
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document, © 2023 IEEE. All Rights Reserved. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. and is licensed under All Rights Reserved license:

Ocampo, Andres F, Mah Rukh, Fida ORCID logoORCID:
https://orcid.org/0000-0001-7660-1150, F. Botero, Juan,
Elmokashfi, Ahmed and Bryhni, Haakon (2023) PRINCIPIA:
Opportunistic CPU and CPU-shares Allocation for
Containerized Virtualization in Mobile Edge Computing. In:
NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium. IEEE, pp. 1-7. ISBN 9781665477161

Official URL: https://doi.org/10.1109/NOMS56928.2023.10154371
DOI: http://dx.doi.org/10.1109/NOMS56928.2023.10154371
EPrint URI: https://eprints.glos.ac.uk/id/eprint/13909

Disclaimer

The University of Gloucestershire has obtained warranties from all depositors as to their title in
the material deposited and as to their right to deposit such material.

The University of Gloucestershire makes no representation or warranties of commercial utility,
title, or fitness for a particular purpose or any other warranty, express or implied in respect of
any material deposited.

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.

The University of Gloucestershire accepts no liability for any infringement of intellectual
property rights in any material deposited but will remove such material from public view
pending investigation in the event of an allegation of any such infringement.

PLEASE SCROLL DOWN FOR TEXT.

PRINCIPIA: Opportunistic CPU and CPU-shares
Allocation for Containerized Virtualization in

Mobile Edge Computing
Andres F. Ocampo∗†, Mah-Rukh Fida‡, Juan F. Botero∥, Ahmed Elmokashfi§, Haakon Bryhni∗

∗ SimulaMet – Simula Metropolitan Center for Digital Engineering, Oslo, Norway
† OsloMet – Oslo Metropolitan University, Oslo, Norway

‡ School of Computing and Engineering - University of Gloucestershir, Cheltenham, United Kingdom
§ Amazon Web Services (AWS), Seattle, Washington, United States

∥ Department of Electronics and Telecommunications Engineering, University of Antiouqia, Medellin, Colombia
Corresponding author: andres@simula.no

Abstract—Leveraging virtualization technology, Mobile Edge
Computing (MEC) deploys multiple services with different execu-
tion time requirements running as isolated processes. For instance,
both real-time (RT) and non-RT applications may be (are) running
on the same infrastructure using containerized virtualization.
Nevertheless, sharing resources (e.g., CPU) with collocated work-
loads could impact the RT performance of RT applications.
This paper presents PRINCIPIA, a dynamic CPU and CPU-
shares allocation mechanism that opportunistically enables non-
RT applications to run on underutilized CPUs while providing
RT guarantees to RT applications. By monitoring MEC’s system
metrics like processor’s CPU utilization and container’s CPU
usage, PRINCIPIA dynamically allocates both CPU and CPU-
shares to containers running non-RT applications aiming at
opportunistically exploiting underutilized CPUs by containers
running RT applications. We evaluate PRINCIPIA on a small-
scale MEC server which uses containerized virtualization along
with Linux RT Kernel to deploy both RT and non-RT applications.
Our findings show that PRINCIPIA mitigates the impact on the
RT performance of RT applications providing bounded processing
latency in comparison with the default host Kernel scheduler.

Index Terms—Mobile Edge Computing, Virtualization, Con-
tainers, Real-time containers, CPU sharing, CPU allocation

I. INTRODUCTION

Providing cloud computing capabilities at the very edge
of the mobile network, MEC significantly reduces latency
of mobile services while easing both processing and traffic
pressure over the mobile system [1]. For instance, MEC caters
for a wide spectrum of services with diverse requirements
often imposing low-latency constraints. According to their
execution time requirements, MEC servers run mobile services
either as RT or non-RT processes. To meet the execution
time requirements of RT services, both the MEC’s operating
system (OS) and the virtualization environment must provide
RT guarantees.

While running RT processes on a MEC system, RT pro-
cesses likely share computing resources (e.g., CPU time, I/O,
memory) either with collocated user-space processes or with
Kernel threads. Depending on the workload, sharing resources
can impact the performance of RT applications [2]. To avoid
processing interference from collocated processes, a common

approach in RT systems (commonly deployed on embedded
systems) is to run RT processes on a set of isolated CPUs.
Nevertheless, isolating CPUs increases CPU underutilization
[3]. Because the MEC hosts multiple applications with different
execution time requirements, there is a need for efficient
CPU sharing mechanisms among collocated applications using
virtualization technology while providing real-time guarantees
[4].

