
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document, © 2023 IEEE Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. and is licensed under All Rights Reserved license:

Ocampo, Andres F ORCID logoORCID: https://orcid.org/0000-
0001-6926-0992, Mah Rukh, Fida ORCID logoORCID:
https://orcid.org/0000-0001-7660-1150, F. Botero, Juan,
Elmokashfi, Ahmed and Bryhni, Haakon (2023) Opportunistic
CPU Sharing in Mobile Edge Computing Deploying the Cloud-
RAN. IEEE Transactions on Network and Service Management,
20 (3). pp. 2201-2217. doi:10.1109/TNSM.2023.3304067

Official URL: https://doi.org/10.1109/TNSM.2023.3304067
DOI: http://dx.doi.org/10.1109/TNSM.2023.3304067
EPrint URI: https://eprints.glos.ac.uk/id/eprint/13912

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

1

Opportunistic CPU sharing in Mobile Edge
Computing deploying the Cloud-RAN

Andres F. Ocampo∗†, Mah-Rukh Fida‡, Juan F. Botero∥, Ahmed Elmokashfi§, Haakon Bryhni∗∗ SimulaMet – Simula Metropolitan Center for Digital Engineering, Oslo, Norway
† OsloMet – Oslo Metropolitan University, Oslo, Norway

‡ School of Computing and Engineering - University of Gloucestershir, Cheltenham, United Kingdom
§ Amazon Web Services (AWS), Seattle, Washington, United States

∥ Department of Electronics and Telecommunications Engineering, University of Antiouqia, Medellin, Colombia
Corresponding author: andres@simula.no

Abstract—Leveraging virtualization technology, Cloud-RAN
deploys several virtual Base Band Units (vBBUs) along with
collocated applications on the same Mobile Edge Computing
(MEC) server. Nevertheless, sharing computing resources (e.g.,
CPU) with collocated workloads could impact the performance
of vBBU and other instantiated real-time (RT) applications. To
tackle such issues, this paper proposes a run-time/dynamic CPU
sharing mechanism for containerized virtualization in MEC
servers hosting RT applications such as the vBBU along with
general-purpose applications. Formulating the CPU sharing
problem as a mixed integer problem (MIP), the proposed
mechanism is based on the decomposition of the MIP into
simpler subproblems solved through efficient constant factor
heuristics. We evaluate the algorithm’s performance against
optimal solvers. Then, using a small-scale testbed, we evaluate
different CPU sharing mechanisms and their ability to mitigate
the impact of CPU sharing on the processing performance of RT
applications. This analysis is extended to the Cloud-RAN, where
different CPU sharing strategies are evaluated showing how
these mechanisms contribute to mitigating the impact on the
vBBU performance. Our findings show that the proposed CPU
sharing mechanism reduces the impact of computing resource
sharing on vBBU scheduling latency, by up to 19%, compared
to the default Linux RT-Kernel Scheduler.

Index Terms—Cloud-RAN, Mobile Edge Computing, Contain-
ers, resource management

I. INTRODUCTION

The unprecedented growth of wireless traffic demand and
the time sensitive nature of services expected for the fifth
generation of mobile systems 5G [1], pose stringent constraints
of capacity and low latency over the mobile system. As a
result, a paradigm shift on the design and architecture of the
radio access network (RAN) is key to address these challenges.
For instance, the traditional distributed RAN architecture is not
economically feasible for dense deployments of small cells,
which seems to be the most likely network scenario in 5G
[2]. One reason is that small cells increase substantially the
transmission capacity and, therefore, the peak data rate per
cell.

To cope with such unprecedented wireless traffic demand
with low latency capacity requirements, both the Cloud-RAN
architecture and Mobile Edge Computing (MEC) provide a
promising solution for the RAN design. Leveraging software
defined wireless networking and virtualization technology [3],
the Cloud-RAN deploys multiple vBBUs along with collo-

cated services on the same MEC server. On the other hand,
providing cloud computing capabilities at the very edge of the
mobile network, MEC significantly reduces latency of mobile
services while easing both processing and traffic pressure over
the mobile system [4]. Furthermore, by sharing network and
processing resources, the Cloud RAN architecture and MEC
brings optimized operation and maintenance benefits to mobile
network operators (MNO) and service providers.

Because the vBBU performs both time sensitive signal
processing (e.g., layer 1 functions) and control functions
that do not impose latency requirements, the vBBU runs a
combination of real-time (RT) and non real-time (non-RT)
processes on the MEC server. Similarly, MEC runs a wide
spectrum of services with diverse requirements often imposing
low-latency constraints. Hence, running on MEC, the vBBUs
is expected to share resources with collocated RT and non-RT
applications. Although the feasibility of running the vBBU
on a MEC has been confirmed in related research [5], there is
still a need to investigate the vBBU performance in the light of
sharing computing resources, aiming at providing determinis-
tic execution time. Similarly, although running RT applications
using virtualization technology has been addressed in related
research [6], [7], there remains the need of investigating RT
processing in the light of sharing resources as in MEC.

To avoid processing interference with collocated processes
[8], running RT processes on a set of isolated CPUs has been
a common approach in RT systems [7], [9]. However, running
an application on isolated CPUs increases CPU underutiliza-
tion [10]. For instance, because of the bursty nature of mobile
traffic, vBBUs processing often remains idle. Consequently,
by running the vBBU on isolated CPUs, most of the CPU-
time remains unused while computing off-peak traffic events
[11]. To address this issue, this paper presents a CPU sharing
mechanism for containerized virtualization instantiating either
RT applications (RT containers) or non-RT applications (non-
RT containers) in MEC. This mechanism, called PRINCIPIA,
considers that RT-containers are allocated a fixed set (i.e., do
not change over time) of CPUs at deployment. Then, lever-
aging Cgroups’s 1 features to control resources assigned to
containers, PRINCIPIA enables non-RT containers to exploit
the underutilized CPUs allocated to RT-containers. First, by
allocating non-RT containers on the same CPUs as the RT

1https://man7.org/linux/man-pages/man7/cgroups.7.html

2

containers, subject to CPU requirements. Then, by controlling
the relative amount of CPU-time that non-RT containers are
allowed to use on those CPUs.

After evaluating the performance and limits of PRINCIPIA
when running a combination of RT and non-RT containers
with different workloads, our study evaluates the benefits of
adopting PRINCIPIA as a CPU sharing solution for container-
ized virtualization in MEC deploying the Cloud-RAN. To do
so, this paper uses a small scale testbed deploying vBBUs with
different functional splits, and switched Ethernet as mobile
transport Xhaul network. The vBBUs are instantiated on a
centralized MEC server along with collocated services with
diverse processing latency requirements.

In summary, the main contributions of this paper are as
follows.

• developing CPU sharing policies for containerized virtu-
alization in MEC,

• evaluating the realization of RT services while sharing
computing resources in MEC, and

• evaluating the benefits of adopting CPU sharing policies
in MEC deploying the Cloud-RAN.

The rest of the paper is organized as follows: section II
presents the background and motivation. Section III models
the MEC server considered in this study, while section IV
formulates the CPU sharing problem for collocated containers
sharing CPU resources in MEC servers. This section also
presents PRINCIPIA as a heuristic solution to the CPU sharing
problem. In section V, we evaluate different CPU sharing
approaches for collocated containers and their impact on
the RT performance on RT applications. Section VI extends
this evaluation to the Cloud-RAN, by assessing the impact
that sharing computing resources with collocated applications
causes on the RT processing performance of vBBUs, and how
different CPU sharing mechanisms can be used to mitigate
such impact. This section also assesses the impact of resource
sharing on the mobile network end-to-end performance. Sec-
tion VII presents the related work on Cloud-RAN architecture,
and the RT support to run RT applications on containerized
virtualization while sharing computing resources in MEC.
Finally, section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

This section covers the background by presenting the gen-
eral components of the Cloud-RAN architecture, and dis-
cussing the deployment of vBBUs on top of MEC servers
using containerized virtualization while sharing computing
resources.

A. The Cloud-RAN architecture

The RAN consists of user equipment(s) (UE), the air
interface, antennas, the Remote Radio Unit(s) (RRU), the
Baseband Unit (BBU), and a network link connecting the RRU
and the BBU known as Fronthaul. A transport network known
as Backhaul connects the RAN to the Core Network (CN). As
depicted in figure 1, in Cloud-RAN, the BBU is implemented
as a software-defined wireless networking application (vBBU).
Leveraging virtualization technologies, several vBBUs could

be deployed on top of a centralized MEC server sharing
processing and network resources [12].

Fig. 1: Cloud Radio Access Network architecture.

By sharing computing and networking resources, the Cloud-
RAN architecture provides a new paradigm to the RAN design.
Nevertheless, centralizing the BBU poses stringent latency
constraints and capacity requirements both to the Fronthaul
network and to the MEC server hosting vBBUs. To tackle
these challenges, two promising solutions are being considered
and standardized.

Functional Split: Processing part of the BBU functions
locally close to the antennas decreases the requirements of
bandwidth and latency in the Fronthaul. For instance, the
3GPP proposes a functional split reference model based on the
LTE protocol stack [13]. Moreover, the IEEE 1914 working
group has defined two logical split points placement [14]: the
distributed unit (DU), which is located near the cell tower; and
the centralized unit (CU), which is located at the MNO’s MEC.
Introducing both split points redefines the mobile transport
network segments and their requirements in terms of latency
and capacity: the Fronthaul is the segment between the RRU
and the DU; the Midhaul is the segment connecting the DU
and the CU, where data rate requirements depends upon the
chosen functional split; and the Backhaul, which connects
the Cloud-RAN with the CN. These transport segments are
referred to as mobile Crosshaul (XHaul).

Fig. 2: 3GPP functional split of the LTE-BBU functionality [13].

Depicted in figure 2, the dotted red line highlights the
split option as defined by 3GPP. Functions on the left side
of a given option are instantiated at the CU, whereas right
side functions are left for the DU. The more functions are
instantiated at the DU, the less stringent latency and network
capacity constraints over the Midhaul; the more functions are
instantiated at the CU, the higher the requirements of capacity
and latency on the Midhaul [15]. Figure 1 illustrates the
functional split placement for two vBBUs. While one of the
vBBUs centralizes all its functions (i.e., split 8), the second
one implements functional splitting between the DU and the
CU. Related works that study dynamic functional split and
placement include the work in [16].

Switched Ethernet Mobile X-Haul network: Switched Ether-
net statistical multiplexing enables a shared transport network,
aggregating traffic flows from multiple BBUs into the same

3

multihop network, instead of deploying a dedicated fiber
solution per BBU [17]. The survey paper by Gomes et al.
[18] summarizes the benefits, challenges, and the current ap-
proaches addressing the issues that Ethernet brings as mobile
Xhaul.

B. Running the vBBU on MEC

MEC servers run multiple applications with diverse execu-
tion time requirements [19], including RT applications such as
the vBBU. To run RT applications on top of a MEC system,
the host OS must provide RT guarantees, i.e., preemption
and a scheduling policy that focuses on meeting timing
constraints of individual processes rather than maximizing the
average amount of scheduled processes. The incurred cost of
development, maintenance, and licensing of a RT OS, has
motivated the adoption of a general purpose OS like Linux
to run RT systems [20]. Linux open source licensing and
Kernel modularity, ease the development, customization and
maintenance of any feature into the source code, thus reducing
costs [21]. Moreover, several mechanisms have been proposed
in recent years to provide RT support in the Linux Kernel (e.g,
RTLinux [22], Low-Latency patch [23], PREEMPT RT [24]
patch), opening up the possibility of its use for RT systems
[25], particularly, for RT signal processing of vBBU functions
in [26].

Virtualization technology with RT support for running RT
applications: Virtualization technology (e.g., hypervisor, con-
tainers) enables multiple applications running as isolated pro-
cesses on the same computing infrastructure. Recent efforts to
running RT applications using virtualization has motivated the
adoption of the concepts RT VMs and RT containers, which
refer to VMs and containers providing RT support, respectively
[25], [27]. To provide RT guarantees in hypervisor based
virtualization, while the hypervisor defines the RT scheduling
mechanism that allocates CPU time to virtual machines (VM),
the guest OS deploys an RT Kernel that preempts non-RT task
on behalf of RT ones [28] (e.g., Linux with RT support). In
containerized virtualization, on the other hand, containers do
not deploy such guest OS. Instead, containers rely on Kernel’s
features Cgroups and namespaces to isolate processes [29].
Hence, to provide RT guarantees, containers rely on the host
OS which adopts a RT-Kernel supporting preemption and RT
Scheduling [6].

