
This is a peer-reviewed, post-print (final draft post-refereeing) version of the following published
document, © 2023 John Wiley & Sons Ltd. and is licensed under All Rights Reserved license:

Goodenough, Anne E ORCID: 0000-0002-7662-6670, Berry, 
Danielle L, Carpenter, William S ORCID: 0009-0001-9031-5561,
Dawson, Melissa, Furlong, Natasha, Lamb, Rachel J, 
MacTavish, Lynne, 'O'Reilly, Niall, Toms, Hannah, Whitehead, 
Lauren H and Hart, Adam G ORCID: 0000-0002-4795-9986 
(2024) Do you see what I see? Variation in detection, 
identification and enumeration of mammals during transect 
surveys. African Journal of Ecology, 62 (1). e13205. 
doi:10.1111/aje.13205 

Official URL: https://doi.org/10.1111/aje.13205
DOI: http://dx.doi.org/10.1111/aje.13205
EPrint URI: https://eprints.glos.ac.uk/id/eprint/13111

Disclaimer 

The University of Gloucestershire has obtained warranties from all depositors as to their title in 
the material deposited and as to their right to deposit such material.  

The University of Gloucestershire makes no representation or warranties of commercial utility, 
title, or fitness for a particular purpose or any other warranty, express or implied in respect of 
any material deposited.  

The University of Gloucestershire makes no representation that the use of the materials will not
infringe any patent, copyright, trademark or other property or proprietary rights.  

The University of Gloucestershire accepts no liability for any infringement of intellectual 
property rights in any material deposited but will remove such material from public view 
pending investigation in the event of an allegation of any such infringement. 

PLEASE SCROLL DOWN FOR TEXT.



SHORT COMMUNICATION 

Do you see what I see? Variation in detection, identification and 

enumeration of mammals during transect surveys 

[Running title: Variation in mammal survey data] 

 

Anne E. Goodenough1*, Danielle L. Berry1, William S. Carpenter1, Melissa Dawson2, Natasha Furlong1, 

Rachel J. Lamb1, Lynne MacTavish2, Niall O’Reilly1, Hannah Toms1, Lauren H. Whitehead1, Adam G. Hart1 

1. Department of Natural and Social Science, University of Gloucestershire, Francis Close Hall, 

Cheltenham, GL50 4AZ 

 

2. Mankwe Wildlife Reserve, Mogwase, NW Province, South Africa 

*  Corresponding author email = aegoodenough@glos.ac.uk 

 

 

Abstract 

Effective monitoring, management and conservation of wildlife axiomatically depend on accurate data 

but causes of variation, including inter-observer variation, are rarely explicitly quantified. Here, under 

controlled conditions, we demonstrate considerable variation in detection, identification and 

enumeration of (theoretically) readily-identifiable African mammals at a reserve with a known species 

assemblage. Detection: 97.8% of sightings were missed by ≥1 observer; frequency of detection was 

affected by observer ID, detection distance, visibility, and animal group size. Identification: just 3/14 

species were identified consistently at all sightings. Enumeration: lack of consensus for 60.5% of 

sightings; consensus likelihood was affected by visibility and group size. 
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Introduction 

Accurate surveys of species’ presence and abundance are essential for developing effective monitoring 

strategies and conservation management of wildlife (Spellerberg, 2005; Thomas et al., 2010; 

Goodenough and Hart, 2017). This requires individuals to be initially detected, then identified 

correctly, and finally enumerated with precision and accuracy. However, variation can arise during 

detection (Diefenbach et al., 2003; Shirley et al., 2012), identification (Hobbs and Waite, 2010; 

Hoekman, 2021), and enumeration (Frederick et al., 2003). Variability can be caused by differences 

in: (1) survey conditions, especially detection distance and the risk of observers being partly unsighted; 

(2) species conspicuousness, which is affected by size, abundance, camouflage, and behaviour; and 

(3) inter-observer variation (IOV), which can be innate and/or due to differences in experience or training.  

