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X-Ray Images 

ract:  Machine intelligence has the potential to play a significant role in diagnosing, managing

uiding the treatment of disease, which supports the rising demands on healthcare to provide rapid

accurate interpretation of clinical data. The global pandemic caused by the Severe Acute

iratory Syndrome Coronavirus (SARSCoV-2) exposed a need for rapid clinical data interpretation

ponse to an unprecedented burden on the healthcare system. A new healthcare challenge has arisen

t-COVID syndrome or ‘long COVID’. Symptoms of the post-COVID syndrome can persist fo

hs following infection with SARS-CoV-2, often characterised by fatigue, breathlessness

ness, and pain. Despite this additional healthcare burden, no tests can diagnose, monitor, o

mine the efficacy of treatments/interventions to support recovery. In this paper, an array of

ine-learning algorithms is trained to evaluate and detect COVID-19-associated changes to lung

 from X-ray images. X-ray images are classified from open sources into three categories: COVID

atients, patients with pneumonia, and unaffected otherwise healthy individuals using existing

ine Learning (ML) and pre-trained deep learning models. Prioritising models with the fewest false

ives and false negatives assessed the performance of different models in detecting COVID-19

iated lung tissue. In addition, image pre-processing, data augmentation, and hyperparamete

g are used to achieve the best accuracy in the models. Different ML models, including K Neares

hbour (KNN), and decision trees (DT), as well as transfer learning models such as Convolutiona

al Network (CNN), Visual Geometry Group (VGG-16, VGG-19), ResNet50, DenseNet201

tion, and InceptionV3, were tested to evaluate the performance of these models for X-ray images

ification. The comparative analysis indicates that VGG-19 with augmentation performed bes

g the ten algorithms with a training accuracy of 99%, testing accuracy of 98%, and precision of

for COVID-19, 90% for normal, and 100% for pneumonia. This higher accuracy for detecting

ID-19-associated lung changes on X-ray may be further developed to stratify patients suffering

 post-COVID syndrome. This may enable future intervention studies to determine the efficacy o

ents or better track patients’ prognoses to be optimised. 

ords: Machine Learning, Transfer Learning, Convolutional Neural Network, Visual Geometry

p, ResNet50, DenseNet201, Xception, InceptionV3, post-COVID syndrome, long COVID, Image

ification. 

troduction  

19, an outbreak of pneumonia initially spread in Wuhan city in China and the infectious agent was

named SARS-CoV-2 by the World Health Organization (WHO). SARS-CoV-2 is an enveloped

 with a positive sense, single-stranded ribonucleic acid (RNA) genome [1]. The virus

minantly affects the human respiratory system and is transferred readily from one person to

er through coughing, sneezing and physical contact [2]. It can spread through touching or exposure

ntaminated surfaces as the virus can survive for several days depending upon the surface and

onment [3]. Primary symptoms of this disease include fever, dry cough, loss of taste and smell

throat, and muscle pain [4]. Despite significant research efforts to identify, characterise and limi

ality associated with COVID-19 infections, a new challenge has arisen regarding the longer-term

ct of viral infections. Post-COVID syndrome (PCS) also known as ‘long-COVID’ has been

ated to affect 45% of COVID-19 infection survivors [5]. According to government statistics an

ated 2 million people self-reported experiencing ongoing symptoms of COVID or ‘long-COVID
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with 48% of these individuals reporting shortness of breath as a symptom [6]. In their meta-analysis, 

they identified fatigue, breathlessness, and myalgia as the most experienced symptoms by examining 
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d prevalence from 194 studies of patients with PCS. Furthermore, the authors identified that of al

al investigations undertaken within the studies included, abnormalities were most identified by X

nd Computerised Tomography (CT). The full potential of chest X-rays to identify and characterise

ges in PCS has yet to be fully explored. However, the ability to rapidly detect, identify and stratify

ID-19-associated lung changes in PCS has the potential to aid diagnosis and treatment monitoring

lays an essential role in the healthcare sector, especially in identifying diseases, and outbreaks and

nting diseases [7, 8]. It can support rapidly evolving information to assist public health experts in

ng complex decisions. ML has been used extensively in the health sector to identify diseases and

ose illnesses such as lung cancer, cervical cancer, breast cancer, and many more through medica

es [9, 10]. Chen et al. [11] consider ML a helpful tool, especially with the growing pressure on

ed time and health resources, by improving the efficiency and effectiveness of human efforts to

at this pandemic. Wootton et al. [12] consider X-ray images sensitive and essential tools fo

osing lung diseases. However, the underlying limitations such as difficulty in data collection, lack

lti-model assessment, delays in realising benefits, poor internal validations, and data privacy make

 images complex for diagnosis [13]. Also, in recent years, data science has been used to analyse

h-related data to identify diseases using various deep learning, data mining, and ML approaches

s considered one of the required fields in ML. It is the process of selecting the right algorithms tha

learn from previous datasets and help to predict unseen data is always challenging [14]

ermore, with the use of deep learning, ML enables computers to learn from experiences by

ing computational models consisting of multiple processing layers to comprehend a representation

ta with various abstraction layers such as facial recognition, drug discovery, and speech recognition

 In other words, deep learning models can classify abnormalities and have been reported to aid

rs or radiologists in achieving expert-level diagnostic expertise and predictive analytics [16, 17]

s context, chest X-rays have become one of the most accessible and cost-effective tools for triage

nts [18].  

rly detection of COVID-19 is vital during the pandemic, access to healthcare is very necessary

ever, the lack of test kits, hospital beds, and required resources in hospitals hinders healthcare

s [19]. Subsequently, it is difficult to track and test the infection in developing countries due to

ficient test kits, lack of skilled human resources, and other prejudices [20]. This raises the chances

nsmission leading to the volume of infected people spike. Thus, it is necessary to diagnose the

tion at an early stage to prevent further transmission. This paper aims to determine how effectively