When running RT processes, containers provide better RT
performance than VMs [25]. The reason has to do with the
overhead generated by Hypervisor and the guest OS. Con-
versely, containerized virtualization is considered a lightweight
virtualization as containers are isolated using Kernel features
namespaces and Cgroups [30].

C. Sharing computing resources in MEC servers

While running RT processes on a MEC system managed
by the Linux RT-Kernel, RT processes likely share computing
resources either with collocated user-space processes or with
Kernel threads. As a result, collocated workloads potentially
induce processing interference, either from sharing physical
resources [31], [32] or from Kernel space processing [33],

[34] that could impact the performance of RT applications
[35]. Despite the research efforts to understand the impact
of resource sharing among mixed time-critically applications
on general purpose processors (GPP), there remains the need
to investigate such impact on time-sensitive applications de-
ployed using virtualization technology, particularly in con-
tainerized virtualization. Moreover, there is a need for resource
management solutions that enables resource sharing among
collated applications while providing RT guarantees (i.e.,
enhanced determinism) to time-sensitive applications in MEC
[36].

Runtime resource management provides an alternative so-
lution for resource contention among collocated applications
[37]. Typically deployed either at the Kernel level (e.g., task
scheduling solutions [38]), or at the user-space (i.e., running as
a daemon process [39]), runtime resource management allows
efficient resource utilization while providing differentiated
processing guarantees to heterogeneous applications [40]–
[42]. In the context of MEC and multi-Cloud Computing
in general, resource management caters a wide spectrum
of problems [43], e.g., resource provisioning, resource allo-
cation, resource mapping, service migration, among others.
Typically implemented on resource orchestration platforms,
solutions to these problems aim at providing dynamic multi-
server/multi-Cloud resource management that optimize the uti-
lization of physical resources among applications instantiated
using virtualization technology [44]. Resource management
solutions in MEC/Multi-Cloud computing considering time-
critical services commonly rely on dynamic/static resource
provisioning of RT VMs/containers [45]. Nevertheless, the
inherent migration cost (in terms of time) of dynamically
provisioning applications among servers could impact the RT
performance of time-sensitive services [46].

To avoid performance degradation of RT services due to
resource provisioning among MEC servers, this paper assumes
that RT applications (e.g., vBBU) are provisioned on a single
MEC server at deployment time and can not be migrated
among servers afterwards. This approach is based on the ev-
idence from embedded computing platforms running multiple
applications with diverse execution time requirements [42].
On the other hand, to avoid processing interference from
collocated RT applications, this paper assumes that containers
hosting RT applications are allocated a set of orthogonal CPUs
(i.e., RT applications can not be mapped on the same CPUs).
Nevertheless, running applications on isolating CPUs increases
CPU underutilization [10]. This paper proposes a dynamic
CPU sharing mechanism for containerized virtualization that
enables containers hosting non-RT applications to opportunis-
tically share the CPUs assigned to RT containers.

Aiming at mitigating the impact that resource sharing cause
on RT applications, the CPU sharing mechanism allocates
CPUs and controls the amount of CPU-time that containers
hosting non-RT applications are allowed to use on the CPUs
assigned to containers hosting RT applications. To do so, this
mechanism leverages Cgroups subsystems cpuset 2 and CPU-

2https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

4

shares 3. While the former allows defining the set of CPUs that
a container is allowed to use when running its applications, the
later defines the relative amount of CPU-time that the container
is allowed to use on the assigned CPUs. Furthermore, our
mechanism provides differentiated CPU-allocation to non-RT
containers by defining priority policies.

III. MEC SYSTEM MODEL

This system model considers a MEC server consisting of M
CPUs. Because this paper focuses on sharing and allocating
CPUs among collocated containers, other physical resources
such as memory or disk are considered part of the common
resource pool, hence they are not part of this model. Sharing
and allocating such resources are decisions taken by the host
Kernel subject to specified orchestration constraints.

Using containerized virtualization, this system hosts a com-
bination of applications with diverse execution time require-
ments, which are classified into three groups: RT applications;
prioritized (PR) non-RT applications, which requires priori-
tized access to resources yet running as non-RT; best effort
(BE) non-RT processes, which are default general purpose
applications. Also, we assume that a container can only instan-
tiate applications with the same execution time requirement.
Consequently, containers are classified as RT containers, PR
containers, and BE containers, as defined by the following
indicator variable:

k =

1 if the container instantiates RT applications
2 if the container instantiates PR applications
3 if the container instantiates BE applications

Note that the decision of instantiating and provisioning
applications into this MEC server is taken by the resource
orchestration platform managing the MEC. In this model, we
assume that RT containers are statically instantiated on this
system during orchestration time, while non-RT containers
(e.g., PR and BE) can be instantiated dynamically during run-
time.

Let L1 = {11, 12, . . . , 1R} represent the set of deployed
RT containers. Similarly, let L2 = {21, 22, . . . , 2P} and
L3 = {31, 32, . . . , 3B} represent the set of deployed PR and
BE containers, respectively. While the set of all deployed
containers is represented by L = L2 ∪ L2 ∪ L3, the set of
non-RT containers is represented by Lp = L2 ∪ L3. During
deployment, each RT container r ∈ L1 is pre-allocated a set of
orthogonal CPUs according to its CPU requirement Cr ≤ M
as defined by the orchestration platform. The pre-allocated
CPUs to each RT container is described by the indicator vector
Ir = (Ir1, Ir2, . . . , IrM), where Irm is defined by:

Irm =

{
1 if container r is allocated CPU m

0 otherwise,

for all r ∈ L1 and m ∈ {1, 2, ...,M}. As stated, the
number of CPUs allocated to RT containers must satisfy their

3https://man7.org/linux/man-pages/man7/cgroups.7.html

CPU requirements, so that
∑M

m=1 Irm = Cr. By orthogonal
allocation we referred to the fact that two RT containers can
not be allocated the same set of CPUs, in other words the
inner product ⟨Ii, Ij⟩ = 0, for all (i, j) ∈ L1 where i ̸= j.

Conversely, non-RT containers (both PR and BE) do not
have any such pre-allocated CPUs. They opportunistically try
to use the underutilized CPUs assigned to RT containers.
Based on the container’s CPU usage and the per processor
CPU utilization from CPUs assigned to RT containers, this
model considers dynamic CPU allocation to non-RT contain-
ers. While CPU allocation decisions can change over time,
such decisions should meet the CPU requirement Cn ≤ M for
each non-RT container n ∈ Lp as defined by the orchestration
platform. Note that the CPU allocation here refers to deciding
the set of CPUs that a given container is allowed to use.
The host RT-Kernel schedules CPU-time to the container
from the allocated CPUs, once available, according to the
Kernel scheduling policy and the priority of the container’s
instantiated application.

To compute parameters, our model assumes a slotted time
t ∈ {0, 1, 2, . . .}. The timeslot here, though, differs from
the MEC’s cycle duration in that this timeslot defines the
granularity or interval duration at which this model computes
its parameters. In essence, this model relies on monitoring
system metrics like per processor CPU utilization and con-
tainer’s CPU usage to make CPU allocation decisions to
containers every timeslot. Because the timeslot granularity is
arbitrarily defined, measuring system metrics samples (e.g.,
CPU utilization) likely capture instant or temporal spikes
that potentially lead to wrong model computation. For that
reason, this model first monitors systems metrics, and then
computes model parameters based on both the current sample
and the trend from previous monitored data. To do so, this
model tracks these system’s metrics through the introduction
of virtual ring buffers. Such buffers are virtual in that they are
maintained purely in software, while saving metrics statistics
collected over the last W timeslots.

As stated, temporary spikes or drops in measured metric
samples would affect the further model computation. For this
reason, we compute model parameters (e.g., per-processor
CPU utilization and container CPU usage) using a variation of
the standard exponential moving average (EMA) [47]. Rather
than computing such parameters based on the snapshot of
the last sample, the modified EMA (mEMA) provides smooth
predicted samples for a general time series by combining the
Simple Moving Average (SMA) over a sliding window and an
EMA. To illustrate how this model computes mEMA, consider
a timeslot of arbitrary granularity and a time-slicing window
of size W[timeslots]. Also, consider the so-called ring buffer
X(t) = {x(t−1), x(t−2), . . . , x(t−W)} which contains the
previous samples of a general time series measured over the
last W timeslots. First, compute the Simple Moving Average
(SMA) of X(t) given by SMA(X(t)) =

∑W
w=1 x(t−w)/W .

Then, for a new data sample x(t) compute the MEMA as
follows:

mEMA(x(t)|X(t)) = αx(t) + (1− α)SMA(X(t)) (1)

5

where α = 2
W+1 is the smoothing constant which de-

termines how fast the exponential weights decline over the
past consecutive W periods [48]. While there are no specific
alpha values that are universally applicable or commonly used
across different data, choosing the α value depends on the
desired trade-off between responsiveness to recent changes
and the smoothness of predictions [49]. While a smaller
value of alpha gives more weight to historical data, a larger
value of alpha gives more weight to the recent sample [50].
Therefore, to make sample predictions less sensitive to short-
term fluctuations (i.e., instant spikes or drops in a measured
metric sample), our model adopts a slicing window W = 10
timeslots (i.e., α = 0.18).

Unlike common EMA implementations which keep the last
predicted value as the contribution from previous data on
the subsequent computation of new predictions, this approach
uses the last measured samples in X(t) as the contribution
from previous data. Specifically, the SMA equally weighs
the samples on X(t) to compute the predicted sample for
the current timeslot. Hence, the mEMA provides a predicted
sample every timeslot that exponentially weights the average
contribution of the last measured samples through the sliding
window. The value obtained after the mEMA calculation is
further used to compute this model’s parameters. By the end
of timeslot t, the ring buffer X(t) is updated according to the
current sample x(t) and the slicing window W .

A. Computing per processor CPU utilization

The per processor CPU utilization refers to the ratio between
the number of cycles (i.e., CPU-time) that a given CPU spent
actually processing system workloads over the total amount of
cycles in a timeslot [51]. Measuring the CPU utilization every
timeslot, this model buffers the previous W CPU utilization
measurements.

For each CPU m ∈ {1, 2, . . . ,M}, we define the virtual
ring buffer Um(t) containing the previous W samples of CPU
utilization. Updated every timeslot, this virtual buffer evolves
according to the slicing window W as Um(t) = {um(t −
1), um(t − 2), . . . , um(t −W)}. Here, um(t − w) represents
the CPU utilization as measured in timeslot (t − w), where
w ∈ {1, 2, . . . ,W}.

As a function of a new sample um(t) and the ring buffer
Um(t), this model computes the CPU utilization for each CPU
m ∈ {1, 2, . . . ,M} following the EMA in (1), as follows:

U∗
m(t) = EMA{um(t)|Um(t)} (2)

The CPU utilization allows deriving the CPU availability,
which provides a notion of the unused CPU-time on CPU m.
Let Gm(t) denote the CPU availability on CPU m in timeslot
t, given by:

Gm(t) = 1− U∗
m(t) (3)

B. Computing container’s CPU usage

The container’s CPU usage refers to the ratio between the
total amount of CPU-time used by the container to run its

instantiated application, over the total amount of CPU cycles.
To monitor the container’s CPU usage, for each container
n ∈ L, we define the virtual ring buffer Qn(t). Updated
every timeslot, this virtual buffer evolves according to the
slicing window W such that Qn(t) = {qn(t − 1), qn(t − 2),
. . . , qn(t − W)}. Here, qn(t − w) represents the CPU us-
age of container n as measured in timeslot (t − w), where
w ∈ {1, 2, . . . ,W}.