Variation linked to survey conditions – especially in relation to availability for detection, visibility, and 

distance – has been studied in a variety of contexts. This includes visual surveys on land (e.g. Kissling 

and Garton, 2006) and water (e.g. Ronconi and Burger, 2009; Schwarz et al., 2010), auditory surveys 

(e.g. Simons et al., 2007), and aerial surveys that can be manned (e.g. Marsh and Sinclair, 1989; 

Pollock et al., 2006) or unmanned (e.g. Hodgson et al., 2016; Hodgson et al., 2017; Brack et al., 2018). 

In many cases, these and other studies have involved analysing double-observer data to quantify the 

impact of survey conditions on variation in the resultant ecological data. Separately, some studies 

have considered IOV based on detection of artificial targets, for example of “birds” viewed from 

above and/or from the ground (Frederick et al., 2003; Hodgson et al., 2018) and diving “marine 

mammals” viewed from above (Pollock et al., 2006). However, relatively few studies have provided 

explicit quantitative estimates of IOV in industry-standard mammal surveys under field conditions, 

nor considered how this co-occurs with survey factors such as detection distance and sighting 

visibility. This is despite IOV in surveys of other taxa having important applied consequences, 

including the accurate determination of biodiversity value at proposed development sites (Cherrill, 

2015) and informing appropriate habitat management recommendations (Goodenough et al., 2020).  

In poor lighting conditions in the African bush, the lead authors of this study once confidently 

misidentified an ostrich (Struthio camelus) as an elephant (Loxondonta africana) and anecdotally 

most field ecologists have made similar identification blunders. Inspired by this, here we consider 

data from five observers simultaneously undertaking identical walked and driven mammal transects 

in a South African wildlife reserve with a known mammal assemblage. We quantify the effects of 

detection distance, visibility, animal group size, and whether a transect was walked or driven, either 

in tandem with IOV (detection) or directly affecting IOV (enumeration). We also determine consensus 

versus confusion in identification of animals from the same sighting by the same observers at the 

same time. Finally, we consider implications of variation for optimising surveying and monitoring.  



Methods 

The study was undertaken at a 4,750 hectare wildlife reserve in Northwest Province, South Africa. 

The reserve supported a known assemblage of antelope, including eland (Taurotragus oryx), impala 

(Aepyceros melampus), gemsbok (Oryx gazelle) and tsessebe (Damaliscus lunatus), as well as other 

herbivores including giraffe (Giraffa camelopardalis), zebra (Equus quagga), and white rhinoceros 

(Ceratotherium simum). The habitat was a mosaic of savanna grassland (Figure 1). Sward height was 

generally 5-60 cm, with some taller patches, interspersed with mature trees such as umbrella thorn 

(Vachellia tortilis Forssk.) and marula (Sclerocarya birrea Hochst.) There were patches of thicket 

dominated by sicklebush (Dichrostachys cinerea L.), some of which were dense. Uninterrupted 

horizontal visibility varied considerably based on the combination of local conditions (<5 m to >2 km). 

Five observers with similar skills and experience conducted 20 mammal transect surveys on foot 

(walked; n=11) and from a vehicle (driven; n=9). The observers (co-authors DLB, NF, RJL, NO’R, LHW) 

were postgraduate researchers who were all experienced ecologists. Before the research, they 

received classroom-based identification training specific to the mammals that were the subjects of 

study, followed by an intensive three-day identification masterclass in the field. The observers were 

accompanied by at least one ranger (co-authors MD, LM) and two members of University staff 

experienced in ecological fieldwork in Africa (co-authors AEG, AGH, WSC, HT). For walked transects, 

observers walked 3-6 km in single file ~3 m apart, with observer position randomised for each transect. 

Driven transects were undertaken in a safari vehicle covering 10-25 km driving at ~20 kph, with 

observers seated in two rows arranged such that eye-height above ground was approximately equal.  

