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Abstract

Falls are a significant ongoing public health concern for older adults. At present, few studies

have concurrently explored the influence of multiple measures when seeking to determine

which variables are most predictive of fall risks. As such, this cross-sectional study aimed to

identify those functional variables (i.e. balance, gait and clinical measures) and physical

characteristics (i.e. strength and body composition) that could best distinguish between

older female fallers and non-fallers, using a machine learning approach. Overall, 60 commu-

nity-dwelling older women (�65 years), retrospectively classified as fallers (n = 21) or non-

fallers (n = 39), attended three data collection sessions. Data (281 variables) collected from

tests in five separate domains (balance, gait, clinical measures, strength and body composi-

tion) were analysed using random forest (RF) and leave-one-variable-out partial least

squares correlation analysis (LOVO PLSCA) to assess variable importance. The strongest

discriminators from each domain were then aggregated into a multi-domain dataset, and

RF, LOVO PLSCA, and logistic regression models were constructed to identify the impor-

tant variables in distinguishing between fallers and non-fallers. These models were used to

classify participants as either fallers or non-fallers, with their performance evaluated using

receiver operating characteristic (ROC) analysis. The study found that it is possible to clas-

sify fallers and non-fallers with a high degree of accuracy (e.g. logistic regression: sensitivity

= 90%; specificity = 87%; AUC = 0.92; leave-one-out cross-validation accuracy = 63%)

using a combination of 18 variables from four domains, with the gait and strength domains

being particularly informative for screening programmes aimed at assessing falls risk.

Introduction

Falls are not an inevitable part of ageing, but they are a significant public health concern for

older adults. Whilst falls have been the focus of extensive work to date, they still pose a serious

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0293729 October 31, 2023 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gregg E, Beggs C, Bissas A, Nicholson G

(2023) A machine learning approach to identify

important variables for distinguishing between

fallers and non-fallers in older women. PLoS ONE

18(10): e0293729. https://doi.org/10.1371/journal.

pone.0293729

Editor: Peter Andreas Federolf, University of

Innsbruck, AUSTRIA

Received: June 8, 2023

Accepted: October 17, 2023

Published: October 31, 2023

Copyright: © 2023 Gregg et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The work was funded by the Carnegie

School of Sport at Leeds Beckett University. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0009-0003-2969-793X
https://orcid.org/0000-0002-7858-9623
https://doi.org/10.1371/journal.pone.0293729
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293729&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293729&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293729&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293729&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293729&domain=pdf&date_stamp=2023-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0293729&domain=pdf&date_stamp=2023-10-31
https://doi.org/10.1371/journal.pone.0293729
https://doi.org/10.1371/journal.pone.0293729
http://creativecommons.org/licenses/by/4.0/


clinical problem worldwide [1]. It is estimated that one in three adults aged>65 years fall each

year, and older women have an increased risk of falls compared with older men [2].

Identifying risk factors that predispose individuals to fall is an important aspect of falls pre-

vention and management [3]. Over past decades, a significant body of research has been dedi-

cated to investigating falls, and more than 400 risk factors have been proposed [4]. Previous

research has confirmed that falls are complex and multifactorial in nature, with an extensive

range of intrinsic (e.g. balance, gait, strength) and extrinsic (e.g. environmental, footwear) fea-

tures identified [5, 6].

To enable the accurate identification of high-risk individuals, the most important modifi-

able risk factors and their ability to predict falls need to be determined. This information can

help inform the design of effective screening tools alongside prevention and rehabilitation

interventions. Impaired balance, gait and mobility, as well as the underpinning age-related

changes in body composition and muscle function, have been presented as key domains

related to falls [5, 7]. Various studies have investigated the ability of variables within these

domains to differentiate between fallers and non-fallers; however, there remain many conflict-

ing results. For example, some authors reported that several balance and gait variables can dif-

ferentiate between fallers and non-fallers [8–10], whereas others observed no differences

between groups for similar variables [11, 12]. In terms of muscle strength, inconsistent find-

ings across different contraction types and muscle groups have been observed with isometric

[12] and isokinetic [13] protocols displaying differences in their ability to discriminate

between fallers and non-fallers. The contrasting findings of previous investigations creates

uncertainty regarding the discriminatory ability of different variables. This presents serious

challenges for optimal screening and targeted falls prevention interventions in this population.

Although differences in study design, population characteristics, and testing protocols have

likely contributed to the inconsistencies outlined, much of the previous work has only focused

on variables from one single domain (i.e. gait, balance or strength) [9, 13]. This approach

neglects the multifactorial nature of falls. Where studies have considered more than one

domain (e.g. balance, gait, strength) [14, 15], only a limited number of variables from each

domain have been included, and there is a lack of information regarding mechanical and neu-

romuscular factors which underpin the measured variables. Additionally, there is limited con-

sideration of the relative importance of the variables regarding their predictive ability.

Generally, traditional univariate or multivariate techniques have been used. These, however,

are often unable to capture the complexity of large datasets that may exhibit considerable mul-

ticollinearity [16]. Datasets associated with falling often exhibit multicollinearity, with multiple

strongly correlated variables, leading to redundancy (uninformative variables) in the data.

Consequently, an excessive number of risk factors have been identified, many which overlap,

which is often confusing [6].

To move beyond the often-circular nature of falls research, there is a need for a model

which integrates essential variables from multiple domains [6]. Recently, innovative attempts

have been made to evaluate the relative contributions of a comprehensive range of measures

across strength, balance and gait domains using sophisticated analysis techniques [3, 17, 18].

These investigations are of great significance and provide preliminary evidence regarding the

importance and sensitivity of gait variables in discriminating between fallers and non-fallers

[17, 18]. Although these studies are more comprehensive, some important physical character-

istics (e.g. body composition, rapid strength) have not been fully explored or are missing, and

strength and asymmetry assessments across multiple joints/regions (i.e. ankle, knee and trunk)

are lacking. Furthermore, the inclusion of a comprehensive battery of clinical measures, which

are commonly used in community-based settings and clinical practice, is needed to better

understand their predictive capabilities when discriminating between potential fallers and
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non-fallers. Consequently, to the authors’ knowledge, no comprehensive studies exist that

incorporate both the important functional variables (e.g. balance and gait impairments) and a

wide range of underlying physical characteristics (via the inclusion of key physical measures

such as muscle strength, muscle quality (MQ), and body composition) which underpin them

[6]. Including a combination of these variables is essential to understand the full picture of falls

risk and the underpinning factors driving functional impairments in older adults, and women

in particular.

Principal component analysis (PCA) has been used in some of these recent comprehensive

studies because falls datasets often contain considerable redundancy [17, 18]. While PCA has

merit, it is not possible to rank the observed variables in order of importance or eliminate

redundant variables that add little value to the discrimination process. However, there have

been some recent investigations using other machine learning techniques to assess feature

importance in this population [3, 19–21]. For example, Qiu and colleagues [3] highlighted the

benefits of applying machine learning techniques when investigating falls risk. Within their

study, six machine learning techniques (random forest analysis, logistic regression, naïve

bayes, decision tree, boosted tree, and support vector machine) were applied to a comprehen-

sive range of variables (n = 155), and ten were identified as important for discriminating

between fallers and non-fallers [3]. Despite the comprehensive nature of this investigation and

the applications for screening and intervention design, the data were collected using wearable

sensors meaning that some key domains and important variables (e.g. ground reaction force

(GRF) data, muscle strength and body composition) were omitted from their analyses. As with

the previous comprehensive analyses [17, 18], these missing domains/variables are essential to

understand the full risk of falls in this population and to improve the effectiveness of testing

batteries and falls prevention interventions.

Therefore, we undertook a comprehensive exploratory study using measured balance, gait,

clinical measures, strength, and body composition variables from a cohort of older women.

We used a range of sophisticated machine learning techniques to identify important and

redundant variables across these domains. As such, this study sought to: a) identify the func-

tional and physical factors that best differentiate between fallers and non-fallers in older

women, and b) quantify the relative importance of these variables.

Materials and methods

Participants

80 community-dwelling older women (�65 years of age) were recruited for the study: 20 of

these did not meet the inclusion criteria and were excluded, leaving 60 participants who were

enrolled and completed the data collection (Table 1). The sample size was deemed appropriate

given the exploratory nature of the work and aligns with recent research (e.g. [17, 18]) that has

conducted a comprehensive multi-domain analyses using machine learning techniques. Par-

ticipants were randomly recruited from within the local community through a range of ave-

nues, including liaising with Neighbourhood Network Schemes and the University of the

Third Age. To advertise this study, several recruitment presentations were conducted, and fly-

ers were distributed physically and online (via email and social media). Prior to the com-

mencement of this research, ethical approval was gained from the Carnegie School of Sport

Research Ethics Sub-Committee at Leeds Beckett University (approval reference 35011). Par-

ticipants provided written informed consent before participating in this study. Participants

were classified as ‘fallers’ or ‘non-fallers’ based on self-reported falls history. The number of

fallers relative to non-fallers was consistent with the prevalence of fallers in the older adult

population (~30% of older adults>65 years fall each year) [2, 22]. Participants completed
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health screening before taking part in this study. Several exclusion criteria were implemented

to minimise any health risks to participants and to ensure safety during testing. Exclusion cri-

teria were:

■Any history of cardiovascular, metabolic or renal disease, or any signs and symptoms sugges-

tive of such diseases;

■ Resting blood pressure�140/90 (participants prescribed blood pressure medication were

asked to seek medical clearance from their GP);

■ Self-reported history of a pacemaker and/or any other internal electrical medical device;

■ Serious mobility impairment or any bone, joint or muscle problem that could have been

aggravated by exercise;

■Medical conditions that could have led to more substantial complications during maximal

exercise testing;

■ Self-reported history of a serious visual impairment;

■ Excessive alcohol consumption on a regular basis defined as>14 units per week; or

■ A Mini Mental State Examination score <24.

Fallers were classified retrospectively as having experienced one or more falls in the 12

months preceding data collection or whilst enrolled within the study. Non-fallers had no his-

tory of falls during this time. Falls were defined using the World Health Organization’s defini-

tion as “inadvertently coming to rest on the ground, floor or other lower level, excluding

Table 1. Descriptive characteristics of fallers and non-fallers included within the multi-domain analysis.