Denoted by Q∗
n(t), this model computes the CPU usage

of container n in timeslot t, following the EMA in (1) as a
function of the new sample qn(t) and the previous W samples
stored in the ring buffer Qn(t), as follows:

Q∗
n(t) = EMA{qn(t)|Qn(t)} (4)

IV. OPPORTUNISTIC CPU SHARING

This section presents an opportunistic CPU sharing mech-
anism that seeks to provide non-RT containers with access to
unused CPU resources while ensuring that the performance
requirements of RT containers are not compromised. The
proposed mechanism leverages Cgroups’ features to control
resources assigned to containers, using cpuset and shares
subsystems.

A. CPU and CPU-shares Allocation problem - C2SAP

Consider a system controller that monitors and computes
the per CPU availability Gm(t) following (3), for each CPU
m ∈ {1, 2, . . . ,M}. Similarly, the system controller monitors
and computes the container’s CPU usage Q∗

n(t) following (4),
for each deployed RT and non-RT container n ∈ L. According
to the current CPU availability and the container’s CPU usage,
the network controller decides the CPU allocation to each non-
RT container n ∈ Lp subject to its CPU requirement Cn,
every timeslot t. Let χn(t) = (χn1(t), χn2(t), . . . , χnM (t))
represent the CPU allocation vector for the non-RT con-
tainer n. Here, χnm(t) ∈ {0, 1} denotes the CPU m al-
location decision, such that χnm(t) = 1 if the CPU m
is allocated to container n, and χnm(t) = 0 otherwise.
Let Ωn(t) = {ωn1(t), ωn2(t), ..., ωnM (t)} be a collection of
positive weights for the non-RT container n, where ωnm(t)
denotes the weight (i.e., the value) of allocating CPU m to
the non-RT container n.

To avoid potential impact on RT containers caused by
processing interference from collocated non-RT containers,
the system controller allocates the relative amount of CPU-
time (referred to here as CPU-shares) that each container
is allowed to use on the allocated CPUs. Let Sn(t) =
(Sn1(t), Sn2(t), . . . , SnM (t)) represents the CPU-shares de-
cision vector for container n ∈ L, where Snm(t) denotes the
CPU-shares allocation decision for container n when using
CPU m. Let αn(t) be a positive weight for container n ∈ L,
which denotes the container’s CPU demand on the CPU-shares
allocation.

The objective is to design a CPU sharing policy that yields
a CPU and CPU-shares allocation to all containers by solving
the following optimization problem:

6

max
∑
n∈Lp

∑
m∈M

ωnm(t)χnm(t) +
∑
n∈L

∑
m∈M

αn(t)Snm(t)

(5)

s.t.
∑
m∈M

χnm(t) ≥ Cn,∀n ∈ Lp (6)∑
n∈Lp

Snm(t)χnm(t) +
∑
r∈L1

Srm(t)Irm ≤ 1,∀m (7)

χnm(t) ∈ {0, 1},∀n,m (8)
0 ≤ Snm ≤ 1,∀n,m (9)

Here, while the objective function (5) is a weighted sum of
both binary and continuous decision variables, inequality (6)
represents the constraint imposed by the CPU requirement of
the non-RT container n. Inequality (7) represents the constraint
imposed by the total CPU-shares containers (both non-RT and
RT) sharing the same CPU. The above problem is similar
to the variant of the mixed integer setup knapsack problem
(MISKP) presented by Altay et al. in [52] where fractions
(i.e., continuous decision variables) of individual items (i.e.,
integer decision variables) are allowed to be loaded into a
capacitated knapsack. Here, the continuous decision variables
Snm(t) represent the CPU-shares that allocate the relative
amount (i.e., fraction) of CPU-time that containers are allowed
to use on the allocated CPUs. Nonetheless, unlike the MISKP
where the integer variables represent the number of items
from different classes to be loaded in a common capacitated
knapsac, the CPU allocation represented by the binary decision
variables χnm(t) reduced to a generalized Maximum Weight
Matching problem in a bipartite graph (as shown in figure 3),
where the containers n are matched (i.e., assigned) to the CPU
m based on their respective demands and available resources.

Involving both integer and continuous decision variables,
mixed integer programming (MIP) is hard to solve in general
(i.e., NP-hard). However, as highlighted by Andrea Lodi
in [53], 50 years of Integer and MIP has led to a stable
algorithmic approach for solving MIP problems efficiently in
practice. Such an algorithmic approach relies on the interactive
solution of Linear Programming (LP) relaxation of the original
MIP problem and employing various branching heuristics,
cutting planes, and primal-dual methods to derive optimal
or close-to-optimal. For instance, for the MISKP [52], Altay
et al. adopted the notion of Benders decomposition [54]
to iterative fix the values of the binary decision variables
generating a continuous LP-relaxation of the problem which
is easier to solve. Similarly, we adopt the notion of Benders
decomposition to solve the CPU and CPU-shares problem,
which includes a subproblem containing only binary variables
and an LP subproblem containing only continuous variables.

B. C2SAP decomposition

The C2SAP is decomposed into two parts: the CPU alloca-
tion problem, which contains only binary decision variables,

Fig. 3: Example MEC system showing containers with different priority (e.g.,
RT, PR, and BE). RT containers are pre-allocated a subset of CPUs. For each
non-RT containers and each CPU there exist an edge (n,m) whose weight
defines the basis for opportunistic CPU allocation.

and the CPU-shares problem, which contains continuous de-
cision variables. The solution of the CPU allocation problem
allows for fixing the binary variables to produce an LP for the
CPU-shares problem.

1) CPU Allocation problem: The CPU allocation problem
is obtained by skipping the CPU-shares part from the C2SAP.
Furthermore, without losing generality, we assume that each
non-RT container is allocated exactly the amount of CPUs as
its CPU requirement Cn, avoiding overprovisioning of non-
RT containers. To do so, rather than tightening the constraint
(6) (i.e., changing the inequality constraint to an equality con-
straint), we redefine the decision variable to include the CPU
requirements of each non-RT container. Let cn = {ni|n ∈
Lp, i = {1, ..., Cn}} be the set of CPU requirements of non-
RT container n. Also, let χn′m(t) represent the decision of
allocating CPU m to the CPU requirement n′ of the non-RT
container n in timeslot t, with n′ ∈ cn.

Choosing a CPU allocation χn′m(t) requires solving a
generalized Maximum Weight Match problem (MWMP) on
a
∑

n∈L′
p
|cn| × M bipartite graph, as illustrated in figure

3. Let G(V,E) denote the bipartite graph where the vertex
set V is decoupled into the set of CPU requirements of
non-RT containers V1 =

⋃
n∈Lp

cn and the set of CPUs
V2 = {1, 2, ...,M}, such that V = V1 ∪ V2, and V1 ∩ V2 = ∅.
For each pair of vertices n′ ∈ V1 and m ∈ V2, there exists
an edge (n′,m) ∈ E whose weight is given by ωnm(t) which
depends upon the CPU availability and CPU usage of the non-
RT container n. Thus, the CPU allocation decision consist
of finding a matching χn′m(t) of maximum weight in the
following problem:

max
∑
n′,m

ωnm(t)χn′m(t) (10)

s.t.
∑

n′∈V1

χn′m(t) = 1,∀m (11)∑
m∈V2

χn′m(t) = 1,∀n′. (12)

χn′m(t) ∈ {0, 1},∀n′,m (13)

meaning that a vertex in a matching can not be adjacent
to more than one vertex [55]. With this condition, though,
once a CPU is allocated to a non-RT container (i.e., an
edge is matched χn′m(t) = 1), the same CPU can not be
allocated to any other container, which is against the CPU
sharing goal of this paper. Furthermore, if |V1| > |V2|, these

7

constraints violate the CPU requirement constraint (6) of the
C2SAP. Allowing CPU sharing in the CPU allocation problem
requires solving the MWPMP (which stands for Maximum
Weight Perfect Matching Problem) in an augmented complete
graph G′(V ′, E′). This augmented graph is constructed by
adding dummy nodes to the vertex set V2

′ = {mn′|∀m ∈
{1, 2, ...,M} ∧ n′ ∈ cn}, such that V ′ = V1 ∪ V2

′. Also,
we assume that G′ is complete, meaning that for each pair
of vertices n′ ∈ V1 and m ∈ V2

′, there exists an edge
(n′,m′) ∈ E′ whose weight is given by ωn′m′(t) = ωnm(t)
if n′ ∈ cn, ωn′m′(t) = 0 otherwise. Without losing generality,
the MWPMP reduces to a MWMP in an augmented graph by
adding zero-weight edges when necessary [56]. Thus, solving
the MWPMP on the augmented graph is equivalent to solving
the MWMP on the original graph G.

The MWMP in bipartite graphs is a well-known problem
in combinatorial optimization used to model a wide range
of assignment problems [57]. Several algorithmic approaches
have been proposed to find the exact solution to the MWMP,
including the classical Hungarian [58] and Blossom [59]
algorithms. Duan et.al in [60], [61] present a literature review
of the most relevant algorithms to solve both the MWMP
and the MWPMP while proposing linear-time approximation
solution to the problem. Here, we use the Blossom algorithm
as exact solution to the above problem establishing a baseline
for comparison with a solution based on constant factor
approximation discussed in the following.

2) CPU-shares Allocation problem: The CPU-shares Allo-
cation problem is obtained by fixing the values of the binary
decision variables χn′m(t) in the C2SAP, as the solution of
the CPU allocation problem above. While fixing the χn′m(t)
values converts the CPU allocation part of the objective func-
tion (5) into a constant, the integrality constraint (8) converts
into the upper bound for the CPU-shares Sn′m(t) decision
variables. Thus, choose a CPU-shares allocation Sn′m(t) that
solves the following problem:

max
∑
n∈L

∑
m∈M

αnm(t)Sn′m(t) +
∑
n′,m

ωnm(t)χn′m(t)

(14)

s.t.
∑
n∈Lp

∑
n′∈cn

Sn′m(t) +
∑
r∈L1

Srm(t)Irm ≤ 1,∀m (15)

Sn′m(t) ≤ χn′m(t),∀n,m (16)

The above is a linear programming (LP) that seeks to
maximize a weighted sum of CPU-shares. Here, inequality
(15) represents the constraint imposed by the sum of CPU-
shares allocated to containers sharing the same CPU, including
the RT-containers provisioned to that CPU, which can not
exceed 1. Inequality 16) represents the CPU-shares upper
bounds constraint imposed by the CPU allocation such that
the CPU-shares is zero if a given CPU is not allocated to a
container in timeslot t.

Although the above C2SAP decomposition breaks down the
problem into easier to solve CPU allocation and CPU-shares
allocation subproblems, the optimal solution to these subprob-

lems requires two different algorithms incurring significant
overhead. For instance, solving the MWPM in an augmented
graph involves

∑
n∈L′

p
|cn| dummy nodes increasing the prob-

lem size and hence the computational complexity. To address
these challenges, we next present a constant factor approxi-
mation algorithm for the CPU and CPU-shares allocation.

C. PRINCIPIA: opportunistic CPU sharing

Presented here is a constant factor approximations algorithm
to the C2SAP presented earlier. While jointly solving the
CPU and CPU-shares allocation subproblems, this algorithm
is simpler to implement and results in lower computational
overhead compared to exact methods.

To compute the weights on the CPU allocation, inspired
by the Law of Attraction, the weight ωnm(t) is defined as
the attraction of a non-RT container n to use the CPU m as
follows:

ωnm(t) =
Gm(t)Q∗

n(t)

ρm(t)2
(17)

Here, while the per processor CPU availability Gm(t)
represents the “mass” of CPU m, the container’s CPU usage
Q∗

n(t) represents the “mass” of the non-RT container n.
Similarly, representing the “distance” between the CPU m and
a given container n, ρm(t) computes the number of containers
for which CPU m has been allocated until the beginning
of timeslot t, with ρm(t) ≥ 1 over slots t ∈ {0, 1, 2...}.
The minimum value of ρm(t) = 1 is the baseline value
indicating that only the RT container pre-assigned to CPU m
is running and any additional non-RT containers have yet to be
allocated CPU m until timeslot t. Without loss of generality,
the proposed mechanism can also include allocating CPUs that
have not been pre-assigned to any RT container. In such a
case, the baseline value ρm(t) = 1 indicates that only the host
Kernel is running on CPU m until timeslot t.