Understanding the interplay between the benefits of sharing
computing resources and the impact on the RT performance
of mobile services, allows to provide guidelines for achiev-
ing robust MEC. This paper presents PRINCIPIA, a CPU
sharing mechanism for containerized virtualization in MEC.
PRINCIPIA enables non-RT services to exploit the underuti-
lized CPU-time allocated to RT services. To avoid processing
interference from collocated workloads, PRINCIPIA proposes
inverse constant square factors to prioritize containers running
RT applications. Besides allocating CPUs, PRINCIPIA also
allocates CPU-shares to containers. CPU-shares defines the
relative amount of CPU-time that a given container is allowed
to use.

In summary, the main contributions of this paper include:

• developing CPU sharing policies for containerized virtu-
alization in MEC,

• using the notion of inverse constant square factors to
control CPU and CPU-shares allocation, and

• evaluating the realization of RT services while adopting
PRINCIPIA for CPU resource sharing.

The rest of the paper is organized as follows: section II
presents the background and related work on containerized
virtualization to run both RT and non-RT applications in
MEC. Section III models the MEC system, while section IV
formulates the CPU sharing problem for collocated containers
sharing CPU resources in MEC servers. This section also
presents PRINCIPIA as a heuristic solution to the CPU sharing
problem. Section V describes the conducted experiments and
results, while section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

This section covers the background and discusses the use
of containerized virtualization along with Linux RT Kernel to
deploy both RT and not-RT applications on the same MEC sys-
tem. Referred to as operating-system-level virtualization, con-
tainerized virtualization enables running several applications
as isolated processes on the same system by using Kernel’s
features Cgroups and namespaces [5]. While Cgroups enables
defining the limits on the use of system resources (e.g., CPU-
time, memory, network bandwidth) to user-defined groups of
processes or tasks, namespaces enables isolating the resources
seen by a group of processes.

A. Running RT applications on Containerized virtualization

In computing, a real-time (RT) application is defined by the
upper-bound execution time constraint (i.e., deadline) in which
the application should run [6]. The way the system behaves
when a deadline is missed, defines the classification of the RT
application (e.g., soft-RT, hard-RT).

Linux RT Kernel as MEC’s OS running RT applications:
To run RT applications on top of a MEC server, the host
OS must provide RT guarantees: preemption and a scheduling
policy that focuses on meeting timing constraints of individual
processes rather than maximizing the average number of sched-
uled processes. Nevertheless, the incurred cost of development,
maintenance, and licensing of a RT OS, has motivated the
adoption of a general purpose OS like Linux to run RT systems
[7]. Consequently, several mechanisms have been proposed
in recent years to provide RT support in the Linux Kernel
(e.g, RTLinux [8], Low-Latency patch [9], PREEMPT RT [10]
patch), opening up the possibility of its use for RT systems [6].

Containers are considered a lightweight virtualization ap-
proach as containers do not deploy any guest OS. Instead, while
the host OS adopts a RT Kernel supporting preemption and RT
Scheduling mechanisms, the containers link their binaries and
libraries to the host’s RT OS.

B. Sharing computing resources with RT processes

Containers use the Kernel’s features Cgroups to isolate
resources in a multi-tenant environment. Cgroups capabilities
to control and limit resources allow defining CPU sharing
policies for collocated containers. For instance, the work in
[11] proposes a CPU-allocation mechanism that dynamically
adjusts the number of CPUs allocated to containers according
to each container CPU-time demand and the system’s load. To
define the CPU limits for each container, authors use Cgroups
subsystems cpu.quota and cpu.period which are only visible
by the non-RT Scheduler Completely Fair Scheduler (CFS). A
similar mechanism that uses these two Cgroups subsystems is
presented in [12] aiming to allocate available CPU-time among
collocated RT and non-RT containers. Although this approach
is intended to prioritized CPU allocation to RT containers,
using the non-RT Scheduler RT guarantees can not be provided.
Conversely, we consider a MEC system deploying the Linux
RT-Kernel to provide RT guarantees to RT containers. In
addition, we propose a CPU sharing mechanism that allows

non-RT containers to exploit underutilized CPUs allocated to
RT containers. To do so, we leverage Cgroups subsystems
cpuset 1 and CPU-shares 2. While the former allows defining
the set of CPUs that a container is allowed to use when running
its applications, the latter defines the relative amount of CPU-
time that the container is allowed to use.