For both transect types, observers carried an inaudible numbered “buzzer” (Retekess T128 wireless 

pager system, developed for restaurant customers to draw the attention of waiting staff). Each 

observer covertly pressed their buzzer when they sighted one or more large mammals; ostrich were 

also recorded as per the industry-standard survey protocol (Bothma and du Toit, 2016). Pressing the 

buzzer caused an inaudible vibration on a wrist-worn “watch” worn by a sixth person, who was not 

an active observer and who walked behind the group (walked transects) or sat in the vehicle (driven 

transects). The buzzer number was displayed on the watch, which also showed the order in which 

observers detected the sighting if multiple observers pressed their buzzer in quick succession. To 

ensure all observers had the opportunity to detect the sighting, on walked transects the watch-

wearer waited until all observers had passed the point where the sighting was first detected before 

calling “sighting”. After this, no further buzzes were permitted and the observers clustered at the 

point of first detection. For driven transects, the watch-wearer asked the driver to stop when the 

first buzzer was activated. During the subsequent slowing down and stopping period, any additional 

observers who saw a sighting could press their buzzer to register a detection. The driver reversed 

until the point at which the watch-wearer judged the first buzzer had been activated. For both 

methods, the first observer to press their buzzer was named by the watch-wearer, and this observer 



described the sighting location to all other observers without giving details of species or number. This 

protocol ensured data on species identification and enumeration could be collected from all 

observers, even if not all observers had initially detected the sighting. It is recognised that in 

designing a data collection framework that allowed observers to independently detect live animals in 

real field conditions, followed by an opportunity for all observers to provide data on identification 

and enumeration, the amount of time observers had to detect a sighting (the detection period) 

ended artificially early. This might have supressed frequency of detection. However, all observers had 

a genuine opportunity to detect each sighting before the detection period ended and many of 

sightings involved animals at right angles to the transect and/or moving away from observers, such 

that in many cases the detection period was, in reality, self-limiting.  

Once sighting location had been described, all observers, working silently and independently, had 30 

seconds to identify the species (singular or plural) and count the number of individuals of each species 

and thus obtain an estimate of abundance we termed “group size”. To ensure realistic but standardised 

conditions, all observers utilised identical optimal equipment (8x42 Barr & Stroud Savannah binoculars, 

Suffolk, UK). During this observation period, the watch-wearer recorded the distance between observers 

and animal[s] (hereafter “detection distance”) with a laser rangefinder (Leica Rangemaster CRF2400). 

When the sighting involved a group of animals, the distance to the nearest individual was taken. Each 

observer who could see the sighting also recorded a subjective visibility score for their view on an ordinal 

scale (1 = very poor; 5 = excellent); those who were unsighted recorded the sighting as unobservable.  

There were 304 unique sightings (n = 140 walked; 164 driven) (Goodenough et al., 2022). Of these, 

294 sightings were ultimately observable by ≥ two observers, such that potential variation in species 

identification and enumeration could be calculated: 258 were single-species sightings while 36 were 

considered to be multiple-species sightings by at least one observer. For where detection 

information was recorded (n=278 sightings * 5 observers), we calculated “frequency of detection” as 

the number of observers who independently registered their detection by pressing their buzzer 

(minimum = 1 observer; maximum = 5 observers). Variation in enumeration of group size was 

calculated using Coefficient of Variation: CoV = (standard deviation of the number of animals 

recorded by each observer / mean number of animals recorded) * 100. This ensured that variation in 

estimates of group size were independent of the mean group size and thus avoid higher variation 

being an artefact of larger means (Fowler and Cohen, 1996) and mirrored previous studies of IOV in 

ecological data (e.g. Pankakoski et al. 1987; Goodenough et al., 2010). CoV calculations used data 

recorded by all observers who were able to record a sighting, not just those who initially detected it 

(total number of observations = 1,331 from a theoretical maximum of 1,520 if all observers had been 

able to record all 304 sightings). The mean visibility score and mean animal group size were 

calculated from individual observer data.  