Furthermore, inspired by the common Inverse-Square Law,
the weight of container n on the CPU-shares allocation αn(t)
is computed as follows:

αn(t) =
Q∗

n(t)

υ2
k

(18)

Here, υk denote the control constant associated with each
priority policy k ∈ {1, 2, 3}, such that υ1 < υ2 < υ3. Thus,
the weight αn(t) varies proportionally to the container’s CPU
usage Q∗

n(t), and varies inversely as the square of the control
constant υk. Put another way, the CPU intensity of container
n decreases as its control policy is not RT (i.e., k = 1).
For example, if the control constant of a PR container is
twice that of RT containers (i.e., ν2 = 2ν1), it makes the
intensity or weight of PR containers to be four times weaker
than that of RT containers. Hence, υk enables controlling the
influence of CPU intensive non-RT containers on the allocation
of CPU-time. Although RT containers running RT applications
can preempt non-RT containers in the RT-Kernel, limiting
the proportion of CPU-time that collocated non-RT containers
are allowed to use would benefit RT containers by reducing
processing interference.

8

PRINCIPIA CPU and CPU-shares solution: PRINCIPIA
is an approximate algorithm that jointly solves the CPU
and CPU-shares allocation problems following the C2SAP
decomposition introduced earlier. Rather than solving the
MWPMP in an augmented graph, PRINCIPIA proposes a
Greedy Maximal Weight Match (PGMWM) solution for the
CPU allocation subproblem. The PGMWM aims to provide an
online solution that can be computed with less overhead than
the MWPMP which can be solved in polynomial time [62]. For
instance, the Blossom algorithm requires up to O(|V |3) time
complexity for solving the MWPMP [63], yet such complexity
is often not feasible to implement in most practical scenarios
[64].

Simpler greedy maximal matching (GMM) algorithms have
been widely adopted in practice which significantly reduces
the algorithmic complexity [64]. The most common perfor-
mance metric is the worst-case ratio between the size of
the matching obtained by the algorithm and the size of the
maximum matching. Reported randomized greedy algorithms
have achieved worst-case ratios above 0.7 [65]. To meet
each container’s CPU requirement, the PGMWM provides
an iterative solution to the CPU allocation problem that
achieves a worst-case ratio of 1 (perfect matching). The basic
idea behind PGMWM is to select edges in decreasing order
of weight. Similar GMM algorithms have been developed
for general randomized graphs [66]. More specifically, the
PGMWM is similar to the so-called ranking algorithms [67],
though PGMWM implements a sequential matching exploiting
a deterministic order of non-RT containers, starting from PR
to BE containers.

Illustrated in algorithm 1, the PGMWM consists of recur-
rently finding the maximal weight matching for each non-RT
container n ∈ {Lp}, every timeslot, on a

∑
n∈L′

p
|cn| × M

bipartite subgraph Gn(Vn, En) between the set of CPUs
required by non-RT container n denoted by V1 = cn and
the set of available CPUs V2 = {1, 2, . . . ,M}, such that
V = V1 ∪ V2, and V1 ∩ V2 = ∅. For each pair of vertices
n ∈ V ∗

1 and m ∈ V2, there exists an edge (n,m) ∈ En

whose weight is given by ωnm(t). A maximal matching is
defined as the subset E∗

n ∈ En containing the Cn edges (n,m)
with the largest weights ωnm(t). As shown in Appendix A,
the the PGMWM finds the maximal matching for all non-RT
containers in O(

∑
n∈Lp

|E∗
n| log |E∗

n|).
Each iteration of the PGMWM algorithm results in a

maximal weight matching that allocates CPUs to a non-RT
container guaranteeing that its CPU requirements are met.
With the new CPU allocation, PRINCIPIA updates the number
of containers assigned to each CPU ρm(τ), each iteration
in sub-timeslot granularity τ < t. The counter ρm(τ) is
used to compute the weight ωnm(τ) of each edge in the
subgraph corresponding to the CPU allocation of the non-RT
container in the next iteration of the algorithm, following 17.
Computing ωnm(τ) using this iterative approach allows for the
algorithm to provide evenly distributed CPU allocation among
non-RT containers. Conversely, if computed at the beginning
of timeslot t, ρm(t) only reflects the containers mapped to
CPUs until the previous slot, generating edge weights that

favor allocation of CPUs with low congestion in the previous
timeslot potentially leading to uneven CPU allocation.

Let χ∗
n(t) = (χ∗

n1(t), χ
∗
n2(t), . . . , χ

∗
nM (t)) be the solution

vector to CPU allocation problem in (10) following the
PGMWM, where χ∗

nm(t) is given by:

χ∗
nm(t) =

{
1, if (n,m) ∈ E∗

n

0, otherwise (19)

On the other hand, rather than solving the CPU-shares
subproblem as an LP, after allocating CPUs to all non-RT
containers, PRINCIPIA computes the CPU-shares using a
proportional allocation based on the CPU usage of each non-
RT container. Let S∗

n(t) = (S∗
n1(t), S

∗
n2(t), . . . , S

∗
nM (t)) be

the CPU-shares decision vector of container n, where S∗
nm(t)

is computed as follows:

S∗
nm(t) =

αn(t)∑
n∈Lp

αn(t)χ∗
nm(t) +

∑
r∈L1

α∗
r(t)Irm

(20)

PRINCIPIA allocates CPU-shares to containers sharing the
same CPU proportionally as the ratio between the CPU
intensity of container n over the sum of CPU intensities of
containers mapped to the same CPU. While this proportional
allocation benefits non-RT containers by avoiding CPU starva-
tion, the CPU intensity prioritizes RT containers on the CPU-
shares allocation.

Algorithm 1 PRINCIPIA Greedy Maximal Weight Match

Step 0 Input: Q∗
n,Ωn, αn(t);

Initialization: −→χn := 0,
−→
Sn := 0,

∣∣−→χn

∣∣ = ∣∣∣−→Sn

∣∣∣ = M ;
Step 1 for each n ∈ Lp

for k ∈ {1, ..., Cn}
m := index(argmax{Ωn});
−→χn[m] := 1;
Ωn[m] := 0;

end for
end for

Step 2 for m ∈ {1, 2, ...,M}
Snm :=

αn(t)∑
n∈{L2∪L3} αn(t)χ∗

nm(t)+
∑

r∈L1
α∗
r (t)Irm

;
−→
Sn[m] = Snm;

end for

Step 3 χ∗
n(t) = −→χn, S∗

n(t) =
−→
Sn;

Step 4 Output: χ∗
n(t), S∗

n(t);

D. Performance analysis

To assess the performance of PRINCIPIA for CPU and
CPU-shares allocation, we simulate the PGMWM algorithm
on an example CPU sharing scenario. This scenario comprises
two RT containers, two PR containers, and two BE containers,
as depicted in Figure 5. The PGMWM algorithm is evaluated
against two optimal solutions: a GLPK based MIP solver
(referred to as MIP) for the C2SAP in (5), and a custom solver
designed specifically for the CPU and CPU-shares decomposi-
tion (referred to as MWM+LP) introduced above. Specifically,
the decomposition solver comprises an instance of the Blosson
algorithm [68] to solve the MWMP of the CPU allocation
subproblem in (10), and a GPLK based LP solver to solve the
CPU-shares allocation subproblem in (14). Additionally, a sec-
ond CPU and CPU-shares decomposition solver (referred to as

9

MWM-SG+LP) is evaluated. Rather than solving the MWMP
in an augmented bipartite graph, the MWM-SG+LP solves
the MWMP recurrently solves the MWMP for each non-
RT container on the same bipartite subgraphs implemented
by PRINCIPIA, and a GPLK based LP solver to solve the
resulting CPU-shares allocation subproblem. The idea behind
this solver is to compare the performance of the PGMWM
against the optimal solver in simple subgraphs.

Each container generates CPU-usage according to an in-
dependent and identically distributed (i.i.d) Normal process.
Particularly, at the beginning of every slot, each container
n ∈ L generates i.i.d CPU-usage with probability Qn(t) ∼
N (µn, σ

2
n), with parameters µn and σ2

n. Similarly, at the
beginning of every slot, each CPU m generates i.i.d CPU-
availability with probability Gm(t) ∼ N (µn, σ

2
n), with pa-

rameters µm and , σ2
m.

To compare the performance of PRINCIPIA and optimal
methods for CPU and CPU-shares allocation, we evaluated
solution metrics such as the achieved objective function value,
approximation ratio, fairness index, and execution time. We
computed the approximation ratio as the ratio between the
mean objective function value computed by the approximation
algorithm over slots and that of the optimal solution MIP. In
essence, the approximation ratio provides a measure of how
close the approximate solution obtained by a solver/algorithm
is to the optimal solution. On the other hand, to assess
how well these algorithms are balancing resource allocation
across CPUs, we measure the Jain fairness index [69] of the
amount of non-RT containers mapped to the CPUs. The Jain
index provides a metric for evaluating how evenly non-RT
containers are assigned to CPU resources, with values closer
to 1 indicating a more even assignment of non-RT containers
to the different CPUs. Furthermore, we also evaluate the
fairness index of the CPU-shares allocation among the non-RT
containers using the Jain index.

We conducted simulations over 100,000 timeslots. Table
I shows the solution metrics obtained from the evaluation
of PRINCIPIA and the optimal solvers. While the MIP and
the MWM+LP provide optimal solutions, MWM-SG+LP and
PRINCIPIA achieve approximations to the optimal solution
with an average approximation ratio of 0.2. The reason for
the relatively low approximation ratio is that PRINCIPIA
and MWM-SG+LP recurrently compute the CPU allocation
weights ωnm as non-RT containers are allocated to the
CPUs. Nevertheless, by updating the number of containers
assigned to each CPU and recurrently computing the CPU
allocation weights, PRINCIPIA and MWM-SG+LP perform
a more even allocation of CPUs across non-RT containers,
as reflected by their higher fairness indices compared to
MIP and MWM+LP. Similarly, the fairness indices for CPU-
shares allocation among non-RT containers are higher for
PRINCIPIA compared to the optimal solvers, which reflects
the proportional CPU-shares allocation approach adopted by
PRINCIPIA.

The low fairness index values for the optimal solvers
indicate that resources are not being evenly allocated. For
instance, the allocation of CPUs alternates over slots in MIP
and MWM+LP, as the number of containers assigned to each

Solution metric Solver/Algorithm
MIP MWM+LP MWM-SG+LP PGMWM

Objective function 7183.6 7184.2 1655.9 1624.6
Approximation ratio 1.0 1.0 0.23 0.22

Fairness index
CPU assignment 0.5 0.5 0.78 0.78

Fairness index
CPU-shares allocation 0.5 0.5 0.5 0.98

TABLE I: Solver/Algorithm performance. Evaluated solution metrics: (i)
Objective function. (ii) Approximation ratio. (iii) Fairness index of allocation
across CPUs. (iv) Fairness index of CPU-shares allocation.

CPU as well as the CPU allocation weights are updated at the
beginning of each timeslot. Hence, the allocation prioritizes
CPUs with high availability in the next slot. Similarly, for the
CPU-shares allocation, the optimal solvers seek to maximize a
weighted sum whose solution often falls in extreme points of
the feasible region with the highest weights (i.e., RT containers
receive higher CPU-shares weight as defined by the priority
policy k = 1). As a result, the optimal solvers unevenly
allocate CPU-shares among non-RT containers, leading to
lower fairness indices compared to PRINCIPIA.

Finally, figure 4 provides an overview of the runtime for
each solver. Certainly, PRINCIPIA’s greedy approach to solv-
ing the CPU and CPU-shares subproblem is significantly faster
than the optimal solvers, with a runtime in the microsecond
range. In contrast, the MIP, MWM+LP and MWM-SG+LP
solvers have significantly longer runtimes in the milisecond
range, making them less suitable for practical MEC systems.

Fig. 4: Runtime profiles for all different solvers.