III. SYSTEM MODEL

This paper considers a MEC server consisting of M CPUs.
Using containerized virtualization, this system hosts a com-
bination of applications with diverse execution time require-
ments, which are classified into three groups: RT applications;
prioritized (PR) non-RT applications, which requires prioritized
access to resources yet running as non-RT; best effort (BE) non-
RT processes, which are default general purpose applications.
Also, we assume that a container can only instantiate applica-
tions with the same execution time requirement. Consequently,
containers are classified as RT containers, PR containers, and
BE containers, as defined by the following indicator variable:

k =

1 if the container instantiates an RT application
2 if the container instantiates an PR application
3 if the container instantiates an BE application

Let L1 = {11, 12, . . . , 1R} represent the set of RT con-
tainers. Similarly, let L2 = {21, 22, . . . , 2P} and L3 =
{31, 32, . . . , 3B} represent the set of PR and BE containers,
respectively. During deployment, each RT container r ∈ L1

is pre-allocated a set of orthogonal CPUs according to its
predefined CPU requirement Cr ≤ M . The indicator vector
Ir = (Ir1, Ir2, . . . , IrM) indicates the set of CPUs allocated
to RT container r, where Irm is defined by:

Irm =

{
1 if RT container r is allocated CPU m

0 otherwise,

for all r ∈ L1 and m ∈ {1, 2, ...,M}. As stated, the
number of CPUs allocated to RT containers must satisfy their
CPU requirements, so that

∑M
m=1 Irm ≥ Cr. By orthogonal

allocation we refer to the fact that two RT containers can
not be allocated the same CPU, such that the inner product
⟨Ii, Ij⟩ = 0, for all (i, j) ∈ L1 where i ̸= j.

Conversely, non-RT containers (both PR and BE) do not
have any such pre-allocated CPUs and opportunistically try to
use the underutilized CPUs assigned to RT containers. While
CPU allocation decisions for non-RT containers can change
over time, such decisions should meet the CPU requirement
Cn ≤ M for each non-RT container n ∈ {L2 ∪L3}. Note that
the CPU allocation here refers to defining the set of CPUs that
containers either RT or non-RT are allowed to use. Then, the
host RT-Kernel actually allocates CPU-time to containers on
specified CPUs, according to the Kernel scheduling policy and
the priority of the container’s instantiated application.

1https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
2https://man7.org/linux/man-pages/man7/cgroups.7.html

To compute parameters, this model assumes a slotted time
t ∈ {0, 1, 2, . . .}. The time-slot here, though, differs from the
MEC’s cycle duration in that this time-slot defines the gran-
ularity or interval duration at which this model computes its
parameters. In essence, this model relies on monitoring system
metrics like per processor CPU utilization and container’s CPU
usage to make CPU allocation decisions to containers every
time-slot. Because the time-slot granularity is arbitrary defined,
measuring system metrics samples (e.g., CPU utilization) likely
capture instant or temporal spikes that potentially lead to wrong
model computation. For that reason, this model first monitors
system metrics, and then computes model parameters based on
both the current sample and the trend from previous monitored
data. To do so, this model tracks these system’s metrics through
the introduction of virtual ring buffers. Such buffers are virtual
in that they are maintained purely in software, while saving
metrics statistics collected over the last W time-slots.

As stated, temporal spikes of measured metric samples
would affect further model computation. For this reason, this
paper computes model parameters (e.g., per-processor CPU
utilization and container’s CPU usage) through a variation of
the common Exponential Moving Average (EMA) [13]. Rather
than computing such parameters based on the snapshot of the
last sample in a time-slot, EMA provides smooth predicted
samples for a general time series aiming to capture the trend
from previous data. To illustrate how this model computes
EMA, consider a time-slot of arbitrary granularity and a time
slicing window of size W[time-slots]. Also, consider the so-
called ring buffer X(t) = {x(t− 1), x(t− 2), . . . , x(t−W)}
which contains the previous samples of a general time series
measured over the last W time-slots. First, compute the Simple
Moving Average (SMA) of X(t) given by SMA(X(t)) =∑W

w=1 x(t − w)/W . Then, for a new data sample x(t) the
EMA is computed as follows:

EMA(x(t)|X(t)) = αx(t) + (1− α)SMA(X(t)), (1)

where α = 2
W+1 is the smoothing constant which assigns

the greatest weight to the contribution of previous samples as
given by SMA(X(t)). Unlike common EMA implementations
which keep the predicted EMA as the contribution from pre-
vious data on subsequent computation of new samples, this
approach does not save any EMA value. Rather, this approach
keeps previous measured samples (not the predicted ones) in
the ring buffer X(t). Those samples are then used as the
contribution of past data as in SMA to compute the EMA.
In this case, the value obtained after the EMA calculation is
further used to compute parameters. By the end of time-slot t,
the ring buffer X(t) is updated according to the current sample
x(t) and the slicing window W .

A. Computing per processor CPU utilization

The per processor CPU utilization refers to the ratio between
the number of cycles (i.e., CPU-time) that a given CPU spent
actually processing system workloads over the total amount of
cycles in a time-slot [14]. Measuring the CPU utilization every

time slot, this model buffers the previous W CPU utilization
measurements.

For each CPU m ∈ {1, 2, . . . ,M}, define the virtual ring
buffer Um(t) containing the previous W samples of CPU
utilization. Updated every time-slot, this virtual buffer evolves
according to the slicing window W as Um(t) = {um(t −
1), um(t − 2), . . . , um(t − W)}. Here, um(t − w) represents
the CPU utilization as measured in time-slot (t − w), where
w ∈ {1, 2, . . . ,W}.

As a function of a new sample um(t) and the ring buffer
Um(t), this model computes the CPU utilization for each CPU
m ∈ {1, 2, . . . ,M} following the EMA in (1), as follows:

U∗
m(t) = EMA{um(t)|Um(t)} (2)

The CPU utilization allows deriving the CPU availability,
which provides a notion of the unused CPU-time on CPU m.
Let Gm(t) denote the CPU availability on CPU m in time-slot
t, given by:

Gm(t) = 1− U∗
m(t) (3)

B. Computing container’s CPU usage

The container’s CPU usage refers to the ratio between the
total amount of CPU-time used by the container to run its
instantiated application, over the total amount of CPU cycles.
To monitor the container’s CPU usage, for each container
n ∈ {L1 ∪ L2 ∪ L3}, define the virtual ring buffer Qn(t).
Updated every time-slot, this virtual buffer evolves according to
the slicing window W such that Qn(t) = {qn(t−1), qn(t−2),
. . . , qn(t − W)}. Here, qn(t − w) represents the CPU usage
of container n as measured in time-slot (t − w), where
w ∈ {1, 2, . . . ,W}.

Denoted by Q∗
n(t), this model computes the CPU usage of

container n in time-slot t, following the EMA in (1) as a
function of the new sample qn(t) and the previous W samples
stored in the ring buffer Qn(t), as follows:

Q∗
n(t) = EMA{qn(t)|Qn(t)} (4)

IV. OPPORTUNISTIC CPU SHARING

Although allocating orthogonal CPUs to RT containers re-
duces resource contention latency caused by collocated RT
processes, orthogonal CPU allocation increases CPU underuti-
lization. This section presents a CPU sharing mechanism that
allows non-RT containers to exploit underutilized CPUs pre-
allocated to RT containers.

A. CPU and CPU-shares Allocation problem

Consider a system controller that monitors and computes
the per CPU utilization U∗

m(t) following (2), for each CPU
m ∈ {1, 2, . . . ,M}. Similarly, the system controller monitors
and computes the container’s CPU usage Q∗

n′(t) following (4),
for each deployed container n′ ∈ {L1, L2, L3}. Furthermore,
let µn(t) = (µn1(t), µn2(t), . . . , µnM (t)) represent the CPU
allocation vector for the non-RT container n ∈ {L2, L3}. Here,

µnm(t) ∈ {0, 1} denotes the CPU m allocation decision, such
that µnm(t) = 1 if the CPU m is allocated to container n,
and µnm(t) = 0 otherwise. Based on the current U∗

m(t) and
Qn∗(t), the network controller chooses the CPU allocation vec-
tor to each non-RT container n subject to its CPU requirement
Cn, every time-slot t.