ID-19-associated lung changes can be detected from chest X-ray images using ML algorithms as

as identifying the best algorithm for detecting these changes. Comparative analysis among 10

rent algorithms: Decision Tree, K-Nearest Neighbour (KNN), Support Vector Machine (SVM)

olutional Neural Network (CNN), Visual Geometry Group (VGG-16, VGG-19), DenseNet201

et50, InceptionV3 and Xception are applied to build to explore image classifier for X-ray image

higher accuracy. In the comparative analysis, 10 ML models classified the X-ray image into

ID-19 patients, patients with pneumonia and unaffected otherwise healthy individuals. In addition

augmentation is implemented to train these models. By doing so, the research aims to pinpoin

tive models that can alleviate the strain on healthcare systems and ultimately save lives, particularly

 context of diseases like COVID-19. As a result, there has been improved performance of certain

ithms that previously were suboptimal in other tests and hence the enhancement in model accuracy

comparative analysis will help enable future interventions to explore the effectiveness o
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treatments or better track the prognoses of the long COVID patients to be optimised. The comparative 

results have shown that VGG-19 with data augmentation achieved the best performance with a training 
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acy of 99% and testing accuracy of 98%. The model achieved a precision of 90 % for COVID-19

 for normal and 100% for pneumonia.  Importantly, establishing the most appropriate model fo

ting COVID-19-associated changes is a fundamental first step in establishing a decision aid to help

t and monitor the treatment of patients with PCS. Also, the development of an algorithm capable

curately distinguishing between healthy pneumonia or COVID-19-associated lung damage is o

ficant value in detecting or monitoring the prevalence or treatment. In addition, this comparative

sis also reveals some of the challenges such as data collection methods and quality along with the

stency challenges which can be part of consideration in similar directions. 

est of the paper is organised as follows. A thorough review of the use of different algorithms is

ssed in section 2. The computational model-building methodology is presented in section 3. The

ts of different ML algorithms are presented in section 4. Finally, the discussion and conclusions

resented in section 5. 

Detection of COVID-19 from X-ray images using different ML models 

section reviews different earlier approaches that have been applied for COVID-19 detection from

 images. These approaches are divided into three different categories: multi-model, CNN and

 Learning approaches. 

ulti-Model approaches. 

odels have been used extensively in the health sector for identifying diseases and diagnosis o

ses such as lung cancer, cervical cancer, breast cancer, and others using medical images [9]. Afte

OVID-19 pandemic, various machine learning, deep learning and hybrid learning models were

to help identify diseases. For example, Racic et al. [10] use a model to perceive whether chest X

hanges can be detected and classify images based on pneumonia. Similarly, Ahmed et al. [21] use

ML models such as decision tree, random forest, neural network (NN), naive Bayes, logistic

ssion, and k-nearest neighbour learning (KNN) where NN classifier yielding the most effective

ts when detecting COVID-19-associated pneumonia with a score of 97%. Similarly, Khan et al

use pre-processing, feature extraction and histogram of oriented gradients in their ML model to

t COVID-19-infected patients. In the study, out of five ML algorithms, SVM provides promising

ts with an accuracy of 96 %.  

onvolution Neural Network Approaches. 

 appears as an alternative approach to traditional ML algorithms for image-based classification

ems. Ahmed et al. [21], used CNN models with rich filter families and the weight-sharing feature

ctor SqueezeNet. This study indicated the utility of CNN features and NN classifiers that can obtain

ighest detection of COVID-19 cases from X-ray images. Furthermore, highly accurate models were

 to help interpret the screening and detection of COVID-19 quickly and accurately [23]. Similarly

sult of the study by Karar et al. [24] shows that CNN model accuracy was up to 90 % in identifying

ID-19 cases using deep learning for X-ray image detection. CNN has been used in various medica

oses with promising results [25]. For example, Mohammad-Rahimi et al. [26] identify CNN, long

-term memory (LSTM), generative adversarial networks (GAN), and residual neural network, ou

ich the CNN method achieved 99 % accuracy while classifying COVID-19 patients from othe

s of pneumonia used on chest X-ray images. Likewise, Hafeez et al. [27] work for detecting

ID-19-associated changes from X-ray images. The study proposes a CNN model for binary
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(Normal and COVID), and multiclass images (Normal, COVID, and Virus Bacteria), the model 

performed an accuracy of 97 % for detecting normal, 89% for COVID and 84% for pneumonia 
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ctively.  

entify an alternative approach for RT-PCR (Reverse Transcription Polymerase Chain Reaction

 Redie et al. [28] proposed a modified CNN, that can detect COVID-19 using over 10,000 X-ray

es, including both binary and multiclass X-ray images. With image pre-processing, the mode

rms at 99.53% accuracy for binary class and 94.18 % for multiclass. Furthermore, Chaddad et al

applied different CNN-based techniques with pre-trained models to identify COVID-19 in X-ray

es where the model stood out with an impressive accuracy of 99.09% in accurately classifying

ID-19. In a similar study conducted by Haritha et al. [30], a transfer learning from pre-trained

leNet, one of the CNN architectures and named InceptionV1. In the study, they used open sources

ray images and achieved a testing accuracy of 98.5%.  

eep Learning Approaches. 

cent years, Deep learning (DL) approaches have appeared as widely used approaches for image

 classification tasks.  Kumar et al. [31] classified COVID-19 using chest X-rays, VGG-16, VGG

esNet50, and InceptionV3 models with a modified deep-learning architecture. The accuracy

ved was 98.61% for modified-VGG-16, 97.22% for modified-VGG-19, 95.13% for modified

et50, and 99.31% for InceptionV3. These modifications involved incorporating a new-age

tecture by introducing features such as average pooling and dense layers, dropout, and activation

ions. Consequently, InceptionV3 demonstrated better image classification compared to any othe

l. Another study by Asif et al. [32] introduced a model based on Deep Convolutional Neura

ork (DCNN), specifically InceptionV3, using transfer learning to enhance the accuracy o

tion. The study involved analysing three types of images, including 864 COVID-19 cases, 1345

nces of viral pneumonia, and 1341 normal chest X-ray images. The DCNN-based InceptionV3

l demonstrated a classification accuracy exceeding 97%. Another study by Chen et al. [33] uses

sfer Learning and assessed various models, including VGG-16, VGG-19, Inception-V3, Inception

et, Xception, ResNet152-V2, and DenseNet201, using pre-processing and image segmentation

ng these models, VGG-16 stood out by achieving superior performance, with an accuracy of 98%