V. ASSESSING CPU SHARING IN MEC

This section evaluates CPU sharing in MEC servers that host
RT and non-RT applications using containerized virtualization.
Depicted in figure 5, the evaluation setup consists of a MEC
server where two RT containers, two PR containers, and two
BE containers share a set of four CPUs. The evaluation is
composed of two parts. The first part, collocated RT contain-
ers, evaluates CPU sharing among collocated RT containers.
The second part, collocated non-RT containers, evaluates CPU
sharing when non-RT containers are collocated on the same
CPUs as the RT containers.

Collocated RT containers: Assuming that both RT contain-
ers require two CPUs each, we evaluate two CPU sharing
scenarios: (i) Sharing CPUs, where both RT containers run on
the same two CPUs; and (ii) Orthogonal CPUs, where each

10

Fig. 5: CPU sharing. RT containers are allocated orthogonal CPUs. Both PR
and BE run on CPUs allocated to RT container according to CPU sharing
policies (e.g., PRINCIPIA).

RT container run on a set of two orthogonal CPUs. To emulate
RT application workloads, each RT container runs a stressors
of the synthetic benchmark tool stress-ng4 with RT priority 99
(i.e., by setting the Linux RT attribute chrt = 99). The stressors
consist of a single thread process instructed to rapidly change
the CPU affinity. Switching this process’s CPU affinity enables
a scenario where the RT-Kernel schedules the process on the
evaluated CPUs.

The conducted experiments consist of measuring the pro-
cessing latency of RT containers in the Linux RT-Kernel. To
do so, each RT container runs one thread of the cyclictest
setting the RT priority 99. The cyclictest5 provides an estimate
of the system’s real-time latency by measuring the difference
between the time at which the thread signals to wake up
and the wake up time. Here, each experiment captures the
processing latency as reported by the cyclictest during a time
span of 5 minutes.

Figure 6 shows the distribution of processing latency events
for both evaluated scenarios. These distributions compute the
average of latency events over a set of twelve experiments
for an observation time-span of 60 minutes. In the RT-Kernel,
because a RT process can not preempt any other RT process,
RT processes potentially spend longer time in a CPU runqueue
waiting their time to run (i.e., processing interference) if
several RT processes happen to be scheduled on the same
CPU. Such is the case of the Sharing CPUs scenario where
both RT containers run their processes on the same set of two
CPUs. Consequently, RT containers often experience longer
processing latency as shown by their tailed processing latency
distributions. For instance, on average, while 75% of latency
events fall on the first 15 µsec buckets, the maximum latency
which is an indicator of the worst case execution time (WCET)
spans until 0.1 to 0.3 msec.

To avoid processing interference from collocated RT con-
tainers, in the Orthogonal CPUs scenario, each RT container
runs on a set of two different CPUs. The latency distribution
for this scenario shows the benefits of running RT containers
on orthogonal CPUs. Here, on average, while 75% of latency
events fall in the first 4 µsec buckets, the maximum latency
is bounded below 20 µsec. Based on this evidence, this
paper adopts and encourages orthogonal CPU allocation for
containers running time-sensitive applications in MEC.

Collocated non-RT containers: Aiming to avoid CPU un-
derutilization from containers running on exclusive CPUs,

4https://wiki.ubuntu.com/Kernel/Reference/stress-ng
5https : / / wiki . linuxfoundation . org / realtime / documentation / howto / tools /

cyclictest/start

(a) Sharing CPUs

(b) Orthogonal CPU

Fig. 6: Processing latency of RT containers. Computed over a set of twelve
experiments (total observation time-span is 60 minutes) - Evaluated scenarios:
(i) Sharing CPUs (RT container run on the same CPUs) (ii) Orthogonal CPUs
(RT containers run on different CPUs).

in this scenario, non-RT containers are collocated on the
CPUs allocated to RT-containers. The methodology consists of
evaluating the processing latency of deployed RT containers
while sharing CPUs with collocated non-RT containers. As
depicted in figure 5, let L1 = {11, 12} represent the set
of RT containers whose CPU requirements are assumed as
C11 = C12 = 2. Similarly, let L2 = {21, 22} represent the
set of PR containers whose CPU requirements are assumed
as C21 = C22 = 2. Finally, let L3 = {31, 32} represent the
set of BE containers whose CPU requirements are assumed as
C31 = C32 = 2. Assuming that RT containers are allocated
orthogonal CPUs as indicated by I11 = {1, 1, 0, 0} and I12 =
{0, 0, 1, 1}, we evaluate two CPU sharing policies: (i) RT-
Kernel, where the RT-Kernel schedules non-RT containers on
the CPUs assigned to RT containers; (ii) PRINCIPIA, where
the PRINCIPIA mechanism defines on which CPUs non-RT
containers are scheduled by the RT-Kernel, and controls the
amount of CPU-time that non-RT containers get granted on
those CPUs.

To emulate various workloads, non-RT containers run differ-
ent instances of the synthetic benchmark tool stress-ng stress-
ing different physical resources. For instance, PR container
21 runs one stressors performing random memory read/write
operations, and one virtual memory stressors writing up to
5GB to the allocated memory; PR container 22 runs two cache
stressors that perform random widespread memory read and
writes to thrash the CPU cache. Similarly, BE 31 container
runs one virtual memory stressors writing up to 15GB to the
allocated memory and one stressors continuously performing
system calls map(2)/munmap(2)6 (i.e., creates/deletes new
mappings in the virtual address space) for up to 15GB; BE
container 32 runs one stressors which performs asynchronous
I/O writes using Linux system calls (e.g., io setup, io submit),
one disk stressors which continually writes, reads and removes
temporary files for up to 2GB, and one fork stressors which
continually forks children processes that immediately exit.

6https://manpages.ubuntu.com/manpages/bionic/man2/mmap.2.html

11

Finally, RT containers run the same workload as described
in the previous part.

Consistent with the experimental approach used previously,
the experiments measure the processing latency of RT con-
tainers in the Linux RT-Kernel while sharing computing re-
sources with collocated non-RT containers. Figure 7 shows the
distribution of processing latency measurements for both RT
containers under the evaluated CPU sharing policies. These
distributions are obtained by averaging latency events over
a set of twelve experiments for an observation time-span of
60 minutes. By comparing these latency distributions with
the results obtained for the Orthogonal CPUs scenario in
the previous part (figure 9a), we can observe the impact of
sharing computing resources with non-RT containers on the
performance of RT containers. For example, latency events
shift and spread across the 2 µsec bucket, generating tailed
distributions. However, this impact is not as significant as it is
for collocated RT containers, demonstrating the RT-Kernel’s
ability to prioritize RT processes. Nevertheless, an increase in
processing latency occurs as a consequence of sharing MEC
server’s physical resources (e.g., memory, I/O).

(a) RT-Kernel

(b) PRINCIPIA

Fig. 7: Processing latency of RT containers. Computed over a set of twelve
experiments (total observation time-span is 60 minutes) - Evaluated scenarios:
(i) RT-Kernel (ii) PRINCIPIA.

Employing PRINCIPIA as a runtime resource management
daemon in combination with the RT-Kernel can significantly
reduce the impact of processing interference on RT containers,
resulting in a decrease in processing latency. For example,
as seen in Figure 7b, the event rate in the 2 µsec bucket
is over 100% lower for the RT-Kernel scenario compared to
PRINCIPIA. Additionally, PRINCIPIA effectively mitigates
the impact on the worst-case execution time (WCET) of RT
containers. This is demonstrated by the increase in the tail
distribution of processing latency events presented in Figure
8, where PRINCIPIA achieves up to a 100% decrease in
comparison with the RT-Kernel scenario.

To evaluate the potential for CPU-intensive RT containers
to starve collocated non-RT containers, we measured the CPU
usage of each container as a function of the target CPU
usage, as shown in figure 9. Each container was subject to
running as many CPU stressors of the stress-ng tool as its CPU
requirement, while the RT containers executed their stressors

Fig. 8: Increase of tail processing latency events for the RT-Kernel scenario
compared to PRINCIPIA.

with the RT priority chrt = 95 as they are intended to host RT
applications.

(a) RT-Kernel (b) PRINCIPIA

Fig. 9: Mean CPU usage [%] as measured by each container n ∈ L.

CPU stressors running on RT containers are capable of
preempting stressors on non-RT containers, resulting in RT
containers achieving 100% processing throughput for most
CPU targets. Conversely, in an overloaded system with an 80%
target CPU usage, the RT-Kernel scenario had an 18% drop in
the measured CPU compared to PRINCIPIA, which controls
and prioritizes CPU-time allocation for RT containers.

Not only PRINCIPIA prioritizes RT containers, but also
provides differentiated priority to PR and BE containers.
As shown in figure 9b, PR containers perceive higher CPU
usage than BE containers despite how overloaded the system
is. Using the control constant υk, PRINCIPIA can control
non-RT containers’ influence on the CPU-shares allocation,
which enables both differentiated allocation and a conservative
mechanism to protect RT containers from potential processing
interference from collocated workloads.

VI. ASSESSING CPU SHARING IN THE CLOUD-RAN
This section evaluates the Cloud-RAN while sharing com-

puting resources in a MEC server deploying vBBUs along
with collocated applications. To do so, this section studies the
processing performance of vBBUs and the end-to-end traffic
when the vBBUs share computing resources under different
CPU sharing approaches.

A. Mobile Network scenario

To assess CPU sharing in the Cloud-RAN, we consider the
mobile network scenario depicted in figure 10. Using Linux
Containers (LXC), this network scenario deploys two vBBUs
(referred to as vBBU1 and vBBU2). Each vBBU adopts a
different functional split and is deployed between the DU and
the CU. While each vBBU is the only process instantiated at
the DU, both of these vBBUs share computing resources at
the CU. Moreover, this network scenario considers a single
UE connected to each of the vBBUs. The experimental setup
deploying this mobile network is summarized in Appendix II.

Based on the LTE-BBU functional split model shown in
figure 2, L1 refers to physical layer functions (e.g., both low

12

Fig. 10: Mobile network scenario based on the Cloud-RAN architecture.
Deploying two vBBUs with split 7.1 and split 2, respectively. The mobile
transport Xhaul is based on switched Ethernet.

PHY and high PHY), L2 refers to link layer functions (e.g.,
MAC and RLC), and L3 refers to the network layer functions
(e.g., PDCP and RRC). When implemented in software, some
of these functions are instantiated as RT processes. For in-
stance, L1 and L2 functions. The reason is that these functions
impose strict timing constraints, for example, to meet the
HARQ deadline [5].

Adopting functional split 7.1, the vBBU1 deploys low PHY
functions locally at the DU (i.e., a subset of L1 functions like
the Fast Fourier Transform for UL, the Inverse Fast Fourier
Transform for DL, and the add/remove cyclic prefix), while the
CU deploys the remaining L1 functions, as well as L2 and L3
functions. Because vBBU1 deploys most of the RT functions
at the CU, the MEC server hosting the CU instantiates the
vBBU1 as an RT application on an RT container hence
adopting the RT priority policy k = 1. On the other hand,
vBBU2 adopts the functional split 2 deploying both L1 and L2
functions at DU, while the CU only instantiates L3 functions.
As this functional split hosts all the functions involved in the
HARQ loop (i.e., RT functions) at the DU, the CU instantiates
the vBBU2 as non-RT prioritized application.

In this network scenario, the Fronthaul consists of a point-
to-point link that transports digital samples of the RF signal.
Deploying Ethernet as the mobile transport network for the
MidHaul and Backhaul segments, the Midhau transports data
where latency and caparacity requirements depend upon the
chosen functional split. For instance, using split 7.1, the
vBBU1 interchanges frequency domain of I/Q samples be-
tween the DU and the CU. Transmitting symbols in frequency
domain reduces substantially the bandwidth requirement in the
MidHaul network, in comparison with full centralization of
vBBU functions at the CU (e.g., split 8) where time domain
I/Q samples are transmitted between the DU and the CU.
On the other hand, because vBBU2 hosts all time-sensitive
functions at the DU, the data rate requirements in the MidHaul
network is similar to that in the BackHaul. An Ethernet
switch aggregates the mobile traffic from both vBBUs into an
aggregation trunk link. Similarly, in the Backhaul, a second
Ethernet switch aggregates the Backhaul traffic from each
vBBU at the CU, connecting them to the vEPC.