Because RT containers run RT applications which are sensi-
tive to processing interference from collocated workloads, the
system controller should also define a CPU-time policy which
prioritizes RT containers from CPU-time allocation by the
host’s RT-Kernel. Not only does the system controller allocates
CPUs to non-RT containers, but the system controller also
decides on the relative amount of CPU-time that each non-RT
container is allowed to use (referred to here as CPU-shares) on
the allocated CPUs. Thus, the goal is to design an algorithm
that allocates CPUs and CPU-shares to non-RT containers that
solves the following optimization problem:

Maximize:
∑

n∈{L2∪L3}

M∑
m=1

ωnm(t)µnm(t)

subject to:
M∑

m=1

µnm(t) ≥ Cn, n ∈ {L2 ∪ L3}∑
n∈{L2∪L3}

Snm(t)µnm(t) +
∑
r∈L1

Srm(t)Irm ≤ 1,

m ∈ {1, 2, ...,M}
µnm(t) ∈ {0, 1},∀n,m
0 ≤ Sn(t) ≤ 1

This linear problem seeks to maximize a weighted sum of
CPU allocation subject to each container’s CPU requirement
and CPU-shares limits, where ωnm(t) denotes a positive weight
for the non-RT container n when using CPU m. On the other
hand, Snm(t) represents the decision on the relative amount
of CPU-time that container n is allowed to use. Note that the
CPU-shares of collocated containers sharing the same CPU can
not sum more than one.

The above problem reduces to a generalized Maximum
Weight Match (MWM) problem where the weight of a pair
(n,m) is given by ωnm(t). Described below is PRINCIPIA, a
constant factor approximation algorithm to solve the problem
in (IV-A). It allocates CPUs to non-RT containers based on the
per processor CPU availability and the container’s CPU usage.

B. PRINCIPIA: opportunistic CPU sharing algorithm
PRINCIPIA is a constant factor approximation algorithm

to solve the MWM problem in (IV-A). Solving this problem
requires solving the MWM problem on a |L2∪L3|×M bipartite
graph of |L2 ∪ L3| non-RT containers and M CPUs. Figure
1 illustrates a bipartite graph where PRINCIPIA allocates
CPUs to non-RT containers. Here, we assume that the pool
of CPUs have been pre-allocated to RT containers and non-RT
opportunistically try to use those CPUs.

Let G(V,E) denote the bipartite graph in figure 1 where the
vertex set V is decoupled into the set of non-RT containers

V1 = {L2 ∪ L3} and the set of CPUs V2 = {1, 2, ...,M},
such that V = V1 ∪ V2, and V1 ∩ V2 = ∅. For each pair of
vertices n ∈ V1 and m ∈ V2, there exists an edge (n,m) ∈ E
whose weight is given by ωnm(t). Let ρm(t) denote the number
of containers for which CPU m has been allocated until the
beginning of time-slot t. Because each CPU m has been pre-
allocated to a given RT container, ρm(t) ≥ 1.

Fig. 1: Example MEC system showing containers with different priority (e.g., RT, PR,
and BE). For each non-RT container and each CPU there exists an edge (n,m) whose
weight defines the basis for opportunistic CPU allocation.

Computing probable CPU and CPU-shares allocation:
Inspired by the Law of Attraction, PRINCIPIA defines the
weight ωnm(t) as the attraction of a non-RT container n
to use the CPU m. To compute ωnm(t), the per processor
CPU availability Gm(t) represents the “mass” of CPU m.
Similarly, the container’s CPU usage Q∗

n(t) represents the
“mass” of the non-RT container n. Moreover, ρm(t) represents
the “distance” between the CPU m and a given container n.
Thus, the attraction of a non-RT container n to use the CPU
m is computed as follows:

ωnm(t) =
Gm(t)Q∗

n(t)

ρm(t)2
(5)

Here, the attraction of container n to use CPU m varies
proportionally to both the CPU availability and the con-
tainer’s CPU usage, and varies inversely as the number of
allocated containers to that CPU. Thus, the attraction of con-
tainer n to each CPU m is contained in the vector Ωn =
(ωn1(t), ωn2(t), . . . , ωnM (t)).