Fallers (n = 21) Non-fallers (n = 39) p value Effect size

Age (years) 71.52±4.33 68.87±3.41 0.02** 0.71

Mass (kg) 65.43±10.67 62.31±10.55 0.28 0.62

Height (m) 1.62±0.05 1.60±0.06 0.32 0.25

BMI (kg/m2) 25.13±4.06 24.25±3.6 0.41 0.23

Systolic BP (mmHg) 121.27±12.73 125.56±13.65 0.23 0.22

Diastolic BP (mmHg) 75.56±5.94 77.33±8.39 0.35 0.23

Resting HR (bpm) 69.52±7.22 69.5±6.82 0.99 0.23

Number of medications 1.14±1.06 0.92±1.11 0.46 0.20

Weekly alcohol (units) 10.6±9.61 8.06±8.13 0.31 0.29

FES-I 20.43±2.77 18.68±2.61 0.02** 0.66

GDS 1.29±1.71 1.33±2.25 0.93 0.02

Mini-Mental State Examination 29.43±0.98 29.36±0.84 0.78 0.08

Total physical activity (MET-minutes/week) 5990±3711 7463±3860 0.16 0.39

Visual impairment4 20 (95.2%) 36 (92.3%) 1.00 <0.001

Hearing impairment4 5 (23.8%) 7 (17.9%) 0.84 0.03

BMD, bone mineral density; BMI, body mass index; BP, blood pressure; HR, heart rate; FES-I, Falls Efficacy Scale—International; GDS, Geriatric Depression Scale.

Continuous variables are mean ± SD. 4Categorical variables are n (%). Group differences and effect sizes were determined using two-tailed t-tests and Cohen’s d for all

continuous variables. 4For categorical variables, group differences and effect sizes were determined using chi-squared tests and Cramer’s V.

* p�0.10

** p�0.05

*** p�0.001.

https://doi.org/10.1371/journal.pone.0293729.t001
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intentional change in position to rest in furniture, wall or other objects” [23]. Overall, 10 par-

ticipants reported the occurrence of one fall, and 11 reported two or more falls.

Falls history data were recorded during a telephone conversation before the first data collec-

tion session and subsequently during each visit to the laboratory. Participants were asked to

provide detailed information about each fall, including when and where the fall occurred and

if any injuries were sustained. All information was verified in person during each data collec-

tion session to ensure recording accuracy.

Experimental design

A cross-sectional study design was employed within this research. Participants attended three

data collection sessions in the Carnegie Research Institute at Leeds Beckett University (Fig 1).

Recruitment for this study opened in February 2017, and data collection took place between

March 2017 and December 2018, with visits approximately two months apart. During session

one, participants underwent screening of baseline characteristics, clinical measures, and bal-

ance assessment. During session two, gait analysis was performed, and during the final session,

body composition and strength measurements were conducted. Before each data collection

session, participants were advised to rest and to maintain a consistent nutritional intake and

physical activity level. Throughout the duration of the study, participants did not engage in

any new physical activities, supplementation, or falls prevention programmes (based on self-

reported information at each data collection session).

Fig 1. Overview of the functional and physical measures included in this project.

https://doi.org/10.1371/journal.pone.0293729.g001
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Experimental procedures

Clinical measures. Four clinical measures, which are commonly used in research and

clinical practice with older adults, were used to evaluate functional mobility. Participants com-

pleted the following protocols in a randomised order: Timed Up and Go (TUG) [24], stair test

[25], chair stand test [26], and Tinetti Performance Oriented Mobility Assessment (POMA)

[27]. For each of the clinical measures, participants completed one familiarisation trial fol-

lowed by two testing trials [28], with a one-minute rest period between trials [29].

Balance measures. Multiple static posturography protocols were performed during a sin-

gle visit to the laboratory using the NeuroCom VSR SPORT force platform integrated with the

Balance Manager software (NeuroCom International, Inc., Clackamas, Oregon, USA). Balance

performance was quantified during five testing protocols: Modified Clinical Test of Sensory

Interaction on Balance (feet apart and narrow stance) [30, 31], unilateral stance [32], limits of

stability [33], and weight bearing squat [9]. Throughout all measurements, a screen was posi-

tioned at eye level, 1.5 m in front of the force plate [34]. When required, a high-density foam

pad was used to create a compliant surface. Participants completed testing barefoot, facing the

screen with hands on hips. A one-minute rest period was provided between trials, and a two-

minute rest period was provided between protocols [35].

Gait measures. Kinetic and kinematic data were simultaneously collected during walking

trials along a 10-meter indoor walkway at two gait speeds (self-selected usual and maximal).

Participants were asked to walk at a comfortable everyday pace for the usual gait speed (UGS)

trials and as quickly but safely as possible for the maximal gait speed (MGS) trials [10]. For

both speeds, participants completed five familiarisation trials followed by five testing trials,

with two minutes rest between trials. To determine gait speed, timing gates (Witty; Microgate,

Bolzano, Italy) mounted on tripods were positioned at approximately hip height, five metres

apart in the centre of the walkway. GRF data were acquired from three force platforms (Kistler

Instruments Ltd., Winterthur, Switzerland) sampling at 1,000 Hz. Data were acquired using

the BioWare software (version 5.3.1.7; Kistler Instruments Ltd., Winterthur, Switzerland),

configured to record for 20 seconds per trial. Trials were deemed acceptable when both feet

contacted separate force plates, without participants noticeably altering their gait style or tar-

geting the plates.

Two-dimensional video data were collected from one high-speed camera (Fastec TS3; Fastec,

San Diego, CA, USA) placed perpendicular to the walkway and eight metres from the centre of

the force platforms. The camera settings included a frame rate of 100 Hz, shutter speed of 1/

1,000 s, resolution of 1,280 x 1,024 pixels, and f-stop of 2.0. Before testing, tape markers were

placed on the hip (lateral aspect of the greater trochanter), knee (midpoint between the lateral

convexities of the femur and tibia), and ankle (lateral malleolus) joints on the right-hand side of

the body to aid digitising reliability during kinematic analysis. Participants completed all trials

in their own footwear. A reference frame was constructed using four metal poles placed in the

sagittal plane in the centre of the walkway. This was recorded and later used for calibration.

Body composition measures. Dual energy X-ray absorptiometry (DXA) scans (Lunar

iDXA with enCORE software version 15.0; GE Healthcare, Madison, WI, USA) were per-

formed to assess body composition, bone mineral density (BMD), and hip structure. All scans

were performed by the same trained operator. Participants were asked to arrive fasted, in a

euhydrated state, and having participated in no vigorous exercise for 12 hours preceding the

scans [36]. Participants were also asked to void their bladder before the scans [37]. The scan-

ning mode was automatically determined by the enCORE software based on body size; all par-

ticipants in this study were scanned using the standard mode (estimated body thickness 0.16

m to 0.25 m).
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Total and regional body composition measures were derived from one total body scan, last-

ing approximately seven minutes [38]. Participants adopted a supine position, aligned with the

centre line on the DXA scanning table, with the head positioned at the horizontal line at the

top of the scanning bed. Proximal femur BMD and structural geometry were evaluated from

one left femur scan [39]. For this, participants remained in a supine position in the centre of

the scanning table. For any participants with history of a left hip replacement, the right femur

was scanned instead (n = 2). On completion of the DXA scans, participants had the opportu-

nity to eat and drink before moving onto the strength measurements.

Strength measures. Strength assessments were performed at the trunk, knee and ankle

for both limbs using an isokinetic dynamometer (System 4 PRO; Biodex Corp., Shirley, New

York, USA). For the knee and ankle measurements, the order of testing (joint, type of contrac-

tion and speed) was randomised. The rotational axis of the dynamometer was visually aligned

with a line traversing the femoral epicondyles at the knee joint centre, and the resistance pad

was positioned securely on the tibia superior to the medial malleolus [40]. The testing thigh,

contralateral limb, trunk and pelvis were stabilised throughout the protocol using Velcro

straps. Peak torque and rate of torque development (RTD) were measured during maximal

isometric knee extension trials, with participants completing three submaximal trials before

three maximal test trials. Each contraction was performed for five seconds, with a 30 second

rest period between trials [41]. Maximal isokinetic concentric joint torques were assessed at

the knee and ankle for both flexion and extension at angular velocities of 60˚/s and 120˚/s [42,

43]. Participants completed five submaximal trials followed by three maximal test trials. Fol-

lowing these measurements, concentric trunk flexion and extension data under isokinetic con-

ditions were collected at angular velocities of 20˚/s and 45˚/s [44] using the Biodex Dual

Position Back Extension/Flexion attachment (Biodex Corp., Shirley, New York, USA) attached

to the dynamometer. The fixed axis of the dynamometer was aligned level with the anterior

superior iliac spines [45]. Participants performed five submaximal warm up trials before five

maximal test trials. For the isokinetic trials, a one-minute rest period was provided between

sets.

Data analysis

Clinical measures data. For each of the clinical measures (except gait speed), the average

performance across both test trials was calculated and used within the analysis [46]. In total,

ten variables were obtained from the clinical data protocols (Table 2). Gait speed data were col-

lected alongside the other gait variables but included within the clinical measures dataset,

given their ease of measurement and common use in clinical and community settings. Further

details are provided in the gait data section below.

Balance data. The balance data were exported from the Balance Manager software, and

any additional processing was completed using Microsoft Excel. In total, 52 variables were

obtained from these protocols (Table 2). To quantify the visual contribution to balance during

the firm and foam trials, the Romberg ratio (eyes closed sway velocity/eyes open sway velocity)

was calculated [47]. To quantify the somatosensory contributions to balance during the eyes

open and eyes closed trials, the somatosensory ratio (sway velocity foam/sway velocity firm)

was calculated [48].

To determine inter-leg symmetry during the unilateral stance test and weight-bearing

squat, the symmetry angle [49] was calculated for the eyes open and eyes closed trials, using

the arctan function of the ratio of mean values measured from the left and right limbs [50]. As

the focus of this analysis was to evaluate the magnitude of asymmetry rather than the direction,

the absolute values were reported.

PLOS ONE Machine learning approach to identify important variables for distinguishing between fallers and non-fallers

PLOS ONE | https://doi.org/10.1371/journal.pone.0293729 October 31, 2023 7 / 32

https://doi.org/10.1371/journal.pone.0293729


Table 2. Variables included within the clinical measures, balance, gait, strength and body composition data pack-

ages for the single-domain analyses.