B. CPU sharing at the CU

Figure 11 illustrates the CPU sharing scenario at the CU.
Here, deployed containers share a set of M = 4 CPUs.
Instantiated as an RT process, the vBBU1 runs on top of
an RT container such that the set of RT containers is given
by L1 = {11}. Assuming that vBBU1 requires four CPUs

for guaranteeing stable performance (C11 = 4), the RT
container 11 is pre-allocated a set of four CPUs as indicated
by I11 = {1, 1, 1, 1}.

Fig. 11: CPU sharing at the CU. While vBBU1 is pre-allocated
CPUs={1,2,3,4}, non-RT containers are collocated on use any of the CPUs
allocated to vBBU1 subject to their CPU requirements.

The vBBU2 hosts L3 functions at the CU which perform
control and data (e.g., GTP tunnel carrying UE’s traffic) plane
functions that are still critical functions for the mobile network
and thus require prioritization on CPU allocation over other
non-RT applications. As a result, the vBBU2 is instantiated
on top of a PR container as given by the set of PR containers
L2 = {21}. Here, we assume that the CPU requirement of
the PR container 22 is given by C21 = 2. On the other hand,
non-RT applications run on top of BE containers as defined by
the set of BE containers L3 = {31, 32, 33}. Here, we assume
that each BE container n ∈ L3 has a CPU requirement given
by Cn = 2.

C. Experimental design

Assuming that the RT container is allocated CPUs according
to I11 in provisioning time, as shown in figure 11, the method-
ology consists of evaluating three CPU sharing scenarios: (i)
Baseline, where both vBBU1 and vBUU2 run on isolated
CPUs according to their CPU requirements. (ii) RT-Kernel,
where the RT-Kernel schedules CPU-time to non-RT contain-
ers on the CPUs allocated to vBBU1. (iii) PRINCIPIA, where
the PRINCIPIA algorithm allocates CPUs and CPU-shares to
non-RT containers on the CPUs allocated to vBBU1. In this
scenario, PRINCIPIA defines a time slot of 1 second, and a
slicing window W = 10 for EMA computing. Furthermore,
PRINCIPIA sets the control constants associated with the
priority policy of each container, as follows: υ1 = 1, for
RT containers; υ2 = 2, for PR containers; υ3 = 3, for BE
containers.

Derived metrics: To evaluate the Cloud-RAN while sharing
computing resources at the MEC server hosting the CU, this
paper derives the following metrics:

1) Scheduling latency: is the amount of time a process
spends waiting until obtaining CPU-time. This metric
is the major contributor of a task processing latency
[70]. In this paper, we measured the scheduling latency
of the RT container instantiating vBBU1, using the
Kernel tracing tool BPF Compiler Collection [71]. By
measuring the Kernel run queue latency, this tool reports
the time a task spends waiting its turn to run.

2) Number of physical resource block retransmissions
in Downlink (prbRetxDL): as part of the DL Data
Transmission Process (HARQ ACK/NACK) [72], the

13

UE performs error checking over received DL data. If
an error has been found, the UE sends a DL-NACK to
the vBBU. Then, the vBBU retransmits the DL data to
the UE. The number of prbRetxDL, therefore, represents
DL re-transmissions and is an important indicator of the
health of the DL data path.

3) End to end (e2e) TCP throughput: this metric provides
insight into the mobile network performance. Measuring
the received throughput, each UE conducts a down-
stream TCP Iperf3 test to an Iperf3 server located at
the SPGW-U IP interface at the vEPC.

4) e2e latency: derived from a round trip time (RTT)
test, this metric provides insight on the mobile network
latency. Measuring the RTT, each UE conducts a ICMP
test to the SPGW-U IP interface at the EPC.

The conducted experiments aim to study the impact of
CPU sharing on the Cloud-RAN performance. To do so,
six experiments lasting ten minutes each were conducted
for each CPU sharing scenario. During each experiment, the
metrics described above were measured to gain insight into
the performance of each scenario. To emulate UE’s mobile
traffic, two TCP downstream flows were generated during each
experiment with a target rate of 13 Mbps per UE. Furthermore,
to emulate non-RT application workload, each BE container
ran an instance of the stress-ng synthetic benchmark tool
which generated load on different MEC server resources. First,
container 31 generates virtual memory stress consuming up to
5GB of memory. Second, container 32 consumes 200MB of
cache. Finally, container 33 performs hard disk load for up to
2GB.

D. Results and Discussion

Figure 12 shows the histogram of vBBU1 scheduling
latency events averaged over the set of experiments. The
scheduling latency provides insights on the RT processing
performance of RT processes running in the Linux RT-Kernel.
More specifically, this figure shows the average of events that
fall into different latency buckets. Here, we focus on analyzing
vBBU1 as the RT application running on top of an RT
container, which shares computing resources with collocated
non-RT containers in a MEC server.

Fig. 12: vBBU1 histogram of scheduling latency events - Evaluated scenarios:
(i) Baseline (ii) RT-Kernel (iii) PRINCIPIA.

In the Baseline scenario, the majority of the latency events
fall into the 0-1 microsecond bucket, accounting for 96% of
the latency events. Sharing computing resources with non-
RT containers, however, introduces higher scheduling latency

events across all the latency buckets. PRINCIPIA reduces
the impact on the RT processing performance of vBBU1.
For example, 53% of latency events occur within the 0-1
microsecond interval, and 42% fall within the 2-3 microsecond
interval. Conversely, using the RT-Kernel, 44% of the schedul-
ing latency events fall within the 0-1 microsecond interval (a
19% decrease compared to PRINCIPIA), and 44% fall within
the 2-3 microsecond interval.

What is the impact of sharing computing resources with
non-RT containers on the vBBU1’s procedures? Figure 13
shows the average number of prbRetxDL, which is an indicator
of the quality of the data path. In the RT-Kernel scenario, the
number of prbRetxDL increases by 18% on average compared
to the Baseline scenario. This increase shows that sharing
computing resources with non-RT containers negatively im-
pacts the vBBU1 procedures. In contrast, in PRINCIPIA, the
prbRetxDL values increase by only 6% on average compared
to the Baseline scenario, indicating that the PRINCIPIA CPU-
sharing approach mitigates the negative impact on the data
path quality.

Fig. 13: vBBU1 number of physical resource block retransmissions in
Downlink (prbRetxDL) - Evaluated scenarios: (i) Baseline (ii) RT-Kernel (iii)
PRINCIPIA.

Because the user traffic server is located outside the EPC in
the IP network, the e2e metrics measured by the UE in figure
10 provide insights into the overall mobile network perfor-
mance rather than metrics for the MEC server’s performance.
Nevertheless, the e2e metrics reveal how sharing computing
resources with vBBUs in MEC servers affects the mobile
network’s performance. Although the e2e capture metrics in
the millisecond scale (while the RT performance analysis for
resource sharing in MEC is in the microsecond), marginal
analysis of the e2e metrics reveals how sharing computing
resources with vBBUs in MEC servers affects the mobile net-
work’s performance. For example, figure 14 shows the average
received throughput for the TCP downstream flow for each
UE. Sharing computing resources between vBBUs in MEC
servers generates variation in the received throughput, which
can affect the stability and performance of the mobile network
[73]. However, in the PRINCIPIA scenario, the variation in the
received throughput is lower, and the distribution of variation
is similar to that of the baseline scenario.

Similarly, the RTT results in figure 15 show that the PRIN-
CIPIA scenario has a lower variability in RTT than the RT-
Kernel, as evidenced by the interquartile range (IQR) of these
RTT distributions. This variability reduction is similar to that
observed in the baseline scenario, indicating that PRINCIPIA

14

(a) UE-vBBU1 (b) UE- vBBU2

Fig. 14: Cloud-RAN e2e performance - UE average TCP throughput. Target
data rate is 13 Mbps

(a) UE-vBBU1 (b) UE- vBBU2

Fig. 15: Cloud-RAN e2e performance - UE mobile network latency through
RTT

CPU sharing policy mitigates the impact of sharing computing
resources on the mobile network latency.

VII. RELATED WORK

The vBBU on MEC: Running the vBBU on GPP managed
by the Linux RT-Kernel has been widely studied in the liter-
ature. For instance, the Linux RTAI (Real Time Application
Interface) [74], has been used in mobile system testbeds in
[26], [75], [76]. On the other hand, the PREEMPT RT patch
has been used in few works in the context of Cloud-RAN [77],
[78]. Included in the mainline code from the Ubuntu distri-
bution, the Low-Latency Kernel patch [79] has been widely
adopted by researchers using the OpenAirInterface (OAI) code
[5], [80]–[82]. The main reason is that OAI’s developers have
optimized their code to provide full compatibility with the
low-latency Kernel.

The works in [83] and [84] evaluated different virtualization
environments and compared them with the bare-metal deploy-
ment: hypervisor, Docker containers, and Linux containers
(LXC). Evidence from those works show that containers
achieve lower processing time than hypervisor VMs. More
specifically, LXC achieves similar processing time as the bare-
metal deployment.

Sharing computing resource in MEC servers: Sharing
physical resources (e.g., CPU, I/O, memory) among applica-
tions with diverse execution time requirements (e.g., mixed
time-critically services) collocated on general purpose pro-
cessors (GPP) have been widely investigated in the literature
[32]. Only few works, though, have investigated the processing
interference caused by Kernel space processing. For instance,
Reghenzani et al. in [34] characterized the processing inter-
ference caused by different Kernel subsystems under different
workloads of mixed time critical services.

Runtime resource management enables processing quality
of service to time-critically applications while sharing com-
puting resources with collocated workloads on GPP [40].
For instance, the work in [41] proposes adaptable runtime
mapping of resources for RT applications running in embedded
platforms along with collocated workloads. These ideas were
extended in [42] to enable energy efficient vBBU processing,
through a design model approach used in embedded systems

which provides hybrid and flexible resource mapping. In
MEC/Multi-Cloud computing, resource management consider-
ing time-critically services commonly relies on dynamic/static
resource provisioning of RT VMs/containers [45]. For in-
stance, the work in [85] proposes a dynamic resource pro-
visioning mechanism for VMs running time-critical services,
which prioritizes VMs according to their application deadlines.
The work in [11] integrates these two paradigms to enable
vBBU processing on a MEC server along with general purpose
applications. An external mobile network controller computes
and predicts worst case execution time (WCET) of vBBUs
deployed on GPP, according to current performance and user
traffic demands. Based on WCET predictions, the external
controller dynamically defines the amount of CPUs allocated
to the vBBU, while enabling collocated applications.

The resource management mechanism presented in this
paper leverages the building block for containerized virtu-
alization Cgroups through its capabilities to control and
limit resources assigned to containers. A similar approach
presented in [86] dynamically adjusts the number of CPUs
allocated to containers according to each container’s CPU-
time demand and the system’s load. To define the CPU limits
for each container, the mechanism use Cgroups subsystems
cpu.quota and cpu.period which are only visible by the non-
RT Scheduler Completely Fair Scheduler (CFS). Similarly,
the work in [87] proposes a mechanism which uses these
two Cgroups subsystems aiming to allocating available CPU-
time among collocated RT and non-RT containers. Although
this approach is intended to prioritized CPU allocation to
RT containers, using the non-RT Scheduler RT guarantees
can not be provided. Conversely, in this paper, we consider
a MEC system deploying the Linux RT-Kernel to provide
RT guarantees to RT containers hosting both RT applications
and the Cloud-RAN. In addition, we propose a CPU sharing
mechanism based on leverage Cgroups subsystems cpuset
and CPU-shares which allows non-RT containers to exploit
underutilized CPUs allocated to RT containers.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a CPU sharing mechanism for MEC
servers hosting applications with RT and non-RT require-
ments using containerized virtualization. Based on heuristic
solution of subproblems from the decomposition of a MIP,
the proposed mechanism provides an efficient CPU sharing
solution as demonstrated by its outperformance of optimal
solvers in terms of runtime. Furthermore, the recurrent CPU
allocation and proportional CPU-shares approach allow for a
fair resource allocation.