PRINCIPIA also computes the CPU-shares, i.e., the relative
amount of CPU-time that each container is allowed to use. Let
υk denote the control constant associated with each priority
policy k ∈ {1, 2, 3}, such that υ1 < υ2 < υ3. Also, define
sn(t) as the weight of container n on the CPU-shares allocation
among containers sharing the same CPU. Inspired by the
common Inverse-Square Law, sn(t) represents CPU intensity
of container n which is computed as follows:

sn(t) =
Q∗

n(t)

υ2
k

(6)

Here, sn(t) varies proportionally to the container’s CPU
usage Q∗

n(t), and varies inversely as the square of the control
constant υk. The CPU intensity of container n decreases as its
control policy is not RT (i.e., k = 1). For example, if the control
constant of PR container is twice to that of RT containers (i.e.,
ν2 = 2ν1), it makes the intensity or weight of PR containers
to be four times weaker to that of RT containers.

Greedy Maximal Weight Match solution: PRINCIPIA pro-
poses a Greedy Maximal Weight Match (P GMWM) heuristic
to solve the MWM problem in (IV-A). The P GMWM aims to
provide a greedy and on-line solution which can be computed
with less overhead than solving the MWM.

The P GMWM consists of finding the maximal match for
each non-RT container n ∈ {L2 ∪ L3}. A maximal match is
defined as the subset En ∈ E containing the Cn (e.g., CPU re-
quirement of container n) edges (n,m) with the largest weights
in Ωn(t), such that En(t) = {(n, i), (n, i′)|ωni(t) > ωni′(t)},
where i, i′ ∈ {1, 2, . . . ,M}, i ̸= i′, and |En(t)| = Cn.

Let µ∗
n(t) = (µ∗

n1(t), µ
∗
n2(t), . . . , µ

∗
nM (t)) be the solu-

tion vector to the MWM problem in (IV-A) following the
P GMWM, where µ∗

nm(t) is given by:

µ∗
nm(t) =

{
1, if (n,m) ∈ En(t)
0, otherwise (7)

Let S∗
n(t) = (S∗

n1(t), S
∗
n2(t), . . . , S

∗
nM (t)) be the CPU-

shares decision vector of container n, where S∗
nm(t) is com-

puted as follows:

S∗
nm(t) =

sn(t)∑
n∈{L2∪L3} sn(t)µ

∗
nm(t) +

∑
r∈L1

s∗r(t)Irm
(8)

PRINCIPIA allocates CPU-shares to containers sharing the
same CPU proportionally as the ratio between the CPU inten-
sity of container n over the sum of CPU intensities of contain-
ers mapped to the same CPU. While this proportional allocation
benefits non-RT containers from avoiding CPU starvation, the
CPU “intensity” prioritizes RT containers on the CPU-shares
allocation.

How does the control constant υk enable priority based CPU-
shares allocation to RT containers in contention when several
containers share the same CPU? As stated, the CPU “intensity”
of non-RT containers decreases as their control constants get
greater than the RT one i.e., υ1. As a result, computing the
container’s CPU intensity based on the inverse square of the
control constant, enables controlling the influence of a given
non-RT container on the allocation of CPU-shares. Put another
way, the greater the control constant of non-RT containers, the
more priority the RT container receives for the CPU-shares
allocation.

V. EVALUATION

We consider a MEC system 3 consisting of four CPUs, i.e.
M = 4, as depicted in figure 2. Using Linux Containers (LXC),
this system deploys a combination of two RT containers, two
PR containers, and two BE containers.

The methodology consists of evaluating the processing la-
tency of deployed RT containers while sharing computing re-
sources with collocated non-RT containers. Let L1 = {11, 12}
be the set of RT containers whose CPU requirements are

3General purpose server equipped with eight Intel i7-8750H physical
processors at 2.20 GHz, and 32 GiB of memory. The MEC’s OS is the
Ubuntu 20.04 with low-latency Linux Kernel version 5.4.0.125.126.

Fig. 2: CPU allocation scenario. RT containers are allocated orthogonal CPUs. Both PR
and BE containers receives CPU-time from any system’s CPU according to scheduling
policies.

assumed as C11 = C12 = 2. Similarly, let L2 = {21, 22}
be the set of PR containers whose CPU requirements are
assumed as C21 = C22 = 2. Finally, let L3 = {31, 32}
be the set of BE containers whose CPU requirements are
assumed as C31 = C32 = 2. Assuming that RT containers are
allocated orthogonal CPUs as indicated by I11 = {1, 1, 0, 0}
and I12 = {0, 0, 1, 1}, we evaluate two CPU sharing policies:
(i) RT-Kernel, where non-RT containers use CPUs assigned to
RT containers as scheduled by the RT-Kernel; (ii) PRINCIPIA,
where the PRINCIPIA mechanism defines on which CPUs
non-RT containers should be scheduled by the RT-Kernel, and
controls the amount of CPU-time that non-RT containers get
granted on those CPUs.