10 epochs. Similarly, Taresh et al. [34] introduced pre-trained CNN models, including

tionV3, Xception, InceptionResNetV2, MobileNet, VGG-16, DenseNet169, NasNetLarge, and

eNet121. These models had varying selections of frozen layers and a different number of trainable

olution blocks. VGG-16 outperformed all other models in achieving accuracy, F1 score, precision

ficity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. 

theless, with a similar approach to the imbalance dataset, a study by Elagili et al. [35] conducted

y utilising CNN-based transfer learning from chest X-rays with three classes: normal, pneumonia

OVID-19. They employed pre-trained VGG-16 and DenseNet121, and the latter demonstrated

r accuracy. The DenseNet121 pre-trained model achieved an accuracy of 94%, surpassing the 89%

ved by VGG-16. Performance metrics indicated that DenseNet121 achieved an overall accuracy

%, with precision, recall, and F-score values of 91%, 95%, and 93%, respectively. Another study

onga et al. [36] employed transfer learning with multiclass chest X-ray images to classify three

ories: COVID-19, pneumonia, and normal. They utilised deep learning classifiers including

eNet201, Xception, ResNet50V2, VGG-16, VGG-19, and InceptionResNetV2. Mode

arisons involved image pre-processing, including rescaling and normalisation. The evaluation
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based on accuracy, precision, and recall as performance parameters revealed that DenseNet201 emerged 

as the most effective deep learning model, achieving an accuracy of 82.2%. 
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mparative study by Alshehri et al. [37] which incorporated both X-ray and computed tomography

 scan images and various models such as CoreNet, InceptionV3, InceptionResNetV2

ileNetV2, NASNetMobile, VGG-16, VGG-19, and Xception. The CT scan images yielded superio

ts compared to X-ray images, and among the diverse models tested, Xception demonstrated

ior performance. Similarly, an experiment conducted by Mane et al. [38] aimed to classify CNN

ns from scratch using four transfer learning models (Inception, Xception, ResNet, and VGG-19)

he study found that the Xception model achieved a higher accuracy of 94.8% compared to the

s. Sakib et al. [39] proposed a deep transfer learning-based framework utilising a pre-trained

ork (ResNet-50). The model exhibited a performance of 96% accuracy, with precision, recall, F1

, and specificity all reaching 1.00. Another study by Sethy et al. [40] aimed to identify infected

iduals using X-ray images by employing ResNet50 along with the SVM model. This approach

ed outstanding performance, achieving an accuracy of 95.38%, outperforming other models such

lexNet, GoogleNet, ResNet18, VGG-16, VGG-19, InceptionV3, XceptionNet, and

tionResNetV2. 

tionally, Gouda et al. [41] proposed two distinct approaches. The first involves image pre

ssing, incorporating normalisation and resizing for chest X-ray images, while the second utilises

entation for constructing ML models. Their study revealed that the modified ResNet50 exhibited

ior performance, achieving an overall accuracy of 99.63%. Seeking more precise and reliable

mes. Alam et al. [42] advocated for VGG-19 with histogram-oriented gradient in comparison to

ional ML models such as ANN (Artificial Neural Network), KNN, and SVM. VGG-19

nstrated a high accuracy of 98.36% compared to other models. Awan et al. [43] utilised the Apache

 approach in a comprehensive data framework, applying it to deep learning models like

tionV3, ResNet50, and VGG-19. This method demonstrated notable performance, with the

et50 model achieving an accuracy of 98.55%, and the VGG-19 model also achieving a comparable

acy of 98.55%. 

verview of previous studies 

all, different study findings are summarised in Table 1 highlighting the prevalent use of deep

ing models, with only a few incorporating traditional ML models. The overarching goal across

 studies is the accurate and rapid detection of COVID-19 in an accessible manner. A common trend

ges, indicating a preference for DL models, which are widely acknowledged for their superio

rmance. Transfer learning models such as VGG-16, VGG-19, ResNet50, DenseNet, Inception

tion, Alex, and Google Net are frequently employed in X-ray image datasets, as indicated in the

. Many studies emphasise the reliability of using chest X-ray images as a tool for COVID-19

tion, underscoring its potential utility for doctors and radiographers. 

 1: Performance summary of different ML models for COVID-19 X-ray Classification 

thor Model 

Employed 

Train 

Dataset 

Test 

Dataset 

Accuracy Precision Recall F1-

Score 

AUC 

d et al. NN - - 97.24% 97% 98% 97% 100% 

 et al. SVM 1760 440 96% 95% 98% 96% - 
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Hemdan et 

al. [24] 

VGG-19  40 10 90% 83% 100% 91% 70% 

Hafeez et al. 

[27] 

CNN 149 37 89% 91% 97% 95% 55% 
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 et al. CNN 8000 2000 94.13% 82% 83% 89% - 

r et al. Modified 

VGG-16 

576 144 98.61% 97% 97% 97% - 

t al. InceptionV

3 

2840 710 97% - - - - 

et al. VGG-16   95% 95.48% 95.41% 95.41% - 

h et al. VGG-16 3575 311 98.28% 97.59% 98.78% 98.72% 98% 

i et al. DenseNet1

21 

1789 449 97% - - - - 

a et al. DenseNet2

01 

612 90 82.20% 81% 100% 90% - 

hri et 

] 

Xception 1278 320 84% - 91% - - 

 et al. Xception 13639 1514 94.80% - - - - 

 et al. ResNet50+

SVM 

- - 95.38% 93% 97% 95% - 

 et al. HOG and 

CNN 

1979 3111 98.36% - - - 100% 

 et al. Resnet50,

VGG-

19Inceptio

n  

856 207 98.50% 99% 99% 99% 99% 

Methodology: Machine Learning Algorithms  

aims to enable computers to learn without being programmed and is designed to understand

lex problems as ML can provide high performance in detecting COVID-19-associated changes

 In this study, at first, images related to COVID-19 and viral pneumonia and normal X-rays are

cted and hence different ML algorithms are applied to build classifiers to identify COVID-19

monia and normal X-ray images and compare with their performance.   

ata Collection and Description: 

ataset has been used from the following two open-source Kaggle chest X-ray images, including

 images of COVID-19 and viral pneumonia and normal X-rays. The dataset from the Kaggle

ID-19 radiography database (https://www.kaggle.com/datasets/tawsifurrahman/covid19

graphy-database) contains 3616 COVID-19 images, 10,192 normal and 6,012 lung opacity (non

ID) infected lungs, and 1345 viral pneumonia images. Similarly, Chest X-ray images

s://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia) contain 5,863 images

et with pneumonia, normal and bacterial pneumonia. Out of which, 2561 images depict bacteria

monia, 1345 images show viral pneumonia and 1341 are normal images.  

