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Abstract—A stably fast mobile broadband connectivity is key to customer retention. Mobile networks, however, suffer unpredictability
in performance. Analyzing variability in network speed is, therefore, challenging since it tends to exhibit patterns at several time scales.
Additionally, frequently monitoring it over time, is costly. In this paper, we analyze speed measurements from 78 stationary probes,
spread across Norway. Monitoring was performed thrice per day across the year, to assess performance of the two largest network
operators. Despite being unique, the dataset involves a non-trivial extent of missing data. This study investigates the effect of missing
data on the extracted performance patterns. We capture patterns with tensor factorizations, that show that missing data at random has
a minimal effect on the identified patterns, and that depending upon the determinism of an operator’s performance, the acceptable size
and structure of missing data varies. Our analysis shows that, for a probe, the difference in speed variation between real and imputed
speed values can be around 7% for up to 40% missing data. We also identify that congestion, routine maintenance and sub-optimal
network configuration cause high speed variability. These findings can help operators improving their offerings and deciding on optimal
performance monitoring frequency.

Index Terms—Download speed, speed variation, tensor factorizations, imputation, missing data.

✦

1 INTRODUCTION

Every new generation of mobile cellular technology has
chiefly focused on enhancing the data transfer speed [1]. So
far, speed and coverage have been the most important fac-
tors that both consumers and policy makers consider when
deciding between service providers and when assessing the
state of the service in general. Consumers are not only
interested in the achievable maximum speed but also in how
stable the speed is. Networks with fluctuating performance
can quickly lose customers. Unfortunately, the broadband
speed of a mobile network is influenced by a multitude
of factors which makes ensuring speed stability an uneasy
endeavour. These include coverage, number of users, and
network configuration, among others [10], [36], [39], [43],
[48]. Hence, understanding and characterizing variability
in mobile broadband speed is paramount for customers,
network operators and regulators [25], [42]. In fact, this
has recently become highly relevant as mobile operators
in different countries have started offering fixed wireless
access as a key technology to bridge the broadband gap [3].
In this paper, we analyze a year-long download speed time
series collected by 78 stationary probe nodes. These probe
nodes are spread in urban settings across Norway and
use commercial subscriptions to connect to the two biggest
mobile operators in the country. To capture variation in
network download speed, we conducted frequent speed
tests from each probe node at both off-peak (i.e., early
morning) and peak hours (i.e., noon and evening). This
should constitute three measurement samples per day per
probe node, but our data set suffered from missing samples
due to either measurement artefacts or network problems.

The goal of the paper is, therefore, two-fold: (i) to retrieve
patterns of variability in download speed across probes at
the representative off-peak and peak day hours, weekly and
monthly time scales, and (ii) to investigate how much data
can be missing and how the missing data can be structured
without the extracted patterns being distorted. This latter
assessment can guide future monitoring strategies as high
measurement frequency is costly for data caps, storage and
processing resources.

Figure 1: Two sets of patterns extracted from a 3-way tensor
using a tensor factorization method.

To extract patterns from a multiway data set, we leverage
tensor factorizations [8], [33], [41], as is depicted in the Fig-
ure 1 example. Over the past years, tensor factorizations
have been successfully used to reveal patterns in various
application domains (e.g., data mining [6], [13], [52], neuro-
science [5], [50], and chemometrics [21]). In terms of network
performance analysis, unlike previous work which mainly
focused on either measuring network availability, reliability,
speed or interactions between transport protocols and the
mobile network [12], [16]–[18], [20], [45], we conduct a lon-
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gitudinal study of speed variations and assess the accuracy
of the derived tensor factorization models in presence of
missing data. The models generated by tensor factorizations
are easily explainable and offer important insights into
speed variations, like the role of maintenance activity and
differences between operators in terms of infrastructure and
network management routines. We have already commu-
nicated these findings to one of the operators, which is
factoring them into its network management plans.

The size and structure of missing samples in our datasets
varies across probe nodes and operators. For example, 14%
of the nodes in the first operator and 21.7% of the nodes in
the second operator have 50% or more missing data sam-
ples. To impute missing data, we use a traditional method,
namely, Kalman smoothing [26] with structural time series
and with a level model [30]. We observe that our tensor
model is robust to random missing data, and, in general,
to all types of missing data if the probe node in question has
a stable coverage profile.

Our analysis on the impact of missing data quantifies
measurement sampling frequencies that are needed for de-
scribing mobile broadband speed at a given location. We
find that low frequency measurements such as every second
day are sufficient. This is excellent news since all efforts that
measure mobile broadband speed always need to balance
cost and utility (e.g., to accurately measure full capacity of a
connection, the Ookla speed test uses enough data to flood
the connection [4]). To the best of our knowledge, this paper
is the first to look at the impact of different missing data
sizes and structures on the accuracy of mobile broadband
speed measurements. Furthermore, it is the first to analyze
speed across spatial and several temporal dimensions by
leveraging tensor factorizations. We believe that our ap-
proach and results can be of interest to network operators
as well as the wider Internet measurement community.

The rest of the paper is organized as follows: Section 2
discusses the measurement data set and the motivation of
the study. Section 3 briefly introduces tensor factorizations,
and outlier removal steps. In Section 4, we discuss the
analysis of the data as well as the patterns extracted from
variation tensors constructed using data set with missing (i.e.,
non-imputed) data vs. imputed data. Section 5 discusses
the reasons behind similarities/differences between the pat-
terns extracted from variation tensors constructed using im-
puted vs. non-imputed data. It also investigates how the
amount and structure of missing data affect the reliability of
performance-pattern retrieval. After discussing the related
work in Section 6, we conclude with lessons learnt from the
study and future work in Section 7.

2 DATASET AND MOTIVATION

We leverage download speed measurements from 78 sta-
tionary probes that are part of the NorNet Edge infrastruc-
ture in Norway [35]. Each probe is a single-board computer
that connects to two mobile networks, Op1 (Operator 1)
and Op2 (Operator 2), via miniPCI modems that support up
to LTE CAT-6, using commercial subscriptions. To measure
speed, we use a command line client for testing Internet
speed using Ookla’s speedtest.net. The test is based on
downloading files of increasing size from Ookla’s servers

and is used to estimate available bandwidth. The test runs
three times a day at 2:00 am, 2:00 pm and 7:00 pm local time
to capture different traffic profiles. The download speed
measurement data spans a period of 317 days from January
1, 2018 to mid-October 2018. The probes nodes are in active
state when speed measurement runs are performed. They
are active since the probe nodes, in addition to the speedtest,
regularly send one packet per second to a server to track
round trip time and packet loss and exchange management
traffic with the backend. However, these additional perfor-
mance statistics are out of the scope of this study.