To emulate an application’s workload, non-RT containers run
different instances of the synthetic benchmark tool stress-ng
stress-ng4 stressing different physical resources. For instance,
PR container 21 runs one stressors performing random memory
read/write operations, and one virtual memory stressors writing
up to 5GB to the allocated memory; PR container 22 runs two
cache stressors which performs random widespread memory
read and writes to thrash the CPU cache. Similarly, BE 31 con-
tainer runs one virtual memory stressors writing up to 15GB to
the allocated memory and one stressors continuously perform-
ing system calls mmap(2)/munmap(2)5 (i.e., creates/deletes
new mappings in the virtual address space) for up to 15GB; BE
container 32 runs one stressors which performs asynchronous
I/O writes using Linux system calls (e.g., io setup, io submit),
one disk stressors which continually writes, reads and removes
temporary files for up to 2GB, and one fork stressors which
continually forks children processes that immediately exit.
Finally, each RT container runs a stressors with RT priority 99
(i.e., by setting the Linux RT attribute chrt = 99). The stressors
run as a single thread process instructed to rapidly change
the CPU affinity. Switching this process’s CPU affinity on the
evaluated CPUs enables emulating a scenario where the RT-
Kernel Schedules multiple processes on the evaluated CPU’s
run queues.

The conducted experiments consist of measuring the pro-
cessing latency of RT containers in the Linux RT-Kernel. To do
so, each RT container runs one thread of the cyclictest setting
the RT priority 99. The cyclictest6 provides an estimate of the
system’s RT latency by measuring the difference between the

4https://wiki.ubuntu.com/Kernel/Reference/stress-ng
5https://manpages.ubuntu.com/manpages/bionic/man2/mmap.2.html
6https : / / wiki . linuxfoundation . org / realtime / documentation / howto / tools /

cyclictest/start

time at which the thread signals to wake up and the actually
wake up time. Here, each experiment captures the processing
latency as reported by the cyclictest during a time span of 5
minutes.

Figure 3 shows the distribution of processing latency events
for both evaluated scenarios. These distributions compute the
average of latency events over a set of twelve experiments for
an observation time-span of 60 minutes.

(a) RT-Kernel

(b) PRINCIPIA

Fig. 3: Processing latency of RT containers. Computed over a set of twelve experiments
(total observation time-span is 60 minutes) - Evaluated scenarios: (i) RT-Kernel (ii)
PRINCIPIA.

These distributions show how PRINCIPIA mitigates the
impact on the processing latency. For instance, on average,
events on the latency bucket 2 µsec are more than 100%
greater in PRINCIPIA than in the RT-Kernel. Not only these
benefits are evidenced as relative frequency increase of events
on lower latency buckets, but also these distributions tails.
Providing hints of the WCET of RT containers, figure 4 shows
the increase in percentage of tail latency events when using the
RT-Kernel in comparison with PRINCIPIA.

Fig. 4: Processing latency increase when using the RT-Kernel in comparison with
PRINCIPIA.

Although the PRINCIPIA mechanism focuses on providing
a CPU sharing policy, dynamically controlling how non-RT
container use allocated CPUs to RT containers mitigates the
impact on their processing latency by reducing the WCET
events, in some cases by much as 100% in comparison with
the RT-Kernel.

Could CPU intensive RT containers starve collocated non-RT
containers when using PRINCIPIA? To answer this question,
figure 5 shows the mean CPU usage measured at each deployed
container as a function of their target CPU usage. Each con-
tainer generates CPU load by running as many CPU stressors
of the stress-ng tool as its CPU requirement (e.g., two CPU
stressors per container). Because RT containers are intended

to host RT applications, RT containers run their CPU stressors
with the RT priority chrt = 95. Conducted experiments consist
of measuring each container’s CPU usage, while varying the
target CPU usage of each CPU stressors running on each
container. A set of twelve experiments, whose duration is 5
minutes, is conducted per target CPU usage.