Clinical measures variables

TUG • Time (s)

Stair test • Stair ascent time (s)

• Stair descent time (s)

Chair stand test • Performance (count)

Gait speed • UGS (m/s)

• MGS (m/s)

• Gait speed reserve

Tinetti POMA • Balance score

• Gait score

• Total score

Balance variables

mCTSIB • Firm eyes open & eyes closed sway velocity (˚/s)

• Foam eyes open & eyes closed sway velocity (˚/s)

• Firm & foam Romberg ratio

• Eyes open and eyes closed somatosensory ratio

Unilateral stance • Eyes open and eyes closed left sway velocity (˚/s)

• Eyes open and eyes closed right sway velocity (˚/s)

• Composite eyes open & eyes closed sway velocity

(˚/s)

• Symmetry angle eyes open & eyes closed (%)

Limits of stability • Reaction time (s)

• Movement velocity (˚/s)

• Endpoint excursion (%)

• Maximum excursion (%)

• Directional control (%)

Weight bearing squat • Symmetry angle 0˚, 30˚ & 60˚ (%)

Gait variables

UGS and MGS trials • Contact time (s)

• Time to weight acceptance peak force (s)

• Time to mid-stance peak force (s)

• Time to push-off peak force (s)

• Braking phase duration (s)

• Propulsive phase duration (s)

• Step frequency (Hz)

• Weight acceptance peak force (BW)

• Mid-stance peak force (BW)

• Push-off peak force (BW)

• Vertical peak force (BW)

• Weight acceptance rate (BW/s)

• Push-off rate (BW/s)

• Braking peak force (BW)

• Propulsion peak force (BW)

• Braking force impulse (BWs)

• Propulsive force impulse (BWs)

• Change in horizontal velocity (m/s)

• Step length index

• Step width (m)

• Heel strike ankle angle (˚)

• Heel strike knee angle (˚)

• Toe-off ankle angle (˚)

• Toe-off knee angle (˚)

• Mid-stance trunk angle (˚)

• Mid-stance knee angle (˚)

• Gait variability (MAD (%) for all the above)

Strength variables

(Continued)
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Table 2. (Continued)

Isometric knee extension • Peak torque (Nm/kg)

• Symmetry angle (%)

• RTD at 0-50ms, 0-100ms, 0-200ms (Nm/s/kg)

• RTD symmetry angle at

• 0-50ms, 0-100ms, 0-200ms (%)

Isokinetic knee flexion & extension (60˚/s and 120˚/s) • Peak torque (Nm/kg)

• Angle of peak torque (˚)

• Hamstrings/quadriceps ratio

• Symmetry angle (%)

Isokinetic ankle dorsiflexion & plantar flexion (60˚/s and

120˚/s)

• Peak torque (Nm/kg)

• Angle of peak torque (˚)

• Dorsiflexion/plantar flexion ratio

• Symmetry angle (%)

Isokinetic trunk flexion & extension (20˚/s and 45˚/s) • Peak torque (Nm/kg)

• Angle of peak torque (˚)

• Flexion/extension ratio

Body composition variables

Total body DXA • Total fat mass (kg)

• Percentage fat mass (%)

• Fat mass index (kg/m2)

• Fat mass symmetry angle (%)

• Visceral adipose tissue (kg)

• Total lean mass (kg)

• Percentage lean mass (%)

• Lean mass index (kg/m2)

• Total appendicular lean mass (kg)

• Percentage appendicular lean mass (%)

• Appendicular lean mass index (kg/m2)

• Appendicular lean mass index SA (%)

• Upper-body appendicular lean mass (kg)

• Lower-body appendicular lean mass (kg)

Left femur DXA • Femoral neck BMD (g/cm2)

• Upper neck BMD (g/cm2)

• Lower neck BMD (g/cm2)

• Ward’s triangle BMD (g/cm2)

• Trochanter BMD (g/cm2)

• Shaft BMD (g/cm2)

• Total hip BMD (g/cm2)

• Femoral neck T-score (SD)

• Total hip T-score (SD)

Left femur DXA: Hip Structural Assessment • Hip axis length (mm)

• Femoral strength index

• Buckling ratio

• Section modulus (cm3)

• Cross-sectional moment of inertia (mm4)

• Cross-sectional area (mm2)

MQ • MQ thigh (isometric knee extensor torque)

• MQ thigh (knee extensor torque)

• MQ thigh (combined torque)

• MQ shank (plantar flexor torque)

• MQ shank (combined torque)

BMD, bone mineral density; mCTSIB, Modified Clinical Test of Sensory Interaction on Balance; MGS, maximal gait

speed; MQ, muscle quality; POMA, Performance Oriented Mobility Assessment; RTD, rate of torque development;

TUG, Timed Up and Go; UGS, usual gait speed.

https://doi.org/10.1371/journal.pone.0293729.t002
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Gait data. GRF data processing was completed using BioWare software (version 5.3.1.7;

Kistler Instruments Ltd., Winterthur, Switzerland), and the video files were analysed using

Simi Motion analysis (version 9.2.3; SIMI Reality Motion Systems, Munich, Germany). Over-

all, 99 variables (Table 2) were processed from the gait data and included in further analysis.

Five successful steps for both gait speeds were identified per participant and included within

the analysis. For each participant, the five steps analysed were from the same limb. The GRF

data were filtered with a second-order low pass Butterworth filter, with a 50 Hz cut-off fre-

quency [51]. UGS and MGS (m/s) were determined for each trial using the distance walked

and ambulation time measured from the timing gates. Gait speed reserve was calculated as the

ratio between MGS and UGS [52], and was used to quantify the capacity to increase walking

speed when needed (as noted above, UGS, MGS and gait speed reserve were analysed in the

clinical measures dataset).

Gait variability was measured using the median absolute deviation (MAD) using the five

steps for each variable. The MAD provides a robust estimate of variability, which is less sensi-

tive to outliers and artificial inflation compared with other measures such as the coefficient of

variation [53]. To allow for comparisons between groups and variables, the MAD scores for

each variable were reported as a percentage of the original median value [54]. The percentage

MAD scores were calculated for all gait variables at both gait speeds, apart from step width and

change in horizontal velocity.

Strength data. In total, 70 strength variables (Table 2) were obtained from the different

protocols and included in further analysis. The peak torque trials (sampled at 100 Hz) were

exported from the Biodex software for processing using in-house algorithms written in

MATLAB (The MathWorks Inc., Natick, Massachusetts, USA). Flexion/extension strength

ratios were calculated for the trunk, knee and ankle by taking the quotients between the isoki-

netic flexor peak torque and isokinetic extensor peak torque. These were calculated for all test-

ing speeds and were determined for the left and right limbs during the ankle and knee trials.

For the RTD trials, the torque signal from the dynamometer was sampled at 2000 Hz using a

Biopac MP150 data acquisition system integrated with the AcqKnowledge software (version

4.4; Biopac Systems Inc., Santa Barbara, CA, USA). The signal was exported and processed off-

line using custom written algorithms in MATLAB (The MathWorks Inc., Natick, Massachu-

setts, USA). The signal was filtered using a second-order low-pass Butterworth filter, with a

cut-off frequency of 150 Hz [55]. RTD was defined as the slope of the torque-time curve

(4torque/4time) for three time intervals from the onset of the contraction [56]. The onset

was determined as the point where the torque signal reached 4 Nm above baseline [57]. These

time periods were chosen to represent the rapid muscle responses (�200 ms) needed to pre-

vent falling when regaining balance following a trip or slip incident [58]. To determine inter-

leg symmetry for the peak torque values, the symmetry angle (%) was calculated using the

methods described previously.

Body composition data. All data from both DXA scans were analysed using the enCORE

software (version 15.0; GE Healthcare, Madison, WI). For the body composition analysis,

regions of interest and cut points were automatically determined by the enCORE software. A

total of 14 body composition variables, nine BMD variables, six hip structure variables, and

five MQ variables were obtained and included in further analysis (Table 2). Several variables

were estimated from the total body scan and additional regions of interest were manually seg-

mented to estimate lean tissue mass in the upper and lower leg for both limbs.

MQ was defined as muscle strength per kilogram of lean tissue mass [59]. Upper leg MQ

was calculated using the following equations: isometric knee extension peak torque/upper leg

lean tissue mass, isokinetic (60˚/s) knee extension peak torque/upper leg lean tissue mass, and

isokinetic (60˚/s) combined peak torque (knee extension + flexion)/upper leg lean tissue mass
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[59]. Lower leg MQ was defined using the following equations: isokinetic (60˚/s) plantar flex-

ion peak torque/lower leg lean tissue mass, and isokinetic (60˚/s) combined peak torque (plan-

tar flexion + dorsiflexion)/lower leg lean tissue mass [60]. These indices were defined for the

dominant and non-dominant limbs, based on the highest torque measured during the left and

right trials. In addition, a composite measure of MQ was defined for each of the five indices,

which was an average measure of the dominant and non-dominant limbs. Inter-leg symmetry

was calculated for each of the MQ indices using the symmetry angle (%) as described

previously.

Statistical analyses

In total, 281 variables were included in the analysis. Because the number of variables was

much greater than the number of participants (n = 60), it was not possible to use techniques

like logistic regression. Such techniques utilise the generalised linear model, which would have

resulted in instability problems in this scenario [16]. Therefore, we developed an analysis strat-

egy that could cope with the size and complexity of the data set together with its inherent mul-

ticollinearity. The data were initially partitioned into five single-domain sub-datasets,

hereafter referred to as ‘data packages’ (i.e. the balance, gait, clinical, strength and body com-

position data packages), thus making the analysis more manageable. The data in each of the

single domains were analysed to determine the relative importance and discriminatory ability

of variables when differentiating between fallers and non-fallers. A consistent analysis strategy

was used across all data packages. Following this, the strongest discriminators from each sin-

gle-domain analysis were compiled into a final multi-domain dataset and were analysed

together to identify which variables collectively best discriminated between the two cohorts.

All analyses were undertaken using in-house algorithms and code written in R [61].