2.1 Variation in download speed

Figure 2 shows the distributions of the measured down-
load speed for both operators. Op1 exhibits higher down-
load speeds and larger overall absolute speed variations
than Op2. Not only are there huge differences among the
median download speeds across the nodes, but there are
also substantial differences in observed speeds at the same
node. The differences in median download speeds across
nodes are up to 76 Mbps and 53 Mbps for Op1 and Op2,
respectively. Op2, however, shows a higher relative speed
variability, as is shown in Figure 3 (a). This difference
is because the variations in observed speeds were much
higher for Op2 than for Op1 at the same nodes. In the
worst case, the same node experienced a difference of up to
2400% between its highest and lowest observed download
speed for Op2. For Op1, the worst case difference for a
node was 72%. In Figure 3 (a), we display the empirical
cumulative distribution functions (ECDFs) of the relative
speed variability at the probe nodes, which is estimated by
dividing the inter-quartile range of speeds by the median
speed value observed by a probe node. Almost 60% of Op2

nodes observe higher variation in speed compared to Op1.

Figure 2: The distribution of download speeds per measure-
ment node.
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Figure 3: (a) Relative variability in download speed of nodes
and (b) the distributions of percentage of missing speed
measurements across nodes.

2.2 Features causing speed variability

A high variability in speed translates into performance
uncertainty. A key step towards resolving this issue is
to identify patterns in speed variability, which can reveal
when, where and by how much speed varies. Such patterns
can help an operator understand temporal and spatial prop-
erties of speed variability, which may guide further network
planning and provisioning decisions.

Besides the timings of the speed tests, we have recorded
a set of metadata to help contextualize and understand the
speed measurements. The metadata includes the Reference
Signal Received Power (RSRP) – a measure of the quality
of the received signal, the identifier of the serving cell, and
the population density at the location of the probe node.
The network performance also gets impacted by many other
contextual features (including changes in operator config-
uration or upgrades, construction, and foliage patterns).
However, these features are not captured in the metadata.

Figure 4: Download speed at off-peak (i.e., 2:00) and peak
hours (i.e., 14:00 and 19:00) of day.

The time of the measurements is also a feature, and it
is shared across all the nodes. Starting with this feature,
Figure 4 shows that the speed varies at different hours of a
day. This is expected since traffic profiles vary as a function
of the time of day, e.g., peak hours are characterized by
larger traffic volumes and thus lower speeds. The opposite
is true for off-peak hours. The median speed at 2:00 a.m. is
19% and 43% higher than during the day for Op1 and Op2,
respectively. For example, with Op1 the worst connection in
terms of variation had a speed drop by 123 Mbps. For Op2,
the same number was 139 Mbps.

Unlike time, RSRP, handover frequency and population
density are not shared across nodes. These features can be

(a)

(b)

Figure 5: Metadata values for nodes of (a) Op1 and (b) Op2,
with low and high variation in their observed download
speed.

the cause of differences in speed variation across nodes
served at the same time by the same operator. To verify
the impact of the non-shared features, we divide our nodes
into two groups, one with high and one with low variability
in observed download speed. The former includes the top
25% of nodes in terms of speed variability, while the latter
includes the bottom 25%. For Op1 the speed variation for
the top 25% of the nodes is 126% more than the bottom 25%
of the nodes, whereas for Op2 this difference is 87%. We then
examine the effect of the three features on speed variation.
The first is coverage status, which we capture by comput-
ing the amount of variation in RSRP experienced by each
node. Variation is computed by dividing the inter-quantile
range of the observed RSRP values (in dBm) by the median
observed RSRP. A higher variation indicates unpredictable
radio connectivity. Second is the extent of handovers, in
which we capture the number of times a node changes its
serving cell. Frequent handovers can be caused by, e.g. poor
coverage, sub-optimal configurations [9] or load balancing.
In our dataset, however, poor coverage can not be the
cause of the frequent handovers since we have controlled
for coverage and removed probes with poor coverage (i.e.
nodes which were not always on 4G). We hypothesize that
these handovers are related to load balancing. We looked
into the nodes that switched to different cells and found
that a handover can vary median speeds by up to 50 Mbps.
Among these nodes, there were only a few nodes that had
a permanent switch to a cell. In most situations the nodes
switched among the same set of cells randomly.

The last metadata feature is related to radio congestion.
Here we use the population density as a proxy for radio
congestion, which is in a 1 square km around the node.
The population numbers are obtained from the database of
statistics Norway [2]. Figure 5 compares the distributions
of the three metadata features for nodes with high and
low speed variability. For Op1, nodes with a wider RSRP
variation as well as those that have more frequent cell
handovers exhibit higher variation in speed. Same is the
case with Op2. Interestingly, with Op2, nodes encounter
more handovers than that of Op1. The correlation between
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speed variability and population density seems weak, but
we see that few of the nodes with very high population
density are facing highly variable speed performance.

To rigorously confirm the correlation between the three
features and speed variability, we check whether the differ-
ence between the distributions in Figure 5 is statistically sig-
nificant. For example, for Op1 we compare the distribution
of RSRP variation for nodes with low speed variability to
that for nodes with high speed variability. We do the same
for all operator and feature combinations. We employ the
R package lmPerm [49], which executes a non-parametric
permutation test, to compare the distributions. Table 1
presents the p-values for operator and feature combinations.
If we use a p-value of 0.05 as a threshold for rejecting the null
hypothesis that the two samples are from the same popula-
tion, we find that intensity of variation in RSRP values and
frequency of handovers are statistically significant, both for
Op1 and Op2.

Table 1: Statistical significance (p-value) of the features to-
wards variation in download speed value based on permu-
tation testing.

Operator RSRP
variation

Handover Population
Density

Op1 0.008 0.013 0.25
Op2 0.024 2.2e−16 0.27

The results for both operators are consistent since a
poor/unstable coverage may trigger handovers. Further,
though a comparatively larger population density does
not impact performance variation significantly; a very high
population density indeed makes the performance unpre-
dictable due to highly variable network load over time.

In the current study, we analyze speed variability pat-
terns observed by probe nodes from the perspective of their
shared feature, i.e., measurement timings. Since we have a
year-long data, we examine speed variability as an effect
of different times of the day, week days and months of
the measurement year. Secondly, we evaluate the similarity
of the speed variation patterns drawn from measurement
samples with missed observations (i.e., raw dataset) to the
patterns recovered from the dataset after imputing missing
speed values. This is done, to investigate the reliability of
patterns derived from a measurement dataset that misses a
substantial amount of samples.