(a) RT-Kernel (b) PRINCIPIA

Fig. 5: Mean CPU usage [%] as measured by each container n ∈ {L1 ∪ L2 ∪ L3}.

The CPU stressors instantiated on RT-containers can preempt
the CPU stressors instantiated on non-RT containers. As a
result, RT containers reach 100% processing throughput in
the vast majority of cases with the exception of RT-Kernel
scenario for an overloaded system (i.e., 80% target CPU usage),
where the measured CPU drops by 18% in comparison with
PRINCIPIA. The reason is that PRINCIPIA CPU sharing
mechanism controls and prioritizes CPU-time allocation to RT
containers.

Not only PRINCIPIA provides prioritized access to RT-
containers, but also provides differentiated service to PR
containers. As shown in figure 5b, PR containers perceive
higher CPU usage than BE containers despite how overloaded
the system is. Using the control constant υk, PRINCIPIA
can control the influence of non-RT containers on the CPU-
shares allocation, either to provide differentiated allocation,
or as conservative mechanism protecting RT containers from
potential processing interference from collocated workloads.

VI. CONCLUSIONS

This paper models CPU sharing in MEC servers deploying
applications with diverse execution time requirements. Also,
this paper proposes PRINCIPIA, an opportunistic CPU sharing
mechanism for containerized virtualization in MEC hosting
multiple applications with heterogeneous execution time re-
quirements. PRINCIPIA opportunistically allocates CPUs to
non-RT containers exploiting available CPU-time from CPUs
pre-allocated to RT-containers. Using a control constant based
on the containers classification policy, PRINCIPIA controls and
limits the relative amount of CPU-time that each container is
allowed to use in scenarios of CPU contention.

Conducted evaluation on a MEC server deploying a combi-
nation of RT and non-RT containers shows that our CPU shar-
ing mechanism outperforms the default RT-Kernel in mitigating
the impact of resources sharing on RT applications. Using our
CPU sharing mechanism the WCET is reduced by more than
150% in comparison with the default RT-Kernel approach.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] M. Barletta, M. Cinque, L. De Simone, and R. Della Corte, “Achieving
isolation in mixed-criticality industrial edge systems with real-time
containers,” in 34th Euromicro Conference on Real-Time Systems (ECRTS
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[3] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala,
V. Narasayya, H. Herodotou, P. Tomita, A. Chen, J. Zhang et al.,
“{PerfIso}: Performance isolation for commercial {Latency-Sensitive}
services,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18), 2018, pp. 519–532.

[4] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan, I. Lee, and
O. Sokolsky, “Rt-open stack: Cpu resource management for real-time
cloud computing,” in 2015 IEEE 8th International Conference on Cloud
Computing, 2015, pp. 179–186.

[5] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing,
vol. 2, no. 3, pp. 24–31, 2015.

[6] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux
kernel: A survey on preempt rt,” ACM Comput. Surv., vol. 52, no. 1,
p. 36, feb 2019.

[7] A. Mosnier, “Embedded/real-time linux survey,” 2005. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.
6318&rep=rep1&type=pdf

[8] V. Yodaiken et al., “The rtlinux manifesto,” in Proc. of the 5th Linux
Expo, 1999.

[9] I. Molnar, “Linux low latency patch,” Last accessed Dec, 2021.
[Online]. Available: https://web.archive.org/web/20080306131124/http:
//www.zipworld.com.au/∼akpm/linux/schedlat.html

[10] T. L. Foundation, “Preempt rt patch,” https://wiki.linuxfoundation.org/
realtime/preempt rt versions.

[11] H. Huang, Y. Zhao, J. Rao, S. Wu, H. Jin, D. Wang, K. Suo, and L. Pan,
“Adapt burstable containers to variable cpu resources,” IEEE Transactions
on Computers, pp. 1–1, 2022.

[12] J. Wu and T.-I. Yang, “Dynamic cpu allocation for docker containerized
mixed-criticality real-time systems,” in 2018 IEEE International Confer-
ence on Applied System Invention (ICASI), 2018, pp. 279–282.

[13] S. Hansun, “A new approach of moving average method in time series
analysis,” in 2013 Conference on New Media Studies (CoNMedia), 2013,
pp. 1–4.

[14] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems:
concepts and design. pearson education, 2005.

