moving least squares operator that uses local feature size. The

purpose is to analyse the non-uniform density to provide the reconstruction of the surface

within the point set. Adamson, Alexa and Berlin (2006) adopted the decomposition of objects

into cell complexes in order to preserve the shape features. A method fitting a quadratic patch

on each neighbourhood point was presented by Fua and Sander (1992). The method deals with

outliers to preserve the curvature by measuring if two points are on the same local surface.

Wang et al. (2013) extended the method by Fua and used clustering and adaptive scaling to

compute the planes to all points. By iterating the process, non-feature points are identified, and

noisy points are removed.

The Fourth category is PDEs-based filtering techniques (Partial Differential Equations) which

can be described as an extension of triangular meshes used for filtering in point clouds. Clarenz,

Rumpf and Telea (2004) presented a framework for point cloud filtering using local finite

matrices created from a single matrix.

55 | P a g e

To preserve non-linear features by using Anisotropic mean curvature is presented by

Hildebrandt and Polthier (2004), which is further extended by Lange, Polthier and Berlin

(2005). Taubin (1995) and Lange, Polthier and Berlin (2005) used directional and principal

curvatures and a Weingarten map for outlier filtering. First, a Weingarten map is used to obtain

the anisotropic geometric mean curvature flow. Then, the method uses the directional curvature

to generate a Weingarten map to compute eigenvalues and eigenvectors corresponding to

principal directions. Finally, anisotropic Laplacian is used to change the curvature information.

This method is further extended to many methods. One of the examples of images in 3D point

clouds by Lozes, Elmoataz and Lezoray (2014) represented point clouds using weighted

arbitrary graphs considering the neighbouring point information. The Laplacian operator and

PDEs operator are included in arbitrary graphs to filter the points in the point clouds (Ta,

Elmoataz and Lézoray, 2011).

According to Ge and Feng (2021), Hodge and Austin (2004), Mansur et al. (2005), Kriegel,

Kröger Peer and Zimek (2010), methods are divided according to a single criterion and

combined methods as follows:

1. Single Criteria Methods identify outliers by using single criteria.

• Distribution-based methods – points that deviate from a specific distribution are

classified as outliers. The statistical outlier removal by Rusu et al. (2008) assumed

normal distribution between a point and its neighbour, and the point that does not

fit in a normal distribution is an outlier. Rousseeuw and Hubert (2011) fit a plane

using the least trimmed squares estimator, and the points that have a large deviation

from the plane are identified as outliers.

• Proximity-based methods – points that are away from most of the other points are

classified as outliers. Nurunnabi, West and Belton (2015) proposed two outlier

detection methods that are successful in identifying and removing outliers 1)

maximum consistency with minimum distance based on Z-score (MCMD_Z) and

2) maximum consistency with minimum distance based on Mahalanobis distance

(MCMD_MD).

56 | P a g e

• Density-based methods – points are assigned with probability values based on the

density of their local neighbourhood. Those points that have a high probability value

are classified as outliers. Local outlier factor (LOF) (Breunig et al., 2000), local

correlation integral (LOCI) (Papadimitriou et al., 2003), and local outlier

probability (LoOp) (Kriegel Hans Peter et al., 2009) are three examples of density-

based methods.

• Cluster-based methods – points in small clusters that are away from other clusters

are classified as outliers. Cluster-based local outlier factor (FindCBLOF) (He, Xu

and Deng, 2003) is an example of a cluster-based method.

• Depth-based methods – points outside the specified depth based on depth maps of

geometric objects are classified as outliers. Wolff et al. (2016) proposed a depth

map-based method for outlier detection.

• Learning-based methods – the model is trained, and then the same model is used to

determine the points as normal or outliers. For example, Rakotosaona et al. (2020)

proposed a method called PointCleanNet, and Stucker et al. (2018) used the random

forest to classify the outliers.

• Graph-based methods – the relationship between two points is defined as an edge

and each point as a node. Then, the graph is constructed, and the score is used to

determine the outliers. For example, Hautamäki, Kärkkäinen and Fränti (2004)

proposed a method that uses the k-nearest neighbour graph to identify the outliers.

2. Combined Methods use several criterion methods and classify outliers into different

types. The aim is to remove different types of outliers based on their characteristics in

point clouds. Sotoodeh (2007) proposed a hierarchical outlier removal method, and

Ning et al. (2018) proposed methods that use local density and deviation from the local

fitted plane to remove outliers.

The voxel grid and Quadtree are other methods for filtering noise and outlier points (Han et

al., 2017). In voxel-based methods, for filtering outliers, a point is picked to calculate the

57 | P a g e

distance from all points inside each voxel. Whereas for quadtree, a data structure is used for

neighbourhood search. Another method of filtering involves the RGB present in point clouds.

Ruchay, Dorofeev and Kalschikov (2019) used point cloud data gathered using the RGB-D

sensor to analyse the accuracy of 3D object reconstruction. Point cloud algorithms are applied

to the dataset to remove outliers and noise. The algorithms of statistical outlier removal filter

(SOR), radius outlier removal (ROR) filter, Voxel grid (VG) filter and 3D Bilateral filter

(3DBF) are compared for their de-ionising effectiveness and algorithms are evaluated by

applying them for their effectiveness in 3D object reconstruction. The ROR filter algorithm is

explained to provide better results compared to point cloud de-ionising algorithms.

Studies on outlier/ noise removal algorithms have been explored recently in industrial

applications and reverse engineering Ning et al. (2018). Lan, Yew and Lee’s (2019) work

involved a probabilistic approach for outlier feature matching and loop-closure in front-end

data. The association of outliers and loop closure can fail the back-end optimisation of point

cloud 3D reconstruction. The approach involves a Bayesian network and the Expectation-

Maximisation method. The outlier feature matches are suppressed on long-tail Cauchy

distribution, and the outlier loop closure constraints are suppressed using a Cauchy-Uniform

mixture model. The method is experimental and performs well on both indoor and outdoor

datasets.

Zeybek and Şanlıoğlu (2019) presented the implementation of four algorithms using

commercial and open-source software to filter outliers and noise from point cloud data. The

method’s input is UAV point cloud data on which these algorithms are applied in sequence:

(1) multi-scale curvature classification (MCC), (2) surface-based filtering algorithm

(FUSION), (3) progressive TIN-based and (4) physical simulation processing using cloth

simulation filtering (CSF) algorithms.

Finally, the results of the algorithms are validated with a reference dataset for accuracy. The

work claims that these algorithms demonstrated similar results while extracting ground objects

on distinct terrain features such as densely vegetated, flat/bare earth surfaces, and rough and

complex landscapes. In addition, the CSF filtering method provided 93% classification on a

flat surface.

58 | P a g e

Rakotosaona et al. (2019) used the DL (deep learning) architecture approach to estimate local

shape properties in 3D point cloud data. Firstly, the outliers are discarded in the approach, and

correction vectors that projected noisy points are estimated in the original clean surfaces. The

approach is efficient in terms of variation in noise and outliers, and the DL can also handle

large and dense point cloud data. The evaluation is performed using synthetic and real-time

data, and the method can develop accurate surface reconstruction from a range of scans. The

extremely noisy data and outliers are removed compared with other state-of-the-art methods.

This method is simple and can be easily integrated with existing processing applications. The

effectiveness of this approach must be tested on large datasets to evaluate its impact, as test

samples were relatively small.

2.4 Edge Detection

In 3D point-based extraction, algorithms extract the edges of roads, buildings and boundaries

(Shirowzhan et al., 2019). In MLS, point clouds are effectively applied with Gaussian function

derivatives to extract edges (Yadav and Singh, 2018). Also, MLS data can extract road edges

in urban settings and is possible by an active parametrically contoured snake model (Nguyen

et al., 2019). Furthermore, Zai et al. (2018) proposed an algorithm that generates super voxels

to automatically extract road boundaries and pavement surfaces using MLS point clouds. Other

methods to detect objects in urban settings include differential and regression filters on data

collected from MLS 3D point clouds (Zeybek, 2021a). In addition, studies have identified that

focus on unique objects on the road, such as trees, roadside traffic lights, buildings, etc. The

availability of mobile laser scanning (MLS) techniques provides the potential for advanced

mapping potential for effective data collection in geospatial applications. MLS systems provide

the flexibility and ability to gather dense point cloud data with time efficiency measurements

and cost-effectiveness. MLS platforms can be mounted on vehicles, including LiDar and

advanced digital cameras integrated with centralised computing facilities for synchronising

data and management (Rastiveis et al., 2020). In geometric designs, extracting different objects

from point cloud data is important. For instance, the extraction of road surfaces, buildings,

driving lanes, etc., is needed (Ma et al., 2018).

59 | P a g e

Unlike LiDar, aerial scanners cannot view beneath a vegetation canopy, resulting in sparse

points on the earth’s surface. Yilmaz, Yilmaz and Güngör (2018) proposed a methodology

involving image classification by a supervised method to filter 3D point clouds. The method

involves overlapping a classified image with a point cloud to determine ground points for use

in digital elevation model (DEM) generation. The method is evaluated qualitatively to show

that filtering point cloud data has the potential to generate high-resolution DEM. The method

overcomes aerial mapping application’s disadvantages in generating dense 3D point clouds.

Chen et al. (2020) explained that photogrammetric techniques enable 3D meshes of aerial

images. These photogrammetric point clouds do not provide interactions at the user or system

level to distinguish between objects because they contain semantic information. However,

these images are required for simulations and to develop a virtual environment. The essential

requirement is to extract object information from segmenting generated point clouds and

meshes. Therefore, to overcome these limitations, the method proposes a framework that can

extract objects such as tree locations and related features and buildings. The framework will

rank different point descriptors and evaluate supervised ML algorithms to segment

photogrammetric point clouds. The framework must be verified with 3D point cloud data

obtained in real-time and validated using data from the University of Southern California

(USC) and the Muscatatuck Urban Training Center (MUTC).

Building polygons are used as input in urban applications, but extraction of building edges is

difficult, time-consuming and labour-intensive. Widyaningrum, Gorte and Lindenbergh (2019)

proposed an approach to display building edge points using an ordered points-aided Hough

Transform (OHT) to extract building outlines from aerial LiDar point cloud data. First, the

method constructs an accumulator matrix based on a voting scheme in parametric line space.

Second, the dominant building direction is determined using the variance of angles in each

column. Finally, the hierarchical filtering and clustering approaches are applied to get an

accurate line from detected hotspots and ordered points. The ordered point list matrix having

ordered building edge points renders line segment detection, resulting in effective quality

building roof polygons. The method is tested with different benchmark datasets in Vaihingen,

Germany and Makassar, Indonesia. The results provided high accuracy, up to 96.1%. The

method is also demonstrated with other existing datasets; however, the method is dependent on

edge points for allocating outlines and therefore failed to detect curved outlines.

60 | P a g e

Becker et al. (2018) presented a technique for classification to extract point-wise semantic class

labels from aerial 3D point cloud data (PCD). The method incorporates colour information to

increase semantic feature detection accuracy significantly. This classification method is tested

with four real-world photogrammetric datasets from Pix4Dmapper with varying point

densities. The ML techniques and new features could accurately train classifiers to generalise

unseen data while processing point clouds with 10 million points within three minutes. This

approach and model have the potential to generate digital terrain models accurately based on

simple heuristics. However, the functionality given to users to add their dataset to training data

results in an inaccurate classifier.

To research and discuss the creation of virtual environments using segmented data, Chen et al.

2020) introduced a model ensembling framework to segment 3D photogrammetry point cloud

to top-level terrain elements. The elements include humans, ground-level objects and trees, etc.

The data are pre-processed with designed methods to resolve data segmentation challenges that

show photogrammetric data quality problems. A large UAV-based database is created from

UAV-gathered images to validate the framework and methods. Comparing the framework with

existing point cloud segmentation algorithms provided outputs to show that the proposed

framework can outperform other algorithms. This method segments photogrammetric

generated point clouds to create workable virtual environments for simulation purposes.

Besides, there is the challenge of change detection in the given environment. Tran, Ressl and

Pfeifer (2018) suggested an approach to change detection (CD) of objects in a given

environment. The method combines classification and CD as a single step and builds on the

point cloud as an additional layer to obtain high-resolution geo-information from laser scans to

match images. In this case, two-point clouds are made available as different epochs and ML is

used as sample training data to identify if there is a change in the given location of the point as

separate class information for each point. Based on supervised classification and applied to the

entire area already generated as a point cloud. The approach provided good results to show

changes in different classes such as a new tree, lost tree, lost building, new building, building

and changed ground.

61 | P a g e

2.5 Tree Trunk, Lamp Post and Pole Detection in Point

Clouds

Recently algorithms have been developed for urban and forest data sets to identify trees and

pole-like objects, such as marker poles, signs and lamp posts. However, the literature review

suggests that algorithms developed for a particular type of data set have difficulty achieving

reliable results for another type. In existing studies, algorithms include point cloud

segmentation to identify the prominent tree points by grouping all the tree points like the top

of the tree (Carr and Slyder, 2018). Algorithms using the k-NN approach classify ground, stem

and crown. In the given scene, the algorithm computes eigenvectors to define axis direction,

and eigenvalues will provide the variance of points along the axes. The stem structure is

identified as vertical shapes, and 3D cylinders are applied in modelling individual sections of

the stem. Weighting is implemented for more accuracy (Tuominen et al., 2018).

The comparative shortest path algorithm is applied to TLS and MLS data to segment tree

crowns based on ecology principles. The algorithm will detect tree trunks using density-based

spatial clustering of applications with noise (DBASCAN) algorithm (Parkhan, 2019). The

study by Chen et al. (2019) presented a point cloud classification algorithm that uses Mixed

Kernel Function SVM to identify different ground objects. The algorithm effectively extracts

objects such as trees compared to standard SVM methods.

Using geometric features, separating wood and leaf components in point cloud data is analysed.

An algorithm that combines classification and segmentation methods is developed and applied

to data gathered from LiDar. K-means and random sampling consistency (RANSAC)

algorithms are used to classify the wood and leaf components in the tree. The method has the

potential for extracting wood from point cloud datasets obtained from terrestrial LiDar

technology (Su et al., 2019).

The use of the CNN technique is explained by Kumar et al. (2019) to develop three techniques,

single CNN (SCN), multi-faceted CNN (MFC) and MFC with reproduction (MCFR), to

classify MLS data automatically. These methods are applied to the KITTI dataset to accurately

identify outdoor objects such as poles, trees, houses and lampposts (Kumar et al., 2019).

Another method by Kang et al. (2018) proposed a voxel-based method for automatically

62 | P a g e

extracting 3D pole-type objects in urban data sets. A voxel-based shape recognition approach

is used to generate pole-like object candidates. A circular model with an adaptive radius is used

to detect and individualise pole-like objects. The method is applied to LiDar point cloud data.

The proposed method can classify objects like lamp posts, utility poles, and tree trunks. Gupta

et al. (2019) provided a method using voxel and connected component analysis to isolate and

identify tree regions. Though this method provided partial accuracy, the method cannot

separate all individual trees into a large clump.

2.6 Research Gap Analysis

Accurate reconstruction of 3D point clouds by extracting objects and surfaces is gaining

popularity in architecture, surveying and algorithmic development (DL, ML), and AI

techniques for automated detection and classification. However, to construct the models from

the point clouds to capture 3D geometric features, the existing methods do not elaborate on the

required needs and abstraction level suitable to form a model. This thesis discusses the

requirements and desired outcomes of commercial clients in the domain of the surveying

industry in Chapter 3.

The innovation in laser scanning technology provides faster acquisition systems for collecting

and capturing 3D and 2D images. The reason is the improvements in capture rate. However,

the increase in data collection means the point clouds end up very large. Furthermore, because

of this reason, it remains complex data with good visual representations. They are just a set of

points without a way to extract information from the point cloud. Subsequently, allowing for

the development of efficiencies in the geometry extraction of features from various scenes,

including indoors and outdoors. However, the extraction process takes longer due to the

complexity and large number of these data sets. Therefore, the main requirement is for a fast

and automatic method that is also cost-efficient.

The literature indicates that point cloud processing, including 3D classification, segmentation,

and extraction, is automated up to a certain degree; however, a fully effective method is yet to

be created. The extraction includes very simple geometry, and the methods are created

especially for bespoke environments. The flexibility and effectiveness of the methods on

63 | P a g e

various kinds of point clouds are lacking. The thesis presents the algorithm/methods with

flexibility, enabling users to use them in every environment.

The literature suggests that existing methods implement various approaches for point cloud

processing for academic purposes, i.e., the testing and implementations are performed on

synthetic data, or a smaller sample set or dataset that are not available publicly. However, there

is no proof of practical implementation of the currently proposed methods. This thesis not only

proves the proposed method academically but also presents a commercial software application.

The practicality and usage of the proposed algorithms/methods are designed by keeping the

users in mind. The user’s top priority is achieving the results as quickly as possible with little

user intervention (user clicks on software). As the proposed algorithms are part of the software,

the performance and accuracy are performed for quality checks of the methods. The quality

checks are presented via visual reports on the screen to ensure quality control.

Many processes emerge from the literature for feature segmentation, representation of data,

classification and feature detection methods. The challenge in segmentation is to group/cluster

points that belong to the same geometry together. RANSAC is the popular choice for various

methods of outliers and feature detection. Several researchers use deep learning and machine

learning methods for semantic segmentation techniques. Along with the advancements in

computers and technology for data storage and management, data processing is still a problem.

As stated in the literature, they are handled by subsampling and partitioning due to the

exceptional volume of point cloud data. These automatic processes are heavily data-driven

methods which can result in huge computation times. Partitioning and subsampling are the

measures used to reduce the number of points and, therefore, the processing time. Many

approaches are reviewed, such as voxel-based methods that are used for subsampling.

Therefore, a method to handle and sample unordered point clouds would be advantageous.

From literature reviews, it is observed that existing methods that develop building models focus

on semantic registration approaches for irregular shapes. In addition, a literature review of

current problems in point cloud data processing indicates a need to filter and remove outliers

from the dataset before they are further classified and processed. The problem of noisy data

and the presence of outliers can result in limitations in achieving accuracy. Findings on point

cloud features, analysis and semantic representation, point cloud processing and noise/outlier

64 | P a g e

removal provided several methods and techniques using synthetic and real-world data.

However, in most of the existing methods, it is noted that they are experimental and cannot

achieve the level of accuracy desired in real-world large point cloud data. In addition, the

techniques found are not robust in noise removal or sparseness, leading to difficulties in object

detection.

Finally, the existing datasets test the methods and algorithms; most tests are experimental

studies. Therefore, based on all these limitations of the current algorithms, a method must be

developed to analyse point cloud data in the real world and resolve problems found in existing

systems.

An important feature missing is the ability to perform a quality check on the extracted features.

In order to achieve that, the existing methods should be tested on point clouds derived from

various sources. However, the accuracy of the required results has yet to be defined to compare

applications (Tang et al., 2010). Furthermore, the results cannot be tested efficiently if a

standard rule is missing. The accuracy for feature detection of geometrical shapes in point

clouds faces challenges. The edge-based feature detection approaches are mostly oriented

toward line tracing (Weber et al., 2012) without inspecting the points. This creates a problem

in performance as the geometric properties are not analysed to deliver the edges.

This thesis presents the algorithm which overcomes the issues of the current methods by

completely examining the points that make the edges. The proposed method is flexible for users

to take control, as discussed in Chapter 4. Other important features are trees, trunks, lamp posts

and poles, considered cylindrical objects. Common challenges in detecting cylindrical objects

are the ground/terrain slope and low point density. The ground slope affects the detection as

their trunks are tilted. Additionally, as the laser scanner collects points from the ‘first return’

object, it can result in distorted and sparse low-density points. This thesis proposes an algorithm

in Chapter 6 to solve the problem of low-density points and the ground slope of a given point

cloud.

The chapter aims to investigate and distil the literature found into the research objectives that

fill the gaps in knowledge by working through this thesis.

65 | P a g e

2.6.1 Purpose of the new algorithm

The proposed algorithms are designed and developed to solve the existing problems in point

cloud processing methods. The new algorithm is a statistical procedure that uses multiple

techniques to identify features. The primary contribution of the proposed approach is the

connection of algorithms with processing. The process flow will allow the correction of

scanned data by removing the outliers, obtaining edges and edge streams along the planar

surfaces and finally detecting trunks and poles. In addition, the algorithm will include the

classification of objects, analysis, filtering, segmentation, and model fitting on large real-world

point cloud data sets, thus overcoming the limitations of existing algorithms.

2.7 Chapter Summary

The literature review section presents the common problems faced with identifying the

accuracy of objects from scans in point clouds. Due to various factors such as sparseness,

outliers, and distortion in the scanned point cloud, many techniques and methods are researched

and proposed to overcome these limiting factors towards achieving accuracy. However, the

evaluation highlights the common problems faced in point cloud data processing along with

reviews related to current problems and issues identified from research. The algorithms

reviewed are related to the semantic interpretation, outlier detection and removal, edge

detection and identification of trees, lamp posts, and buildings.

Reviews of existing research are performed to understand other researchers’ limitations in

existing work. The outlier filtration methods are required to be easy to use, fast and accurately

delete the noise and outlier points. The common challenges of edge detection algorithms are

accuracy (detection of the edge point) and robustness to detect it in real-time and faster. After

reviewing the feature detection algorithms, the common challenges are classification and

isolating the trees and poles from other points with low density and gradient in the terrain.

Finally, the existing gaps are summarised to justify the research, design, and development of a

new algorithm to overcome existing limitations and achieve accuracy with efficiency.

66 | P a g e

Chapter 3 Research Methodology

3.1 Introduction

There are several traditional ways to capture data in geographical information systems, but

these methods are tedious as they require manual processing of the geometrical points collected

(Maguya et al., 2014). In geometry, a point is an exact location in space. A point has no size

and is only a position defined in X, Y and Z coordinates. The recent development of laser

scanner technologies quickly and accurately registered high-density scanned points to define

the landscape, architectural and geographical information (Biosca & Lerma, 2008). This

scanned data is called point clouds.

A point cloud is the collection of several points in three-dimensional coordinates representing

the external surface of scanned objects. The information captured, other than points and their

coordinates, is colour information, i.e., R (red), G (green) and B (blue) and intensity value (the

optical power of the backscattered echo of the emitted signal (Pfeifer et al., 2007)).

Normally, point clouds are very large. The number of points in a point cloud may vary

depending on the quality and resolution used while scanning (Borenstein, 2012). For example,

two data sets captured for this thesis are:

• 4 GB file size with 257 million points for the Church dataset

• 14 GB file size with 581 million points for Fullwood Villa of the University of

Gloucestershire data set.

In addition, the geometrical points captured are not organised in an orderly manner, as are those

in mechanical reverse engineering. Therefore, it is very difficult to manage and efficiently

process large data, including filtration, classification, edge detection, segmentation and

geometrical feature extraction.

67 | P a g e

Many previous types of research (academic and commercial) have been undertaken to process

large point cloud data sets. Users in the surveying and civil industry currently use some existing

systems/software in the market for processing point clouds. However, various problems

emerge when applying these systems for point cloud data processing (Levente & Editors, 2015;

Li, 2014; Remondino, 2004). The research suggests that existing software and methods are

mainly manual, time-consuming, and dependent on user expertise. Thus, processing point

cloud data for a geographical information system is still challenging. This opens a field for

research into new techniques and methods. The new system should overcome the current flaws

of manual processing and improve the total time required for producing geometrical models

and feature detection from point clouds with minimum manual involvement (Govorcin,

Pribicevic and Đapo, 2014).

This thesis aims to research, design and develop new methods and algorithms to process point

cloud data accurately and efficiently for geographical information systems. The main domains

of the study are surveying, architecture, and civil engineering.

3.2 Processing

Point clouds are captured in detail as scanning technology becomes more sophisticated and

portable. It is very common for point clouds to have more than a million points. Processing

these large data sets is essential for highlighting, capturing and modelling real-world features.

Technology advancement accommodates high-specification computers and data storage

capacities are becoming more efficient and easier, allowing the point cloud data set to be very

large, capturing every detail. Wang et al. (2021 p. 9581) described that

“Due to the massive data, disorder, irregularity, sparsity, high resolution, and lack of

topological relations or texture information, the Point Cloud data processing is

complex and challenging.”

As the data sets can be very large, the processing methods/algorithms must be efficient and

robust.

68 | P a g e

The traditional methods used by the existing geographical information systems typically have

issues such as (Remondino, 2004)

1) systems are manual, time-consuming and have low accuracy while processing point

clouds,

2) lack of accuracy in identifying the geometrical features from point clouds,

3) lack a robust method for solving the problems of noise and outliers,

4) lack of graphical presentation functions,

5) have few functions for generating high-quality meshes from a point cloud,

6) have limited functions for efficiently and effectively processing huge point clouds and

7) have issues associated with RGB and intensity processing.

Noise

Identifying geometrical objects or features from a point cloud is challenging because of the

variable resolution of data, occlusions, missing data and noise (DeVore et al., 2013). The noise

can be defined as the points not at the scanned line (Landa, Prochazka and Štastny, 2013). The

main factor for 3D geometric information processing of point clouds is the surface shape

irrespective of its appearance due to outliers. Therefore, the 3D point cloud processing

algorithms need to be invariant to the density of the given point cloud (Unnikrishnan, 2008).

Laser scanners also generate range-dependent noise during data collection as the scanner

sensors are based on time of flight, optical triangulation, and multiple frequency phase shifts.

Noise level varies as it is mainly affected by the light source on the scanning site (Unnikrishnan,

2008). The divergence of the laser beam is either by reflection or if the light source causes

point location uncertainty, which can generate possible outliers or additional random errors

across the point cloud.

In addition, mixed pixel discrepancy is generated if more than one scanned surface is placed

according to the scanner’s line of sight. These mixed pixels are caused due to the non-point

spot size of the beam. Therefore, removing outliers or filtration of the point cloud is essential

for fast and accurate geometrical object detection in point cloud processing (Tuley, Vandapel

and Hebert, 2005).

69 | P a g e

Edges

This section concentrates on the challenges in edge detection in point clouds. Most existing

methods separate the kerbs and incorrectly detect the edges using a height difference of 5 cm.

However, the data between the kerb and the road could be missing, creating challenges to

identification (Ibrahim and Lichti, 2012).

Edge detection is much easier to implement on images but cannot be applied to 3D point clouds.

Edge detection needs automation and optimisation and should be easy to use so that processing

them would not require expertise and experience (Dolapsaki and Georgopoulos, 2021). Several

methods have been developed for edge detection using 3D geometric properties such as

densities and elevation. However, challenges occur when data is missing (Soilán et al., 2019).

Robust methods are identified and developed for point cloud processing: including feature

detection and analysing gaps between data and outliers (Nurunnabi, West and Belton, 2015).

PCA has been employed for various applications, from neuroscience to computer graphics, in

all forms of analysis because of the method used for extracting relevant information from

confusing data sets (Tipping & Bishop, 1999).

PCA is a statistical procedure that uses an orthogonal transformation to convert a group of

observations of possibly correlated variables into values of linearly uncorrelated variables

called principal components. There will be three components in the analysis for this thesis as

the points are three-dimensional. The transformation using the eigenvectors of the covariance

matrix is defined so that the first principle has the largest variance across the data set, then the

second and the third. The first and the second variance produced is enough to identify a planar

surface.

PCA is expected to be used for point classification, finding planes across the given data set,

region growing methods where the data is missing and many more applications. However, PCA

is sensitive to outliers and, where present, gives non-robust inaccurate results. In order to make

the data outlier resistant, the principal components produced are used with robust methods

(Nurunnabi, West and Belton, 2015).

70 | P a g e

Features

Different methods have been proposed for feature detection and are used by the current

systems. Feature recognition algorithms are used to identify and extract features from point

clouds. These features can be anything from breaks of slope to building footprints, from

vehicles to tracks, and from edges to corners. This section concentrates on the challenges

current methods face in recognising tree trunks and poles in urban point cloud data. Due to the

fact that such point clouds can be extremely large, the applied methods should be automatic

and time-efficient (Lehtomäki et al., 2012). Another challenge is the variation in point density.

The methods that implement the method by calculating points belonging to the same objects

fail as a pole’s point density can be different on the z-axis than on the other axis. Also, these

methods need high computation for higher accuracy (Hůlková, Pavelka and Matoušková,

2018).

In conclusion, to solve the above-discussed problems, new methods and algorithms will be

proposed, designed, and developed for point cloud processing, including the classification of

objects, analysing, filtering, segmenting, edge extraction, and modelling. The proposed new

methods in further chapters (Chapter 4, Chapter 5 and Chapter 6) are anticipated to overcome

the problems associated with existing geographic information systems and terrain modelling in

the land surveyor and civil engineer domains. The proposed algorithms are effective and

efficient for point clouds’ semi-automated/automated processing. The expected features and

objects to be detected/identified inside huge point clouds are best-fit lines, best-fit planes,

edges, edge points, boundaries, trunks, and pole structures in urban point clouds.

3.3 Research Methodology

The research paradigm is an important assumption about the way of viewing the research

world, and it is the stance used to contextualise the research aim and present it logically (Grix,

2019). According to Guba (Guba and Lincoln, 1994), paradigms can be characterised through

ontology, epistemology and methodology. This research will follow a pragmatic paradigm.

Pragmatism rejects the idea that the function of thought is to describe, represent, or mirror

71 | P a g e

reality. It advocates the use of mixed research methods “sidesteps the contentious issues of

truth and reality” by Feilzer (2010, p. 3)

and “focuses instead on what works as the truth regarding the research questions under

investigation” (Tashakkori and Teddlie, 2010). Pragmatism places the research problem as the

key concern and applies all the approaches to understand the problem.

This thesis is mainly exploratory but is accompanied by experimental validation work through

self-designed and developed software environments. The software in relation to the proposed

research is pursued at McCarthy Taylor Systems Ltd (commercial partner for this research).

The point cloud software is ‘3D Vision’; the other application for producing digital terrain

models (DTMs) is called ‘LSS’. This element will adopt a quantitative approach as the main

method of investigation to address the research objective with a “design, develop and test”

technique. Both 3D Vision and LSS are used to implement the proposed algorithms and

methods for point cloud processing (from filtration, feature detection, segmentation, edge

detection and modelling).

3.4 Methodology

This section looks at approaches taken to investigate and answer the research questions

mentioned in Chapter 1 through this thesis. The first research objective is to verify and

investigate the existing algorithms and evaluate them. The objective is to understand what point

cloud processing means, how point cloud processing has been applied to existing methods, and

methods proposed to process the point cloud efficiently. A study has been conducted to identify

the process, knowledge and technologies required to create models by processing point clouds.

Researching this leads to answering the first research objectives. Literature on point clouds and

how the information is extracted and processed helps to understand its development throughout

the years.

The second research objective is an outcome of the prior research on the first question. The

main purpose of point cloud processing is the feature detection process to detect the specific

acquisition context of the point cloud data from a laser scanner. Of course, the acquisition

context is affected by various factors that affect the detection of the real object, such as

72 | P a g e

occlusions and incompleteness occurring due to the presence of reflective and transparent

surfaces. Therefore, the first challenge in point cloud processing and extracting meaningful

information is eliminating noise and outliers. Hence, the research question must be addressed

by proposing a method for removing and filtering the noise and outliers.

After filtering and removing the noise and outliers, the point clouds are left with good points

and many features. This leads to the third research objective investigating the existing method

and algorithms used to extract the features from these filtered point clouds. These features are

dependent on the field of the user. For example,

• a road surveyor is interested in features of road marking, kerbs, and road furniture,

• a civil engineer is interested in extracting building footprints and a dip or slope,

• a policeman is interested in finding the reason for the collision; therefore, he wants to

extract features around the site,

• A tree surveyor would want to extract trees so that they can preserve the mature trees.

As point clouds are real-world sites, they can be very generalised. This thesis focuses on urban

surveyors and civil engineers. The investigation identifies important features that a surveyor

and civil engineer want to extract regularly on-site, resulting in the fourth and fifth research

objectives.

The knowledge gained from the third research objective led to the fourth and fifth research

objectives. The fourth research objective is to identify the most user-required features extracted

from any given point cloud. The answer to that question is Edges. The other important feature

to extract is cylindrical objects in urban point clouds. These objects are tree trunks, traffic light

poles, lamp posts and market poles.

To answer and identify the fourth and fifth research objectives, an algorithm to find edges and

cylindrical objects in point clouds is proposed. The comparison and research of these

algorithms are presented in various case studies. The commercial software presents the

algorithm to extract the feature from point clouds and convert it into DTMs.

73 | P a g e

3.4.1 Point Cloud Processing Categorization

Point Cloud processing is the term used to process point clouds to extract meaningful

information into models. These models can be line models or 3D surface models. In this thesis,

point cloud processing is divided into the following categories:

1) Point Cloud Filtration, which includes noise reduction/removal and outlier filtration

(proposed new method discussed in Chapter 4)

2) Edge Detection (PCA-based algorithm presented in Chapter 5)

3) Feature detection (Voxel-based algorithm for identifying cylinders presented in

Chapter 6) and segmentation (spatial partitioning)

4) Modelling (DTM)

Figure 3.1 Point Cloud processing is categorised in this thesis into Filtration, Edge Detection, Feature Extraction

and Modelling

74 | P a g e

Once laser scanners have acquired 3D raw point cloud data, they need processing to extract

useful information. The definition and categorisation of point cloud processing vary across

different fields of research and domains. According to Galantucci and Percocol (2005), point

cloud processing is divided into pre-processing, segmentation and surface reconstruction. Pre-

processing includes noise removal, data compression, smoothing, merging, and tessellation

(Galantucci and Percocol, 2005). These processes are carried out before surface modelling and

feature analysis in point cloud processing.

The Point Cloud Library (PCL) is a standalone, large-scale, open-source project for point cloud

processing and 3D geometry processing. According to PCL, point cloud processing consists of

filtering, segmentation, feature estimation, object recognition, surface reconstruction, 3D

registration and model fitting (Rusu and Cousins, 2011). Many point cloud processing software

systems transform raw point cloud data into 3D images or BIM.

In this thesis, point cloud processing is divided into four stages to transform the data into

models, as shown in Figure 3.1:

1. Filtration – proposed methods let users filter outliers (using Oct boxes) and remove

noise (using search sphere and filter box) from point cloud data sets.

2. Edge detection – proposed algorithm lets users find edges sects in realtime with the

move of a cursor and automatically using edge stream.

3. Cylindrical feature detection – proposed algorithm lets users automatically recognise

and extract features such as tree trunks, poles, marker poles, traffic poles, and lamp

posts from urban point cloud data sets.

4. Models – let users extract information (points and links) from the point cloud by

digitising to create DTMs and DSMs (3D surface models).

The purpose of point cloud processing of data from laser scanners is to transform the scanned

data into a model. For that process and the acquisition of objects, various algorithms are

implemented. First, filter and eliminate the noise and outliers that are not part of the features.

Second, extract features such as edges and edge streams (lines) from the data, reducing the

75 | P a g e

complexity of the next stage. Third, to segment and identify complex structures and

calculations. Finally, feed the extracted information into the model to present the data.

3.4.2 Proposed Algorithms

The research is based on 3D computational geometry. The research establishes various

mathematical models to propose, design and develop new methods and algorithms. PCA will

be used with other methods. Along with PCA, other methods such as (1) Nearest cluster method

- is method that can be used to perform several types of agglomerative hierarchical clustering,

in which a hierarchy of clusters is created by repeatedly merging pairs of smaller clusters to

form larger clusters, (2) Voxelisation - is a spatial partitioning technique that transforms the

points into voxels grids and estimates the geometries and attributes that are created by points

inside the grid (Xu, Tong and Stilla, 2021), (3) Octree - is a tree data structure with exactly

eight sub-nodes often used to partition a three-dimensional space by recursively subdividing it

into eight octants. To achieve the objectives of the research, the above methods are used.

3.5 Methods for Data Collection

The research is based on extracting valid information from point clouds, so point cloud data

plays a major role. Two types of point cloud data are used in this research.

(1) The primary data were collected using a laser scanner (a laser scanner manufactured by

FARO Technologies UK Ltd) to validate new algorithms and compare the effectiveness

and efficiency with the existing implemented methods.

(2) The secondary data was collected through a literature review of existing methods and

algorithms for 3D point cloud processing and feature extraction (identification, analysis

and modelling) of 3D objects.

76 | P a g e

3.6 Methods for Data Analysis

Different approaches are defined for analysing the data (points) in the point cloud, including

techniques to show high dimensional structure through low dimensional representation and

assemble discrete points into a global structure. Some traditional techniques are (1) projections

or axis-based technique, (2) eye view, (3) high dimensional analysis, and (4) structural analysis

using simplicial chains for point cloud processing. However, the traditional techniques lack

issues as described above. To overcome those issues, the proposed data analysis method for

the thesis will use Principal Component Analysis’s eigenvalues and eigenvectors for the

direction of the dominant data, which is further extendible for filtering, segmentation, and edge

detection.

3.7 Methods for Algorithm Validation

The new methods are tested on several point cloud data sets to verify if they are more effective

and efficient in identifying features such as planes, edges and cylinders. Also, the proposed

new methods and algorithms are coded (using the computer language C#) and integrated into

McCarthy Taylor Systems’ software application called 3D Vision. The methods are tested by

the company’s existing users/clients (civil engineers, geologists and land surveyors). The

user’s feedback is applied to improve the algorithms.

3.8 Research Ethics

The research follows the moral and ethical guidelines of the University of Gloucestershire. As

the study involves point cloud software (licensed by McCarthy Taylor Systems Limited), the

technology, process, and scanned data are strictly confidential, and information will only be

used for academic purposes.

77 | P a g e

3.9 Chapter Summary

Point Cloud processing methods are frequently developing and evolving as point clouds

become popular. However, improving the efficiency and accuracy of feature recognition and

extraction has been long highlighted as an issue across the surveying industry. Land surveyors

are the collectors, suppliers and processors of these data and need a new method for

transforming the 3D data into meaningful models. In addition, laser scanning technology has

been specified as the preferred collection tool as the scanners are fast, portable and

comprehensive in capturing the surrounding environment.

78 | P a g e

Chapter 4 A Method for Noise Removal

and Outliers Filtering

4.1 Introduction

Point clouds are often collected at a site that can be indoors or outdoors. To capture point

clouds, scanners emit laser beams that record the objects’ surface and are therefore affected by

outliers and noise. The objects scanned are similar to the real world but with much distortion.

The point cloud data set is affected by outliers as the laser scanners generate falsification points

due to incorrect processing, scanner path reflection and unwanted objects. A typical point cloud

scanned data usually is noisy, sparse and temporarily incoherent (Ning et al., 2018). In

geoinformation systems, accuracy is an important aspect of designing and maintaining, which

is highly affected by noise. System accuracy is measured in terms of absolute, relative and

precision (Lewis, 2021). Therefore, removing noise and outliers is significant for accurate and

efficient results. Rakotosaona et al. (2020) argued a point cloud data set clean-up method

should balance between denoising and feature preservation. An outlier in point clouds fits a

description by Hawkins M D (1980, p. 1)

“An outlier is an observation which deviates so much from the other observations as to arouse

suspicions that a different mechanism generated it”.

In this thesis, Outliers and Noise are categorised as follows:

1) Outliers are defined as isolated point/s, as shown in Fig 4.1.

2) Noise is defined as a non-isolated points cluster that is not part of any relevant features

or objects, as shown in Fig 4.2.

The scanner generates millions of points, which requires high computation time to process all

the points. Hence, removing these outliers and noise is necessary to analyse and process the

point clouds efficiently. A proposed method uses applications to remove the outliers and noise

79 | P a g e

from the point clouds before processing the data to extract meaningful geoinformation. The

method is tested on different data types. Each application has a unique implementation to

remove the points that are considered outliers and noise. The analysis of related work is

discussed and evaluated in Section 4.2. The proposed methods are presented in Section 4.3.

Section 4.3.2 presents stage 1: the outlier/noise categories and Section 4.3.3 introduces stage

2: the application’s distinctive suggested usage of the type of outlier and noise. Section 4.4

presents the result analysis by demonstrating the proposed methods for the commercial

software. Finally, Section 4.5 presents the conclusion of the methods.

This chapter proposes three methods for noise removal and filtration of outliers.

1) Noise Removal using Sphere (NR-S)

2) Noise Removal using 3D Box (NR-B)

3) Outlier Filtration using Octree Boxes (OF-OB)

The noise removal and outlier filtration method from Chapter 4 is implemented on the data sets

prior to implementing the proposed algorithms presented in Chapter 5 for edge detection and

Chapter 6 for tree trunks and pole-like objects detection.

Figure 4.1 Example of outliers (in red circles) in point cloud data

80 | P a g e

Figure 4.2 Example of noise, such as moving people captured in point cloud data

4.2 Analysis and Evaluation of Existing Methods

The filtration of outliers and noise is a continuing research problem in many fields of study,

such as computational statistics, computer graphics etc. (Griffioen, 2018). In geoinformation

systems, outliers/noise removal is the fundamental data processing task to ensure the quality

of scanned point cloud data (Ning et al., 2018). Therefore, removing these points is essential.

However, the points are classified and identified before removing them to separate the good

points from the bad points (outliers/noise). This section presents and evaluates the existing

methods of removing outliers, followed by a summary underlining the existing method’s

drawbacks and problems.

4.2.1 Existing Methods

The existing methods are presented by dividing them into five categories. (1) Density-based

methods by (Ning et al., 2018; Zhang Bibo et al., 2017; Li & Wei, 2021; Sotoodeh, 2006), (2)

81 | P a g e

Surface fitting methods by (Arvanitis et al., 2018; Jia et al., 2018; Nurunnabi et al., 2015a;

Shao, Ijiri and Hattori, 2015; Y. Wang & Feng, 2015), (3) The type-based method by (Ge and

Feng, 2021), (4) Statistical Outlier removal (SOR) by (Balta et al., 2018; Pirotti et al., 2018;

Rousseeuw & Hubert, 2018; Rousseeuw & Leroy, 1987; Yin, Wan and Liu, 2013; Zeybek,

2021b), (5) K-d tree-based by (Luo and Liao, 2010; Shen et al., 2011).

1) Density-Based Methods

Breunig et al. (2000) introduced the density-based Outlier detection algorithm based on

knowledge discovery in database (KDD) applications. Sotoodeh (2006) proposed the outliers

detection method based on the Breunig KDD algorithm. First, the algorithm calculates the local

outlier factor for neighbourhood points within the defined distance. Then, the k-distance of a

point, the k-distance neighbourhood of a point, the reachability distance between two points

and the local reachability density of a point are calculated. The local outlier factor is calculated

as the local reachability density of a point is inverse of the average reachability distance based

on the nearest neighbour. The outlier factor of the point decides if the point is an outlier or not.

Finally, the clusters of outliers are detected based on nearest neighbours. The advantage of the

algorithm is that it uses the local behaviour of points that work for different densities. The

disadvantage of the algorithm is that it detects the part of outliers, not all the outliers, due to

point density similarities.

The method by Li and Wei (2021) presented outlier removal from UAV point clouds.

DBSCAN (density-based spatial clustering of applications with noise) is used to denoise the

pylons and enhance the DBSCAN algorithm to denoise electricity transmission lines. The

method first roughly classifies pylons and powerlines from vegetation and ground. Then, the

pylons are extracted by projecting the point cloud on the XOY horizontal plane, followed by

k-d tree implementation to search and group points. The search radius for the k-d tree is

dependent on the size of pylons in different scenarios. The extraction of powerlines is

accomplished based on height criteria. Next, the denoising algorithms are implemented. A k-d

tree accelerated DBSCAN algorithm is used to cluster and denoise pylon points, followed by

a statistical outlier removal (SOR) filtering method used to denoise the ground points. Principal

Component Analysis (PCA) is then used to denoise powerlines. Separating powerline points

82 | P a g e

from noisy points becomes difficult because of the lean structure of powerlines. Therefore,

separating and denoising are achieved by finding the principal axis between two pylons. The

accuracy of the proposed method is 98%. However, the method lacks to provide the details of

point-based rough classification. Also, the method is tested on a single point cloud dataset;

hence, there is no adequate proof that the method will work on different point clouds.

Zhang, Xiang and Zhang (2017) proposed a density-based approach to remove large-scale

noise from point clouds. The method uses DBSCAN and is divided into three approaches 1)

local consistency factor, 2) parameter estimation and 3) distance measure. The method starts

with calculating the local consistency factor (LCF) to indicate the local density similarity of

points. The dense points are closer to each other than sparse points; the LCF is distance-based

on the mutual reachability distance of point sets with variable densities. Next is parameter

estimation, which is assessed using reliable points from an inlier and trust points are found

using these estimations. Next, a colour-based distance measured approach is implemented to

classify inliers and outliers. The spatial and colour distances are combined to measure the

difference between the two points. Then, the Gaussian kernel and spatial distance by LCF are

compared to the group to reject the points. The final step is the density-based clustering method.

The clusters are selected as inliers if they satisfy the density consistency. The advantage of this

approach is that it automatically estimates the parameters to reduce user interactions, and

screening reduces complexity. The disadvantage of the approach is that it is based on the

assumption that objects will have the same point density. The point distance calculated between

any two points has to be continuously picked at different points, which will take a lot of time,

making the method slow and time-consuming.

Ning et al. (2018) presented a method to remove outliers based on geometrical characteristics.

The two geometrical characteristics are local density and deviation from the local fitting plane.

The outliers are divided into three types: sparse, isolated and non-isolated. Firstly, the local

density of points is analysed by calculating the local covariance matrix of each point in the k-

nearest neighbourhood. Then, the probability of a point belonging to an outlier is calculated.

The local density only works on isolated and sparse outliers. Second, for non-isolated outliers,

the local plane fitting method is applied as they are closer to objects. Finally, a local plane is

fitted on the target outlier points by applying PCA. The fitted plane depends on the k-nearest

neighbour value; if the value is bigger, it deforms the model, and if it is small, it does not fit

the model. The limitation of the method is that it does not work on high-density data. Therefore,

83 | P a g e

the method gives good results for sparse and isolated outliers but not non-isolated outliers.

Moreover, all the points in the model are analysed for the k-nearest neighbour, which costs

more computation time. Also, the method does not present the test results on large point cloud

data but is tested on sampled objects.

2) Surface Fitting Methods

Jia et al. (2018) proposed a method to filter the point cloud based on the surface variation. The

method first estimates the normal vector using the weighted principal component analysis.

Then, the weight of points in the neighbourhood is allocated based on the distance between

points and the neighbourhood’s mean. The weighted analysis helps determine a point’s position

in the neighbourhood and the distribution of outliers. Then, the surface variation factor of

points is derived. Second, the point cloud model is divided into flat and mutant regions by

comparing these derived surface variation factors of sample points with the average surface

variant factor of the sampled k-nearest neighbouring points. The planar surfaces with small

surface variations are flat regions, and large surface variations and more noise are mutant

regions. Finally, an improved median filtering algorithm is applied to flat regions, and an

improved bilateral filtering algorithm is applied to mutant regions to denoise. In the median

filtering algorithm, all points in the neighbourhood are projected to the normal vector, and

projected values are calculated and sorted. The position of a point is derived from the median

point. In a bilateral algorithm, the sampling point is moved along the normal vector. The angle

change between the neighbourhood point and sample point considers whether outliers influence

the surface or not. The advantage of the method is that it considers two different types of

surfaces for outlier removal. The disadvantage of the method is that it was tested on the sampled

point cloud. Also, the method lacks 1) real point cloud data testing with different shape and

size features and 2) no estimation of the time consumption for the applied method.

Nurunnabi, West and Belton (2015a) proposed a method for outlier detection and surface

normal-curvature estimation. The outliers are detected locally in their neighbourhood and

removed for more accurate local saliency features. First, PCA is implemented to derive the

local region by searching its local neighbourhood. Then, to search neighbourhood, k-Nearest

Neighbourhood is applied to determine the k points with the least distance. Next, the maximum

84 | P a g e

consistency set is extracted by implementing the plane and calculating the orthogonal distance

of all points to the plane. Next, the z-score, median, and absolute deviation produce a robust z-

score. In addition, another algorithm, Robust Mahalanobis Distance (RMD), is obtained by

mean and covariance matrix. Finally, the two methods are used for outlier detection and result

in points marked as inliers and outliers. The advantage of the method is that it is used for both

outlier detection and saliency feature extraction by fitting a plane. However, the disadvantage

is that the method lacks the ability to define the types of outliers detected.

Another method by Wang and Feng (2015) used surface curvatures for outlier detection using

majority voting. The outliers are divided into sparse, isolated or non-isolated. The method is

focused on non-isolated outliers that are more challenging to detect. The voting scheme is used

to differentiate between non-isolated surfaces and scanned surfaces. A surface is fitted on

points with small variations stated as regular points. The regular points are identified by

implementing PCA in each point’s k-nearest neighbourhood to record the surface variation. A

minimal ellipsoid and fitted plane smoothness determine the local surface variation. The

neighbourhood point’s curvature and noise information determine whether it is a sharp feature,

smooth region, high noise level or high curvature. Next, a histogram is generated based on

point population and surface variation. The histogram is used to classify regular and irregular

points by Bi-means clustering.

The method results in regular points with low variation and irregular points as outlier

connection regions. These irregular points are analysed by a majority voting scheme to

categorise each point as a good point or an outlier. For each irregular point, only neighbouring

regular points are used as voters. Each voter evaluates if the irregular point fits into the local

geometry. The voting average is considered, which results in isolated and sparse outliers.

Finally, these outliers are removed using a clustering algorithm and boundary criteria to keep

the good points. The advantage of the method is that 1) it can differentiate between non-isolated

outliers and other types of outliers, and 2) it uses boundary criteria instead of cluster size. The

disadvantage of the method is that using the boundary criteria could cut some good points.

Also, the method compares each point’s neighbourhood twice, first to record the variation in

the surface and second to each point’s neighbourhood during the voting scheme to check

whether the point is an outlier or a good point. Hence, the method is not time efficient, and the

test data are also limited.

85 | P a g e

Shao, Ijiri and Hattori (2015) used ellipse fitting for outlier removal. A point set is fitted with

an ellipse to minimise the sum of inlier points to the ellipse curve projection distance. Firstly,

the method starts with algebraic ellipse fitting based on Taubin’s method. Secondly, the

Maximum-Likelihood-based (ML) method is used to refine the noise measurements. Thirdly,

edge points are collected around the estimated centre point. Fourthly, three stages of the method

are implemented.

1) Clustering the data points based on proximity to derive the inliers.

2) Searching the subsets to minimise the algebraic fitting distance.

3) Refining the algebraic solution by geometric fitting.

The clustering is accomplished based on the Euclidean distance from its neighbour. Breadth-

first searching is used to reduce the energy function and maximise the number of inliers.

Finally, all the inlier points are refined based on geometrical parameters. The advantage of the

method is grouping of inlier points by ellipse fitting. The disadvantage of the method is that it

is not efficient to process large datasets. Furthermore, the method only works on the grouped

outliers, not the isolated or closer object’s surface.

Arvanitis et al. (2018) presented another method to detect outliers in urban environments. The

detection is achieved by:

1) Exploiting the spatial consistency of an object’s geometry

2) The sparsity of outliers in the spatial domain

Small clusters share the same geometrical information based on the analysis and observation

in point clouds. Therefore, a spatial coherence matrix is calculated. Then, a cluster consisting

of k-nearest neighbours for each point is created. Robust PCA (RPCA) is applied, resulting in

low-rank and sparse component matrices. The low-rank matrix contains coordinates of scanned

points, and the sparse matrix contains offsets of outliers and low-rank positions. Next, an

Augmented Lagrange Multiplier (ALM) scheme is applied to optimise the convex matrix and

optimise the iterations of the variables using an alternative direction. Next, various operators

are calculated, such as 1) the shrinkage operator for element-wise application and 2) the

singular value thresholding operator for enhancing runtime. Finally, the outliers are identified

using a sparse matrix and are removed based on the selected threshold. The advantage of the

method is that it can remove both large-scale and small-scale outliers. The disadvantage of the

86 | P a g e

method is that it uses a k-nearest neighbour search, which means that the computation time will

be significant for huge point clouds as each point is clustered based on its nearest neighbour.

3) Type-Based

Ge and Feng (2021) proposed a type-based outlier removal framework (TBORF) method. The

method is divided into two stages 1) Determine the input point cloud type with three metrics,

and 2) Deal with outliers for each type. In the first stage, the three metrics are used to divide

the input point clouds based on characteristics. The three metrics are point cloud thickness,

uniformity and ambiguity. In addition, three metrics are independent of translation, rotation

and scale.

1) The geometric shape determines the thickness.

2) The point distribution determines the uniformity.

3) The discrimination index between outliers and regular points determines the

ambiguity.

The geometric shape to get the thickness is evaluated by support points. The support points are

defined as the points that obey the planar distribution. The point distribution to get the

uniformity of point clouds is achieved by calculating the distance between objects and the

scanner. Fuzzy points determine the ambiguity of point clouds. In the second stage, according

to quantitative results, the point cloud is classified into type 1, type 2, type 3 and type 4.

Common characteristics of each type of point cloud are evaluated. Finally, outlier removal

methods are implemented based on k-dist, local neighbour and Tukey’s fences by 1) the single-

criteria method and 2) some concepts in the type-based combined method. The single criteria

methods to remove the outliers are:

a) outlier detection via local neighbours’ gradient distance based on gradient distance

which is the distance between a 3D point and its neighbours,

b) outlier detection via local neighbours’ farthest distance which is the largest distance

between outlier and regular points, and

c) outlier detection via central limit theory, which computes the average gradient

distance.

87 | P a g e

The advantage of the method is that the outliers are removed based on point cloud analysis,

their distribution, the geometric shape of objects and distances of points to their neighbourhood

and scanning system. The disadvantage is that the method can not automatically remove

outliers depending on geometric shapes. Furthermore, the method is only focused on isolated

outlier points.