Single-domain analysis. The initial single-domain results were derived using traditional

univariate techniques before applying a machine learning multivariate approach. Firstly, two-

sample t-tests and effect sizes (Cohen’s d) were used to determine differences between fallers

and non-fallers with statistical significance set at p<0.05. For categorical variables, group dif-

ferences and effect sizes were determined using chi-squared tests and Cramer’s V. Pearson’s

correlation coefficients were also used to quantify the relationships between variables, with r
values of 0.10, 0.30 and 0.50 representing small, moderate and large associations, respectively

[62]. The absolute value of the correlation coefficient was also used to provide an indication of

multicollinearity between variables, with r values>0.50 suggesting high collinearity [63]. Bart-

lett’s test of sphericity was used to assess the redundancy in the data using the correlation

matrix [64]. This test determined whether the correlation matrix was significantly different

from an identity matrix (i.e. a matrix with ones along the diagonal and zeros for all other

entries). From Bartlett’s test, p<0.05 indicated that there was redundancy in the data and that

the data were not orthogonal (i.e. uncorrelated).

From a machine learning perspective, random forest analysis (based on 500 trees) [65]) and

leave-one-variable-out (LOVO) partial least squares correlation analysis (PLSCA; as described

by Weaving et al. 2019 [16]) were employed to identify the important variables that best dis-

criminated between fallers and non-fallers. Variables were identified as important if they were

above the cut-off ‘elbow’ on the variable importance scree plots produced using both tech-

niques. A mixed-methods approach, using the Jenks natural breaks algorithm [66] with a sub-

jective validation, was used to determine the optimal cut-off point for important variables.

Following this, the important variables selected from both techniques were combined into two

refined datasets (comprising a smaller number of variables). Using the refined datasets, classi-

fication models were constructed to differentiate between fallers and non-fallers, using PLSCA
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[67], random forest [65], and logistic regression techniques. Further details about the random

forest, PLSCA and logistic regression techniques are presented in S1 Appendix.

The receiver operating characteristics (ROC) area under the curve (AUC) was used

throughout as a metric of diagnostic accuracy, providing an index of discriminatory ability

[68]. An AUC value of 0.50 represented no discriminatory ability, with values of 0.70 to 0.79

considered acceptable, 0.80 to 0.89 considered excellent, and�0.90 considered outstanding

[68]. An AUC value of one represents perfect discrimination between groups.

Multi-domain analysis. Overall, 51 variables were included in the further multi-domain

analysis. These variables were identified as important by the random forest and LOVO PLSCA

during the five single-domain analyses. When compiling the multi-domain data package,

some participants had missing values. Therefore, for the multi-domain analysis it was neces-

sary to impute the missing data so that all observations were included (n = 60; fallers = 21,

non-fallers = 39), thus enabling the use of the same consistent machine learning strategy and

minimising the loss of valuable information that could have been beneficial for discrimination

between groups. As such, any missing values were imputed using the Probabilistic Principal

Component Analysis (PPCA) technique [69].

Analysis was undertaken using the same multivariate machine learning approach described

for the single domains. Following traditional univariate analyses, random forest and LOVO

PLSCA were employed to identify the important variables which best discriminated between

fallers and non-fallers, as well as highlighting variables of less importance. Subsequently, the

important variables selected from both techniques (i.e. above the cut-off elbow on the variable

importance plots) were combined into one final refined dataset. Using this refined dataset,

classification models were constructed to differentiate between fallers and non-fallers, using

PLSCA, random forest and logistic regression techniques.

To determine the general applicability of the classification models (i.e. to test how each

model performed on unseen data) and to check that the models were not overfitting the data,

cross validation was performed. For the random forest models, the inherent out-of-bag cross

validation methods were used (meaning that a separate cross validation was not needed) [70].

Following pilot work, leave-one-out cross validation (LOOCV) was deemed most appropriate

for the logistic regression models [71]. This is supported by previous work which has suggested

that LOOCV performs well with small sample sizes and produces comparable results to

10-fold cross validation methods [72]. Further details about the cross validation are presented

in S1 Appendix.

In addition, and for the first time in this area, PLSCA was used to quantify the strength of

the relationships between the various domains. Whilst univariate correlation analyses were

performed to quantify the associations between individual variables in each data package,

PLSCA has the advantage that it can quantify the strength of the relationships between multi-

ple groups of variables in different domains. This was done by applying PLSCA bilaterally

between the domains. The amount of shared information was determined by calculating the

singular value inertia, with greater values representing more shared information and stronger

relationships between the single-domain data packages [73].

Results

Single-domain analysis

The full data and univariate results for the single-domain analyses are presented in S1–S9

Tables. The important variables identified in each data package were included in single-

domain classification models to differentiate between fallers and non-fallers, using PLSCA,

random forest and logistic regression techniques.
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The range of ROC results for all the single-domain classification models (PLSCA, random

forest and logistic regression) are shown in Table 3. It was possible to discriminate between

fallers and non-fallers with an AUC�0.90 in the gait and balance data packages and an

AUC�0.80 in the strength data package. The clinical measures and body composition data

packages demonstrated acceptable discriminatory ability (AUC�0.70) between groups.

Multi-domain analysis

51 variables identified as important from the five single-domain analyses were included in the

multi-domain data package. The balance, gait and clinical measures data included in the

multi-domain analysis are presented in Table 4. From the balance data, significant differences

were observed between fallers and non-fallers for the variables right directional control

(p = 0.03, Cohen’s d = 0.56) and anterior maximum excursion (p = 0.04, Cohen’s d = 0.60).

Fallers demonstrated greater right directional control (7%) and less anterior maximum excur-

sion (11%) compared with non-fallers. From the gait data, significant differences were

reported for all variables apart from MAD UGS step length (p = 0.18, Cohen’s d = 0.47). Fallers

walked with shorter steps (UGS = 7%, MGS = 6%), a greater degree of knee flexion at toe-off

(UGS = 2%, MGS = 1%), and a longer braking phase (7%) compared with non-fallers. In terms

of gait variability, fallers demonstrated less variability for MGS step frequency (44%) and UGS

braking phase duration (44%), alongside greater variability for MGS toe-off knee angle (41%),

UGS braking peak force (40%), and UGS time to mid-stance peak force (46%) compared with

non-fallers. For the clinical measures data, significant differences were observed between fall-

ers and non-fallers for TUG time, Tinetti POMA total score, and UGS. Fallers had significantly

slower TUG time and UGS compared with non-fallers (8% and 5% respectively), alongside a

smaller Tinetti POMA total score (4%).

For the strength data included in the multi-domain analysis (Table 5), significant differ-

ences were reported for dorsiflexion 120 dominant peak torque, knee flexion 120 dominant

peak torque, knee flexion 120 non-dominant peak torque, knee flexion 60 non-dominant peak

torque, plantar flexion 60 non-dominant peak torque, knee flexion 120 symmetry angle, knee

flexion 60 dominant peak torque, dorsiflexion 60 non-dominant peak torque, and dorsiflexion

120 non-dominant peak torque. Fallers produced lower peak torque compared with non-fall-

ers. For knee flexion 120 symmetry angle, fallers demonstrated greater asymmetry compared

with non-fallers. For the body composition data (Table 5), fallers demonstrated lower thigh

MQ (combined torque) compared with non-fallers (p = 0.04, Cohen’s d = 0.54).

Table 3. Results of the ROC analyses using the variables in the single-domain analyses.

Data package (number of models*) AUC Sensitivity Specificity p value

Balance data package (10 models) 0.67 to 0.94 73% to 93% 56% to 88% All <0.001

Gait data package (7 models) 0.84 to 0.97 76% to 94% 82% to 92% All <0.001

Clinical measures data package (8 models) 0.58 to 0.77 67% to 83% 44% to 79% All <0.001

Strength data package (7 models) 0.61 to 0.86 58% to 83% 59% to 93% <0.001 to 0.02

Body composition data package (7 models) 0.56 to 0.78 50% to 92% 46% to 82% <0.001 to 0.17

AUC, area under the curve.

* In each of the single-domain analyses, baseline and refined models were produced using each of the PLSCA, random forest, and logistic regression techniques. In each

single domain, the baseline models included all variables in the data package. These baseline models were then refined using only the variables identified as important by

firstly the random forest and secondly the LOVO PLSCA. Therefore, several models were produced for each data package in the single-domain analyses. The total

number of models differed depending on the number of refined logistic regression models produced.

https://doi.org/10.1371/journal.pone.0293729.t003
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Random forest analysis and LOVO PLSCA were used to quantify the relative importance of

the variables in the imputed multi-domain data package with respect to their ability to discrim-

inate between fallers and non-fallers. Using the random forest analysis, 12 variables had the

greatest ability to distinguish between fallers and non-fallers (Fig 2). From the selected vari-

ables, seven were from the gait data, two were from the strength data, two were from the clini-

cal measures data, and one was from the body composition data. Using the LOVO PLSCA, 15

variables had the greatest ability to distinguish between fallers and non-fallers (Fig 3). From

the selected variables, nine were from the gait data, five were from the strength data, and one

was from the clinical measures data.

Table 4. Descriptive statistics for the important balance, gait and clinical measures variables included in the multi-domain analysis for fallers (n = 21) and non-fall-

ers (n = 39).

Fallers Non-fallers p value Effect size

Balance variables

Posterior endpoint excursion (%) 43.95±13.34 42.62±12.02 0.71 0.11

Anterior maximum excursion (%) 82.05±17.60 91.67±15.52 0.04** 0.60

Eyes closed left sway velocity (˚/s) 5.67±3.18 6.03±2.71 0.67 0.12

Posterior directional control (%) 65.52±20.38 59.35±19.08 0.26 0.32

Right endpoint excursion (%) 61.57±22.52 65.87±15.82 0.44 0.23

Eyes closed right sway velocity (˚/s) 7.02±3.56 5.97±2.75 0.25 0.34

Right directional control (%) 81.1±8.28 75.74±10.28 0.03** 0.56

Eyes open right sway velocity (˚/s) 1.61±0.98 1.24±0.45 0.12 0.54

Eyes closed somatosensory ratio 4.07±1.35 3.93±1.38 0.70 0.10

Composite directional control (%) 78.27±7.36 74.25±8.11 0.06* 0.51

Foam eyes closed sway velocity (˚/s) 1.62±0.45 1.49±0.43 0.29 0.30

Gait variables

UGS braking phase duration (s) 0.32±0.03 0.30±0.03 0.02** 0.65

UGS TO knee angle (˚) 127±4 130±5 0.01** 0.75

UGS step length index 0.43±0.02 0.46±0.03 <0.001*** 1.03

MAD UGS step length (%) 1.80±1.38 1.37±0.47 0.18 0.47

MAD UGS braking phase duration (%) 2.77±1.85 4.94±2.64 <0.001*** 0.91

MGS step length index 0.49±0.02 0.52±0.03 <0.001*** 0.93

MAD MGS TO knee angle (%) 1.17±0.54 0.83±0.47 0.02** 0.68

MAD MGS step frequency (%) 0.62±0.52 1.11±0.82 0.01** 0.67

MGS TO knee angle (˚) 132±3 134±4 0.04** 0.53

MAD UGS Breaking Peak Force (%) 6.45±3.83 4.62±2.24 0.05** 0.63

MAD UGS Time to Mid-stance Peak Force (%) 2.59±1.72 1.78±0.88 0.05** 0.65

Clinical measures variables

POMA total score 26.22±1.7 27.31±1.17 0.01** 0.79

TUG time (s) 8.24±1.18 7.61±1.17 0.05** 0.54

POMA balance score 15.09±1.58 15.69±0.57 0.10* 0.59

UGS (m/s) 1.42±0.12 1.50±0.14 0.04** 0.54

GS reserve 1.33±0.13 1.29±0.12 0.29 0.30

UGS, usual gait speed; TO, toe-off; MAD, median absolute deviation; MGS, maximal gait speed.