Before formal analysis, we undertook an internal verification step to assess whether there was a 

temporal change in frequency of detection or variation in enumeration in relation to day of study, as 

would be expected if a lack of experience was an issue initially; these were non-significant (Spearman 

Rank correlation: rs=0.029, n = 278, p=0.630 and rs=0.095, n = 294, p=0.103, respectively). Formal 

analysis took the form of two Generalised Linear Models (GLMs). The first model, to assess variability in 

detection, used raw binary detection data (1 = detected, 0 = not detected) from the five observers as 

the dependent variable (n = 1,390; 278 unique sightings where detection was recorded * 5 observers) 

with a binomial distribution and logit link. The second model, to test variation in enumeration, used 

data summarised at sighting level using CoV of group size as the dependent variable (n = 294 sightings 

recorded by ≥ two observers) with a Gamma distribution and log link. In both models, survey type 

(walked/driven) was entered as a categorical fixed factor; detection distance (min=27 m, max=1,645 m, 

mean=402 m), mean visibility, and animal group size (min=1, max=25, mean=3.3) were entered as 

continuous covariates. In GLM Model 1, observer ID (1-5) was also added as a fixed factor so IOV in 

detection could be quantified explicitly (although variation between observers is inevitable as detection 

probability decreases for harder-to-observe sightings, this variability would be random rather than 

systematically linked to specific observers and would not return a significant result for observer ID). In 

GLM Model 2, IOV was built into the analysis framework directly by using CoV as the dependent variable. 

Results and Discussion 

Detection data were available for 278 sightings on walked and driven transects. Of these, 53.9% were 

detected by one observer, 25.3% by two observers, 13.6% by three observers, and 5.0% by four 

observers: just 2.2% were detected by all five observers. Thus, 97.8% of sightings were missed by ≥ 

one observer. The average frequency of detection at an individual sighting was 60% (equivalent to 

three out of five observers) for driven transects, rising to 69% for walked transects.  

GLM Model 1 showed that there were significant differences in detection between observers (binary 

data indicating whether sighting was detected or not detected). Quantifying this using the estimated 

marginal means function to predict detection probability (95% CI) at mean values for the other 

predictors – detection distance, visibility, and animal group size – showed substantial differences that 

were indicative of IOV in detection ability in identical conditions: Observer 1 = 0.36 ± 0.06; Observer 2 

= 0.17 ± 0.04; Observer 3 = 0.48 ± 0.07; Observer 4 = 0.63 ± 0.06; Observer 5 = 0.13 ± 0.04. Detection 

was also significantly affected by detection distance (detection decreased as detection distance 

increased), mean visibility (detection decreased as visibility decreased) and average animal group 

size (detection higher for larger groups); there was no difference between survey types (Table 1). 

That frequency of detection decreased with detection distance and visibility – and increased with 

group size as animals became more conspicuous – makes intuitive sense, however, survey type being 

non-significant is interesting. This suggests that variation was the consequence of the properties of the 



sighting (detection distance; group size) and the observers (IOV), rather than whether the survey was 

walked or driven. Given that walked transects are physically demanding, cover substantially less 

ground than driven surveys per unit time, and record fewer sightings per survey, we suggest driven 

transects be used for surveys of African land mammals if tracks and vehicle resources are available. 

The effectiveness of driven transects for establishing species community in an ecologically-

meaningful way has been shown previously for detection of nocturnal mammals (Hart et al., 2022). 

Of the 294 sightings ultimately recorded by multiple observers, there was consensus on the number 

of species present for 267 (90.8%) and a lack of consensus for 27 (9.2%). Estimates of the number of 

species only ever differed ± 1 species (1 vs 2 species = 24 sightings; 2 vs 3 species = 3 sightings). 