4) Statistical Outlier Removal

The SOR methods remove outliers based on their distance in the point cloud. SOR also includes

distance-based methods. Rousseeuw and Leroy (1987) first introduced the statistical outlier

removal methods (Rousseeuw and Hubert, 2018).

Zeybek (2021b) proposed a method that detects outliers based on the patterns of points. The

method focuses on isolated outliers and isolated and clustered outliers. Firstly, statistical outlier

removal filtering is implemented. Then, each point is analysed based on the distance from its

neighbouring points to determine the distribution of points. Next, the points are clustered based

on the Euclidean distance for isolated and clustered outliers. Then, Euclidean clustering,

followed by the distance tolerance value, is applied. The SOR filtering is used with eigenvalue

computation to identify the relationship between neighbouring points. Eigenvalues determine

the shape characteristics. Secondly, the machine learning system reclassifies the filtered

outliers. Finally, both a Random Forest and Support Vector Machine are used to classify the

points as inliers and outliers. The advantage of the method is that it uses the geometrical shapes

of the objects to classify them as inliers and outliers. The disadvantage of the method is that it

cannot be used for random outliers close to objects as the method is not surface-based.

Balta et al. (2018) introduced a method called Fast Cluster Statistical Outlier Removal

(FCSOR), an extension of the statistical outlier removal method that uses voxels to subsample

the data. The method is divided into two stages: data handling and filtering.

1) Data handling - Voxels are used to downsample the point density. The sampling helps

as density varies with range measurement. The point cloud is divided into 3D grids

using the same size or the same number of voxels in each direction. Next, the centroid

of each voxel is calculated and output.

88 | P a g e

2) Fast cluster statistical outlier removal – The 3D space is divided into clusters. Each

point in the cluster calculates the euclidean distance to its k-nearest neighbour. Then,

the points are added to the clusters based on the calculated distance. Next, the clusters

are filtered by calculating the mean of clusters; if the mean is higher than average, that

cluster is rejected.

The method claims that it is faster than existing outlier removal methods; however, it

implements the Euclidean distance that has to be calculated for each point to decide which

cluster it belongs to. This process is very time-consuming; as the data set gets big, it will take

longer to process as the method checks each point.

Yin, Wan and Liu (2013) proposed another method of removing outliers by statistical analysis.

The first step is pre-processing the point cloud by determining each point’s k-neighbours. Then,

the Euclidean distance is estimated to determine the approximation of points. The second step

is statistical analysis 1) Mean distance is calculated for each point to its neighbourhood points

2) Estimating distribution based on mean distance. The third step is filtering. Finally, the points

with a mean distance similar to their neighbours remained. The outliers are deleted based on

the mean distance filtered by distance expectation and standard deviation. The advantage of

the method is the implementation of squares calculus to save the implementation time as each

point neighbour search is done. The disadvantage of the method is that not many data sets have

been tested. Furthermore, the filtering is based on standard deviation, which is different for

point cloud data sets. The method could not be implemented for large point cloud data because

of the long computation time.

Another method by Pirotti et al. (2018) presented outlier removal using two methods Statistical

Outlier Removal (SOR) and Local Outlier Factor (LOF). First, four predictors are calculated

two for each method – SOR and LOF of each point, and an absolute difference in their median

SOR and LOF values. Median values reflect the correct distribution of points. Points with SOR

and LOF values further away from the median are considered not outliers. SOR is a distance-

based method to access each point for an outlier. Then, the local density is calculated using the

distance between a point and its nearest neighbour. Next, LOF is a method that assigns a score

to each point based on its local density deviation among the neighbouring points. So, the outlier

points have a lower density than the inlier points. Next, the number of neighbours is chosen

based on the point cloud data set, which can vary. K-distance is calculated as every distance

89 | P a g e

between a point and the k-nearest point. Then, R-dist is the reachability distance of each point,

and its k-neighbour is calculated. Next, the local reachability density (LRD) is calculated,

which is the inverse of the average reachability distances of each point. Finally, the LOF value

is calculated using LRD values to classify points as outliers. The method’s advantage is that

the SOR and LOF combination is implemented to analyse the points based on their density and

distribution. The disadvantage is that the method used to calculate the distance of each point

and its nearest neighbour is correlated to the time consumption. If the point cloud data set is

large, time consumption will be greater. Further, selecting the nearest neighbour number

depends on the user’s knowledge and experience.

5) K-d tree based

Luo and Liao (2010) presented an algorithm to detect outliers using slicing, local distance-

based outlier factor and a k-d tree. First, the algorithm slices the point cloud based on the

reference Z-axis and a group of planes perpendicular to the selected Z-axis. Then, the points

whose distance to the slice plane is less than half of the slice interval are grouped. The k-d tree

is built for those projected points to accelerate the neighbour query efficiency. Next, the local

distance-based outlier factor (LDOF) is used for the outlier detection criteria. Then, the local

distance of a point to its k-nearest neighbour is calculated and sorted. Next, the points with

higher LDOF values are removed. Finally, all the slices are processed until a clean point cloud

set is left. The advantage of the method is that the slicing helps to analyse the points. The

disadvantage of the method is that it selects slicing intervals. Moreover, the algorithm lacks the

evaluation of different point cloud data sets. Also, the algorithm requires iterations to clear the

point cloud; these iterations are not specified clearly, such as stopping criteria are not defined,

and the iterations are not tested for efficiency, i.e., time consumption.

Shen et al. (2011) presented a k-d tree method to remove outliers. The k-d tree is a binary tree

where each node is a k-dimension. Based on visual observation and analysis, the distance

between the outlier and k-nearest points is larger than the distance between normal points and

its k-nearest neighbour. Therefore, for outliers, k values are small. The outliers are defined

using the following criteria:

90 | P a g e

1) According to the elevation histogram and threshold elimination, low and high

outlier points,

2) a k-d tree is constructed of the remaining points,

3) The average distance between a point and its k-nearest neighbour is computed,

4) The threshold is used to separate the normal points and outliers.

The threshold is based on two values: the average distance histogram and the distance threshold

to its k-nearest neighbour. The advantage of the method is using a k-d tree and elevation

histograms to eliminate the outlier points. The disadvantage is that each point is checked for

low or high outliers. Moreover, the k value assigned for the k-nearest neighbour is not defined

and is implemented by trial and error.

4.2.2 Summary

This section presents the summary of the existing methods presented and reviewed in Section

4.2.1. The method’s authors, their approach, the size of the data set used to present the method

and other information like the type of scanner used to collect the data or the type of models are

shown.

Table 4.1 Summary of existing methods

Authors Outlier Removal Methods

Approach

Data Set Size Other

Zhang, Xiang and Zhang,

2017

Density-based and

Clustering

Artefact 125k pts, Plant

379k pts

Synthetic and real

data models

Li and Wei, 2021 Statistical based,

Density-based,

k-d tree-based

Real-world data set –

63 M pts

 UAV

91 | P a g e

Sotoodeh, 2006 Density-based ALS – 11 M pts ALS and TLS

Ning et al., 2018 Density-based and

Plane fitting

15k pts and large 58 M

pts

3D models

Jia et al., 2018 Surface estimation Small data set Stanford Bunny

Nurunnabi, West and Belton,

2015a

Distance-based and

Surface plane fitting

13k pts MLS

Wang and Feng, 2015 Plane fitting and

Clustering

Gear – 280k pts, Room

– 968k pts

Digital camera

LDI

Shao, Ijiri and Hattori, 2015 Ellipse fitting Small data set Synthetic

Arvanitis et al., 2018 Plane Fitting Urban data set LiDar

Pirotti et al., 2018 Statistical Outlier Removal

(SOR) and

Local outlier factor

99 M pts SFM and FCD

Balta et al., 2018 Statistical Outlier Removal

(SOR),

Voxel-based

8-9 M pts UGV

Yin, Wan and Liu, 2013 Statistical Analysis 45 M pts -

Zeybek, 2021b Statistical Outlier Removal

(SOR)

41 M pts, 26 M pts, and

10 M pts

ALS

Ge and Feng, 2021 Type-based 110-140k pts Shapes

Luo and Liao, 2010 k-d tree based 33 M pts Leica (TLS)

Shen et al., 2011 k-d tree based Rural & Urban LiDar

92 | P a g e

Abbreviations used in Table 4.1 are as follows:

• Pts- Points, TLS- Terrestrial Laser Scanner,

• MLS- Mobile Laser Scanner,

• ALS - Aerial Laser Scanner,

• LiDar – Light Detection and Ranging (Aerial),

• UGV - Unmanned Ground Vehicle (Terrestrial scanner),

• UAV- Unmanned Aerial Vehicle (LiDar),

• LDI – Laser Direct Imaging (Surveyor laser scanning system),

• SFM- Structure From Motion (Photogrammetric),

• FCD – Floating Car Data (Captures Road Networks)

4.2.3 Analysis of the Problems

In Section 4.2, the existing methods are analysed and discussed. Table 4.1 summarises the

existing methods, approaches and point cloud data sets used for testing. The common problems

of density-based, surface fitting, type-based, statistical-based and k-d tree-based methods have

been identified. The methods lack a clear definition of outliers that have been identified and

removed. In addition, several existing methods use k-nearest neighbour search for each point,

which is very costly and time-consuming. Even with modern technology and high-specification

computers, the point-based search within a radius has computation time problems. The larger

the point cloud, the longer it will take to process each point, which is inefficient.

Furthermore, the test data sets used by existing methods are not real-world point cloud data.

The outliers of the real-world data set have different problems compared to synthetic data sets.

To overcome the abovementioned problems, a method is proposed that is completely adaptable

and flexible enough to detect all types of outliers. Moreover, the proposed method is adaptable

to individual needs of removing outliers. For example, the outliers and noise can be buildings

and vehicles for road surveyors, whereas, for BIM designers, the outliers can be passing people

and trees.

93 | P a g e

4.3 A Method to Remove Noise and Filter Outliers

4.3.1 Overview

In Section 4.3, the proposed method is presented and discussed. The proposed method has been

presented in two stages (1) Defining the outlier types based on three criteria, and (2) Based on

the outlier type and density, three applications are implemented. The unwanted points in the

data set outliers/noise are defined as follows in this thesis

1) Outliers are global, isolated and scatter points in 3D with low point density, as shown

in 4.3 (a). These sparse points could be close to objects or in space.

2) Noises are local, non-isolated, present in point clusters in 3D and are not a meaningful

feature for the 3D modelling. Noise is also dependent on the type of user using the point

clouds. For example, noise can be building and vehicles for a tree surveyor, whereas a

tree can be noise for an architect or civil engineer.

This chapter presents a method for the outlier filtration and noise removal in two stages: (1)

Stage 1 identifies the type of outlier or noise demonstrated in Section 4.3.2, and (2) Stage 2

presents the applications based on the identified type used for noise removal and outlier

filtration demonstrated in Section 4.3.3.

(a)

94 | P a g e

(b)

Figure 4.3 Examples of (a) outliers and (b) noise are shown in red boxes and circles

4.3.2 Tools

This section presents the tools used in this thesis. The proposed algorithms and methods are

academically discussed and presented; however, making user-friendly and easy-to-use systems

for commercial applications is essential. The tools in this section are the bridge between the

proposed algorithms and the commercial software. These tools are used to handle large point

cloud data by sampling the points and providing faster calculation results on the points. For

this chapter, three tools are presented for point cloud filtration.

1) Search Sphere

The search sphere is one of the tools invented for the first time in this thesis. The search sphere

is versatile and has many applications. A search sphere is a method of sampling the point cloud

95 | P a g e

using a real-time 3D sphere. It is constantly searching for the points inside the sphere. The

search sphere is rendered at the movement of the cursor in 3D space. The main reason for

choosing the sphere for searching is because the sphere is the quickest to calculate inclusion

compared to other geometric shapes such as cylinders, cubes and triangles. The principle of

inclusion in 3D is checking that a point 𝑝(𝑥, 𝑦, 𝑧) is located inside or outside the boundaries of

a geometrical shape, as shown in Fig 4.4.

Figure 4.4 Representation of points inside the search sphere

The proposed algorithm is part of commercial software and is a user-oriented solution. Hence,

the other reason for choosing a sphere for searching and sampling, unlike other geometrical

solid shapes in three dimensions with length, width and height, a sphere can be defined just by

a diameter. Therefore, it is suitable and easy to manage if the user wants to change the size, so

they have to adjust one value (diameter) instead of three values. Moreover, as the point clouds

are real-world data acquisitions, each point cloud is different from the others; thus, it is crucial

to provide the flexibility to the user to change the size when required. The search sphere’s size

is user changeable. The recommended size depends on the user’s applications and the size of

the feature to be extracted. All the points inside the search sphere are highlighted as the chosen

points are apparent.

96 | P a g e

2) 3D Box

A box has the properties of six faces, eight vertices and twelve edges in 3D. The 3D box is

used in this chapter to remove noise points shown in Fig 4.5. The reason that a 3D box is fit

for the task is 1) it can cover a larger area as compared to the search sphere, 2) The six phases

of the box give the user flexibility to manipulate the phases to cover the points of a particular

object or area in the point cloud. An example of the 3D box is shown in Fig 4.5 and is presented

in detail in Section 4.3.4.

Figure 4.5 A 3D box (green) with six faces and a point cloud inside it

3) OctBox

The third tool used in this chapter is OctBox. This chapter presents the use of OctBox for the

filtration of points for the first time. The literature suggests that this innovation is a new

contribution and has never been used. OctBox is the 3D box constructed from the tree data

structure of Octrees. The Octree structure is used to spatially divide the point cloud’s points for

storing points and hierarchical information. The points stored in the trees are presented in a box

which is then used to filter the points, as shown in Fig 4.6.

97 | P a g e

Figure 4.6 Highlighted box in Octree structure

4.3.3 Stage 1: Outliers and Noise Types in Point Cloud

Finding and removing outliers and noise in the point cloud could be challenging due to their

nature of being dispersed and non-correlated.

Figure 4.7 Outlier/Noise classification according to their characteristics

98 | P a g e

Therefore, the proposed method categorises the outliers and noise to understand well in order

to use the applications presented in Section 4.3.3 accordingly. However, as discussed in Section

4.2.3, the existing methods lack clear criteria for defining the outlier and noise within the same

point data sets, leading to problems in their methods. Outliers are defined by three

characteristics in this thesis to address these issues. The categories allow efficient organising

of the outliers and noise to understand further to deal with them. These categories are:

a) Points distribution

b) Points proximity to other objects

c) Points position

4.3.3.1 Point’s Distribution

The first categorisation is Distribution. The laser scanners collecting point cloud data sets use

laser beams. Terrestrial laser scanners capture objects as their laser beams fall on the object’s

surface and return the points. As a result, objects closer to the scanner have full coverage, i.e.,

high-density points, and the farthest object surface has less coverage, i.e., low-density points.

Similarly, mobile and handheld laser scanners capture variable density points due to changes

in the movement and geometry of data acquisition sensors or vehicles (Nurunnabi, West and

Belton, 2015a). Therefore, point cloud points have variable density and distribution of points.

The density and distribution of points are denoted by a characteristic called ‘scatter’ or

‘cluster’. If the points are scattered, i.e., low-density points, they are classified as outliers.

Furthermore, if the points are in the cluster, i.e., high density, they are classified as noise. An

example of low and high-density points is shown in Fig 4.8, where the objects away from the

scanner have low-density points, and objects close have high-density points.

4.3.3.2 Point’s Proximity

The next point categorisation is Proximity. Laser scanners often scan and capture a lot of data

around the important features in geoinformation systems. These features are buildings, road

features, trees, kerbs and other meaningful objects in the point cloud data. Therefore, it is

important to differentiate the points that are closer to these features and objects of interest. The

99 | P a g e

proximity of the points is denoted by a characteristic called ‘isolated’ or ‘non-isolated’. If the

points are closer to the objects of interest, they are classified as non-isolated points. Whereas

if the points are far away from these objects of interest, they are classified as isolated points. A

good example of point proximity is shown in Fig 4.8. All isolated points are considered outliers,

and non-isolated points as noise.

(a)

(b)

Figure 4.8 Examples of (a) low-density and isolated points and (b) non-isolated high-density points

100 | P a g e

4.3.3.3 Point’s Position

The final category for point classification is Position. The points have information on whether

the distribution is high or low and isolated or non-isolated. The other important information

about a point is the position of points related to other points in the point cloud. It is essential to

determine the position to decide if the point is an outlier or a regular point. Therefore, the

position of points is denoted by low, high and median.

A median is calculated to find all the points’ centre of gravity. If the point is closer to the

median, it also means that they will be non-isolated. Therefore, these points are considered

noise. Whereas if the points are away from the median, low or high points are considered

outliers. An example is shown in Fig 4.9.

Figure 4.9 Points are categorised based on their position in the point cloud

101 | P a g e

4.3.4 Stage 2: Applications to Denoise and Remove Outliers

After identifying the outliers and noise, the next stage is removing them. The outliers and noise

removal will help fast processing and more accurate results for meaningful feature detection.

The human eye and observation skills are far beyond compared to any algorithms. Therefore,

for removing the noise and filtering the outliers, three methods are proposed that remove them

in real-time. The user manually handles the application to navigate the outliers and noise in 3D

point clouds.

For filtering these outliers, Outlier Filtration using Octree Boxes (OF-OB) is used as it can

capture the isolated and scattered points with their high or low position with respect to the

whole point cloud. On the other hand, Noise is the group of points that are non-isolated,

clustered and present closer to the median of the point cloud. Therefore, Noise Removal using

a Sphere (NR-S) and Noise Removal using a 3D Box (NR-B) are used to remove the noise.

NR-S and NR-B are user-controlled and can be efficiently used for non-isolated noise removal.

The classification of the outliers and noise is shown in Fig 4.10 and the respective methods to

remove them.

Figure 4.10 Overview of outliers/noise types and methods to remove them

102 | P a g e

4.3.4.1 Noise Removal using Sphere (NR-S)

The sphere in the 3D point cloud is used in real-time to navigate and delete the points in the

point cloud. The sphere can be set manually using the mouse cursor to any position. The points

in the sphere are highlighted to display the points selected, as shown in Fig 4.11 (a). Therefore,

removing the points that are closer to other objects is easier to grab using NR-S, an example

shown in Fig 4.11 (b) and (c).

(a)

(b)

103 | P a g e

(c)

Figure 4.11 (a) A sphere representation in a point cloud (b) Example of lamp post captured by sphere to delete

and (c) Example of a tree captured by sphere to delete

4.3.4.2 Noise Removal using 3D Box (NR-B)

The 3D Box is used to filter out the non-isolated clustered points. The box has six phases and

can be manually set to the position of the points to be deleted. An example is shown in Fig 4.12

of a non-isolated car, a noise and non-feature that is not required to process the point cloud.

Conversely, the ground underneath the car is an important feature and can be used during the

extraction of the terrain. Therefore, the NR-B is used to delete the cars/vehicles and save the

ground points underneath them.

104 | P a g e

Figure 4.12 Noise removal by using a 3D box

4.3.4.3 Outlier Filtration using Octree Boxes (OF-OB)

The next application is OF-OB, which is used on outliers that are isolated, scattered and

positioned high or low with respect to the whole point cloud. For outlier filtration, an octree is

applied. An Octree is a tree/hierarchical structure. The hierarchical tree results in a recursive

decomposition of a cubic region into eight equally sized octants, which are cubic regions

(Boulic and Renault, 1991). These cubic regions are denoted as nodes. Each node has eight

children except the end nodes, and the root of the octree refers to the entire volume. Octrees

are generally used to partition a three-dimensional space by recursively dividing the nodes into

eight child nodes and each of those eight nodes into eight other child nodes (Eder J, 1992).

An example is shown in Fig 4.13, where nodes are divided into child nodes until an empty node

or maximum resolution node is denoted as a leaf node. The condition where the nodes do not

further divide are 1) empty nodes shown by a cross and 2) full nodes shown by a circle on the

nodes. Octrees are the 3D analogue of quadtrees (space is recursively subdivided into four sub-

regions). The most common approach to managing octrees is pointer-based. The pointer-based

octrees save the node’s position by a pointer for each child node. Another approach is the linear

octree which traverses and saves all the tree’s nodes. The problem is remembering the pointer

to access the right node, which could be tricky. Therefore, a naming convention is the better

choice to be called as ZYX-convention. The binary number 1-8 describes the nodes (Eder J,

1992).

105 | P a g e

Figure 4.13 Octree structure with the eight octants at each layer

Many research studies included Octrees for various reasons in different fields. Examples

include:

• representing spatial relationships of geometrical objects,

• 3D graphics for texturing objects (Lefebvre, Hornus and Neyret Fabrice, 2002),

• isosurface generation by passing information between octree neighbours (Wilhelms

Jane and Gelder Allen, 2000),

• spatial indexing for accelerating isosurface extraction (Shi and Jaja, 2006; Schön et al.,

2013),

• compressing 3D data to generate volumetric 3D environment models keeping them

compact (Hornung et al., 2013),

• creating 3D mesh for 3D data generating polyhedral Delaunay meshes (Contreras and

Hitschfeld-Kahler, 2014),

• the generation of Hexahedral element meshes (Schneiders, Schindler and Weiler, 1996;

Zhang, Liang and Xu, 2013; Turner, Moxey and Peiró, 2015),

• nearest neighbour search methods for efficient searching within the radius

(Sankaranarayanan, Samet and Varshney, 2007; Behley, Steinhage and Cremers, 2015),

106 | P a g e

• region-growing methods and segmentation in point clouds (Vo et al., 2015),

• octree data structure where each node is a voxel and is used for ray tracing (Laine and

Karras, 2010),

• collision detection for virtual surgery systems (Hu et al., 2020),

• downsampling the point cloud for plane-fitting (El-Sayed et al., 2018).

In this thesis, the outliers are filtered using the octree nodes. An example of outlier filtration is

shown in Fig 4.14. The different coloured boxes represent different layers of the octree nodes.

The bigger boxes are initial layers that are not further divided as the number of points in the

boxes is less than the minimum threshold for octree octant nodes. The smaller boxes were

further divided into layers of octant nodes.

The nodes’ colour on each layer is based on rainbow colours, i.e., red, orange, yellow, green,

blue and purple for layer 𝑙 = {𝑙0, 𝑙1, 𝑙2, … 𝑙𝑛 }. The user may control the number of outliers to

delete them. For example, the scattered points present at low and high positions can be deleted

using the approximate number to remove them.

Figure 4.14 Octree boxes visually presented in a point cloud

107 | P a g e

4.4 Evaluation and Applications of Method on Commercial

Software

This section evaluates and demonstrates the usage and functionality of the outlier filtration and

noise removal methods. The methods are evaluated in terms of speed, accuracy and flexibility

to be efficient on data sets collected by aerial, terrestrial and mobile laser scanners. The

examples of datasets used are presented in Section 4.4.1. This section tests the three proposed

methods using commercial software called ‘LSS-3D Vision’. LSS is the commercial partner

of this thesis, and all the proposed algorithms are implemented in it. The parameter and settings

used in the software are presented in Section 4.4.2. Section 4.4.3 presents the comparative

analysis of the proposed methods with existing methods. Section 4.4.4 discusses the results of

the proposed methods.

 (a) (b)

Figure 4.15 Datasets (a) Dorchester and (b) University of Gloucestershire

4.4.1 Datasets

The datasets used for the evaluation and validation are generated using terrestrial laser scanners

or LiDar scanners. The FARO terrestrial laser scanner captures the point clouds; the model is

FOCUS 350. The focus scanner has a range of up to 350 metres for long-range measurements,

and the measurement speed is up to 976,000 points/second. This model has an integrated GPS

108 | P a g e

and GLONASS receiver, allowing for the absolute positioning of the scan location (Focus -

FARO® Knowledge Base, 2016). The resolution of the scanner can also be changed.

 Leica RTC360 3D is a LiDar laser scanner that captures point cloud data for up to 130 metres

with 2 million points/second measurement speed. This model has multi-sensors GPS, compass,

height sensor and dual-axis compensator (Leica RTC360 3D Laser Scanner | Leica

Geosystems, 2018).

Data sets used for evaluation are (a) Dorchester data set and (b) University data set. The FARO

laser scanner captured the University data set, and the Leica laser scanner captured the

Dorchester data set. The scanned datasets consist of points in 3D (x, y, z) along with each

point’s R, G, and B and an intensity value.

The point cloud data set description is as follows:

i. Dorchester data set – is a scanned urban site captured by Leica. It has 161

million points.

ii. University data set – is scanned University of Gloucestershire’s building in the

park campus and has 580.94 million points.

4.4.2 Parameter and Settings

This section demonstrates the parameter that the user can set to control the performance of the

proposed filtering methods. All three methods have different default values and settings in the

commercial environment.

These settings offer the flexibility of filtering the noise and outliers for the desired results in

various point cloud data sets.

1. NR-S – The default setting for the sphere size is set to 1 metre. For most cases, the 1m

sphere covers the maximum area for removing non-isolated noise and isolated outliers.

109 | P a g e

2. NR-B – For the control of the box, there are two options. The first option provides

flexibility for the user to manipulate the size of the box by grabbing the box phase, as

shown in Fig 4.16 (a). All six phases are resizable. For example, if the noise objects are

on the ground’s surface, such as a vehicle, the box bottom phase can be set just above

the ground, saving the ground from deletion and getting rid of a vehicle. The second

option is to set the box baseline points to form a box with a height and width. The height

and width are always the same creating the selection box a cube by default. However,

the box is not always a cube as it allows users to select two baseline points, i.e., the box

can be cuboid as well. The ‘To’ and ‘From’ points can be set using X, Y, and Z

coordinates to form a box, as shown in Fig 4.16 (b).

 (a) (b)

Figure 4.16 In the point cloud, a box can be obtained using (a) its six phases or (b) selecting baseline points

3. OF-OB – The parameter for outlier filtration is controlled by searching the total number

of points in the Octree box. The limitation on point numbers provides the user to either

pick the outliers with even one point in a box or find isolated point clusters. The points

that are clustered in the Octree box are listed with the number of points inside for quality

check before the deletion of points, as shown in Fig 4.17.

110 | P a g e

Figure 4.17 List of point groups and the number of points reported by Octree Box

4.4.3. Comparative Analysis

Many approaches and methods are available. Some of the issues with the currently existing

methods are discussed in Section 4.2. A comparison of the proposed method to other methods

is made in this section. In comparing methods, the common pattern observed is that the existing

methods do not apply to all kinds of point cloud data. For example, the method by Li and Wei

(2021) only considered UAV point clouds, Sotoodeh (2006), Zeybek (2021b) and Griffioen

(2018) considered aerial laser scanner data, Nurunnabi, West and Belton (2015a) only

considered mobile laser scanned data and Arvanitis et al. (2018) and Shen et al. (2011)

considered LiDar point cloud data. On the other hand, the proposed method in this thesis can

be implemented on any point cloud data, regardless of how they are captured, including UAV,

LiDar, MLS, ALS and TLS.

The comparative analysis highlights that the existing methods also lack the definition of outlier

or noise. Without defining them, providing solutions is not very helpful. The definition not

only explains the context but also helps the user to implement the tools accordingly. This gives

the user more control and flexibility to use the outlier filtration and noise removal on the range

of different point cloud data.

111 | P a g e

The testing and evaluation of all three proposed methods (NR-S, NR-B and OF-OB) are

performed on real clients’ data which are typical of that collected by surveyors and engineers.

The existing methods use synthetic data for verification, which does not prove whether the

method would work on large or real-world data.

The advantage of the proposed method is that the tools used for outlier filtration and noise

removal are adaptable according to the size of the object. For example, the sphere (NR-S) size

can be changed to remove objects from moving people to trees, the box (NR-B) size can be

used to remove from buildings to large areas, and for Octbox (OF-OB), the number of points

inside the boxes can be a user-defined value to filter those points.

4.4.4. Results Analysis

The implementation to remove the noise and filter outliers by three proposed methods is tested.

The methods are reliable for deleting outliers and noise points, isolated and non-isolated, and

low or high-density points. NR-S method works best for the removal of both isolated and non-

isolated outliers. The isolated noise with low or high point density near the object’s surface that

results from a reflection can be easily removed by NR-S. Furthermore, NR-S is also very handy

for removing non-isolated noise. For example, a reflected surface that is very close to the

ground. The intention is to remove the noise without removing the ground points, as shown in

Fig 4.18.

Figure 4.18 Isolated and non-isolated outliers and noise captured by NR-S to remove

112 | P a g e

Figure 4.19 Examples of non-isolated noise (ghosts) successfully captured by NR-S to remove

The NR-S method is ideal to remove noise that is isolated such as buildings, trees etc. and non-

isolated noise such as ghosts. The ghost is the term used in geoinformation systems for the

moving or passing-by people that are captured by laser scanners. These ghosts are non-isolated

noise close to important features like trees or buildings. Therefore, removing ghosts is essential.

The example of ghosts is shown in Fig 4.19.

The NR-B method works best for the larger patch of isolated and non-isolated noise and

outliers. The noise and outliers captured from an urban scanned point cloud are usually large

compared to the non-urban sites. The reason is that when the data is captured, it does not

exclude non-stationary objects. This noise and outliers can be the reflection from the window

or mirrored surface, moving vehicles, ghosts, and weather conditions, which can capture the

raindrops as noise.

The NR-B method is perfect for removing large noise and outliers. A step-by-step process of

removing is demonstrated in Fig 4.20. Fig 4.20 (a) shows a patch of Dorchester data set inside

113 | P a g e

the box that displays the noise caused by moving people and vehicles. The next Fig 4.20 (b)

shows the selection by the box above the ground that is noise. Finally, Fig 4.20 (c) shows that

the noise is removed. Fig 4.20 shows that the NR-B isolates the non-isolated noise and removes

it without deleting the ground points. Another example of such noise is shown in Fig 4.21,

where a scanner captures the people waiting at the bus stop. In this case, the people/ghosts are

the noise removed using the NR-B method.

Figure 4.20 Noise removal by selection box on the busy street point cloud data

114 | P a g e

Figure 4.21 Noise example on the footpath as people at the bus stop are captured

The OF-OB method works best for isolated outliers, as shown in Fig 4.22. The example shows

reflected points from the scanner positioned below the point cloud. OF-OB captures these

scattered, isolated points efficiently. For flexibility, the user can define the number of points

inside each cluster. The example in Fig 4.22 has the total number of points set to 50, i.e., each

node in Octree that has points less than equal to 50 is detected and removed.

Figure 4.22 Isolated outliers example shown in an orange box

Before removing points, the octree boxes are represented to display nodes detected that have

up to the equal number of points defined by the user, as shown in Fig 4.23. Once the user is

happy with the visuals that demonstrate the capturing of the outliers, they are deleted.

115 | P a g e

Figure 4.23 Captured and deleted outliers by OF-OB method

4.5 Chapter Summary

The comparison and analysis of existing methods to the proposed methods for point cloud

filtration demonstrate that the proposed methods are capable of deleting all kinds of noise and

outliers. Also, the proposed methods work on any point cloud without worrying about which

laser scanner is used to collect it.

The main aim is to smooth the data by filtering and removing points to preserve the important

feature details. The three different proposed methods, NR-S, NR-B and OF-OB, work

efficiently for noise removal and outlier filtration of the point that is either isolated or non-

isolated and has a high or low density. First, the outliers and noise are defined for easier

classification and removal. Next, the points are classified based on point density, location and

proximity. This provides the user with the clarity to understand the point’s properties and use

the appropriate method to remove them. The number of points deleted (using NR-S, NR-B and

OF-OB) is dependent on the diameter of the sphere and the size of the boxes selected by the

user.

There could be various possibilities to extend current methods that could not be implemented

due to the time restriction to finish the thesis. However, the proposed methods are part of

commercial software and will grow exponentially. For example, the search sphere can be

automated to delete more points in one go. In addition, the Octbox to filter points can be

implemented with PCA to fit the plane inside the boxes and analyse the points inside in a more

sophisticated manner.

116 | P a g e

Chapter 5 A New PCA-Based Method for

Edge and Edge Stream Detection

5.1 Introduction

The detection and modelling of the features from the urban point cloud are of great interest in

the surveying and engineering industries. The important features in a typical urban point cloud

data are walls, roofs, marker poles, lamp posts and kerbs, windows, buildings, trees, and

vehicles. Apart from these features, edges and boundaries of the features are considered the

basic requirements in urban scenes. For example, a surveyor will be interested in the edges of

buildings, windows and doors, edges of the top and bottom of the kerb, edges of footpaths and

many more. Bazazian and Parés (2021 p.1) defined edges as

“Edges in 3D point clouds are considered as remarkably meaningful features due to

their capability of representing the topological shape of a set of points.”

As 3D point clouds have become popular, edge and boundary detection has become an essential

research topic. Edges and boundaries are important geometrical features in an urban scene,

including artificial objects (Nie, 2016). Therefore, the prominent edge detection method is

expected to accurately extract the edges with correct alignment. Moreover, the challenges

continue as the edge detection methods are not properly evaluated to prove that they work on

large point cloud data. In addition, limited studies and research are available on 3D edge

extraction from point clouds as 3D data is more challenging. Most of the research is based on

2D image edge extraction, such as Robert edge detection, Sobel edge detection, Prewitt edge

detection, Kirsh edge detection, Robinson edge detection, Marr-Hildreth edge detection, LoG

edge detection and Canny edge detection (Mahmood, 2017).

To address the abovementioned problems, a new robust PCA-based 3D method is proposed to

detect an edge that is then extended and automated to detect boundaries. First, the analysis and

evaluation of the existing methods to extract the edge in remote sensing, photogrammetry, and

geoinformation are presented and reviewed in Section 5.2. Then, a new proposed PCA-based

117 | P a g e

method is presented in Section 5.3. Next, the new method’s evaluation in terms of low-cost

computation, high accuracy, and efficiency is discussed in Section 5.4. The validation and

application of the new method in a commercial software environment are presented in Section

5.5. Also, Section 5.5 states the problems like shadows, gaps and missing data using the

proposed method on different point cloud data. Finally, the findings are concluded in Section

5.6.

5.2 Evaluation and Analysis of Existing Methods

5.2.1 Edge Detection

One of the problems in reverse engineering is that it is extremely difficult, if not impossible, to

detect sub-regions robustly and automatically in the tessellated model with low computational

efforts. Galantucci and Percoco (2005) proposed a multilevel automatic algorithm for edge

detection in polygonised point clouds to overcome the problem. The aim is to obtain a Solid-

to-Layer (STL) model. The algorithm uses the tessellated point cloud to attain the STL model

by implementing a heuristic problem-solving technique to detect possible edge features in a

given point cloud. Then, STL is divided into two models with different levels of detail (LOD).

Points belonging to both models are ordered for recording the relation between points in the

triangle connection. For each point around the low LOD, all the surrounding points are detected

for both models, but there is no defined relationship between the original and subdivided

models. After clustering the points, edge detection is achieved on a low LOD model. The

contour evolves after finding the edge points at each iteration, and as the points are detected,

they are aggregated into a growing contour. Finally, Gaussian curvature at the contour point is

calculated. When the algorithm is finished, there are two sets of results, the first is the edge

points, and the second is the connection between them (Galantucci and Percoco, 2005). The

problem with the algorithm is that it assumes that each edge point has a neighbouring point that

belongs to an edge. Hence the formulated contour cannot always produce accurate results.

Park and Jun (2002) proposed an artificial neural network to identify the tessellated point cloud

features after an edge detection phase. The methodology first generates triangle meshes to

identify boundaries. Then, this boundary meshes are connected in a loop segmented into sub-

118 | P a g e

regions. Finally, the sub-regions are merged into a single feature using an artificial neural

network. The scanned points on feature-based reverse engineering systems reconstruct

standard mechanical engineering products. Another approach uses the data from a coordinate

measuring machine (CMM) to slice it in three orthogonal directions. A 2D NURBS spline is

fitted on each slicing plane to calculate maximum curvature points. The points detected

represent the object’s edge (Chen and Liu, 1997). However, the results conflict with whether

they belong to an edge or a boundary as there are no clear definitions of an edge or boundary

presented. Also, a robust algorithm is required to check if edge points belong to an edge or not.

Existing research considers statistical and geometrical methods for estimating the typical edges

to detect the edge’s sharpness. The main challenge is to estimate the normal on the detected

edge feature points as the points are highly dependent on the neighbourhood employed for edge

detection. For example, the neighbourhood might be surrounded by points that belong to a

different edge surface. Hence, giving incorrect points belonging to an edge (Bazazian, Casas

and Ruiz-Hidalgo, 2015). In (Weber, Hahmann and Hagen, 2010b, 2010a; Weber et al. 2012),

normal estimation is achieved using Delaunay triangulation, a technique for converting point

clouds into 3D surfaces by building a network of triangles over existing vertices of the point

cloud. The challenge of this technique is that it is susceptible to the points located around the

edges. Additionally, this technique’s computational process is costly and difficult to implement

in real-world large point cloud data applications.

Among various methods for extracting an edge’s sharpness, robust statistics are used by

Fleischman, Cohen-Or and Silva (2005). The method applies a statistical method that segments

neighbouring points into regions on the same surface. The neighbouring points are computed

using moving least squares (MLS). As the method tries to fit a model in the data which may

contain outliers, it uses a forward search method to identify the masked outliers. The masked

outliers are those points that usually cannot be identified from the statistics of the model, which

is fitted in the entire model set. These masked outliers can be a single point that affects the least

squares calculation to unwanted results, therefore are very hard to detect. The forward search

algorithm starts with an outlier-free small subset, and then to proceed through data, one sample

is added in each iteration to refine the model. The initial model is computed using the Least

Median of Squares (LMS) algorithm with a small 𝐾 value where 𝐾 is the randomly selected

sample points. Forward search can monitor multiple parameters to differentiate influential

points from outliers. Typically, forward search adds good samples first until all are exhausted

119 | P a g e

when outliers are added. The residual plot is used here to identify outliers. As the search

proceeds, the good sample sets are added first, followed by the outliers. The residual plot is

monitored to identify the residual threshold level. As soon as the outliers enter the sample set,

this is visible in the residual plot, where the residual of the outliers decreases and the residual

of good samples increases. Thus, as the residual reaches the threshold level, the samples are

considered outliers after that level.

Iterative refitting is applied to the data set 𝑆. The next step is to remove the samples that are

fitted 𝑆 = 𝑆/𝑆₁. This process is repeated until 𝑆 is empty. The iterative refitting algorithm

finally captures and identifies edges in the noisy data. The algorithm’s limitation is that its

forward search uses 𝐾 value as the sample set of points (Fleischman, Cohen-Or and Silva,

2005). If the value of 𝐾 is small, the algorithm works, and if the value of 𝐾 is large, iterations

are needed. However, for large data sets, the algorithm becomes sensitive to noise. As noisy

data have ambiguity between the smooth region and sharp features or if the sample density

signal-to-noise ratio is too low, the algorithm may classify the smooth region containing the

sharp feature as an edge. Additionally, the position of the reconstructed edge will not be reliable

if the two sides of the edge incline towards being collinear.

Extending the Fleischman et al. technique, Daniels et al. (2008) extracted the curves of the

features on the reconstructed point sampled surface. A robust method that extracts shape edges

in the model produces a set of connected and smoothed polylines identified as sharp features.

The algorithm uses a robust moving least-squares (RMLS) framework to approximate the

neighbouring surfaces. It also uses kernel regression to extend MLS further. An unorganised

set of points computes 𝑆 by moving least squares (MLS) defined by the projection operator.

From these, points 𝑃 near the potential features are extracted. This algorithm applies uniform

noise by shifting a point at a random vector length. Robust MLS is used to fit multiple surfaces

to neighbourhood points and project each point onto its adjacent intersection between two

surfaces. The division of points produces a primary set of polylines that are then reconstructed

to fill the feature gaps (Daniels et al., 2008). The technique’s benefit is demonstrated in three

applications. These applications include surface segmentation, surface reconstruction and

shape compression. The surface segmentation process defines multiple surface regions, which

are feature aligned by comparing Euclidean distance between the neighbours. Depending on a

feature polyline’s specified distance, the algorithm flags all points as boundaries or unvisited

120 | P a g e

points. The algorithm visits unvisited points and merges boundary points into the nearest point

group. After segmentation, surface reconstruction is carried out by producing a high-quality

mesh.

The algorithm uses MLS to produce models with a smooth sharp mesh. In addition, surface

compression is carried out for fast transmission and efficient storage (Daniels et al., 2008). The

limitations are that the algorithm uses MLS and RMLS; the calculation is considerably time-

consuming. Like Fleishman et al. and Daniel et al. techniques, Oztireli, Guennebaud and Gross

(2009) applied an algorithm based on robust MLS called novel MLS. Novel MLS includes

built-in methods for handling outliers and high-frequency features, controlling the sharpness

of the feature, spare sampling more frequently, and implementing novel MLS is easy and

efficient as it is pure computation without any processing. Furthermore, the MLS surface is

stated in local kernel regression, implemented by implicit moving least-squares (IMLS)—

combining these two results in novel robust IMLS.

Surface Segmentation and in-line segmentation are also used to extract edges in point clouds.

Demarsin et al. (2007) used segmentation to find sharp features using a graph approach with a

minimum spanning tree. The method delivers a set of candidate points that represents feature

lines. These feature lines are used to create a closed curve network. This algorithm applies the

region growing method with normal estimation to cluster the points, reducing point cloud size.

The method constructs a connected graph, where vertex and edges connecting 2 clusters are

formed. Since the connected graph may contain smaller clusters with unwanted gaps, each

cluster’s size is considered. The method adds the edge of neighbouring small clusters, which

results in an extended graph. Edges of small clusters could identify the sharp feature line’s

location; therefore, a minimum spanning tree is constructed. The weights of edges are

calculated between small clusters. The weight results in a graph with reduced edges of a larger

cluster. This graph is called the pruned graph. The graph may contain many short undesirable

branches that must be removed since they do not correspond to actual features. The unwanted

branches are removed by comparing with a threshold parameter resulting in a graph with

exactly one incident edge. The algorithm, therefore, uses each endpoint with an appropriate

point to reconstruct closed lines. As a final step, smoothing is performed to detect a smooth

graph with sharp features (Demarsin et al., 2007).

121 | P a g e

Xu et al. (2015) proposed surface segmentation and edge detection on heritage fractured

fragments by merging faces based on normal vectors. Xu et al. method primarily focuses on

surface segmentation and edge detection from geometrical features (also fragmented surfaces),

and then face and edge characters are merged into fractured surfaces. The method segments a

surface to extract the edge feature lines on the triangular meshes. Firstly, the Laplace operator

reduces noise by implementing a clustering algorithm based on vertex normal vector to find a

rough surface segmentation. Secondly, an integral invariant is introduced to calculate surface

roughness. The local bending energy function is defined by the ratio of vector differences and

distance between the vertices, which demonstrate local roughness. The original and fractured

surface points are differentiated using threshold values based on roughness. Then, an accurate

surface segmentation is applied by merging faces as per face normal and roughness. The

process is iterative and continues until the algorithm converges. Finally, edge feature lines are

attained based on the segmentation of the surface (Xu et al., 2015). The limitation of the method

is that it only focuses on cultural relic fragments. The method depends on sampling normal

vectors for clustering, assuming the point cloud data does not have any data gaps or overlapping

geometry features, which will produce wrong clustering results. Also, there are no explanations

of the set threshold values, which could be different for various point cloud data.

Lin et al. (2015) proposed a method that can be used to extract plane intersection line segments

from unfiltered extensive point cloud data. This approach extracts a point set from a straight

linear structure in 3D. Then, the 3D line support region and the line segment half-planes

(LSHP) are merged, providing a geometrical shape, and making the line segment more correct

and consistent. Next, the corresponding 2D line regions have been used to determine the

projection direction of the 3D region; after that, V shape extraction from the projected point

sets. The V shape consists of points that share a common endpoint. In order to extract the V

shape, dynamic programming is performed. Once the V shape is determined, the point set is

divided into two groups, and the 3D line segment is divided into two groups. Then, the two

groups are fitted separately by two planes. Finally, the region growing method is applied to

find the boundary of 3D line regions after constructing the LSHP structure. The method extracts

the line segments from urban point clouds but cannot achieve high performance as this method

fails to identify the boundary of 3D planes, the small region planes are difficult to detect, and

if the data is complex with vegetation, it becomes difficult to fit planes (Lin et al. 2015).

122 | P a g e

5.2.2 Region Growing Method For Edge Detection

As mentioned in Section 5.2.1, the region growing algorithm is proposed by many authors.

Region Growing is a method that segments point clouds into clusters and classifies regions

with sharp edges by analysing the normals of the points. Gumhold, Wang and MacLeod (2001)

used the Riemannian tree to build the information and then analyse the neighbourhood with

PCA. A Riemannian graph contains data points to 𝑘 nearest neighbours. The advantage of the

Riemannian graph is that it can handle noisy data, and computation time is comparatively less.

The method directly extracts feature lines from the point cloud. The approach has two phases:

(1) uses the points on the edge of the neighbour graph to assign penalty weights that are likely

to be part of the feature. A feature pattern set is followed by extracting a subgraph that decreases

the edge penalty weights. A Neighbour graph identifies points that are probably nearest to each

point or close to the underlying surface and connects them to form a graph. The graph helps

faster local computation and acts as a domain to identify feature patterns. After the neighbour

graph is generated, 𝑘 neighbours of each data point are analysed and classified into surface

points, potential border points and potential crease points. Potential border points and potential

crease points are assigned a penalty function, which helps measure the likelihood of data on a

border or a crease.

(2) The next phase is to extract feature line patterns using the penalty function computed in the

previous stage. Given penalty functions, the minimum spanning pattern on the neighbour graph

subsets is calculated, resulting in cycles that contain more edges than a user-defined constant.

Thus, this spanning pattern contains multiple short branches along with the edge. These short

branches are removed from the minimum spanning pattern. In the feature recovery stage, the

neighbourhood grouping is finished to recover the corner locations. Crease lines near the

junctions are reconstructed according to the grouping near the junctions. Delaunay filtering is

used to construct surface models.

The algorithm works with round edges, but the edges are undetected if implemented to

singleton points (for example, peak points on a cow’s horn) or sharp points as meshing is

complicated with polygon faces (Gumhold, Wang and MacLeod, 2001).

123 | P a g e

Weber, Hahmann and Hagen (2010b) proposed a method to detect particularly sharp or point-

sampled features in geometry. The method proposes to compute Gauss map clustering on all

the neighbouring points to find which points lie on the sharp edge features. Further, jump edge

filtering is used to reduce noise from the point cloud. The method starts with implementing the

𝑘𝑑-tree for performance purposes by searching the 𝑘-nearest neighbour of the points.

Afterwards, the triangles are formed by a point and its two nearest neighbours. Feature

detection is performed by analysing the clustering of the normals on the Gauss Map. Since

different features will result in different clustering of normals, noise in the point cloud can be

easily identified as normals of the triangles formed with noise points. These noise points will

not be part of another normal cluster and thus can be ignored. The cluster formation and

direction denote whether the feature is sharp or curved. If there are two or more distinguishable

clusters, it signifies a pointed feature and in case of no clustering and distribution of points on

the Gaussian map signifies a curved or smooth feature. The method merges separate clusters

into larger clusters by calculating the distance between the clusters, and the process will stop

once the distance crosses a certain threshold. The result is the point cloud with sharp marked-

up features. The advantage of the algorithm is that it implements adaptive local parameters for

different regions of point clouds. The disadvantage is that only line types and corners are

detected. Also, the test dataset was minimal to accurately estimate the time consumption on the

large point cloud dataset.

Feng, Taguchi and Kamat (2014) proposed an algorithm to detect multiple planes in the scene

in real-time. The algorithm starts by dividing the point cloud into non-overlapping point groups

and forming a graph whose node and edge represent a group of points. Non-overlapping points

give the algorithm the advantage of not detecting the boundaries of the planes. This graph is

subjected to agglomerative hierarchical clustering (AHC) to merge nodes belonging to a similar

plane until a point is reached when plane fitting mean squared error (MSE) is beyond a

threshold. AHC extracts the coarse planes by removing nodes with a high mean square error,

nodes with missing data, nodes containing depth discontinuities and nodes that lie at the

boundary between two planes. The algorithm saves total computational time by not estimating

the normal of each point like other algorithms. In AHC, initially, a node with minimum MSE

is identified, and then the neighbouring node is searched, resulting in minimum plane fitting

MSE. If the minimum merging MSE exceeds a threshold, the plane segment is identified and

extracted from the graph. The extracted planes are further refined using pixel-wise region

124 | P a g e

growing. The extracted planes on point clouds are impressive. However, the algorithm is tested

on limited data and node size selection is unclear.

5.2.3 Edge Detection in Other Fields

Since the scanners collect data in 3D, the processing is performed in 3D Datasets. However,

Lin et al. (2017) stated that

“Sometimes to detect the corresponding points between two shapes, of an object

efficiently the 3D shapes are converted into 2D images.”

The transformation is fast and efficient. Unlike point clouds with 3D points, an image only has

2D coordinate points. Ando (2000) proposed an algorithm to extract the edges, corners, vertices

and ridges in the 2D image, corresponding to 1D and 2D gaps in the intensity surface. In order

to extract edges, the algorithm is divided into two nonparametric stages. The first stage is the

image field categorisation based on the gradient distribution in order of its dimensionality. The

image field categorisation is based on two operators: uni-directionally varying region (Univar)

and Omni-directionally varying region (Omnivar).

As the Omnivar also includes uni-directionally, the second stage is dedicated to the detailed

analysis of the informative axis of Univar and Omnivar to find edges, corners, vertex and

ridges. The analysis includes the Gaussian curvature of the correlation function for texture

analysis and the covariance matrix of the gradient vector, followed by the canonical correlation

analysis. The analysis leads to an algorithm further classifying Edge/Ridge localisation by

gradient projection and Corner/Vertex localisation by angular gradient projection. The

algorithm assumes that the integration area is small, and the image is continuously

differentiable. The presence of gaps in the image leads to imprecise results (Ando, 2000).

Lee, Koo and Jeong (2006) proposed another algorithm that separates the row and column

edges from an edge image using primitive shapes. The aim is to extract straight lines from

images. The edge images consist of various line segments such as curves, lines or arcs,

categorised in rows and columns in digital coordinates. The detected edges in rows and

columns are then labelled. Some edge pixels are labelled as both row and column. Therefore,

125 | P a g e

there are four types of labels: row, column, both, and single. The 8-neighbour connectivity is

applied to extract the basic types of the straight line.

On each label, PCA is applied to extract eigenvectors and eigenvalues. The eigenvector helps

determine the direction of the pixel distribution of a line, and the eigenvalue helps determine

the distribution time. The lines extracted are then tested for their straightness and angle. To

take into account noise effects, a threshold is determined based on the small eigenvalues of the

lines. The absolute threshold results in a small number of accurate straight lines, and the relative

threshold results in more lines with inaccuracy (Lee, Koo and Jeong, 2006). The pros of the

algorithm are that it adjusts the threshold to reduce the noise effects, and the con is that it

depends on the threshold value to find precise straight lines. However, the edge labelling and

composition of the line take a lot of processing time. Also, the labelling could be ambiguous if

the angle difference is negligible between two straight lines.

5.2.4 Principal Component Analysis and Extensions

5.2.4.1 PCA

Principal component analysis (PCA) is a mathematical, statistical method that converts a set of

observations of a larger number of correlated variables (Kabacoff, 2019) into a smaller number

of linearly uncorrelated variables using orthogonal transformations (Suryanarayan and Mistry,

2016).

In linear algebra, an orthogonal transformation preserves the length of vectors and angles

between vectors. The set of uncorrelated variables is known as principal components. Principal

components are always less than the original number of observations.

The first principal component is defined on the largest possible variance, and then the

succeeding components with the largest variance under the constraint that it is orthogonal to

the preceding components. The resultant vector direction is an uncorrelated orthogonal set.

126 | P a g e

Table 5. 1 PCA definition in various fields

Year Name PCA relation Field

1901 Pearson, 1901 Pearson first introduced PCA as a fitting linear

subspace method to multivariate data by minimising

chi distance.

Mechanics

1933 Hotelling, 1933 Independently developed a method that explains the

concept of uncorrelated linear combinations of original

measurements by decreasing each variation

Mechanical

Engineering

1983,

1993

Golub and Van,

1983;

Stewart, 1993

Singular Value Decomposition (SVD) is a factorisation

of a matrix that generalises the eigen decomposition of

the normal square matrix to any matrix

Mathematics

1996 Golub, Hoffman and

Stewart, 1987

PCA is the Eigenvalue Decomposition (EVD) of XTX Linear

Algebra

1997 Nievergelt, 1997 Schmidt–Mirsky theorem to identify the nearest matrix

whose singular value

Psychometrics

2000 Chatterjee, 2000 PCA, known as Proper Orthogonal Decomposition

(POD), is an elegant method of data analysis to obtain

low-dimensional approximate descriptions of high-

dimensional processes.

Mechanical

Engineering

2009 Monahan et al., 2009 Empirical Orthogonal Functions analysis decomposes

a data set in orthogonal basis functions.

Geophysics,

Signal

processing

2001 Dony, 2001 PCA, known as Karhunen-Loève Transform (KLT), is

a linear combination of orthogonal functions. KLT is

used for compressing and summarising information

Image

Processing

2013 Gie Yong and Pearce,

2013

A related statistical method in machine learning and

data mining is known as Factor Analysis

Machine

learning and

data mining

2014 Kadam, 2014 A method for face recognition using PCA and discrete

cosine transform

Face

Recognition

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/w/index.php?title=Schmidt%E2%80%93Mirsky_theorem&action=edit&redlink=1
https://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem

127 | P a g e

PCA is adaptable in various science disciplines for multivariate analysis, as shown in Table

5.1. It has been used in biology, chemistry, demography, agriculture, oceanography,

psychology, quality control, genetics, geology, ecology and food research. PCA has also been

used in economics and finance to study stock market changes (Suryanarayana and Mistry,

2016). In computer science, PCA is used as a tool for data analysis and for making predictive

models. PCA can be calculated in two ways:

1) depending on semi-definite matrices, eigenvalue decomposition of the data

covariance matrix and

2) depending on rectangular matrices, the Singular value decomposition of the data

matrix by normalising or using Z scores of each data attribute (Abdi and Williams,

2010).