Data are presented as mean ± SD. Group differences and effect sizes were determined using two-tailed t-tests and Cohen’s d.

* p�0.10

** p�0.05

*** p�0.001.

https://doi.org/10.1371/journal.pone.0293729.t004
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Although the random forest and LOVO PLSCA ranked the variables in different orders of

importance, both techniques identified the following nine variables as important: MAD UGS

braking phase duration, UGS braking phase duration, UGS step length index, MGS step length

index, MAD UGS time to mid-stance peak force, UGS toe-off knee angle, knee flexion 120

symmetry angle, knee flexion 120 non-dominant limb peak torque, and Tinetti POMA total

score.

Following these analyses, the selected ‘important’ variables from both techniques were com-

bined into a refined multi-domain dataset (Table 6). Overall, 18 important variables were

included, with ten variables from the gait data, five from the strength data, two from the clini-

cal measures data, and one from the body composition data. It should be noted that, rather

surprisingly, no variables were selected as important from the balance data. This refined data-

set was then used when constructing optimal classification models to differentiate between fall-

ers and non-fallers, using PLSCA, random forest and logistic regression techniques.

Table 5. Descriptive statistics for the important strength and body composition measures include in the multi-domain analysis for fallers (n = 21) and non-fallers

(n = 39).

Fallers Non-fallers p value Effect size

Strength variables

Plantar flexion 120 DL PT (Nm/kg) 0.43±0.16 0.51±0.15 0.06* 0.54

Plantar flexion 60 SA (%) 7.77±6.51 6.68±4.48 0.50 0.21

Knee extension 60 SA (%) 4.59±4.41 4.55±3.46 0.98 0.01

Dorsiflexion 120 DL PT (Nm/kg) 0.20±0.04 0.23±0.05 0.01** 0.71

Plantar flexion 120 NDL PT (Nm/kg) 0.34±0.13 0.41±0.13 0.06* 0.53

Knee flexion 120 DL PT (Nm/kg) 0.59±0.15 0.67±0.15 0.05** 0.54

Knee flexion 120 NDL PT (Nm/kg) 0.49±0.15 0.59±0.15 0.02** 0.68

Knee flexion 60 NDL PT (Nm/kg) 0.63±0.13 0.71±0.14 0.04** 0.58

Plantar flexion 60 NDL PT (Nm/kg) 0.50±0.17 0.60±0.22 0.05** 0.50

Knee flexion 120 SA (%) 6.72±4.41 4.33±2.44 0.03** 0.73

Trunk flexion 45 AngPT (˚) 57.62±11.64 51.98±9.37 0.07* 0.55

Knee flexion 60 DL PT (Nm/kg) 0.74±0.12 0.81±0.13 0.04** 0.56

Dorsiflexion 60 NDL PT (Nm/kg) 0.23±0.04 0.27±0.06 0.01** 0.67

Dorsiflexion 120 NDL PT (Nm/kg) 0.17±0.04 0.20±0.05 0.01** 0.64

Body composition variables

DL Thigh MQ (combined torque; Nm/kg) 34.01±4.26 36.07±5.18 0.10* 0.42

SA shank MQ (PF torque; Nm/kg) 7.48±5.40 7.27±4.87 0.88 0.04

DL thigh MQ (KE torque; Nm/kg) 21.98±3.12 23.43±3.92 0.12 0.40

Thigh MQ (combined torque; Nm/kg) 31.69±4.73 34.44±5.22 0.04** 0.54

Femoral strength index 1.37±0.29 1.45±0.23 0.28 0.32

DL thigh MQ (Isometric KE torque; Nm/kg) 30.09±5.00 32.21±7.02 0.18 0.33

Trochanter BMD (g/cm2) 0.70±0.11 0.67±0.10 0.27 0.31

NDL shank MQ (PF torque; Nm/kg) 19.66±6.85 22.34±8.53 0.19 0.34

ALMI (kg/m2) 6.27±0.72 6.21±0.68 0.76 0.08

Total fat mass (kg) 24.14±7.69 21.46±7.19 0.20 0.36

ALMI, appendicular lean mass index; AngPT, angle of PT; BMD, bone mineral density; DL, dominant limb; FM, fat mass; FMI, fat mass index; KE, knee extension; MQ,

muscle quality; NDL, non-dominant limb; PF, plantar flexion; PT, peak torque; SA, symmetry angle; VAT, visceral adipose tissue.

Data are presented as mean ± SD. Group differences and effect sizes were determined using two-tailed t-tests and Cohen’s d.

* p�0.10

** p�0.05

*** p�0.001.

https://doi.org/10.1371/journal.pone.0293729.t005
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Fig 2. Variable importance plot from the random forest. This highlights the mean decrease in the Gini index attributable to each

predictor variable in the multi-domain data package. Variables to the right of the line (n = 12) were shown to be important and were

included within the refined dataset. ALMI, appendicular lean mass index; AngPT, angle of peak torque; BMD, bone mineral density;

DL, dominant limb; F4, braking peak force; GS, gait speed; KE, knee extension; MAD, median absolute deviation; MGS, maximal

gait speed; MQ, muscle quality; NDL, non-dominant limb; PF, plantar flexion; PT, peak torque; POMA, Performance Oriented

Mobility Assessment; SA, symmetry angle; TF2, time to mid-stance peak force; TO, toe-off; TUG, Timed Up and Go; UGS, usual

gait speed.

https://doi.org/10.1371/journal.pone.0293729.g002
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Fig 3. Variable importance plot from the LOVO PLSCA. This highlights the decrease in singular value inertia attributable to each

predictor variable in the multi-domain data package. Variables to the right of the line (n = 15) were shown to be important and were

included within the refined dataset. ALMI, appendicular lean mass index; AngPT, angle of peak torque; BMD, bone mineral density;

DL, dominant limb; F4, braking peak force; GS, gait speed; KE, knee extension; MAD, median absolute deviation; MGS, maximal gait

speed; MQ, muscle quality; NDL, non-dominant limb; PF, plantar flexion; PT, peak torque; POMA, Performance Oriented Mobility

Assessment; SA, symmetry angle; TF2, time to mid-stance peak force; TO, toe-off; TUG, Timed Up and Go; UGS, usual gait speed.

https://doi.org/10.1371/journal.pone.0293729.g003
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The results of the ROC analyses for the classification models using the refined multi-

domain dataset are presented in Table 7. The PLSCA model (inertia = 81.74, p<0.001) demon-

strated an excellent ability to distinguish between fallers and non-fallers (AUC�0.80), with 18/

21 fallers (sensitivity = 86%) and 28/39 non-fallers (specificity = 72%) classified correctly. The

random forest model (out-of-bag error rate = 27%, p = 0.11) demonstrated an acceptable abil-

ity (AUC>0.70) to discriminate between fallers and non-fallers, with 17/21 fallers (sensitiv-

ity = 81%) and 29/39 non-fallers (specificity = 74%) classified correctly.

For the logistic regression analysis, two models were constructed. The first model included

all 18 important variables, with a LOOCV accuracy of 63% (Table 8). This model demon-

strated an outstanding ability to distinguish between fallers and non-fallers (AUC�0.90), with

19/21 fallers (sensitivity = 90%) and 34/39 non-fallers (specificity = 87%) classified correctly

(Table 7). However, most of the predictor variables failed to reach significance, suggesting that

this model was likely to be over-fitted to the data.

To improve model fit, the logistic regression model was refined using multiple approaches.

Firstly, backwards exclusion was performed by hand and by using an automatic step function

based on minimizing the Akaike information criterion. Following this, the model was also

Table 6. Outline of the refined multi-domain dataset.

Selected variables in the refined multi-domain dataset*
• MAD UGS braking phase duration

• UGS braking phase duration

• UGS step length index

• MAD UGS step length

• MGS step length index

• MAD UGS time to mid-stance PF

• UGS TO knee angle

• KF 120 SA

• KF 120 NDL PT

• Thigh MQ (combined torque)

• TUG

• POMA total score

• DF 120 DL PT

• MAD MGS TO knee angle

• MAD MGS step frequency

• DF 60 NDL PT

• DF 120 NDL PT

• MAD UGS braking force

DL, dominant limb; KF, knee flexion; MAD, median absolute deviation; MGS, maximal gait speed; MQ, muscle

quality; NDL, non-dominant limb; PF, plantar flexion; PT, peak torque; POMA, Performance Oriented Mobility

Assessment; SA, symmetry angle; TO, toe-off; TUG, Timed Up and Go; UGS, usual gait speed.

* The nine variables identified as important using both the random forest and LOVO PLSCA techniques are

highlighted in bold.

https://doi.org/10.1371/journal.pone.0293729.t006

Table 7. Results of the ROC analysis using the variables in the refined multi-domain data package.

Model Cut-off threshold AUC Sensitivity Specificity p value

PLSCA 1.37 0.84 86% 72% <0.001

Random forest 0.34 0.75 81% 74% <0.001

Logistic regression 0.35 0.92 90% 87% <0.001

Refined logistic regression 0.35 0.89 81% 85% <0.001

AUC, area under the curve.

https://doi.org/10.1371/journal.pone.0293729.t007
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refined based on minimizing the Bayesian information criterion. Overall, these approaches

resulted in the same refined model (Table 9). This refined model (Fig 4) reached significance,

with a LOOCV accuracy of 75%. The refined model demonstrated an excellent ability

Table 8. Baseline logistic regression model using the important predictors in the refined multi-domain dataset.