2.3 Missing Samples

Our measurement study spanned over 317 consecutive days
and was performed thrice a day. Thus, from each probe
node, a total of 951 measurement samples were expected,
but none of the probe nodes had 951 samples. For Op1 the
minimum number of samples collected by a probe node is
78, and for Op2 it is 4. Like other real-world datasets, our
data has missing observations. These are caused by both
measurement artefacts (e.g., a probe was unavailable at the
time) and network outages.

Overall, we collected 60763 and 56346 measurement
samples from Op1 and Op2, respectively. For Op1, 18% of
the total speed data is missing whereas 24% of the samples
are missing in Op2 dataset. Figure 3 (b) shows that 14% and

Figure 6: Missing sample structure of node (a) 19 and (b) 58,
superimposed upon the download speed measurements of
node 43.

21.7% of the connections to Op1 and Op2, respectively, have
50% or more missing samples.

Missing samples cannot be ignored, as they can intro-
duce biases in the analysis of the measurements, which may
be the case with our dataset. To illustrate this challenge,
Figure 6 depicts the download speed values at the 941/951
measurement time units for the node with identifier 43 of
Op1. This node is one of the rare nodes with few missing
samples. Two other nodes with identifiers 19 and 58 have
almost half of their samples missing. The structures of miss-
ing samples for both these nodes are not identical. To see
any bias, introduced by missing samples, we first superim-
pose the missing structure of node 19 and 58 respectively,
on the node 43. Each of the two superimpositions divide
the samples of node 43 into two parts i.e., ‘exposed’ and
‘unexposed’. For example the ‘exposed’ part in Figure 6 (a)
consists of speed samples of node 43 from time units for
which node 19 also has speed samples, while the ‘unex-
posed’ part consists of the samples at time units for which
node 19 has not captured any speed samples. Figure 6 (b)
shows the ‘exposed’ and ‘unexposed’ speed samples for
node 43, corresponding to observed and missing samples
time units of node 58. Next, we compute the median of all
the 941 speed samples of node 43 i.e., 37.89 Mbps. In the
case of unbiased sampling, we expect that both ‘exposed’
and ‘unexposed’ parts will have around half of their speed
values above the overall median value of 37.89 Mbps. To
confirm this, for the two different missing structures, we
conduct a test of biased sampling that is called Relative Risk
(RR) [11], defined by

RR = Pexp/Punexp, (1)

where Pexp denotes the fraction of ‘exposed’ samples with
their speed values above the overall median of 37.89 Mbps
and Punexp computes the same for the corresponding ‘un-
exposed’ part. If the RR is different from 1, then sampling
bias is present. By using the structure of missing data of the
node with identifier 58, we obtain an RR = 0.98, which
indicates that the missing data structure does not induce a
bias. However, the missing data structure of the node with
identifier 19 yields an RR = 2.28, which indicates that the
missing data induces a bias. Thus, it is clear that care should
be taken when analyzing datasets with missing samples.

In this paper, we do not analyze the absolute down-
load speed values; we are rather interested in deriving
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Figure 7: An R-component CP model of a third-order tensor
X.

reliable speed variation patterns of Op1 and Op2. We,
hence, hypothesize that any amount of missing data that
comes with a real-world dataset such as ours, does not
impact the actual patterns of performance variability. This
will be the case when both the patterns from raw (i.e.,
with missing samples) and imputed datasets are similar. In
case the hypothesis fails, it is worthwhile to identify the
particular structure, percentage of missing data as well as
characteristics of performance data that do not impact the
accuracy of patterns derived from the performance data set
of a network operator. As a by-product, an analysis like this
can help an operator in deciding on the optimal monitoring
frequency, both in terms of cost and accurate performance
assessment.

3 TENSOR FACTORIZATIONS

To explore variations in download speed across different
probe nodes and time scales, we re-arrange our data as
higher-order tensors, and refer to them as variation tensors.
Higher-order tensors can be seen as extensions of matrices to
multiway arrays with more than two dimensions. Following
this, a matrix is a second-order tensor, and a vector is a first-
order tensor. Tensor factorizations provide a natural frame-
work to extract patterns from higher-order datasets [8],
[33], [41]. More specifically, we re-arrange our data as two
different types of third-order variation tensors to capture the
variability at different granularity. The first variation tensor
is in the form of a <nodes, hours, week days> third-order
tensor, while the second one is in the form of a <nodes,
hours, months> tensor. The first tensor aims to capture
hourly and weekly variations across nodes, while the second
aims to capture hourly variations in different months of
the year. Note that we did not study fourth-order variation
tensors with modes <nodes, hours, week days, months>.
This is because ordering the data in such a way would lead
to a maximum of 4 to 5 speed samples, which is insufficient
for deriving variation values.

Among various tensor factorization methods, we focus
on the CANDECOMP/PARAFAC (CP) model [23], [29]. The
CP model is considered as one of the generalizations of
singular value decomposition (SVD) to higher-order tensors.
An R-component CP model expresses a third-order tensor,
X ∈ RI×J×K , as a sum of R rank-one tensors, as follows:

X ≈
R∑

r=1

ar ◦ br ◦ cr, (2)

where ◦ denotes the vector outer product. A =
[a1 ... aR] ∈ RI×R is the factor matrix corresponding to

the nodes mode, B = [b1 ... bR] ∈ RJ×R is the factor
matrix for the hours mode and C = [c1 ... cR] ∈ RK×R

is the factor matrix corresponding to the week days mode
for a <nodes, hours, week days> tensor (see Figure 7) and
months mode for a <nodes, hours, months> tensor. The
CP model provides a summary of the data tensor X by
approximating the data as X̂ =

∑R
r=1 ar ◦ br ◦ cr, also

denoted as X̂ = JA,B,CK in short.
Unlike matrix factorizations which suffer from rotational

freedom, the CP model is unique under mild conditions
(up to permutation and scaling ambiguities) [34], [44].
Therefore, the CP model often reveals easily interpretable
factors/patterns, and is preferred over other tensor methods
when the goal is pattern discovery. For instance, if X is a
<nodes, hours, week days> tensor, each column of A can
reveal collections of nodes whose speed variation is related,
B indicates how the speed variation varies for different
hours of the day and C indicates how the speed variation
differs for different days of the week. In the case of a
<nodes, hours, months> tensor, the C matrix represents
how the network speed varies across different months.