In terms of handling the variables while calculating PCA, it can be generalised as

correspondence analysis (CA) in order to handle qualitative variables and as multiple factor

analysis (MFA) in heterogeneous sets of variables (Abdi and Williams, 2010). As a result of

the method, PCA produces component scores called factor scores (the transformed variable

values corresponding to a particular data point) and loadings (the weight by which each

standardised original variable should be multiplied to get the component score) (Shaw, 2003).

PCA’s fundamental concept is to reduce the data set’s dimensions, which have many

uncorrelated variables. From the geometric viewpoint, the computation of PCA is to minimise

the variance. Its operations reveal the internal structure of data variance. If the original

uncorrelated data set is imagined as a set of coordinates in high-definition data space, PCA can

be used for a low-dimensional view, a projection of the objects when viewed from the most

explanatory viewpoint. To achieve the projection by using only the first few principal

components to reduce the dimensionality of the transformed data.

Like PCA, Factor analysis aims to reduce the dimensionality of the data set, but the approaches

to achieve is entirely different from PCA. Factor analysis searches for joint variations in

response to unobserved latent variables (the variable that is not directly observed but inferred

from other measured variables). The information gained about the latent variables is used to

reduce the variables in the data set. It incorporates more domain-specific assumptions about

the underlying structure (Young and Pearce, 2013). As PCA defines a new orthogonal

https://en.wikipedia.org/wiki/Predictive_modeling
https://en.wikipedia.org/wiki/Predictive_modeling

128 | P a g e

coordinate system that optimally describes the variance in a single dataset similarly, canonical

correlation analysis (CCA) defines coordinate systems that optimally describe the cross-

covariance between two datasets (Barnett and Preisendorfer, 1987).

5.2.4.2 Principal Component Analysis Extensions

PCA with a wide variety of extensions have been proposed; this section discusses some of

them. Feature extraction using PCA has been used in various applications such as pattern

recognition, noise detection, and image indexing. Scholkop, Smola and Muller (2012)

introduced a new method called Kernel PCA (KPCA). KPCA is an extension of PCA to handle

the data points in nonlinear space and better understand the extracted nonlinear features. KPCA

uses the kernel method, which can be applied to any algorithms formulated for the dot product.

The utility of KPCA is pattern recognition using a linear classifier. Nonlinear data is fed into

high dimensional space, which allows it to behave linearly, and therefore, nonlinear mapping

never happens. The use of a kernel means that all the points are represented using the distance

calculated to all other points to form a kernel matrix. To this matrix, eigenvalue decomposition

(EVD) has been applied. Since the kernel components are not linear, the limitation of KPCA

is that it will not result in principal components by itself, but the data projection will be on

those components (Scholkop, Smola and Muller, 2012; Oreifej, 2013). The advantages of

KPCA are that nonlinear components result in better recognition rates and the possibility of

using more components to increase performance with minimal computational cost.

The traditional approach to PCA calculation lacks the probabilistic model for the observed data

set. So, Lawley (1953) and Anderson & Rubin (1956) investigated PCA from a probabilistic

point of view, and their research was later extended to Probabilistic PCA by Tipping (Tipping

and Bishop, 1999). They demonstrated

“How principal component analysis may be viewed as a maximum-likelihood procedure based

on probability density model of observed data” that enables the comparison with other

probabilistic algorithms.

The Gaussian noise model is applied with eigenvalues and eigenvectors of the sample

covariance matrix. In addition, the Expectation Maximisation algorithm (EM) is used for

https://en.wikipedia.org/wiki/Canonical_correlation
https://en.wikipedia.org/wiki/Canonical_correlation

129 | P a g e

finding the principal axis by iteratively maximising the likelihood function. Therefore, EM

makes Probabilistic PCA more efficient with larger data dimensionalities. Furthermore,

probabilistic PCA demonstrates the capacity to handle the data with missing values since it is

a generative model. The applications of the algorithm are the visualisation of data and image

compression (Tipping and Bishop, 1999).

Many applications, such as computer vision and image processing, have problems with

subspace segmentation. To overcome the problem, PCA has been extended to generalised PCA

(GPCA). GPCA is the algebraic-geometric approach for subspace segmentation of the data

points (Vidal, Ma and Sastry, 2005).

The GPCA approach includes the collection of polynomials from data and then evaluating their

derivatives at data points to determine the subspaces passing through that point. PCA for noise

in the exponential family, the method has probabilistic interpretation using a Poisson

distribution which generates each data point with a mean parameter. It uses Poisson distribution

with loss function without any constraints on matrices. PCA minimises the squared loss

function as assumed in the Gaussian noise model. However, the Poisson distribution may better

fit better integers, and the Bernoulli distribution may better fit binary data. The similarity of

these distribution methods is the density function which can also be calculated as a member of

the exponential family and could be extended to PCA algorithms (Collins, Dasgupta and

Schapire, 2001; Oreifej, 2013).

All of the above extensions of PCA have certain limitations and associated problems. The

drawbacks of KPCA are that it is highly dependent on nonlinear data and hence will never

produce a linear PCA component. KPCA is also not suitable for identifying the kernel function.

Probabilistic PCA lacks the distribution parameters of noise and is more beneficial for data

compression. On the other hand, GPCA works efficiently on small data sets, and the robustness

is not strong for outliers. Also, GPCA is more used in image processing. Therefore, it is

essential to propose an algorithm to overcome the robustness of noise/outliers for efficient

feature detection in the large 3D point cloud with low computation cost.

130 | P a g e

5.2.4.3 Principal Component Analysis Existing Applications

Nurunnabi, Belton and West (2012) proposed a method using PCA to segment point cloud

data. Nurunnabi et al. statistically robust segmentation help to identify the underlying patterns

in an unsupervised nonparametric fashion. The algorithm uses a minimum covariance

determinant to produce a local covariance matrix. The PCA-based segmentation applications

on terrestrial laser scanning datasets deliver good results for multi-planar surface extraction.

However, the proposed algorithm does not potentially work for non-planar complex surface

reconstruction. Belton and Bae (2009) proposed an automatic method for detecting roadside

kerbs on urban point cloud data sets. The algorithm is divided into multiple phases to achieve

detection.

1) The first step is segregating the road surface and other surfaces using statistical

classification and segmentation. Next, the points that belong to the road surface are

sampled and approximated using this technique.

2) After identifying the road surface points, the orientation and direction of the kerb at

the candidate points are estimated using PCA on the local neighbourhood.

3) The candidate points are fitted with a kerb profile based on the derived cross-section

and neighbouring properties.

4) The profile is incrementally chased along the kerb using candidate points to

determine the kerb’s path along the roads.

The algorithm results in a line representation of the kerb feature (Belton and Kwang-Ho, 2009).

Bazazian, Casas and Ruiz-Hidalgo (2015) proposed sharp edge detection using a Gauss map

clustering method. The algorithm uses the analysis from the eigenvalue of the covariance

matrix defined by each point’s k-nearest neighbour. First, PCA is applied to each cluster in

local squares. After each point, a normal estimation of the k-nearest neighbour is applied to

those sample points. Finally, the nearest neighbours are clustered by normal. The method is

fast and accurate in small dihedral angles for detecting edges but is sensitive to the noise in the

neighbourhood. The algorithm also lacks the threshold required for multi-scale analysis.

131 | P a g e

5.2.5 Summary

Section 5.2 analyses and evaluates the existing algorithms and methods for edge detection in

point clouds. Followed by PCA in different fields and the existing algorithms using PCA

extensions and applications have also been presented and reviewed.

It has been identified that there is a lack of algorithms or methods that can be used to produce

adequate results on three-dimensional point cloud data. The findings include the lack of

evidence of implementing the existing algorithms on large point cloud data. The algorithm

must be cost-efficient because the point clouds could be massive with billions of points (disk

storage of 150 GB or more).

The existing algorithms lack the verification of the processing time and demonstrate how large

or small the point cloud data was. The existing algorithms also fail to produce results in the

presence of different obstacles. Obstacles are very common in real-world point cloud data.

Examples of obstacles include a gap, the shadow of the objects, the reflection of lights/rays,

the elimination of unwanted feature detection, and the missing part of point cloud data.

Another common challenge is eliminating the outliers/noise while detecting features in the

point cloud. The existing PCA methods and extensions overcome some of the outlier’s

problems; however, there is no evidence of a single method/algorithm working on different

types of the point cloud, such as urban point clouds, terrain point clouds, handheld point clouds

and airborne or LiDar point clouds with efficient computation for processing large point cloud

data.

Therefore, it is necessary to propose, design, and develop a robust, accurate, and efficient

method for edge detection in large 3D point cloud data with a minimum computational cost.

Section 5.3 proposes a PCA-based edge detection method with real-time implementations on

larger point clouds in the commercial environment.

132 | P a g e

5.3 A New PCA-based Method for Edge Detection

5.3.1 Overview

This section proposes a new PCA-based algorithm to detect the edges of different objects in

the raw point cloud with efficiency, accuracy, and robustness. The procedure of the proposed

algorithm is shown in Fig. 5.1.

The algorithm is designed to detect 3D edges on raw point cloud data, i.e., not filtered data,

which may contain outliers and noises. The proposed algorithm consists of five stages: (1) the

first stage is to sample the raw point cloud using the search sphere in a real-time large 3D point

cloud (2) the second stage is to apply PCA to the sampled point cloud data in the search sphere

and to extract the normal from PCA (3) the third stage is to categorise all the points as Plane1,

and Plane2 through iterations (4) the fourth stage is to remove the points in both categories

according to the threshold (5) the fifth stage is to identify the edges by intersecting two planes.

Figure 5.1 Procedure of PCA-Based edge detection algorithm

133 | P a g e

5.3.2 Important Terms

Different notations of edges have been studied in geometry, image processing, reverse

engineering and topology. Mathematically in three-dimension, an Edge is defined as a line

segment where the two surfaces meet. In geometrical 3D shapes, any line connecting two

corners is called an edge, or any two connected surfaces also form an edge (Boster, 2016),

shown in Fig 5.2 (a). Pierce (2018) defined an edge as a line segment on the boundary joining

vertex (corner points) to another, as shown in Fig 5.2 (b).

 (a) (b)

Figure 5.2 Edges defined by (a) (Boster, 2016) and (b) (Pierce, 2018)

In relation to point clouds, many studies have defined edges. Edges are defined as the curves

along the surface directions that change abruptly—the edges by edge point representation are

shown in Fig 5.3 (Du, 2020). These edge points are crucial for point cloud shape analysis.

Wang and Shan (2009) defined edges in two types: jump and crease. Jump edges are defined

as discontinuities in height values, and crease edges are formed when two surfaces meet.

According to Farin, Hoschek and Kim (2002), an edge is a real analytic curve with finite length,

whose limits of tangents are endpoints, and sharp edges are computed by surface-surface

interaction. In addition, the extracted edge points are used in point cloud processing methods

such as segmentation (Gilani, Awrangjeb and Lu, 2018) (Wang and Shan, 2009), mesh

generation (Salman et al., 2010) and resampling (Huang, 2013).

134 | P a g e

Figure 5.3 Du (Du, 2020) defined edges as curves along the surface direction

Using words like corners and boundaries can be confusing, and many interpretations of edges

in different fields exist. To avoid any misunderstanding, in this thesis, two kinds of edges are

defined for a typical point cloud as follows:

• The first kind of edge is called Edge Sect. An edge sect is an intersection line of any

two planar surfaces. The intersection line can be formed on a planar surface, sharp

edges line, break lines of a slope, walls and footpaths. Fig. 5.4 (a) shows the example

of two different planar surfaces. The intersection of these surfaces is called Edge Sect.

• The second kind of edge is called an Edge Stream. An edge stream is generally used

to find edges without any gaps. The Edge stream could be defined as the series of

intersection lines (edges) forming a stream of defined edges of consecutive planar

surfaces. The point clouds have many disturbances; therefore, the edge stream must

stop when there is any presence of disruptions like a large angular gap between two

planar surfaces if the data is missing due to the shadow of other objects or due to abrupt

changes in the direction of the normal of the planar surfaces in the point cloud.

Examples of Edge Streams detection include road kerbs, building boundaries, roof

edges, walls and floor plan outlines. An example of edge stream detection is shown in

Fig. 5.4 (b) on the road kerb.

135 | P a g e

 (a) (b)

Figure 5.4 Defined two types of edges (a) Edge sect and b) Edge Stream (the pink line)

Another essential method this thesis defines is the search sphere. A search sphere is a powerful

tool used in various techniques in the thesis, such as the Search sphere used to delete points, as

discussed in Chapter 4. This chapter uses the sphere to search and detect edge sects and

streams. A Search sphere is a method of sampling the point cloud using a real-time 3D sphere.

The search sphere moves along the cursor in 3D space in real-time, as shown in Fig. 5.5. The

search sphere’s size is user changeable, giving the flexibility to make the sphere big or small

according to the point cloud data. The recommended size depends on the user’s applications

and the size of the feature to be extracted. All the points inside the search sphere are highlighted

as the chosen points are apparent.

 (a) (b)

Figure 5.5 (a) Search sphere on a given point cloud

(b) Magnified image with its inside points highlighted that are selected.

136 | P a g e

5.3.3 The Proposed Algorithm

In this section, the procedure of the proposed algorithm will be presented. A flowchart diagram

of the proposed algorithm is shown in Fig. 5.6. The algorithm is applied to detect edge sects

and edge streams in any given point cloud. The output is the intersection of two best-fit planes

in the given point cloud data feature.

Figure 5.6 A flowchart diagram of the proposed algorithm.

137 | P a g e

5.3.3.1 Data Sampling

In the first phase, the whole raw point cloud data 𝑃(𝑥, 𝑦, 𝑧) = {1,……𝑁𝑖} is sampled in real-time

by using the search sphere. All the points in point clouds have RGB and intensity values.

However, the point’s RGB and intensity are not used for implementing the proposed algorithm,

just the X, Y, and Z values. Point clouds are generally large; therefore, point clouds must be

sampled first. For example, a dataset used in this thesis for evaluation, i.e., University of

Gloucestershire Park Campus data (Fullwood house), has 580.94 billion points and a church

data set with 257 million points. For this purpose, the search sphere is used. A search sphere

moves in real-time along the cursor wherever the mouse cursor is pointed to in the point cloud

data. An example in Fig 5.7(a) shows that a green dot in the centre is where the mouse cursor

is currently pointing in 3D space. The fuchsia-coloured points are the sampled points inside

the sphere. The user sets the size of the search sphere, which directly depends on the size of

the feature to be extracted. In the point cloud where the edge sects and edge stream are essential

to detect are building walls, footpaths, kerbs, slope-break in any terrain data, stairs and

windows. For example, edges found on the stair in the University of Gloucestershire Park

Campus data set are shown in Fig 5.7 (b). All the sampled points inside the search sphere are

labelled as 𝑆𝑆₀. Also, these points are highlighted to make the selected sampled points evident.

 (a) (b)

138 | P a g e

(c)

Figure 5.7 Sphere in use (a) for sampling (b) to find the edges on stairs

(c) to find edges between wall and ground

5.3.3.2 PCA Implementation

The second phase is PCA implementation, which plays a significant role in the algorithm. PCA

is defined by Jolliffe I.T (2002) as an “orthogonal linear transformation that transforms the

data to a new coordinate system such that the greatest variance by some scalar projection of

the data comes to lie on the first coordinate (called the first principal component), the second

greatest variance on the second coordinate, and so on.”

The goal is to transform a given D-dimension of data set 𝑋 = {𝑥𝑖 ……… . 𝑥𝑛} of a new

dimension 𝑝. The data is organised next. The data comprises a set of observations of

𝑝 variables. To reduce the dimension of the data so that each observation can be described

as 𝑝 < 𝐷. Further, the data are arranged as a set of data vectors {𝑥𝑖 ……… . 𝑥𝑛} where 𝑥𝑖

representing a group of observations of 𝑝 variables. Next, the mean is calculated for each

dimension, as shown in Equation 5.1 for 𝑋.

𝑋̅ =
1

𝑁
 ∑𝑥𝑖

𝑁

𝑖=1

 (5.1)

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Coordinate_system

139 | P a g e

Then the Standardization of the data is performed by subtracting the mean from the original

data (from each element) and represented as ‘data adjusted’. Where the array is formed by

(𝑥 − 𝑥̅, 𝑦 − 𝑦̅, 𝑧 − 𝑧̅). The length of data adjusted is same as the original data.

The covariance matrix is a 𝑚 × 𝑚 symmetric matrix where 𝑚 is the number of dimensions

that have the covariances associated with all possible pairs of the initial variables (Jaadi, 2022).

For this thesis, the data used is three-dimensional; therefore, the covariance matrix is a 3×3

matrix.

Covariance Matrix:

[

𝐶𝑜𝑣(𝑥, 𝑥) 𝐶𝑜𝑣(𝑥, 𝑦) 𝐶𝑜𝑣(𝑥, 𝑧)
𝐶𝑜𝑣(𝑦, 𝑥) 𝐶𝑜𝑣(𝑦, 𝑦) 𝐶𝑜𝑣(𝑦, 𝑧)
𝐶𝑜𝑣(𝑧, 𝑥) (𝐶𝑜𝑣(𝑧, 𝑦) 𝐶𝑜𝑣(𝑧, 𝑧)

] (5.2)

The covariance matrix is denoted as Equation 5.3.

𝐶 =
1

𝑁
 ∑(𝑝𝑖 − 𝑝) (𝑝𝑖 − 𝑝)

𝑇
𝑁

𝑖 = 1

 (5.3)

where 𝐶 is the conjugate transpose operator, 𝑁 is the total number of points, 𝑝𝑖 is the feature

component and 𝑝̅ is the mean of all the points, and 𝑇 denotes the transpose matrix. Eigenvectors

1, 2, 3 and eigenvalues 1 ,2 , 3 are computed from the covariance matrix to determine the

data’s principal components. Principal components are new variables constructed as linear

combinations or mixtures of the initial variables (Jaadi, 2022). The principal components are

uncorrelated, with maximum information in the first component, then the maximum remaining

information in the second and then the third. Once the eigenvalues are sorted such that 1 ≥

 2 ≥ 3.

The correlation between variables 𝑥𝑖 and principal component 𝜑𝛼 is given by Equation 5.4

(Aluja-Banet, Morineau and Sanchez, 2018).

140 | P a g e

𝑐𝑜𝑟(𝛼, 𝑗) = ∑𝑝𝑖 (
𝑥𝑖𝑗

𝑠𝑗
)(

𝜑𝑖𝛼

√𝛼

)

𝑛

𝑖=1

 (5.4)

 Figure 5.8 PCA in 3D with highlighted arrows in red (PC1), blue (PC2), and green (PC3). Source: (Cheng, 2022)

Example:

Suppose the data set is 2D with variable m, n, and the eigenvectors and eigenvalues of the

Covariance matrix are as follows:

𝑣1 = [
0.677
0.735

] 1 = 1.28

𝑣2 = [
−0.735
0.677

] 2 = 0.049

After sorting the eigenvalues in descending order 1  2 the eigenvector corresponding to the

first principal component is 𝑣1 the second principal component corresponds to 𝑣2. To

determine the variance in percentage in the above example, each component is divided by the

total eigenvalues, which results in PC1 with 96% and PC2 with 4% variance of the data.

141 | P a g e

After applying PCA to the sample of the point cloud data set, the results are the following:

• Mean of the array of points inside the sample data set (sphere),

• Principal components (PC) – First PC is found where the maximum variation lies, the

second PC with less variation than the first and third. All three PCs are orthogonal to

each other and transform into a new coordinate system,

• Eigenvectors – direction cosine of each principal component,

• Eigenvalues – a scalar derivation from eigenvectors.

The implementation of PCA for the proposed algorithm starts by calculating the mean of all

sampled points labelled as 𝑆𝑆₀ . PCA is then applied to the sampled points 𝑆𝑆₀. For all 3D

points 𝑆𝑆₀, the covariance matrix is computed by using Equation 5.1, and the eigenvectors 𝑉1
⃗⃗ ⃗,

𝑉2
⃗⃗ ⃗ and 𝑉3

⃗⃗ ⃗ and eigenvalues 𝜆1, 𝜆2 and 𝜆3 are also obtained. The three principal components

𝑝𝑐1⃗⃗ ⃗⃗ ⃗⃗ , 𝑝𝑐2⃗⃗ ⃗⃗ ⃗⃗ and 𝑝𝑐3⃗⃗ ⃗⃗ ⃗⃗ . are derived through a transformation in a way that the first principal

component 𝑝𝑐1⃗⃗ ⃗⃗ ⃗⃗ has the most significant possible variance succeeding second 𝑝𝑐2⃗⃗ ⃗⃗ ⃗⃗ and third 𝑝𝑐3⃗⃗ ⃗⃗ ⃗⃗

with the highest possible variances. Since the three components are orthogonal to each other,

the third principal component is the normal 𝑛̂ to the plane of the first and second principal

components. Based on the extracted normal and the origin, the first plane is fitted on all points

in 𝑆𝑆₀.

5.3.3.3 Plane Detection

The third phase is to find the best-fit plane on the sampled data in 𝑆𝑆₀. After the extraction of

the normal and the origin, a plane is fitted on the points 𝑆𝑆₀. A plane is 3D is defined by

Equation 5.5

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (5.5)

142 | P a g e

and with the origin and normal, the plane equation is presented in Equation 5.6

𝑛⃗ . 𝑂(𝑥, 𝑦, 𝑧) = 0 (5.6)

where 𝑛⃗ is the directional vector of the normal and 𝑂(𝑥, 𝑦, 𝑧) is the origin. The best-fit plane

is fitted on the sampled data inside the sphere.

Figure 5.9 Best fit plane on the data presented as red points

The points which form the fitted plane could also contain outliers, which can cause the plane’s

misfit on the sampled data. Therefore, the next step is to filter all the outlier points. A threshold

is applied based on distance calculation to achieve the outlier removal from each point to the

fitted plane. The threshold is the standard deviation value. The result of the threshold is plane

𝑃𝑙1. Furthermore, all the points remaining are classified as outliers. To these outlier points,

PCA is applied again to find the normal 𝑛̂ for the second plane. Based on the distance

calculation threshold from all the remaining points (not including the first plane points),

outliers are separated and resulting in the second plane 𝑃𝑙2. The distance of the points

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) to the plane 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 is Equation 5.7.

∆ =
|𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 + 𝐷|

√𝐴2 + 𝐵2 + 𝐶2
 (5.7)

143 | P a g e

The algorithm includes the perpendicular least squares fitting method, which is superior to

vertical and gives more accurate results.

Figure 5.10 Least Squares Fitting Perpendicular offset

The perpendicular regression is implemented with the least squares fitting that calculates the

distance of a point from a plane. Then, all points’ distance is calculated to the planes as shown

in Fig 5.11 and minimises the squared distance to the planes. The coefficient of perpendicular

offset to the plane 𝑧 = 𝑎0 + 𝑏0𝑥 + 𝑐0𝑦 is given by Equations 5.8 and 5.9 (Sampaio, 2006)

𝑎 =
𝑎𝑚

𝑛𝑧0
 , 𝑏 = −

𝑛𝑥0

𝑛𝑧0
 , 𝑐 = −

𝑛𝑦0

𝑛𝑧0
 (5.8)

𝑛𝑥0 =
−𝑏0

√1 + 𝑏0
2 + 𝑐0

2
 , 𝑛𝑦0 =

−𝑐0

√1 + 𝑏0
2 + 𝑐0

2
 ,

 𝑛𝑧0 =
1

√1 + 𝑏0
2 + 𝑐0

2
 (5.9)

144 | P a g e

where 𝑎𝑚 is intercept after convergence, where 𝑑0 =
𝑎0

√1+𝑏0
2+𝑐0

2

 is the distance of the plane

from the origin and 𝑛𝑥0, 𝑛𝑦0 and 𝑛𝑧0 are direction cosine of the unit vector 𝑛0⃗⃗⃗⃗ normal to the

plane.

Figure 5.11 Two planes’ normals 𝑛1⃗⃗⃗⃗ and 𝑛2⃗⃗⃗⃗

5.3.3.4 Classification

The fourth phase is to classify all the points through iterations. The points are classified into

three groups. As discussed in Section 5.3.3.3, two planes are fitted on the sampled data as 𝑃𝑙1

and 𝑃𝑙2. The leftover points marked as outliers in the search sphere 𝑆𝑆₀ are re-evaluated to fit

the sample points. The outlier points are reallocated to respective planes based on the threshold.

After a few iterations, the points nearest to either 𝑃𝑙1 or 𝑃𝑙2 are marked as 0 and 1, and all the

remaining points are marked as 2. The details are explained in Section 5.5.4. The points marked

with 0 are the best-fit plane points for the first plane 𝑃𝑙1 , 1 for best-fit plane points for the

second plane 𝑃𝑙2 and 2 for the outlier points.

The final phase is to extract the edge. The intersection of two best-fit planes results in an edge

sect. The edge sects consist of three points: starting, centre and endpoints. The three points play

an essential role in edge stream detection, as explained in Section 5.3.5.

145 | P a g e

5.3.3.5 Best Fit Planes Algorithm

Input: Point cloud =𝑃(𝑥, 𝑦, 𝑧) = {1,…… .𝑁𝑖}.

1: Edge points {E}←∅

2: For i= 0 to size {[𝑃]}do

3: Mark {[𝑃]} as 𝑃₀

4: Calculate mean {M} ← 𝑋̅, 𝑌,̅ 𝑍̅

5: Calculate Covariance Matrix {C}←
1 0 0
0 1 0
0 0 1

6: Calculate eigenvalues Matrix {Eᶹ} ← {0, 0, 0}

 and eigenvector Matrix {V} ← {0,0, 0}

7: Perpendicular offset ←𝑜𝑠𝑡⃗⃗⃗⃗⃗⃗ and distance 𝑑

8: Mark 𝑃₀ based on Threshold 𝜖 (inliers) and rest 𝑃₁

9: Continue

10: End If

11: 𝑃₀← {0, 0, 0}, or 𝑃₁← {0, 0, 0}

12: Compute 𝑃𝑙1 and 𝑃𝑙2

13. Compute line 𝑙

14: Return Edge points{E}

146 | P a g e

5.3.4 Outlier Detection

Once PCA has been applied to the sampled points inside the search sphere, as discussed in

Section 5.3.3. Each point PNi inside the search sphere is analysed. Further, based on its distance

to either plane, the point is included in the best-fit plane calculation for the respective plane.

As PCA does not deal with the noise (Sengupta and Mitra, 1997), the proposed algorithm is

combined with the least squares perpendicular regression method in order to obtain the best-

fit planes 𝑃𝑙1 and 𝑃𝑙2 in the given data set. Perpendicular offset is calculated for all the points

𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) labelled as 𝑆𝑆₀ using Equations (5.10) – (5.12)

𝑃𝑙𝑑𝑖𝑟 = (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥 × 𝑝𝑐.⃗⃗⃗⃗ ⃗ 𝑥𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦 × 𝑝𝑐.⃗⃗⃗⃗ ⃗ 𝑦𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧 × 𝑝𝑐.⃗⃗⃗⃗ ⃗ 𝑧𝑖) (5.10)

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥 × 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦 × 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧 × 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧) (5.11)

𝑜𝑠𝑡 ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
((𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑥 × 𝑝𝑖. 𝑥𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑦 × 𝑝𝑖. 𝑦𝑖) + (𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ . 𝑧 × 𝑝𝑖. 𝑧𝑖) − 𝑃𝑙𝑑𝑖𝑟)

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
 (5.12)

where 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ is the vector of the third principal component, 𝑝𝑐⃗⃗⃗⃗ is the vector of the point cloud

data and 𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗ is the vector of perpendicular offset of all points to the respective planes, as shown

in Fig 5.12.

(a)

147 | P a g e

(b)

Figure 5.12 (a) The origin axis X, Y, and Z of the points cloud and three principal components and (b) the Best-

fit plane with the white arrow showing the gradient of the plane.

The 𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗ vector of every point is calculated from the first fitted plane (𝑑𝑝𝑖 = perpendicular

distance of each point to plane one) and stored in 𝑃0 and for the second fitted plane (𝑑𝑝𝑗 =

perpendicular distance of each point to plane two) stored as 𝑃1. Standard deviation is calculated

for the points inside 𝑃0 and 𝑃1. Based on the 𝜖 threshold, points are removed from 𝑃0 and 𝑃1.

The threshold value is calculated using the standard deviation 𝜎 of all points by Equation 5.13.

𝜎 = √
∑(𝑣𝑖 − 𝜇)2

𝑁
 (5.13)

where 𝑣𝑖 is the perpendicular distance of each point from the plane, 𝜇 is the mean of all the

perpendicular distances, 𝑁 is the total number of points’ distances. All the removed points from

𝑃0 and 𝑃1 are re-evaluated by 𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗ vector of all the points in the search sphere 𝑆𝑆₀.

As shown in Fig 5.13(a), the blue dotted circle is a 3D real-time search sphere 𝑆𝑆₀ where all

the points are assessed based on the 𝑜𝑠𝑡⃗⃗⃗⃗ ⃗⃗ ⃗ vector and a 𝜖 threshold. The point is then considered

in the first or second plane calculation. After a few iterations, all the points in 𝑃0 are labelled

as ‘0’, points in 𝑃1 are labelled as ‘1’, and all the remaining points are labelled ‘2’. The points

148 | P a g e

labelled as ‘2’ are considered outliers. Two best-fit planes are 𝑃𝑙1 and 𝑃𝑙2 generated from the

points labelled ‘0’ and ‘1’, as shown in Figures 5.13 (b) and (c).

(a)

(b) (c)

Figure 5.13 (a) Blue dotted circle represents a live 3D search sphere, the solid red line is the best-fit plane Pl1, and

the solid green line is the best-fit plane Pl2. The black dots represent points inside the sphere PNi red, and the green

ellipse or circles represent the points belonging to plane red or plane green. (b) Perpendicular regression method

on each point dpi and dpj and the outlier (green coloured) points are removed (c) Combining the diagram shown

in a) and b).

149 | P a g e

5.3.5 Edge Sects

As discussed above, the proposed algorithm implementations can be extended further to obtain

two best-fit planes 𝑃𝑙1 and 𝑃𝑙2 from the sampled point cloud data shown in Fig.5.14 (a). Planes

are called best fit as they best fit the given dataset until all the points satisfy the threshold and

are grouped as mentioned above.

The points are grouped as 𝑃₀ and 𝑃₁ based on their offset distance 𝑑𝑝𝑖 and 𝑑𝑝𝑗 from each plane,

respectively, as shown in Fig 5.13, the rest of the points are considered outliers. The

intersection of two best-fit planes produces an edge sect. An edge sect is presented using an

example to show the edge points, as shown in Fig. 5.14 (b) as follows:

a) A centre point,

b) Start point, and

c) End point.

 (a) (b)

Figure 5.14 (a) The two planes, red and green, are the best fit planes derived from the proposed algorithm, and

(b) The intersection forms a blue line, and the green dots are edge sect points

150 | P a g e

5.3.6 Edge Stream: Extension of Edge sects

Applying the proposed algorithm for edge detection method (PCA) inside the search sphere.

The result is two planes, three edge points and two sets of PCs (principal components). From

the edge start point, as shown in Fig 5.14, the edges are detected in real-time, and their results

are shown in Fig 5.15.

• Three principal components

• Three eigenvalues

• X, Y, Z components of the start point 𝑥1, 𝑦1, 𝑧1 , centre point and end point.

Figure 5.15 Resultants of PCA

151 | P a g e

Figure 5.16 Example of a road kerb with red points being the centre edge points of edge sects

The edges have three points. Figure 5.16 presents centre points found from the edge line inside

the sphere as input for edge stream detection. The extension of edge sects is applied by using

the following equation:

(

𝑥2

𝑦2

𝑧2

) = 𝑇 (

𝑑𝑙
𝑑𝑙
𝑑𝑙
1

) (5.14)

where T is a transportation matrix and is defined in Equation 5.15

𝑇 = [

cos 𝜃1𝑥 0 0
0 cos 𝜃1𝑦 0

0 0 cos 𝜃1𝑧

𝑥1

𝑦1

𝑧1

] (5.15)

The proposed algorithm is applied and results in the first centre edge point. If considering only

centre points, the result points along the kerb are shown in Fig 5.16. The second centre point

has another two sets of principal direction vectors, eigenvalues and x, y, z components (similar

to the first centre edge point) and so on for each centre edge point. For the principal vector, Let

 𝑉⃗ 1,𝑓 = (𝑥1,𝑓 , 𝑦1,𝑓 , 𝑧1,𝑓) be the first principal vector of plane 1

 𝑉⃗ 1,𝑠 = (𝑥1,𝑠 , 𝑦1,𝑠 , 𝑧1,𝑠) be the second principal vector of plane 1

𝑉⃗ 1,𝑡 = (𝑥1,𝑡 , 𝑦1,𝑡 , 𝑧1,𝑡) be the third principal vector of plane 1

152 | P a g e

 𝑉⃗ 2,𝑓 = (𝑥2,𝑓 , 𝑦2,𝑓 , 𝑧2,𝑓) be the first principal vector of plane 2

 𝑉⃗ 2,𝑠 = (𝑥2,𝑠 , 𝑦2,𝑠 , 𝑧2,𝑠) be the second principal vector of plane 2

 𝑉⃗ 2,𝑡 = (𝑥2,𝑡 , 𝑦2,𝑡 , 𝑧2,𝑡) be the third principal vector of plane 2

Obtain the angle between 𝑉1
⃗⃗ ⃗ and 𝑉2

⃗⃗ ⃗ by applying dot product

cos 𝜃 =
𝑉1
⃗⃗ ⃗ ∙ 𝑉2

⃗⃗ ⃗

|𝑉1
⃗⃗ ⃗ 𝑉2

⃗⃗ ⃗ |
 (5.16)

Until θ  θt, the procedure will determine the next point where the sphere’s centre is

positioned. Thus, Equation 5.14 will now become 5.17, and Equation 5.15 will become 5.18.

(

𝑥𝑖+1

𝑦𝑖+1

𝑧𝑖+1

) = 𝑇 (

𝑑𝑙
𝑑𝑙
𝑑𝑙
1

) (5.17)

𝑇 = [

cos 𝜃𝑖𝑥 0 0
0 cos 𝜃𝑖𝑦 0

0 0 cos 𝜃𝑖𝑧

𝑥𝑖

𝑦𝑖

𝑧𝑖

] (5.18)

While continuing with the above procedure, certain checks need to be performed:

• Register the number of points in the sub-sampled point cloud within the sphere, which

is denoted by 𝑁𝑖1 and 𝑁𝑖2

• The average is calculated for 𝑁𝑖1 and 𝑁𝑖2 where 𝑇𝑁𝑂𝑃 is the total number of points as

shown below:

𝑁1𝑎 = ∑
𝑁𝑖1

𝑇𝑁𝑂𝑃

𝑀𝑖

𝑖=1

 (5.19)

𝑁2𝑎 = ∑
𝑁𝑖2

𝑇𝑁𝑂𝑃

𝑀𝑖

𝑖=1

 (5.20)

153 | P a g e

• Calculate the ratios:

𝛾1 =
𝑁𝑖+1,1

𝑁1𝑎
 (5.21)

𝛾2 =
𝑁𝑖+1,2

𝑁2𝑎
 (5.22)

To determine 𝑇 when 𝛾1 𝛾1𝑇 or 𝛾2 𝛾2𝑇

• If 𝛾1 𝛾1𝑇, it signifies that the shape of plane 1 changes sharply, and the point detected

by Equations 5.17 and 5.18 is not an actual point in the point cloud. Thus, Equations

5.17 and 5.18 should be modified as follows:

(

𝑥𝑖+1

𝑦𝑖+1

𝑧𝑖+1

) = 𝑇1𝑇 (

𝑑𝑙
𝑑𝑙
𝑑𝑙
1

) (5.23)

𝑇1 = [
cos 𝛽 −sin 𝛽 0
−sin 𝛽 cos 𝛽 0

0 0 1

] (5.24)

and 𝛽 is the angle between 𝑉𝑃𝑖𝑃𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and 𝑉𝑃𝑖𝑃𝑖+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ in the third principal direction at the

point 𝑃𝑖

Figure 5.17 Edge points with the direction

154 | P a g e

• 𝛽 can be determined by iteration trials. The process to determine 𝛽 is as follows:

❖ Let 𝛽 = 0 for Vector 𝑉𝑃𝑖𝑃𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

❖ Increase 𝛽 by 𝑑𝛽 (𝑑𝛽 is the radius of the user-defined size of the sphere)

❖ Calculate 𝛾1

❖ If 𝛾1 𝛾1𝑇, then register the coordinates of the point 𝑃𝑖+1

❖ Apply the edge detection method.

• If 𝛾2 𝛾2𝑇, it signifies that the shape of plane 2 changes sharply, and the point detected

by Equations 5.1 and 5.18 is not an actual point. The rotation axis should be the third

principal direction vector of point Pi

• If both 𝛾1 𝛾1𝑇 and 𝛾2 𝛾2𝑇, it signifies that the shape of both planes changes sharply.

The rotation axis to be used will be the cross product of the third principal direction

vector of Point Pi

Once 𝑃𝑖+1 has been detected by the above steps, the procedure is repeated until it can no longer

find the points.

5.3.6.1 Stopping Criteria

The series of edge points are detected using an edge stream. The edge stream is powerful and

continues even in the presence of obstacles. Therefore, a stopping criterion is implemented to

control and provide accurate results. Figure 5.18 shows an example of centre points detected

along the wall and the footpath.

155 | P a g e

 (a) (b)

Figure 5.18 Highlighted centre points detected by the proposed algorithm (a) Shows detected planes with start,

centre and end points (b) Stream of points detected

Table 5. 2 Two planes detected (orange and blue)

Points

in

Plane

Iter.

(best-

fit

plane)

Standard

Deviation

(m)

Mean Perp

Dist (m)

Max Perp

Dist (m)

Min Perp Dist

(m)

Time

(Iter.)

Time

(ms)

3236 1 0.0419408 0.0896429 0.3115862 9.2745118102

6254E-08

4 68

5105 2 0.0515273 0.0878875 0.3087326 5.2209042226

5999E-07

4 68

5074 3 0.0515421 0.0880621 0.3090510 3.0703541520

9336E-14

4 68

5062 4 0.05153760 0.0881201 0.3091568 8.0679611830

6324E-07

4 68

5059 5 0.05153700 0.0881372 0.3091868 1.4270513525

5466E-07

4 68

14142 1 0.06832822 0.0473381 0.2882325 8.2573150749

1804E-06

7 68

9036 2 0.03106678 0.0460698 0.2923764 3.2582134241

6892E-10

7 68

9068 3 0.03117444 0.0461259 0.2925754 4.3029257327

3945E-12

7 68

9080 4 0.03118604 0.0461348 0.2925759 1.0030596919

0162E-10

7 68

9083 5 0.03119782 0.0461314 0.292590697 2.3855995520

8919E-06

7 68

156 | P a g e

Table 5.2 shows group 𝑃₀ as an orange colour and group 𝑃₁ as blue colour going through each

iteration as the number of points has been best fitted to each group. In this example, the

iterations are set from 1 to 5. The iterations end when the number of points in the plane (either

𝑃𝑙1 or 𝑃𝑙2) starts repeating itself, i.e., all the points are successfully assigned to a group, and

therefore no point in carrying on the iterations. The computer used to run the proposed

algorithm specification is as follows: Intel Core i7 processor running at 2.60 GHz using 16 GB

RAM running on 64-bit Windows 11 version 22H2.

The example shown in Table 5.2 stops at the fifth iteration. Other measures for quality control

of best-fit planes are standard deviation, perpendicular distance: minimum, maximum and

mean, time duration for finding points in each plane, time duration for each iteration and total

time in milliseconds. The stopping criteria for edge detection are:

• The number of points in the planes is repeated in i or i-1 iterations.

• When the angle between the two planes is greater than the specified angle

• When the angle between consecutive edges is less than the specified angle

• When the total distance of the edge stream is not a multiplier of the search sphere size

5.4 Proposed Algorithm Implementation on Commercial

Software

The application of the proposed algorithm on commercial software is discussed in this section.

The commercial software is called “LSS - 3D Vision”. However, manually extracting and

accurately identifying the edge features using the number of points along the edges of a surface

in a point cloud proved tricky and time-consuming.

Therefore, the aim was to produce automated results of finding edges using a 3D sphere for

kerb edges, walls, stairs etc. Hence, the edge streams are designed and developed. Edge steam

is the first innovative method in the industry.

157 | P a g e

Figure 5.19 Edge sects extracted manually along kerb edges

5.4.1 Key Features

This section describes the application for finding the edges in LSS software and intends to

provide the background of technical terms and reports used by the algorithm. An edge is

calculated in real-time using the search sphere by moving the cursor in the 3D space within the

point cloud. This search sphere is placed along the edge of a feature where two surfaces are

present to identify an edge. All points inside the search sphere (commercially called

“Searchphere™” in the LSS software) are divided into two planes, the intersection of which is

identified as an Edge. The key features to operate the edge/edge stream commands within the

software are:

• Search sphere options selection – The users must select the edge/edge stream option

from the search sphere settings.

• Search sphere size – The users need to set the size of the sphere. Otherwise, the default

size will be used.

• Edge detection Report – The edge report explains the edge/edge stream details, as

shown in Figure 5.20.

158 | P a g e

The description of terminology used in the report of Find Edge/Edge Stream:

• Points in Plane –Indicates the number of points found in each iteration,

• Iterations – Iteration number for regression (maximum 5 per edge),

• Standard Deviation – Calculated with the perpendicular distance of each point in the

search sphere to each plane,

• Mean Perp Dist – Mean of all the perpendicular distances,

• Max Perp Dist – Largest perpendicular distance,

• Min PerpDist – Smallest perpendicular distance,

• Calculation time – Total time taken for iterations of each plane.

Figure 5.20 This report is generated while the Edge/Edge stream option is in operation and updates in real-time

5.4.2 System operations

This section describes the commands in the 3DVision software of LSS. For the Edge option,

the selection mode is selected as “Find Edge”, and a search sphere size is set. The setting of

size and search sphere mode is shown in Fig 5.21 (a), with an example in Fig 5.21(b).

The user needs to select an appropriate search sphere size because the calculation is based on

the points inside the sphere. Therefore, an appropriate size must be used to identify and extract

the feature. For example, to find the top of a kerb, the sphere size is best kept below the height

of the kerb itself to avoid points from outside the feature weighting the results.

159 | P a g e

(a)

(b)

Figure 5.21 (a) Select Find edge and Edge stream options from the dropdown menu of selection mode and set

the required Searchphere size (b) Example of finding edge between wall and ground. The two colours represent

defined best-fit planes, and the white line represents the edge with a green dot in the centre (edge point)

For finding edge streams, the selection mode is selected as “Edge Stream.” And search sphere

size is set similar to the edge. In addition, the edge stream option has a separate list of options

shown in Fig 5.22.

160 | P a g e

Algorithm Settings – The proposed algorithm in the commercial environment allows the users

to set the parameters to find the best results in different data sets. The recommended or default

parameters are shown in Fig 5.22; these settings could be changed according to the point cloud

data used. This algorithm’s feature has practical value for users, providing flexibility in

different data sets. For example, a building wall data set differs from a quarry data set.

Figure 5.22 User-controlled options for the proposed algorithm in 3DVision

Setting Parameters – Figure 5.22 demonstrates the parameters that could be set according to

the point cloud data used to detect the edge sects and edge stream. The first two parameters:

(a) the angle between two planes that define the edge and (b) the angle between two consecutive

edge sects is most important as it gives the flexibility of detecting different features (like the

wall, kerb, slope, etc.) by manipulating these two parameters. Both parameters are used as

stopping criteria for the proposed algorithm. The angles can be set to 30, 45, 60 and 90 degrees.

The reason for choosing these angles was that they cover all the edge features to be detected in

typical urban and quarry point cloud data. The third parameter (repeat every) gives the

flexibility to obtain the edge points in the stream at a defined number. The fourth parameter

provides the flexibility to obtain the edge points according to the set distance (metres). The

fifth parameter is the search sphere size (metre), which plays a significant role in edge

detection. The sphere size should be set according to the feature. The distance depends on the

search sphere size; therefore, the actual distance between edge points is also shown in Figure

5.22.

161 | P a g e

5.4.3 SDE

The software development environment (SDE) used for the proposed algorithm is Microsoft

Visual Studio 2022 version 17.4.4, the language is C# (pronounced as C sharp) version 10 and

.Net Framework 4.8. The algorithm is implemented in the backend, which users access as the

front-end interface, as shown in Fig 5.23.

Figure 5.23 Visual Studio 2022 used for implementation of the proposed algorithm

5.4.4 RealWorld Scenarios

This section demonstrates how effectively the proposed algorithm detects edges in the presence

of gaps, shadows, and obstacles. The challenges of existing methods are highlighted in Section

5.2. The important concern in civil engineering and surveying is reliably identifying gaps or

obstacles in the point cloud data. When the scanner collects the point cloud data, the point

density varies. The point density is the number of points collected per unit area. The area near

the scanner usually has a high point density, and the area further from the scanner has a low

point density. Higher point density means more points per unit area, which will help more

accurate edge detection. However, the scanned points with low point density make it very

162 | P a g e

difficult to detect edges because of gaps or shadows in the data. The missing point cloud data

could either be because of the shadow of an object or because the scanner density is decreased

as the distance increases, creating a gap between the point cloud data. The other concern is the

presence of obstacles. These obstacles could be part of urban data such as road furniture, lamp

post, marker pole, electric unit, bins on the road, vehicles and vegetation.

5.4.4.1 Gap Shadow and Missing Point Cloud Data

Figure 5.24 illustrates the presence of low point density and a gap because of missing point

cloud data. Edge detection could be challenging due to missing points, gaps, the reflection of

points and scattered data (presence of trees). Therefore, relevant sanity checks are important to

overcome these problems. An example of such data is shown in Fig 5.24. To overcome such

problems, calculate the angles between two best-fit planes and the edges. For example, in Fig

5.24 (b), all the two best plane angles are calculated as the edges detected are along the wall

and the path using the edge stream. If angles are greater than the average angles computed,

then the edge stream detection is stopped—the criteria to effectively identify when the edge

stream identification stops on its own.

(a) (b)

Figure 5.24 The point cloud data (a) shows the edge is difficult to identify because the second plane data is

missing (b) shows a whole circle of data is missing

163 | P a g e

Figure 5.25 Example of the edge stream affected due to the presence of trees and shrubs

The other typical problem in the point cloud is the presence of vegetation. Figure 5.25

demonstrates a situation where vegetation, such as shrubs and small plants, can cause problems

while detecting the edge. The real-time search sphere can trap vegetation and detect an

inaccurate edge in these conditions. To avoid or prohibit false edge point results, the angle

criteria play a very important role. The stopping criteria are the angle between two planes and

the edges set according to the obstacles.

5.4.4.2 Obstacles Identification

The other common problem in urban point cloud data is various objects affecting edge

detection. These objects include an electric pole, marker pole, electric box, bins, pillars on the

wall etc., as shown in Fig 5.26. The solution for this problem is (i) calculating the angle between

two best-fit planes and (ii) the angle between two consecutive edge lines.

(a) (b)

Figure 5.26 Examples of obstacles such as (a) the lamppost and (b) the wall pillar

164 | P a g e

A few recommended settings have been tested on several point cloud data. The proposed

algorithm detects obstacles and gaps for a wall when the angle between edges is set to 45

degrees, the angle between planes is set to 60 degrees, and the search sphere size is set to 0.5

metres. For kerb edge detection, the angle between edges and the angle between the planes is

set to 60 degrees with a search sphere size of 0.09 metres. Setting a small search sphere size

for a kerb is because the actual kerb size should be approximately similar to the search sphere

size. Every three points are selected for a kerb detection repeat because the search sphere size

is so small that it could detect hundreds of points. For quarry data (mineral extraction or mine),

the angle between edges is set to 45 degrees, and the angle between planes is set to 60 degrees.

The search sphere size is 0.4 metres; the repeat of every point is set to 1.

(a)

(b)

165 | P a g e

(c)

Figure 5.27 A tested predefined settings for obstacles and missing data according to the edge features in the

point cloud

Together with the options and criteria, these settings are very useful for the users of LSS

software in geographic information systems. The flexibility of the system allows them to

extract edge and edge streams from difficult terrain to urban features in real-time. For example,

the edges detected can be controlled by two values: 1) angle between edges and 2) angles

between planes. In addition, the number of detected edge points can be filtered using the repeat

every point option, and the distance between consecutive detected points can be set. Users save

these criteria settings as personalised feature names for future use.

5.5 Evaluation

In this section, the proposed PCA-based algorithm is demonstrated and evaluated (validation)

in terms of accuracy, robustness, breakpoints, classification of outliers and inliers, and

computation speed using various point cloud datasets. The primary purpose of this section is

to demonstrate the proposed algorithm’s efficient computation time and an analysis of the

accuracy of real-time point cloud data. The Edge stream is used for evaluation as it is a semi-

automatic process and comprises edge sects.

166 | P a g e

5.5.1 Datasets for Evaluation: Point Clouds

The datasets used for the valuation and validation are generated using terrestrial laser scanners

or LiDar scanners. For terrestrial laser scanners, the FARO scanner model FOCUS 350 is used.

The focus scanner range is up to 350 metres for long-range measurements, and the

measurement speed is up to 976,000 points/second. In addition, the focus has integrated GPS

and Glonass, allowing position detection (Focus - FARO® Knowledge Base, 2016). The

resolution of the scanner is up to 165 megapixels. For the LiDar laser scanner, Leica RTC360

3D Laser Scanner captures point cloud data for up to 130 metres with two million points/second

measurement speed. In addition, the Leica scanner has multi-sensors GPS, compass, height

sensor and dual-axis compensator (Leica RTC360 3D Laser Scanner | Leica Geosystems,

2018).

Figure 5.28 University of Gloucestershire Park Campus

Fig 5.29 illustrates five data sets that have been used to evaluate the proposed algorithm. Data

sets are road, car park, church, quarry and University of Gloucestershire Park Campus data set

(University data set). For this thesis, several point cloud data sets have been collected in

collaboration with the University of Gloucestershire (UOG). The University data set was

captured in front of Fullwood House of the Park Campus, as shown in Fig 5.28. The MTSL car

park data set was captured in the front building of McCarthy Taylor Systems Ltd. (MTSL).

The church data set was captured in Birdlip, Gloucestershire. The car park, church and

167 | P a g e

University data set were captured by the FARO laser scanner. The road and quarry data set

were captured by the Leica laser scanner. The scanned datasets consist of points in 3D (x, y, z)

along with each point’s R, G, B and an intensity value. The point cloud data set description is

as follows:

1. Road data set – an urban data set with features like tunnels, roads, marker posts, kerb

etc. It has a total point count of 21.43 million.

2. MTSL Car park data set – a scanned car park with features like vehicles, buildings,

roads and vegetation. It has 78.76 million points.

3. Church data set – a scanned church and surrounding vegetation. It has 257 million

points.

4. Quarry data set – a scan of active quarry with 159 million points.

5. University data set – is captured in the University of Gloucestershire campus and has

580.94 million points.

 (a) (b)

 (c) (d)

168 | P a g e

 (e)

Figure 5.29 Datasets used for evaluation of proposed algorithm (a) Road data set, (b) MTSL Car park data set,

(c) Church data set, (d) Quarry data set, (e) University data set

5.5.2 Computation Parameters

This section implements the proposed algorithm for commercial software. The computation

evaluation is based on algorithm settings, the performance of the proposed algorithm and

default parameters.

Performance of Algorithm: The proposed algorithm has been tested on these five datasets.

The algorithm’s outcome in terms of performance is shown in Table 5.3. Furthermore, it is

tested on the following point cloud data sets: (1) Church data set is a scanned church and

surrounding vegetation. It has 257 million points, and the file size is 5.13 gigabytes (GB), (2)

MTSL car park data set is a scanned car park with features like vehicles, buildings, roads and

vegetation. It has 78.76 million points with 2.19 gigabytes file size, (3) Road data set is an

urban data set with features like tunnels, roads, marker posts, kerb etc. It has a total point count

of 21.43 million with 0.53 gigabytes file size, (4) Quarry data Set is a real-world quarry with

stockpiles. It has 159 million points with 3.17 gigabytes file size, and (5) the University data

set is the real-world campus with buildings, vegetation and terrain. It has 581 million points

with 14.24 gigabytes file size.

169 | P a g e

Figure 5.30 User-controlled criteria for the proposed algorithm in 3DVision

The parameters are different for different data sets. The points inside the search sphere depend

on the selected size and point density. The sphere sizes in Table 5.3 are different as each data

set has different features for edge detections. The size parameters are selected based on the

detected feature to make edge sects evident. For example, the edge detected in the church data

set was between the church wall and the ground; therefore, the size is set to 0.3 metres, which

covers more area and is not very small. The wall and ground are almost perpendicular in the

church dataset, the angle between planes is set to 90 degrees, and the angle between edges is

set to 45 degrees as the wall and ground are almost flat. In this example, both stopping criteria

are used for edge stream detection a) if the angle between planes is greater than 90 degrees and

b) if the angle between the edges is less than 45 degrees.

In the car park data set, the edge feature is also the building wall and the road; therefore, the

angle between planes is set to 90 degrees, the same as the church data set, and the edge angle

is set to 30 degrees because of building wall beams.

In the road data set, because of various road furniture like a lamp post and a marker pole, the

angle between the plane is set to 60 degrees, the edge angle is set to 45 degrees, and the search

sphere size is set to 0.5. Both angles were set to 60 degrees in the university data set as the edge

detection was inside a room to find the floor plan. The room has few obstructions and very

high point count density; therefore, the search sphere size is set to 0.3 metres.