-Nearest Neighbour (KNN) 

 is used to train and classify the dataset based on similarity and distance measures. This classifie

onparametric learning algorithm that requires an integer k to determine the number of neighbours

n k is equal to 1, the nearest neighbours determine the sample class [44].  The main aim of KNN

calculate the distance and find the closest neighbour. Furthermore, each object votes for the class
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and the most voted for the class will be the outcome. As depicted in equation 1, KNN computes the 

distance between the target sample and the features of other samples. Eventually, the target samples are 
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ified based on the highest frequency within the KNN-derived neighbourhood. KNN increases

bourhood size selection via the introduction of the generalised mean distance-based k Neares

hbour [89].  

𝑑(𝑥, 𝑦 ) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1   ---------------------(1) 

upport Vector Machine (SVM) 

 is a supervised learning method that creates a hyperplane in a multidimensional space separated

fferent classes that minimise any error. The SVM finds the maximum marginal hyperplane which

es the datasets into categories of positive and negative [45, 46].  SVM shows proficiency in non

r classification through the deployment of kernel tricks. This involves implicitly changing inpu

into a higher-dimensional feature space, accomplished by presenting margins between the two

es. The advantages of using the SVM model come with speed, efficiency, and accuracy [47].  

ecision Tree (DT) 

cision Tree (DT) is a supervised machine-learning method to address classification problems. The

ture of a decision tree includes nodes, with each branch indicating the test outcome and each node

ining a class label. Nodes within the decision tree play a pivotal role in decision-making

mpassing root nodes, internal nodes, and child nodes. Branches emanate from nodes, representing

tial outcomes and involving the splitting of input variables linked to the target. Moreover, DT

le the prediction of an object by considering collective observations, including the potentia

quences of a series of decisions [48]. DT excel in discerning meaningful information from

sive raw text datasets and effectively handling unwanted noise.  

eep learning (DL) 

odels have been popular with excellent performance, especially in the medical image data field

as retina images, chest X-ray images or brain MRI images [49]. There are multiple benefits o

 deep learning models such as maximum unstructured data utilisation, elimination of the need fo

re engineering, high-quality results, cost-effectiveness, and the need for data labelling [50]

ever, it is important to note that applications in the medical sector are sensitive, so high accuracy

an efficient model is needed. Therefore, DL has a high potential to be used in X-ray image

cations as it can learn robust and accurate features. In the DL model, CNN is one popular approach

nalysing images among various deep learning methods. It has made remarkable achievements in

edical field because it automatically extracts translationally invariant features using the

olution of the input images and filter [51]. Different algorithms and architectures of DL are used

s study as follows. 

 Convolutional Neural Network (CNN) 

rding to Racic et al. [10], CNN helps learn essential features like recognizing the shape and edges

 Image, and pre-trained models benefit from the knowledge acquired in learning primary elements

e images from the database of the existing image. A detailed description of the architecture is

ded below. 

. Convolutional Layer: The layer is responsible for extracting features and patterns by

recognizing input images. Images are passed through a filter consisting of feature maps and

kernels, and the size of the kernel filter layers is either 3x3 or 5x5. 
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2. Pooling Layer: The layer extracts combinations of features from CNN which are invariant to 

translational shifts and minor distortions. It helps to reduce overfitting and regulate the 
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complexity of the model by feature map with uniform features. There are different dimensions

of pooling layers, such as 2X2 or global average pooling.  

. Fully connected layer: This is a crucial layer of CNN where the input features are extracted

from different stages of the network and are compared and analysed with the output of al

preceding layers. Fully connected layers are used to connect the rectified linear unit (ReLU

with the SoftMax activation function to predict the output images in the last layer of CNN.  

. Activation function: The activation function transforms the weighted sum to one node for a

layer and uses it for the activation node for the input. The primary purpose of this function is

to help in learning the feature patterns. There are various activation functions such as sigmoid

SoftMax, max out, SWISH, and ReLU.  

. Batch normalisation: This helps every layer of the network to learn independently and is used

to normalise the output of previous layers, which helps in the internal covariance shift in feature

maps. It helps prevent overfitting in the model and makes the model more efficient.  

. Dropout: It is used to regularise the CNN network by skipping some connection with a

particular random probability that generates several thinned network architectures. These thin

layers are taken as an approximation of all proposed networks.  

atten Layers: It converts the pooled feature map to a one-dimensional array as an input to the nex

yer in the form of a single-long feature vector. Then it relates to a deep neural network to create

lly connected layers. The architecture of the CNN is presented below in Figure 4. 

 

 

Figure 4. The basic architecture for CNN [52]  

 Visual Geometry Group (VGG) 

 explores the effect of increasing the depth of the convolutional network on its accuracy [53].  Due

ir small convolution filters of size 3X3 show significant improvement. However, due to their vas

ork, they consume more time. 

GG-16  
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VGG-16 is deep with 16 weight layers, including 13 convolutional layers with a filter size of 3x3 and 

fully connected layers. The configurations of fully connected layers in VGG-16 are equivalent to stride, 
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he padding of all CNN layers is fixed to 1 pixel [30]. The architecture of VGG-16 is shown in

e 5. The main advantage of using VGG-16 architecture is that it generalises well to other datasets

ever, it is slow in training and needs more space for running the models, which makes this mode

ective [54]. 