To fit a CP model to an incomplete tensor, we minimize
the following weighted objective function [6]:

L(A,B,C) =
∑
i,j,k

wijk

(
xijk −

R∑
r=1

airbjrckr

)2

, (3)

where wijk = 1 for known tensor entries xijk, and wijk = 0
for missing entries.

3.1 Selecting the number of components
Choosing the right number of components, i.e., R in Eqn.
2, is essential to capture the patterns that underlie the
data. In this subsection, we describe the metrics we use to
evaluate the performance of the models and determine the
appropriate number of components.

3.1.1 Model fit
A standard way of measuring how well the model describes
the data is the model fit defined as follows:

Fit (%) =

(
1− ∥X− X̂ ∥2

∥X ∥2

)
× 100, (4)

where ∥ . ∥ denotes the Frobenius norm. If the model fully
explains the data, then the fit is 100%. How the model
fit changes for different numbers of components shows if
adding more components results in a substantial improve-
ment in terms of explaining the remaining part in the
residuals.

3.1.2 Core consistency
One diagnostic approach for determining the number of
components in CP models is the core consistency diag-
nostic [22]. It determines the “appropriateness” of an R-
component CP model to the data, and is defined as follows:

Core Consistency = 100×(1−
∑R

i=1

∑R
j=1

∑R
k=1(gijk − tijk)

2

R
),

(5)
where G ∈ RR×R×R is the estimated Tucker core given the
CP factor matrices. The Tucker model [47] is a more flexible
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Figure 8: Identification of outlier samples (in the nodes
mode) using normalized residuals and leverage scores.

tensor model than the CP model and its core, G, can be a
full tensor with nonzero entries everywhere. On the other
hand, T denotes CP’s core, i.e., an R × R × R tensor with
nonzero entries only on the super-diagonal. Note that, due
to this flexibility, the Tucker model is not unique without
additional constraints on the factor matrices and the core.
Given the CP factor matrices, if off super-diagonal elements
of G are close to zero, the R-component CP model can
be considered an appropriate model. Low core consistency
values close to zero or negative are considered to be a sign
of an invalid CP model, whereas close to 100% is interpreted
as a good model.

3.2 Implementation details

In our experiments1, for fitting CP models, we used cp_opt
[7] (for complete variation tensors that are constructed using
imputed datasets) and cp_wopt [6] (for incomplete variation
tensors constructed using raw datasets) from the Tensor
Toolbox (v3.1) [14]. Each CP model was fit using limited
memory BFGS algorithm with bound constraints (LBFGS-
B)2 using 100 different random initializations, and the so-
lution with the lowest function value was used for further
analysis (after validating the model’s uniqueness). To im-
prove the interpretability of the components, we imposed
non-negativity constraints in all modes when fitting the CP
model. Non-negativity constraints do not allow any element
to be negative, which facilitates the interpretation.

3.3 Outlier removal: A pre-processing step

To make sure the extracted patterns (i.e., components) are
not distorted by outliers, we filter out outliers as a pre-
processing step, from a tensor. After fitting the CP model
to a variation tensor, outliers can be the nodes that have high
leverage values and those that are poorly described by the
model.

1. https://github.com/mahfida/SpeedVariation. The repository con-
tains raw and processed speed datasets and metadata information
along with R and MATLAB scripts for imputation, factorization, outlier
detection, factors’ similarity check and other supporting methods.

2. https://github.com/stephenbeckr/L-BFGS-B-C

To detect nodes that have a strong influence on the
model, we use the leverage score hi, of node i, defined as
follows:

hi = [A(ATA)−1AT ]ii. (6)

An interpretation of hi is the inverse number of nodes with
a similar model representation as node i [31]. To determine
if a node has very strong influence, we use a heuristic based
on p-values [19]. A cutoff value equivalent to a Bonferroni
corrected p-value of 0.01 (i.e., 0.01 divided by the number
of nodes) is selected. The nodes with a leverage score above
this threshold are classified as outliers and excluded.

To detect if node i is poorly described by the model, we
consider its residual, ri, given by

ri =
∑
j,k

(xijk − x̂ijk)
2
. (7)

A high residual indicates that the node is not well described.
Similar to the leverage cutoff, we determine the cutoff
for the residuals with a heuristic based on p-values [40]
(selecting a Bonferroni corrected p-value of 0.01).

The process of fitting CP models and removing out-
lier nodes is repeated until there are no outlier nodes.
This leaves 76 and 70 nodes for the <nodes, hours, week
days> tensors, and 73 and 60 nodes for the <nodes, hours,
months> tensors of Op1 and Op2, respectively. To make
the two versions of variation tensors comparable i.e., one
generated from raw dataset and other from imputed dataset,
the outliers nodes in the first one are filtered out as a pre-
processing step from both the variation tensors before their
final decomposition.

3.4 Similarity of components
To measure the similarity between components captured
from the two corresponding decomposed variation tensors,
we use the congruence value. The congruence for two
components, i.e., two rank-one tensors X̂ and Ŷ, is defined
as [46]:

cong(X̂, Ŷ) =
|aTp|

∥a ∥ ∥p ∥
× |bTq|

∥b ∥ ∥q ∥
× |cTr|

∥ c ∥ ∥ r ∥
, (8)

where X̂ = a ◦ b ◦ c and Ŷ = p ◦ q ◦ r are third-
order tensors. A congruence value close to 1 indicates highly
similar components.

4 ANALYSIS OF VARIATION IN DOWNLOAD SPEED
OVER TIME

To capture speed variation observed by a node at a par-
ticular time unit t, we calculate inter-quartile range of the
download speed samples collected at t divided by the me-
dian of these samples. Using this process, we generate two
types of third-order variation tensors: (i) The modes in the
first one are <nodes, hours, week days> where t represents
combinations of an hour of a day and a day of a week.
The analysis of this tensor is to reveal hourly and weekly
patterns in speed variation observed by different nodes. (ii)
The second type is in the form of a <nodes, hours, months>
tensor, where t denotes an hour of a day in a month of a year.
Through the analysis of this tensor, we aim to reveal hourly
and monthly variations.
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Figure 9: Model fit and core consistency (%) values for
CP models of original tensors, with different number of
components.