170 | P a g e

In the quarry data set, the angle between planes is set to 45 degrees, and the angle between

edges is set to 60 degrees. The plane angle is less than the angle between edges as the edges

are picked for a stockpile and break of slope. For these features, the search sphere size is set to

0.5 metres.

The proposed algorithm has been implemented to find edge sects and edge streams using the

data with the parameter listed in Table 5.3. A difference in calculation time can be observed.

The car park data with 4,489 points in 0.3 search sphere size takes 6 ms to find the edge

compared to Quarry 380 points in 0.5 search sphere size takes 9 ms because of the space

between the points. If the plane’s surface points are not flat, the algorithm time is extended to

fit the planes on the points.

Table 5. 3 Point Cloud data sets

The algorithm is demonstrated in Fig 5.31 and Fig 5.32 as an example of edge stream detection.

In Fig 5.31 example, the presence of the bin is an obstacle. Therefore, the stopping criteria are

used to stop and exclude the noise points of obstacles. The parameters used in this example are

0.2 mm of search sphere as the points are dense, and the angle between edges and planes is set

Point Cloud Average

points in

search

sphere

Calculation

Time in

milliseconds

Angle

between the

edges

Angle

between

planes

Search

Sphere Size

Distance in

metres

Church 47,789 8 45 90 0.3 1.8 (2m)

Car Park 4,489 6 30 90 0.3 1.8 (2m)

Road 2,234 4 45 60 0.5 4.8 (5m)

University 16,262 14 60 60 0.3 1.8 (2m)

Quarry 380 9 60 45 0.5 2 (1m)

171 | P a g e

to 60 degrees as there can be many obstacles. Similarly, in Fig 5.32 example, to determine the

edge on the curve, the angle between the edge is set to 45 degrees and angle between planes is

set to 60 degrees and the search sphere size is set to 0.5 mm as from two surfaces to find planes

one surface has low-density points.

Figure 5.31 Stopping criteria for an obstacle

Figure 5.32 Edge Stream detection along a curve of the bridge

172 | P a g e

5.5.3 Comparative Analysis

The proposed algorithm is evaluated based on accuracy, breakdown points, robustness,

computation speed, and classification into outliers and inliers from collected point cloud data

sets. The proposed algorithm is compared with different edge detection algorithms RANSAC,

MSAC, RSPCA, uLSIFand qSp (Nurunnabi, West and Belton, 2015a, 2015b). A planar surface

is fitted on the sampled data with other methods to evaluate the proposed method’s

performance with other edge detection algorithms. To evaluate the plane’s accuracy, the angle

𝜃 is calculated between the plane with outliers and the resultant plane without the outliers.

Nurunnabi, West and Belton (2015a) simulated 1000 sets of 50 synthetic 3D points with 10-20

% outliers created by the Gaussian normal distribution algorithm for fitting a regular plane.

After which various descriptive measures of mean, minimum, maximum and Standard

deviation of 𝜃 have been calculated. The proposed PCA-based algorithm is tested in two sets

of 10 simulations to calculate mean, minimum, maximum and Standard deviation of 𝜃 similar

to the provided data by Nurunnabi, West and Belton (2015a) to compare effectively. The

proposed algorithm is evaluated on point cloud data set by generating real-time 𝜃 between the

plane and without the outlier. The 𝜃 is calculated by the following equation,

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑛̂1 × 𝑛̂2) (5.25)

where 𝑛̂1 and 𝑛̂2 are two unit normals from the fitted planes with and without outliers. As the

data set on which the algorithm is implemented is not synthetic, the number of points to fit the

plane may vary. Further, based on the values of average 𝜃 for all the algorithms, the comparison

of the accuracy and robustness is easily identified.

A regular plane is fitted on synthetic data in other methods. For the proposed algorithm, only

the first (from the two best-fit planes detected) best-fit plane is used to evaluate and compare

with other methods. Angle 𝜃 is calculated as the angle between the first plane and the best-

fitted plane. In other words, the angle between planes with and without outliers. The real point

cloud data simulation and theta calculation are shown in Table 5.4 and Table 5.5.

173 | P a g e

5.5.3.1 Test Set with Outliers

Two data sets have been used to analyse and compare with different algorithms. The datasets

have been selected from 5 point cloud data sets mentioned in Section 5.5.1.

The two sets are:

1) The first data set has a cluster of points sampled using a search sphere with

minimum or no outliers and noise in the data, shown in Table 5.4.

2) The second data set has a cluster of points with outliers shown in Table 5.5. The

outliers present in the sampled data are vegetation, people passing by, and road

furniture.

The proposed algorithm is tested and compiled on a computer with hardware and software

configurations as follows: Intel Core i7 processor running at 2.60 GHz using 16 GB RAM

running on 64-bit Windows 11 version 22H2. The proposed algorithm was also tested on a

virtual machine and another machine with Windows 8. The timings were same and are not

affected by the Windows version.

Table 5. 4 First set with uneven sampled data (5-10% outliers)

NOP

Plane

1

NOP

Plane

5

Theta (Cos) Theta

𝜽 = 𝒂𝒓𝒄𝒄𝒐𝒔(𝒏̂𝟏 × 𝒏̂𝒊)

Speed

in ms

Outliers Inliers Accuracy

1 1926 179 0.99998611 0.301987701 2 1747 179 90.70612669

2 7665 309 0.99962216 1.575089629 6 7356 309 95.96868885

3 1399 13 0.99998855 0.274183167 1 1386 13 99.07076483

4 1648 73 0.99962931 1.560114531 2 1575 73 95.57038835

5 1375 55 0.9999945 0.19002869 1 1320 55 96

6 1485 107 0.999986 0.303181121 2 1378 107 92.79461279

174 | P a g e

7 2088 92 0.9999547 0.545366391 2 1996 92 95.59386973

8 20595 755 0.999999999 0.002562345 4 19840 755 96.33406167

9 1188 49 0.999554097 1.711094386 1 1139 49 95.87542088

10 2437 71 0.999971032 0.436111897 1 2366 71 97.08658186

Table 5. 5 Second set with uneven sampled data (50-55% outliers)

NOP

Plane

1

NOP

Plane

5

Theta (Cos) Theta

𝜽 = 𝒂𝒓𝒄𝒄𝒐𝒔(𝒏̂𝟏 × 𝒏̂𝒊)

Speed

in ms

Outliers Inliers Accuracy

1 4209 93 0.99997776 0.38212533 8 4116 93 97.79044904

2 5519 113 0.99982064 1.085192839 4 5406 113 97.95252763

3 1957 52 0.99941825 1.954460433 3 1905 52 97.34287174

4 5561 59 0.99909865 2.432859272 5 5502 59 98.93903974

5 1203 32 0.99957931 1.662010429 1 1171 32 97.33998337

6 3783 163 0.99917771 2.323699148 4 3620 163 95.69125033

7 2127 45 0.97348845 13.2226765 1 2082 45 97.88434415

8 32613 1212 0.99967288 1.465558027 16 31401 1212 96.28369055

9 11475 313 0.99996876 0.452891608 7 11162 313 97.27233115

10 25921 486 0.99913442 2.384089572 20 25435 486 98.12507234

175 | P a g e

5.5.3.2 Types of Data

The planes fitted by different algorithms (PCA, RANSAC, MSAC, RPCA, uLSIF, qSp) and

the proposed PCA-based method are shown in Table 5.6 and Fig 5.33. The following results

have been taken from Nurunnabi, West and Belton (2015a) as a case study to evaluate the

proposed algorithm against the other algorithms. All the existing algorithms have been

evaluated by fitting the plane on the synthetic data set, but the proposed algorithm’s fitted plane

is tested on the real point cloud data. The real data are more challenging compared to synthetic

data sets due to their large size. However, for comparison, the number of points is

approximately the same. Given that the proposed algorithm is finding the edge in real-time

compared to the one-off implementation by Nurunnabi et al.. The data sets mentioned in

Section 5.5.1 are used that have several edge features than synthetic data. Therefore, for this

thesis, the point cloud data used for evaluation is the same data used by surveyors and engineers

regularly.

Figure 5.33 Nurunnabi, West and Belton (2015a) demonstrated a plane fitted by different algorithms with 20%

cluster outliers. Planes: grey - PCA, red – RANSAC, green – MSAC, blue – uLSIF, pink - qSp

For the comparison, the size of the sphere has been set to 1 metre in the real-world point cloud.

The reason for choosing a 1 metre size is that the number of points inside the sphere can be

matched with the synthetic data. The angle 𝜃 between planes is calculated in degrees in two

types of data sets. The first data set has a cluster of points sampled using search sphere (a)

176 | P a g e

without any outliers in the data, and the second set of data has a cluster of points (b) with

outliers. The second data set has a plane fitted on sampled data using the proposed algorithm.

An example of such data is shown in Fig 5.34.

(a) (b)

 (c)

Figure 5.34 The fitted plane is displayed in green, and the number of points sampled is highlighted in white. A

plane is fitted (a) on an uneven surface, (b) on the shrub and floor, (c) on part of a tree trunk better to provide

the photos of three objects, then point clouds, then fitted planes with the point clouds.

The planes fitted by different methods are shown in Fig 5.34, in which the plane from the robust

methods is only the one with the perfectly fitted plane. The planes fitted by the proposed

algorithm are shown in Fig 5.34

177 | P a g e

(a) the presence of 5 to 10% outliers on real point cloud data with an uneven surface,

(b) shows the presence of vegetation such as small plants or shrubs when sampling the

data with 50-55% outliers and

(c) shows the presence of an obstacle, such as a person or a marker pole, with 50%

outliers.

Mean maximum, minimum, median and standard deviation are calculated from synthetic and

real point cloud data simulation. The results, as shown in Table 5.6, indicates that the proposed

algorithm has lower values than others. The PCA method has the largest measures of all the

other algorithms. The proposed algorithm has a minimum quartile range of 0.253 (QR = 3rd –

1st). RPCA and the proposed algorithm result in better robustness than RANSAC, MSAC and

uLSIF.

Table 5. 6 Algorithm’s measures in angle

Methods Mean Min. Max Median SD QR

PCA 31.038 3.807 52.690 34.973 3.973 4.758

RANSAC 1.186 0.000 6.367 0.832 1.167 1.618

MSAC 1.1485 0.000 7.378 0.687 1.215 1.605

RPCA 0.694 0.022 2.698 0.599 0.489 0.550

uLSIF 4.3235 0.562 17.938 5.731 2.304 2.769

qSp 14.377 0.017 43.968 30.262 15.302 30.168

MCMD_MD 0.518 0.008 2.18 0.451 0.377 0.411

Proposed Method 0.689 0.002 1.711 0.369 0.55 0.253

178 | P a g e

The proposed algorithm has measured angles that are very close to RPCA, as shown in Table

5.6. However, calculating the angles (minimum, maximum, median, and quartile range)

indicates that the proposed algorithm is better than RPCA. PCA has the worst results as it is

sensitive to outliers. So, if a breaking point is calculated for PCA, it would be 0%, as it will

stop even in the presence of just one outlier. After PCA, uLSIF results in 4.3 degrees mean and

17.9 degrees maximum. uLSIF and qSp also did not perform well. The maximum, median,

standard deviation and quartile range are very high for qSp. MSAC and RANSAC results are

almost equal. MCMD_MD performed well as compared to the proposed algorithm in terms of

standard deviation however the method was not applied in real-time or on a large point cloud

data set. The proposed algorithm has the best result minimum quartile range, which means that

the proposed algorithm produces more robust results than other algorithms. Also, the proposed

algorithm was implemented on real-world point cloud data and in real-time, which is more

challenging. The next sections will evaluate the proposed algorithm accuracy analysis and

speed for simulated data. The plotting of the two sets of simulations based on Table 5.4 and

Table 5.5 is represented in Fig 5.35. The first set of sampled data had 10-15 % outliers

compared to the second set of data with more than 50-55 % outliers.

Figure 5.35 Two sets of data simulations are represented in blue and orange.

0

5

10

15

1 2 3 4 5 6 7 8 9 10

Angle in degrees - 𝜃

θ of set 1 θ of set 2

179 | P a g e

5.5.3.3 Evaluation of Accuracy in the Presence of Outliers

This section investigates the performance of all methods mentioned above and classifies them

as inliers and outliers. The total points from the search sphere are classified as outliers or inliers.

The data from Nurunnabi, West and Belton (2015a) are used for the accuracy analysis between

the proposed algorithm and other methods. The accuracy of the algorithms is defined as

Accuracy =
 TN + TP

Total number of points
× 100 (5.26)

where TP is true positive points identified as inliers and TN are true negative points identified

as outliers

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑒𝑡𝑖𝑣𝑒 = 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠 (5.27)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = points identified as inliers (5.28)

where true positive is the number of points correctly identified as inliers in percentage, and a

true negative is the number of points identified as outliers in percentage.

In the first set of data with 5-10% outliers, the accuracy ranges between 90 – 99% of the total

points. The minimum is 90%, and the maximum is 99%.

The second data has 50 -55% outliers, and the accuracy range lies between 97- 98% of the total

points. The minimum is 97%, and the maximum is 985. The data is shown in Table 5.4 and

Table 5.5.

Therefore, the proposed PCA-based algorithm accurately rejected more points when the data

sampled uneven surfaces to fit the plane best. As a result, the fitted plane by the proposed

algorithm identifies the best-fit plane on every data despite the outliers. The results at different

outliers present in the data demonstrate that the proposed algorithm is highly accurate.

180 | P a g e

5.5.3.4 Speed Analysis

The processing time in the point cloud is a very important aspect of any computing algorithm.

The important advantage of the proposed PCA-based algorithm is computation time. The speed

analysis is performed on the two data sets mentioned in Section 5.5.4.2. A regular plane is

fitted through the data sets, and the calculation time to find the best-fit plane is represented in

milliseconds in Table 5.7. Table 5.7 demonstrates the first set of data with 10% outliers and

the second set representing more than 50% outliers.

Table 5. 7 Plane detection in Seconds

Methods Detection Time in Seconds

RANSAC 0.0934 0.3640

RPCA 0.7990 0.7937

uLSIF 0.0405 0.0409

MCMD_MD 0.0054 0.0395

Proposed Algorithm 0.001 0.02

The minimum time is one millisecond, i.e., 0.001s, and the maximum is 20 milliseconds, i.e.,

0.02s. The comparison is performed with different algorithms, with 10% outliers. The resultant

time of the proposed algorithm is 0.001 seconds, less than the other algorithms. RPCA has a

maximum time of 0.799 and MCMD_MD in 0.005s, uLSIF in 0.0430s and RANSAC in

0.0734s (Nurunnabi, West and Belton, 2015a). The resulting time in seconds for 50 to 55%

outliers of the proposed algorithm averages 0.02 milliseconds less than MCMD_MD of 0.0395.

The other algorithms have similar results RANSAC in 0.3640 and ulSIF in 0.04909. RPCA has

a maximum time of 0.7937, similar to 10% outliers. The computer used to run the proposed

algorithm specification is as follows: Intel Core i7 processor running at 2.60 GHz using 16 GB

RAM running on 64-bit Windows 11 version 22H2.

181 | P a g e

5.5.4 Accuracy Evaluation

The proposed algorithm accuracy is investigated by calculating the error distance measure, as

listed in Table 5.8. The proposed algorithm has calculated two measures using the cross-section

of sampled data inside the search sphere to analyse the resultant edge point.

 The two measures are:

• the actual centre point (edge point) of the search sphere.

• the centre point generated by the proposed algorithm.

In Fig 5.36, there are two sections: the upper section is 3D point cloud data, and the lower

section is the cross-section of the 3D data inside the green cube. The projection of the 3D green

cube on the Y-X plane is represented in Fig 5.36, lower section. The green dots represent the

edge points in the upper section (3D point cloud).

The proposed algorithm identifies all the green dots as an edge stream. In the lower section,

the pink circle represents the search sphere. The red point of the pink circle represents the actual

centre of the sphere, and the green dot inside the pink circle represents the edge point calculated

by the proposed algorithm.

For evaluating the accuracy of the calculated (green point) by the proposed algorithm shown

in Fig 5.36, a set of edge points have been tested on the real point cloud data to find the error

distance ∆d between the edge point generated by the proposed algorithm and the cross section's

actual centre inside the search sphere. ∆d represents the distance between the two points.

The edge point is a calculated point that may or may not necessarily be an actual 3D point but

will best fit the available data. Table 5.8 lists five points of real point cloud data that compare

the edge and actual centre points on the cross-section.

182 | P a g e

∆X, ∆Y and ∆Z are calculated, which is the difference between the two point’s X, Y and Z

components. The minimum distance is 0.038549, and the maximum is 1.0535, with ∆Y of

0.019 and 0.053, respectively.

Figure 5.36 The upper section of the image describes the 3D point cloud, and the lower section demonstrates the

3D point cloud data cross-section. The green dots represent the edge points calculated by regression of the

proposed algorithm, and the pink circle demonstrates the centre of the search sphere

The results shown in Table 5.8 display that the proposed algorithm efficiently best fits the

planes on the data points to derive the edge points. Furthermore, the edge point is not influenced

by the gravity of the points inside the search sphere. Therefore, the proposed algorithm proves

the accuracy and correctness of the point detected.

183 | P a g e

Table 5. 8 Measures to Calculate the Accuracy of Edge point Detected

5.6 Chapter Summary

In this chapter, the algorithm applies a robust and statistical approach for identifying the edges

between two surfaces in 3D point cloud data. The proposed algorithm is robust, efficient and

accurate. The proposed algorithm first applies the best-fit plane to most of the data. Then, each

local point is calculated to best fit the plane from the plane’s point of interest. Secondly, each

point is identified as an outlier or inlier based on its distance from the plane. Results show

accuracy and fast computation times. However, the computation time is relatively greater when

outliers increase. Also, the search sphere size plays an important role in Edge stream detection.

The results are performed on real point cloud data and the algorithm is performed on large data

sets. The advantages of the proposed algorithm are compared to other algorithms include (i)

 Point 1 Point 2 Point 3 Point 4 Point 5

Actual centre point of

Y-X cross-section

plane inside the

search sphere

X 382897.509 382897.668 382897.901 382898.081 382898.496

Y 398119.407 398119.707 398120.073 398120.403 398121.129

Z 25.854 25.881 25.881 25.885 25.905

Edge point generated

by the proposed

algorithm

X 382897.454 382897.662 382897.864 382898.069 382898.463

Y 398119.343 398119.688 398120.047 398120.339 398121.076

Z 25.848 25.848 25.873 25.881 25.905

Error ∆X 0.055 0.006 0.037 0.012 0.033

∆Y 0.064 0.019 0.026 0.064 0.053

∆Z 0.006 0.033 0.008 0.004 0

Error in distance ∆d ∆d 0.084599 0.038549 0.045924 0.065238 1.053517

184 | P a g e

the accuracy to identify the outliers, (ii) efficiency when applied on a large data set, and (iii)

the faster computation time than PCA, RPCA, RANSAC, uLSIF and qSp, (iv) easy to use, (v)

simplicity. The proposed algorithm could further be used for feature detection, segmentation

and region-growing algorithms.

Edge detection can be further developed to find the edges in the whole point cloud

automatically; the future of edge detection can also be extended to corner detection, where

instead of two planes, it identifies three planes as it is very difficult to find a corner with the

two planes.

One of the dependencies of the proposed algorithm is the user. The stopping criteria depend on

the angle of planes and edges that have been set. The angles set completely depend on the

user’s experience using the algorithm for the obstacles and missing data in their designated

point cloud.

185 | P a g e

Chapter 6 A New Voxel-Based Algorithm

for Cylindrical Feature Detection in Urban

Point Clouds

6.1 Introduction

Among different datasets, one of the essential ones is the urban point cloud. With technologies,

there has been increased demand within the surveying industry to process these data

automatically. Urban point clouds are detailed and contain various objects with meaningful

geometrical and physical information that must be extracted. For example, buildings, vehicles,

vegetation, street furniture, ground, road markings, and maintenance holes are all objects

requiring identification. In addition, these objects have disparities: noise, size, incomplete

structures, different point densities, holes and gradients. Therefore, the automatic extraction of

these objects from 3D point clouds for urban cartography is extremely attractive and high in

demand because it tremendously decreases the resources needed to analyse the data for

subsequent uses in city management and planning functions (Lam et al., 2010; Sahin et al.,

2012).

Among various urban objects, trees play an important role. Therefore, a tree survey report is

beneficial in different ways. For example, a digital model of the street tree could play an

essential role in environmental analysis or tree management, hazard analysis of a nearby

building, urban landscape beauty, etc. Furthermore, poles are also important street furniture.

These pole structures include marker poles, lamp posts, square poles, traffic signs and

streetlights documented as road inventory (Landa and Ondroušek, 2016). Therefore, accurately

detecting the location of the trees and pole structures is an essential aspect of the ecological

and surveying field. In forestry, the volume of trees is often used to determine the health of the

trees. In urban data, trees and poles are often surveyed for risk and hazard analysis, damage

control, and logging accounts for tree growth.

186 | P a g e

This chapter proposes a new automatic voxel-based detection algorithm for cylindrical features

such as tree trunks and pole-like objects in urban point clouds. The proposed algorithm detects

trunks and pole objects with different shapes, girth, slopes, and low-density points. The

algorithm consists of six stages:

1) Extraction of ground and non-ground points

2) Voxelization

3) Removing the ground points and detecting the seed layer

4) Clustering of the neighbourhood

5) Detection of cylindrical features

6) Classification of detected objects into trunk, pole and other features

The algorithm has been tested on different data sets. The analysis and evaluation of the related

work for detecting the pole-like objects in urban data are given in Sections 6.2.1 - 6.2.4, and

the detection of tree trunks in urban or forest data sets is provided in Section 6.2.5. A new

proposed algorithm (voxel-based algorithm for cylindrical object detection) is presented in

Section 6.3, with the classification of the objects in Section 6.3.7. The implementation of the

proposed algorithm is presented in Section 6.4 with real-world scenarios encountered by

surveyors and civil engineers. The evaluation of the proposed algorithm is presented in Section

6.5. Discussion is presented in Section 6.6 of the proposed algorithm’s advantages and

limitations. Finally, the chapter summary is presented in Section 6.6.

6.2 Analysis and Evaluation for Existing Methods: Pole-like

Objects and Trees

Processing point cloud data consists of filtering, segmenting and transferring the information.

The segmentation algorithms are widely used to divide the point cloud data into groups or

regions to extract meaningful information belonging to a feature (Tombari, Cavallari and

Stefano, 2016). Besides segmentation, shape and semantics-based methods are frequently used

to detect trees and poles in urban data. In this Section, the existing methods are analysed and

evaluated in detail, starting with pole-like structure detection by segmentation, semantics,

slicing and shape-based, followed by individual tree detection in urban and forest data sets.

187 | P a g e

6.2.1 Segmentation and Clustering Methods (Model fitting)

This section discusses and presents the existing object detection methods based on

segmentation. These segmented groups are clustered, or a model is fitted to extract the features

from the point cloud. Lehtomäki et al. (2010) developed a method to detect pole-like objects

in a road environment. The algorithm starts by segmenting the 3D scan line individually. Short

distance adjacent points on the scan line are gathered in one sweep. The isolated poles (away

from building vegetation) are captured by one sweep forming a profile point group. The

possible pole-like structures are exacted by segmenting each profile into point groups. The long

groups are discarded, and only short groups are considered. Next, the short point groups are

clustered by searching groups in the horizontal plane to find the candidate pole cluster. A group

is selected as a seed group on each profile.

All the groups adjacent to it are compared. If a group is found above a seed group, they become

part of the same cluster. The clustering could divide the clusters into several sub-clusters, and

therefore, the next phase of the algorithm merges clusters. The merging criteria are clusters that

are pole-like and vertically oriented. The clusters classified as poles and non-poles are based

on shape, length, orientation and point density. The pole candidate must satisfy the following

criteria 1) the cluster should be along the main axis 2) a minimum of three sweeps in a cluster

3) pole-like shape 4) the main axis should be close to vertical 5) the presence of not too many

points around the cluster in the local neighbourhood. The method can find 77.7% of poles and

correctness of 81.0% in suburban areas. The disadvantage of using the scan line segmentation

is that if there are outliers or shadows in a sweep, the point groups are split into many small

groups. Therefore, poles with vegetation behind, parked cars, scattered points and oblique poles

cannot be detected.

Pu et al. (2011) presented a method for recognising the road structures captured by mobile laser

scanners. The framework starts by dividing the point cloud data into road sections. Then, each

road is segmented with the surface growing algorithm based on planar seed surface detection

in Hough space. Next, the parts are classified as ground surface, on-ground, and off-ground

objects. The on-ground points are further used for detailed feature recognition. Next

knowledge-based feature segmentation is applied to the segments based on geometric attributes

as

188 | P a g e

1) size – length, width, height, area or volume

2) shape

3) orientation

4) position

5) colour

6) topological relationships – angle and intersect.

Objects with planar features are detected based on classes such as geometric fitting, recognising

rectangles, circles and triangles. The pole-like structures are identified by a percentile-based

algorithm that slices vertically in 2D. A rectangle is fitted in each slice. The rectangle’s centre

point and diagonal length are compared to all the slices in percentile. The difference in

neighbouring slices is checked if the centre position and diagonal length are within the

threshold and the slice is part of the segment. Finally, if the count reaches a certain number,

the object is classified as pole-like, and if the rectangle diagonal exceeds the maximum length,

the slice is discarded. The objects on the ground are identified, such as traffic signs, trees,

building walls and barriers. The results show that the recognition is 86% for poles and 64% for

trees. However, the problem with the algorithm is that rough classification assumes that ground

segments are large planes across the data, which might not be true for all point cloud data sets.

Yokoyama et al. (2011) proposed a method for recognising pole-like structures from scanned

point clouds. The process is based on Laplacian smoothing using a k-nearest neighbours graph.

The first step is the segmentation of input point clouds. Golovinskiy, Kim and Funkhouser

(2009) used the segmentation method by connecting the nearest neighbour points. The outcome

is a sequentially generated k-nearest neighbour graph. Next, Laplacian smoothing is applied to

each segment to improve the recognition rate. Smoothing helps in removing noise and shape

degeneration. The disadvantage of smoothing is that the algorithm cannot identify pole-like

objects, such as trees, as the branching information will be lost. Laplacian smoothing is applied

to overcome the preserving endpoints, which is an operation that relocates a point to the centre

of the neighbours. Then each point is classified into points belonging to pole-like, planar or

other objects. Each segment’s degree of pole-like shape is evaluated, and pole-like segments

are selected based on the threshold. The threshold is the height of the pole and the minimum

number of points. The degree is calculated by:

189 | P a g e

𝑓𝑛 = (𝑤1

𝐶𝑛

𝑆𝑛
+ 𝑤2

𝐷𝑛

𝐶𝑛
) ×

100

𝑤1 + 𝑤2
 (6.1)

where 𝑤1 and 𝑤2 are weights, 𝑆𝑛 is a set of points in a segment, 𝐶𝑛 is a set of points on pole-

like objects included in 𝑆𝑛 and 𝐷𝑛 is a set of points that are vertical and included in 𝐶𝑛

(Yokoyama et al., 2011). The average accuracy is 97.4 %. However, the disadvantage of the

algorithm is that the pole with a nearby hedge or tree was undetectable as pole-like objects’

detection depends on the correct segments.

Yokoyama et al. (2013) further extended the method to classify pole objects more effectively.

First, the attached parts of the pole are recognised by applying RANSAC. The points within a

distance threshold from a fitting line are identified as supporter points. The iterations of the k-

nearest search extract various segments of the attached parts. Then, shape features are evaluated

based on the membership value of the utility pole, lamp post, and street sign. The value is

calculated by:

1) the number of attached parts (utility pole has more attached parts than lamp post and

street signs)

2) the height

3) the part types.

The next step is to use the context features evaluated using the pole’s relative position and local

distribution. Both shape and context features contribute to the calculated membership value to

classify the pole-like objects into utility poles, lamp posts and street signs. The classification

accuracy for pole-like object detection using shape features is 66.7%, and the classification

accuracy using shape features and context features is 81.5%. The disadvantage of the algorithm

is that the detection depends on specific criteria such as height and shape; therefore, it is not

flexible enough to accurately identify all pole-like objects.

Tombari et al. (2014) proposed another algorithm to detect pole-like structures in an urban

environment. First, using RANSAC, the point cloud is reduced by removing all the planar

surfaces, such as building façades and ground regions. More than one plane is detected due to

noise; therefore, the plane with the most normal consensus is the dominant plane. Second, on

190 | P a g e

each non-removed point, a local feature is computed to emphasise the poleness of a point’s

neighbourhood and is categorised by a support vector machine (SVM). The SVM provides a

score for a point’s probability of either belonging to a pole or not. After the categorisation, a

semantic clustering depending on Markov Random Field is conducted using a connected point

cloud graph. Finally, all the points in the reduced point cloud are clustered as poles or not poles,

based on the constant classifier’s output and point connectivity. Spin image descriptors were

computed to reject the presence of false positives. The advantage is that the plane could be

fitted on one point instead of 3 points and the point’s neighbourhood. The algorithm’s

disadvantage is that the spin image computation to define pole and non-pole structures does

not work in the presence of vegetation near the pole structure. Also, the algorithm is tested on

a limited point cloud dataset.

Cabo et al. (2014) proposed an algorithm to identify pole-like objects from street furniture. The

3D point cloud is divided into 3D cubes called voxels. A centre point and the number of points

in voxels are stored. The algorithm is implemented on voxel’s generated simplified version of

the point cloud. Horizontal fragments of voxel points are analysed and segmented. Next, 2D

fragments referenced for pole-like objects are grouped. The 2D fragments are isolated as

potential elements using criteria. The criteria are calculated by fitting rings of two different

radii. If the isolated voxel cluster is within the inner and outer ring, it is considered a pole

object. Finally, these 2D fragment groups of a pole are converted to 3D voxel representation

from the original point cloud. The advantage is that the algorithm uses voxels for efficient

access to points. The disadvantage of the algorithm is that it works in 2D to identify poles;

hence, there is no account for poles with gradients. Furthermore, the poles are not detected in

overlapped regions and the presence of other closer objects.

Another voxel-based method by Hackel et al. (2016) proposed a method to extract semantic

information about objects in scanned data and convert point clouds into geometric

representations using changing density. The method first down-samples the point cloud (with

a voxel-grid filter and replacing points inside the voxel with their centroid) to generate a multi-

scale pyramid and computes separate search structures per scale level. Approximation makes

the process of multi-scale neighbourhoods fast. The Neighbourhood calculation is achieved

using the method to configure the most suitable k-d tree. Next, 3D features based on

eigenvalues and eigenvectors are extracted, which leads to the description of surface properties.

Hackel et al. (2016) method modified SHOT and SC3D methods and used a reduced point

191 | P a g e

cloud to speed up the process. An approximate Signature of Histogram of Orientation (A-

SHOT) and approximate Shape Context 3D (A-SC3D) are created for more complex objects,

especially near contour edges. Next, a random forest classifier was applied to predict

conditional probabilities of different class labels and mark every point based on semantic class.

These classes are building façades, ground, cars, motorcycles, traffic signs, pedestrians and

vegetation. Although mobile mapping data results had high accuracy of 97.6%, the accuracy

achieved on Terrestrial Laser scans with base features is 90.3%, further reducing accuracy

when larger classes are tested. Furthermore, the computation time is not great for the test data

set as it takes 90 minutes to segment 30 million points.

Wu et al. (2017) presented a super voxel-based method for automatically locating and

extracting street light poles. The method has five steps (1) preprocessing, (2) localization, (3)

segmentation, (4) feature extraction, and (5) classification. First, raw point clouds are divided

into segments along the scanner line trajectory. Then, RANSAC is used to remove the points

that are part of the ground. The remaining point segments are voxelized by VCCS (Papon et

al., 2013). Second, the localization method is proposed to identify the pole objects in three

steps: localization map generation, the ball falling and position detection. Third, super voxels

are segmented using guided localization. Then, the pole objects are extracted based on their

characteristics and the calculated barycenter. This helps in adding and expanding voxels to

obtain the lamp part. Fourth, feature extraction is done by dividing the feature into the pole and

global features. Finally, pole-like objects are classified using a support vector machine and

random forest. The advantage of the method is that it is tested on a large point data set of 701

million points with 98.8% localization achieved. The disadvantage of the method is that the

processing time is too long.

Yadav et al. (2015) proposed an automatic method for Pole-shaped Objects (PSOs) on the

LiDar point cloud by MLS. The method is divided into three parts: (1) gridding, (2) vertical

segmentation and (3) region growing. First, the input point cloud data is projected onto a plane.

Then, regular square grids of the projected data are generated at a predefined size of 𝑚 × 𝑚

in 2D along the X and Y axis. Second, the segmentation is performed on the grouped data by

rearranging the data points in increasing Z values. The sorted Z values are segmented and

divided into the minimum and maximum Z values. The user defines the number of segments

and the height of the segment. The third step is a region growing method, applied by finding

the neighbouring points of the seed point as the centre using the k-d tree. PCA is implemented

192 | P a g e

to analyse the data with cylindrical clusters based on the user-defined threshold of maximum

normalized eigenvalue and angle between the z-axis and eigenvector. Finally, pole objects are

detected by applying the second and third steps on each square grid. The method can detect

with 95.12% correctness. However, the disadvantage of methods is the inexperience of users

in deciding the number of segments and their height. The outliers are removed by only

considering the 100 points from the top, which is not a powerful way to deal with outliers. The

limitations are the detection of pole structure overlapping with other objects, pole’s upper part

extraction and automatic recognition classification of objects.

Xiao et al. (2016) presented a system for car park monitoring. The method starts by classifying

the points into the ground, building façades and street objects and then segmenting using state-

of-the-art methods. Then, each segment is used to extract the geometric features by fitting the

vehicle model to obtain its orientation and position. Then the vehicle features are classified.

The system is able to find and locate the vehicles. Also, categorise them. However, the method

is based on supervised learning and is only limited to the training sets.

6.2.2 Semantic-Based

This object detection method is based on rules on prior knowledge of objects. Lam et al. (2010)

proposed an approach for extracting features like roads and attaching features of interest to the

road. The method assumes that the road is not flat and divides it into sections to fit the plane.

The method addresses this; the method implements two solutions 1) applying RANSAC

followed by least squares to estimate the local plane on a 3D subsection bounding box, and 2)

Kalman filter is applied to monitor the changes of the local planes. For extraction of road

structures, the least squares fit an estimated 3D line. If the 3D line with enough number of

points is located, it is identified as a pole structure. In addition, a threshold value of radius and

if it is perpendicular to the road surface is applied to determine the poles. The advantage of the

method is that it extracts the road and other features even in the presence of cars and trees. The

disadvantage of the method is that the plane fitting does not work on curved roads due to the

scale factor. In addition, the method is implemented on a 1.4 million point cloud. Hence, there

is no proof of its effectiveness in terms of accuracy and time on a larger dataset.

193 | P a g e

Fan, Yao and Tang (2014) proposed a method based on a priori knowledge of urban point

clouds. The method is achieved in three stages 1) pre-processing, 2) detecting seed points of

man-made objects and 3) Distinguishing and identifying the seed points belonging to different

types of objects. First, the point cloud is divided into three layers in terms of vertical height

using a height histogram. Second, each layer’s seed points belonging to man-made objects are

identified using a line filter called binarizing spatial accumulation map. These seed points are

further analysed to be classified. Finally, points belonging to an object are retrieved based on

categorized seed points. The advantage of the method is that the detection rate achieved is up

to 83%, and classification accuracy is up to 92.37%. The limitation of the method is that objects

are identified wrongly because of height criteria (truck identified as a house), fences are

scattered points which are unable to detect, and low-density features are unable to be identified.

Teo and Chiu (2015) proposed a coarse-to-fine approach for extracting pole-like objects from

the point cloud. The method works in 3 stages – data pre-processing, coarse-to-fine

segmentation and pole-like object detection. First, the pre-processing stage focuses on the

region of interest (ROI) selection and building façade removal. Parts of the road are identified

based on pre-defined road width and length, and points located 15m above the ground are

selected as façades. Second, coarse-to-fine segmentation is accomplished, which involves three

major steps: (1) voxel scale segmentation, (2) point-scale segmentation, and (3) overlapped

object segmentation. The methods at this stage extract man-made and non-man-made pole-like

objects. Voxel scale segmentation simplified irregular points through voxel space and removed

any non-pole-like objects.

All voxels which do not contain any points are deleted. Next, euclidean clustering of voxels is

applied, after which points in the voxels are segmented into individual objects. Point scale

segmentation takes the output of voxel scale segmentation and removes local ground points

using the plane detection method based on RANSAC. Then Euclidean clustering of points is

applied to extract individual objects based on tolerance distance. Point scale segmentation

cannot address overalled objects, which are then processed by overlapped object segmentation

step. In this step, based on ground height, the method selects points lower than breast height to

detect individual stems. Coarse-to-fine segmentation separates objects on the ground but may

contain non-pole-like objects, like walls and vehicles. Next, pole-like road object detection in

which pole parameters such as location, radius, and height are calculated, and non-pole-like

objects are filtered based on height, position, shape and cross-section. The method achieved an

194 | P a g e

accuracy of about 90%, which is more efficient than a single-scale framework. However, false

positives were caused due to mixed objects, occlusion, and circular man-made columns like

bus stations. Due to insufficient point density, different objects were mixed and misclassified

as poles. The method also falsely detected low vegetation and banners, and errors were caused

due to the complex road area environment.

A method to use hierarchical extraction to detect urban objects by Yang et al. (2015) is

proposed. The method first generates multi-scale voxels. Then, all the voxels are traversed to

calculate the distance between each voxel centroid. If the distance is less than the threshold,

the voxels are grouped. These voxels are then analysed to find linear, planar, and volumetric

geometric shapes. Next, the normal and principal directions are calculated, followed by RGB

and intensity. There is no restriction on super voxel size; the smaller voxel estimates are correct

compared to larger voxel sizes. Therefore, two different voxels are created and integrated from

different original voxel sizes to overcome the size problem. Hence, this results in similar

geometric structures in each super voxel. The next step segments the super voxels by

combining graph-based segmentation with multiple cues. A set of rules is defined to merge the

segments into units with similar urban objects. The calculated saliency includes the height of

the segment, the angle between the vertical and normal direction, the angle between the

principal and vertical direction and the number of neighbouring segments. Finally, it extracts

and classifies urban objects in hierarchical order placed by the saliency of segments. The

advantage is that the proposed method is very effective as it does not just extract the objects

but also classifies them in order. The disadvantage is that the super voxels are segmented using

the geometrical attributes that do not account for overlapping structures in the voxel. Also no

indication of the reason for threshold distance selection.

Yan et al. (2016) presented a workflow for automatically extracting highway poles and towers.

The method starts with automatic filtration to separate ground and non-ground points. The

filtering is based on measuring slope changes in points and their neighbouring points and the

skewness of all points. Skewness is calculated as

𝑠𝑘 =
1

𝑁. 𝜎3
 ∑(𝑠𝑖 − 𝜇𝛼)3

𝑁

𝑖=1

 (6.2)

195 | P a g e

where 𝑁 is the total number of points with 𝑖 = {1,2,3… . . , 𝑁}, 𝑠𝑖 is the length of the total

number of points, 𝜎 and 𝜇𝛼 are standard deviation and arithmetic mean (Yan et al.,2016).

If 𝑠𝑘 is greater than zero, the point is classified as the non-ground point. The isolated points

data produces a digital elevation model to normalise all the above-ground points. A density-

based spatial clustering algorithm of application with noise (DBSCAN) groups non-ground

points into clusters. DBSCAN requires two parameters:

• the number of minimum points to form a cluster and

• the radius to contain that minimum number of objects.

Next, a set of rules based on the structure’s height and projected horizontal area are set to

identify potential poles and light towers. Then the least squares circle fits to find the circle of

the pole. Finally, cleaned light poles and towers are extracted. The method uses a very

sophisticated way to separate the ground points. However, the problem with the method is that

the road signs and light towers can be of various sizes, and the set of decision rules is not

flexible. Furthermore, the large dataset implementation means more computing time for

clustering the points in the algorithm.

Yan et al. (2017) also presented a workflow for detecting and classifying pole-like structures

in motorway environments. The first step is data processing, separating the ground points based

on local minimum height and clustering non-ground points into segments. K-d tree is used to

organize the points and is clustered based on the Euclidean distance between the neighbours.

The overlapped segments containing pole-like road objects are further separated by comparing

the minimum boundary rectangle and the candidate’s height. Next, a weighted graph is

calculated. An iterative min-cut-based segmentation approach is applied to minimize the sum

of all weights. The object is divided into ten slices across Z into the foreground and background

clusters. After the clustering, pole-like object detection is achieved using prior and shape

information. Prior information is the object’s size, and shape information is where the objects

must be vertical. Finally, pole-like structure classification is achieved using objects' features

and a random forest classifier. The algorithm’s accuracy for the two datasets is 94.9% and

97.8%. However, due to their short height, the proposed algorithm failed to detect pole-like

objects in the presence of vegetation and signs. The height criteria should be flexible to

accommodate all pole height structures to detect them.

196 | P a g e

6.2.3 Slicing-Based Methods

This section analyses existing methods like structure detection based on horizontal or vertical

slicing. Like Tombari et al. (2014), Huang and You (2015) proposed a system that uses an

SVM classifier. The method starts with the horizontal slicing of the Z layer. Next, clustering is

performed based on the Euclidean distance to each slice. Each slice could have potential

characteristics identified by a pole seed generation. Pole seed depends on two criteria based on

the bounding box property of each candidate cluster. The generation is calculated by:

i. the cross-section area

ii. the segment length

The result is the candidate poles. Next, bucket augmentation is performed on pole seeds to

locate the attached structures. The seed trunk segment’s centre is considered a pole bucket, and

other points in the range are added to the pole cluster. The next step is to ensure that the

candidate clusters contain just pole points, not the ground or other closer objects. In order to

fulfil the criteria, the ground (lowest part of the pole) and the disconnected regions are trimmed.

Finally, the clusters are classified into four categories lights, poles, signs and others, according

to their height. The disadvantage of the method is that it assumes that the horizontal slice

always has a pole-like structure. Therefore, lacking an extensive search for contextual

information on detected features. For example, the trees are confused with poles if they have

similar structures.

Landa and Ondroušek (2016) proposed another method to detect pole-like structures by

horizontal sections. Firstly, the point cloud is processed by eliminating the lowest points,

ground points, and highest points, anything above 12 metres (pole height). After that, outliers

are removed based on a statistical analysis of neighbourhood points. Next is the division of

point clouds into horizontal sections. Finally, each section is segmented by Euclidian distance.

The resultant 3D points are based on centroid Cm(x,y,z) and the maximum distance between

the centroid and any subsequent section point. Points inside the sections are then classified as

pole structures based on directional vector, the difference in z coordinates and distance from

the centroid. The algorithm reduces false positives. The advantage of the method is the

interconnectivity of all the objects inside the point cloud. However, the disadvantage is that

more pole object detection was missed due to the similarity because the false-positive algorithm

197 | P a g e

was implemented. The method could be more effective by segmenting or analysing the feature

to classify it more efficiently. Also, the processing time was excessive (2 hours 35 minutes).

6.2.4 Shape-Based Methods

This Section analyses the existing methods of pole-like structure detection based on their shape

in the point cloud. Golovinskiy, Kim and Funkhouser (2009) proposed a system to recognise

objects in a 3D point cloud of the urban environment. The method consists of 4 steps –

Locating, segmenting, extraction, and classification. The method uses multiple alternatives for

each step and evaluates all alternatives to find the most efficient and accurate method for each

step. The system was trained using truth data set and then was used to recognise objects in a 1

billion point data set. The results indicated labelling 65% of the small objects. Firstly, the

localisation step cluster nearby points to form sets of potential objects of interest locations

where density is highest. Next, points close to the ground are filtered out and removed from

isolated points. Any points belonging to buildings (large connected components) are removed

too. Next, for each location, the algorithm tries to differentiate between points near the object

from those that are background clusters through segmentation. Segmentation also identifies

object shapes used in the next step and assigns points to objects when they have been classified.

After segmentation, potential objects are extracted, describing the shape and context. This step

also distinguishes objects from one another and their backgrounds. To identify the shape,

multiple quantities are evaluated at this step, like the number of points, volume, average height,

and standard deviation. Next, to evaluate context, the position of the object relative to its

environment is used as a cue to identify its type. After extraction, objects were classified with

respect to the manually labelled training set of object locations. The result is that easy object

shape features were identified with 54% precision which was enhanced to 64% by adding

segmentation and contextual features. The major bottleneck of the method recognition

performance is feature extraction and classification. Better shape descriptors, contextual cues

and classifiers need to be enhanced to improve the performance of the system discussed. The

entire process of recognising objects in 1 billion points of point cloud took 46 hours on 3GHz

PC – 15 hours on pre-processing, 6 hours for the location step, 15 hours for segmentation, 6

hours to extract features and 4 hours to classify. This clearly shows that the system can

198 | P a g e

recognise with decent accuracy but will take a long processing time for real-world point cloud

data sets.

El-Halawany and Lichti (2011) proposed a method of point cloud processing to detect road

poles and evaluate their dimensions from the unorganised point cloud. The method applies 3D

segmentation and extracts poles using local neighbourhoods and analysing eigenvalues. The

method consists of 2 phases – the first phase examines the effect of the density of point cloud

and neighbour size on segmentation and the second phase is the extraction of different poles

and determining their radius and position. A K-d tree is applied in the first phase to organise

the point cloud and accelerate the search process. Then, PCA analysis is performed on the

neighbourhood to classify groups as linear and planar features. In the second phase, each pole

is extracted using distance-based region growing. To deal with noise, two methods are

implemented (1) intensity-based outlier removal and (2) the relation between the radius of the

pole and its eigenvalue. In the first method, low-intensity points were removed by analysing

the distribution of intensity values for the whole point cloud, improving cylinder fitting results.

The second method does not remove any low-intensity points, but many circles are simulated

with different radii and compared with eigenvalues of the cross-section to evaluate the mean

radius difference.

The result showed dense point clouds gave better segmentation results than low-density point

clouds. The results were analysed with different k-neighbourhood sizes and the accuracy of

pole detection, which varied a lot. The method cannot assign a neighbourhood size to all data

sets as it is relevant to the density of point cloud data. Further, this method is also inefficient

in extracting pole features close to the ground due to the inclusion of pavement points in

neighbourhood search, which affects eigenvalues. In addition, after isolating linear features,

the pole structure was incomplete. The evaluation of the radius of poles based on intensity

succeeded in giving the exact radius for the flagpole and sign pole, while eigen-radius

successfully gave the correct radius for the street pole. However, both methods failed to

evaluate the correct radius for the traffic light. The method concludes that the intensity-based

method can be used in lower radius poles, and the eigen-radius method can be used for higher

radius poles. The method is tested in a relatively small point cloud dataset (1 million and 4.8

million points) with no proof of processing time, which makes it unclear whether this method

is efficient enough to be used in bigger point clouds and its impact on processing time and

accuracy.

199 | P a g e

Bremer, Wichmann and Rutzinger (2013) presented a method to classify pole-like objects using

rotation and scale invariant points. Single objects like poles are classified by connected

components and Dijkstra-path analysis, while tree and artificial objects are separated using a

graph-based approach. The method achieved an accuracy of 90%. The method focuses on

artificial pole-based objects like lamps and traffic signs and natural pole-like structures like

trees. Each point local neighbour based on a pre-defined radius is identified and encoded into

a covariance matrix from which three eigenvalues and three eigenvectors are computed. Based

on eigenvalues, the points are classified into primitive classes (linear, planar and volumetric)

based on the eigenvalue pattern of each class. Some classes like linear and planar were further

categorised based on orientation (horizontal, vertical and other). Object classification is then

accomplished using primitive classification to aggregate and separate semantic groups.

Minimum cluster sizes were also introduced to reduce noise.

Eigenvalue-based classification has its advantages and disadvantages. With a 0.1 metre radius

search, classification was appropriate for small geometrical patterns but strongly sensitive to

scanning patterns and differences in point densities. For example, detecting thick tree trunks is

impossible through 0.1 metre search radius classification. On the other hand, a 0.5 metre radius

offers better results for larger poles. It also deals with lower point densities and detects planar

features. However, planar objects were incorrectly classified as undefined in areas with low

point density. Furthermore, the method demonstrated classification to separate eight classes

and focus on pole-like objects. As a result, planar object groups were handled less accurately

and would require a more intelligent and thresholdless solution.

Rodríguez-Cuenca et al. (2016) proposed a method to detect and classify urban objects. The

methods start with pre-processing in two stages:

1) transforming the reference frame into a local cartesian coordinated system and

2) removing the parts of the cloud that will not be used for detection.

These points are removed by indexing vertical and large surfaces, and the connected

components are segmented on the same surface. The geometric indexing merges the

information of each point’s normal vector and roughness value. The indexing is then extracted

using two threshold values from the vertical and horizontal surfaces. Next, an octree level and

a minimum number of points per segment are used to segment based on prior knowledge

200 | P a g e

resulting in three groups – original, building facade and road point clouds. Next, the point

clouds obtained are analysed in a 3D vertical pillar pattern to connect the ground level to detect

pole structure. The Reed and Xiaoli anomaly detection algorithm applies the height difference

and spatial dispersion vertically and horizontally. The results of the algorithm are vertical urban

elements. Finally, the vertical elements are classified by descriptors of the roughness and

cylindrical coordinate scattering of radial distance. The quality rates tested in the two data sets

are 94.3% and 95.7%. The advantage of the method is that it considers the slope and is not

dependent on the scan trajectory as the original coordinates are transformed. The disadvantage

is that the method could not detect the tree structures with low-density point clouds and the

trunks found on the tilted ground.

Wang, Lindenbergh and Menenti (2017) proposed an algorithm to identify lamp posts and

traffic signs in urban road environments gathered by mobile laser scanning. Before the method,

the raw data is pre-processed in two parts, 1) tiling and 2) separation of ground and non-ground

points. Then, these tiles are created, dividing the data in the direction of the scanning trajectory.

SBET is Smoothed Best Estimation of Trajectory whose points are used in tile calculations.

Figure 6.1 Wang demonstrated different tilling along the road (Wang, Lindenbergh and Menenti, 2017)

201 | P a g e

The next step is the voxelization of non-ground points, and the connected voxels are grouped

into clusters to form candidate objects. The next is the dimensionality analysis of each voxel,

followed by eigen-based shape descriptors. Then, significant eigenvector points in each voxel

are mapped into a triangle of sphere icosahedron, also called the eigen sphere of the voxel

cluster. Finally, the repeated subdivision of voxels is performed until matched candidates, and

training objects are found. The algorithm works well with the given descriptors of poles and

road signs; however, point density and other closer objects affect the pole and sign

identification. Therefore, the method will not work if the point density is low or the presence

of noise. For example, a lamp or a tree on the roadside is not detected because of their closeness.

A similar approach to detect pole-like objects by Shi et al. (2018) started with pre-processing

point clouds that remove outliers, voxelization, downsample and filter ground point. The

outliers caused by the laser beam and differences in object surface are essential to remove,

resulting in wrong surface normals and curvature. The outliers are removed by calculating the

mean distance and standard deviation. A k-d tree is used to structure the points. Afterwards,

the model is gridded into voxels, and the point nearest to the voxel’s centre is kept. The next

step is filtering ground points using fabric on an inverted surface. The interaction between the

distribution node and LiDar points generates a surface compared to the original points to

classify ground and non-ground points. On non-ground points, a second voxelization is

performed. Pole-like structures extracted by spatial independence analysis, i.e. analyzing the

number of empty neighbourhood voxels. The next step is applying RANSAC for cylinder

feature detection. The voxels are verified to either belong to pole-like objects by PCA or not.

Moreover, the region growing method is used to extract the complete structure of the pole-like

object. Finally, detected pole-like structures are automatically classified into three categories

streetlamps, traffic signs and poles by 3D shape and height matching. The advantage of the

algorithm is that the dataset is downsampled and cleared of any noise. Also, the second

voxelization is helpful for the k-nearest search of neighbouring voxels. The disadvantage is

similar to Tombari’s method as the practical implementation is only tested on limited datasets

with a lack of variety of data sets that the algorithm can use. The method also assumes that all

pole and cylinder objects are stand-alone and have no vegetation or building points near them.

The template of the pole-like shapes is fixed; hence if there is a variation in shape or height, it

cannot be detected.

202 | P a g e

6.2.5 Individual Tree Detection Methods in Forest Point Clouds

Tree detection is essential for various applications like 3D construction for the city. In this

section, the existing method of tree detection is discussed and analysed. Existing methods to

detect individual trees (Trunk and foliage) are proposed and discussed by Monnier (Monnier,

Vallet and Soheilian, 2012), Wu (Wu et al., 2013), Li (Li et al., 2016), Safaie (Safaie et al.,

2021), Wu 2018, (Lalonde, Vandapel and Hebert, 2006) and Belton (Belton, Moncrieff and

Chapman, 2013). Other methods to detect trees and poles together discussed by Pu (Pu et al.,

2011), Cabo (Cabo et al., 2014), Yang (Yang et al., 2015), Rodríguez-Cuenca (Rodríguez-

Cuenca et al., 2016), Li (Li et al., 2019), Li (Li and Cheng, 2022), and Kang (Kang et al.,

2018).

Lalonde, Vandapel and Hebert (2006) proposed an approach to process point clouds to identify

tree stems for forest inventory. The approach starts with point-wise classification by feature

extraction, feature distribution and online classification. The input point cloud is divided into

linear, solid, and scattered classes. First, the expectation-maximization algorithm calculates the

centroid, principal axes and covariances. The second step is point cloud segmentation based on

the direction of features, normals and regions. The third step is an interpretation based on the

data’s context knowledge, such as size, smoothness, continuity, direction, spatial and

classification and relationship. The last step is high-level scene modelling by fitting geometric

shapes to extracted components. The cylinder is fitted to the points in 2D projection and 3D.