Figure 5. The basic architecture of VGG-16 [53] 

GG-19  

-19 has filters of 3×3 and a stride of 1 designed to achieve high accuracy in large-scale image

nition applications [55]. VGG-19 has a depth of convolution/max-pooling and fully connected

s with 19 layers in the base model using the SoftMax activation function. The architecture of VGG

 shown in Figure 6. VGG-19 is a viral method for image classification due to the use of multiple

 filters in each convolutional layer [56]. 

 

Figure 6. The basic architecture of VGG19 [56] 

 Resnet 50  

well-known model that performs better in medical image detection is ResNet [57]. ResNe

ifies shortcut connections and skips one or more layers in the network, which helps the network

de a direct path to the early layers and make gradient updates for those layers much easier, as

n in Figure 7. The architecture of the ResNet50 model consists of 50 layers and uses ImageNet

h consists of more than 20 thousand categories created for image recognition competitions [58

he benefit of this model is that it adds more layers that solve the problem of vanishing or exploding

ent degradation problem by skipping the connections that act as gradients allowing the gradient to

undisturbed [60]. 
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Figure 7. Residual learning: a building block [61] 

 DenseNet201 

e Convolutional Network (DenseNet) architecture offers 201-layer densely connected

olutional concrete of all feature maps from previous layers, as shown in Figure 8. All the feature

 propagate to the last layers and are connected to the newly generated feature maps [62]. So, the

eNet inputs the feature and helps to reuse the feature and prevent exploding or gradient vanishing

certain extent [63]. However, the limitation of using this model is that excessive connections

ase the networks' computation and parameter efficiency and make them vulnerable to overfitting

 

 
Figure 8. Structure diagram of the DenseNet201 model [64] 

 InceptionV3  

nceptionV3 model is an improved version of inception such as label smoothing [60]. As shown in

e 9, InceptionV3 7x7 convolution and propagating label information on the network allows fo

gating label information lower down the network. The main benefit of using InceptionV3 is its 24

on parameters, which give better accuracy to the ImageNet dataset [65]

 

Figure 9. Structure diagram of the InceptionV3 model [66] 
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3.5.6 Xception  

The Xception network is the modified version of the inception with 22.9 million parameters [67]. With 
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 parameters and deep architecture, Xception models help to solve many image classification and

t detection problems [24]. The layout of the Xception architecture used in this study is shown in

e 10. There are three blocks in the model, the first block is the entry flow where the data goes

the data is passed to the middle and is repeated eight times, and lastly, the last is the exit flow. As

odel is lighter and has a smaller number of connections, it is robust and more vital compared to

ception model [54]. 

 
Figure 10. Structure diagram of the InceptionV3 model [68]  

ransfer Learning with convolutional neural network 

rding to Lytras et al. [69], Transfer Learning (TL) refers to a process where a model trained on

roblem is used in some way related to a second problem. TL is mainly used for image recognition

elps build a new model with fewer image datasets [43, 57]. One of the significant drawbacks o

ng the medical images is the lack of sufficient data, so using transfer learning allows for processing

ata [34, 59]. This study uses TL, comparative testing of several models namely, CNN, VGG

GG-19, Resnet 50, DensNet201, InceptionV3 and Xception with and without augmentation. The

 aim of this comparison is to identify whether each model tested can detect COVID-19 from the

class comprising of COVID-19, pneumonia, and normal image datasets. 

ata augmentation  

 learning models have deep network structures with many parameters, which requires a datase

a large sample. However, the number of images in this study has been limited. To overcome this

ation, data augmentation has been applied which is a technique that eliminates the limited datase

ficiency by increasing image data with the use of existing images [70]. Data Augmentation gives

ata size enlightenment in training data making the dataset compatible for better prediction of the

 learning model [71,72]. Besides, data augmentation can also reduce the overfitting of the mode
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by increasing its accuracy [73,74]. Furthermore, it helps to manage the data by enhancing the 

augmentation quality and producing an updated version of images [75]. In this study,  data augmentation 
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een applied using an image data generator including rotation, cropping, zooming, and flipping

Image was rotated with a range of 10, with a width shift range of 0.1, height shift range of 0.1

 range of 0.1, horizontal flip True, and fill mode as nearest during the augmentation of the data.  

dditional model considerations: Overfitting and Hyperparameter tuning. 

fitting in ML is a situation when ML models memorise the training dataset without learning

rtant features, trends, or boundaries [70].  Overfitting can be seen when the error in the validation

et is higher than in the training dataset, and as a result, the performance is poor for unseen data

xample, it is difficult to acquire medical image data due to concerns about patient confidentiality

he cost of getting high-quality images. Another problem in deep learning is that its architecture

res a large amount of training data. Due to data shortages, lack of quality images and uneven

ets, especially in the medical sector, cause either low-performing models or overfitting [76]. In

tudy, for the experiment's multi-classification of COVID-19, pneumonia, normal X-ray images

batch sizes from 10 and 32 were used. Using Adam optimizer with weight as ImageNet, cross

py learning rates=0.0001 with epochs 10 up to 100 epochs were used to identify the best

rming models. Data augmentation is also with rotation range =10, width shift range=0.1, heigh

range=0.1, zoom range=0.1, horizontal flip=True and fill mode=nearest. A total of 6000 training

es were generated using augmentation. 

erformance measures for the classification of the models, the model accuracy curve, model loss

 and confusion matrix are also used. A confusion matrix has been used in this study to visualise

rediction. The confusion matrix consists of four terms: True Positive (TP) when the mode

ifies the diseased person as a disease; True Negative (TN), when a model classifies a non-diseased

n as non-diseased; False Positive (FP) as positive even if the person does not have any disease

known as type 1 error; False-negative (FN) person does not have the disease but is predicted as a

n having a disease, also known as Type II error. The confusion matrix helps visualise the models

 predicted [77]. Besides that, statistical measure precision, recall, F1 score, and area under the