4.1 Original Tensors: Variation tensors constructed us-
ing data with missing entries

<nodes, hours, week days> tensor. The data from each oper-
ator consists of up to 3 speed measurements per day per
node for the first 317 days of 2018. We denote this data as
’observed’ data in the following text, since the raw data set
only consists of observed speed samples without imputing
the missing measurements. In the whole measurement du-
ration, for every hour and week day pair, we have up to
46 download speed values per node. We generate a single
speed variation value for those speed values by calculating
their inter-quartile range (IQR). We then divide each IQR
value by its respective median speed value to be able to
compare speed variations across nodes. If a node ni has less
than 5 download speed values in an hour hj and a week day
wk pair, we set the corresponding tensor entry to missing.
The reason is, 5 is the least size of a measurement sample
set to find the range of its middle 50% of sample values or
to derive the first and third quantile for its IQR calculation.
<nodes, hours, months> tensor. To see if the variation in speed
is consistent over the year, we also generate a variation tensor
in the form of a <nodes, hours, months> tensor. Here, we
have up to 31 entries to calculate the speed variation (i.e.,
IQR/median) for each cell of the tensor. Again, we set tensor
entries to missing when we have less than 5 download
speed observations.

Figure 10: Variation in download speed at off-peak hours
compared to peak hours on (a) Thursdays and (b) Fridays
observed by top 25% nodes with high loadings, and on (c)
Thursdays by bottom 25% nodes, from component 2 of Op1

<nodes, hours, week days> original tensor.

4.2 CP model of original tensors
The two types of tensors described in Section 4.1 use
only the observed download speed measurements. In other
words, the missing download speed values are not imputed
before tensor construction. We refer to the variation tensors
constructed using observed, non-imputed data as original
tensors.

4.2.1 Factors from Op1 dataset
We model the <nodes, hours, week days> tensor using a
2-component CP model (see Figure 9 for model fit and core
consistency values) as it provides high model fit of 95.7%
with core consistency value close to 100%. Increasing the
number of components increases the model fit slightly, but
results in a sharp drop in core consistency; therefore, we
focus on the 2-component model.

The first component of factorized <nodes, hours, week
days> tensor (Figure 11 (a)) points out that the nodes
with high loadings observed an obviously high variation in
download speeds at 2:00 pm and 7:00 pm. The component
captures changes in speed during busy hours. This pattern is
dominant across the week, except on Thursdays, and espe-
cially on Wednesdays and at weekends. Contrary to this, the
second component extracts a pattern that was prominent on
Thursdays, again with higher intensity for nodes with high
loadings (i.e., the nodes with high coefficients). This compo-
nent captures the network maintenance activities conducted
by the operator Op1, especially on the early morning of
Thursdays followed by Friday, for the group of nodes. Note
that maintenance may occur on different days for different
groups of nodes. Figure 10(a) and (b) show the maintenance
effect for top 25% nodes with high loadings, on Thursdays
and Fridays. For bottom 25% of nodes (in terms of loadings),
no maintenance activity seems to be occurring on Thursdays
( Figure 10(c)).

The <nodes, hours, months> tensor is modelled, too,
with a 2-component CP model for Op1. Despite its low core
consistency value, of around 44%, we prefer 2-component
over 1-component model due to its higher model fit of
80%. Figure 11 (b) shows that both components depict low
variation at 2:00 am compared to 2:00 pm and 7:00 pm. The
mean daily behaviour seems to dominate in the hours mode.
In the month mode, each component captures the mean
behaviour for different months.

4.2.2 Factors from Op2 dataset
The original tensors of Op2 are also modelled using a 2-
component CP model. The models give a high core con-
sistency value of 88.8% and 94.2%, and model fit values
of 93.8% and 77.3% for <nodes, hours, week days> and
<nodes, hours, months> tensors, respectively (see Fig-
ure 9). Increasing the number of components results in a
significant drop in core consistency. The first component
of the CP model of the original tensor of <nodes, hours,
week days> in Figure 11 (c) indicates that a set of nodes
exhibited a slightly more variation in the download speed
at 2:00 am between mostly Monday and Thursday whereas
the second component reveals that some nodes showed the
lowest variation in speed at 2:00 am on Fridays.

The first component of Op2 is a mixture of speed
variations caused by network maintenance, and a network
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(a) (b)

(c) (d)

Figure 11: CP Models of Original Tensors. 2-component CP models of (a, c) <nodes, hours, week days> and (b, d) <nodes,
hours, months> original tensors of Op1 and Op2, respectively. The red lines indicate loadings of the original tensor of Op1

and the blue lines indicate loadings of the original tensor of Op2. The gray lines indicate mean values of the modes in the
corresponding tensor.

upgrade that happened in September 2018 (see Figure 11
(d)) affecting a group of nodes and causing more load at
off-peak hours than at peak hours. Figure 12 (a) depicts that
high variation in download speed, at 2:00 a.m compared
to the peak hours, was observed by 25% of the nodes on
Tuesdays, followed by around 16% of the total probe nodes
on Wednesdays. In other words, network maintenance is
undertaken on different days for different sets of nodes.
Overall, the differences between hours loadings are small.
The component that shows significant differences, between
different hours of the day, is the one described by the

second component. It reveals low speed variations at off-
peak hours and high variation due to increase in mobile
broadband activity during day time. For Op2, this pattern is
very obvious from Thursdays to Sundays.

The first component of the CP model of <nodes, hours,
months> tensor, shown in Figure 11 (d), reveals a pattern
close to the mean hourly speed and is mostly observed
during the months of July, August and October. The pat-
tern shows similar download speed variation over different
hours. Contrary to this, component 2 depicts that there
are nodes that observed largest variation at 2:00 am but
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Figure 12: (a) Percentage of nodes, that observed high
variation in download speed with Op2 in off-peak time
instead of peak hours on different days of the week and
(b) unexpectedly high speed variation with Op2, at off-peak
hours, in September 2018.

only in September 2018. Taking all the nodes, the box-plots
in Figure 12(b) depict that in the month of September
the variation in speed at 2:00 am was more than double
compared to the rest of the months. This hints at network
upgrade activities during September, that we confirmed for
Op2.

5 IMPACT OF MISSING DATA

About a third of the analyzed measurement time series per
operator involves at least 10% missing data. Understanding
the interplay between missing data and pattern identifica-
tion is important in two ways:

• It is not unusual to miss measurement samples dur-
ing periodic network performance tracking campaigns.
Reasons may include network outage, exceeding data
capacity caps, link disruptions or issues with probe
nodes. We, therefore, aim to first get insights into the
robustness of the identified patterns under different
structures and sizes of missing data. Significant changes
in the identified patterns after imputations decrease the
confidence in them.