The 3D fitting increases estimation accuracy. The advantage of the proposed method is that it

is generic and could be applied to ariel and ground scanned data. The disadvantage of the

method is that it lacks the evaluation of the filtering, and the criteria to remove ground points

are not explained.

Belton, Moncrieff and Chapman (2013) introduced the method for processing trees using

gaussian mixture models. The method first classifies the features in the point cloud by PCA.

PCA gives the variance in the direction of eigenvectors and the distribution of neighbourhood

points. A variable neighbourhood size (radii value) determines the feature resolution. Next, the

points are clustered using the Gaussian mixture model. After applying different neighbourhood

radii values, the resulting cluster is manually analyzed to categorize them as leaves, tree trunks,

and branches. The multiple clusters are combined into a single model for the same class.

Further, the classified data is examined based on two characteristics 1) tree structure generation

203 | P a g e

and 2) volume measurement of carbon capture. For tree structure generation, a horizontal slice

produces a skeleton. Each slice is examined to be clustered, and an ellipse is found. The ellipse

centre is used as a node graph, a cyclic detection algorithm to find common nodes and merge

them to find a tree structure. The total volume is calculated by cylinder fitting as it is an

important attribute for carbon capture and is used in predicting climate change. Belton’s

method delivers a Gaussian mixture model to separate leaves from the rest of the tree but does

not provide evidence of tree detection in any large point cloud data or the applications of the

method on various types of data sets.

Amiri et al. (2017) proposed a three-tiered tree detection method in forested areas that work on

point, segments, and object levels. In the first level, all the points in the forest scene scanned

data are evaluated to belong to a tree or not. The features are grouped into their categories 1)

point feature histograms is a local neighbourhood shape descriptor to distinguish between

different surfaces using surface normals, 2) covariance features derived from eigenvalues of

the local neighbourhood covariance matrix, and 3) normalized heights. Next is the segment

level, where the cylindrical neighbourhood is applied by orthogonal distance regression. The

results are classified into positive groups that could contain a part of the tree stem and negative

groups that could contain vegetation and branches. Then, segmented features are divided into

a modified version of the cylindrical shape context and angular deviation of the segment axes

from the Z-axis. The last level is the object level, where the segmented and point-level features

are merged to recreate the individual tree. The positive segments are merged using hierarchical

clustering based on the aggregate distance matrix between clusters. The final step is stem line

fitting using orthogonal distance. The method’s classification precision is achieved at 0.86 and

0.85 for two samples. However, the method lacks to present cylindrical object detection on

low-density point clouds. Also, the clustering of the segments could be enhanced if the tree

locations are considered.

Wu Rongren et al. (2018) presented a method for detecting tree stems and diameter breast

height (DBH) estimation in a forest environment on the point cloud data captured by the

terrestrial laser scanner. The method starts by preprocessing, i.e., removing ground points from

raw point clouds. Next, the stem points are differentiated from non-stem points by calculating

normals. The normal vector of k-nearest points belonging to a tree is a small absolute value

compared to tree crowns and bushes. Then, the derived tree points are divided into voxels. A

downward growing method within voxels is implemented to identify tree stems that stop at the

204 | P a g e

bottom layer. The derived stems are horizontally sliced at a height of 1.3 metres. All the point’s

normal vectors in the slice are computed. Finally, the tree stem is considered whose normal

vectors are perpendicular to the plane. The method could detect 17 out of 21 trees. However,

the method does not account for the reflected noise points and low-density tree stems; therefore,

the proposed method lacks to detect trees with noise and fewer points.

6.2.6 Urban or Street Trees Detection Methods in Urban Point Clouds

Monnier, Vallet and Soheilian (2012) presented a method to detect trees in complex urban

environments. The method is divided into two parts, separating the points belonging to trees

and the individual trees within these points. Firstly, the scan points are classified according to

their geometrical shape. A local descriptor is used for the classification by Demantke et al.

(2011), which started by applying a principal component analysis of their neighbourhood. Each

neighbourhood is categorized by three descriptors linear, planar and volumetric. The linear

descriptor is used for small trunks and posts, the planar descriptor is used for building façades,

and the volumetric descriptor is used for tree leaf foliage and balconies. The results of

descriptors are very noisy, so probabilistic relaxation is applied. The probability depends on

the distance between the point and its neighbours and a compatibility matrix. The descriptors

are not robust enough to identify tree trunks and posts; therefore, next step is to apply another

cylindrical descriptor. Next, tree detection is achieved in four steps:

1) Vertical accumulation of each descriptor into a horizontal grid is achieved by creating

accumulation maps,

2) Spatial filtering using smoothing by Gaussian kernel, hysteresis thresholding,

connected component computation, size filtering, and morphological dilation,

3) Combination of masks to retrieve individual trunks,

4) Tree foliage separation from other objects and other trees by associating each pixel to

the nearest trunk.

The accuracy of the method is 80%. The disadvantage of the method is that each point is

analyzed with descriptors or the distance between its neighbours. The calculations are

extremely cost-inefficient (computing time) as the point cloud could be very large.

205 | P a g e

Wu et al. (2013) presented a voxel-based marked neighbouring search (VMNS) method for

detecting street trees. The method starts with the voxelization of point cloud data dividing the

space in cuboids. The location of voxels is indexed based on their length, width, and height.

The voxel height varies till layer six corresponds to 1.2 - 1.4 metres. The values for each voxel

unit are calculated. Next is the voxel’s neighbourhood search, which leads to the seed voxel

selection. The search for tree objects starts with seed voxels. The voxels are traversed to find

the connected voxels, marked and grouped. The grouped tree voxels are selected based on 1)

geometric properties such as the area and shape of voxels and 2) morphological attributes such

as the number of voxels in a group and compact index. The next step is top-down radius

constrained searching and marking to identify the tree’s trunk and further by bottom-up

neighbourhood competing for search and marking to identify the tree crown. The competing

search is applied to differentiate the overlapping tree crowns. The marked voxel group results

in potential trees are estimated based on tree height, crown diameter, breast height, and base

height. The other pole-like objects are eliminated based on crown diameter and tree height

threshold. The case study resulted in 98% of correctness rates. The method cannot detect trees

with lower heights and if they have multiple stems.

Li et al. (2016) proposed a similar method to Wu et al. (2013) that follows the dual growing

methods for separating individual trees. The method is divided into three stages: trunk shape

growing and segmentation, crown voxel growing, and refinement to obtain trees. The method

starts by separating ground and non-ground points. The individual trees are extracted from non-

ground points. Next, the candidate cluster containing trees is extracted by local surface normals

based on their Euclidean distance. Then, the candidate tree cluster is voxelized. The seed layer

is found by dividing the candidate tree by half. The artificial objects are rejected from the

candidate tree cluster by comparing a crown with a round cross-section and a trunk with a

smaller diameter and cylindrical shape. The horizontal convex hull is calculated from the points

in the voxel group at each layer. The upward cross-sectional analysis is performed to determine

the tree trunks. The convex hull of seed and up traced voxels are compared by area, perimeter

and diameter. Also, the crown’s minimum required diameter, minimum roundness degree, and

a maximum ratio of geometric parameters are used to find the crown. The down tracing process

is used to determine the trunks.

Next, the crown parts are further analyzed for crown voxel growing. The voxels are considered

crown voxels if the layer has the same row and columns and unusual shapes in cross-section

206 | P a g e

areas. After the voxel grows, two overlapping crowns are segmented based on fewer area

increments as the changes are observed in cross-sections. Finally, the seed selection and trunk

point growing are applied in iterations to extract individual trees. The advantage of the method

is to distinguish between trees and other objects and to be able to extract the whole tree. The

correctness in tree extraction is 96%, and completeness in tree detection is 98%. The

disadvantage is that the tested datasets have high-density points, directly affecting the crown

separation process. The method for separating candidate tree clusters depends on surface

normals which are not cost-efficient as the point clouds could be very large.

Kang et al. (2018) proposed a voxel-based method for extracting and classifying pole-like

objects. The method starts by dividing data into 3D grids called voxels. Each point is grouped

and indexed. Next, PCA is applied to analyze the dimensionality of the voxels and find the

predominant direction for linear, planar and spherical. MRF shape detection optimizes the

voxels, i.e., the contextual information for the direction and classification (labels linear and

non-linear). Pole-like are vertical and isolated compared to building façades and tree canopies.

Therefore, the non-ground points are divided into slices on the selected interval. Adjacent slices

are clustered together based on the circular model with an adaptive radius. The model has two

concentric circles that compare the geometric centre and any point inside the inner circle to a

threshold to determine a pole-like object. The individual poles are extracted by the vertical

region growing method as 1) Starts with one voxel of the pole-like object, 2) Vertically growing

from the seed voxel, and 3) Growing continues until the distance between the segmented object

and nearest voxel exceeds a threshold, and 4) Repeated until all voxels of pole-like are

traversed.

Further, the extracted objects are classified by semantic rules. The classification is based on

height (classify trees and poles). Another rule is 2D projected point distribution; if the

distribution exceeds the threshold, it is considered a tree, otherwise considered poles. The

precision of the method’s detection is 85.3%, 94.1% and 92.3% for the three datasets. The

disadvantage is that the voxel-based recognition fails to capture trees of large trunk diameter

as it is focused on pole-like objects. The method also assumes the poles as isolated objects

without noise, which might not be true in the urban point cloud.

Safaie et al. (2021) proposed a method for efficiently creating a tree inventory of roadside trees

in point clouds using raster images. The method filters the ground points to start with by using

207 | P a g e

tile sections. The points in each Section are divided into left-side and right-side. Then, each

side’s low height points are filtered. The next step is trunk Extraction 1) trunk positioning and

2) elevation range. A trunk portion is considered for locating tree positions at adjacent

horizontal intervals. The detection of circles is done from raster images by the Hough transform

algorithm. The circles are validated as trunks by range and number of layers. Elevation range

extraction is achieved by cylindrical buffering in trunk position, elevation sectioning, raster

binary image creation, altitude density histogram and density threshold. Next is foliage

extraction, which is based on the following 1) determining the initial range – A Voronoi

tessellation is applied on the extracted trunk 2) extracting the foliage points 3) altitude

sectioning 4) density image generation for each section 5) precise boundary detection using

active contours. The geometric region-based active contour is applied to the groups. After

separating trunk and foliage points, the final step is characteristics measuring. The

characteristics measures calculated for each tree are:

a) planimetric coordinates, which is tree location found by the lowest height circle,

b) trunk height calculated by the difference between the maximum and minimum trunk

heights,

c) trunk diameter calculated for each tree,

d) foliage height calculated by the height difference between the maximum and minimum

foliage heights,

e) maximum foliage diameter, which is the maximum diameter of all peripheral circles,

f) total tree height

g) distance from the road edge

The proposed method works well by extracting the trees in the urban road dataset. The

algorithm identified all the trees in the dataset despite the foliage overlapping. The

disadvantage is that the ground removing method assumes the ground to be flat, whereas the

ground could have a gradient in the real world. Also, the method lacks considering the scenarios

where trees could be of different shapes and have low point density.

208 | P a g e

6.2.7 Summary

In Section 6.2, the existing methods are analysed and discussed. The section starts with the

methods to detect pole-like structures in point clouds divided into four categories:

segmentation-based, semantic-based, slicing-based and shape-based and followed by

reviewing the methods to detect trees in the forest and urban or roadside scenarios. The

common problems with methods have been identified. For example, the existing methods lack

the ability to identify pole-like structures in low-density point clouds, are affected by noise (the

presence of noise and other close objects), do not elaborate on the specific criteria and do not

account for the presence of a gradient in the data. Another challenge is computation time. In

reality, point clouds can be very large, with billions or trillions of points, so the methods were

shown to be practically inefficient in terms of time.

A common issue with terrestrial scanners is that the point density thins out as the scanner scans

to the farthest points. Therefore, the analysis of existing methods concluded a particular

problem: the poles or trunks furthest away from the scanner are undetected as the point density

is very low. Another common problem with existing methods is that they fail to detect pole-

like structures and trunks in the presence of noise. When the other objects were present close

to the pole or trunks, they were undetected, i.e., the presence of noise or outliers. Also, they are

undetected when other objects close to the pole and trunk overlap.

Another common challenge is not specifying and providing evidence on selecting individual

criteria and threshold values to explain the selection reason for these values. The point cloud

data is scanned data from the real world and therefore has a high probability that the ground

level has slopes and dips; however, the existing methods assume that the ground level is always

flat. Hence, there is no account for the presence of a gradient in any of the methods. Therefore,

the voxel-based algorithm is proposed, designed and developed as a robust, accurate and

efficient method to detect trunks and poles in large point cloud data to overcome the drawbacks

of existing algorithms as stated above. Section 6.3 presents the proposed algorithm on large-

scale data in a commercial environment.

209 | P a g e

6.3 Proposed Algorithm for Trunk/Pole-like Object Detection

6.3.1 Overview

This section proposes an algorithm to detect cylindrical objects in urban point cloud data. These

objects can be tree trunks or man-made street objects like utility poles, lamp posts, traffic lights,

streetlights, etc. The data collection is accomplished by various laser scanning systems like

airborne, terrestrial and mobile. Moreover, the algorithm is generic, i.e., can be applied to any

scanned data. Most poles and trees have a generally circular cross-section and a cylindrical

shape. Therefore, the algorithm aims to detect cylindrical objects. A typical tree and a pole in

the point cloud are shown in Fig 6.2. The tree is divided into two parts: tree trunk and tree

foliage. The proposed algorithm detects the trunk and pole and classifies them.

Figure 6.2 Example of a typical tree and man-made object, i.e. pole

210 | P a g e

The proposed new voxel-based algorithm addresses the disadvantages of existing methods

discussed in Section 6.2.7. The functional requirements of the proposed algorithm are that it

works on terrestrial and LiDar scanned point clouds, works with low-density points, identifies

the slopes on the ground level and is efficient in terms of computation time. The proposed

algorithm is divided into six stages:

1) Pre-processing – Terrain extraction, Ground and Non-ground Points Classification.

2) Voxelization - Voxel Bounding Extent, Voxel 3D Indexing and Generating 3D grids.

3) Seed layer - DBH (Diameter of Breast Height) estimation to find the seed layer.

4) Clustering - Neighbourhood Searching and Approximation and Marked Grouping.

5) Cylindrical feature extraction - Potential clusters filtration by Compact Index, Area

and Geometric Primitive Modelling - Circle fitting in 2D.

6) Trunk and pole classification

a) Shape-based rules – Pole and tree isolation and 2D Voxel distribution,

b) Intensity and colour-based rules,

c) Semantic rules – Voxel Dimensionality analysis, Adaptive radius to classify

pole or tree, upward region growing.

The overall workflow of the proposed algorithm is shown in Fig 6.3. The input data is either

raw point cloud data or sampled data, and the output is the centre and radius of the detected

cylindrical object classified as a trunk or pole-like object.

211 | P a g e

Figure 6.3 The workflow of the proposed algorithm

6.3.2 Terrain Extraction: Classification into Ground and Non-ground

Points

The first stage is Terrain Extraction, which uses gridding to identify the ground and non-

ground. The point cloud consists of extraordinarily complex data with various objects and

information. As the proposed algorithm focuses on extracting cylindrical features such as tree

212 | P a g e

trunks and pole structures that are not part of the ground, the ground level is removed for

downsampling and reducing the points. The removal of ground points i.e., reducing the total

number of points leads to the proposed algorithm’s high computation efficiency and thus saves

time.

Figure 6.4 Example of gridding in a point cloud

The example in Fig 6.4 shows the grids implemented on the real point cloud data. Fig 6.4 does

not show all grids to prevent confusion. The ground points are always inlined with the x and

y-axis of the reference coordinate system. The problem is that there is no procedure to identify

the ground level on Z-axis. The minimum Z level will not necessarily be the ground as the

point clouds are similar to the real world, which means there are good chances for the presence

of a dip or slope on the ground. Therefore, an approach allows users to click on the ground near

the tree or pole structure to derive the Z value. Then, the user clicked Z value is fed as input

for the next phase of the algorithm. However, there are problems with ground user selection

are:

213 | P a g e

• The ground level picked may not be the same for the whole point cloud, i.e., it can have

gradients.

• Users may have to click several times to input the Z value; hence, more clicks in terms

of usability.

• Lack of experience of users as to where to click to derive the correct Z value. For

example, if the click should be under the tree or on the street to get the correct ground

level.

• When the point cloud data set has flat ground, the algorithm works perfectly; however,

when the data has a gradient, the algorithm will not work.

This thesis proposes “Terrain Extraction”, a new technique designed first time to extract terrain

from point clouds. The solution for the above problems is Terrain Extraction applied to classify

ground and non-ground points to overcome the problems. The terrain extraction automatically

extracts the ground level with or without slopes. The functional requirements and advantage of

applying terrain extraction is that the algorithm:

1) Works automatically without the user intervention.

2) Fewer user clicks.

3) Detects terrain with gradients.

4) Classify ground and non-ground.

5) Lowest and Highest Z levels.

Figure 6.5 The Gridding example

214 | P a g e

The process starts by gridding the whole point cloud data vertically, as shown in Fig 6.5. A

grid has eight corners with length, width, and height. The height 𝑍ℎ of the grid is

𝑍ℎ = 𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛 (6.3)

The length and width are set similar to the voxel size discussed in Section 6.3.3. During

gridding, points inside grids are searched for all grids. The algorithm for searching points inside

the grid is adapted from Sunday (2021). The algorithm starts by accumulating all the points in

the grid along the x, y and z-axis. Then, every point inside the grid is traversed to find the

lowest point inside the grid. Finally, the derived lowest points of all the grids are passed for the

next stage, i.e., Voxelization.

6.3.3 Voxelization

The second stage is Voxelization. Voxels are used widely for spatial sampling, grouping, and

partitioning. Voxelization is used for different purposes such as detecting non-static objects

(pedestrians) by Schauer and Nüchter (2018), voxels and k-means clustering (Tazir, Checchin

and Trassoudaine, 2016) used for colour-based reduction and segmentation. Many scholars

used voxels to segment point clouds, such as Xie, Tian and Zhu’s (2020) point-based labelling

method through voxels. Xu et al. (2018) used a probabilistic connectivity model for

segmentation. Voxel-based four planes congruent set is proposed for estimating transform by

Xu et al. (2019) and voxel-based shape recognition in point clouds by Wang et al. (2016).

Voxels are also used in griding and region growing methods, as explained by Li and Sun

(2018).

In this thesis, Voxelization is a spatial partitioning technique that divides the whole point cloud

data into 3D cubes, similar to Wu et al. (2013) and Cabo et al. (2014). These 3D cubes are

called voxels. Each voxel has a length, width and height equal to the voxel size. In addition,

each voxel has an index value to identify among the other voxels. All the empty voxels are

removed, and the voxels are created from the lowest points derived from the first stage. The

details are explained in Section 6.3.3.1 – 6.3.3.3.

215 | P a g e

6.3.3.1 Voxel Bounding Extent

Size defines the bounding extent of a voxel. Each voxel has a length, width and height that

defines the voxels, as shown in Fig 6.6. The size is chosen based on the type of the point cloud.

For example, quarry data with fewer details can be divided into large voxels, but urban data

with many intricate details to capture should have smaller voxels. The terrain extraction grid

size is the same as the voxel size to save computation time, and the search within the grid is

accurate and fast. If the size is different, the search must be performed repetitively, costing

more as the point cloud could be very dense.

Figure 6.6 Voxel grid representation along the X, Y and Z axis

6.3.3.2 Voxel Indexing

Voxel indexing is important to identify the voxels in the point cloud. The indexing also

provides the facility to capture points inside the given voxel. The voxel index is based on the

voxel position in a 3D grid and is denoted by 𝑉(𝑖,𝑗,𝑘) where 𝑖 is for columns, 𝑗 is for rows, and

𝑧 is for layers. The columns 𝑖 are along the X-axis, rows 𝑗 are along the Y-axis, and layers 𝑧 are

216 | P a g e

along Z-axis. The voxel index helps identify any voxel in the 3D grid and its points. Voxel

indexing plays a key role in clustering for the neighbourhood.

Figure 6.7 Voxel Indexing represents its position in 3D by using x,y, and z values, as shown in Figure 6.6

6.3.3.3 Generating 3D Grids

The voxels in the 3D grid are generated based on the size and indexed based on location, as

shown in Fig 6.8. The voxels are generated from the resultant lowest points of Terrain

Extraction for the proposed algorithm. The different colours represent the voxels on different

layers.

Figure 6.8 Voxel 3D grids represented by different colours

217 | P a g e

The voxels are generated using Equations 6.4 – 6.6 presented below:

𝑣𝑥 = (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (
(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)

𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒
) (6.4)

𝑣𝑦 = (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (
(𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)

𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒
) (6.5)

𝑣𝑧 = (𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (
(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)

𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒
) (6.6)

where 𝑣𝑥 is the voxels generated along the x-axis, 𝑣𝑦 is the voxels along the y-axis, and 𝑣𝑧 is

the voxels along the z-axis. 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑎𝑥 are the maximum coordinate bounds and

𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑍𝑚𝑖𝑛 are the minimum coordinates in the point clouds. The voxel size is selected

based on the point cloud. The voxels are generated along the three-axis; however, there are

conditions when the three axes are not the same sized. For example, a point cloud of the road

or railway is generally longer along one axis. Therefore, padding of the voxel is implemented

to solve the problem using Equations 6.7 – 6.9. For padding the grid, an extra voxel is created

as follows:

𝐸𝑥 = (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) − 𝑣𝑥 ∗ 𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒 (6.7)

𝐸𝑥 > 0 , 𝑣𝑥 → 𝑣𝑥 + 1

𝐸𝑦 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) − 𝑣𝑦 ∗ 𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒 (6.8)

𝐸𝑦 > 0 , 𝑣𝑦 → 𝑣𝑦 + 1

𝐸𝑧 = (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) − 𝑣𝑧 ∗ 𝑣𝑜𝑥𝑒𝑙𝑆𝑖𝑧𝑒 (6.9)

𝐸𝑧 > 0 , 𝑣𝑧 → 𝑣𝑧 + 1

218 | P a g e

where 𝐸𝑥 calculates along the x-axis, 𝐸𝑦 calculates along the y-axis, and 𝐸𝑧 calculates along

the z-axis. If 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧 are greater than zero, a voxel is added along the axis.

6.3.4 Seed Layer Identification

The third stage is seed layer identification—the first stage results in the lowest ground points.

In the second stage, the voxels are formed from all the lowest points found as a result of stage

1. In the third stage, all the lowest ground voxels (points) are removed, and the DBH level is

estimated from each lowest ground voxel to identify the seed layer voxels. The seed layer

voxels play an important role in identifying trunks and poles. Sections 6.3.4.1 and 6.3.4.

explains the usage and working of the seed layer in detail.

6.3.4.1 Removing the Ground Points

After implementing Terrain Extraction, all the lowest points are captured. Those lowest points

are then included in the bounding extent of a voxel during the voxelization stage. All the grids

created by Terrain Extraction are traversed to find all the lowest voxels with the lowest point

of the grid, as shown in Fig 6.9 (a) as red-coloured voxels.

(a)

219 | P a g e

(b)

Figure 6.9 (a) Ground voxels represented by red

(b) Different ground levels shown on a cross-section of a point cloud

Red coloured voxels represent ground voxels, and everything above the red voxels is

considered non-ground points. Once the ground voxels are derived, every point inside them is

removed as they are considered ‘ground points’. Removing ground points saves a lot of

computation time and fewer points to the cluster that belongs to the trunk or pole. Further, it

will also help identify the trunks, as shown in Fig 6.9 (b) and poles that are not on flat ground.

Fig 6.9 (b) presents the example of different ground levels in a typical point cloud. Therefore,

Terrain Extraction extracts these different ground levels or lowest points in this example and

is classified as ground voxels. Finally, the proposed algorithm is implemented on non-ground

voxels.

220 | P a g e

6.3.4.2 DBH Seed Layer

Next, the seed layer is identified after extracting all the ground voxels. The voxels are divided

along the z-axis, as shown in Fig 6.9(a), to demonstrate the ground voxels in layers. In the

example, the ground voxels are between 𝑍2 and 𝑍4 layer. A tree in the typical point cloud is

defined by a tree trunk and a crown, shown in Fig 6.2. Compared to the crown part and trunk

is composed of fewer voxels. The points on the trunk and poles are spatially separated from

other trunks and poles. Therefore, a seed layer divides the tree into two parts and the poles.

The trunk diameter is measured using DBH in arboriculture for different purposes of urban and

forest trees. By British standards, the DBH is 1.4 metres from the ground level. Therefore, the

seed layer is calculated at 1.4 metres above the ground layer height. As shown in Fig 6.10, the

seed layer, denoted by green coloured voxels calculated using DBH 1.4 metres above the

ground layer, is denoted by red coloured voxels. After voxel extraction on the seed layer, these

voxels are fed for the next part of the proposed algorithm: clustering. A dotted yellow line is

drawn in Fig 6.9 (b) to demonstrate different ground levels and the importance of extracting

the ground with slope to detect the trunks on the DBH height.

Figure 6.10 Voxels on seed layer represented in green colour

221 | P a g e

6.3.5 Clustering

The fourth stage of the proposed algorithm is clustering. Clustering is used in various fields

like social networks, market behaviour analysis, risk assessment, robotics, and recurring

patterns in financial transactions. In geoinformation systems, clustering divides or groups the

points with similar observations for data analysis (Poux, 2020). Various authors accomplish

the clustering of points in point clouds in different ways. An example of clustering is normal

difference clustering by Ioannou et al. (2012) to process unorganized point clouds, spectral

clustering by Teng et al. (2010) to connect each point with neighbours based on similarities,

clustering based on the geometric description by Weinmann et al. (2017), clustering based on

colour (Tazir, Checchin and Trassoudaine, 2016) and density (Aljumaily, Laefer and Caudra,

2017).

The clustering in this thesis is based on voxels. The resulting seed layer voxels are clustered

based on the nearest neighbour search.

6.3.5.1 Neighbourhood Approximation and Grouping

The voxels are created in columns 𝑖, rows 𝑗 and layers 𝑧 along the X, Y, and Z-axis. The

origin of voxelization is 𝑉(0,0,0) which is the three-axis minimum point. The clustering of

voxels is performed by neighbourhood searching, where a voxel is denoted by 𝑉(𝑖,𝑗,𝑘). The

first step is to mark all the voxels as 0 for empty and 1 for non-empty. By quick traversing of

voxels, the voxels with points are marked as 1 and voxels without points are marked as 0. All

the empty voxels are removed.

Next, the search starts with the origin in all the voxels marked as 1. The voxels are searched

for their eight neighbours on a single layer 𝑘. The eight neighbours are shown in Fig 6.11. If

the voxel 𝑉(𝑖,𝑗,𝑘) is searched along the x-axis or columns 𝑖 and along the y-axis or rows 𝑗 the

searching of voxels can be divided into two types

a) edge voxels (shown in Fig 6.11)

b) corner voxels (shown in Fig 6.12)

222 | P a g e

The edge voxels are those voxels that are connected by edges like 𝑉(𝑖,𝑗+1,𝑘), 𝑉(𝑖−1,𝑗,𝑘), 𝑉(𝑖+1,𝑗,𝑘)

and 𝑉(𝑖,𝑗−1,𝑘). The corner voxels are those which share a corner with the voxel like 𝑉(𝑖−1,𝑗+1,𝑘),

𝑉(𝑖+1,𝑗+1,𝑘), 𝑉(𝑖−1,𝑗−1,𝑘) and 𝑉(𝑖+1,𝑗,𝑘).

Figure 6.11 Voxel neighbour search on single k layer

The search must be extended to multiple layers as the ground has a gradient. The proposed

algorithm focuses on identifying the trunks and poles on the ground with a slope. Therefore,

the search is performed on three layers 𝑉(𝑖,𝑗,𝑘), 𝑉(𝑖,𝑗,𝑘−1) and 𝑉(𝑖,𝑗,𝑘+1). The original layer of the

voxel, plus a layer above and below, as shown in Fig 6.12.

Figure 6.12 Voxel neighbourhood search on k, k+1, k-1

223 | P a g e

Every voxel shares a maximum of eight neighbours on a layer and 26 neighbour voxels when

searched on three layers as mentioned above. The search must be fast and accurate; therefore,

few measures are taken, as shown in Fig 6.13. The rules are if the voxel for the nearest

neighbour search is the origin, then instead of searching eight neighbours, only three

neighbours are searched, i.e., two edge voxels and one corner voxel. Similar rule for 𝑉(𝑖𝑛,𝑗𝑛,𝑘)

the last corner voxel in 𝑖 columns and 𝑗 rows. The voxels on the edge of the 3D grid search for

three edge voxels and two corner voxels, as shown in Fig 6.13 (c) and (d).

 (a) (b) (c) (d)

Figure 6.13 Voxel neighbourhood search

The clustering of voxels focuses on the points while removing ground points. However, the

clustering results in incorrect ground removal in the case of hollow features. The main cause

of hollow features is the scanning systems that capture an object’s surface points. For example,

any feature in the point cloud is hollow when it does not have points inside, so the lowest points

inside the feature would not belong to the actual ground, as shown in Fig 6.14.

Therefore, the grouping of voxels checks for the sudden change in the Z layer direction and

distance to overcome the problem. The ground layer voxels are compared with neighbouring

ground voxels based on a distance threshold 𝑇ℎ𝑑 in the Z-axis direction. An example is shown

in Fig 6.14, a vertical section of a tree displays that a tree is hollow in the middle. The terrain

extraction results produce ground points around the tree with a similar z value, but the lowest

point inside the tree does not belong to the ground. To overcome the threshold 𝑇ℎ𝑑 is

implemented. Any lowest points greater than the threshold are not considered ground points.

224 | P a g e

Figure 6.14 A section view of a tree in a point cloud

6.3.5.2 Cluster Groups

The nearest neighbour search of voxels is implemented, resulting in the voxel clusters on the

seed layer. Furthermore, the voxel clusters are assigned a group number to identify the clusters.

To demonstrate the clustering and grouping, Fig 6.15 (a) shows the centre of all voxels on the

seed layer, and Fig 6.15(b) shows the grouping of clusters on the seed layer.

(a)

225 | P a g e

(b)

(c)

Figure 6.15 (a) The centre of the voxels, (b) Clustered voxels on the seed layer, (c) Zoomed small area of (b)

Voxels are grouped in the seed layer along the column (X-axis), row (Y-axis) and layer (Z-

axis) of the voxel grid. The proposed algorithm starts from the origin to cluster the voxels, as

226 | P a g e

explained in Section 6.3.4.1. While searching in the voxel grid, every voxel is grouped into a

cluster. Each cluster has a unique group number to identify it among the other clusters. The

naming of groups starts from ∑𝐺 = { 𝐺1, 𝐺2……𝐺𝑁} in column vice manner. The rule for

allotting the groups in the cluster is that:

a) if a current cluster has an assigned group or not; if it doesn’t, it is assigned one.

b) if the nearest neighbour in the cluster has a group assigned, the current cluster will have

the same group number.

c) if the nearest neighbour in the cluster has no group assigned, then the group number is

assigned by an increment of one.

d) the voxels on a layer above and below are also searched and assigned a group number.

The first group is assigned as G1. Then, as the cluster progressed, the group numbers were

assigned to each cluster, as shown in Fig 6.16. The cluster groups in this example are 59 groups

in total.

 (a) (b)

Figure 6.16 Voxels centre are clustered in groups of Fig 6.15 (b) (a) Zoomed left side (b) Zoomed right side

227 | P a g e

6.3.6 Extraction of Cylinder Objects

The next stage of the proposed algorithm is the extraction of potential clusters that belong to a

trunk and pole. Then, the clustered group from the previous stage are analysed and filtered.

These filtered groups are potential groups belonging to the trunk or pole, as presented in

Sections 6.3.6.1 and 6.3.6.2.

6.3.6.1 Extraction of Potential Voxels

In the example shown in Fig 6.16, there are 59 cluster groups. The clusters on the seed layer

could belong to many point cloud features, such as a building, trees, vehicles, shrubs and

ghosts. To make the proposed algorithm faster and more efficient the voxel clusters are filtered

based on

a) Area

b) Compactness

c) Number of voxels (NOV) in a cluster

 (a) (b)

Figure 6.17 (a) Hypothetical example of clusters on a single layer

(b) Shows the perimeter of the clusters to calculate the area and compactness

228 | P a g e

Fig 6.17 shows a hypothetical example of the cluster groups along the x and y axis on the seed

layer. The potential trunk and pole clusters have less area than the clusters that belong to

buildings or other objects. Each voxel cluster is counted for the number of voxels in it. If the

number is more than the threshold 𝑇ℎ𝑛𝑜𝑣 the group is not considered. The threshold is

knowledge-based and selected based on different test point cloud data for trunk and pole

clusters.

The area and compactness of clusters belonging to a trunk or pole are comparatively less than

other voxel groups. As both are cylindrical shapes, a circle is the best shape fitted along the x

and y axis. The two attributes are computed for each voxel group. For the area 𝐴, the following

parameters are calculated 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 along x-axis, 𝑌𝑚𝑎𝑥, 𝑌𝑚𝑖𝑛 along y-axis and 𝑛 is the

number of voxels in each voxel group as shown in Equation 6.10.

𝐴 = 𝑛 ∗ ((𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) ∗ (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)) (6.10)

𝑑𝑖𝑎 = √(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
2 + (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)

2 (6.11)

𝐶𝐴 = 𝜋 ∗ (
𝑑𝑖𝑎

2
)
2

 (6.12)

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
𝐴

𝐶𝐴
 (6.13)

The second attribute is compactness, defined in Equation 6.13. For compactness, 𝑑𝑖𝑎 the

diameter and the circle area 𝐶𝐴 are calculated by Equations 6.11 and 6.12. The compactness

value is higher when a voxel group is close to the circular shape. Therefore, if the threshold

𝑇ℎ𝑐𝑜𝑚 for the compactness is close to 1, it is a perfect circle, or if the compactness is close to

0, it is not a circle. The compactness is calculated using equations 6.8 – 6.10. An example of

voxel groups on a hypothetical seed layer is shown in Fig 6.18. In Fig 6.18, groups G6 and G1

are non-circle whose compactness is less than the threshold 𝑇ℎ𝑐𝑜𝑚 and G5 and G4 compactness

are greater than the threshold 𝑇ℎ𝑐𝑜𝑚 which means the G5 and G4 are clusters that belong to a

trunk or pole.

229 | P a g e

Figure 6.18 Area calculated to measure compactness

Following the calculation of all attributes for each cluster, the potential voxels are selected:

1) if the number of voxels is smaller than 𝑇ℎ𝑛𝑜𝑣 i.e., 𝑇ℎ𝑛𝑜𝑣 is a given threshold to limit

the number of voxels and

2) if the compactness is greater than 𝑇ℎ𝑐𝑜𝑚 i.e., 𝑇ℎ𝑐𝑜𝑚 is a given threshold for

compactness.

When implemented in the example shown in Fig 6.15, results are shown in Fig 6.19. As a result,

the cluster groups are reduced from 59 groups to 11 potential groups. Therefore, area

compactness and the number of voxels of each cluster play an important role in the proposed

algorithm for increasing efficiency and robustness.

230 | P a g e

Figure 6.19 Potential Clusters belonging to tree or pole

6.3.6.2 Circle Fitting

The next stage is circle fitting on the potential groups. The trunks and poles can be

differentiated from other objects based on cylindrical shapes. As the clusters can be on different

layers and have up to three z-layer values (the clustering is implemented on k, k+1 and k-1),

the circle is fitted in 2D, considering only the x and y values.

Various researchers implement the techniques of circle fitting methods. For example, Pratt

circle fitting is more an extension of Kasa's (1976) circle fit which is more biased towards the

small circle or incomplete arc. However, Kasa’s is not robust as Pratt’s method. Taubin circle

fit is like Pratt’s method but is comparatively faster and more accurate. Hence, for this reason,

the combination of methods is implemented for circle fitting in this thesis.

The 2D circle fitting is implemented using a hyper fitting algorithm by Chernov Nikolai (2012),

a combination of Pratt’s (1987) and Taubin’s (1991) circle fit algorithms.

231 | P a g e

 (a) (b)

Figure 6.20 (a) Circle fitting on a pole (b) Circle fitting on a trunk

An example of a hyper circle fitting on the voxels belonging to the possible tree trunk and a

pole is shown in Fig 6.20 (a)(b). Further, Fig 6.21 demonstrates the cluster groups filtered by

circle fitting in green and the rejected groups in red. From 11 potential groups, circle fitting

results in 6 cluster groups.

Figure 6.21 Potential trees and poles in green after circle fitting algorithm

232 | P a g e

6.3.7 Tree and Pole Classification

The last stage of the proposed algorithm is classification. The section focus on classifying the

voxel groups that are filtered as potential groups by earlier stages of the algorithm. The

classification is demonstrated in the example shown in Fig 6.21 with the six resulting cluster

groups. The point cloud has various objects similar to the trunk and pole, such as a moving

person, a part of a building, a tripod used for scanning the point cloud data or bushes/shrubs.

The human eye can detect these objects much more quickly based on knowledge and

understanding of the feature’s shape; however, the proposed algorithm needs to learn to

identify and classify the objects based on certain rules. Each voxel cluster is analysed based on

the rules as follows:

1) Semantic rules

2) Shape-based rules

3) Intensity and colour-based rules

6.3.7.1 Semantic Rules

Semantic rules are based on the prior knowledge of the objects, i.e., trunks and poles. To

differentiate between trunks and poles, voxel dimensionality 𝑆𝑉𝐷, the adaptive radius of the

voxel cluster 𝑆𝐴𝑅 and upward region growing 𝑆𝑅𝐺 are applied in this section.

1) Voxel Dimensionality Analysis

The first rule applied is Principal component analysis (PCA) to evaluate each voxel group’s

dimensionality 𝑆𝑉𝐷 (Demantké et al., 2011). PCA is widely used to analyse and reduce the

dimensionality of datasets with interrelated variables while retaining the variation present by

principal components (Dubey, 2018). In addition, PCA is used as a popular approach to identify

the structure of points as linear, planar or volumetric. For example, PCA was used for shape

identification by Yang and Dong (2013), Kang et al. (2018), Shi et al. (2018), Yokoyama et al.

(2013) and Yang et al. (2015), whereas PCA was used for dimensional identification by

Demantké et al. (2011), Monnier, Vallet and Soheilian (2012) and Huang and You (2015).

233 | P a g e

In this thesis, PCA is applied in Chapter 5 for edge detection. In this chapter, PCA is applied

to analyse the dimension of the points inside the voxels. The first step is to calculate the

covariance matrix using Equation 6.14

𝐶 =
1

𝑁
 ∑(𝑝𝑖 − 𝑝) (𝑝𝑖 − 𝑝)

𝑇
𝑁

𝑖 = 1

 (6.14)

where 𝑝𝑖 is the 𝑖 𝑡ℎ point in 𝑁 , and 𝑝̅ is the mean calculated by 𝑝̅ =
1

𝑁
 ∑ 𝑝𝑖𝑖 = 1 and 𝑁 is

the number of points in voxels. The eigenvalues 𝜆1, 𝜆2 and 𝜆3 are obtained from 𝐶 where 𝜆1 is

the largest variant than 𝜆2 and smallest is 𝜆3. If λ1  λ2λ3 0, PCA is applied to determine

the dimensions inside the voxels as linear, planar and scattered. The dimension analysis symbol

is 𝑆𝑉𝐷. The voxel is considered linear if (λ1 − λ2) / λ1, planar if (λ2 − λ3) / λ1 and scattered

if (λ3) / λ1. The following rules are applied:

• If cluster groups have scattered data – rejected,

• If cluster groups have all planar data – considered,

• If cluster groups have all linear data – considered,

• If cluster groups have linear and planar data – considered,

• If cluster groups have linear and scattered – rejected.

The volumetric voxels are discarded as the trunks and poles never have scattered data. Only

voxels with tree foliage and noise have the scatter dimensions. All the linear and planar

dimension voxels are considered, and the rest are discarded.

2) Adaptive Radius of Trunk and Pole

The second rule applied is the adaptive radius 𝑆𝐴𝑅. A circle is applied from the centre of the

voxel clusters, and the radius is stored to compare. As poles are man-made objects, the radius

for poles is fixed, as shown in Fig 6.22 (a). After testing on various datasets, the pole clusters

234 | P a g e

are always a cluster of four voxels or less. On the other hand, the voxel cluster of tree trunks is

variable. Fig 6.22 (b) shows that the radius of trunks is usually larger than poles.

 (a) (b)

Figure 6.22 Voxel groups of (a) Poles (b) Trunks

3) Upward Region Growing

The third rule applied is an upward region growing 𝑆𝑅𝐺 on the seed layer of potential voxel

clusters. The upward region growing starts from the seed layer 𝐿𝑠 along Z-axis, analysing all

the voxels clusters vertically on each layer. Poles are always symmetrical and have an almost

equal number of voxel clusters on each layer. In contrast, the trees start scattering due to the

presence of foliage and branches. Fig 6.23 shows the example of the voxel clusters on the pole

and trunk from the seed layer (red) compared with the clusters above the seed layer.

235 | P a g e

If the voxel cluster growing above the seed layer 𝐿𝑠 is equal to the number of voxels in the seed

layer identified as a pole. If the voxel cluster growing upward from the seed layer 𝐿𝑠 is

increasing, i.e., the number of voxels in 𝐿𝑠+1, 𝐿𝑠+2 are increasing, then it is identified as a tree

trunk.

Figure 6.23 Upward region growing from the seed layer 𝐿𝑠 shown for pole and tree

6.3.7.2 Shape-Based Rules

Shape-based rules are based on the shape of the objects, i.e., trunks and poles. To differentiate

between trunks and poles, object isolation criteria 𝑆𝐼𝑆𝑂 and the distribution area of voxels 𝑆𝐷

are applied in this section.

236 | P a g e

1) Object Isolation Criteria

The first shape-based rule is the isolation criteria 𝑆𝐼𝑆𝑂. Many researchers used the isolation

criteria in the study for identifying objects, especially poles (Arastounia & Oude Elberink,

2016; Li et al., 2019; Ordóñez et al., 2017; Li et al., 2016; Wu et al., 2017). The pole is usually

isolated from other road features. If the potential voxel group are separated and isolated, it is

classified as a pole.

2) Distribution Area of Voxels

The second rule is the distribution area of the voxel cluster 𝑆𝐷. If observed orthogonally along

the x and y-axis, the voxel clusters will have a distribution that could indicate whether the voxel

belongs to the pole or a trunk. If the voxel distribution is more, it is classified as a trunk or if

smaller than it is classified as a pole.

Figure 6.24 Distribution of Tree and pole cluster

237 | P a g e

6.3.7.3 Intensity and Colour-Based Rules

The differentiation between the trunk and pole rule is based on intensity and colour values. The

sum of all the intensities 𝑆𝐼 and colours 𝑆𝐶 are calculated in potential voxel groups. The pole

as a man-made object is more reflective and therefore has more intensity value, whereas the

trunk has lower intensity. Hence, colours are often a shade of brown for the trunk, whereas

poles have more distinctive colours than trunks.

The result of potential voxels is shown in Fig 6.25 after applying trunk and pole classification.

Implementing the same example shown in Fig 6.21 with six potential groups, the groups are

reduced to 3 voxel groups. Section 6.4 demonstrates the proposed algorithm implementation

presented in this section on commercial software 3D Vision.

Figure 6.25 Result of classification and true trees and pole detection

238 | P a g e

6.3.8 Pseudo Algorithm

The proposed algorithm can robustly identify cylindrical shapes with various radii and tilt

angles in the point cloud. The workflow of the proposed algorithm is shown in Fig 6.3. In this

thesis, the voxel size is fixed for any input point cloud. After many iterations, the voxel is

selected as 0.2 metres for the proposed algorithm. A size bigger than 0.2 did not have enough

details captured in it, and less than 0.1 was time-consuming.

Input: Point cloud =𝑃(𝑥, 𝑦, 𝑧) = {1,…… .𝑁𝑖}.

1: For algorithm 0.2, voxel size is selected because a higher number affected the tree girth

detection as the hollow ground beneath can produce no centre point. At 0.2, it worked efficiently

for almost all data types.

2: Terrain extraction - Scan each voxel from the bottom and find the first one with data, which is

recorded as ground level

3: Whole data is viewed vertically to find all the points as ground and add to the data.

4: It starts from Z0 to Z6 or Z8 as the seed layer. According to DHB, the trunk width is usually

taken at 1.4 metres.

5: Seed voxels are clustered on the same layer and a layer above and below by neighbour search.

The clusters are then marked.

6: The DBH does not consider the seed layer’s points if the ground is hollow. Therefore, the seed

layer clusters are extended on the same layer.

7: The clusters use a circle fitting algorithm to find whether the actual circle can fit. As a tree

might not be a perfect circle, only 70-80% circle is considered.

8: All the groups with near circles, compactness and area are selected. Then, the centre and the

radius are calculated.

9: Each cluster is then classified as trunk, pole and others

Algorithm for Trunk and Pole Detection

239 | P a g e

Input: Voxel clusters

1: Check if the voxels are within the circle radius threshold input by the user (Adaptive radius)

2: Check for vertical upward region growing on the seed layer

If (voxels are present)

{

3: Check the voxel cluster’s RGB and intensity (input by training data)

4: Checks for the area distribution of voxels

5: PCA analysis and Standard deviation (for checking distribution linearity)

6: Isolation criteria

}

 6: Result: Pole, trunk or other

6.4 Proposed Algorithm Implementation on Commercial

Software

The popular and most captured point clouds are for urban sites. These data cover the street

scene or a city block. However, the level of detail can be very complex and processing these

data is challenging. This section aims to demonstrate the implementation of the proposed

voxel-based algorithm on commercial software, “3D Vision”.

For demonstrating the implementation, the following datasets are used 1) Dorchester and 2)

Car park. In Section 6.4.1, the key features of the proposed algorithm are presented on the

software 3D Vision and followed by the software’s UI parameters to control and manage the

algorithm according to the point cloud type presented in Section 6.4.2. Next, Section 6.4.3

shows the software development environment used to implement the algorithm. Finally, in

Algorithm for Trunk and Pole Classification

240 | P a g e

Section 6.4.4. demonstrate the real-world scenarios and challenges encountered by users, and

the proposed algorithm can handle and extract the cylindrical features efficiently.

(a)

(b)

241 | P a g e

(c)

Figure 6.26 Trunks and poles detected in 3D Vision shown in a fuchsia-coloured cylinder (a) trunk detected (b)

pole detected (c) trunk detected

6.4.1 Key Features

This section presents the key features of the 3D Vision software for triggering and using the

proposed algorithm. The trunks and poles are detected by clicking on a start button under the

“Tree Trunk and Pole-like Objects Detection Options”.

The algorithm is then triggered and starts the process; meanwhile, the users are shown a

progress bar indicating that the algorithm is taking place in the background. Once the algorithm

finishes, it lists the number of trunks, poles and other objects detected in the point cloud. The

list presents a centre and radius for each detected cylindrical object. These centres and radii are

then sent to the LSS DTM survey for modelling by users (surveyor and civil engineer).

How are the cylindrical objects detected in point clouds?

242 | P a g e

• It starts with terrain extraction as the separation of ground and non-ground points are

essential for further process.

• All the non-terrain data is segmented using voxels (After many iterations, the voxel is

selected as 0.2 metres for the proposed algorithm. The size bigger than 0.2 did not have

enough details captured in it, and less than 0.1 was time-consuming).

• The seed layer is detected by implementing the DBH.

• The clustering of voxels takes place on the same layer and a layer above and below.

• The compact ratio and circle fitting algorithm are applied.

• Results in all the cylindrical objects.

The results of cylindrical objects are not very useful to the user as cylindrical objects in a typical

point cloud can be anything. Therefore, proper classification is required for the users to be able

to model the feature extracted. The classification divides all detected cylindrical objects into 1)

Trunks, 2) Poles, and 3) Others. The classification starts by

• Semantic rules – voxels dimension, adaptive radius and upward region growing.

• Shape-based rules – isolation criteria and distribution of voxels.

• Colour-based and intensity-based.

6.4.2 System Operations

This section describes the commands in the 3D Vision software of LSS. For trunk and pole

detection, a list of parameters is set. If users do not change and select, it will be set to default

values. The appropriate parameters may change from the point cloud of a city scene to the other

point cloud of an urban scene in residential development.

Algorithm Settings – The proposed algorithm in the commercial environment allows the users

to set the parameters to find the best results in given data sets. The parameters enable flexibility

for the user to use the algorithm according to their requirements. For example, a user might be

interested in just the trunks so they can specify the parameter to accommodate that; on the other

hand, a user might be just interested in pole-like structures. The recommended default

parameters are shown in Fig 6.27.

243 | P a g e

Figure 6.27 User-controlled options for the proposed algorithm in 3D Vision

Setting Parameters – Figure 6.27 demonstrate the parameters that could be set according to

the point cloud used to detect the trunks and pole-like objects. For these, users must select the

parameters in UI.

244 | P a g e

The first parameter is 1) ‘Minimum Number of Points in a Voxel’ for handling point densities

inside the voxel. This parameter allows the trunks and pole-like objects to be detected even

with minimum point density. The laser scanners collecting point cloud data sets use laser beams

that fall on the object’s surface and return the points. The objects close to the scanner have full

coverage, i.e., high-density points, and the farthest object surface has less coverage, i.e., low-

density points. Therefore, point cloud points have variable density and distribution of points.

One of the major problems with the existing methods is that they are unable to detect trunks

and poles where the point densities are low. The parameter ‘minimum number of points in a

voxel’ will allow the user to set the number as low as possible to detect variable densities.

The other options are 2) ‘Minimum Diameter’, 3) ‘Maximum Diameter’, 4) ‘Circle and Cluster

Centre Distance Threshold’, 5) ‘Minimum DBH’, and 6) ‘Maximum DBH’.

The parameters minimum and maximum trunk diameter allow users to control the width

(cylindrical) of the detected objects. The trunks generally have variable widths, whereas the

pole-like structures have similar widths. Depending on the type of the point clouds, the user

can either have mature or new trees. This parameter will help differentiate between mature

trees to conserve and new trees for a user such as a tree surveyor.

The next parameter is distance thresholds. The threshold specifies the distance between a fitted

circle on the clustered group of points and the actual centre of the group. The fitted circle on

the clustered group could either be very large or very small. Therefore, this parameter is used

to control the trunks that are detected. For example, if the distance between the fitted circle and

cluster centre is large, it is either an anomaly or a very large tree, whereas if the distance

between the fitted circle and cluster centre is small, it is a comparatively compact tree trunk.

Lastly, two parameters control the Diameter Breast Height (DBH) of the tree trunk measured

by surveyors and civil engineers. The British standard DBH is 1.4 metres above ground level

(Measuring Trees · The Tree Register, 2022). This parameter will help the user specify the

range above ground level to measure the trunk and pole diameter at that height.

The next option is two buttons 1) Pick trunks RGB and 2) Pick pole-like objects RGB. This

parameter is used to train the algorithm with the set of RGB present in that typical point cloud.

RGB is very powerful and is used to differentiate between different features.

245 | P a g e

The last section is the Resultant Objects list. All the cylindrical objects detected in the point

clouds are listed in this section and are classified into three groups (a) trunks, (b) poles (c)

others. This classification helps the user to choose the object of interest. Furthermore, the user

can choose the items and send them to LSS for creating a DTM survey by using the “Send

Selected to LSS” button.

6.4.3 SDE

The software development environment (SDE) used for the proposed algorithm is Microsoft

Visual Studio 2022 version 17.4.4, the language is C# (pronounced as C sharp) version 10 and

.Net Framework 4.8. The algorithm is implemented in the back-end, which users access as the

front-end interface, as shown in Fig 6.28.

Figure 6.28 Visual Studio 2022 used for implementation of the proposed algorithm

246 | P a g e

6.4.4 RealWorld Scenarios

This section demonstrates how effectively the proposed algorithm works to detect the trunks

and pole-like objects in real-world scenarios, such as the presence of gaps, detection in slope,

low point density, and objects closer to the trunks. An example of real-world data is shown in

Fig 6.29. In addition, this section aims to demonstrate that the proposed algorithms can be used

to overcome the existing methods’ challenges highlighted in Section 6.2.7.

Figure 6.29 A typical real-world user data in 3D Vision

6.4.4.1 In the Presence of Gap

Figure 6.30 illustrates the presence of a gap or data missing. This is very common due to the

nature of laser scanners. As the laser scanner picks the surface of objects and depending on the

scanner position, often the objects are not fully captured, i.e., only part of the object visible

from the direction of the scanner is captured. The examples of half trunk and pole are shown

in Fig 6.30. To overcome such problems, the proposed algorithm uses terrain extraction in

order to capture all the points on the same level, which then highlights the gaps. These are

247 | P a g e

further analysed within voxel clusters to determine the gap/missing points by fitting the circle

and calculating the compact ratio (the compactness close to a circle). For example, Fig 6.30 (a)

shows the trunk that has been detected (as a fuchsia colour cylinder is present around it) that

has a hollow ground. To show the details of the captured ground, Fig 6.30 (b) and (c) presents

the data from a section through the trunk. The proposed algorithm was able to detect the trunk

with zero points below it.

(a)

(b)

248 | P a g e

(c)

Figure 6.30 Trunk detection (a) shows the hollow trunk, (b) shows a section through the trunk in (a), and (c)

shows the series of trunks and poles with the horizontal section through it

6.4.4.2 Detection on Slope

Figure 6.31 illustrates the presence of a slope. Another challenge of existing methods is that

they assume that all the trunks and pole objects will be on flat ground. Whereas in the real

world, this is not the case; the reason includes terrain being on a slope or the ground under the

trunk being covered in a pile of leaves (depending on which time of year the point cloud is

captured). To overcome such problems, the criteria minimum and maximum DBH are very

effective as the seed layer is between them. The example is shown in Fig 6.31 (a), where the

scanner has not properly captured the trunk points due to the wall in front or the pile of leaves.