 (AUC) accuracy are also used. This study will identify the most widely used metrics fo

ation for multi-classification in each class COVID-19, normal and viral pneumonia. This study

to assess performance using four metrics used here to evaluate the model’s accuracy, precision

l, and F1-score. as explained in the paragraph below.  

eceiver operating characteristics (ROC) and Area under the curve (AUC) 

OC and AUC curves plot the true positive rate with the false-positive rate. The Area's high value

r the curve demonstrates that the model performs well in the test data set. ROC is a probability

 and AUC represents the degree or measure of separability and helps identify how much the mode

istinguish between classes. The higher the AUC, the better the model predicts [78]. 

sults Analysis:  

ata Pre-processing:  

is study, datasets consisted of COVID-19 (3016), pneumonia (3016) and normal (3016), with a

of 9048 X-ray images have been used. All three datasets were combined and created in a CSV

wed by random shuffling to ensure equal and random representation. As the data were added from

ple sources, the quality of images was widely varied, blurred, low intensity and less clear in the

r and edges. As a result, this could lead to inaccurate diagnosis of the disease [79]. Therefore, pre
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processing helps reduce and remove the effects on the performance of the models caused by data 

inconsistency by increasing the model’s accuracy [80]. Also, resizing and enhancement are used to 
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ify the disease in X-rays, and CT scans in COVID-19 diagnosis to enhance the image quality. The

nal shape of the image is in the shape 299,299,3. However different models’ architecture needs

rent shapes such as Xception and InceptionV3 architecture expects an image size of 299 × 299 × 3

eas DenseNet201 architecture expects an input size of 224 × 224 × 3 (Asif et al., 2022). So, to

ss the architecture used in this model, the image data shape has been converted to a 224 × 224 × 3

. Histogram equalisation (HE) provides contrast enhancement in consumer electronics, medica

e processing, image matching and searching, speech recognition, and texture synthesis. This

ach is popular and widely used due to its simplicity and effectiveness [81], In this study, the set

rameters of the filter were used for pre-processing. The Image was normalised by a factor of 1/255

onverted into pre-processed images. After that, the dataset was divided into training, validation

est datasets to train the models, check model performance and overfitting and test to determine

the dataset classifies the images from trained models. Finally, unseen data has been used to tes

er to identify whether models predict accurately or not. Data augmentation has been used to

ate the image insufficiency problem and to prevent the overfitting of the model. In addition, a tota

00 images have been augmented through rotating, cropping, zooming, and flipping.  

odel Building: X-ray Image Classifier 

study used transfer learning models such as CNN VGG-16, VGG-19, Resnet50, DenseNet201

tionV3, and Xception. In addition, traditional ML models such as KNN, SVM and DT were used

 implementation of these models, feature extraction of the image was performed in terms of pixe

s in the image matrix, which has been set as 224 x 224, and flattens the RGB (Red, Green and

) pixel intensities into a single list of numbers.  All the experiments were conducted with and

ut augmentation. Among the KNN, SVM and DT, KNN has shown the highest accuracy for both

ut augmentation and with augmentation with accuracy of 88% and 89% respectively. Whereas the

 and DT have accuracies of 81% and 76% without data augmentation and 80% and 78% with

entation respectively. Among these three models, data augmentation increased the accuracy leve

e KNN and SVN models but decreased for the DT model. For each of the transfer learning models

model has been trained from 10 to 100 epochs using a categorical cross-entropy loss function

eNet with Adam optimizer with learning rates 0.0001, batch size 10 to 32 and SoftMax as an

ation function were used. The image generator from Keres was used for data augmentation

out 0.5 was applied in the fully connected layers to avoid overfitting in the model. Among the

ets, 70% of images were used as the training data, 15% of images were used as the validation data

he rest 15% of the images were used as test datasets to train all models, comprising KNN, SVM

NN, VGG-16, VGG-19, DenseNet201, InceptionV3, Xception and Resnet50. In addition, images

 resized to 224 x 224. The performance measures after the experiment results from all these models

mmarised in Table 2 with the corresponding scores.  

Table 2. Classification of Accuracy for Training, Testing and Validation 

 

Without Augmentation With Augmentation 

Training Validation Test Training Validation Test 

Loss  Accuracy Loss  Accuracy Accuracy Loss  Accuracy  Loss  Accuracy Accuracy 

 0.11 96% 0.18 93% 92% 0.34 0.90 0.53 90 90% 

16 4.91 99% 0.06 98% 98% 1.98 99% 0.12 97% 97% 

19 1.54 99% 0.19 97% 97% 4.63 99% 0.11 98% 98% 

t201, 5.4 98% 0.32 96% 95% 0.005 96% 0.3 95% 94% 

50, 0.28 90% 0.32 86% 86% 0.36 91% 0.29 90% 90% 

nV3 0.13 91% 4.00 93% 90% 0.07 99% 0.48 93% 92% 
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on 2.08 92% 0.54 93% 91% 0.41 98% 4.8 93% 92% 

 the Table 2 data, it can be observed that the VGG-16 appeared as the highly accurate model with

ng 99 % accuracy with 4.91 loss in the training dataset, 98 % validation accuracy with 0.06 loss

8 % test accuracy when the models were trained, validated, and tested without augmentation.

her model that performed better without an augmented dataset is VGG-19 with 99% training

acy, 97% validation accuracy and 97% test accuracy. The DT algorithm appeared as the model

the lowest training accuracy of 76%. When the dataset is enriched with augmented data, the VGG-

odel has the best model with 99 % accuracy with a 4.63 loss in the training dataset and 98 %

ation accuracy with a 0.11 loss and 98% test accuracy. On the other hand, the training accuracy of

-16 remains 99% but validation accuracy and test accuracies dropped to 97%. With augmented

 the performance of DenseNet201 decreases by 2 % in training, and by 1 % in validation and test

acy. The performance of Resnet50 is less than other deep learning models, but with the augmented

the accuracy has increased by 1 % in training accuracy and by 4% in validation and test accuracy.

n comparing traditional ML with deep learning, the deep learning models performed better than

entional ML models. However, among the traditional machine learning algorithms, KNN

rmed better compared to the other two models. With the augmentation of ML models, only the

 models’ accuracy increased by 1 %, whereas the DT’s accuracy increased by 2 %, and the SVM

ls’ accuracy decreased by 1 %.  

a) VGG-16 Model Accuracy and loss            b) VGG-16 with augmentation Model Accuracy and loss. 

 
c)VGG-19 Model Accuracy and loss                        d) VGG-19 with augmentation Model Accuracy and loss. 