Response variable Predictor variables Coefficient (b) p value VIF

Falls History Intercept 28.46 0.12 NA

MAD UGS braking phase duration -0.39 0.15 2.24

UGS braking phase duration -8.72 0.70 3.26

UGS step length index 0.13 0.98 8.13

MAD UGS step length 0.43 0.54 2.51

MGS step length index -8.29 0.85 10.57

MAD UGS TF2 0.57 0.15 1.74

UGS TO knee angle -0.21 0.11 1.52

KF 120 SA 0.29 0.15 2.93

KF 120 NDL PT 4.96 0.52 8.98

Thigh MQ (combined torque) -0.09 0.59 5.52

TUG -0.08 0.86 1.87

POMA total score 0.20 0.59 2.67

DF 120 DL PT -7.05 0.84 17.24

MAD MGS TO knee angle 0.66 0.55 1.57

MAD MGS step frequency -1.82 0.10* 2.93

DF 60 NDL PT 19.22 0.46 10.21

DF 120 NDL PT -24.11 0.51 17.81

MAD UGS F4 0.04 0.86 3.00

AIC; Akaike’s information criterion; BIC, Bayesian information criterion; DF, dorsiflexion; F4, braking peak force; KF, knee flexion; MAD, median absolute deviation;

MGS, maximal gait speed; MQ, muscle quality; NDL, non-dominant limb; POMA, Performance Oriented Mobility Assessment; PT, peak torque; SA, symmetry angle;

TF2, time to mid-stance peak force; TO, toe-off; TUG, timed up and go; UGS, usual gait speed; VIF, variable inflation factor.

AIC = 80.36, BIC = 120.15, McFadden R2 = 0.45.

* p�0.10

** p�0.05

*** p�0.001.

https://doi.org/10.1371/journal.pone.0293729.t008

Table 9. Refined logistic regression model using the important predictors in the multi-domain data package.

Response variable Predictor variables Coefficient (b) p value VIF

Falls History Intercept 30.00 0.03** NA

MAD UGS Braking Phase Duration -0.47 0.02** 1.09

MAD UGS TF2 0.53 0.06* 1.07

UGS TO Knee Angle -0.24 0.03** 1.16

KF 120 SA 0.22 0.09* 1.04

MAD MGS step frequency -1.02 0.08* 1.06

AIC; Akaike’s information criterion; BIC, Bayesian information criterion; KF, knee flexion; MAD, median absolute deviation; SA, symmetry angle; TF2, time to mid-

stance peak force; TO, toe-off

UGS, usual gait speed; VIF, variable inflation factor.

AIC = 58.39, BIC = 70.96, McFadden R2 = 0.40.

* p�0.10

** p�0.05

*** p�0.001.

https://doi.org/10.1371/journal.pone.0293729.t009

PLOS ONE Machine learning approach to identify important variables for distinguishing between fallers and non-fallers

PLOS ONE | https://doi.org/10.1371/journal.pone.0293729 October 31, 2023 19 / 32

https://doi.org/10.1371/journal.pone.0293729.t008
https://doi.org/10.1371/journal.pone.0293729.t009
https://doi.org/10.1371/journal.pone.0293729


(AUC�0.80) to differentiate between groups, with 17/21 fallers (sensitivity = 81%) and 33/39

non-fallers (specificity = 85%) classified correctly (Table 9).

Relationship between domains

Pearson correlation analyses revealed multiple associations between the variables within the

multi-domain data package, as shown in the heatmap presented in Fig 5. These results suggest

that there is a degree of multicollinearity present within this data package (particularly within

the body composition and strength domains, where the within-group correlations are very

strong) and that some of the variables are not independent of each other (i.e. they are strongly

correlated). Of note are the between-domain relationships within the multi-domain data pack-

age. Interestingly, there are much weaker associations between the balance variables and those

in the other domains, with the strongest relationship reported between foam eyes closed sway

velocity, and MAD MGS toe-off knee angle having only a moderate effect size (r = 0.45,

p<0.001). By comparison, much stronger relationships were exhibited between the body com-

position and strength domains, with, for example, the correlation between non-dominant

shank MQ (plantar flexion torque) and plantar flexion 60 non-dominant peak torque being

r = 0.92 (p<0.001). There were also moderately strong significant relationships observed

between the gait variables and strength variables, with, for example, the correlation between

Fig 4. ROC curve for the multi-domain model. The optimal cut-off threshold is highlighted with the red circle. FPR,

false positive rate; TPR, true positive rate.

https://doi.org/10.1371/journal.pone.0293729.g004
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UGS step length index and knee flexion 120 non-dominant peak torque being r = 0.58

(p<0.001).

PLSCA was used to quantify the strength of the relationships (i.e. shared information)

between the groups of variables in each single domain. The results of these analyses are pre-

sented in Table 10. In line with the correlation results, the strongest relationships (i.e. highest

normalised inertia) were identified between the strength and body composition data packages

(normalised inertia: 19.35), and the strength and gait data packages (normalised inertia:

14.11). Interestingly, the weakest relationships (i.e. lowest inertia) were shown between the

body composition and clinical measures data packages (normalised inertia: 8.25), and the clin-

ical measures and the strength data packages (normalised inertia: 9.00).

Fig 5. Correlation matrix heatmap with Pearson’s r coefficients colour coded for the multi-domain analysis.

Stronger relationships (positive or negative) are represented in a darker colour. ALMI, appendicular lean mass index;

Ang, angle; AngPT, angle of peak torque; BDur, braking phase duration; BMD, bone mineral density; DCL, directional

control; DF, dorsiflexion; DL, dominant limb; EC, eyes closed; EO, eyes open; EPE, endpoint excursion; Ext, extension;

F4, braking peak force; Flex, flexion; FM, fat mass; FSI, Femoral Strength Index; GS_Norm, usual gait speed; GS_Ratio,

gait speed reserve; Isom, isometric; LOS, limits of stability; MAD, median absolute deviation; MGS, maximal gait

speed; MQ, muscle quality; MXE, maximum excursion; NDL, non-dominant limb; PF, plantar flexion; POMA,

Performance Oriented Mobility Assessment; POMA_B, POMA balance score; POMA_T, POMA total score; PT, peak

torque; SA, symmetry angle; SF, step frequency; SL, step length; SLI, step length index; SR, somatosensory ratio; TF2,

time to mid-stance peak force; TO, toe-off; TUG, Timed Up and Go; UGS; usual gait speed; US, unilateral stance; Vel,

sway velocity.

https://doi.org/10.1371/journal.pone.0293729.g005
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Discussion

The aims of this study were to: a) identify the functional and physical factors that can best dif-

ferentiate between fallers and non-fallers in older women; and b) quantify the relative impor-

tance of these variables. The findings demonstrate that it is possible to discriminate between

fallers and non-fallers with a high degree of accuracy using a refined set of 18 variables drawn

from four domains, with the gait and strength domains being particularly informative for

screening programmes aimed at assessing falls risk. The machine learning analyses also

revealed a high degree of shared information between certain domains and significant redun-

dancy within the single-domain analyses. From a practical perspective, the results support the

need for a multi-domain approach incorporating functional and physical measures to fully

capture the complexity of falls in older women.

Single-domain results

The findings of the single-domain analyses suggest that it is possible to distinguish between

fallers and non-fallers with a high degree of accuracy using a multivariate approach for the bal-

ance, gait and strength measures (Table 3). Interestingly, with respect to predicting who was

going to fall, the clinical and body composition domains did not perform as well as the other

domains, and only demonstrated acceptable discriminatory ability between groups (with

leave-one-out cross validation accuracies of 59% to 70%). Although some of the body composi-

tion and clinical measures variables were able to distinguish between fallers and non-fallers,

other supplementary data may be required to achieve better discrimination. This finding is

important for those settings which only have access to clinical measures or body composition

variables when screening for falls risk. Although a total of 281 variables were included from

the outset, the variable importance techniques identified significant redundancy within the

data, with only 51 variables selected as important for the multi-domain analysis. This finding

indicates that many of the included variables, which have been measured in previous studies,

Table 10. PLSCA between variables from different domains.

Variables Balance Body Composition Clinical Measures Gait Strength

Balance NA 206.61 166.08 263.55 241.39

9.84 10.38 11.98 9.66

0.07* <0.001*** <0.001*** 0.10*
Body Composition NA 123.74 241.16 464.28

8.25 11.48 19.35

0.04** <0.001*** <0.001***
Clinical Measures NA 195.55 170.94

12.22 9.00

<0.001*** 0.001***
Gait NA 352.62

14.11

<0.001***
Strength NA

NA, not applicable.

Data are presented as measured inertia, normalised inertia, and p value.

* p�0.10

** p�0.05

*** p�0.001.

https://doi.org/10.1371/journal.pone.0293729.t010
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may be less informative when discriminating between groups. These results can, therefore, be

used to optimise the design of falls screening protocols which are used to identify individuals

at a high risk of falls and provide targeted falls prevention interventions.

Balance domain. It is noticeable that the balance variables identified as important were

associated with the more challenging protocols (e.g. limits of stability and unilateral stance)

with these tasks playing an important role in many activities of daily living (e.g. walking, turn-

ing and reaching). These findings corroborate those of others who have reported that fallers

exhibited greater instability compared with non-fallers when standing on one limb [74] and

on foam with eyes closed [9]. However, the importance of several limits of stability variables is

in contrast to some studies [31, 33, 75]. Fallers seemed to have a greater reliance on somatosen-

sory inputs compared with non-fallers; this is a promising finding because this variable is easy

to calculate if sway velocity data is being collected on a firm and foam surface. Melzer et al.

(2004) [31] suggested that balance control in narrow stance is a useful tool for discriminating

between fallers and non-fallers. As such, it was surprising that no variables were selected as

important from the narrow stance protocols. It is important to note that instability increased

for both groups during the narrow stance trials highlighting that these trials were challenging

for both groups and may be unsuitable for falls discrimination purposes in older women.