• Second, it helps in designing future measurement strat-
egy and picking the right monitoring frequency for a
network operator. This is important, since unlike fixed
measurements, mobile monitoring has a cost element
due to the subscription pricing model.

In this section, we study the effect of imputing missing
download speed samples on the patterns extracted from
variation tensors.

5.1 Missing Data Imputation
To perform imputation, we apply Kalman smoothing sep-
arately on the measurement time series of each of the
nodes. Kalman smoothing works by assuming a structural
time series (Struct TS) model, consisting of a latent state,
observations, and a process that transforms the latent state
into an observation. We then fit this structural model using
maximum likelihood estimation for all time-steps simulta-
neously [26]. This approach provides the model parameters
and, importantly, the latent state for all time steps. Using
this latent state, we can impute the missing data.

We used the random walk plus noise (or level) model [30]
to impute the missing values. This method was selected as

Figure 13: Model fit and core consistency (%) values for
CP models of adjusted tensors, with different number of
components.

it provided a smaller root mean squared error (RMSE) com-
pared with other univariate time series imputation methods
(see appendix for details). To fit the model, we used the R
library imputeTS [38].

5.1.1 Variation tensors constructed using imputed data and
their CP models

After imputing the missing values in the download speed
time series data of each node, we generate the <nodes,
hours, week days> and <nodes, hours, months> variation
tensors for both operators. We then model these tensors us-
ing 2-component CP models, as compared to 3-component
models since 2-component models provide a better trade-
off between model fit and core consistency values (see
Figure 13).

To differentiate the tensors generated after imputing
missing download speed values, we refer to them as adjusted
tensors. They are derived with datasets from the same nodes
and in the same way as the original tensors, i.e., the inter-
quartile range divided by the median of the download
speed values mapping to the tensor cell. The difference
between original and adjusted tensors is that due to missing
value imputation, none of the cells in the adjusted tensors is
missing.

5.1.2 Factors of the adjusted tensors

As discussed in the subsection 3.2, we use cp_opt [7] to
factorize adjusted tensors, as these are complete variation
tensors with none of the cells empty.

Despite multiple nodes having a large number of im-
puted entries and some with large contiguous imputed
blocks (replacing the missing samples and blocks), the 2-
component CP model of adjusted tensors of Op1 is very
similar to that of the original tensors, as shown in Fig-
ure 14(a, b). The similarities between the components of CP
models of original and adjusted tensors using Equation 8
are given in Table 2, where the value corresponds to the
product of congruence values for two components as we
have 2-component CP models. Congruence values of 0.93
and 0.90 between the components from original and adjusted
tensors of Op1 and similar shapes of their components, in
Figure 14 (a, b), indicate that imputation has little impact on
the identified patterns.
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Table 2: Similarity based on congruence between the CP
factors of original and adjusted tensors.

Tensor Op1 Op2

<nodes, hours, week days> 0.93 0.55
<nodes, hours, months> 0.90 0.92

Unlike Op1, the original and adjusted tensor components
of <nodes, hours, week days> tensor from Op2 have a low
similarity value of 0.55.

Though visually the patterns revealed by the first and
second components of original tensor (Figure 11 (c)) seem
similar to the second and first components from adjusted,
there are differences in the ranges of the normalized load-
ings of the week days in component 1, and hour loadings in
component 2, of the adjusted tensor (Figure 14 (c)). On the
other hand, as Figure 14 (d) shows, we do not see much
differences between the components of original and adjusted
<nodes, hours, months> tensors. This is also confirmed by
their high congruence value of 0.92.

5.2 Differences and similarities after imputation

All tensors, except for Op2’s <nodes, hours, week days>,
are stable under imputation, i.e., the resulting CP models
are almost identical. To understand the reasons behind sim-
ilarities and differences between factors from original and
adjusted tensors, we take a closer look at the structure of the
missing data and its interplay with imputation. We examine
whether the imputation alters the statistical properties of
the download speed time series. Such an alteration may
result in a different CP model. To explain any structural
differences between the two tensors, we examine the layout
of the underlying missing data. Note that the process of
imputation is highly influenced by data points that are close
in time to missing data. We hypothesize that if a statistical
property, of interest, from a time series with missing data
is similar to its imputed time series, then the underlying
size and structure of missing entries does not adversely
impact the measurement campaign. In this study the statis-
tical property of interest is the patterns of download speed
variations that are experienced by the users of a mobile
broadband network.

5.2.1 Imputation impact on speed variation
Imputing the missing data reduces the download speed
variability for both operators. This impact, however, is more
pronounced for Op2 (see Figure 15). Despite this general
trend, some nodes see an increase in variation. Across all
nodes, the maximum drop in speed variation is 1.07 for Op1

and 1.16 for Op2, whereas the maximum increase is by 0.33
and 0.93 for Op1 and Op2, respectively.

To gain better insight into the impact of imputation, we
divide our nodes into four groups based on the observed
speed datasets. The four groups are: 1) ‘low’: the lowest
25% of nodes and 2) ‘high’: the highest 25% of nodes in
terms of speed variation, 3)‘small’: the nodes with small
missing chunks and 4)‘large’: the nodes with large missing
chunks. Here, a chunk denotes a contiguous set of time
units that lacks download speed information for a node. To
separate the nodes with ‘small’ and ‘large’ missing chunks,

we compute the median ‘M’ of the largest missing chunk
sizes of all nodes. We then label any node whose largest
missing chunk is smaller than the ‘M’ as having ‘small’ and
those whose largest missing chunk is greater than the ‘M’ as
having ‘large’ missing chunks.

Figure 16 shows the distribution of the absolute differ-
ence in speed variation between the observed and imputed
data for all four categories and both operators. Nodes that
are characterized by a ‘high’ variation in speed or a ‘large’
missing chunk size to start with exhibit a higher absolute
difference between their download speed variation values,
derived from their respective time series with missing data
and imputed data. The difference, however, is more evident
for Op2. For Op1, the top 25% nodes with high variation in
speed and large missing chunks experience 68% and 57%
higher absolute difference than those with low variation
and random small missing chunks in download speed mea-
surements. For Op2, these differences are much higher, i.e.,
at 2000% and 225%, respectively. It, thus, seems that the
difference between the original and adjusted tensors for Op2,
in Figure 15, can be linked to nodes with high variability
as well as nodes with larger contiguous missing samples in
their measurement time series.