 

Figure 11. Visualising loss and accuracy best-performed model 

-16 without augmentation and VGG-19 with augmentation are visualised in Figure 8. VGG-16

sses a loss of 4.91 for 100 epochs with 98% accuracy. In the case of VGG-19, the model performs

99 % accuracy and a loss of 4.63 for 100 epochs. Accuracy for non-augmented data does not

ate and remains as it is after 20 epochs, and loss decreases from 10 epochs and remains stable.
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However, the validation loss starts increasing slightly after 40 epochs. There is a high fluctuation in 

accuracy and loss function for augmented data. Overall, while comparing the loss function between 

two h  
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ighly performed models, it seems VGG-19 with augmentation has a slightly lower loss compared

G-16.  

urther comparative analysis, confusion matrices were drawn to measure the model's performance

 test data as shown in Figure 9. The confusion matrix from CNN, VGG-16, VGG-19,

eNet201, InceptionV3, Xception and Resnet50 with and without augmentation is presented. Out

otal of 1357 test images, 452 included COVID-19, 452 were normal, and 453 were pneumonia.  
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Figure 12 (a-m). Visualising Confusion Matrix for predicting each class. 

-19 with the augmentation model classifies 442 COVID-19 cases correctly and misclassifies 10

 as normal whereas this model classifies has the highest accuracy for pneumonia cases with only

ong classification. However, in the case of VGG-16, out of 452 COVID-19 images, it only

ified 439 as COVID-19 and misclassified 9 as normal and 4 as pneumonia. While classifying

monia X-ray images, DenseNet201, without an augmentation model, classified 452 images

ctly and misclassified 1 image as COVID-19. Similarly, VGG-16 without augmentation performed

r in predicting normal images. Out of 452 X-ray images, it predicted 445 with the correct class and

lassified 7 as normal. From the above confusion matrix, it can also be observed that VGG-19 with

entation performs better for COVID-19, DenseNet201 without augmentation classified

monia better and VGG-16 with augmentation classified as normal without misclassifying any

es. Overall, VGG-19 performs better in classifying the images with inaccuracies compared to

s.  

rther comparative analysis was conducted to identify how the models would classify three

ories of X-ray images using sensitivity, F1 score and accuracy value. The corresponding results

ch model are shown in Table 3. In Table 3, C states COVID-19, N normal and P pneumonia. It

s that VGG-19 with augmentation performed better with a 98 % AUC score, with the precision

OVID-19 being 97 %, normal being 97 % and pneumonia at 99 %. Recall for COVID-19 is 98%,

al with 97 % and 99% for pneumonia and the F1 score for COVID-19 images is 98%, normal

e with 97 % and 100% for pneumonia images. Similarly, VGG-16 without augmentation had 97%

acy, the precision for COVID-19 97%, normal with 97 % and 99% for pneumonia. Recall for
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COVID-19 achieved 98 %, normal 97 % and 99 % for pneumonia. Likewise, the F1 score for COVID-

19 is 97 %, normal 97 %, and for pneumonia, 99 %. Also, with a 96 % AUC score, DenseNet201 

perfo  

96 %  

pneu  

high  

of 98
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P (%) 

CN 94 90 

VGG 98 97 

VGG 99 98 

Dense 99 96 

Resn 97 91 

Incepti 96 93 

Xcep 96 93 
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rms better than all CNN, InceptionV3, Resnet50 and Xception. The precision for COVID-19 is

, for normal, 94 % and 99 % for pneumonia. Recall for COVID-19 is 95 %, normal 95 %, and for

monia, 99 %. F1 score for COVID-19 is 95 %, normal 94 % and pneumonia 99 %. Overall, with

recall from VGG-16 and VGG-19 without augmentation performs better with a higher accuracy

 %.  

Table 3. Performance metrics for test data  

ifier 

Without Augmentation 

 

With Augmentation 

Precision (%) Recall (%) F1-score (%) AUC Precision (%) Recall (%) F1-scor

C N P C N P C N P (%) C N P C N P C N 

N 93 86 98 89 92 95 91 89 97 92 91 93 90 90 91 99 87 91 

-16 97 97 99 98 97 99 97 97 100 98 97 96 98 98 96 98 97 96 

-19 96 97 99 98 95 98 97 96 99 97 97 97 99 98 97 99 98 97 

t201 96 94 99 95 95 99 95 94 99 96 92 96 99 97 92 98 95 94 

et50 77 93 94 95 88 97 85 90 96 92 90 90 97 89 91 97 91 91 

onV3 96 88 96 89 93 97 92 90 97 93 95 92 94 90 91 99 93 91 

tion 91 92 97 93 89 98 92 90 97 93 93 90 96 91 90 97 92 90 

                               

                
Figure 13. ROC and AUC curve performance without augmentation (%) 
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Figure 14. ROC and AUC curve performance with augmentation (%) 

dition, the Receiver Operating Characteristics Curve (ROC) and AUC) for all the models used in

study were analysed as shown in Figures 13 and 14. Figure 13 shows ROC and AUC curve

rmance without augmentation, and Figure 14 illustrates the graph of the augmented images dataset

-16 performs better in non-augmented images with an accuracy of 98 %, and VGG-19 performs

r in an augmented dataset with an accuracy of 98 %. Further to test the model, using CNN, VGG

GG-19, DenseNet201, Resnet50, InceptionV3 and Xception, 30 new unseen image datasets

ut pre-processing were tested to identify how the models perform with unseen data. Both

ented and non-augmented models were used. After the training to visualise how the mode

rmed, a confusion matrix was created as shown in Figure 15. 
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Figure 15 (a-m). Visualising Confusion Matrix for predicting each class. 
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Analysing the confusion matrix from, Figure 15, shows that VGG-19 with augmentation predicted most 
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e classes correctly. Out of 10 COVID-19 images, the model predicts 9 X-ray images to its correc

 and 1 misclassified as unaffected or otherwise healthy. However, in the case of pneumonia, all the

 images are predicted accurately. Out of all models, VGG-19 with augmentation was able to

ct COVID-19 along with other classes with the least false positives and false negatives. 