Gait domain. The analysis of the gait measures indicated that a combination of spatio-

temporal, kinematic, GRF, and variability variables can distinguish between fallers and non-

fallers with an outstanding degree of accuracy (AUC�0.90). The gait variables identified as

being good discriminators were taken from both the UGS and MGS trials which supports the

use of these conditions for screening purposes [52]. Overall, the important variables suggest

that fallers adopted a more cautious gait strategy compared with non-fallers, with fallers exhib-

iting shorter steps, greater knee flexion at toe-off, a longer braking phase duration, and a more

pronounced double support strategy. These observations may be indicative of reduced

dynamic balance ability [76] and weight acceptance ability [77] in fallers. For some of the gait

measures, fallers demonstrated increased variability, suggesting that they walked with an

inconsistent gait pattern [78]. On the other hand, fallers demonstrated lower variability for

some variables, suggesting that a degree of variability is necessary for maintaining dynamic

balance [79], although this may demonstrate the availability of fewer strategies to deal with gait

instability and perturbations [80]. Several gait variables appeared redundant when discrimi-

nating between groups, such as mid-stance knee angle (an estimation of foot clearance during

swing) and propulsive impulse. Considering these variables would seem important for the nav-

igation of obstacles and control of speed during the gait cycle [81], it may be that both groups

exhibited age-related declines (independent of falls history) which reduced the sensitivity of

these variables for falls discrimination.

Strength domain. Several peak torque variables, namely knee flexion, dorsiflexion and

plantar flexion, were identified as important discriminators which is in agreement with previ-

ous investigations that have reported lower maximal strength in fallers at the knee and ankle

[34, 40]. Considering the key role of these muscles during activities of daily living [46], the

reduced strength capacity of fallers likely contributed to the balance [82] and gait differences

[83] observed between the two groups. Three asymmetry variables were identified as impor-

tant discriminators, although an inconsistent pattern was found across different muscle groups

and contraction types [84]. Whilst more research is needed to fully understand the patterns of

strength asymmetry in elderly older women, the measurement of asymmetry should be consid-

ered in research and clinical practice. The variable importance analysis highlighted some vari-

ables that were not important in discriminating between the two groups. These included knee

extension peak torque, knee extensor RTD and trunk strength. These findings likely reflect the

contrasting research that exists regarding the discriminatory ability of RTD [40, 85] and trunk

PLOS ONE Machine learning approach to identify important variables for distinguishing between fallers and non-fallers

PLOS ONE | https://doi.org/10.1371/journal.pone.0293729 October 31, 2023 23 / 32

https://doi.org/10.1371/journal.pone.0293729


strength [86, 87] that may result from differences in the measurement protocols (i.e. muscle

group, contraction type) that have been adopted. Nevertheless, the present findings highlight

that maximal strength variables for the knee flexors, dorsiflexors and plantar flexors may be

more important than maximal or rapid strength variables for the knee extensors or trunk mus-

cles for inclusion in falls screening protocols.

Clinical measures. A combination of variables measured during the TUG, POMA and

gait speed protocols appeared useful when differentiating between groups. Both the TUG and

POMA incorporate a range of movements used during daily living, which may explain why

these clinical measures were identified as important. Although previous studies have also

reported significant differences between fallers and non-fallers for TUG time [88, 89], the opti-

mal cut-off threshold (7.85 s) in this work was quicker than most of the previous literature and

values used in clinical settings [90]. This suggests that quicker cut-off thresholds may be neces-

sary to improve the classification accuracy of the TUG. A novel aspect of this study was the

inclusion of gait speed reserve [52], with fallers demonstrating a greater capacity to increase

walking speed relative to their UGS. Interestingly, performance during the chair stand and

stair tests were not important discriminators despite their similarities with activities of daily

living [91]. From this, it may be suggested that these measures are not chosen for discrimina-

tion purposes in this population.

Body composition domain. The results showed that MQ appears to be an important dis-

criminator between fallers and non-fallers. The findings concur with the few studies that have

analysed this variable and reported fallers as having poorer MQ compared with non-fallers

[92]. MQ has previously been associated with gait and functional performance in older adults

[60, 93], and in this way, lower MQ in fallers may have contributed to poorer performance in

gait and clinical measures variables. Total fat mass was also selected as an important discrimi-

nator, with fallers demonstrating higher fat mass compared with non-fallers as observed previ-

ously [94]. Increased body fat may be associated with greater intramuscular fat infiltration

which can impair muscle function leading to declines in muscle strength [95]; however, DXA

scans are unable to detect fat infiltration in muscle [96]. Although the use of DXA is not without

its limitations [29], it is routinely used in this population, and the findings demonstrate the dis-

criminatory sensitivity of segmental MQ measures which are easily obtained from these scans.

In terms of BMD, the femoral strength index was selected as an important discriminator, with

fallers demonstrating lower values for the this compared with non-fallers, suggesting poorer

bone strength and an increased risk of hip fracture from a fall on the greater trochanter [97].

Given that the femoral strength index is a composite variable which integrates BMD and struc-

tural parameters and is adjusted for body size [98], it may provide more insight than individual

measures of bone structure and geometry alone, which were not identified as important.

Multi-domain results

The multi-domain findings indicate that a combination of 18 variables from the gait, clinical

measures, strength and body composition domains (Table 6) are the most important discrimi-

nators between fallers and non-fallers in a multi-domain context and can distinguish between

groups with a high degree of accuracy (Table 7). Whilst the findings support the need for a

multi-domain approach to fully capture the complexity of falls in older women [6], the single-

domain models presented in the gait and balance data analyses slightly outperformed the mod-

els in the multi-domain analysis, which is an unexpected finding. As such, this suggests that

clinicians who work in settings where it is possible to measure the important gait and/or bal-

ance variables have the potential to predict likely fallers and non-fallers with a high degree of

accuracy.
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In terms of domain importance, the results show that the gait domain appears to play a

dominant role in discriminating between fallers and non-fallers. Although there are only a lim-

ited number of previous studies which have adopted a comprehensive multi-domain approach

[17, 18], the available studies support our finding that gait variables provide valuable insight

into falls risk. This could be because walking is a complex movement pattern, underpinned by

the sensory, nervous and musculoskeletal systems, incorporating postural control (static and

dynamic) and mobility [99]. In addition to the importance of the gait domain, TUG time and

POMA total score were also selected from the clinical domain. This is a promising finding

given the accessibility of these tests, making them suitable for use in many settings. These mea-

sures, alongside gait variables, may provide important information because they capture multi-

ple aspects of balance and mobility that are key for daily living activities. In terms of physical

characteristics analysed, several strength variables measured during the dorsiflexion and knee

flexion trials were also selected as important discriminators. Alongside these strength mea-

sures, thigh MQ is another key discriminating variable which may underpin differences

observed in the gait and clinical measures variables between fallers and non-fallers [60, 92].

Although previous multi-domain studies [17, 18] have not included a comprehensive range of

muscle function measures, the present findings indicate that certain variables (i.e. maximal

strength, strength asymmetry, MQ) should be considered in falls screening procedures.

The variable importance analyses also facilitated identification of less important variables

which were not needed to discriminate between groups, despite being selected from the single-

domain analyses. Indeed, only one body composition variable (thigh MQ [combined torque])

and no balance variables were selected as important for the refined multi-domain dataset

despite their high degree of accuracy in the single-domain analyses. It is important to note that

the balance variables were largely measured during static balance tasks that may not be reflec-

tive of situations which occur during fall events [100]. Whilst this may have impacted the dis-

criminatory sensitivity of the balance variables within the multi-domain analyses, the use of

PLSCA provided novel insights into the shared information between domains (Table 10). This

PLSCA revealed a considerable amount of shared information between the variables within

the balance, gait and clinical measures domains. This may explain why, once the gait and clini-

cal measures variables were included in the analyses, the balance variables were no longer

needed to discriminate between groups in the multi-domain context. The same can be said for

the body composition domain which showed a high level of shared information with the

strength domain. In this respect, the findings provide unique information that will assist in

selecting and prioritising tests and variables for falls risk screening which can be adapted

depending on the accessibility of different measurement tools. Finally, the study demonstrates

that application of PLSCA has considerable potential as a tool for undertaking discriminatory

analysis and variable importance within large, complex datasets such as those relating to falls

risk in a specific population.

Limitations

Although the general applicability of these results is perhaps limited to community-dwelling

older women who were healthy and relatively active, it is known that women are at an

increased risk of falls compared with men resulting in calls for gender-specific analyses [101].

Future studies should be conducted in other populations, for example recruiting older men or

women who are older and frailer than the sample used in this work. Falls status in this study

was defined retrospectively which increases the potential for recall bias. However, this is com-

mon practice in a research and community setting and falls history is known to be one of the

best predictors of future falls [77]. Another limitation of this work was that medication usage
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was not considered in the exclusion criteria, which might have had an impact given that some

medications can affect balance. The sample size of the study was relatively small and whilst this

limited the range of techniques that could be used (excluding, for example, hold-out validation

and cluster analysis), the inclusion of cross-validation within the random forest and LOOCV

methods meant that this remains one of the most comprehensive studies in this area to date.

Although this study included a large set of 281 variables from across five domains, it should be

acknowledged that the use of alternative tests (e.g. dynamic posturography, hand-grip

dynamometry), protocols (e.g. dual-task gait conditions) and measurement techniques (e.g.

magnetic resonance imaging) may produce different results and could be explored in future

studies. Finally, missing values within the multi-domain data set were imputed to allow the

machine learning techniques to be used. Whilst there are limitations associated with data

imputation [102], PPCA has been shown to be favourable over other data imputation methods

[103].

Conclusions

This study demonstrates that it is possible to discriminate between older female fallers and

non-fallers using a refined combination of variables and a multivariate machine learning

approach. The findings illustrate the ability to distinguish between groups with a high degree

of accuracy using a combination of variables from the gait, clinical measures, strength and

body composition domains. As such, this suggests that it should be possible to develop models

in the future that can predict with great accuracy who is likely to fall using just a few carefully

chosen variables. However, the results of the study suggest that a multi-domain approach

incorporating functional and physical characteristics will be necessary to fully capture the

complexity of falls in older women. Notably, it is apparent that some domains (gait and

strength) appear to play a more dominant role in differentiating between fallers and non-fall-

ers, whilst other domains (e.g. balance) appear less important. From a screening perspective,

the important variables identified can be used to inform the design of appropriate testing pro-

tocols for use in community and clinical settings when screening for falls risk in older women.

This information can also be used to inform targeted falls prevention interventions for this

population as well as variable and test selection when monitoring intervention effectiveness.