Through an empirical approach, this paper investigated
the impact on the vBBU processing performance caused by
sharing computing resources with collocated applications in
MEC server. To mitigate the impact of collocated workloads
and improve the vBBU performance, this paper proposed and
evaluates a CPU sharing mechanism that runs as a user-space
process (e.g., daemon) and operates in conjunction with the
Linux RT-Kernel. First, this mechanism assumes that RT appli-
cations including the vBBUs are assigned orthogonal CPUs, as

15

a strategy to avoid processing interference with collocated RT
(non-preemptable) processes. Then, by monitoring processor
CPU utilization and container CPU usage as system metrics
of resource availability and user demands, this mechanism
enables non-RT containers on the same CPU allocated to
RT containers. By controlling the amount of CPU-time that
those containers are allowed to use on Cpus allocated to RT
containers, this mechanism aims to mitigate the impact that
sharing computing resources causes on RT applications.

Conducted evaluation on a MEC server deploying a com-
bination of RT and non-RT containers shows that our CPU
sharing mechanism outperforms the default RT-Kernel in mit-
igating the impact of resources sharing on RT applications.
Using our CPU sharing mechanism the WCET is reduced by
more than 150% in comparison with the default RT-Kernel
approach. This evidence is strengthened when assessing the
use of this CPU-sharing mechanism on the Cloud-RAN, where
vBBUs share resources with collocated applications in MEC
server. Using this mechanism, scheduling latency events of
running the vBBU in the RT-Kernel decreases by up to 21%
in comparison with the RT-Kernel approach.

This study could be extended to include sharing compu-
tation among different cells, for example, joint transmission
and reception, coordinated scheduling, among others. Also,
to include scenarios that consider migrating RAN functions
across MEC servers, for example, using dynamic flexible
functional splittings [88].

REFERENCES

[1] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic,
R. T. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the
dominant theme for wireless evolution into 5g,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 82–89, 2014.

[2] X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, “5g ultra-dense cellular
networks,” IEEE Wireless Communications, vol. 23, no. 1, pp. 72–79,
2016.

[3] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud ran for mobile networks—a technology
overview,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp.
405–426, 2015.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[5] N. Nikaein, “Processing radio access network functions in the cloud:
Critical issues and modeling,” in Proceedings of the 6th International
Workshop on Mobile Cloud Computing and Services, ser. MCS ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
36–43. [Online]. Available: https://doi.org/10.1145/2802130.2802136

[6] V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-
Time Containers: A Survey,” in 2nd Workshop on Fog Computing
and the IoT (Fog-IoT 2020), ser. OpenAccess Series in Informatics
(OASIcs), A. Cervin and Y. Yang, Eds., vol. 80. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, pp. 7:1–7:9.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2020/12001

[7] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” SIGBED Rev., vol. 16, no. 3, p. 33–38,
nov 2019. [Online]. Available: https://doi.org/10.1145/3373400.3373405

[8] L. Liu, H. Wang, A. Wang, M. Xiao, Y. Cheng, and S. Chen,
“Mind the gap: Broken promises of cpu reservations in containerized
multi-tenant clouds,” in Proceedings of the ACM Symposium on
Cloud Computing, ser. SoCC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 243–257. [Online]. Available:
https://doi.org/10.1145/3472883.3486997

[9] R. Delgado and B. W. Choi, “New insights into the real-time perfor-
mance of a multicore processor,” IEEE Access, vol. 8, pp. 186 199–
186 211, 2020.

[10] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala,
V. Narasayya, H. Herodotou, P. Tomita, A. Chen, J. Zhang et al.,
“{PerfIso}: Performance isolation for commercial {Latency-Sensitive}
services,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18), 2018, pp. 519–532.

[11] X. Foukas and B. Radunovic, “Concordia: Teaching the 5g vran to
share compute,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, ser. SIGCOMM ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 580–596. [Online]. Available:
https://doi.org/10.1145/3452296.3472894

[12] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud ran for mobile networks—a technology
overview,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp.
405–426, 2015.

[13] G. T. 38.801, “Study on new radio access technology: Radio access
architecture and interfaces,” 2017.

[14] IEEE, “Ieee std 1914.1-2019: Standard for packet-based fronthaul
transport network,” IEEE Standards, 2019. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9079731

[15] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A survey of
the functional splits proposed for 5g mobile crosshaul networks,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 146–172, 2019.

[16] F. W. Murti, J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez,
and G. Iosifidis, “An optimal deployment framework for multi-cloud
virtualized radio access networks,” IEEE Transactions on Wireless
Communications, vol. 20, no. 4, pp. 2251–2265, 2021.

[17] P. Assimakopulos, G. S. Birring, M. K. Al-Hares, and N. J. Gomes,
“Ethernet-based fronthauling for cloud-radio access networks,” in 2017
19th International Conference on Transparent Optical Networks (IC-
TON), 2017, pp. 1–4.

[18] N. J. Gomes, P. Sehier, H. Thomas, P. Chanclou, B. Li, D. Munch,
P. Assimakopoulos, S. Dixit, and V. Jungnickel, “Boosting 5g through
ethernet: How evolved fronthaul can take next-generation mobile to the
next level,” IEEE Vehicular Technology Magazine, vol. 13, no. 1, pp.
74–84, 2018.

[19] L. Tomaszewski, S. Kukliński, and R. Kołakowski, “A new approach
to 5g and mec integration,” in Artificial Intelligence Applications
and Innovations. AIAI 2020 IFIP WG 12.5 International Workshops,
I. Maglogiannis, L. Iliadis, and E. Pimenidis, Eds. Cham: Springer
International Publishing, 2020, pp. 15–24.

[20] A. Mosnier, “Embedded/real-time linux survey,” 2005. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
133.6318&rep=rep1&type=pdf

[21] M. Timmerman, “Real-time capabilities in the standard linux kernel:
How to enable and use them?” International Journal on Recent and
Innovation Trends in Computing and Communication, vol. 3, no. 1, pp.
131–135, 2015.

[22] V. Yodaiken et al., “The rtlinux manifesto,” in Proc. of the 5th Linux
Expo, 1999.

[23] I. Molnar, “Linux low latency patch,” Last accessed Dec, 2021.
[Online]. Available: https://web.archive.org/web/20080306131124/http:
//www.zipworld.com.au/∼akpm/linux/schedlat.html

[24] T. L. Foundation, “Preempt rt patch,” https://wiki.linuxfoundation.org/
realtime/preempt rt versions.

[25] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux
kernel: A survey on preempt rt,” ACM Comput. Surv., vol. 52, no. 1,
p. 36, feb 2019.

[26] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nuss-
baum, and R. Ghaddab, “Openairinterface: an open lte network in a pc,”
in Proceedings of the 20th annual international conference on Mobile
computing and networking, 2014, pp. 305–308.

[27] H. Kim and R. R. Rajkumar, “Predictable shared cache management
for multi-core real-time virtualization,” vol. 17, no. 1, 2017. [Online].
Available: https://doi.org/10.1145/3092946

[28] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee,
“Real-time multi-core virtual machine scheduling in xen,” in 2014
International Conference on Embedded Software (EMSOFT), 2014, pp.
1–10.

[29] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing,
vol. 2, no. 3, pp. 24–31, 2015.

[30] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance overhead
comparison between hypervisor and container based virtualization,” in
2017 IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA), 2017, pp. 955–962.

[31] R. Cavicchioli, N. Capodieci, and M. Bertogna, “Memory interference
characterization between cpu cores and integrated gpus in mixed-
criticality platforms,” in 2017 22nd IEEE International Conference on

16

Emerging Technologies and Factory Automation (ETFA), 2017, pp. 1–
10.

[32] A. Burns and R. I. Davis, “Mixed criticality systems-a review:(february
2022),” 2022.

[33] P. De, V. Mann, and U. Mittaly, “Handling os jitter on multicore
multithreaded systems,” in 2009 IEEE International Symposium on
Parallel Distributed Processing, 2009, pp. 1–12.

[34] F. Reghenzani, G. Massari, and W. Fornaciari, “Mixed time-criticality
process interferences characterization on a multicore linux system,” in
2017 Euromicro Conference on Digital System Design (DSD), 2017, pp.
427–434.

[35] M. Barletta, M. Cinque, L. De Simone, and R. Della Corte, “Achieving
isolation in mixed-criticality industrial edge systems with real-time con-
tainers,” in 34th Euromicro Conference on Real-Time Systems (ECRTS
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[36] S. Shekhar and A. Gokhale, “Dynamic resource management across
cloud-edge resources for performance-sensitive applications,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2017, pp. 707–710.

[37] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
2013, pp. 1–10.

[38] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan: Mitigating
interference at microsecond timescales,” in Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’20. USA: USENIX Association, 2020.

[39] W. Fornaciari, G. Pozzi, F. Reghenzani, A. Marchese, and M. Belluschi,
“Runtime resource management for embedded and hpc systems,”
ser. PARMA-DITAM ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 31–36. [Online]. Available:
https://doi.org/10.1145/2872421.2893173

[40] M. Niknafs, I. Ukhov, P. Eles, and Z. Peng, “Runtime resource
management with workload prediction,” in Proceedings of the 56th
Annual Design Automation Conference 2019, ser. DAC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3316781.3317902

[41] R. Khasanov and J. Castrillon, “Energy-efficient runtime resource man-
agement for adaptable multi-application mapping,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), 2020, pp.
909–914.

[42] R. Khasanov, J. Robledo, C. Menard, A. Goens, and
J. Castrillon, “Domain-specific hybrid mapping for energy-efficient
baseband processing in wireless networks,” ACM Trans. Embed.
Comput. Syst., vol. 20, no. 5s, sep 2021. [Online]. Available:
https://doi.org/10.1145/3476991

[43] S. S. Manvi and G. Krishna Shyam, “Resource management for
infrastructure as a service (iaas) in cloud computing: A survey,” Journal
of Network and Computer Applications, vol. 41, pp. 424–440, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804513002099

[44] M. P. Alves, F. C. Delicato, I. L. Santos, and P. F. Pires, “Lw-coedge:
a lightweight virtualization model and collaboration process for edge
computing,” World Wide Web, vol. 23, no. 2, pp. 1127–1175, 2020.

[45] M. Azarmipour, H. Elfaham, J. Grothoff, C. von Trotha, C. Gries, and
U. Epple, “Dynamic resource management for virtualization in industrial
automation,” in IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, 2018, pp. 2878–2883.

[46] T. V. Doan, G. T. Nguyen, H. Salah, S. Pandi, M. Jarschel, R. Pries,
and F. H. P. Fitzek, “Containers vs virtual machines: Choosing the right
virtualization technology for mobile edge cloud,” in 2019 IEEE 2nd 5G
World Forum (5GWF), 2019, pp. 46–52.

[47] S. Hansun, “A new approach of moving average method in time series
analysis,” in 2013 Conference on New Media Studies (CoNMedia), 2013,
pp. 1–4.

[48] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted
moving averages,” International Journal of Forecasting, vol. 20, no. 1,
pp. 5–10, 2004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0169207003001134

[49] C. Brown, Technical Analysis for the trading Professional. McGraw
Hill Professional, 1999.

[50] P. J. Kaufman, Trading Systems and Methods,+ Website. John Wiley
& Sons, 2013, vol. 591.

[51] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems:
concepts and design. pearson education, 2005.

[52] N. Altay, P. E. Robinson, and K. M. Bretthauer, “Exact and heuristic
solution approaches for the mixed integer setup knapsack problem,”

European Journal of Operational Research, vol. 190, no. 3, pp.
598–609, 2008. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0377221707006492

[53] A. Lodi, Mixed Integer Programming Computation. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 619–645. [Online]. Available:
https://doi.org/10.1007/978-3-540-68279-0 16

[54] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The
benders decomposition algorithm: A literature review,” European
Journal of Operational Research, vol. 259, no. 3, pp. 801–817, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0377221716310244

[55] A. Gerards, “Chapter 3 matching,” in Network Models, ser. Handbooks
in Operations Research and Management Science. Elsevier, 1995,
vol. 7, pp. 135–224. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0927050705801203

[56] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for network
problems,” SIAM Journal on Computing, vol. 18, no. 5, pp. 1013–1036,
1989.