Takeaways: When performance of a network such as down-
load speed is highly variable over time, the missing observa-
tions over large time duration are harmful for the accurate
analysis of the network’s performance. The study shows
that in the above situation the frequency of measurements
should be high. To capture both the correct behaviour of
a network and reduce the cost of measurement, the mea-
surement campaign can however be turned off at random
timings.

5.2.2 Interplay between imputation and tensor organization
The tensor construction involves grouping together mea-
surements in accordance with the target structure (i.e., the
modes). After seeing the impact of imputing missing entries
from the observed time series, we now proceed to assess
their impact on the derived 3-way tensors.

The two panels in Figure 17 confirms the role of tensor
construction. As expected, the <nodes, hours, months>
tensor involves more aggregation and thus exhibits lower
variation than the <nodes, hours, week days> tensor. Also
recall that an imputed value is influenced by observed
measurements closer in time. Compared to <nodes, hours,
week days>, download speed measurements more closer in
time map to the same cell in the <nodes, hours, months>
tensor thus exhibiting lesser variation especially in its ad-
justed tensor version. We also see that imputation increases
the difference between the two tensor organizations for Op2

(i.e., the median difference increases from 44% to 110%)
while slightly decreases it for Op1.

We next assess the way the extent of missing data
impacts the difference between the original and adjusted
tensors. To this end, we identify the missing data percentage
that is associated with each cell of the original tensors. We
then group cells based on similarity in their missing data
percentages. For each group we compute the median abso-
lute difference between the corresponding cells of original
and adjusted tensors, as is shown in Figure 18 (a, b). We
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(a) (b)

(c) (d)

Figure 14: CP Models of Adjusted Tensors. 2-component CP models of (a, c) <nodes, hours, week days> and (b, d) <nodes,
hours, months> adjusted tensors of Op1 (shown as solid red lines) and Op2 (shown as solid blue lines), respectively. The
dashed lines show the loadings of the corresponding original tensors, and solid gray lines show their mean values.

also compute the median percentage change in the speed
variation in adjusted tensor cells compared to the original
tensors ( Figure 18 (c, d)).

Irrespective of the tensor organization, when size of the
missing data mapped to a tensor cell is small— the absolute
difference between the speed variation values of original
and adjusted tensor cells is small. It gradually increases and
peaks between 40% and 70% missing data depending on the
tensor.

As expected with increasing size of missing data there
is an increasing trend in the ‘percentage’ difference between
the cells of the two tensors (Figure 18 (c and d)); the ‘ab-

solute’ difference however falls again as the missing entries
increase beyond 70%. This is explainable as for original ten-
sor cell when there are too few and similar observed values,
the IQR/Median tends to be small. For adjusted tensor, in
case of large missing blocks in speed data same value is
imputed, which leads to a drop in speed variation. Note
that in absolute terms, <nodes, hours, months> can tolerate
a higher percentage of missing data than the <nodes, hours,
week days>, again due to the way imputation is done and
the tensors are formed.

Takeaways: The way missing data is imputed and a tensor
is organized impacts the variation in download speed that



12

Figure 15: Distribution of speed variation in original and
adjusted tensors.

Figure 16: Absolute difference between the observed and
imputed speed variation of nodes, under different features
of the observed data.

Figure 17: Variation in download speed values per operator
with both versions (original and adjusted) of each tensor type.

is mapped to a tensor cell. Overall, a tensor model is fairly
robust to large missing data, up to 40% for one of the
operator. This is a positive result, which essentially means
that a low frequency measurement process can be adequate
for characterizing variability in download speed.

6 DISCUSSION

Speed variability patterns. We have found that mobile
broadband download speed exhibits variability at multiple
time scales, i.e., hours, weeks and months. Identifying such
intricate patterns would have been difficult if it was not for
the use of tensor factorizations, which allow for analysis of
multiway data. We measured two large mobile broadband
operators that are characterized with different patterns of
download speed variability. The variability increases at peak
hours (i.e., 2:00 pm and 7:00 pm), for both operators. The
difference between peak and off-peak is stronger for Op2,
which hints at smaller available capacity. This is inline with
our previous study that quantified congestion in these two

Figure 18: (a, b) Median absolute and (c, d) median per-
centage difference between speed variation values of cells,
missing a certain percentage of download speed data, from
original and adjusted tensors.

operators [28]. We have also observed that Op1 exhibits
non-trivial variability at 2:00 am, which is related to main-
tenance activity. Notably these activities were concentrated
on Thursdays and Fridays. Interestingly, impact of mainte-
nance is less visible for Op2. We conjuncture that the effect
of maintenance is overshadowed by the higher variability
during peak hours in comparison with Op1. Since mainte-
nance is often infrequent, its effect will only be visible if the
overall variability is small. Both operators have exhibited
monthly patterns, which probably coincide with months
where operators were performing network upgrades. We
have confirmed this for Op2. These findings indicate that
multiway analysis of network performance data can help
gauging the effect of procedures that operators perform as
well as help comparing different operators across multiple
dimensions.
Missing data. The constructed tensor models are robust to
large amount of missing data. For the median node, the dif-
ference in speed variation when imputing up to 40% missing
data is between 0.02 and 0.07 (as depicted by Figure 18)
(a,b), i.e. 7%-26% depending on the operator (see Figure 18)
(c,d). This attractive property can be traced to the general
low variability in the measured speed. Furthermore, missing
data at random seems to have minimal impact on the
identified patterns. These findings have implications for
efforts that are focused on tracking mobile broadband speed.
Any such effort has to balance measurement overhead and
utility. Our results show that a lower sampling rate, for
example every second day especially in the case of Op1,
can capture the same patterns. We, therefore, believe that
both measurement platforms like ours and measurement
campaigns by operators can benefit greatly by integrating
data analysis methods such as tensor factorizations reveal-
ing interpretable patterns into the process that determines
measurement configurations. For instance, one could start
with a high sampling rate for a period of time, then apply
tensor factorizations while sub-sampling the collected data
to determine an acceptable rate of missing data. This rate
can be used to reconfigure the next rounds of measurements.
We leave the details of such a process to our future work.
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High variability in speed. Time of the day is a shared
feature among probe nodes and a cause of variations in
download speed, e.g., at peak hours the speed drops due
to large number of concurrent users. The intensity in speed
variation, however, varies across nodes and the network op-
erators. Other than the time feature, nodes that experience
considerable variations in RSRP and/or frequent handovers
are also characterized by comparatively non-deterministic
download speed. While variations in RSRP and frequent
handovers can be closely related (e.g., a drop in RSRP may
trigger a handover), the fact that both RSRP and speed
did exhibit high values at times indicates the existence
of an acceptable configuration. Furthermore, as mentioned
in subsection 2.2, we did not include probes with poor
coverage (i.e., those that observed mode switching). Instead,
the handovers observed in our dataset may be caused by
load balancing.