Table 4. Performance Metrics for Unseen Data 

Without Augmentation 

 

With Augmentation 

ision (%) Recall (%) F1-score (%) AUC Precision (%) Recall (%) F1-score (%

N P C N P C N P (%) C N P C N P C N 

 85 90 75 85 90 90 60 100 83 100 80 60 60 70 100 75 77 

 90 94 83 100 90 100 90 94 93 75 85 90 90 60 100 81 70 

 90 85 88 80 84 100 10

0 

100 93 90 90 100 90 90 100 90 90 

 77 63 70 77 63 70 70 70 70 80 80 100 80 80 100 80 80 

 80 10

0 

90 40 10

0 

72 50 70 76 100 87 62 60 70 100 70 70 

 10

0 

76 80 70 10

0 

80 80 80 83 80 77 90 80 70 100 80 70 

 50 62 56 90 69 100 80 88 73 80 60 100 50 90 90 60 70 

 Table 4, result analyses show that VGG-19 with data augmentation achieved the best performance

a 96 % AUC score. The model achieved a precision of 90 % for COVID-19, 90 % for normal and

 for pneumonia. Recall for COVID-19 and unaffected individuals is 90 % and 100 % for

monia. Similarly, the F1 score for COVID-19 and unaffected individuals is 90 %, and 100 % for

monia. The second-highest performing models are VGG-16 and VGG-19, with 93 %.  

scussion and Conclusion  

paper evaluated a range of ML models to determine whether COVID-19-associated lung changes

 be classified from X-ray images and a distinction made between COVID-19, Pneumonia, and

ected otherwise healthy individuals. The experimental results identified VGG-19 with data

entation as the best-performing algorithm among ten tested ML models. The precision achieved

 for COVID-19 and unaffected otherwise healthy individuals and 100% for pneumonia. Similarly

call (sensitivity) for COVID-19 is 98%, unaffected 97% and 99% for pneumonia. Lastly, the F1

 is 98% for COVID-19 unaffected 97% and 99% for pneumonia. The overall AUC score of the

l was 96%. Hence using VGG-19, presented in this paper with image pre-processing, tuning and

entation performs the best model when compared to any deep learning models. In the performance

ation metric, recall identifies the actual positive cases of whether the person has COVID-19 o

nd high precision indicates a low false-positive rate and high recall indicates a low false negative

, VGG-19 with augmentation exhibits the best precision, F1 score and accuracy. When compared

other similar studies such as Makris et al.’s [82] deep learning models, VGG-16 and VGG-19

e they have the highest accuracy of 95%, the presented model in this study appeared as a highly

ate model with a test accuracy of 98%. This comparative study also reveals that deep learning

ls have a powerful learning ability with feature extraction, which can improve image

ification. Although deep learning theory has achieved higher accuracy for detecting image
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classification, it has problems such as excessive gradient propagation path and overfitting. These 

limitations had been overcome using data augmentation through rotating, flipping or injecting noise 

into i  

data 
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mage data or by improving the architecture in the deep network. Similarly, using various image

pre-processing techniques has improved the quality of the image and prevented bias in the data.  

imitations, assumptions and future directions 

ite promising results, the proposed methods need to be tested clinically to identify the robustness

 model. However, more importantly, the presented work helps in establishing the most appropriate

l for detecting COVID-19-associated changes and is a fundamental first step in establishing a

ion aid to help detect and monitor the treatment of patients with PCS.  Besides, this study also

ls some of the challenges and strategies with data collection methods, quality and consistency

h need to be considered in similar research works. As future work, to refine the model and improve

rmance, multiple feature extraction, segmentation, and cross-validation can be utilised. Besides

this study is solely based on publicly available data, which has a direct impact on the quality o

stency as imaging techniques between hospitals/counties/countries vary and can influence the

rmance of the algorithm. Finally, to check the reliability of the model, it needs to be tested with a

 dataset with a diverse group and on a larger scale. In addition, in the future, a clinical decision aid

ned to classify COVID-19-associated lung changes on X-rays for patients with PCS could be

loped. It may be appropriate to adopt or adapt scoring systems used for other medical conditions

ting lung tissues with changes visible by X-ray to provide an indicator of the extent of lung damage

xample, the Northern Score or the Chrispin-Norman score to quantitatively assess the radiologica

res of lung changes in Cystic Fibrosis patients – a genetic condition for which routine chest X-ray

ing is undertaken to monitor the disease [83]. Importantly, the ability to score the extent of lung

 changes in PCS would permit better stratification of patient groups and allow more accurate

toring of response to treatments. Moreover, this would prompt a switch from a classification

em to one requiring regression to calculate scores reflecting the extent of lung tissue change

ficant challenges remain with this approach as it would require either expert annotation of the

ing dataset with the scoring system or collection and collation of a new dataset with assigned

s. One key advantage of the latter is that the time post-infection could also be captured with

ted measures (X-ray images) being taken of patients through the course of PCS. Ultimately, we

ve that ML will streamline medical care and aid the development of future treatments for patients

ring from long-term chronic conditions.  Besides, in future, it could also explore to classify the

t of damage and changes over time of the long COVID. Exploration of these challenges will be

ul in future research directions to the long COVID-19 diagnosis system. 
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following are the major highlights of the paper. 

Use machine learning algorithms to detect COVID-19-associated lung changes from 

chest X-ray images. 

Compare ten different machine learning algorithms for performance. 

Use machine learning to classify the X-ray image into COVID-19 patients, patients 

with pneumonia, and healthy individuals. 

Enhance model accuracy and improve its accuracy with data augmentation. 

Discuss future interventions for the effectiveness of machine learning in diagnosing 

and treating long COVID-19 patients. 
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