However, variability in the total number of individuals recorded per sighting (i.e. enumeration of 

group size regardless of species) was much more variable. There was consensus on enumeration for 

116 sightings out of 294 (39.5%); of the 178 sightings where there were differences in enumeration, 

between observers, mean CoV of was 30.3% (min=7.2%; max=90.0%). Enumeration has previously been 

shown to be highly variable in surveys of birds, with observers generally being more likely to 

underestimate than overestimate numbers (Frederick et al., 2003).  

Across all sightings, 18 species were recorded by at least one observer. Of these, four species were 

rarely encountered (recorded at 7 sightings in total). For the 14 commonly-recorded species, there 

were 318 observations across the 258 unique sightings: (1) that were recorded by at least two 

observers; and (2) where all observers who recorded the sighting agreed that only one species was 

present. Each species was recorded on ≥ 10 occasions. For these species, we tallied the number of 

consensus and confusion sightings for each species to show species-specific differences (Figure 2). 

Zebra, giraffe, and warthog (Phacochoerus africanus) were never confused with other species and 

there was little confusion of wildebeest (Connochaetes taurinus), ostrich and rhino (Figure 2). 

However, most sightings involving hartebeest (Alcelaphus buselaphus), waterbuck (Kobus 

ellipsiprymnus), eland, and tsessebe involved ≥ one observer recording a different species (Figure 2). 

We had thought that common confusion species would be likely to be animals with similar size or 

morphology (e.g. impala confused with blesbok, or tsessebe with hartebeest). In fact, confusion was 

far more diverse with, for example, confusion between eland and rhino, and between impala and 

hartebeest. In one sighting, observers agreed on there being one individual of a single species, but 

each reported a different species identification: gemsbok, nyala (Tragelaphus angasii), kudu 

(Tragelaphus strepsiceros), waterbuck, or eland. Such a high degree of confusion between 

experienced observers working with a known mammal assemblage was much higher than would 

have been predicted given the relatively straightforward identification of study species in idealised 

conditions, and clearly shows the potential for IOV under actual field conditions.  



Anecdotal observation suggested much of the variation in identification stemmed from very minor 

differences in the extent of animal visibility in the field. For example, some observers were noted 

misidentifying hartebeest as impala: these two species differ substantially in size, body morphology 

and horn profile but colouration can be similar. Very minor differences in line of sight between 

observers, driven by differences in observer height or intervening vegetation, led to confusion when 

animals were being identified primarily on coat colour when horns were not seen. Similar problems 

in species identification were also identified by Hoekman (2021) for seabirds and Hobbs and Waite 

(2010) for cetaceans. Such species misidentification is important. When there is substantial 

difference in density of different co-occurring species, misidentification can have profound 

consequences for rarer species and will typically result in such species being considerably 

overestimated (Conn et al., 2013).  

Modelling variation in estimates of group size (GLM Model 2) showed IOV was significantly affected 

by mean visibility (variation increased as visibility decreased) and average animal group size 

(variation higher for larger groups). As for detection, there was no difference between survey types 

when modelling enumeration; detection distance was also non-significant (Table 1). Thus, while 

distant animals were less likely to be detected initially by all observers, once they were detected then 

estimates of group size were unaffected by detection distance. It is interesting that enumeration 

variation increased with group size as previous work on birds found error rates were independent of 

group size (Frederick et al., 2003). There were important species-differences, with lowest variability 

in enumeration of waterbuck and ostrich and much higher levels for wildebeest and eland (Figure 3). 

Unravelling the factors affecting these species-specific differences was beyond the scope of the 

current study, but previous research on seabird enumeration found that body size, relative 

abundance, and other measures of “conspicuousness” may be important (Ryan and Cooper, 1989).  