As far as the measurement sampling-rate is concerned,
our results indicate that we need to re-adjust it for nodes
with a large RSRP variation or frequent handovers. Con-
versely, we recommend network operators to start tracking
both features and troubleshoot all cases with higher vari-
ability. To the best of our knowledge, this is not done today.

7 RELATED WORK

Broadband performance quality and stability help users au-
dit their connectivity costs and regulators to make informed
decisions about policies and infrastructure investments. For
example studies like [20], [45] conduct monitoring cam-
paigns to probe the network speed experienced by mobile
broadband (MBB) customers from various regions.

To assess causes of differences in performance quality of
cellular networks from multiple dimensions, Nikravesh et
al. [39] conducted a large-scale measurement study span-
ning 17 months from diverse set of devices and carri-
ers located throughout the world. They found that there
were significant differences in performance both within and
across carriers. The performance metrics consisted of HTTP
GET throughput of file hosted on a Google Server and round
trip time latency to www.google.com. The study revealed
that differences in performance are partially explainable by
regional and time-of-day patterns, radio access technology,
signal strength and geographic location of a probe. Impor-
tantly, it was observed that performance was inherently
unstable, with some carriers providing relatively more or
less predictable performance for some specific day hours. A
similar study is conducted recently by Midoglu et al. [36].
Their work is based on longitudinal speed tests across
multiple MBB networks from different European countries.
They studied the effect of network context including radio
access technology, signal strength, mobility, day hour and
week day on speed quality.

Instead of analyzing performance variation of a cellular
network under normal condition, Baena et al. [15] per-
formed a long-term measurement study, during crowded
events (i.e., football matches) to get an insight on the extent
to which performance of different services and operators
varies before, during and after a social event. They used
virtualized probes in cellular network OAM3 for monitoring

3. Operations, administration and maintenance (OAM) system

and collected a number of KPIs along with downlink and
uplink throughput. They observed that though throughput
speed decreases during and after the social event finishes
for few operators, there are operators who retain stability
in their performance even during high demand. Similarly,
change of serving cell ID and better RSRP brought im-
provement in speed but not for every operator. To get
an insight from the perspective of real users, Walelgne et
al. [48] used one year-long crowdsourced download speed
measurements from commercial cellular networks. They as-
sessed changes in speed from the perspective of mobile user
activity, network operator, smartphone models, link stabil-
ity, time of day, handover frequency, area, signal strength
and day of week. They also built a machine learning model
to assess stability of a cellular network and to classify
reasons for network instability, using ‘minimal information’
such as a device model, radio technology, signal strength,
and battery level. Some studies such as [10], [43] investi-
gated performance differences in MBB networks from the
perspective of sub-urban/tribal, urban and rural areas. Bal-
trunas et al. used a dedicated measurement infrastructure to
track mobile broadband reliability and packet loss in mobile
networks [16]–[18].

All the works mentioned above examined the behaviour
of download speed under different settings, but did not
study (i) the extent of variation in performance that a
network can experience under a shared state, and (ii) the
accuracy of their performance analysis with network moni-
toring not void of missing observations. Our work is novel
in a way that it provides a multiway analysis on stability
of MBB networks over different time units, i.e., a shared
entity by network nodes. It then assesses the accuracy of the
derived patterns of download speed variation, with missing
data of different sizes and structures.

We use multiway data analysis tools, i.e., tensor fac-
torizations, to reveal interpretable patterns of variation in
download speed at different hours of the day, days of the
week and months of measurement year. Tensor factoriza-
tions have been used in data mining for extracting the
underlying patterns from complex datasets [8], [41]. They
have been recently used in applications of data communi-
cations and mobile networks [24], [51] to find patterns of
resource utilization in data centers, and to recover missing
features in a network traffic measurement set. In our previ-
ous work [27], we used the CP tensor model to understand
the outage behaviour of mobile broadband networks. Unlike
these mentioned studies, in this paper we analyze stability
over time in the download speed performance via tensor
factorizations.

As for the second challenge of missing data, previous
studies have employed various strategies to handle this
problem such as imputation [26], [32], [38] and interpola-
tion [37]. We, however, do not aim to increase the accuracy
of our analysis by imputing the missing data. Our goal
is rather to assess the percentage and structure of missing
data that can be tolerated in deriving reliable performance
patterns of a network.
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8 CONCLUSION

In this paper we have employed tensor factorizations to ana-
lyze variations in mobile broadband download speed under
different time units. We also evaluate the impact of missing
observations on the reliability of derived network perfor-
mance patterns. This is done both to assess the tolerance of
the derived performance patterns to missing samples, that
are unavoidable in a network monitoring campaign and to
guide on future network monitoring frequencies.

Our data set involves one year measurements from 78
stationary probes, that are placed in various urban set-
tings in Norway, and connect to the two largest network
providers in the country. The monitoring frequency is thrice
per day, throughout the measurement year. The measure-
ment tests include download speed tests for both network
providers. The aim is to unveil the extent of variation in
download speed that network subscribers observed across
the year. To extract the variation at different time scales, we
re-arranged the observed variations in two tensors, <nodes,
hours, week days> and <nodes, hours, months>.

Fitting a CP model to our tensors, we have found that
mobile broadband speed exhibits variability at several time
scales. Overall, we have established that high variability is
chiefly related to maintenance activity, high network load
and network upgrades. Apart from these causes, probes
that are subject to frequent handovers, a possible sign
of sub-optimal network configuration, have suffered high
speed variability. This signature offers network operators a
starting point to identify areas with unstable performance
and focus on mitigating the underlying causes. This is
particularly important as networks are moving to offer fixed
wireless access as a replacement to traditional broadband
connectivity or as a way to close the gap in broadband
coverage.

As for the reliability of the inferred patterns, we find that
when the missing data structure is random, then irrespective
of the intensity of instability in download speed, the derived
speed variation patterns are reliable. In the case where
the missing structure has large contiguous time chunks,
with high variations in the speed, the accuracy of derived
performance patterns are doubtful.

In the future, we plan to quantify optimal monitoring
frequency for the network operators on the basis of their
tolerance to missing data and determinism in their speed
values. We further aim to see if our models can be enhanced
by including side information such as handover frequency,
signal strength and the spatial locations of network nodes.
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