[57] Z. Galil, “Efficient algorithms for finding maximum matching in
graphs,” ACM Comput. Surv., vol. 18, no. 1, p. 23–38, mar 1986.
[Online]. Available: https://doi.org/10.1145/6462.6502

[58] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.
3800020109

[59] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,”
Journal of research of the National Bureau of Standards B, vol. 69, no.
125-130, pp. 55–56, 1965.

[60] R. Duan and S. Pettie, “Linear-time approximation for maximum
weight matching,” J. ACM, vol. 61, no. 1, jan 2014. [Online]. Available:
https://doi.org/10.1145/2529989

[61] R. Duan and H.-H. Su, A Scaling Algorithm for Maximum Weight
Matching in Bipartite Graphs, pp. 1413–1424. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611973099.111

[62] Z. G. Tang, X. Wu, and Y. Zhang, “Towards a better understanding
of randomized greedy matching,” in Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, ser. STOC 2020.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1097–1110. [Online]. Available: https://doi.org/10.1145/3357713.
3384265

[63] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

[64] C. Joo, X. Lin, and N. B. Shroff, “Greedy maximal matching: Per-
formance limits for arbitrary network graphs under the node-exclusive
interference model,” IEEE Transactions on Automatic Control, vol. 54,
no. 12, pp. 2734–2744, 2009.

[65] N. Arnosti, “Greedy matching in bipartite random graphs,” Stochastic
Systems, vol. 12, no. 2, pp. 133–150, 2022. [Online]. Available:
https://doi.org/10.1287/stsy.2021.0082

[66] R. Agarwal, S. Rajakrishnan, and D. B. Shmoys, “From switch
scheduling to datacenter scheduling: Matching-coordinated greed is
good,” in Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, ser. PODC’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 313–323. [Online].
Available: https://doi.org/10.1145/3519270.3538443

[67] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm
for on-line bipartite matching,” in Proceedings of the Twenty-Second
Annual ACM Symposium on Theory of Computing, ser. STOC ’90.
New York, NY, USA: Association for Computing Machinery, 1990, p.
352–358. [Online]. Available: https://doi.org/10.1145/100216.100262

[68] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[69] R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure
of fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, vol. 21, 1984.

[70] F. Cerqueira and B. Brandenburg, “A comparison of scheduling latency
in linux, preempt-rt, and litmus rt,” in 9th Annual workshop on operating
systems platforms for embedded real-time applications. SYSGO AG,
2013, pp. 19–29.

[71] IO-Visor, “Bpf compiler collection (bcc),” Last accessed November,
2021. [Online]. Available: https://github.com/iovisor/bcc

[72] 3GPP, “Evolved universal terrestrial radio access (e-utra); medium
access control (mac) protocol specification,” 2007. [Online]. Available:
https://www.arib.or.jp/english/html/overview/doc/STD-T104v4 10/5
Appendix/Rel13/36/36321-d20.pdf

17

[73] M.-R. Fida, M. Roald, E. Acar, and A. Elmokashfi, “Modeling variation
in mobile download speed in presence of missing samples,” IEEE
Transactions on Mobile Computing, pp. 1–16, 2022.

[74] G. Giacobbi, “The gnu netcat project,” Last accessed Nov, 2021.
[Online]. Available: http://netcat.sourceforge.net

[75] F. Kaltenberger and S. Wagner, “Experimental analysis of network-aided
interference-aware receiver for lte mu-mimo,” in 2014 IEEE 8th Sensor
Array and Multichannel Signal Processing Workshop (SAM), June 2014,
pp. 325–328.

[76] I. Alyafawi, E. Schiller, T. Braun, D. Dimitrova, A. Gomes, and
N. Nikaein, “Critical issues of centralized and cloudified lte-fdd radio
access networks,” in 2015 IEEE International Conference on Commu-
nications (ICC). IEEE, 2015, pp. 5523–5528.

[77] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu, G. Kumar, A. Mu-
ralidhar, P. Polakos, V. Srinivasan, and T. Woo, “Cloudiq: A framework
for processing base stations in a data center,” in Proceedings of the 18th
annual international conference on Mobile computing and networking.
ACM, 2012, pp. 125–136.

[78] I. Fajjari, N. Aitsaadi, and S. Amanou, “Optimized resource allocation
and rrh attachment in experimental sdn based cloud-ran,” in 2019 16th
IEEE Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 2019, pp. 1–6.

[79] I. Molnar, “Linux low latency patch,” Last accessed Dec, 2021.
[Online]. Available: https://web.archive.org/web/20080306131124/http:
//www.zipworld.com.au/∼akpm/linux/schedlat.html

[80] S.-C. Huang, Y.-C. Luo, B.-L. Chen, Y.-C. Chung, and J. Chou,
“Application-aware traffic redirection: A mobile edge computing imple-
mentation toward future 5g networks,” in 2017 IEEE 7th International
Symposium on Cloud and Service Computing (SC2), 2017, pp. 17–23.

[81] A. Younis, T. X. Tran, and D. Pompili, “Bandwidth and energy-aware
resource allocation for cloud radio access networks,” IEEE Transactions
on Wireless Communications, vol. 17, no. 10, pp. 6487–6500, 2018.

[82] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and
K. Kontovasilis, “Flexran: A flexible and programmable platform for
software-defined radio access networks,” in Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 427–441. [Online]. Available:
https://doi.org/10.1145/2999572.2999599

[83] N. Nikaein, E. Schiller, R. Favraud, R. Knopp, I. Alyafawi, and
T. Braun, Towards a Cloud-Native Radio Access Network. Cham:
Springer International Publishing, 2017, pp. 171–202. [Online].
Available: https://doi.org/10.1007/978-3-319-45145-9 8

[84] C.-N. Mao, M.-H. Huang, S. Padhy, S.-T. Wang, W.-C. Chung, Y.-C.
Chung, and C.-H. Hsu, “Minimizing latency of real-time container cloud
for software radio access networks,” in 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom),
2015, pp. 611–616.

[85] R. Begam, W. Wang, and D. Zhu, “Timer-cloud: Time-sensitive vm
provisioning in resource-constrained clouds,” IEEE Transactions on
Cloud Computing, vol. 8, no. 1, pp. 297–311, 2020.

[86] H. Huang, Y. Zhao, J. Rao, S. Wu, H. Jin, D. Wang, K. Suo, and
L. Pan, “Adapt burstable containers to variable cpu resources,” IEEE
Transactions on Computers, pp. 1–1, 2022.

[87] J. Wu and T.-I. Yang, “Dynamic cpu allocation for docker container-
ized mixed-criticality real-time systems,” in 2018 IEEE International
Conference on Applied System Invention (ICASI), 2018, pp. 279–282.

[88] T. Pamuklu, M. Erol-Kantarci, and C. Ersoy, “Reinforcement learning
based dynamic function splitting in disaggregated green open rans,” in
ICC 2021 - IEEE International Conference on Communications, 2021,
pp. 1–6.

[89] A. Rădulescu and A. J. Van Gemund, “On the complexity of list
scheduling algorithms for distributed-memory systems,” in Proceedings
of the 13th international conference on Supercomputing, 1999, pp. 68–
75.

[90] OAI, “F1 interface,” Last accessed Dec, 2021. [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/f1-interface

[91] 3GPP, “5g; ng-ran; f1 application protocol (f1ap) (3gpp ts 38.473
version 15.2.1 release 15),” Last accessed Nov, 2021. [Online].
Available: https://www.etsi.org/deliver/etsi ts/138400 138499/138473/
15.02.01 60/ts 138473v150201p.pdf

[92] J. Claassen, R. Koning, and P. Grosso, “Linux containers networking:
Performance and scalability of kernel modules,” in NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2016, pp. 713–717.

APPENDIX A
PRINCIPIA TIME COMPLEXITY

The time complexity of PRINCIPIA would depend on the
number of iterations required for the algorithm (1) to converge
to a satisfactory solution. A step-by-step breakdown of the
PRINCIPIA algorithm and its time complexity analysis is as
follows:

1) In step one, the algorithm solves the CPU allocation
problem. Here, the PGMWM selects Cn links in the
bipartite graph Gn(Vn∗, E∗

n) in decreasing order. The
time complexity of the PGMWM algorithm primar-
ily depends on sorting and finding the Cn edges in
the bipartite graph in decreasing order based on their
weights. Typically, the time complexity of selecting in
decreasing order is O(|E∗

n| log |E∗
n|) [89]. Because the

PGMWM solves the CPU allocation problem recur-
rently for n ∈ Lp, the aggregated time complexity is
O(

∑
n∈Lp

|E∗
n| log |E∗

n|).
2) In step two, the algorithm allocates CPU-shares to

each container on allocated CPUs based on the CPU
allocations from step one. PRINCIPIA allocates CPU-
shares proportionally to the CPU usage of containers
allocated to the same CPU. Thus, PRINCIPIA iterates
over M CPUs. In the worst case, PRINCIPIA computes
the CPU shares for each container n ∈ L in each CPU
m = {1, 2, ...,M}. Thus, the time complexity is given
by O(|L| ×M).

Therefore, the overall time complexity of the PRINCIPIA
algorithm for solving the CPU and CPU-shares allocation
problem is O(

∑
n∈Lp

|E∗
n| log |E∗

n|+ |L| ×M).

APPENDIX B
TESTBED SETUP SPECIFICATION

Table II summarizes the software and hardware specifi-
cations, which are used to deploy the experimental setup
following the mobile network scenario depicted in figure 10.

In containerized virtualization, the NIC is likely shared
among several containers. In this network scenario, both
vBBUs share a two port NIC supporting SR-IOV (see the
hardware details in table II). SR-IOV enables sharing the
resources of a NIC - PCI Express (PCIe) device. To do
so, the NIC’s PCI function (PF) is partitioned into several
virtual functions (VF). When defining a VF, the NIC’s driver
supporting SR-IOV registers the corresponding RX/TX Hard-
IRQ for that VF. Moreover, a unique MAC address is assigned
to each VF. This pair of MAC address - RX/TX Hard IRQ
makes the VF look like an independent NIC itself. Assigned to
one of such VF, an LXC can access the network with complete
traffic isolation. Previous evidence suggests that mechanisms
based on creating virtual NIC (vNIC) like macvlan or SR-IOV
provide lower overhead than Kernel based software switch
mechanisms like Linux bridge or OVS [92]. Here, while vBBU
use one of the NIC’s port to access the Midhaul, the second
port is used to access the Backhaul. By using two different port
for Midhaul and Backhaul, the SR-IOV NIC enables isolating
the Midhaul traffic with RT constrains from the best-effort
Backhaul traffic.

18

Component Description
UE OnePlus-5 phone
air interface (as specified
by the vBBUs)

25 Physical Resource Blocks (PRB), which provides 5
MHz bandwidth.

RRUs Ettus (B210) Universal Software Radio Periph-
eral (USRP) platform. One antenna port - Single Input
Single Output (SISO).

Fronthaul Fast SuperSpeed USB 3.0 connectivity at 5.0 Gbit/s
(provided by Ettus (B210)).

DU Intel NUC7i7BNB equipped with four Intel Core i7-
7567U processors, and 32 GiB of memory

DU’s OS Ubuntu 16.04 with low-latency Linux kernel ver-
sion 4.19.58.

Midhaul & Backhaul Juniper EX4200 Ethernet switch, with physical inter-
faces at 1 Gbit/s.

vBBU1 OpenAirInterface eNodeB-LTE implementation with
split 7.1. This functional split uses the NGFI-IF4p5
interface specification [79].

vBBU2 penAirInterface eNodeB-LTE implementation with
split 2 using the F1 Application Protocol (F1AP) [90],
[91].

CU GPP equipped with eight Intel i7-8750H physical
processors at 2.20 GHz, and 32 GiB of memory.

CU’s NIC Supermicro AOC-SG-i2 Gigabit Ethernet adapter,
equipped with two Intel 82575 Gigabit Ethernet ports.

vEPC 4G EPC implementation from OpenAirInterface
vEPC’s host physical
machine

GPP equipped with four Intel i7 processor at 2.20GHz,
and 12 GiB of memory.

vEPC’s host OS Ubuntu 18.04 with generic Linux kernel version 5.3.28.

TABLE II: Cloud-RAN testebed setup - hardware and software specifications.