Fig 6.31 (b) shows a section through this tree, showing the trunk above ground level.

249 | P a g e

(a)

(b)

Figure 6.31 The trunk is present slightly above the ground in (a) and (b)

250 | P a g e

6.4.4.3 Low Point Density

One of the most common challenges of existing methods is they are unable to identify pole-

like objects and trunks in cases of low-density data. The point density option (minimum number

of points in a voxel) is implemented to overcome this problem in the proposed algorithm. When

performing clustering, the point density specifies the number of points within each voxel. The

example shown in Fig 6.32 demonstrates that the proposed algorithm is able to detect the trunk

Fig 6.32 (a) with a point density of 5 and a pole example in Fig 6.32 (b) which is detected with

a point density of 6. Hence the point density option provides the flexibility to the user to choose

the number of points that they want to be detected by the proposed algorithm.

 (a) (b)

Figure 6.32 (a) Trunk detected with a point density of 5, (b) Pole detected with a point density of 6

6.4.4.4 Objects closer to trunks

The proposed algorithm is able to detect the trunks and pole-like objects closer to other objects

in point clouds. One of the challenges of the existing methods is that the detected objects that

are closer to other features, i.e., not isolated, are not detected. Non-isolated objects are difficult

to find as the points are to be differentiated between the required feature and others. The

proposed methods of clustering and the training data of the objects allow for the differentiation

251 | P a g e

between two objects. The example in Fig 6.33 (a) shows that the proposed algorithm could

detect a trunk closer to a fence. A similar example, in Fig 6.33 (b), shows that the proposed

algorithm was able to detect the trunk close to shrubs or vegetation near it. A detailed section

view of Fig 6.33 (b) is shown in Fig 6.33 (c).

(a)

(b)

252 | P a g e

(c)

Figure 6.33 Examples of trunk detected that is (a) closer to a fence, (b) closer to vegetation and

(c) vertical section of (b)

6.5 Evaluation and Validation of Proposed Algorithm

This section evaluates and demonstrates the proposed voxel-based algorithm for precision and

recall quality for the number of trunks and poles detected. Further, the detection speed and

classification accuracy are analysed and compared with the existing methods.

6.5.1 Test Datasets

Both terrestrial and aerial laser scanners capture datasets used for testing. The FARO scanner

model FOCUS 350 is used. The focus scanner ranges up to 350 metres for long-range

measurements, and the measurement speed is up to 976,000 points/second. Focus has

integrated GPS and Glonass, allowing detecting positions (Focus - FARO® Knowledge Base,

2016). The resolution of the scanner can also be changed. LiDar laser scanner, Leica RTC360

253 | P a g e

3D Laser Scanner captures point cloud data for up to 130 metres with 2 million points/second

measurement speed. Leica scanner has multi-sensors GPS, compass, height sensor and dual-

axis compensator (Leica RTC360 3D Laser Scanner, Leica Geosystems, 2018). The test dataset

includes an urban scene or city block (trunk and pole structures). Data sets that have been used

to evaluate the proposed algorithm, as shown in Fig 6.34 (a), (b) and (c), are:

(a) Chateaudo LiDar data set was captured by Faro and has 27.1 million points.

(b) Drone data set was captured by photogrammetry and aerial LiDar and has 20.2

million points. It is secondary data set by Zegaoui (2018) downloaded for the

evaluation of the proposed algorithm.

(c) Dorchester data set was captured by Leica and has 161 million points.

The scanned datasets consist of points in 3D (x, y, z) along with each point’s R, G, B and an

intensity value.

(a)

254 | P a g e

 (b) (c)

Figure 6.34 Datasets (a), (b) and (c) used to test and evaluate the proposed algorithm

6.5.2 Computation Parameters

This section demonstrates the parameter that can be set and controlled by users for the

performance of the proposed algorithm. Figures 6.35 and 6.36 show the default values of the

parameters in the commercial environment. The parameter settings allow the flexibility of

detecting the trunks and poles, which could differ according to the different point cloud data

sets.

(a)

(b)

Figure 6.35 User-controlled parameters to control the proposed algorithm

255 | P a g e

The “Point Density Option” parameter is shown in Fig 6.35 (a). Point density is important

because it will allow the users to detect cylindrical objects in various ranges of density. The

laser scanner beams pick a higher density of closer objects and a lower density of distant

objects, i.e., the trees or poles that are picked far off could have lower point densities. The

higher-density trunks and poles are easier to detect than low-density ones (as the algorithm will

have enough points to detect the trunk/pole). In addition, this is one of the great challenges of

existing methods to be able to find trees and poles with lower densities. Hence, this parameter

helps users specify the minimum number of points in a voxel in order to detect trunks and poles

with very low densities (which helps pick the trunk/pole even with minimum points shown in

Section 6.4.4.3). Practically testing the minimum number of points in voxel parameters on

various point clouds, the default value is set to 25, and the lowest density on a trunk/pole was

5.

The next parameter is "Training Data”, shown in Fig 6.35 (b), which allows the user to train

the proposed algorithm according to the RGB values captured by the scanner. This group

contains two buttons 1) Pick trunks RGB and 2) Pick pole-like objects RGB. This parameter is

used in the classification of pole objects and trunks. The point cloud RGB can vary due to many

factors like environment, weather and obstacles, especially when captured outdoors. Therefore,

colours are not always realistic; however, they can be used to classify different features. For

example, a tree can be white, purple or green, which depends on the time of day, weather and

reflection etc.

Therefore, to overcome this problem, these parameters will allow the user to tag the objects

and define the colours to identify them. The process is simple when the user triggers the pick

trunks RBG or pick pole-like objects button, and it will allow the user to navigate within a

scene in the point cloud and identify the tree trunks or pole-like objects by clicking on it. This

process will register the colours for trunks and pole objects as training data which is then used

with other criteria to classify all detected objects in three (trunks, poles and other) categories.

Further, this option allows the user to detect the tree and pole-like objects in various point

clouds with different coloured objects as it is not restrictive.

256 | P a g e

Figure 6.36 Software Parameters to control the detection algorithm by users

The next parameters are a set of “Options” shown in Fig 6.36 grouped together to control the

detection. In this group, the first two parameters are maximum and minimum diameters. These

two parameters allow users to choose the diameter of detected trunks or poles. This parameter

is more useful to the tree surveyor as they might want to differentiate between an old tree and

a new tree. The default for the minimum diameter is 0.1 metres as it can also detect slim pole-

like objects with trunks. The maximum diameter default is set to 0.5 metres which can

accommodate the trunks in urban areas.

The next parameter is the distance threshold between the fitted circle and the voxel cluster

centre. The voxel cluster centre is calculated by the gravity of all points in the cluster, and on

the other hand, the fitted circle on the points can be small or large depending on the points’

alignment. Therefore, this parameter helps the user to specify the difference and control the

type of trunks and poles they want to be detected. The default is set to 1.2 metres, which is big

enough to accommodate all types of trunks and poles.

The next two parameters are maximum and minimum diameter breast height (DBH) values.

This parameter will provide the flexibility to users to detect trunks and poles at what height.

The British standard in the surveying industry is 1.4 metres; therefore, the default is set between

1.2 – 1.5 metres.

257 | P a g e

After implementing the proposed algorithm and classification algorithm, the resultant objects

are listed in the software’s user interface for visualization, as shown in Fig 6.37. The resultant

objects are listed in 3 groups:

• Trunk,

• Pole

• Other

When the user clicks on any listed object, the object is highlighted by a fuchsia-coloured

cylinder to represent the detection. The other category, further analysed by the proposed

algorithm, lists the objects that fit the pole or trunk description. This classification result

enables users to override objects’ detection and classification according to the point cloud data.

Figure 6.37 List of objects detected by the proposed algorithm and classified into trunk, pole and others

258 | P a g e

6.5.3 Comparative Analysis: Detection and Classification Results

The algorithm results are tested using standard metrics described by Yan et al. (2017), Yang et

al. (2015), Landa and Ondroušek (2016), and Kang et al. (2018). The detected features are

categorised as True Positive (TP), False Positive (FP), False Negative (FN) and True Negative

(TN). The thesis uses Yan et al. (2017) and Wu et al. (2017) methods to evaluate the proposed

algorithm using precision, recall, quality and 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 values.

1) TP – The features are correctly detected.

2) FP – The features are falsely detected.

3) FN – The features are undetected.

4) TN – The features correctly detected as others, neither trunk nor pole.

Based on these values, precision, recall, quality and F1 measure (Wu et al., 2017) are calculated

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 % (6.12)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 % (6.13)

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 % (6.14)

𝐹1𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (6.15)

The correctly detected trunks and poles are considered true positives, and undetected pole-like

objects and trunks are considered false negatives. The objects that are falsely detected as

trunk/poles are considered false positives. The number of objects present in each dataset is

listed in Table 6.1. The objects are divided into two categories high-density objects (HDO) and

low-density objects (LDO). The objects that are fully captured and have a high density of points

are HDO, and the objects with very few points and not fully captured are LDO. The objects in

the datasets are listed below:

259 | P a g e

a) Drone Dataset – 20.2 million points -7 trees and 10 poles

b) Chateaudo LiDar Dataset – 27.1 million points - 49 trees, 13 poles and 5 other objects

– persons, buildings etc

c) Dorchester Dataset - 161 million points – 23 trees, 18 poles and 15 other objects -

buildings and enclosures

Table 6. 1 Point Cloud data sets with urban objects

The detected objects are listed in Tables 6.2, 6.3 and 6.4 for three datasets. The interested user

objects are classified into poles and trunks. The precision, recall, quality and 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

are calculated using Equations 6.12, 6.13, 6.14 and 6.15.

Table 6. 2 Precision, recall and overall accuracy of Dataset 1 – Drone data set

Point Cloud Marker poles,

Utility Pole,

Traffic Signs

(LDO)

Marker poles,

Utility Pole,

Traffic Signs

(HDO)

Slim

Trees

(LDO)

Mature

Trees

(HDO)

Others

(Building,

enclosure)

TOTAL

Drone 7 3 1 6 2 17

Chateaudo 13 0 49 0 5 67

Dorchester 6 12 5 18 7 41

Pole Trunks

TP 8 Precision 80.0% TP 7 Precision 100.0%

FP 2 Recall 100% FP 0 Recall 100.0%

FN 0 Quality 80.0% FN 0 Quality 100.0%

TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 88.9% TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 100.0%

260 | P a g e

Table 6. 3 Precision, recall and overall accuracy of Dataset 2 – Chateaudo set

Table 6. 4 Precision, recall and overall accuracy of Dataset 3 – Dorchester set

A comparative analysis of previous data has been performed. The studies focused on detecting

multiple poles classification and tree classifications. Even though the data sets used in their

studies are different, the comparison is performed with the proposed algorithm.

Cabo et al. (2014) achieved an average recall of 92.3% and a precision of 83.8% for detecting

pole-like objects on two datasets with 4.6 and 41.5 million points. Li, Li and Li (2016) achieved

recall values between 94.6% to 97.7% and precision values between 79% to 100% on three

datasets with 12, 7.1 and 8.3 million points. Teo and Chiu (2015) achieved a recall of 95.5%

and a precision of 95.6% on two datasets with 5 and 6 million points. The pole detection of the

proposed algorithms achieved recall values of 100%, 81.8% and 100.0% and trunk detection

recall values of 91.3%, 95.6% and 100.0% in the three datasets mentioned above with 20.2,

21.1 and 161 million points. The precision values achieved pole detection of 80.0%, 81.8% and

Pole Trunks

TP 9 Precision 81.8% TP 43 Precision 89.6%

FP 2 Recall 81.8% FP 5 Recall 95.6%

FN 2 Quality 69.2% FN 2 Quality 86.0%

TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 81.8% TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 92.5%

Pole Trunks

TP 16 Precision 94.1% TP 21 Precision 95.5%

FP 1 Recall 100.0% FP 1 Recall 91.3%

FN 0 Quality 97.1% FN 2 Quality 87.5%

TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 97.0% TN 0 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 93.3%

261 | P a g e

94.1% and achieved trunk detection precision values of 89.6%, 95.5% and 100.0% in the three

datasets mentioned above. The recall and precision value ranges are slightly higher compared

to the other methods, and the datasets are bigger than the existing methods.

The accuracy achieved by Rodríguez-Cuenca et al. (2016) is 94.35% and 95.0% in the two

datasets. Guan et al. (2016) achieved an accuracy of 88.9% for classifying the traffic light poles

and light poles. Yan et al. (2016) achieved an overall accuracy of 91% in detecting multiple

pole-like objects. Yang and Dong (2013) achieved a recall of 84.2% for tree trunks and the

recall values for poles is 89.6% and 90.2%. The achieved precision value of 85.4% for trunks

and 86.3% and 89.2% for poles. Yang et al. (2015) achieved a recall of 91.0% for tree trunks

and 94.1% for poles. The achieved precision value for the trunk is 91% and 93.5% for the

poles. The proposed algorithm achieved an accuracy of 70.0%, 80.0% and 94.1% in pole

detection and an accuracy of 100.0%, 86.0% and 87.5% in trunk detection with large datasets.

 The 𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 achieved by the proposed algorithm for pole is 81.8%, 88.9% and 97.0%,

and for trunk detection, the values are 91.5%, 93.3% and 100.0%. The proposed method can

identify all kinds of poles with low and high-density points with overall high accuracy.

6.5.4 Processing Time

This section records the computation/processing time the proposed algorithm achieves in

minutes. The method is implemented in C# on a desktop-based application. The processing

times of the proposed algorithm are recorded using the commercial software 3D Vision. Wu et

al. (2017) subdivided the data set into ten subsets for faster evaluation, whereas the proposed

algorithm is implemented on the whole dataset without subsampling. The size of the datasets

is not the same in this comparative study. However, times can be compared in terms of the

number of points taken to detect and classify objects in the point cloud. Landa and Ondroušek’s

(2016) method’s processing time was 2 hr 35mins, Hackel et al. (2016) 90 min for segmenting

30 million points, and Yan et al. (2017) presented a computation time of 121.55 minutes for

processing 180 million points. On the other hand, the computation time of the proposed

algorithm for 161 million points (Dorchester Dataset) is 6.5 minutes.

262 | P a g e

6.6 Discussion

The proposed algorithm shows promising results for automatically detecting cylindrical objects

in urban point clouds. The advantages of the method are: (1) the use of terrain extraction for

fast and quick retrieval of ground points. (2) elimination of lengthy segmentation processes

such as euclidian distance segmentation, which does not work in highly populated

environments (Landa and Ondroušek, 2016). The proposed algorithm implements voxels

(voxel grids), a relatively quick segmentation technique. (3) Voxel-based clustering method

works effectively on a current layer and accommodates the voxels in a layer above and below.

(4) Effective in real-world scenarios.

During the implementation of the proposed algorithm on the commercial software, real-world

scenarios are tested, such as the presence of gaps (no points present), the presence of slope on

the ground, the presence of low-density point objects and other objects closer to the objects of

interest (trunk and pole-like objects). As a result, the algorithm works efficiently to detect and

classify the trunk and polelike objects of point clouds.

Furthermore, the parameters provide the flexibility to detect the features of interest in several

kinds of point clouds. The evaluation showed the recall, precision and quality values, indicating

that most pole-like objects and trunks are detected. Based on the three datasets, the average

recall values of the pole and trunk are 91.6% and 92.8%, the average precision values of the

pole and trunk are 91.5%, and 97.2 and the average quality values of the pole and trunk are

84.4% and 90.6%. These are very high numbers, given that the dataset was large.

The limitations of the proposed algorithm are missing ground points and RGB-based

classification. The trunks or pole objects that do not have ground points are unable to detect as

the terrain extraction algorithm cannot detect any points to implement DBH for the seed layer,

as shown in Fig 6.38 (a). Furthermore, the wrong classification was achieved because the user-

selected trunk RGB is very close to the building pillar RGB as shown in Fig 6.38 (b).

263 | P a g e

 (a) (b)

Figure 6.38 (a) Trunk with no ground points (b) Building pillar detected as a trunk because of similar RGB

6.7 Chapter Summary

The proposed algorithm detects trunks and pole-like structures by segmenting the ground and

non-ground points and removing the ground. First, Voxelization is applied on the non-ground

points to fasten the search. Next, the seed layer is identified to start the neighbourhood search

to cluster the voxel groups. Next, the potential cluster groups are selected by filtering based on

area, compactness and distribution. Finally, the resulting voxel groups are classified as trunk,

pole or other in the point cloud. The proposed method works efficiently and quickly as it is not

dependent on prior knowledge and is automated by implementing various parameters and

segmentation. However, the algorithm does not work when the ground points are absent.

However, this can be enhanced by traversing the voxel cluster groups on the same level. The

results conclude that the proposed method is robust, fast, efficient and automatically detects

and classify trunks and poles. Moreover, the algorithm works well with low-density points and

features on gradients.

Further enhancements and research of the proposed algorithm could be extended to offer a

more detailed classification of objects in the classes, such as the type of tree, type of pole,

vehicles and buildings.

264 | P a g e

Chapter 7 Software Implementation,

Application and Case Study

7.1 Overview

This chapter discusses the implementation and application of this thesis’s proposed algorithms

and presents a case study on commercial software. The software is called LSS and 3D Vision

(https://www.dtmsoftware.com, Accessed: 18 June 2022).

Section 7.2 presents the proposed algorithm projects’ implementation and models used to

design and develop. Section 7.2 presents the software life cycle model implemented, including

the requirement, design analysis, development, testing, and release. The presentation of the

programming language C# and software development environment visual studio was chosen

as it supports good 3D graphics libraries. The section also discusses the execution process

involved with each software project life cycle, including project management, quality

assurance, program UI intuitiveness, and reusability of programming. The next Section, 7.3,

introduces the commercial software ‘LSS’, its brief history, and the journey to point clouds

product ‘3D Vision’ by the company McCarthy Taylor Systems Ltd (MTSL). Section 7.4

presents the market research in the surveying and civil engineering industry, the workflow

used, and the software provided by different companies and users in the UK. Section 7.5

presents the case study on the 3D Vision software product and its implementation of point

cloud processing using UI parameters. Finally, Section 7.6 provides the chapter summary.

7.2 Software Implementation

The field of computer science software engineering is well-developed. Software engineering

can be defined as follows by Tucker (2021).

265 | P a g e

“Software engineering is the discipline concerned with the application of theory, knowledge,

and practice to building reliable software systems that satisfy the computing requirements of

customers and users.”

Software engineering is used for software development with proper tools, techniques and

methods. However, development is a large task requiring accurate engineering and

management techniques to make it cost-efficient and reliable.

Large-scale software projects are usually divided into phases for the effortless delivery of the

product. Since this thesis is also part of a commercial product, the proposed algorithms were

separate projects delivered using software models presented in Section 7.2.1, followed by

programming languages and SDE decisions (Section 7.2.2), and the execution process involved

within projects (Section 7.2.3). This section explains and summarises the software

development and design of the proposed algorithms.

7.2.1 Software Development Models

According to Ruparelia, the models are linear, iterative, and combination. Linear models are

sequential models, meaning when one stage finishes, the other stage starts, whereas iterative

models enable revisiting all the stages in the future (Ruparelia, 2010). Software development

models are used to design, develop and release this thesis’s proposed methods/algorithms.

Examples of software development models are waterfall, unified, rapid, incrementing, spiral,

v and w models.

• Waterfall Model – is a linear sequential where each phase is specialised to a task and is

dependent on the result of the previous one. Waterfall has six stages: analysis,

requirements, design specifications, development, testing and integration, and

deployment shown in Fig 7.1

• B-Model – is an extension of the waterfall model to ensure the constant improvement

of the software in the development stage (Ruparelia, 2010)

https://www.merriam-webster.com/dictionary/discipline

266 | P a g e

• Incremental Model – is an iterative model and can be perceived as a 3D waterfall model

where the z-axis represents the number of iterations to improve the functionality

(Ruparelia, 2010)

• V-Model – is folded in half. The left half represents the evolution of user requirements,

and the right half represents the integration and verification of the system (Ruparelia,

2010)

• Spiral Model – is used for risk management that combines an iterative development

process and the waterfall model (Boehm, 1988). It consists of four quadrants, as shown

in Fig 7.2:

▪ identifying and understanding the requirements,

▪ performing the risk analysis

▪ building the prototype

▪ evaluation of software performance

• Wheel and Spoke Model – is a bottom-up approach that establishes the system’s

requirements and initial design. Then, it creates a prototype for implementation and

verifies against the requirements, then feedback is constant during the development

cycle and the stages after use to create a more refined prototype (Ruparelia, 2010)

• Rapid Application Development Model – is used for prototyping and iterative with no

specific planning. The model emphasises coming up with the prototype rather than

planning tasks (What Is Rapid Application Development?, (Accessed: 19 June 2022))

• Unified Process Model – is a user-driven and iterative model. It specifically addresses

problems related to object-oriented software consisting of four stages: inception,

elaboration, construction and transition.

• Agile – is the practice of managing a project by breaking it into several phases. The

development happens in small projects and is released with small changes. Agile

method types are extreme programming (XP), joint application development (JAD),

267 | P a g e

lean development (LD) and scrum. Scrum is short sprints, and progress is monitored

daily (Ruparelia, 2010)

Figure 7.1 Waterfall model (Jones Justin & Waddel Scott, 2019)

Figure 7.2 Spiral Model (Boehm, 1988)

268 | P a g e

A brief introduction to the software development models mentioned above are commonly used

to develop the software life cycle. After careful analysis and consideration for this thesis, both

the spiral model and agile scrum are used to develop the proposed algorithms. The advantage

of the spiral model includes that the software prototype is produced at an early stage of

development, risk handling, flexibility, good for complex projects, strong approval and

documentation and customer satisfaction (Upadhyay Raj Kumar, 2020).

On the other hand, the advantage of Agile Scrum is that the development cycle is iterative,

provides a learning experience, can be revisited, projects are delivered quickly and tested, and

is customer feedback oriented (Mixing Agile and Waterfall, 2021). The models constitute a

system which defines the software design phase. The software design phase is responsible for

the overall software architecture and execution of software functions.

Figure 7.3 Agile Scrum in a nutshell (What Is Scrum?, Accessed: 19 June 2022)

269 | P a g e

7.2.2 Design Decision

7.2.2.1 Programming Language

A programming language is a computer or constructed language designed to communicate

instructions to computers (Ogala, Ogala and Onyarin, 2020). Syntax is the set of rules that

defines the instructions, a combination of symbols and words in a structure’s statements or

expressions (Woz U, 2020). For this thesis, C# is used as a programming language for coding

the proposed algorithm. C# is read as C sharp. It is an object-oriented programming language.

The primary architects of C# were Anders Hejlsberg (lead architect at Microsoft), Peter Golde,

Eric Gunnerson, Peter Sollichy and Scott Wiltamuth. It was first introduced in 2000 at the

Professional Developer Conference (PDC) (Ogala, Ogala and Onyarin, 2020). Microsoft also

introduced C# with the .NET framework and Visual Studio. In 1999, Anders Hejlsberg formed

a team to build a new language called COOL (C-like Object Oriented Language) (Hamilton,

2008). Later, before publicly announcing, Microsoft renamed the language as C#, inspired by

a musical notation of a sharp symbol that indicates the note should be a semitone higher in

pitch (Kovacs, 2007).

The reason for choosing C# is to be consistent with the commercial software in MTSL (3D

Vision) that already uses C# in desktop applications with the abovementioned benefits.

Furthermore, C# also provides metaprogramming, classes with properties, methods, functions,

namespace, memory access, exception, polymorphism, functional; programming, inheritance,

and supports different libraries.

Benefits of using C# (Hejlsberg et al., 2011) are:

1. Component-oriented programming,

2. Garbage collection – unused objects in the memory are automatically deleted,

3. Exception handling – structural approach for error detection,

4. Unified type-safe system – all primitive types inherit from the root Object type,

5. Supports both user-defined reference types and value types, permitting dynamic

allocation,

6. Supports versioning,

7. Portability, as it supports Common Language Infrastructure (CLI).

270 | P a g e

Another reason for choosing C# is its cross-platform, simple, modern OOPs language which is

very popular in the game development industry. Furthermore, it supports 3D graphics

functionality, providing a full-featured gaming development platform. As point clouds are 3D

data, the development platform must provide options for navigation, viewports and projections.

In addition, C# works well with OpenGL. The 3D aspect is handled by OpenGL, which is

cross-language and cross-platform programming for rendering 2D and 3D graphics. This

thesis’s algorithms (projects) are handled using the OpenGL library, which provides

functionality like rendering and drawing shapes and setting camera positions and projections

in 3D.

C# applications can be desktop-based. The high-end programs in the 3D better run on desktop

vs on mobile or tablet. The surveying and civil industry users are using more windows OS

applications; therefore, C# was the right fit. Furthermore, the language lessons are easily

accessible to anyone on the internet.

C# Syntax

The basic syntax for introducing the C# language is shown in Fig 7.4. In OOPs language, a

program consists of various objects interacting with each other using actions. These actions are

methods (C# - Basic Syntax, Accessed: 14 July 2022). In addition, C# has reserved predefined

words called keywords. The program always starts by including the “using” keyword. Using is

used to call system libraries or any third-party library that supports C#. These libraries give

functions and classes for various actions. Next, the namespace is used to arrange the classes,

structures, interfaces, enum and delegates (V.S. Rajesh, 2005). Finally, the class is declared

using the keyword “Class” and a unique name within the namespace. Inside the class, the

methods, functions and variables are declared. The output of the example program in Fig 7.4

is “Thesis on Point Clouds”, as it uses the system library to call the Console.Writeline, which

prints any text in double quotes.

271 | P a g e

Figure 7.4 C# syntax example

C# Example

The source code file can be saved on a computer with the ‘.cs’ file extension. The file extension

helps open the file from anywhere on the computer. The example in Fig 7.5 is saved as

‘Testing.cs’. The example presents a class called CompareNumbers that is used to compare

two numbers. The ‘result’ method passes any two numbers, and the class compares them. The

output in this example is ‘Number2 which is higher.

Figure 7.5 Pseudo Code example for comparing two numbers

272 | P a g e

7.2.2.2 Programming Environment

The programming environment allows the combination of hardware and codes to be built into

applications. The developer typically uses an Integrated Development Environment (IDE). For

this thesis, the IDE used is Visual Studio 2019 and 2022. Visual Studio was announced at the

same time as C# and .Net in 2000 at the Professional Developer Conference (PDC) (Ogala,

Ogala and Onyarin, 2020). The Visual Studio environment with C# coding is shown in Fig 7.5.

Figure 7.6 Visual Studio and C# coding

7.2.3 Execution/Process

The software development method generally consists of a ‘life cycle’ for the final product.

Hence, they are called software development life cycle (SDLC). The SDLC has several phases:

requirements gathering, analysing, specification, design, outputs, developing, validation,

deployment, testing and maintenance. Several SDLC models are used in software development.

They describe the steps involved in the cycle. In this thesis, the execution of software projects

is divided into phases or stages to manage the elements of the projects more efficiently (Jevtic,

2019). As shown in Fig 7.7 for this thesis, the projects are divided into nine stages as follows:

273 | P a g e

1) Planning,

2) Requirement gathering,

3) Design,

4) Develop,

5) Build,

6) Test,

7) Document,

8) Release

9) Maintain

Figure 7.7 Software Development Cycle

274 | P a g e

The development phase involves the users for constant feedback. Then, the methods and

algorithms are refined and fine-tuned until a satisfactory system is developed. Therefore, the

software development is gradual and goes through these stages shown in Fig 7.7.

For this thesis, an outline of the development phases is explained, from planning to

maintenance of the software. The process is iterative and was applied to each project while

working on the proposed algorithms.

The first stage is the planning stage, where general market research is accomplished. It is very

important as the point cloud is an emerging technology with a competitive market. The next

stage is requirement gathering, accomplished by speaking to the users, reviewing the wishlist

items and involving the stakeholders. The overall project design is dependent on the

requirements. Once the requirements are listed, a prototype design is initially fabricated. The

design involves the UI options, messaging between applications and intuitiveness of the

software. The next stage is development, where the software design is converted into programs.

Before the next stage of software build, the written code in the development stage is tested by

the developer, called unit testing. Once the program passes the unit testing, the various units

are integrated to form a build. The build has a unique version number supplied to other testers,

and the stakeholder and each unit are tested individually. The initial build helps with the

evaluation at an early stage, including any design (UI) changes.

Next, the project’s documentation is processed with explanations and flow charts for other

developers to understand. Finally, after all the stages are processed without impediments, the

developed project is released as a final version to every user with a version number. The last

stage is maintaining the software’s released version, including support and bug reports (if any)

found.

Apart from the development cycle, some important aspects of software development are project

management, design quality, program reliability and efficient coding.

7.2.3.1 Project Management

Project management is important and plays a crucial role in software development and delivery.

With respect to the business, the goal is to complete the project on schedule and within budget.

275 | P a g e

The commercial environment mainly drove this thesis project which enforces prompt and

reliable software delivery. The project had intangible deadlines because of the pressure from

customers and their expectations. The thesis project timeline was difficult to estimate,

particularly when using new technologies. The user feedback and input were also very

important, which took a lot of time. Thus, designing, developing and estimating were iterative

to achieve the project milestones. The development progress of the projects was monitored by

using Agile scrum.

7.2.3.2 Quality

Two of the important factors in this project are quality and accuracy. Land surveyors and civil

engineers rely on the software to provide them with accurate results. The proposed algorithms

are modified and tested for accuracy. The quality check reports are presented for the users to

check and verify.

The quality also depends on understandability and adaptability: 1) Understandability means

understanding the design, documentation, and complexity, and 2) Adaptability means easy

changes. This project is both understandable and adaptable. The variable name in the code aims

to be clear and presented by comments for in-depth understanding. In order that a third party

(or any other developers) can understand the code, comments and documentation are included.

7.2.3.3 Program Reliability or Intuitiveness

Software intuitiveness and reliability are very important aspects. The software’s prominence is

at stake if it fails to impress the users. In general, a program can be reliable by avoiding crashes

and bugs. Having said that, software completely free from bugs is an exception; therefore, the

solution has to be interactive, informing the users about the bugs and adding facilities to handle

them in the system. Certain programming techniques, such as defence programming, combine

checks for faults and fault recovery in the program (Sommerville, 1996). This thesis uses a

defensive programming approach to aim and anticipate errors and potential bugs before and

accommodate those in the code. For example, all the inputs would have a default value if the

276 | P a g e

users did not set it. C# is also very good at handling exceptions and type-safe (for casting

objects).

Software intuitiveness helps users with little or no experience understand the logistics and

access the software commands. All the commands and operations are accessible either by

mouse clicks or user input. This allows the user to be in control.

For this thesis, the proposed algorithms are provided with minimum user clicks and user input

values for edge detection and trunks and poles detection, as point clouds can be unpredictable

given the variety of data. Therefore, the users are in control of the data. Also, all parts of the

program must work to maintain a high level of reliability and user perception. For example, if

an error occurs continuously and the program fails to work, this may hurt user confidence and

willingness to use the software.

7.2.3.4 Reusable Code

The algorithms and methods for this thesis aim to provide code that can be used again. In order

to achieve this, individual reusable components are produced that are accessible on a global

level. It is called block coding, where important calculations are coded in functions and

methods separated (in blocks) that are accessible globally to other developers. For example,

the code is made into functions so that other developers can use it as needed, such as

mathematical calculation functions.

7.2.3.5 Testing

All algorithms and methods presented in this thesis are thoroughly tested. The testing is

performed on three levels 1) Unit Testing, 2) Acceptance Testing and 3) User-based testing.

The unit testing is at the developer level, where a unit, i.e., a function, is tested. The functions

are the basic building block of the software, and many functions are written together to perform

a functionality (Singh, 2020).

277 | P a g e

Next is acceptance testing, which can be performed by any stakeholder involved in the

development process. For this thesis project, colleagues in McCarthy Taylor Systems Ltd

performed acceptance testing. Acceptance testing is carried out by a series of commands to

achieve the desired results and satisfy the business requirements. The tester performs this and

checks the working and performance of the software function.

Last is user-based testing. User-based testing involves real users after the first deployment of

the software functions. These users are selected to perform testing on a beta version of the

software that includes new functionalities before the release. This is very helpful as it provides

insight into how the user interacts with the product, which helps design better UI elements,

fine-tune functionality and identify bugs. The feedback from users is used to improve the

functionalities following which the alpha release of software happens.

This thesis used all three levels of testing before releasing the methods and algorithms to the

wider user base. The user-based testing is also part of the spiral model mentioned in Section

7.2.1, which ensures that the software is maintained, improvised and amended based on the

requirement changes from the users.

7.3 Application in MTSL Software

McCarthy Taylor Systems Ltd (MTSL) is an independent software company developing

software for a wide range of industries such as land surveying, mineral extraction, hydrographic

design, surveying, civil engineering, construction, landscape architecture, consultancy, air and

collision investigation, geotechnical engineering, waste management and archaeology

(https://www.dtmsoftware.com, Accessed: 18 June 2022). LSS is the DTM software, and 3D

Vision is the point cloud product.

Figure 7.8 LSS and 3D Vision Logo

278 | P a g e

7.3.1 Brief History of MTSL

MTSL was started in 1985 with the “LSS” software, which stands for Land Surveying

Software. LSS is a cost-efficient, straightforward software package for surveyors, designers

and engineers (Civil and mineral). In 1995, MTSL evolved and became popular in several

industries. The company is headquartered in Birdlip, Gloucestershire.

LSS is a powerful windows-based software to produce a digital terrain model supporting

Electronic Distance Measurement (EDM) or Global Positioning System (GPS) instruments and

Computer-Aided Design (CAD) systems imports. These models could contain contours, break

lines, elevation data, vegetation and building/building footprints. LSS offered an efficient way

to convert all that data into a 3D terrain model. LSS pioneered the concept of real-time 3D

terrain modelling, which was only possible through its high-speed triangulation algorithms.

Figure 7.9 A Digital terrain model in LSS

279 | P a g e

In the early 2000s, a technology arrived which would transform the survey market, “laser

scanners”. Laser scanners were capable of collecting a cloud of 3D points in a fraction of the

time it took to survey previously. The latest scanners can collect more than one million points

a second. Although the challenge now was to process these huge amounts of data to generate a

3D CAD drawing (the ultimate deliverable).

At this point, the laser scanner manufacturers had a stranglehold on the software market

because they were the only ones who could process their own scanner’s data. As a result, they

charged many £’000 for each copy, in addition to the £50,000 - £100,000 cost of the scanner.

By 2012, LSS started to work with these datasets, and the company embarked on an ambitious

product development project. In 2015, a Knowledge Transfer Partnership (KTP), funded by the

UK government (Innovate UK), began to start the point cloud’s feature detection project. I

joined MTSL as part of Innovate UK and began my journey with point clouds and in the

company. Point Cloud solution called “3D Vision” was released in April 2017 to widespread

acclaim and is available with LSS. The largest point cloud so far processed by LSS contains

100 billion points.

Drones started to capture point clouds, which photogrammetry software then processes. LSS

can read these files to generate a 3D terrain model and allow the surveyor to draw lines in 3D

directly from the point cloud. Building Information Modelling (BIM) systems for all

construction, maintenance and refurbishment contracts is a high priority for the UK

Government, but there is a great deal of confusion over its practical implementation. LSS

bridges the gap between engineer and client by providing leading-edge data exchange

solutions.

As a result, LSS has become an essential business tool for hundreds of organisations. LSS

products are LSS Solo (basic level), LSS Vista (mid-level), LSS Elite (advanced level), 3D

Vision (point clouds), 3D View, LSS Unity, LSS Education, LSS Police (used for collision and

police incident investigation) and LSS Toolkit.

280 | P a g e

Figure 7.10 World heritage site “Gorham’s Cave” (Copyright @DroneSurv) visualised and preserved with the

help of LSS 3D Vision

7.3.2 3D Vision: LSS point Cloud Software

The 3D Vision supports various import formats. For example, users can create Point Clouds

from E57, LAS, LAZ, FARO FLS, Leica Geosystems PTS, XYZ and ASCII. The data can be

with or without Intensity (a single numeric value which can be used to colourise the data) and

with or without RGB colouration. Point Cloud provides the real-world context for recreating

and extracting valid information about objects. For example, in Geoinformation systems for

landscape design, planning, and urban scenes, point cloud data is usually collected to capture

the scenes. Then, the scenes are processed to extract important and useful information. Some

commands in 3DV (https://www.dtmsoftware.com, Accessed: 18 June 2022) are:

1) Eraser tool to remove unwanted points, 2) Extract a terrain from the Point cloud to create an

LSS DTM survey 3) Use the Point Cloud application as a 3D digitiser to extract 3D lines and

points 4)Create elevations and topographical surveys 5) “LSS 3D VisionTM” application is a

free Point Cloud viewer 6) Generate Orthophotos from any Point Cloud 7) World’s first

“SearchphereTM” technology to find points 8) Display an LSS survey in 3D 9) Query

coordinates and distances 10) View vertical and horizontal slices 11) Vertical and horizontal

281 | P a g e

heatmaps that show deviation from vertical or horizontal planes and 12) The over-display helps

users see the extracted information in 3D

LSS is widely used for landscape design. The point clouds extract information, such as trees,

hedges, buildings, kerbs, crest and toe of banks, walls, roofs, marker poles and lamp posts,

vehicles, break lines, etc. LSS will represent these features on-screen and on the final plotted

output as user-defined symbols and line styles to create elevation and topographical surveys.

Fig 7.11 shows an example of LSS on the left-hand side with extracted DTM model, and on

the right-hand side is 3D Vision with a point cloud open. LSS and 3D Vision are two separate

applications. Both are connected via a pipeline that sends and receives messages to sync the

location and various functions. The features are extracted from the point cloud into LSS in the

form of points and links. For example, a survey or DTM in LSS represents contours, levels,

buildings, trees and roads.

Figure 7.11 Left hand is LSS, and the right hand is 3D Vision (point clouds)

282 | P a g e

7.4 Market Analysis

The global 3D scanning market is projected to grow by 16.3% at a CAGR, valued at $3.72

billion in 2020, to $16.66 billion by 2030 (Wood, 2022b). Europe’s 3D scanner market was

valued at $316 million in 2020 and is expected to grow to $669 million by 2027, translating

into a CAGR of 11% (Wood, 2022a). A major part of the market would be in North America

(29%), followed by Europe (28%) and Asia (28%).

Growth in the scanning market is predominantly due to the surging need for highly accurate

3D data and the increasing need to capture a large volume of 3D data for analysis and modelling

(Wood, 2022b). Growth can also be attributed to the wide application of point cloud in

industries from engineering and manufacturing to healthcare, high investment in research and

development, and advancement in 3D modelling and mapping technology. The 3D scanners

market size, however, decreased during the global pandemic but is now back on track and

expected to grow from 2021 onwards (Wood, 2022a). Given the high demand for 3D scanners

and advancements in modelling technology, the 3D point cloud processing software market is

bound to grow at a similar rate or higher as software demand is highly correlated to 3D scanner

use. Furthermore, point clouds are becoming increasingly popular, and there is a “point cloud

boom” at the moment by the recent developments in point cloud software (Cropp, 2021).

Each software is different as the new capabilities, and innovative thinking spurred. The market

is very competitive. The new scanning technologies are becoming integral to many diverse

projects (Cropp, 2021). As for the software, innovation is vital to accommodate the new

scanning technologies. With a wide range of software with various options to process point

clouds, it is essential to understand the industry’s workflow.

7.4.1 Workflow

The workflow of a typical user in the software industry (surveying, civil engineering) to process

the data from a scanner to a model has to pass the data through various software and solutions,

as shown in Fig 7.12. First, the data is collected using a scanner or drone. Then the user inputs

these raw files into the scanner or drone company’s software provided by hardware companies.

283 | P a g e

These are used to register different raw files together, called registration. After registration,

they can view the file and manipulate the data using cropping and deleting points. When the

user is happy with the file, the data is exported into desired file formats. Second, the data is

imported into point cloud processing software, which is used to extract meaningful information

of the features or terrain to create models such as DTM or DSM (Digital Surface Model). Third,

the data is imported into CAD from this processing software. CAD is popular because it allows

the user to accurately visualise and present information on the particular area they are

surveying. AutoCAD (Autodesk Corporation) is a common software used within the industry;

therefore, it is easier to pass the model to clients, other surveyors, and engineers using its

formats. Finally, users end up with a CAD model.

Figure 7.12 Workflow from scan to model for processing point clouds

This thesis concentrates on point cloud processing, which converts point clouds into models.

7.4.2 Software in the Market

Point cloud processing software tools are globally available to analyse point clouds. However,

for this thesis, the market analysis and software market focus solely on UK-based companies.

The point cloud processing market is generally divided into two parts 1) Hardware company

products and 2) Software company products. As LSS is commercially used to implement this

thesis’s algorithms, the focus is on software companies.

284 | P a g e

Following is an overview of the software provided by hardware and software companies to

handle point clouds from raw files to models.

7.4.2.1 Hardware Companies

The hardware or scanner companies also provide solutions to import raw files after scanning,

register multiple clouds, clean the data, and export the files in their supported formats.

Examples of such software are:

❖ Autodesk – Recap,

❖ Revit and AutoCAD,

❖ Bentley – Pointools,

❖ Leica – Cyclone,

❖ Faro – Scene,

❖ Riegl – RiSCAN PRO,

❖ Trimble – RealWorks,

❖ Trimble Business Center (TBC),

❖ GeoSLAM,

❖ NavVis and

❖ Z+F.

Hardware companies are producing software so that the user can handle their raw point cloud

files. However, to maintain customer stickiness, they provide basic functionalities such as point

cloud registration, removing outliers, chopping the data, viewing the data in 3D, etc. Point

clouds are captured from multiple scanner station sites.

In order to produce a single point cloud, registration is performed to merge multiple station

data into one. The problem with software is that they are mainly focused on viewing and

managing the data; they are not capable of performing the complex options for feature

extraction and other point cloud processing process. Hence, software products are required for

point cloud processing.

285 | P a g e

7.4.2.2 Software Companies

Software companies provide solutions to process and extract information from the exported

files from hardware solutions, as data will be nothing without appropriate software to process

it. The software solutions support the file formats from the hardware solutions to import the

files, and then the commands and options allow the user to extract the information, save and

export it into CAD to model or deliver as it is. Some software in the UK market are as follows:

❖ Vercator,

❖ TopoDoT,

❖ 3DReshaper,

❖ EdgeWise,

❖ PointCAB,

❖ PointFuse,

❖ VEESUS,

❖ Terra3D and

❖ LSS – 3D Vision.

Software companies provide complex functionality, unlike hardware companies’ software.

However, the problem with the software company products is that they are more focused on

particular features, i.e., not all the software can perform all tasks a user might need. For

example,

1) EdgeWise is an exclusive solution that provides automatic building floor extraction,

2) PointCAB is a tool that is focused on the extraction of sketches such as elevation

profile, panorama view, measure distance etc.,

3) PointFuse is software focused on extracting pipes from the building and industrial sites,

4) Vercator is focused on the segmentation of points,

5) 3DReshaper focused on segmentation as well,

6) TopoDOT specialises in break line extraction and rail,

7) VEESUS is a software focused on visualisation than the extraction of features and

8) Terra3D focus only on railway asset extraction and management.

286 | P a g e

On the other hand, LSS 3D Vision implements the proposed algorithms and methods that will

allow the user to filter out an outlier, noise removal, edge detection, trunk and pole-like object

detection, segmentation, sampling, and modelling.

7.4.2.3 Free

There are free software other than hardware and software companies that are not commercial

and are available for free. Open source or free point cloud processing software are standalone

packages.

• Software such as

➢ CloudCompare – open-source software for viewing, editing and processing

point clouds.

➢ MeshLab – open-source tool for creating 3D meshes and triangulation of point

clouds.

➢ Euclidean – 3D graphics engine that renders point clouds to images.

• Libraries such as

➢ PCL – Point cloud Library is a standalone large-scale open project for 2D/3D

image and point cloud processing. It is written in C++.

CloudCompare and MeshLab are open-source software which is contributed by various

developers around the world. However, these free software and libraries are effective but not

as compared to paid software as they lack speed and efficiency, and there is no proper

documentation to use these.

287 | P a g e

7.5 Case study

The case study is conducted to demonstrate the practical application of the three proposed

algorithms and methods in this thesis using the 3D vision software. This case study focuses on

key problems in a typical point cloud processing and answers the research questions presented

in Chapter 1.

A point cloud can be very large, and the processing of the point cloud will depend on the size

and complexity of the data (What is a Point Cloud Survey?, 2021). A point cloud can contain

many millions or billions of points; therefore, processing can take many hours or days. To

address these problems, removing noise and outliers is essential to speed up the process, as the

number of points can be reduced significantly by focusing only on the good points. After

cleaning up, the data is ready to extract information. The information is the features such as

kerb, road, building floorplan, trees, etc. The solutions in the software (3D Vision) are user

oriented. The main requirement throughout is to maintain a high degree of accuracy, but it must

also be fast, robust and easy to use. The case study is performed on a dataset to demonstrate

3D Vision for Point Cloud Processing. Firstly, by removing noise and filtering outliers, data is

cleared of bad points or points that are not part of relevant features. Secondly, extracting edge

sects and edge streams on the data and finally using segmentation to identify the tree trunks

and pole objects.

7.5.1 Dataset

The point cloud data “Dorchester” used in this study was captured with the Leica RTC360 3D

laser scanner. The scanner was released in 2018, and the data was captured in 2019. The

scanner takes less than two minutes to complete a full dome scan at 6mm point spacing at 10

metres. The field of view is 360 degrees with a range of 0.5 - 130m. It collects 2 million points

per sec. The accuracy is 1.9mm at 10m, 2.9 mm at 20m and 5.3mm at 40m. The data are

generated in E57 file format, with a medium density of 6mm @10m. Other options are low

12mm @10m and high density 3mm @10m. The data is automatically registered using a VIS

app that tracks multiple scans in the correct position, and by selecting the scans, they can be

288 | P a g e

linked together. The VIS app also puts the scans together in the correct orientation and

alignment.

Figure 7.13 Point cloud “Dorchester” in 3Dvision

7.5.2 Point Cloud Processing in 3D Vision

For this section, urban point cloud “Dorchester” is used to demonstrate the implementations of

the proposed point cloud processing methods on the commercial software 3D Vision.

Dorchester is a town in Dorset, England. The point cloud is captured on a busy road in

Dorchester. It is an urban scene with features such as roads, buildings, street and street

furniture, bins, lamps, trees, bus stops, etc. The raw point cloud was captured in several

different areas on the site. Lastly, they were linked together to form this dataset. The Dorchester

data set has 161 million points.

As discussed in Chapter 3, this thesis presents point cloud processing methods/algorithms for

filtration, edge detection, feature extraction and modelling. The Dorchester data set is used to

show each of these processes in 3D Vision.

289 | P a g e

Figure 7.14 Point cloud processing in this thesis

The outline of the point cloud processing is as follows:

 Filtration

➢ Identify the outlier and noise as mentioned in Chapter 4 according to their distribution,

proximity and position.

➢ The noise removal and outlier filtering are performed using NR-S, NR-F and OF-OB.

Edge Detection

➢ Once the data is clean, it is ready for feature extraction.

➢ Select points using the search sphere to identify the edges.

➢ Set the parameters for the edge stream.

➢ Apply edge stream to the features where long line tracing is required.

Feature Extraction

➢ Set the parameters for the trunk and poles.

➢ Segmentation using voxels.

➢ Apply the algorithm to extract the tree trunk and pole-like objects.

Modelling

➢ Repeat until the points are extracted into DTM.

290 | P a g e

1) Outlier and Noise Filtration

For processing, the first stage is to remove the noise and filter the outliers from the point cloud.

The Dorchester point cloud is shown in Fig 7.13. The scanning can cause the presence of

outliers and noise. Generally, outliers and noise are due to reflection on the surfaces like mirrors

and moving vehicles or people. The search sphere is used to remove points, as shown in Fig

7.15 (a); a set of outlier points are deleted using NR-S by selecting a 5m size. The sphere size

5m is selected as the outliers were far apart and proved to be a quicker and more efficient way

of deleting points.

In Fig 7.15 (b) and (c), the search sphere size is 10m because a larger set of noise points is

selected for deletion. For example, Fig 7.15 (b) presents a large set of tree points picked by a

scanner between the buildings. As the tree points shown in the example are outside of the study

area (where objects beyond the surveyed street are glimpsed by the scanner), they are classified

as noise and have to be removed for efficient feature extraction. Similarly, the example shown

in Fig 7.15 (c) is deleted as it is a part of the building that is not required as the main feature

and is far away from the actual scanning site.

(a)

291 | P a g e

(b)

(c)

Figure 7.15 (a), (b) and (c) demonstrates the “Search sphere” to remove noise

The NR-B is used next to remove the noise spread on a larger area. In addition, the NR-S is

click-heavy for the users and too manual for the deletion of points in a large spread. An example

of NR-B is shown in Fig 7.16 (b) to cover a larger area at once, which is difficult to cover by

NR-S in Fig 7.16 (a).

292 | P a g e

(a)

(b)

Figure 7.16 (a) Search sphere data inclusion (b) 3D Box data inclusion

NR-B is ideal for deleting the large area and for deleting the noise closer to the important

features. The NR-B is also used heavily to remove unwanted features treated as noise, such as

293 | P a g e

vehicles and man-made road objects like bins. The examples of using NR-B to remove vehicles

and bins are shown in Fig 7.17 (a) and (b).

(a)

(b)

Figure 7.17 Box used to remove noise close to other objects (a) removal of cars (b) removal of bin

294 | P a g e

(a)

(b)

Figure 7.18 Filtering outliers using Oct Boxes demonstrating in (a) and (b)

Next, the outliers that are scattered all over are deleted using OF-O, shown in Fig 7.18. The

points inside the box are set to 100 based on Dorchester point cloud data experience and

detected points approximately by zooming in the outlier’s groups. The number varies for every

point cloud; therefore, the system provides users with the flexibility to alter the number

accordingly. A comparison illustrates how the proposed methods worked with noise removal

295 | P a g e

and outlier filtering. Fig 7.19 shows the data before implementing proposed methods with bad

points (outlier or noise), and Fig 7.20 shows the data after using the NR-S, NR-B and OF-OB.

Figure 7.19 Data with outliers and noise (before NR-S, NR-B and OF-OB)

Figure 7.20 After using NR-S, NR-B and OF-OB

296 | P a g e

2) Edge Sects and Edge Stream

Once the outliers and noise points are deleted, the data is clean and ready to extract essential

features. One of the essential features of point clouds is edges. The edges are extracted from

different parts of the point cloud.

(a)

(b)

Figure 7.21 Edge detection (a) along the fence and footpath (b) along the building footprint

297 | P a g e

In the Dorchester point cloud data, an example is presented where the edges are extracted

between a house fence and footpath shown in Fig 7.21 (a); the search sphere size is set as 0.5m

as the fence and footpath are large areas that may not need very detailed points extracted.

Furthermore, the points extracted depend on the users and their projects. The edges between

the fence and footpath or wall and footpath are generally used for maintenance and hazard

analysis. Another example shown in Fig 7.21 (b) is the edge extraction of the building footprint.

Building footprints are of interest to surveyors and engineers. The search sphere size is set to

0.2m as detailed edge point extraction is required.

The edge stream example is demonstrated in Fig 7.22, with edges that run from one point from

a bin to another point with a curve. The proposed algorithm is able to detect all the points on

the edge of a feature. A total of 17 edge points are detected in the example as green points. In

Fig 7.22 (a), the right side represents the edge stream option in the point cloud, and the left side

represents the extracted edge points in DTM. Fig 7.22 (b) shows the settings used to detect the

edge points for Fig 7.22 (a). The angle between edges and planes is set at 45 and 60 degrees,

respectively. The reason is that walls are nearly perpendicular to the footpath, although they

have a curve, so in order to follow the curve, the angle between edges is set to 45. The sphere

size is 0.2 m to get the detail of the curve along the wall.

(a)

298 | P a g e

(b)

Figure 7.22 Edge stream (a) Wall and footpath (b) Settings

Another example is shown in Fig 7.23, which extracts the edge points from the top of a kerb.

Again, the extracted edge points are shown on the left side, and the right side demonstrates the

extracted kerbs in point cloud data.

Kerbs are popular features of urban point clouds. The users (surveyors and civil engineers) are

interested in extracting both the top and bottom of the kerb. The kerb features are a large part

of city management projects. In this example, the top of the kerb is presented.

The kerb is a relatively small feature compared to the wall in Fig 7.22; therefore, the sphere

size is set to 0.09m which fits correctly on the edge of the kerbs. The angle between edges and

planes is set to 60 degrees as the kerbs are straight and without sudden changes or obstacles.

The ‘Repeat Every’ parameter is set to 3 as with the small sphere, there could be hundreds of

points within a small distance. This parameter is a user preference as to how many points each

metre could have. The settings allow changing and saving user-defined features and their

angles on every point cloud data.

299 | P a g e

(a)

(b)

Figure 7.23 Edge stream (a) Top of the kerb (b) Settings

3) Tree trunks and Pole like objects

Next, after edge points detection and extraction, the next popular feature in urban point clouds

is trees and poles. Taking advantage of 3D point clouds and visualisation, the trees and pole

objects are used extensively in city models, city management, risk analysis, classification and

300 | P a g e

road management. The Dorchester point cloud is used to present an example of tree trunk

detection in Fig 7.24 and Pole object detection in Fig 7.25. Each detected trunk and pole centre

and radius is extracted into the DTM. The tree trunks and pole parameters are set as follows;

• The minimum number of points in the voxel is set as 25 because, in this dataset, it

is clear that trees/poles have high-density points and therefore do not need any lower

than 25.

• The minimum and maximum trunk diameters are set as 0.1m to 2m as some

Dorchester trees are old with a huge girth.

• The distance threshold between the circle and the voxel cluster centre is set as 0.5m.

Anything bigger will include larger tree trunks, and anything lower will include

slim trunks and poles with a smaller radius.