The machine learning analyses revealed a high degree of shared information between certain

domains and significant redundancy within single-domain analyses. From a practical perspec-

tive, this suggests that data collection with older women in community, clinical and research

settings could be made more efficient by focusing on variables which are more informative in

discriminating between fallers and non-fallers.
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63. Donath C, Grässel E, Baier D, Pfeiffer C, Bleich S, Hillemacher T. Predictors of binge drinking in ado-

lescents: ultimate and distal factors—a Representative study. BMC Public Health. 2012; 12:263.

https://doi.org/10.1186/1471-2458-12-263 PMID: 22469235.

64. Bartlett MS. The effect of standardization on a χ 2 approximation in factor analysis. Biometrika. 1951;

38(3/4):337–44.

65. Breiman L. Random forests. Machine learning. 2001; 45(1):5–32.

66. Jenks GF. Optimal data classification for choropleth maps. Department of Geographiy, University of

Kansas Occasional Paper. 1977.

67. McIntosh A, Bookstein F, Haxby JV, Grady C. Spatial pattern analysis of functional brain images using

partial least squares. Neuroimage. 1996; 3(3):143–57. https://doi.org/10.1006/nimg.1996.0016 PMID:

9345485

PLOS ONE Machine learning approach to identify important variables for distinguishing between fallers and non-fallers

PLOS ONE | https://doi.org/10.1371/journal.pone.0293729 October 31, 2023 30 / 32

https://doi.org/10.1016/0268-0033%2891%2990009-F
http://www.ncbi.nlm.nih.gov/pubmed/23915485
https://doi.org/10.1007/s00198-016-3545-3
http://www.ncbi.nlm.nih.gov/pubmed/26919994
https://doi.org/10.1371/journal.pone.0172398
http://www.ncbi.nlm.nih.gov/pubmed/28222191
https://doi.org/10.1167/iovs.16-19606
http://www.ncbi.nlm.nih.gov/pubmed/27661857
https://doi.org/10.1016/j.gaitpost.2007.08.006
http://www.ncbi.nlm.nih.gov/pubmed/17913499
https://doi.org/10.1080/02640414.2011.647047
http://www.ncbi.nlm.nih.gov/pubmed/22248309
https://doi.org/10.1038/s41598-019-41750-9
https://doi.org/10.1038/s41598-019-41750-9
http://www.ncbi.nlm.nih.gov/pubmed/30944360
https://doi.org/10.1097/PHM.0000000000000488
https://doi.org/10.1097/PHM.0000000000000488
http://www.ncbi.nlm.nih.gov/pubmed/27003205
https://doi.org/10.1186/1743-0003-2-19
http://www.ncbi.nlm.nih.gov/pubmed/16033650
https://doi.org/10.1080/02640414.2016.1235793
http://www.ncbi.nlm.nih.gov/pubmed/28282761
https://doi.org/10.1016/j.jbiomech.2018.12.006
https://doi.org/10.1016/j.jbiomech.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30554815
https://doi.org/10.1007/s40520-014-0305-0
http://www.ncbi.nlm.nih.gov/pubmed/25539974
https://doi.org/10.1007/s40520-017-0734-7
http://www.ncbi.nlm.nih.gov/pubmed/28247210
https://doi.org/10.1007/s10522-017-9697-5
http://www.ncbi.nlm.nih.gov/pubmed/28378095
https://doi.org/10.1093/ageing/afs032
http://www.ncbi.nlm.nih.gov/pubmed/22417983
https://doi.org/10.1186/1471-2458-12-263
http://www.ncbi.nlm.nih.gov/pubmed/22469235
https://doi.org/10.1006/nimg.1996.0016
http://www.ncbi.nlm.nih.gov/pubmed/9345485
https://doi.org/10.1371/journal.pone.0293729


68. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol.

2010; 5(9):1315–6. https://doi.org/10.1097/JTO.0b013e3181ec173d PMID: 20736804

69. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J

R Stat Soc Series B Stat Methodol. 1977; 39(1):1–22.

70. Pecl GT, Tracey SR, Danyushevsky L, Wotherspoon S, Moltschaniwskyj NA. Elemental fingerprints of

southern calamary (Sepioteuthis australis) reveal local recruitment sources and allow assessment of

the importance of closed areas. Can J Fish Aquat. 2011; 68(8):1351–60.

71. Stone M. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Series B Stat

Methodol. 1974; 36(2):111–33.

72. Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods.

Bioinformatics. 2005; 21(15):3301–7. https://doi.org/10.1093/bioinformatics/bti499 PMID: 15905277

73. Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial Least Squares (PLS) methods for neuroimag-

ing: a tutorial and review. Neuroimage. 2011; 56(2):455–75. https://doi.org/10.1016/j.neuroimage.

2010.07.034 PMID: 20656037

74. Oliveira MR, Vieira ER, Gil AWO, Fernandes KBP, Teixeira DC, Amorim CF, et al. One-legged stance

sway of older adults with and without falls. PLoS ONE. 2018; 13(9):e0203887. https://doi.org/10.1371/

journal.pone.0203887 PMID: 30222769

75. Soto-Varela A, Faraldo-Garcı́a A, Rossi-Izquierdo M, Lirola-Delgado A, Vaamonde-Sánchez-Andrade

I, del-Rı́o-Valeiras M, et al. Can we predict the risk of falls in elderly patients with instability? Auris

Nasus Larynx. 2015; 42(1):8–14. https://doi.org/10.1016/j.anl.2014.06.005 PMID: 25194853
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93. Gadelha AB, Neri SGR, Nóbrega OT, Pereira JC, Bottaro M, Fonsêca A, et al. Muscle quality is asso-

ciated with dynamic balance, fear of falling, and falls in older women. Exp Gerontol. 2018; 104:1–6.

https://doi.org/10.1016/j.exger.2018.01.003 PMID: 29329971

94. Kim SY, Kim MS, Sim S, Park B, Choi HG. Association between obesity and falls among korean

adults: A population-based cross-sectional study. Medicine (Baltimore) 2016; 95(12):e3130. https://

doi.org/10.1097/MD.0000000000003130 PMID: 27015190

95. Moore BA, Bemben DA, Lein DH, Bemben MG, Singh H. Fat mass is negatively associated with mus-

cle strength and jump test performance. J Frailty Aging. 2020; 9(4):214–18. https://doi.org/10.14283/

jfa.2020.11 PMID: 32996557

96. Fragala MS, Kenny AM, Kuchel GA. Muscle quality in aging: a multi-dimensional approach to muscle

functioning with applications for treatment. Sports Med. 2015; 45(5):641–58. https://doi.org/10.1007/

s40279-015-0305-z PMID: 25655372

97. Faulkner KG, Wacker WK, Barden HS, Simonelli C, Burke PK, Ragi S, et al. Femur strength index pre-

dicts hip fracture independent of bone density and hip axis length. Osteoporos Int. 2006; 17(4):593–9.

https://doi.org/10.1007/s00198-005-0019-4 PMID: 16447009

98. Iolascon G, Moretti A, Cannaviello G, Resmini G, Gimigliano F. Proximal femur geometry assessed by

hip structural analysis in hip fracture in women. Aging Clin Exp Res. 2015; 27 Suppl 1:S17–21. https://

doi.org/10.1007/s40520-015-0406-4 PMID: 26178633

99. Lord S, Galna B, Verghese J, Coleman S, Burn D, Rochester L. Independent domains of gait in older

adults and associated motor and nonmotor attributes: validation of a factor analysis approach. The

journals of gerontology Series A, Biological sciences and medical sciences. 2013; 68(7):820–7.

https://doi.org/10.1093/gerona/gls255 PMID: 23250001

100. Bower K, Thilarajah S, Pua YH, Williams G, Tan D, Mentiplay B, et al. Dynamic balance and instru-

mented gait variables are independent predictors of falls following stroke. Journal of neuroengineering

and rehabilitation. 2019; 16(1):3. https://doi.org/10.1186/s12984-018-0478-4 PMID: 30612584

101. Cho KH, Bok SK, Kim Y-J, Hwang SL. Effect of lower limb strength on falls and balance of the elderly.

Ann Rehabil Med. 2012; 36(3):386–93. https://doi.org/10.5535/arm.2012.36.3.386 PMID: 22837975

102. Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for

handling missing data in randomised clinical trials—a practical guide with flowcharts. BMC Med Res

Methodol. 2017; 17(1):162. https://doi.org/10.1186/s12874-017-0442-1 PMID: 29207961

103. Qu L, Li L, Zhang Y, Hu J. PPCA-based missing data imputation for traffic flow volume: A systematical

approach. IEEE Trans Intell Transp Syst. 2009; 10(3):512–22.

PLOS ONE Machine learning approach to identify important variables for distinguishing between fallers and non-fallers

PLOS ONE | https://doi.org/10.1371/journal.pone.0293729 October 31, 2023 32 / 32

https://doi.org/10.1186/1471-2318-14-14
http://www.ncbi.nlm.nih.gov/pubmed/24484314
https://doi.org/10.1016/j.jesf.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30662502
https://doi.org/10.1016/j.exger.2018.06.018
http://www.ncbi.nlm.nih.gov/pubmed/29935953
https://doi.org/10.1016/j.exger.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29329971
https://doi.org/10.1097/MD.0000000000003130
https://doi.org/10.1097/MD.0000000000003130
http://www.ncbi.nlm.nih.gov/pubmed/27015190
https://doi.org/10.14283/jfa.2020.11
https://doi.org/10.14283/jfa.2020.11
http://www.ncbi.nlm.nih.gov/pubmed/32996557
https://doi.org/10.1007/s40279-015-0305-z
https://doi.org/10.1007/s40279-015-0305-z
http://www.ncbi.nlm.nih.gov/pubmed/25655372
https://doi.org/10.1007/s00198-005-0019-4
http://www.ncbi.nlm.nih.gov/pubmed/16447009
https://doi.org/10.1007/s40520-015-0406-4
https://doi.org/10.1007/s40520-015-0406-4
http://www.ncbi.nlm.nih.gov/pubmed/26178633
https://doi.org/10.1093/gerona/gls255
http://www.ncbi.nlm.nih.gov/pubmed/23250001
https://doi.org/10.1186/s12984-018-0478-4
http://www.ncbi.nlm.nih.gov/pubmed/30612584
https://doi.org/10.5535/arm.2012.36.3.386
http://www.ncbi.nlm.nih.gov/pubmed/22837975
https://doi.org/10.1186/s12874-017-0442-1
http://www.ncbi.nlm.nih.gov/pubmed/29207961
https://doi.org/10.1371/journal.pone.0293729