Recommendations  

Surveying is resource-intensive, often difficult, and sometimes risky. However, the resultant data are 

incredibly important for informing effective monitoring, management and conservation (Spellerberg, 

2005; Goodenough and Hart, 2017). IOV clearly has the potential to confound data, yet this is rarely 

explicitly acknowledged. Here, we show that even with a known assemblage of readily-identifiable 

large mammals, variation in detection, identification and enumeration is considerable. In some cases, 

errors could have negligible effects but in other cases errors could be cumulative and have 

considerable consequences leading to ill-informed management decisions as shown in previous 

studies of other taxa (e.g. Goodenough et al., 2020). The errors that undoubtedly occur in survey 

data often reflect the difficulty of the task rather than poor performance of surveyors, but, based on 

this study and drawing on previous research, we make the following recommendations to ensure 

that wildlife survey data are as robust as possible: 



(1) General: Quantifying variability in detection, identification and enumeration in specific field 

contexts is vital to understand magnitude and determine potential effects. IOV should be 

minimised, for example, via training or use of automated (Conn et al., 2013) or semi-

automated (Hodgson et al., 2018) algorithms for detection, identification, and enumeration.   

(2) Detection: In addition to using industry-standard methods to reduce variation linked to 

sightings themselves (maximum distances of use of species-specific detection correction 

factors; reviewed by Thomas et al. (2010)), applying modified capture-mark-recapture 

protocols designed for remote surveying as per Marsh and Sinclair (1989) might be helpful 

when extrapolating population sizes from detection data. Moreover, distance sampling can 

account for IOV if observer is included as categorical covariate, random effect, or a predictor. 

(3) Identification: Pairing or grouping observers to give double-observer data that allow for lack 

of consensus in species identification means that the resultant record can be marked as 

being potentially unreliable or deprioritised in analysis (Conn et al., 2014; Hoekman, 2021); 

“unknown” identification should be permitted rather than forcing observers to make an 

identification. Where possible, use spatially explicit models to account for differences in 

species distributions to account for likely species misidentification (Conn et al., 2014).  

(4) Enumeration: Undertaking preliminary analysis specific to the type of survey and surrounding 

environment where observers enumerate artificial targets to quantify whether they are likely 

to underestimate (e.g. Frederick et al., 2003) or overestimate (e.g. Simons et al., 2007) group 

sizes. Consideration should also be given as to whether enumeration variation co-varies with 

group size, as here, or is group size independent (Frederick et al., 2003). Averaging group 

sizes from double-observer data might be helpful. 
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Table 1: GLM models of the factors underpinning variation in sighting detection and enumeration 

reported by five observers.  

 Model 1: Variation in detection of 
sightings. Dependent variable = 

binary detected / not detected; n = 
1,390 (278 sightings * 5 observers)  

 Model 2: Variation in enumeration of 
group size. Dependent variable = 
coefficient of variation; n = 294 

sightings observed by ≥ two observers 

 χ2 Direction P  χ2 Direction P 

Overall model 430.198 N/A <0.001  45.707 N/A <0.001 

 Survey type (walked/driven) 2.520 N/A 0.112  0.005 N/A 0.942 

 Detection distance (m) 19.425 - <0.001  1.374 N/A 0.241 

 Mean visibility (rank 1-5) 83.129 + <0.001  40.598 - <0.001 

 Mean group size  12.890 + <0.001  10.744 + 0.001 

       Observer ID 202.407 IOV <0.001     

 

 

 



 

Figure 1: Study site from (a) air and (b) land showing typical habitat and visibility.  

(a) (b)



 

Figure 2: Species-specific differences in whether all observers had recorded the same species 

identification (“consensus”) or whether there were differences between observers (“confusion”). 

Overall sample size = 318 species identifications across the 258 unique sightings that were recorded 

by ≥ two observers and where all observers agreed only one species was present, such that it was 

clear what species had been confused. Species-specific sample sizes are displayed on graph; only 

species where n ≥ 10 sightings were included.  

  



 

 

Figure 3: Species-specific differences in inter-observer variation in enumerating group size based on 

Coefficient of Variation (CoV); the arrow and dashed line identifies overall mean CoV across all species. 

Overall sample size = 325 species enumeration records across the 294 unique sightings that were 

recorded by ≥ two observers. Species-specific sample sizes are displayed on graph. 