• The DBH (Diameter at breast height) for trunks and poles are set between 1.2m and

1.5m, as the average British standard for DBH is 1.4m.

Fig 7.24 (a) shows a roadside tree trunk, and Fig 7.24 (b) shows a tree inside a property. Fig

7.25 shows a pole structure detected on a roadside. The parameters for poles are the same as

the proposed algorithm accommodates both trunks and poles within the parameter settings.

(a)

301 | P a g e

(b)

Figure 7.24 Detected tree trunks highlighted by fuchsia cylinder

Figure 7.25 Detected pole structure highlighted by fuchsia cylinder

4) DTM

Lastly, all the information is extracted into a DTM from point clouds. DTM is a digitised

version of a map generated using points, links and surfaces. The point clouds are data in 3D

space, but the extraction into DTM defines those features and maps them so that they can be

302 | P a g e

registered and used for analysis. The surveyors and civil engineers utilise the results of DTM

to distribute them to their clients to show and demonstrate data before commencing any

projects. The example of DTM is shown in Fig 7.26, and Fig 7.27 shows the Dorchester point

cloud overlapped by the DTM in Fig 7.26.

Figure 7.26 Digital Terrain Model (DTM) shown in LSS

Figure 7.27 Overlapped DTM in 3D Vision

303 | P a g e

7.6 Chapter Summary

This chapter demonstrates the implementation of the proposed methods/algorithms on the

commercial software LSS and its point cloud product 3D Vision. Each project (proposed

method) was implemented using a software development cycle and a model. The spiral model

has been used for the software development project previously, and recently agile scrum has

been implemented to deliver software projects in sprints. The programming language C# is

discussed, which is used to accomplish the coding for all the proposed methods and algorithms.

The code reusability was kept in mind for future proofing of the solutions used by other

developers. Project management and quality analysis have been achieved when executing each

project. While designing the user interface, user intuitiveness is the priority, with less user

intervention and easy-to-use commands while running the program.

The proposed methods and algorithms are implemented on software called ‘LSS’, a powerful

Land Surveying Software and its point cloud product ‘3D Vision’. The market analysis is

provided to show the understanding of the market. The types of software used by surveyors

and civil engineers in the industry in the UK are presented by categorising as hardware

companies, software companies and free (non-commercial) software solutions for point clouds.

Lastly, a case study is presented by implementing various point cloud processing stages to

process point cloud data. The processing starts with noise removal and outlier filtration. Once

the data is clean, the feature detection and extraction methods are applied, leading to the next

stage to detect the edge and edge stream. Furthermore, the trunks and pole objects are detected

from the point clouds to be modelled into the DTM.

304 | P a g e

Chapter 8 Conclusion and Future Work

This thesis aims to understand the challenges current point cloud processing methods face and

design and develop solution/s to accommodate them. Point cloud processing became essential

with the emergence of scanning technology, which generates huge datasets. Point clouds can

contain anything from a few hundred to billions of points. As technology advanced, these

numbers rose, the challenge being handling and using these data for rightful purposes.

However, the process of extracting information from geometrical and non-geometrical features

from ubiquitous point clouds is challenging. To this end, a set of research questions emerged

by undertaking a literature review of existing methods, as presented in Chapter 2, which directs

the research to find solutions to the problems. The problems that formed the research question

are as follows:

1. The challenges for surveyors and civil engineers to process 3D point clouds.

2. The challenges in feature detection from point clouds.

3. The challenges during the filtration, classification, and edge detection.

The conclusion of these research questions is described in Section 8.1. After which, eight key

contributions of this thesis are described in Section 8.2 and followed by future works of

proposed methods and algorithms in Section 8.3.

Point cloud processing is the process of extracting features from a point cloud into a meaningful

model. This thesis divides point cloud processing into a number of techniques and methods.

First is Filtration, where the outliers and noise points are filtered. The second is Edge

Detection, where edges of different features are detected. The third is Feature detection by

segmentation and extracting the features, and finally extracting all information into the DTM

model.

305 | P a g e

8.1 Achievements

The surveying industry is one of the professions that require continuous data acquisition at

every step of the project lifecycle, from building plans to road surveys. Therefore, properly

accessing, implementing and managing the data is very important. Unfortunately, the current

algorithms have limitations and issues that prohibit the users from working efficiently. The

research and research objectives (carried out in Chapter 2) resulted in designing and developing

the proposed algorithms to solve the challenges. As a result, the proposed novel and robust

algorithms and methods will allow the users to overcome the challenges and use the application

in point clouds.

The first research objective was to identify and evaluate 3D point cloud processing challenges

with current methods. Surveyors and civil engineers use laser scanning as the preferred tool to

capture the data because of its portability, comprehension and precision. More and more, laser

scanning has become popular without a proper workflow. Processing these data (point cloud)

requires accurate analysis and procedures. The scanner technology innovations and detailed

capturing of data resulted in very large point clouds. The common challenge is to process these

huge datasets accurately and quickly.

The most obvious and immediate step for processing large point clouds is to remove the bad

points. The bad points are not part of the important features and deleting them would reduce

the point cloud size and enable faster processing. These bad points are noise/outliers that are

relatively present within the good points (points that belong to an important feature). The

challenge of the existing method is to remove these noise/outliers efficiently to preserve the

primitive shapes and geometrical features. This results in the second research objective, which

is to design and develop a method to overcome the problems of separating outlier/noise.

Despite saying that separating is the key, the problem lies with the points that are in very close

approximation to the primitive features in the point cloud. This led to the development of the

tools mentioned in Chapter 4 NR-S, NR-B and OF-OB to remove noise and filter outliers.

Then after the cleaning of data, the important element is extracting the features; this becomes

the third research objective to research/investigate the existing methods and identify their

limitations. A considerable amount of point cloud acquisition is in the built environment, such

as city scenes, residential areas, construction sites, city roads etc. Therefore, the features within

306 | P a g e

these environments become important to detect and extract for modelling. However, there are

also several drawbacks inherent to feature detection in point clouds. The most common

problem with the detection is that laser scanners cannot offer a full-scale representation of an

object (360 degrees in 3D) unless the scanner has been positioned in multiple locations in order

to view all objects from all angles, which is not usually cost-effective. Therefore, the detection

algorithms must compensate for the fact that only half of an object may exist in the point cloud

(such as a tree trunk or lamppost).

Another common problem is the presence of gaps, blank spaces and missing data. These gaps

are due to laser beams not penetrating objects because obstacles in the line of sight create a

shadow (gap) in point clouds. An intention to overcome these issues led to the fourth and fifth

research objectives presented in Chapters 5 and 6.

Several important features are present within the point cloud, but edges are most important for

surveyors and civil engineers. Edges of various features like buildings, kerbs, roofs etc., are

useful. The second feature is trunks and poles, which play an important role in city planning

and management. Therefore, this led to feature recognition algorithms presented in Chapters 5

and 6. The geometrical and non-geometrical shapes in point clouds are mostly user-controlled

settings for detection algorithms that are intuitive as they are directly related to the feature’s

geometric properties, like distance and orientation. This is the key to successfully

implementing an efficient and user-friendly system. The user settings and parameters also

provide the flexibility to implement the proposed algorithm in a wide variety of situations,

including the built environment, construction projects, quarry operations, forestry and the

undeveloped natural environment. As a result, the proposed methods and algorithms are able

to deliver great completeness and correct feature detection with high accuracy. In addition to

the advantages, the proposed method works directly on the point clouds that are real-world

scans; no data conversion or manipulation is required compared to many existing methods that

were tested on synthetic data. Furthermore, the academic research in the industry for feature

detection algorithms provides theoretical implementations, whereas the proposed methods and

algorithms are implemented practically on commercial software used by large UK-based

organisations.

307 | P a g e

8.2 Contribution to New Knowledge Generation

In summary, there are eight key contributions in this thesis for point cloud processing,

including filtration, segmentation, edge detection and cylindrical feature detection, as follows:

• A tool called Search Sphere is introduced for the first time for various applications in

this thesis. The search sphere is used for the analysis of the inclusion points and also to

sample the points.

• A tool called OctBox is introduced and used to analyse points which are derived from

the Octree structure. This thesis presents the first-ever use of Octree to define the

bounding of a 3D box to filter outliers.

• A 3D Box tool is introduced that can handle the points inside by changing dynamically

to remove noise from the point clouds.

• A PCA-based Algorithm for Edge Detection has been introduced, discussed,

analysed and implemented on the commercial software product 3D Vision. The

algorithm is the first PCA application of the best-fit planes for obtaining an edge.

• The robust Edge Stream Method (extension of Edge detection) is introduced,

analysed, and implemented on the commercial software 3D Vision. Edge stream allows

the automatic extraction of several edges along a line of any feature.

• A gridding system called Terrain Extraction is introduced, which is used to separate

the ground and non-ground points of point clouds. Terrain extraction sub-samples the

points to achieve further analysis of points. Ground points act as a terrain for different

types of point cloud data. On the other hand, non-ground points are used to implement

feature detection algorithms that are not part of the terrain.

• A segmentation and clustering technique using voxels has been introduced for fast

extracting and finding neighbouring points in the point clouds.

308 | P a g e

• A Voxel-based Algorithm to find Cylindrical Objects has been introduced,

discussed, analysed and implemented on the commercial software product 3D Vision.

The algorithm can identify trunks and pole-like objects in point clouds.

8.3 Limitations and Future Work

While this thesis demonstrated the excellence of point cloud processing methods and

algorithms, there are still possibilities to carry out future research in this area. The biggest

challenge is to process millions of points in point clouds captured by new scanning

technologies. Point cloud processing steps address this, which converts the point clouds into a

model.

The important point cloud processing step is the filtration of noise and outliers. Due to time

constraints, the proposed method’s limitation is that the tools are used manually. The points

are analysed and categorised by users, which means that the proposed method is fast and

flexible to various point clouds. However, due to the method being manual, it can be click-

heavy to use. Therefore, the proposed methods can be further improved in order to detect them

automatically by analysing the points and their neighbours using the proposed tool in Chapter

4. For example, the clustering techniques described in Chapter 6 can be implemented in Oct

Boxes for a detailed analysis of the points cluster. Furthermore, the grouping of points

belonging to the same object can solve the problem of noise detection (points that are close to

the features to be extracted), such as vegetation near a building.

Another important step of point cloud processing is feature detection. Various steps are

involved in detecting the features, such as outlier and noise filtration, segmentation of the

points for classification, clustering of the points, and modelling. With respect to feature

detection, there are several features of importance in a typical point cloud that can become vital

in point cloud processing. The future work will involve the detection and extraction of other

features like building floorplan, vehicles, road markings etc. Examples of a few future work

items are listed below.

Firstly, the visualisation of the detected features can be improved to demonstrate to the users

very clearly which points belong to which feature. The easiest way to categorise points is during

309 | P a g e

the acquisition process and to specify the points at that moment. This process can be repeated

until all the points are classified properly.

Secondly, while the proposed algorithm in this thesis is very effective in finding the edges, in

the future, edge detection can be extended to find corners with the detection of three planes.

The current limitation of the proposed edge detection methods (edge detection and edge stream

options) is that they cannot detect the points of the corner features because the method was

designed to extract the edges based on two surfaces. The future work will be implementing

corner detection (by extending the current work to detect three surfaces), which would also be

relevant in the edge stream algorithm, potentially making it more efficient.

Thirdly, a large number of point clouds are captured in man-made environments like cities,

industrial areas, development sites, etc. It is essential to capture the features in these areas.

There are several options for future work on the cylindrical detection algorithm presented in

Chapter 6. The trunks can be extended to detect the foliage of the tree, providing the users with

the parameters of the whole tree, such as crown height and spread. The advantage of tree

detection is that the users can either use it to map the trees in the area or to delete the trees that

are classified as noise. As for the pole-like objects, the future prospect is to classify them further

into individual profiles, including utility poles, streetlights, traffic lights, road signs, flag poles

and parking meters. The profiling can be done by saving the templates of all possible structures

in a typical point cloud. After that, these templates are compared against the detected structures

and are then classified.

Finally, other areas of point cloud processing could benefit from feature detection.

Segmentation and region growing methods can be used to solve real-world point cloud scenario

problems such as filling the gaps, categorising the features and data thinning.

310 | P a g e

Bibliography

Abdi, H. and Williams, L.J. (2010) ‘Principal Component Analysis’, Wiley Interdisciplinary

Reviews: Computational Statistics, 2(4), pp. 433–459. doi: 10.1002/wics.101.

Achlioptas, P., Diamanti, O., Mitliagkas, I. and Guibas, L (2018) ‘Learning Representations

and Generative Models for 3D Point Clouds’, in International conference on machine

learning. PMLR, pp. 40–49. doi: 10.48550/arXiv.1707.02392.

Adamson, A., Alexa, M. and Berlin, T.U. (2006) ‘Point-Sampled Cell Complexes’, ACM

SIGGRAPH, pp. 671–680. doi: 10.1145/1179352.1141940.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. and Silva, C.T. (2001) ‘Point Set

Surfaces Related Papers Computing and Rendering Point Set Surfaces Point Set

Surfaces’, in IEEE Proceedings Visualization 2001. VIS ’01, pp. 21–29. doi:

10.1109/VISUAL.2001.964489.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D. and Silva, C.T. (2003)

‘Computing and Rendering Point Set Surfaces’, IEEE Transactions on Visualization and

Computer Graphics, 9(1), pp. 3–15. doi: 10.1109/TVCG.2003.1175093.

Alexa, M. and Adamson, A. (2004) ‘On Normals and Projection Operators for Surfaces

Defined by Point Sets’, Eurographics Symposium on Point-Based Graphics, pp. 149–

155.

Aljumaily H, Laefer D and Cuadra D (2017) ‘Urban Point Cloud Mining Based on Density

Clustering and MapReduce’, ASCE Journal of Computing in Civil Engineering, 31(5)

04017021.

Aluja-Banet T, Morineau A and Sanchez G (2018) Formulas for PCA - PCA for Data

Science, Book: Principal Component Analysis for Data Science. Available at:

https://pca4ds.github.io/formulas-for-pca.html (Accessed: 21 July 2022).

Amenta, N. and Kil, Y.J. (2004) ‘Defining Point-set Surfaces’, in ACM Transactions on

Graphics, pp. 264–270. doi: 10.1145/1015706.1015713.

https://doi.org/10.1002/wics.101
https://pca4ds.github.io/formulas-for-pca.html

311 | P a g e

Amiri, N., Polewski, P., Yao, W., Krzystek, P. and Skidmore, A.K. (2017) ‘Detection of

Single Tree Stems in Forested Areas from High Density ALS Point Clouds Using 3d

Shape Descriptors’, in ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences. Copernicus GmbH, pp. 35–42. doi: 10.5194/isprs-annals-

IV-2-W4-35-2017.

Ando, S. (2000) ‘Image Field Categorization and Edge/Corner Detection from Gradient

Covariance’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(2),

pp. 179–190 doi: 10.1109/34.825756.

Arvanitis, G., Lalos, A.S., Moustakas, K. and Fakotakis, N. (2018) ‘Outliers Removal of

Highly Dense and Unorganized Point Clouds Acquired by Laser Scanners in Urban

Environments’, in Proceedings - 2018 International Conference on Cyberworlds, CW

2018. Institute of Electrical and Electronics Engineers Inc., pp. 415–418. doi:

10.1109/CW.2018.00080.

Avram, D., Bratosin, I., Ilie, D. CALIN, L. (2016) ‘Surveying Theodolite Between Past and

Future’, Journal of Young Scientist, 4, pp 129-134. ISSN 2284-8017.

Avron, H., Sharf, A., Greif, C. and Cohen-Or, D. (2010) ‘ℓ1-Sparse Reconstruction of Sharp

Point Set Surfaces’, ACM Transactions on Graphics, 29(5), pp 135:1-135:12. doi:

10.1145/1857907.1857911.

Balado, J., Martínez-Sánchez, J., Arias, P. and Novo, A. (2019) ‘Road Environment Semantic

Segmentation with Deep Learning From MLS Point Cloud Data’, Sensors (Switzerland),

19(16), 3466. doi:10.3390/s19163466.

Balta, H., Velagic, J., Bosschaerts, W., de Cubber, G. and Siciliano, B. (2018) ‘Fast

Statistical Outlier Removal Based Method for Large 3D Point Clouds of Outdoor

Environments’, in IFAC-Papers On Line. Elsevier B.V., pp. 348–353. doi:

10.1016/j.ifacol.2018.11.566.

Barnett T. P and Preisendorfer, R. (1987) ‘Origins and Levels of Monthly and Seasonal

Forecast Skill for United States Surface Air Temperatures Determined by Canonical

Correlation Analysis’, Monthly Weather Review, 115(9), pp. 1825–1850. doi:

10.1175/2010JCLI3527.1

312 | P a g e

Barnett Vic and Lewis Toby (1994) Outliers in Statistical Data. 3rd edn. New York: Wiley.

Bazazian, D., Casas, J.R. and Ruiz-Hidalgo, J. (2015) ‘Fast and Robust Edge Extraction in

Unorganized Point Clouds’, in 2015 International Conference on Digital Image

Computing: Techniques and Applications (DICTA). Adelaide, Australia: IEEE, pp. 1–8.

doi: 10.1109/DICTA.2015.7371262.

Bazazian, D. and Parés, M.E. (2021) ‘EDC-net: Edge Detection Capsule Network for 3D

Point Clouds’, Applied Sciences (Switzerland), 11(4), pp. 1–16. doi:

10.3390/app11041833.

Becker, C., Rosinskaya, E., Häni, N., d’Angelo, E. and Strecha, C. (2018) ‘Classification of

Aerial Photogrammetric 3D Point Clouds’, Photogrammetric Engineering and Remote

Sensing, 84(5), pp. 287–295. doi: 10.14358/PERS.84.5.287.

Behley, J., Steinhage, V. and Cremers, A.B. (2015) ‘Efficient Radius Neighbor Search in

Three-dimensional Point Clouds’, IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 3625–3630. doi: 10.1109/ICRA.2015.7139702

Belton, D. and Kwang-Ho, B. (2009) ‘Tracking Roadside Kerbs in Terrestrial Laser Scanner

Point Clouds Using Principal Component Analysis’, in Proceedings of the Surveying &

Spatial Sciences Institute Biennial International Conference. The Institute, pp. 219–229.

Belton, D., Moncrieff, S. and Chapman, J. (2013) ‘Processing Tree Point Clouds using

Gaussian Mixture Models’, in ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences. Copernicus GmbH, pp. 43–48. doi:

10.5194/isprsannals-II-5-W2-43-2013.

Biosca, J.M. and Lerma, J.L. (2008) ‘Unsupervised Robust Planar Segmentation of

Terrestrial Laser Scanner Point Clouds Based on Fuzzy Clustering Methods’, ISPRS

Journal of Photogrammetry and Remote Sensing, 63(1), pp. 84–98. doi:

10.1016/j.isprsjprs.2007.07.010.

Boehler, W. and Marbs, A. (2004) ‘3D Scanning and Photogrammetry for Heritage

Recording: A Comparison’, in Proc. 12th International Conference on Geoinformatics −

Geospatial Information Research, pp. 7–9.

313 | P a g e

Boehm, B.W. (1988) ‘A Spiral Model of Software Development and Enhancement’,

Computer, 21(5), pp. 61–72. doi: 10.1109/2.59.

Borenstein, G. (2012) Making Things See 3D Vision with Kinect, Processing, Arduino, and

MakerBot. 1st edn. Canada: Maker Media Inc.

Boster, M. (2016) What is an Edge in Math? Study.com. Available at:

https://study.com/academy/lesson/what-is-an-edge-in-math.html (Accessed: 9 January

2019).

Boulic, R. and Renault, O. (1991) ‘3D Hierarchies for Animation’, in Magnenat-Thalmann

Nadia and Thalmann Daniel (eds) New Trends in Animation and Visualization. England:

John Wiley & Sons ltd, pp. 59–78.

Bremer, M., Wichmann, V. and Rutzinger, M. (2013) ‘Eigenvalue and Graph-based Object

Extraction from Mobile Laser Scanning Point Clouds’, in ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. Copernicus GmbH,

pp. 55–60. doi: 10.5194/isprsannals-II-5-W2-55-2013.

Breunig, M.M., Kriegel, H.-P., Ng, R.T. and Sander, J. (2000) ‘LOF: Identifying Density-

Based Local Outliers’, in Proceedings of the 2000 ACM SIGMOD international

conference on Management of data - SIGMOD ’00. New York, New York, USA: ACM

Press, pp. 93–104. doi: 10.1145/342009.335388.

C# - Basic Syntax (2022) Tutorials point. Available at:

https://www.tutorialspoint.com/csharp/csharp_basic_syntax.htm (Accessed: 14 July

2022).

Cai, G., Jiang, Z., Wang, Z., Huang, S., Chen, K., Ge, X. and Wu, Y. (2019) ‘Spatial

aggregation net: Point cloud semantic segmentation based on multi-directional

convolution’, Sensors (Switzerland), 19(19). doi: 10.3390/s19194329.

Cabo, C., Ordoñez, C., García-Cortés, S. and Martínez, J. (2014) ‘An Algorithm for

Automatic Detection of Pole-like Street Furniture Objects from Mobile Laser Scanner

Point Clouds’, ISPRS Journal of Photogrammetry and Remote Sensing, 87, pp. 47–56.

doi: 10.1016/j.isprsjprs.2013.10.008.

https://www.tutorialspoint.com/csharp/csharp_basic_syntax.htm

314 | P a g e

Carr, J.C. and Slyder, J.B. (2018) ‘Individual Tree Segmentation from a Leaf-off

Photogrammetric Point Cloud’, International Journal of Remote Sensing, 39(15–16), pp.

5195–5210. doi: 10.1080/01431161.2018.1434330.

Carrea, D. et al. (2021) ‘Matlab virtual toolbox for retrospective rockfall source detection and

volume estimation using 3d point clouds: A case study of a subalpine molasse cliff’,

Geosciences (Switzerland), 11(2), pp. 1–19. doi: 10.3390/geosciences11020075.

Catalucci, S. et al. (2018) ‘Comparison between point cloud processing techniques’,

Measurement, 127, pp. 221–226. doi: 10.1016/J.MEASUREMENT.2018.05.111.

Chatterjee, A. (2000) ‘An Introduction to the Proper Orthogonal Decomposition’, Current

Science, 78(7), pp. 808–817.

Che, E., Jung, J. and Olsen, M.J. (2019) ‘Object Recognition, Segmentation, and

Classification of Mobile Laser Scanning Point Clouds: A State of the Art Review’,

Sensors (Switzerland), 19(4), p. 810. doi: 10.3390/s19040810.

Chen, C., Li, X., Belkacem, A.N., Qiao, Z., Dong, E., Tan, W. and Shin, D. (2019) ‘The

Mixed Kernel Function SVM-Based Point Cloud Classification’, International Journal

of Precision Engineering and Manufacturing, 20(5), pp. 737–747. doi: 10.1007/s12541-

019-00102-3.

Chen, M., Feng, A., McAlinden, R. and Soibelman, L. (2020) ‘Photogrammetric Point Cloud

Segmentation and Object Information Extraction for Creating Virtual Environments and

Simulations’, Journal of Management in Engineering, 36(2), p. 04019046. doi:

10.1061/(asce)me.1943-5479.0000737.

Chen, Y.H. and Liu, C.Y. (1997) ‘Robust Segmentation of CMM Data Based on NURBS’,

The International Journal of Advanced Manufacturing Technology, 13(8), pp. 530–534.

doi: 10.1007/BF01176296.

Cheng C. (2022) ‘Principal Component Analysis (PCA) Explained Visually with Zero Math’,

Towards Data Science, 3 February. Available at:

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-

with-zero-math-1cbf392b9e7d (Accessed: 21 July 2022).

https://doi:10.1080/01431161.2018.1434330
https://doi.org/10.3390/geosciences11020075
https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d

315 | P a g e

Chernov N. (2012) Circular and Linear Regression: Fitting Circles and Lines by Least

Squares: C++ Codes for Fitting Ellipses, Circles, Lines. 1st edn. New York: Chapman &

Hall/CRC.

Clarenz, U., Rumpf, M. and Telea, A. (2004) ‘Fairing of point based surfaces’, in

Proceedings of Computer Graphics International Conference, CGI, pp. 600–603. doi:

10.1109/CGI.2004.1309272.

Collins, M., Dasgupta, S. and Schapire, R.E. (2001) ‘A Generalization of Principal

Component Analysis to the Exponential Family’, Advances in Neural Information

Processing Systems, 13(23). doi: 10.7551/mitpress/1120.003.0084.

Contreras, D. and Hitschfeld-Kahler, N. (2014) ‘Generation of Polyhedral Delaunay Meshes’,

23rd International Meshing Roundtable (IMR23), 82, pp. 291–300. doi:

10.1016/j.proeng.2014.10.391

Cropp C. (2021) ‘The Most Popular Types of Point Cloud Processing Software’, Vercator

Blog. Available at: https://info.vercator.com/blog/popular-point-cloud-processing-

software (Accessed: 14 July 2022).

Daniels, J., Tilo Ochotta, I.·, Ha, L.K., Cláudio, · and Silva, T. (2008) ‘Spline-Based Feature

Curves from Point-Sampled Geometry’, Visual Computer, 24(6), pp. 449–462. doi:

10.1007/s00371-008-0223-2

Demantké, J., Mallet, C., David, N. and Vallet, B. (2011) ‘Dimensionality Based Scale

Selection in 3D LIDAR Point Clouds’, ISPRS - International Archives of the

Photogrammetry Remote Sensing and Spatial Information Sciences, 38(5), pp. 97–102.

doi: 10.5194/isprsarchives-XXXVIII-5-W12-97-2011.

Demarsin, K., Vanderstraeten, D., Volodine, T. and Roose, D. (2007) ‘Detection of Closed

Sharp Edges in Point Clouds using Normal Estimation and Graph Theory’, CAD

Computer Aided Design, 39(4), pp. 276–283. doi: 10.1016/j.cad.2006.12.005.

DeVore, R., Petrova, G., Hielsberg, M., Owens, L., Clack, B. and Sood, A. (2013)

‘Processing Terrain Point Cloud Data’, Society for Industrial and Applied Mathematics

(SIAM) Journal on Imaging Science, 6(1), pp. 1–31. doi: 10.1137/110856009.

https://info.vercator.com/blog/popular-point-cloud-processing-software
https://info.vercator.com/blog/popular-point-cloud-processing-software

316 | P a g e

Dey, T.K. and Sun, J. (2005) ‘An Adaptive MLS Surface for Reconstruction with

Guarantees’, in Eurographics Symposium on Geometry Processing. Austria. doi:

10.2312:SGP:SGP05:043-052

Dolapsaki, M.M. and Georgopoulos, A. (2021) ‘Edge Detection in 3D Point Clouds Using

Digital Images’, ISPRS International Journal of Geo-Information, 10(4). doi:

10.3390/ijgi10040229.

Dony, R.D. (2001) ‘Karhunen-Loève Transform’, The transform and data compression

handbook, 1(34), p. 29.

Du, L. (2020) Edge Detection in 3D Point Clouds for Industrial Applications. University of

Toronto.

Dubey A. (2018) The Mathematics Behind Principal Component Analysis, Towards Data

Science. Available at: https://towardsdatascience.com/the-mathematics-behind-principal-

component-analysis-fff2d7f4b643 (Accessed: 18 February 2022).

Eder J. (1992) ‘Octree’, ACM Transactions on Graphical, 11(3). Available at:

https://www.cg.tuwien.ac.at/studentwork/VisFoSe98/eder/octree.htm (Accessed: 18

March 2022).

El-Halawany, S.I. and Lichti, D.D. (2011) ‘Detection of Road Poles from Mobile Terrestrial

Laser Scanner Point Cloud’, in 2011 International Workshop on Multi-Platform/Multi-

Sensor Remote Sensing and Mapping, M2RSM 2011. doi:

10.1109/M2RSM.2011.5697364.

El-Sayed, E., Abdel-Kader, R.F., Nashaat, H. and Marei, M. (2018) ‘Plane Detection in 3D

Point Cloud using Octree-balanced Density Down-sampling and Iterative Adaptive Plane

Extraction’, IET Image Processing, 12(9), pp. 1595–1605. doi: 10.1049/iet-

ipr.2017.1076.

Erdélyi, J. et al. (2017) ‘Automation of point cloud processing to increase the deformation

monitoring accuracy’, Applied Geomatics, 9(2), pp. 105–113. doi: 10.1007/s12518-017-

0186-y.

https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643
https://towardsdatascience.com/the-mathematics-behind-principal-component-analysis-fff2d7f4b643
https://www.cg.tuwien.ac.at/studentwork/VisFoSe98/eder/octree.htm
https://doi.org/10.1049/iet-ipr.2017.1076
https://doi.org/10.1049/iet-ipr.2017.1076

317 | P a g e

Esmeide, L.N. and Nallig Eduardo, L.N. (2006) ‘Point Cloud Denoising Using Robust

Principal Component Analysis.’, in Proceedings of the First International Conference on

Computer Graphics Theory and Applications. Setúbal, Portugal, pp. 51–58. doi:

10.5220/0001358900510058

Fabio R. (2004) ‘From Point Cloud to Surface: The Modeling and Visualization Problem’, in

ISPRS WG V/6 Workshop Visualization and Animation of Reality-based 3D Models. doi:

10.3929/ethz-a-004655782.

Fan, H., Yao, W. and Tang, L. (2014) ‘Identifying Man-made Objects Along Urban Road

Corridors from Mobile Lidar Data’, IEEE Geoscience and Remote Sensing Letters,

11(5), pp. 950–954. doi: 10.1109/LGRS.2013.2283090.

Farin, G., Hoschek, J. and Kim, M.-S. (2002) Handbook of Computer Aided Geometric

Design. 1st edn. Amsterdam: Elsevier Science.

Feilzer, M.Y. (2010) ‘Doing Mixed Methods Research Pragmatically: Implications for the

Rediscovery of Pragmatism as a Research Paradigm’, Journal of Mixed Methods

Research, 4(1), pp. 6–16. doi: 10.1177/1558689809349691.

Feng, C., Taguchi, Y. and Kamat, V.R. (2014) ‘Fast Plane Extraction in Organized Point

Clouds Using Agglomerative Hierarchical Clustering’, in IEEE International Conference

on Robotics and Automation (ICRA). Hong Kong, China: IEEE, pp. 6218–6225. doi:

10.13140/2.1.2125.1204

Fleishman, S., Cohen-Or, D. and Silva, Cláudio T (2005) ‘Robust Moving Least-squares

Fitting with Sharp Features’, ACM Transactions on Graphics, 24(3), pp. 544–552. doi:

10.1145/1073204.1073227.

Fleishman, S., Drori, I. and Cohen-Or, D. (2003) ‘Bilateral Mesh Denoising’, ACM

SIGGRAPH, 22(3), pp. 950–953. doi: 10.1145/1201775.882368

Focus (2016) FARO® Knowledge Base. Available at:

https://knowledge.faro.com/Hardware/3D_Scanners/Focus (Accessed: 10 January 2022).

https://knowledge.faro.com/Hardware/3D_Scanners/Focus

318 | P a g e

Fröhlich, C. and Mettenleiter, M. (2004) ‘Terrestrial Laser Scanning - New Perspective in 3D

Surveying’, International archives of photogrammetry, remote sensing and spatial

information sciences, 36(8), pp. 7–13.

Fua, P. and Sander, P. (1992) ‘Reconstructing Surfaces from Unstructured 3D Points’, in

Second European Conference on Computer Vision (ECCV’90).

Galantucci, L.M. and Percocol, G. (2005) ‘A Multilevel Approach to Edge Detection in

Tessellated Point Clouds’, CIRP Annals, 54(1), pp. 127–130. doi: 10.1016/S0007-

8506(07)60065-1.

Gao, Rui, Mengyu Li, Seung-Jun Y., and Kyungeun C. (2022) ‘Reflective Noise Filtering of

Large-Scale Point Cloud Using Transformer’, Remote Sensing, 14(3) 577. doi:

10.3390/rs14030577.

Gargoum, S. and El-Basyouny, K. (2019) ‘Effects of LiDAR Point Density on Extraction of

Traffic Signs: A Sensitivity Study’, Transportation Research Record, 2673(1), pp. 41–

51. doi: 10.1177/0361198118822295.

Ge, L. and Feng, J. (2021) ‘Type-based Outlier Removal Framework for Point Clouds’,

Information Sciences, 580, pp. 436–459. doi: 10.1016/j.ins.2021.08.090.

Gie Yong, A. and Pearce, S. (2013) ‘A Beginner’s Guide to Factor Analysis: Focusing on

Exploratory Factor Analysis’, Tutorials in Quantitative Methods for Psychology, 9(2),

pp. 79–94. doi: 10.20982/TQMP.09.2.P079

Gigli, G. and Casagli, N. (2011) ‘Semi-automatic extraction of rock mass structural data from

high resolution LIDAR point clouds’, International Journal of Rock Mechanics and

Mining Sciences, 48(2), pp. 187–198. doi: 10.1016/j.ijrmms.2010.11.009.

Gilani, S.A.N., Awrangjeb, M. and Lu, G. (2018) ‘Segmentation of Airborne Point Cloud

Data for Automatic Building Roof Extraction’, GIScience and Remote Sensing, 55(1),

pp. 63–89. doi: 10.1080/15481603.2017.1361509.

Golovinskiy, A., Kim, V.G. and Funkhouser, T. (2009) ‘Shape-based Recognition of 3D

Point Clouds in Urban Environments’, in Proceedings of the IEEE International

Conference on Computer Vision, pp. 2154–2161. doi: 10.1109/ICCV.2009.5459471.

https://doi.org/https:/doi.org/10.1016/S0007-8506(07)60065-1
https://doi.org/https:/doi.org/10.1016/S0007-8506(07)60065-1

319 | P a g e

Golub, G.H., Hoffman, A. and Stewart, G.W. (1987) ‘A Generalization of the Eckart-Young-

Mirsky Matrix Approximation Theorem’, Linear Algebra and its Applications, 88, pp.

317–327.

Golub, G.H. and van Loan, C. (1983) Matrix Computations. 3rd edn. London: The John

Hopkins Press.

Govorcin, M., Pribicevic, B. and Đapo, A. (2014) ‘Comparison and Analysis of Software

Solutions for Creation of a Digital Terrain Model Using Unmanned Aerial Vehicles’, in

14th International Multidisciplinary Scientific GeoConference SGEM 2014. doi:

10.13140/2.1.2352.4803.

Graham, B., Engelcke, M. and van der Maaten, L. (2018) ‘3D Semantic Segmentation with

Submanifold Sparse Convolutional Networks’, in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. IEEE Computer

Society, pp. 9224–9232. doi: 10.1109/CVPR.2018.00961.

Graham L. (2021) Point Cloud Noise, GeoCue Group. Available at:

https://geocue.com/resources/article/point-cloud-noise/ (Accessed: 28 February 2022).

Gregorius B (2019) LiDAR Intensity: What is it and What are it’s applications? Geodetics.

Available at: https://geodetics.com/lidar-intensity-applications/ (Accessed: 11 June

2022).

Grilli, E., Farella, E.M., Torresani, A. and Remondino, F. (2019) ‘Geometric Features

Analysis for the Classification of Cultural Heritage Point Clouds’, in International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences -

ISPRS Archives. International Society for Photogrammetry and Remote Sensing, pp.

541–548. doi: 10.5194/isprs-archives-XLII-2-W15-541-2019.

Guan, H., Yu, Y., Li, J. and Liu, P. (2016) ‘Pole-Like Road Object Detection in Mobile

LiDAR Data via Supervoxel and Bag-of-Contextual-Visual-Words Representation’,

IEEE Geoscience and Remote Sensing Letters, 13(4), pp. 520–524. doi:

10.1109/LGRS.2016.2521684.

https://geocue.com/resources/article/point-cloud-noise/
https://geodetics.com/lidar-intensity-applications/

320 | P a g e

Guba, E.G. and Lincoln, Y. (1994) ‘Competing Paradigms in Qualitative Research’, in Major

paradigms and perspectives, pp. 105–117.

Guislain, M. et al. (2016) ‘Detecting and Correcting Shadows in Urban Point Clouds and

Image Collections’, in 2016 Fourth International Conference on 3D Vision (3DV).

Stanford, USA: IEEE, pp. 537–545. doi: 10.1109/3DV.2016.63.

Gumhold, S., Wang Ý, X. and MacLeod Þ, R. (2001) ‘Feature Extraction from Point Clouds’,

In Proceedings of the 10th International Meshing Roundtable, pp. 293–305.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. and Bennamoun, M. (2021) ‘Deep Learning for

3D Point Clouds: A Survey’, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 43(12), pp. 4338–4364. doi: 10.1109/TPAMI.2020.3005434.

Gupta, A., Byrne, J., Moloney, D., Watson, S. and Yin, H. (2018) ‘Automatic Tree

Annotation in LiDAR Data’, in Proceedings of the 4th International Conference on

Geographical Information Systems Theory, Applications and Management - GISTAM.

Scitepress, pp. 36–41. doi: 10.5220/0006668000360041.

Hackel, T., Wegner, J.D., Schindler, K., Hackel, T. and Wegner, J.D. (2016) ‘Fast Semantic

Segmentation of 3D Point Clouds with Strongly Varying Density’, in ISPRS Annals of

Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech

Republic, pp. 177–184. doi: 10.3929/ethz-b-000126659.

Hamilton C. (1995) Lunar Image Map, Views of the Solar System. Available at:

https://solarviews.com/cap/moon/moonmap.htm (Accessed: 16 July 2022).

Hamilton N. (2008) The A-Z of Programming Languages: C#, ComputerWorld. Available at :

https://www2.computerworld.com.au/article/261958/a-z_programming_languages_c_/

(Accessed: 26 June 2022).

Han, X.F., Jin, J.S., Wang, M.J., Jiang, W., Gao, L. and Xiao, L. (2017) ‘A Review of

Algorithms for Filtering the 3D Point Cloud’, Signal Processing: Image Communication,

57, pp. 103–112. doi: 10.1016/j.image.2017.05.009.

https://solarviews.com/cap/moon/moonmap.htm
https://www2.computerworld.com.au/article/261958/a-z_programming_languages_c_/

321 | P a g e

Hautamäki, V., Kärkkäinen, I. and Fränti, P. (2004) ‘Outlier Detection Using k-Nearest

Neighbour Graph’, in Proceedings - International Conference on Pattern Recognition,

pp. 430–433. doi: 10.1109/ICPR.2004.1334558.

Hawkins M D (1980) Identification of Outliers. 1st edn. London: Chapman & Hall. doi:

10.1007/978-94-015-3994-4

He, Z., Xu, X. and Deng, S. (2003) ‘Discovering Cluster-based Local Outliers’, Pattern

Recognition Letters, 24(9–10), pp. 1641–1650. doi: 10.1016/S0167-8655(03)00003-5.

Hejlsberg Anders, Torgersen Mads, Wiltamuth Scott and Golde Peter. (2011) The C#

Programming Language. 4th edn. Boston: Pearson Education Inc.

Hernandez, M., Choi, J. and Medioni, G. (2015) ‘Near Laser-scan Quality 3-D Face

Reconstruction from a Low-quality Depth Stream’, Image and Vision Computing, 36, pp.

61–69. doi: 10.1016/j.imavis.2014.12.004.

Higgins S. (2021) Everything you need to know about point clouds, NavVis Blog. Available

at: https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-

navvis (Accessed: 15 May 2022).

Hildebrandt, K. and Polthier, K. (2004) ‘Anisotropic Filtering of Non‐linear Surface

Features’, Computer Graphics Forum, pp. 391–400.

Hodge, V.J. and Austin, J. (2004) ‘A Survey of Outlier Detection Methodologies’, Artificial

Intelligence Review, 22(2), pp. 85–126. doi: 10.1023/B:AIRE.0000045502.10941.a9.

Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C. and Burgard, W. (2013) ‘OctoMap:

An Efficient Probabilistic 3D Mapping Framework Based on Octrees’, Autonomous

Robots, 34(3), pp. 189–206. doi: 1007/s10514-012-9321-0.

Hotelling, H. (1933) ‘Analysis of a Complex of Statistical Variables into Principal

Components’, Journal of Educational Psychology, 24(6), pp. 417–441. doi:

10.1037/H0071325.

https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-navvis
https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-navvis

322 | P a g e

Hu, Y., Yan, Z., Yin, Z. and Du, Z. (2020) ‘Collision Detection Based on Octree for Virtual

Surgery System’, in IOP Conference Series: Materials Science and Engineering.

Institute of Physics Publishing. doi: 10.1088/1757-899X/768/7/072107.

Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U. and Zhang, H. (2013) ‘Edge-aware

Point Set Resampling’, ACM Transactions on Graphics, 32(1), pp. 1–12. doi:

10.1145/2421636.2421645.

Huang, J. and You, S. (2015) ‘Pole-like Object Detection and Classification from Urban

Point Clouds’, in Proceedings - IEEE International Conference on Robotics and

Automation. Institute of Electrical and Electronics Engineers Inc., pp. 3032–3038. doi:

10.1109/ICRA.2015.7139615.

Hui, Z., Jin, S., Cheng, P., Ziggah, Y.Y., Wang, L., Wang, Y., Hu, H., Hu, Y. (2019) ‘An

Active Learning Method for DEM Extraction from Airborne LiDAR Point Clouds’,

IEEE Access, 7, pp. 89366–89378. doi: 10.1109/ACCESS.2019.2926497.

Hůlková, M., Pavelka, K. and Matoušková, E. (2018) ‘Automatic Classification of Point

Clouds for Highway Documentation’, Acta Polytechnica, 58(3), pp. 165–170. doi:

10.14311/AP.2018.58.0165.

Ibrahim, S. and Lichti, D. (2012) ‘Curb-based Street Floor Extraction from Mobile Terrestrial

Lidar Point Cloud’, ISPRS - International Archives of the Photogrammetry Remote

Sensing and Spatial Information Sciences, XXXIX-B5, pp. 193–198. doi:

10.5194/isprsarchives-XXXIX-B5-193-2012.

Ioannou, Y., Taati, B., Harrap, R. and Greenspan, M. (2012) ‘Difference of Normals as a

Multi-scale Operator in Unorganized Point Clouds’, in Proceedings - 2nd Joint

3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and

Transmission, 3DIMPVT 2012. IEEE Computer Society, pp. 501–508. doi:

10.1109/3DIMPVT.2012.12.

Jaadi Z. (2022) ‘A Step-by-Step Explanation of Principal Component Analysis (PCA)’, Built

In. Available at: https://builtin.com/data-science/step-step-explanation-principal-

component-analysis (Accessed: 19 January 2022).

https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis

323 | P a g e

Jain, A.K., Murty, M.N. and Flynn, P.J. (2000) ‘Data Clustering: A Review’, ACM

computing surveys (CSUR), 31(3), pp. 264–323. doi: 10.1145/331499.331504

Jaritz, M., Gu, J. and Su, H. (2019) ‘Multi-view Pointnet for 3D Scene Understanding’, in

Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW

2019. Institute of Electrical and Electronics Engineers Inc., pp. 3995–4003. doi:

10.1109/ICCVW.2019.00494.

Javed, M., Meraz, M. and Chakraborty, P. (2020) ‘A Quick Review on Recent Trends in 3D

Point Cloud Data Compression Techniques and the Challenges of Direct Processing in

3D Compressed Domain’, ArXiv, abs/2007.

Jenke, P., Wand, M., Bokeloh, M., Schilling, A. and Straßer, W. (2006) ‘Bayesian Point

Cloud Reconstruction’, Computer Graphics Forum, 25(3), pp. 379–388. doi:

10.1111/j.1467-8659.2006.00957.x

Jevtic G. (2019) What is SDLC? Phases of Software Development & Models, PhoenixNAP

Blog. Available at: https://phoenixnap.com/blog/software-development-life-cycle

(Accessed: 25 June 2022).

Jia, C.C., Wang, C.J., Yang, T., Fan, B.H. and He, F.G. (2018) ‘A 3D Point Cloud Filtering

Algorithm based on Surface Variation Factor Classification’, in Procedia Computer

Science. Elsevier B.V., pp. 54–61. doi: 10.1016/j.procs.2019.06.010.

Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.W. and Jia, J. (2019) ‘Hierarchical Point-Edge

Interaction Network for Point Cloud Semantic Segmentation’, in Proceedings of the

IEEE International Conference on Computer Vision. Institute of Electrical and

Electronics Engineers Inc., pp. 10432–10440. doi: 10.1109/ICCV.2019.01053.

Johnson, T., Kwok, I. and Ng, R. (1998) ‘Fast Computation of 2-Dimensional Depth

Contours’, KDD, pp. 244–228.

Jolliffe I.T (2002) Principal Component Analysis. 2nd edn. New York: Springer-Verlag.

Jones J. and Waddel S. (2019) The Cascading Costs of Waterfall, Medium Operating

Company. Available at: https://medium.com/@joneswaddell/the-cascading-costs-of-

waterfall-5c3b1b8beaec (Accessed: 19 June 2022).

https://phoenixnap.com/blog/software-development-life-cycle
https://medium.com/@joneswaddell/the-cascading-costs-of-waterfall-5c3b1b8beaec
https://medium.com/@joneswaddell/the-cascading-costs-of-waterfall-5c3b1b8beaec

324 | P a g e

Jones, T.R., Durand, F. and Desbrun, M. (2003) ‘Non-Iterative, Feature-Preserving Mesh

Smoothing’, ACM Transactions on Graphics, 22(3), pp. 943–949. doi:

10.1145/882262.882367.

Kabacoff Robert (2019) ‘Chapter 14. Principal components and factor analysis’, in R in

Action. 3rd edn. Shelter Island: Manning Publications.

Kadam, K.D. (2014) ‘Face Recognition using Principal Component Analysis with DCT’,

International Journal of Engineering Research and General Science, 2(4), pp 276 -280.

Kalogerakis, E., Nowrouzezahrai, D., Simari, P. and Singh, K. (2009) ‘Extracting Lines of

Curvature from Noisy Point Clouds’, CAD Computer Aided Design, 41(4), pp. 282–292.

doi: 10.1016/j.cad.2008.12.004.

Kang, Z., Yang, J., Zhong, R., Wu, Y., Shi, Z. and Lindenbergh, R. (2018) ‘Voxel-Based

Extraction and Classification of 3-D Pole-Like Objects from Mobile LiDAR Point Cloud

Data’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, 11(11), pp. 4287–4298. doi: 10.1109/JSTARS.2018.2869801.

Kaula W, Schubert G, Lingenfelter R, Sjogren W and Wollenhaupt W. (1973) ‘Lunar

Topography from Apollo 15 and 16 Laser Altimetry’, Proceedings of the Lunar Science

Conference, 3, pp. 2811–2819.

Knorr, E.M. and Ng, R.T. (1997) ‘A Unified Notion of Outliers: Properties and

Computation’, KDD, 97, pp. 219–222.

Knorr, E.M., Ng, R.T. and Tucakov, V. (2000) ‘Distance-based Outliers: Algorithms and

Applications’, The VLDB Journal, 8, pp. 237–253.

Kovacs J. (2007) C#/.NET History Lesson, Weblog. Available at:

http://jameskovacs.com/2007/09/07/cnet-history-lesson/ (Accessed: 26 June 2022).

Kriegel Hans Peter, Kröger Peer, Schubert Erich and Zimek Arthur. (2009) ‘LoOP: Local

Outlier Probabilities’, in Proceedings of the 18th ACM conference on Information and

knowledge management. Association for Computing Machinery, pp. 1649–1652. doi:

10.1145/1645953.1646195

http://jameskovacs.com/2007/09/07/cnet-history-lesson/
https://doi.org/10.1145/1645953.1646195

325 | P a g e

Kriegel, H.-P., Kröger Peer and Zimek, A. (2010) ‘Outlier Detection Techniques’, in The

2010 SIAM International Conference on Data Mining, pp. 1–76.

Ku, T., Veltkamp, R.C., Boom, B., Duque-Arias, D., Velasco-Forero, S., Deschaud, J.E.,

Goulette, F., et al. (2020) ‘SHREC 2020: 3D Point Cloud Semantic Segmentation for

Street Scenes’, Computers and Graphics (Pergamon), 93, pp. 13–24. doi:

10.1016/j.cag.2020.09.006.

Kumar, B., Pandey, G., Lohani, B. and Misra, S.C. (2019) ‘A Multi-faceted CNN

Architecture for Automatic Classification of Mobile LiDAR Data and an Algorithm to

Reproduce Point Cloud Samples for Enhanced Training’, ISPRS Journal of

Photogrammetry and Remote Sensing, 147, pp. 80–89. doi:

10.1016/j.isprsjprs.2018.11.006.

Laine, S. and Karras, T. (2010) ‘Efficient Sparse Voxel Octrees’, in ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D).

Lalonde, J.-F., Vandapel, N. and Hebert, M. (2006) Automatic Three-Dimensional Point

Cloud Processing for Forest Inventory. The Robotics Institute, Carnegie Mellon

University.

Lam, J., Kusevic, K., Mrstik, P., Harrap, R. and Greenspan, M. (2010) ‘Urban Scene

Extraction from Mobile Ground Based LiDAR Data’, in International Symposium on 3D

Data Processing Visualization and Transmission. IEEE, pp. 1–8.

Lan, Z., Yew, Z.J. and Lee, G.H. (2019) ‘Robust Point Cloud Based Reconstruction of Large-

scale Outdoor Scenes’, in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 9682–9690. doi:

10.1109/CVPR.2019.00992.

Landa, J. and Ondroušek, V. (2016) ‘Detection of Pole-like Objects from LIDAR Data’,

Procedia - Social and Behavioral Sciences, 220, pp. 226–235. doi:

10.1016/j.sbspro.2016.05.494.

326 | P a g e

Landa, J., Prochazka, D. and Štastny, J. (2013) ‘Point Cloud Processing for Smart Systems’,

Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(7), pp. 2415–

2421. doi: 10.11118/actaun201361072415.

Landrieu, L. and Simonovsky, M. (2018) ‘Large-Scale Point Cloud Semantic Segmentation

with Superpoint Graphs’, in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 4558–4567. doi:

10.1109/CVPR.2018.00479.

Lange, C., Polthier, K. and Berlin, Tu (2005) ‘Anisotropic Smoothing of Point Sets’,

Computer Aided Geometric Design, 22(7), pp. 680–692. doi: 10.1016/j.cagd.2005.06.010

Lee, K.-W. and Wang, W.-P. (2005) ‘Feature-Preserving Mesh Denoising via Bilateral

Normal Filtering’, in Ninth International Conference on Computer Aided Design and

Computer Graphics, pp. 6–11. doi: 10.1016/j.patrec.2006.04.016

Lee, Y.S., Koo, H.S. and Jeong, C.S. (2006) ‘A Straight Line Detection using Principal

Component Analysis’, Pattern Recognition Letters, 27(14), pp. 1744–1754. doi:

10.1016/j.patrec.2006.04.016.

Lefebvre, S., Hornus, S. and Neyret Fabrice (2005) ‘Octree Textures on the GPU’, in GPU

gems, pp. 595–613.

Lehtomäki, M., Jaakkola, A., Hyyppä, J., Kukko, A. and Kaartinen, H. (2010) ‘Detection of

Vertical Pole-like Objects in a Road Environment using Vehicle-based Laser Scanning

Data’, Remote Sensing, 2(3), pp. 641–664. doi: 10.3390/rs2030641.

Lehtomäki, M., Jaakkola, A., Hyyppä, J., Kukko, A. and Kaartinen, H. (2012) ‘Performance

Analysis of a Pole and Tree Trunk Detection Method for Mobile Laser Scanning Data’,

The International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, XXXVIII-5/W12, pp. 197–202. doi: 10.5194/isprsarchives-

xxxviii-5-w12-197-2011.

Leica RTC360 3D Laser Scanner (2018) Leica Geosystems. Available at: https://leica-

geosystems.com/products/laser-scanners/scanners/leica-rtc360 (Accessed: 10 January

2022).

https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360
https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360

327 | P a g e

Levente, L.B. and Editors, T. (2015) Handling Uncertainty and Networked Structure in

Robot Control. 1st edn. Springer Cham. doi: 10.1007/978-3-319-26327-4.

Levin, D. (1998) ‘The Approximation Power of Moving Least-Squares’, MATHEMATICS

OF COMPUTATION, 67(224), pp. 1517–1531. doi: 10.1090/S0025-5718-98-00974-0

Li, G. (2014) Automatic Detection of Temporary Objects in Mobile LiDar Point Clouds.

University of Twente.

Li, J., Chen, B.M. and Lee, G.H. (2018) ‘SO-Net: Self-Organizing Network for Point Cloud

Analysis’, in Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. IEEE Computer Society, pp. 9397–9406. doi:

10.1109/CVPR.2018.00979.

Li, J. and Cheng, X. (2022) ‘Supervoxel-based Extraction and Classification of Pole-like

Objects from MLS Point Cloud Data’, Optics and Laser Technology, 146. doi:

10.1016/j.optlastec.2021.107562.

Li, L., Li, D., Zhu, H. and Li, Y. (2016) ‘A Dual Growing Method for the Automatic

Extraction of Individual Trees from Mobile Laser Scanning Data’, ISPRS Journal of

Photogrammetry and Remote Sensing, 120, pp. 37–52. doi:

10.1016/j.isprsjprs.2016.07.009.

Li, L., Li, Y. and Li, D. (2016) ‘A Method Based on an Adaptive Radius Cylinder Model for

Detecting Pole-like Objects in Mobile Laser Scanning Data’, Remote Sensing Letters,

7(3), pp. 249–258. doi: 10.1080/2150704X.2015.1126377.

Li, M. and Sun, C. (2018) ‘Refinement of LiDAR Point Clouds using a Super Voxel Based

Approach’, ISPRS Journal of Photogrammetry and Remote Sensing, 143, pp. 213–221.

doi: 10.1016/j.isprsjprs.2018.03.010.

Li, Y., Wang, W., Li, X., Xie, L., Wang, Y., Guo, R., Xiu, W. and Tang S. (2019) ‘Pole-like

Street Furniture Segmentation and Classification in Mobile LiDAR Data by Integrating

Multiple Shape-descriptor Constraints’, Remote Sensing, 11(24). doi:

10.3390/rs11242920.

328 | P a g e

Li, Y. and Wei, L. (2021) ‘An Outlier Removal Method from UAV Point Cloud Data for

Transmission Lines’, in 2021 Computing, Communications and IoT Applications

(ComComAp). IEEE, pp. 238–241. doi: 10.1109/ComComAp53641.2021.9652941.

Lin Chien-Chou, Yen-Chou T., Jhong-Jin L. and Yong-Sheng C. (2017) ‘A Novel Point

Cloud Registration using 2D Image Features’, EURASIP Journal on Advances in Signal

Processing, 5, pp 1- 11. doi: 10.1186/s13634-016-0435-y

Lin, Y., Wang, C., Cheng, J., Chen, B., Jia, F., Chen, Z. and Li, J. (2015) ‘Line Segment

Extraction for Large Scale Unorganized Point Clouds’, ISPRS Journal of

Photogrammetry and Remote Sensing, 102, pp. 172–183. doi:

10.1016/j.isprsjprs.2014.12.027.

Liu, J., Skidmore, A.K., Jones, S., Wang, T., Heurich, M., Zhu, X. and Shi, Y. (2018) ‘Large

off-nadir Scan Angle of Airborne LiDAR Can Severely Affect the Estimates of Forest

Structure Metrics’, ISPRS Journal of Photogrammetry and Remote Sensing, 136, pp. 13–

25. doi: 10.1016/j.isprsjprs.2017.12.004.

Lozes, F., Elmoataz, A. and Lezoray, O. (2014) ‘Partial Difference Operators on Weighted

Graphs for Image Processing on Surfaces and Point Clouds’, IEEE Transactions on

Image Processing, 23(9), pp. 3896–3909. doi: 10.1109/TIP.2014.2336548.

LSS (2020) DTMSoftware.com. Available at: https://www.dtmsoftware.com/ (Accessed: 18

June 2022).

Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P. and Song, S. (2019) ‘DeepVCP: An End-to-End

Deep Neural Network for Point Cloud Registration’, in Proceedings of the IEEE

International Conference on Computer Vision. Institute of Electrical and Electronics

Engineers Inc., pp. 12–21. doi: 10.1109/ICCV.2019.00010.

Luo, D. and Liao, L. (2010) ‘Mining Outliers from Point Cloud by Data Slice’, in

Proceedings - 2010 International Conference on Artificial Intelligence and Education,

ICAIE 2010. IEEE, pp. 663–666. doi: 10.1109/ICAIE.2010.5641031.

https://www.dtmsoftware.com/

329 | P a g e

Ma, L., Li, Y., Li, J., Wang, C., Wang, R. and Chapman, M.A. (2018) ‘Mobile Laser Scanned

Point-clouds for Road Object Detection and Extraction: A Review’, Remote Sensing,

10(10), p. 1531. doi: 10.3390/rs10101531.

Maguya, A.S., Junttila, V. and Kauranne, T. (2014) ‘Algorithm for Extracting Digital Terrain

Models under Forest Canopy from Airborne LiDAR Data’, Remote Sensing, 6(7), pp.

6524–6548. doi: 10.3390/rs6076524.

Mahmood, R. (2017) Edge Detection in Unorganized 3D Point Cloud. Laurentian University.

Mallet, C. and David, N. (2016) ‘Digital Terrain Models Derived from Airborne LiDAR

Data’, Optical Remote Sensing of Land Surface: Techniques and Methods, pp. 299–319.

doi: 10.1016/B978-1-78548-102-4.50007-7.

Mansur, M.O., Noor, M., Sap, M. and Malaysia, U.T. (2005) ‘Outlier Detection Technique in

Data Mining: A Research Perspective’, in Postgraduate Annual Research Seminar, CMS

press, pp. 23–31. doi: 10.1007/978-3-030-05127-3_2

MATLAB MathWorks, Available at: https://uk.mathworks.com/products/matlab.html

(Accessed: 12 February 2023).

Measuring Trees · The Tree Register (2022) The Tree Register of the British Isles. Available

at: https://www.treeregister.org/more/measuring-trees/ (Accessed: 29 March 2022).

Mixing Agile and Waterfall (2021) Adobe Experience Cloud.

Monahan, A.H., Fyfe, J.C., Ambaum, M.H.P., Stephenson, D.B. and North, G.R. (2009)

‘Empirical Orthogonal Functions: The Medium is the Message’, Journal of Climate, pp.

6501–6514. doi: 10.1175/2009JCLI3062.1.

Monnier, F., Vallet, B. and Soheilian, B. (2012) ‘Trees Detection from Laser Point Clouds

Acquired in Dense Urban Areas by a Mobile Mapping System’, ISPRS Annals

Photogrammetry Remote Sensing and Spatial Information Sciences, 1(3), pp. 245–250.

doi: 10.5194/isprsannals-I-3-245-2012.

Nguyen, T.H., Daniel, S., Gueriot, D., Sintes, C. and Caillec, J.-M. le. (2019) ‘Unsupervised

Automatic Building Extraction Using Active Contour Model on Unregistered Optical

https://uk.mathworks.com/products/matlab.html
https://www.treeregister.org/more/measuring-trees/

330 | P a g e

Imagery and Airborne LiDAR Data’, International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, XLII(2), pp. 181–188. doi:

10.5194/isprs-archives-XLII-2-W16-181-2019.

Nicole (2021) What are Point Clouds?, PointCab Blog. Available at: https://pointcab-

software.com/en/2021/09/01/what_are_point_clouds/ (Accessed: 29 Dec 2021).

Nievergelt, Y. (1997) ‘Schmidt-Mirsky Matrix Approximation With Linearly Constrained

Singular Values’, Linear algebra and its applications, 261(1–3), pp. 207–219. doi:

10.1016/S0024-3795(96)00403-X.

Ning, X., Li, F., Tian, G. and Wang, Y. (2018) ‘An Efficient Outlier Removal Method for

Scattered Point Cloud Data’, PLOS ONE, 13(8). doi: 10.1371/journal.pone.0201280

Nurunnabi, A., Belton, D. and West, G. (2012) ‘Robust Segmentation in Laser Scanning 3D

Noisy Point Cloud Data’, in Proceedings of the International Conference on Digital

Image Computing Techniques and Applications (DICTA). Fremantle, WA: IEEE, pp. 1–

8. doi: 10.1109/DICTA.2012.6411672.

Nurunnabi, Abdul, West, G. and Belton, D. (2015a) ‘Outlier Detection and Robust Normal-

curvature Estimation in Mobile Laser Scanning 3D Point Cloud Data’, Pattern

Recognition, 48(4), pp. 1404–1419. doi: 10.1016/j.patcog.2014.10.014.

Nurunnabi, A, West, G. and Belton, D. (2015b) ‘Robust Methods for Feature Extraction from

Mobile Laser Scanning 3D Point Clouds’, in Research Locate, pp. 109–120.

O’Day E. (2013) 3D Laser Scanning: Different Type of Scanners, Ideate. Available at:

https://www.ideateinc.com/blog/2013/07/3d-laser-scanning-different-type-of (Accessed:

30 April 2022).

Ogala, J., Ogala, B. and Onyarin, J. (2020) ‘Comparative Analysis of C, C++, C# and JAVA

Programming Languages’, Global Scientific Journals, 8(5), pp. 1899–1913.

Oreifej, O. (2013) Robust Subspace Estimation Using Low-Rank Optimization: Theory and

Applications. University of Central Florida.

https://pointcab-software.com/en/2021/09/01/what_are_point_clouds/
https://pointcab-software.com/en/2021/09/01/what_are_point_clouds/
https://www.ideateinc.com/blog/2013/07/3d-laser-scanning-different-type-of

331 | P a g e

Oztireli, C., Guennebaud, G. and Gross, M. (2009) ‘Feature Preserving Point Set Surfaces

based on Non-Linear Kernel Regression’, Computer Graphics Forum, 28(2), pp. 493–

501. doi: 10.1111/j.1467-8659.2009.01388.x

Papadimitriou, S., Kitagawa, H., Gibbons, P.B. and Faloutsos, C. (2003) ‘LOCI: Fast Outlier

Detection Using the Local Correlation Integral’, in Proceedings - International

Conference on Data Engineering, pp. 315–326. doi: 10.1109/ICDE.2003.1260802.

Papon, J., Abramov, A., Schoeler, M. and Worgotter, F (2013) ‘Voxel Cloud Connectivity

Segmentation - Supervoxels for Point Clouds’, in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pp. 2027–2034. doi:

10.1109/CVPR.2013.264.

Paris, S. and Durand, F. (2006) ‘A Fast Approximation of the Bilateral Filter Using a Signal

Processing Approach’, in European conference on computer vision. Springer, Berlin,

Heidelberg, pp. 568–580.

Park S and Jun Y (2002) ‘Automated Segmentation of Point Data in a Feature-based Reverse

Engineering System’, Proceedings of the Institution of Mechanical Engineers Part B

Journal of Engineering Manufacture, 216(3), pp. 445–461. doi:

10.1243/0954405021519951.

Parkhan M J (2019) Combined use of Airborne Laser Scanning and Hyperspectral Imaging

for Forest Inventories. EPFL, Switzerland. doi: 10.5075/EPFL-THESIS-9033

Pauly, M., Mitra, N.J. and Guibas, L.J. (2004) ‘Uncertainty and Variability in Point Cloud

Surface Data’, Eurographics Symposium on Point-Based Graphics, pp. 77–84. doi:

10.2312/SPBG/SPBG04/077-084

Pearson, K. (1901) ‘On lines and Planes of Closest Fit to Systems of Points in Space’, The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11),

pp. 559–572. doi: 10.1080/14786440109462720.

Pepe, M. and Prezioso, G. (2015) ‘A Matlab geodetic software for processing airborne

LIDAR bathymetry data’, in International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences - ISPRS Archives. International Society for

332 | P a g e

Photogrammetry and Remote Sensing, pp. 167–170. doi: 10.5194/isprsarchives-XL-5-

W5-167-2015.

Petras, V. et al. (2023) ‘Point Density Variations in Airborne Lidar Point Clouds’, Sensors,

23(3), p. 1593. doi: 10.3390/s23031593.

Petrova, E., Pauwels, P., Svidt, K. and Jensen, R.L. (2019) ‘Towards Data-driven Sustainable

Design: Decision Support Based on Knowledge Discovery in Disparate Building Data’,

Architectural Engineering and Design Management, 15(5), pp. 334–356. doi:

10.1080/17452007.2018.1530092.

Pfeifer, N., Wien, T.U., Fan, H., Dorninger, P. and Haring, A (2007) ‘Investigating

Terrestrial Laser Scanning Intensity Data: Quality and Functional Relations’,

Researchgate, pp. 328–337.

Pierce, R. (2018) Vertices, Edges and Faces, Maath is Fun. Available at:

https://www.mathsisfun.com/geometry/vertices-faces-edges.html (Accessed: 20

November 2018).

Pirotti, F., Ravanelli, R., Fissore, F. and Masiero, A. (2018) ‘Implementation and Assessment

of Two Density-based Outlier Detection Methods Over Large Spatial Point Clouds’,

Open Geospatial Data, Software and Standards, 3(1). doi: 10.1186/s40965-018-0056-5.

Point Clouds for Beginners: Your Questions Answered (2022) GeoSlam. Available at:

https://geoslam.com/point-clouds/ (Accessed: 20 May 2021).

Ponciano, J.J., Trémeau, A. and Boochs, F. (2019) ‘Automatic Detection of Objects in 3D

Point Clouds Based on Exclusively Semantic Guided Processes’, ISPRS International

Journal of Geo-Information, 8(10), 442. doi: 10.3390/ijgi8100442.

Poux, F. and Billen, R. (2019) ‘Voxel-based 3D Point Cloud Semantic Segmentation:

Unsupervised Geometric and Relationship Featuring vs Deep Learning Methods’, ISPRS

International Journal of Geo-Information, 8(5), 213. doi: 10.3390/ijgi8050213.

Poux F. (2020) Fundamentals to Clustering High-Dimensional Data: 3D Point Clouds,

Towards Data Science. Available at: https://towardsdatascience.com/fundamentals-to-

https://doi.org/10.5194/isprsarchives-XL-5-W5-167-2015
https://doi.org/10.5194/isprsarchives-XL-5-W5-167-2015
https://www.mathsisfun.com/geometry/vertices-faces-edges.html
https://geoslam.com/point-clouds/
https://towardsdatascience.com/fundamentals-to-clustering-high-dimensional-data-3d-point-clouds-3196ee56f5da

333 | P a g e

clustering-high-dimensional-data-3d-point-clouds-3196ee56f5da (Accessed: 13 February

2022).

Pratt, V. (1987) ‘Direct Least-Squares Fitting of Algebraic Surfaces’, Computer Graphics,

21(4), pp. 145–152.

Pu, S., Rutzinger, M., Vosselman, G. and Oude Elberink, S. (2011) ‘Recognizing Basic

Structures from Mobile Laser Scanning Data for Road Inventory Studies’, ISPRS Journal

of Photogrammetry and Remote Sensing, 66(6 SUPPL.). doi:

10.1016/j.isprsjprs.2011.08.006.

Qi, C.R., Su, H., Mo, K. and Guibas, L.J. (2017) ‘PointNet: Deep Learning on Point Sets for

3D Classification and Segmentation’, in Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017. Institute of Electrical and

Electronics Engineers Inc., pp. 77–85. doi: 10.1109/CVPR.2017.16.

Rakotosaona, M.-J., la Barbera, V., Guerrero, P., Mitra, N.J. and Ovsjanikov, M. (2020)

‘PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds’,

Computer Graphics Forum, 39(1), pp. 185–203. doi: 10.1111/cgf.13753.

Rastiveis, H., Shams, A., Sarasua, W.A. and Li, J. (2020) ‘Automated Extraction of Lane

Markings from Mobile LiDAR Point Clouds Based on Fuzzy Inference’, ISPRS Journal

of Photogrammetry and Remote Sensing, 160, pp. 149–166. doi:

10.1016/j.isprsjprs.2019.12.009.

Remondino, F. (2004) ‘International Archives of the Photogrammetry’, International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

XXXIV-5/W10. doi: 10.3929/ethz-a-004655782.

Rodríguez, A.S., Rodríguez, B.R., Rodríguez, M.S. and Sánchez, P.A. (2018) ‘Laser

Scanning and its Applications to Damage Detection and Monitoring in Masonry

Structures’, in Long-term Performance and Durability of Masonry Structures:

Degradation Mechanisms, Health Monitoring and Service Life Design. Woodhead

Publishing, pp. 265–285. doi: 10.1016/B978-0-08-102110-1.00009-1.

https://towardsdatascience.com/fundamentals-to-clustering-high-dimensional-data-3d-point-clouds-3196ee56f5da

334 | P a g e

Rodríguez-Cuenca, B., García-Cortés, S., Ordóñez, C. and Alonso, M.C. (2015) ‘Automatic

Detection and Classification of Pole-like Objects in Urban Point Cloud Data using an

Anomaly Detection Algorithm’, Remote Sensing, 7(10), pp. 12680–12703. doi:

10.3390/rs71012680.

Rooms F. (2019) Point Clouds from the Clouds, Bricsys CAD Blog. Available at:

https://blog.bricsys.com/point-cloud-lidar-airborne-mapping/ (Accessed: 7 June 2022).

Rousell, A. (2014) ‘Influence of point cloud density on the results of automated Object-Based

building extraction from ALS data’, in AGILE conference Castellon, Spain. Castellón.

Rousseeuw Peter and Leroy Annick (1987) Robust Regression and Outlier Detection. Third.

Toronto, Canada: John Wiley and Sons Inc. doi: 10.1002/0471725382.

Rousseeuw, P.J. and Hubert, M. (2011) ‘Robust Statistics for Outlier Detection’, Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), pp. 73–79. doi:

10.1002/widm.2.

Rousseeuw, P.J. and Hubert, M. (2018) ‘Anomaly Detection by Robust Statistics’, Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2). doi:

10.1002/widm.1236.

Roynard, X., Deschaud, J.-E. and Goulette, F. (2018) ‘Classification of Point Cloud Scenes

with Multiscale Voxel Deep Network’, arXiv:1804.03583. doi:

10.48550/arXiv.1804.03583

Ruchay, A. N., Dorofeev, K.A. and Kalschikov, V. v. (2019) ‘Accuracy Analysis of 3D

Object Reconstruction using Point Cloud Filtering Algorithms’, in Proceedings of the 5th

Information Technology and Nanotechnology (ITNT-2019), pp. 169–174. doi:

10.18287/1613-0073-2019-2391-169-174.

Ruparelia, N.B. (2010) ‘Software Development Lifecycle Models’, ACM SIGSOFT Software

Engineering Notes, 35(3), pp. 8–13. doi: 10.1145/1764810.1764814.

Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M. and Beetz, M. (2008) ‘Towards 3D Point

Cloud Based Object Maps for Household Environments’, Robotics and Autonomous

Systems, 56(11), pp. 927–941. doi: 10.1016/j.robot.2008.08.005.

https://blog.bricsys.com/point-cloud-lidar-airborne-mapping/

335 | P a g e

Rusu, R.B. and Cousins, S. (2011) ‘3D is Here: Point Cloud Library (PCL)’, in IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 1-4,

doi: 10.1109/ICRA.2011.5980567.

Ruwen Schnabel, D.-I., Klein, R. and Gumhold, S. (2010) Efficient Point-Cloud Processing

with Primitive Shapes, University Bonn.

Safaie, A.H., Rastiveis, H., Shams, A., Sarasua, W.A. and Li, J. (2021) ‘Automated Street

Tree Inventory using Mobile LiDAR Point Clouds based on Hough Transform and

Active Contours’, ISPRS Journal of Photogrammetry and Remote Sensing, 174, pp. 19–

34. doi: 10.1016/j.isprsjprs.2021.01.026.

Sahin, C., Alkis, A., Ergun, B., Kulur, S., Batuk, F. and Kilic, A. (2012) ‘Producing 3D City

Model with the Combined Photogrammetric and Laser Scanner Data in the Example of

Taksim Cumhuriyet Square’, Optics and Lasers in Engineering, 50(12), pp. 1844–1853.

doi: 10.1016/j.optlaseng.2012.05.019.

Salman, N., Yvinec, M., Merigot, Q. (2010) ‘Feature Preserving Mesh Generation from 3D

Point Clouds’, Computer Graphics Forum, 29(5), pp. 1623–1632. Oxford, UK:

Blackwell Publishing Ltd.

Sampaio, J.H.B. (2006) ‘An Iterative Procedure for Perpendicular Offsets Linear Least

Squares Fitting with Extension to Multiple Linear Regression’, Applied Mathematics and

Computation, 176(1), pp. 91–98. doi: 10.1016/j.amc.2005.09.054.

Sankaranarayanan, J., Samet, H. and Varshney, A. (2007) ‘A Fast all Nearest Neighbor

Algorithm for Applications Involving Large Point-Clouds’, Computers and Graphics

(Pergamon), 31(2), pp. 157–174. doi: 10.1016/j.cag.2006.11.011.

Schall, O., Belyaev, A. and Seidel, H.-P. (2005) ‘Robust Filtering of Noisy Scattered Point

Data’, in Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, pp.

71–144. doi: 10.1109/PBG.2005.194067

Schall, O., Belyaev, A. and Seidel, H.P. (2008) ‘Adaptive Feature-preserving Non-local

Denoising of Static and Time-varying Range Data’, CAD Computer Aided Design, 40(6),

pp. 701–707. doi: 10.1016/j.cad.2008.01.011.

336 | P a g e

Schauer, J. and Nüchter, A. (2018) ‘Removing Non-static Objects from 3D Laser Scan Data’,

ISPRS Journal of Photogrammetry and Remote Sensing, 143, pp. 15–38. doi:

10.1016/j.isprsjprs.2018.05.019.

Schneiders, R., Schindler, R. and Weiler, F. (1996) ‘Octree-based Generation of Hexahedral

Element Meshes’, in Proceedings of the 5th International Meshing Roundtable. doi:

10.1142/S021819590000022X

Scheiner, N. et al. (2021) ‘Object detection for automotive radar point clouds – a

comparison’, AI Perspectives, 3(1). doi: 10.1186/s42467-021-00012-z.

Scholkopf, B., Smola, A. and Muller Klaus (1997) ‘Kernel Principal Component Analysis’,

in Gerstner W., Germond A., Hasler M. and Nicoud JD. (eds) International conference

on artificial neural networks. Berlin Heidelberg: Springer, pp. 583–588. doi:

10.1007/BFb0020217.

Schön, B., Mosa, A.S.M., Laefer, D.F. and Bertolotto, M. (2013) ‘Octree-based Indexing for

3D Pointclouds within an Oracle Spatial DBMS’, Computers and Geosciences, 51, pp.

430–438. doi: 10.1016/j.cageo.2012.08.021.

Schwaber K. and Sutherland J. (2020) What is Scrum? The Scrum Guide. Available at:

https://www.scrum.org/resources/what-is-scrum (Accessed: 19 June 2022).

Sengupta, A.M. and Mitra, P.P. (1997) ‘Distributions of Singular Values for Some Random

Matrices’, Physical review. E, Statistical physics, plasmas, fluids, and related

interdisciplinary topics, 60, p. 3389. doi: 10.1103/PhysRevE.60.3389.

Senior M. (2021) The Future of Point Cloud Processing and 3D Models, Geo Insight - GEO

BUSINESS. Available at: https://www.geobusinessshow.com/the-future-of-point-cloud-

processing-and-3d-models/ (Accessed: 7 June 2022).

Serifoglu Yilmaz, C., Yilmaz, V. and Güngör, O. (2018) ‘Investigating the Performances of

Commercial and Non-commercial Software for Ground Filtering of UAV-based Point

Clouds’, 39(15–16), pp. 5016–5042. doi: 10.1080/01431161.2017.1420942.

Shao, M., Ijiri, Y. and Hattori, K. (2015) ‘Grouped Outlier Removal for Robust Ellipse

Fitting’, in Proceedings of the 14th IAPR International Conference on Machine Vision

https://www.scrum.org/resources/what-is-scrum
https://www.geobusinessshow.com/the-future-of-point-cloud-processing-and-3d-models/
https://www.geobusinessshow.com/the-future-of-point-cloud-processing-and-3d-models/

337 | P a g e

Applications, MVA 2015. Institute of Electrical and Electronics Engineers Inc., pp. 138–

141. doi: 10.1109/MVA.2015.7153152.

Shaw, P.J.A. (2003) Multivariate statistics for the Environmental Sciences, New York. John

Wiley & Sons Inc.

Shen, J., Liu, J., Zhao, R. and Lin, X. (2011) ‘A Kd-tree-based Outlier Detection Method for

Airborne LiDAR Point Clouds’, in 2011 International Symposium on Image and Data

Fusion, ISIDF Tengchong, China, 2011, pp. 1-4. doi: 10.1109/ISIDF.2011.6024307.

Shi, B.Q., Liang, J. and Liu, Q. (2011) ‘Adaptive Simplification of Point Cloud Using k-

Means Clustering’, CAD Computer Aided Design, 43(8), pp. 910–922. doi:

10.1016/j.cad.2011.04.001.

Shi, Q. and Jaja, J. (2006) ‘Isosurface Extraction and Spatial Filtering Using Persistent Octree

(POT)’, IEEE Transactions on Visualization and Computer Graphics, 12(5), pp 1283-

1290. doi: 10.1109/TVCG.2006.157.

Shi, S. Wang Z., Shi J., Wang X., and Li H. (2021) ‘From Points to Parts: 3D Object

Detection from Point Cloud with Part-aware and Part-aggregation Network’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 43, pp. 2647-2664. doi:

10.1109/TPAMI.2020.2977026.

Shi, S., Wang, X. and Li, H. (2019) ‘PointRCNN: 3D Object Proposal Generation and

Detection from Point Cloud’, in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770–779. doi: 10.48550/arXiv.1812.04244

Shi, Z., Kang, Z., Lin, Y., Liu, Y. and Chen, W. (2018) ‘Automatic Recognition of Pole-like

Objects from Mobile Laser Scanning Point Clouds’, Remote Sensing, 10(12), pp. 1-23.

doi: 10.3390/rs10121891.

Shirowzhan, S., Sepasgozar, S.M.E., Li, H., Trinder, J. and Tang, P. (2019) ‘Comparative

Analysis of Machine Learning and Point-based Algorithms for Detecting 3D Changes in

Buildings Over Time Using Bi-temporal Lidar Data’, Automation in Construction, 105,

pp. 102841. doi: 10.1016/j.autcon.2019.102841.

338 | P a g e

Singh S. (2020) ‘What is Testing in Software? — The Three Main Types of Testing

Explained in Simple English’, Level Up Coding. Available at:

https://levelup.gitconnected.com/what-is-testing-in-software-the-three-main-types-of-

testing-explained-in-simple-english-da0fec7ae5d6 (Accessed: 7 August 2022).

Soilán, M., Sánchez-Rodríguez, A., del Río-Barral, P., Perez-Collazo, C., Arias, P. and

Riveiro, B. (2019) ‘Review of Laser Scanning Technologies and their Applications for

Road and Railway Infrastructure Monitoring’, Infrastructures, 4(4), p. 58. doi:

10.3390/infrastructures4040058.

Sotoodeh, S. (2006) ‘Outlier Detection in Laser Scanner Point Clouds’, International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

36(5), pp. 297–305. doi: 10.3929/ETHZ-B-000037220

Sotoodeh, S. (2007) ‘Hierarchical Clustered Outlier Detection in Laser Scanner Point

Clouds’, International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, 36(3/W52), pp. 383–388. doi: 10.3929/ethz-b-000004210.

Stewart, G.W. (1993) ‘On early History of the Singular Value Decomposition’, SIAM

Review, Society for Industrial and Applied Mathematics, 35(4), pp. 551–566. doi:

10.1137/1035134.

Stucker, C., Richard, A., Wegner, J.D. and Schindler Photogrammetry, K. (2018)

‘Supervised Outlier Detection in Large-scale MVS Point Clouds for 3D City Modeling

Applications’, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, 4, pp. 263–273. doi: 10.3929/ethz-b-000271685.

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H. and Kautz, J. (2018)

‘SPLATNet: Sparse Lattice Networks for Point Cloud Processing’, in Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE

Computer Society, pp. 2530–2539. doi: 10.1109/CVPR.2018.00268.

Su Zhonghua, Li Shihua, Liu Hanhu and Liu Yuhan. (2019) ‘Extracting Wood Point Cloud of

Individual Trees Based on Geometric Features’, IEEE Geoscience and Remote Sensing

Letters, 16(8), pp. 1294–1298. doi: 10.1109/LGRS.2019.2896613.

https://levelup.gitconnected.com/what-is-testing-in-software-the-three-main-types-of-testing-explained-in-simple-english-da0fec7ae5d6
https://levelup.gitconnected.com/what-is-testing-in-software-the-three-main-types-of-testing-explained-in-simple-english-da0fec7ae5d6

339 | P a g e

Sun, Y., Schaefer, S. and Wang, W. (2015) ‘Denoising Point Sets via L0 Minimization’,

Computer Aided Geometric Design, 35–36, pp. 2–15. doi: 10.1016/j.cagd.2015.03.011.

Sunday, D. (2021) Practical Geometry Algorithms with C++ Code. 1st edn. Amazon KDP.

Suryanarayana, T.M.V. and Mistry, P.B. (2016) ‘Principal Component Analysis in Transfer

Function’, in SpringerBriefs in Applied Sciences and Technology. Springer Verlag, pp.

17–25. doi: 10.1007/978-981-10-0663-0_2.

Ta, V.T., Elmoataz, A. and Lézoray, O. (2011) ‘Nonlocal PDEs-based Morphology on

Weighted Graphs for Image and Data Processing’, IEEE Transactions on Image

Processing, 20(6), pp. 1504–1516. doi: 10.1109/TIP.2010.2101610.

Tang, P., Huber, D., Akinci, B., Lipman, R. and Lytle, A. (2010) ‘Automatic Reconstruction

of as-built Building Information Models from Laser-scanned Point Clouds: A Review of

Related Techniques’, Automation in Construction, 19(7), pp. 829–843. doi:

10.1016/j.autcon.2010.06.007.

Tapken P. (2019) ‘The Rising Demand for Total Stations and Terrestrial Laser Scanners’,

GIM International, 5 February. Available at: https://www.gim-

international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-

laser-scanners (Accessed: 14 July 2022).

Tashakkori, A. and Teddlie, C. (2010) ‘The Past and Future of Mixed Methods Research:

From Triangulation to Mixed Model Design’, in Handbook of Mixed Methods in Social

and Behavioural Research. 2nd edn. CA: SAGE.

Taubin, G. (1991) ‘Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves

Defined by Implicit Equations with Applications to Edge and Range Image

Segmentation’, IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(11), pp. 1115–1138. doi: 10.1109/34.103273.

Taubin, G. (1995) ‘Estimating the Tensor of Curvature of a Surface from a Polyhedral

Approximation’, in IEEE International Conference on Computer Vision. IEEE, pp. 902–

907. doi: 10.1109/iccv.1995.466840.

https://www.gim-international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-laser-scanners
https://www.gim-international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-laser-scanners
https://www.gim-international.com/content/article/the-rising-demand-for-total-stations-and-terrestrial-laser-scanners

340 | P a g e

Tazir, M.L., Checchin, P. and Trassoudaine, L. (2016) ‘Color-based 3D Point Cloud

Reduction’, in 2016 14th International Conference on Control, Automation, Robotics

and Vision (ICARCV), pp. 1–7. doi: 10.1109/ICARCV.2016.7838685.

Teng, M., Zhuangzhi, W., Lu, F., Pei, L. and Xiang, L. (2010) ‘Point Cloud Segmentation

Through Spectral Clustering’, in 2nd International Conference on Information Science

and Engineering, ICISE2010, China. IEEE, pp. 1–4. doi: 10.1109/ICISE.2010.5690596.

Teo, T.A. and Chiu, C.M. (2015) ‘Pole-Like Road Object Detection from Mobile Lidar

System Using a Coarse-to-Fine Approach’, IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 8(10), pp. 4805–4818. doi:

10.1109/JSTARS.2015.2467160.

Thank the Egyptians; The History of Surveying & Mapping (2019) DRMPerspective.

Available at: https://drmp.com/drmperspective?id=895612/thank-the-egyptians-the-

history-of-surveying-mapping (Accessed: 16 July 2022).

Thomson C. (2019) 6 industries that need to understand point clouds, VEERCATOR.

Available at: https://info.vercator.com/blog/6-industries-that-need-to-understand-point-

clouds-in-2019 (Accessed: 29 April 2022).

Thrun, S., Burgard, W. and Fox, D. (1998) ‘A Probabilistic Approach to Concurrent Mapping

and Localization for Mobile Robots’, Autonomous Robots, 5(3–4), pp. 253–271. doi:

10.1023/a:1008806205438.

Tipping, Michael E. and Bishop, C.M. (1999) ‘Probabilistic Principal Component Analysis’,

Journal of the Royal Statistical Society. Series B: Statistical Methodology, 61(3), pp.

611–622. doi: 10.1111/1467-9868.00196.

Tomasi, C. and Manduchi, R. (1998) ‘Bilateral Filtering for Gray and Color Images’, in Sixth

International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay,

India, pp. 839–846. doi: 10.1109/ICCV.1998.710815

Tombari, F., Fioraio, N., Cavallari, T., Salti, S., Petrelli, A. and di Stefano, L. (2014)

‘Automatic Detection of Pole-like Structures in 3D Urban Environments’, in IEEE

https://drmp.com/drmperspective?id=895612/thank-the-egyptians-the-history-of-surveying-mapping
https://drmp.com/drmperspective?id=895612/thank-the-egyptians-the-history-of-surveying-mapping
https://info.vercator.com/blog/6-industries-that-need-to-understand-point-clouds-in-2019
https://info.vercator.com/blog/6-industries-that-need-to-understand-point-clouds-in-2019

341 | P a g e

International Conference on Intelligent Robots and Systems. Institute of Electrical and

Electronics Engineers Inc., pp. 4922–4929. doi: 10.1109/IROS.2014.6943262.

Tombari, F., Cavallari, T. and Stefano, L. di (2016) ‘Poles from Point Clouds’, GIM

International, pp. 1–13.

Tran, T.H.G., Ressl, C. and Pfeifer, N. (2018) ‘Integrated Change Detection and

Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds’, Sensors

(Switzerland), 18(2), 448. doi: 10.3390/s18020448.

Tucker A. (2021) ‘Computer Science - Programming Languages’, Encyclopedia Britannica.

Available at: https://www.britannica.com/science/computer-science/Programming-

languages (Accessed: 18 June 2022).

Tuley, J., Vandapel, N. and Hebert, M. (2005) ‘Analysis and Removal of Artifacts in 3-D

LADAR Data’, in Proceedings - IEEE International Conference on Robotics and

Automation, pp. 2203–2210. doi: 10.1109/ROBOT.2005.1570440.

Tuominen, S., Näsi, R., Honkavaara, E., Balazs, A., Hakala, T., Viljanen, N. and Pölönen, I.,

et al. (2018) ‘Assessment of Classifiers and Remote Sensing Features of Hyperspectral

Imagery and Stereo-Photogrammetric Point Clouds for Recognition of Tree Species in a

Forest Area of High Species Diversity’, Remote Sensing, 10(5). doi:

10.3390/rs10050714.

Turner, M., Moxey, D. and Peiró, J. (2015) ‘Automatic Mesh Sizing Specification of

Complex Three Dimensional Domains using an Octree Structure’, 24th International

Meshing Roundtable (IMR24).

Unnikrishnan, R. (2008) ‘Statistical Approaches to Multi-scale Point Cloud Processing’,

Wwwoldricmuedu, The Robotics Institute Carnegie Mellon University (May), pp. 1-146.

Upadhyay Raj K. (2020) ‘Advantages and Disadvantages of using Spiral Model’,

GeeksforGeeks. Available at: https://www.geeksforgeeks.org/advantages-and-

disadvantages-of-using-spiral-model/ (Accessed: 19 June 2022).

Uy, M.A., Pham, Q.-H., Hua, B.-S., Nguyen, D.T. and Yeung, S.K. (2019) ‘Revisiting Point

Cloud Classification: A New Benchmark Dataset and Classification Model on Real-

https://www.britannica.com/science/computer-science/Programming-languages
https://www.britannica.com/science/computer-science/Programming-languages
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-using-spiral-model/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-using-spiral-model/

342 | P a g e

World Data’, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV),

pp. 1588–1597. doi:10.1109/ICCV.2019.00167.

Vidal, R., Ma, Y. and Sastry, S.S. (2005) ‘Generalized Principal Component Analysis’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(12), pp. 1945–1959. doi:

10.1007/978-981-10-2915-8_7.

Vo, A.V., Truong-Hong, L., Laefer, D.F. and Bertolotto, M. (2015) ‘Octree-based Region

Growing for Point Cloud Segmentation’, ISPRS Journal of Photogrammetry and Remote

Sensing, 104, pp. 88–100. doi: 10.1016/j.isprsjprs.2015.01.011.

V.S. R. (2005) ‘Working with Namespaces in C#’, C# Corner. Available at: https://www.c-

sharpcorner.com/article/working-with-namespaces-in-C-Sharp/ (Accessed: 14 July

2022).

Wang, J. and Shan, J. (2009) ‘Segmentation of LiDAR Point Clouds for Building Extraction’,

in American Society for Photogramm. Remote Sens. Annual Conference, Baltimore, pp.

9–13.

Wang, J., Yu, Z., Zhu, W. and Cao, J. (2013) ‘Feature-preserving Surface Reconstruction

from Unoriented, Noisy Point Data’, Computer Graphics Forum, 32(1), pp. 164–176.

doi: 10.1111/cgf.12006.

Wang, J., L., R. and Menenti, M. (2017) ‘SigVox – A 3D Feature Matching Algorithm for

Automatic Street Object Recognition in Mobile Laser Scanning Point Clouds’, ISPRS

Journal of Photogrammetry and Remote Sensing, 128, pp. 111–129. doi:

10.1016/j.isprsjprs.2017.03.012.

Wang, P., Gan, Y., Shui, P., Yu, F., Zhang, Y., Chen, S. and Sun, Z. (2018) ‘3D shape

Segmentation via Shape Fully Convolutional Networks’, Computers and Graphics

(Pergamon), 70, pp. 128–139. doi: 10.1016/j.cag.2017.07.030.

Wang, W., Zhang, Y., Ge, G., Jiang, Q., Wang, Y. and Hu, L. (2021) ‘A Hybrid Spatial

Indexing Structure of Massive Point Cloud Based on Octree and 3D R*-Tree’, Applied

Sciences (Switzerland), 11(20), pp. 9581. doi: 10.3390/app11209581.

https://www.c-sharpcorner.com/article/working-with-namespaces-in-C-Sharp/
https://www.c-sharpcorner.com/article/working-with-namespaces-in-C-Sharp/
https://doi.org/https:/doi.org/10.3390/app11209581

343 | P a g e

Wang, X., Zhou K., Yang J., and Lu Y. (2011) ‘MATLAB tools for lidar data conversion,

visualization, and processing’, in International Symposium on Lidar and Radar Mapping

2011: Technologies and Applications. SPIE, pp. 82860M. doi: 10.1117/12.912529.

Wang, X., He, J. and Ma, L. (2019) ‘Exploiting Local and Global Structure for Point Cloud

Semantic Segmentation with Contextual Point Representations’, in NeurIPS, pp. 1–11.

doi: 10.48550/arXiv.1911.05277.

Wang, Y. and Feng, H.Y. (2015) ‘Outlier Detection for Scanned Point Clouds using Majority

Voting’, CAD Computer Aided Design, 62, pp. 31–43. doi: 10.1016/j.cad.2014.11.004.

Wang, Y., Cheng, L., Chen, Y., Wu, Y. and Li, M. (2016) ‘Building Point Detection from

Vehicle-borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis’,

Remote Sensing, 8(5). doi: 10.3390/rs8050419.

Wang, Y. and Solomon, J. (2019) ‘Deep Closest Point: Learning Representations for Point

Cloud Registration’, in Proceedings of the IEEE International Conference on Computer

Vision. IEEE, pp. 3522–3531. doi: 10.1109/ICCV.2019.00362.

Weber, C., Hahmann, S. and Hagen, H. (2010a) ‘Methods for Feature Detection in Point

Clouds’, in Visualization of Large and Unstructured Data Sets - Applications in

Geospatial Planning, Modeling and Engineering (IRTG 1131 Workshop), VLUDS 2010,

pp. 90–99. doi: 10.4230/OASIcs.VLUDS.2010.90.

Weber, C., Hahmann, S. and Hagen, H. (2010b) ‘Sharp Feature Detection in Point Clouds’, in

SMI 2010 - International Conference on Shape Modeling and Applications, Proceedings.

IEEE Computer Society, pp. 175–186. doi: 10.1109/SMI.2010.32.

Weber, C., Hahmann, S., Hagen, H. and Bonneau, G.P. (2012) ‘Sharp Feature Preserving

MLS Surface Reconstruction Based on Local Feature Line Approximations’, Graphical

Models, 74(2). doi: 10.1016/j.gmod.2012.04.012ï.

Weinmann, M., Jutzi, B., Mallet, C. and Weinmann, M. (2017) ‘Geometric Features and

Their Relevance for 3D Point Cloud Classification’, in ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. Copernicus GmbH,

pp. 157–164. doi: 10.5194/isprs-annals-IV-1-W1-157-2017.

344 | P a g e

Wen, X., Han, Z., Liu, X. and Liu, Y.S. (2019) ‘Point2SpatialCapsule: Aggregating Features

and Spatial Relationships of Local Regions on Point Clouds using Spatial-aware

Capsules’, IEEE Transactions on Image Processing, 29, pp. 8855–8869. doi:

10.1109/TIP.2020.3019925.

Wengefeld, T., Lewandowski, B., Seichter, D., Pfennig, L. and Gross, H.-M. (2019) ‘Real-

time Person Orientation Estimation using Colored Pointclouds’, in 2019 European

Conference on Mobile Robots (ECMR), pp. 1–7. doi: 10.1109/ECMR.2019.8870914.

What are Point Clouds ? (2018) Tech 27 Stay connected with the latest in Industrial AI, Smart

Engineering & IoT. Available at: https://tech27.com/resources/point-clouds/ (Accessed:

11 June 2022).

What is a Point Cloud Survey? (2021) SkyKam. Available at: https://skykam.co.uk/what-is-a-

point-cloud/ (Accessed: 14 July 2022).

What Is Laser Scanning and How Can It Be Used? (2020) TopoDot blog. Available at:

https://blog.topodot.com/what-is-laser-scanning-and-how-can-it-be-used/ (Accessed: 29

May 2022).

What Is Point Cloud Processing and Why Is It Important? (2019) TopoDot Blog. Available

at: https://blog.topodot.com/what-is-point-cloud-processing-and-why-is-it-important/

(Accessed: 7 June 2022).

What is Rapid Application Development?, The Economic Times. Available at:

https://economictimes.indiatimes.com/definition/rapid-application-development

(Accessed: 19 June 2022).

Widyaningrum, E., Gorte, B. and Lindenbergh, R. (2019) ‘Automatic Building Outline

Extraction from ALS Point Clouds by Ordered Points Aided Hough Transform’, Remote

Sensing, 11(14), 1727. doi: 10.3390/rs11141727.

Wilhelms Jane and Gelder Allen (2000) ‘Octree for Faster Isosurface Generation’, IEEE

Transactions on Medical Imaging, 19, pp. 739–758. doi: 10.1145/130881.130882.

https://tech27.com/resources/point-clouds/
https://skykam.co.uk/what-is-a-point-cloud/
https://skykam.co.uk/what-is-a-point-cloud/
https://blog.topodot.com/what-is-laser-scanning-and-how-can-it-be-used/
https://blog.topodot.com/what-is-point-cloud-processing-and-why-is-it-important/
https://economictimes.indiatimes.com/definition/rapid-application-development

345 | P a g e

Williams, R.M. and Ilieş, H.T. (2018) ‘Practical Shape Analysis and Segmentation Methods

for Point Cloud Models’, Computer Aided Geometric Design, 67, pp. 97–120. doi:

10.1016/j.cagd.2018.10.003.

Wolff, K., Kim, C., Zimmer, H., Schroers, C., Botsch, M., Sorkine-Hornung, O. and Sorkine-

Hornung, A. (2016) ‘Point Cloud Noise and Outlier Removal for Image-Based 3D

Reconstruction’, in 2016 Fourth International Conference on 3D Vision (3DV). IEEE,

pp. 118–127. doi: 10.1109/3DV.2016.20.

Wood L. (2022a) European 3D Scanner Market - Forecasts from 2022 to 2027,

Researchandmarkets.com. Available at:

https://www.researchandmarkets.com/reports/5576399/european-3d-scanner-market-

forecasts-from-2022 (Accessed: 14 July 2022).

Wood L. (2022b) The Global 3D Scanning Market Will Grow to USD 16.66 Billion by 2030,

at a CAGR of 16.3%, BusinessWire. Available at:

https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-

Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---

ResearchAndMarkets.com (Accessed: 14 July 2022).

Woz U. (2020) What is Syntax in Computer Programming?, Woz U. Available at:

https://woz-u.com/blog/what-is-syntax-in-computer-programming/ (Accessed: 29 July

2022).

Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C. and Huang, Y., et al. (2013) ‘A Voxel-

based Method for Automated Identification and Morphological Parameters Estimation of

Individual Street Trees from Mobile Laser Scanning Data’, Remote Sensing, 5(2), pp.

584–611. doi: 10.3390/rs5020584.

Wu, F., Wen, C., Guo, Y., Wang, J., Yu, Y., Wang, C. and Li, J. (2017) ‘Rapid Localization

and Extraction of Street Light Poles in Mobile LiDAR Point Clouds: A Supervoxel-

based Approach’, IEEE Transactions on Intelligent Transportation Systems, 18(2), pp.

292–305. doi: 10.1109/TITS.2016.2565698.

Wu Rongren, Yiping Chen, Wang Cheng and Li Jonathan. (2018) ‘Estimation of Forest Trees

Diameter from Terrestrial Laser Scanning Point Clouds Based on a Circle Fitting

https://www.researchandmarkets.com/reports/5576399/european-3d-scanner-market-forecasts-from-2022
https://www.researchandmarkets.com/reports/5576399/european-3d-scanner-market-forecasts-from-2022
https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20220509005444/en/The-Global-3D-Scanning-Market-Will-Grow-to-USD-16.66-Billion-by-2030-at-a-CAGR-of-16.3---ResearchAndMarkets.com
https://woz-u.com/blog/what-is-syntax-in-computer-programming/

346 | P a g e

Method’, in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing

Symposium. IEEE, pp. 2813–2816. doi: 10.1109/IGARSS.2018.8517303.

Wu, W., Qi, Z. and Fuxin, L. (2019) ‘PointCONV: Deep Convolutional Networks on 3D

Point Clouds’, in Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. IEEE Computer Society, pp. 9613–9622. doi:

10.1109/CVPR.2019.00985.

Xiang, C., Qi, C.R. and Li, B. (2019) ‘Generating 3D Adversarial Point Clouds’, in

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. IEEE Computer Society, pp. 9128–9136. doi: 10.1109/CVPR.2019.00935.

Xiao, W., Vallet, B., Schindler, K. and Paparoditis, N. (2016) ‘Street-side Vehicle Detection,

Classification and Change Detection using Mobile Laser Scanning Data’, ISPRS Journal

of Photogrammetry and Remote Sensing, 114, pp. 166–178. doi:

10.1016/j.isprsjprs.2016.02.007.

Xie, Y., Tian, J. and Zhu, X.X. (2020) ‘Linking Points with Labels in 3D: A Review of Point

Cloud Semantic Segmentation’, IEEE Geoscience and Remote Sensing Magazine, 1

December, pp. 38–59. doi: 10.1109/MGRS.2019.2937630.

Xin, S., Nousias, S., Kutulakos, K.N., Sankaranarayanan, A.C., Narasimhan, S.G. and

Gkioulekas, I. (2019) ‘A Theory of Fermat Paths for Non-Line-of-Sight Shape

Reconstruction’, in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 6800–6809. doi: 10.1109/CVPR.2019.00696.

Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K. and Tomizuka, M. (2020)

‘SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud

Segmentation’, in European Conference on Computer Vision. Springer, Cham, pp. 1–19.

doi: 10.48550/arXiv.2004.01803.

Xu, J., Zhou, M., Wu, Z., Shui, W. and Ali, S. (2015) ‘Robust Surface Segmentation and

Edge Feature Lines Extraction from Fractured Fragments of Relics’, Journal of

Computational Design and Engineering, 2(2), pp. 79–87. doi:

10.1016/j.jcde.2014.12.002.

347 | P a g e

Xu, Y., Boerner, R., Yao, W., Hoegner, L. and Stilla, U. (2019) ‘Pairwise Coarse

Registration of Point Clouds in Urban Scenes using Voxel-based 4-Planes Congruent

Sets’, ISPRS Journal of Photogrammetry and Remote Sensing, 151, pp. 106–123. doi:

10.1016/j.isprsjprs.2019.02.015.

Xu, Y., Tuttas, S., Hoegner, L. and Stilla, U. (2021) ‘Voxel-based Segmentation of 3D Point

Clouds from Construction Sites using a Probabilistic Connectivity Model’, Pattern

Recognition Letters, 102, pp. 67–74. doi: 10.1016/j.patrec.2017.12.016.

Xu, Y., Tong, X. and Stilla, U. (2021) ‘Voxel-based Representation of 3D Point Clouds:

Methods, Applications, and its Potential use in the Construction Industry’, Automation in

Construction, 126. doi: 10.1016/j.autcon.2021.103675.

Yadav, M., Husain, A., Singh, A.K. and Lohani, B. (2015) ‘Pole-shaped Object Detection

using Mobile Lidar data in Rural Road Environments’, in ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. Copernicus GmbH,

pp. 11–16. doi: 10.5194/isprsannals-II-3-W5-11-2015.

Yan, L., Li, Z., Liu, H., Tan, J., Zhao, S. and Chen, C.(2017) ‘Detection and Classification of

Pole-like Road Objects from Mobile LiDAR Data in Motorway Environment’, Optics

and Laser Technology, 97, pp. 272–283. doi: 10.1016/j.optlastec.2017.06.015.

Yan, W.Y., Morsy, S., Shaker, A. and Tulloch, M. (2016) ‘Automatic Extraction of Highway

Light Poles and Towers from Mobile LiDAR Data’, Optics and Laser Technology, 77,

pp. 162–168. doi: 10.1016/j.optlastec.2015.09.017.

Yang, B. and Dong, Z. (2013) ‘A Shape-based Segmentation Method for Mobile Laser

Scanning Point Clouds’, ISPRS Journal of Photogrammetry and Remote Sensing, 81, pp.

19–30. doi: 10.1016/j.isprsjprs.2013.04.002.

Yang, B., Dong, Z., Zhao, G. and Dai, W. (2015) ‘Hierarchical Extraction of Urban Objects

from Mobile Laser Scanning Data’, ISPRS Journal of Photogrammetry and Remote

Sensing, 99, pp. 45–57. doi: 10.1016/j.isprsjprs.2014.10.005.

348 | P a g e

Yang, Z.X., Tang, L., Zhang, K. and Wong, P.K. (2018) ‘Multi-View CNN Feature

Aggregation with ELM Auto-Encoder for 3D Shape Recognition’, Cognitive

Computation, 10(6), pp. 908–921. doi: 10.1007/s12559-018-9598-1.

Yin, Y., Wan, W. and Liu, R. (2013) ‘Filtering Outliers using Statistical Analysis on

Neighbors Distances’, in IET International Conference on Smart and Sustainable City

2013 (ICSSC 2013). IEEE, pp. 149–152. doi: 10.1049/cp.2013.1993.

Yokoyama, H., Date, H., Kanai, S. and Takeda, H. (2011) ‘Pole-like Objects Recognition

from Mobile Laser Scanning Data using Smoothing and Principal Component Analysis’,

ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial

Information Sciences, 38(5), pp. 115–120. doi: 10.5194/isprsarchives-XXXVIII-5-W12-

115-2011.

Yokoyama, H., Date, H., Kanai, S. and Takeda, H. (2013) ‘Detection and Classification of

Pole-like Objects from Mobile Laser Scanning Data of Urban Environments’,

International Journal of CAD/CAM, 13(1), pp. 1–10. doi:

10.1016/j.optlastec.2017.06.015

You, H., Ji, R., Feng, Y. and Gao, Y. (2018) ‘PVNet: A Joint Convolutional Network of

Point Cloud and Multi-view for 3D Shape Recognition’, in MM 2018 - Proceedings of

the 2018 ACM Multimedia Conference. Association for Computing Machinery, Inc, pp.

1310–1318. doi: 10.1145/3240508.3240702.

Young, S.I., Lindell, D.B., Girod, B., Taubman, D. and Wetzstein, G. (2020) ‘Non-line-of-

sight Surface Reconstruction using the Directional Light-cone Transform’, in

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 1404–1413. doi: 10.1109/CVPR42600.2020.00148.

Zaganidis, A., Sun, L., Duckett, T. and Cielniak, G. (2018) ‘Integrating Deep Semantic

Segmentation into 3-D Point Cloud Registration’, IEEE Robotics and Automation

Letters, 3(4), pp. 2942–2949. doi: 10.1109/LRA.2018.2848308.

Zai, D., Li, J., Guo, Y., Cheng, M., Lin, Y., Luo, H. and Wang, C. (2018) ‘3-D Road

Boundary Extraction from Mobile Laser Scanning Data via Supervoxels and Graph

349 | P a g e

Cuts’, IEEE Transactions on Intelligent Transportation Systems, 19(3), pp. 802–813.

doi: 10.1109/TITS.2017.2701403.

Zegaoui Younes (2018) LIRMM-BL 3D Urban Object Scan Dataset, LIRMM.fr. Available at:

http://www.lirmm.fr/~zegaoui/#download (Accessed: 20 February 2022).

Zeybek, M. (2021a) ‘Extraction of Road Lane Markings from Mobile Lidar Data’, in

Transportation Research Record. SAGE Publications Ltd, pp. 30–47. doi:

10.1177/0361198120981948.

Zeybek, M. (2021b) ‘Inlier Point Preservation in Outlier Points Removed from the ALS Point

Cloud’, Journal of the Indian Society of Remote Sensing, 49(10), pp. 2347–2363. doi:

10.1007/s12524-021-01397-4.

Zeybek, M. and Şanlıoğlu, İ. (2019) ‘Point Cloud Filtering on UAV based Point Cloud’,

Measurement: Journal of the International Measurement Confederation, 133, pp. 99–

111. doi: 10.1016/j.measurement.2018.10.013

Zhang Bibo, Xiang Bin and Zhang Lin (2017) ‘Parameter-Free Outlier Removal of 3D Point

Clouds with Large-Scale Noises’, in 17th International Symposium on Communications

and Information Technologies (ISCIT), Cairns, QLD, Australia, 2017, pp. 1-6, doi:

10.1109/ISCIT.2017.8261207.

Zhang, Y. et al. (2019) ‘Data-driven point cloud objects completion’, Sensors (Switzerland),

19(7), 1514. doi: 10.3390/s19071514.

Zhang, Y., Liang, X. and Xu, G. (2013) ‘A Robust 2-Refinement Algorithm in Octree and

Rhombic Dodecahedral Tree Based All-Hexahedral Mesh Generation’, Computer

Methods in Applied Mechanics and Engineering, 256, pp. 88–100. doi:

10.1016/j.cma.2012.12.020

http://www.lirmm.fr/~zegaoui/#download

