
Page 1 of 6

© 2023 Peter Bentley All Rights Reserved.

The Use of File Size Parity of Windows .exes and .dlls as a Malware Indicator of

Compromise

Peter Bentley, School of Computing and Engineering, University of Gloucestershire,

Cheltenham, UK

Abstract – To gain persistence on Windows machines, some Advanced Persistent Threats

(APTs) hide their malware in plain sight as standalone files. It is inferred from Microsoft

documentation that Portable Executable (PE) file length should be even. This paper

documents the analysis of .exe and .dll file length parity on three versions of Windows

operating systems. It uses simple techniques to analyse the parity of .exe and .dll files and

demonstrates that not all are of even length file. This may be used as an indicator of

compromise and found such on one machine.

Keywords –Microsoft Windows; File Size; File Length; exe; dll; Portable Executable (PE);

Advanced Persistent Threat; APT; Malware; Indicator of Compromise.

I Introduction

Microsoft documentation states that Portable Executable (PE) file lengths should be

even [1]. This paper demonstrates that source code does not always compile to a PE of even

length. This may be because: although Microsoft and suppliers ensure that most PEs compile

to an even length at least part of the supply chain compiles code in a different way or with a

different compiler or some commercial developers or APTs compile source code in a

different way to Original Equipment Manufacturers (OEM.

A simple technique for analysing the distribution of file sizes on Windows based

machines is demonstrated and from this malware has been uncovered.

 Analysis of file length distributions has been performed before [2] but no analysis of

.exes and .dlls could be found.

No bespoke software was written for this paper. The analysis was carried out using

freely available Microsoft and OpenOffice software. This paper presents analysis of the

parity (last digit) of file sizes. The technique found a suite of programs that were not

authorised to be on the machine. The paper concludes with a discussion a critique of the work

and suggestions for further research.

Page 2 of 6

© 2023 Peter Bentley All Rights Reserved.

II Background

Microsoft describe the format of PE files as follows. The Sizeof image field “ ... must

be a multiple of SectionAlignment ” which in turn “… must be greater than or equal to

FileAlignment. The default is the page size for the architecture.” [1]

It appears, therefore, that file sizes are based on multiples of the field FileAlignment

which “… should be a power of 2 between 512 and 64 K, inclusive. The default is 512.” One

can immediately see that this will produce an even length file size. The key phrase here may

be “should be a power” but when SectionAlignment is greater than FileAlignment, and an

odd number, the file size could end up as an odd number.

Other information from Microsoft is mixed: Pietrek [3] does not shed light on a PE

file size but Pietrek [4] alludes to platform differences “You should only need to use the 32 or

64-bit specific versions of the structures if you're working with a PE file with size

characteristics that are different from those of the platform you're compiling for.”

Pietrek [4] also states that “The distinction between exe and dll files is entirely one of

semantics. They both use the exact same PE format. The only difference is a single bit that

indicates if the file should be treated as an exe or as a dll.” This paper assumes that this

distinction still holds.

It is noted that Microsoft reserves at least one field in the PE format for Borland [5].

III Data Collection

Two methods of data collection were used: the first used the Microsoft command

“forfiles” [6] on Windows 8 and 10 operating systems; the second used the “dir” [7]

command on Windows XP. This is because “forfiles” was not available for the XP machine

and it was decided not to download it. Also, the different ways of data collection provide

some independence assurance that the results are valid.

Data was collected from the Windows 8 and 10 machines when new. Data was also

taken from the Windows 10 machine when it had been heavily used.

A one-line batch was written which contained the command “forfiles”. This command

selects and executes a command on a file or set of files and is useful for batch processing.

This batch recursively outputs, one item per line, a list of all .exe files with associated size

Page 3 of 6

© 2023 Peter Bentley All Rights Reserved.

and full path name. The batch was modified for .dll in place of .exe and was run on Windows

7, 8 and 10. The command used within the batch is:

forfiles /p c:\ /s /m *.exe /c "cmd /c echo @fsize @path"

The output was written to respective text files and then imported into separate spreadsheets

from where the file length parity (i.e. is it odd or even?) was derived.

Another one-line batch was written which contained the line:

Dir C:\ /S [7]

Again, the output was written to text files and then imported into a spreadsheet. However, in

this case a lot of hand editing and sorting was needed to produce data in the required format.

Spreadsheets used were Microsoft Excel and the OpenOffice equivalent.

The author had administrator and user rights for each machine. Even so some

directories were not available for analysis and so the analysis of the total number is

incomplete.

IV File Size Last Digit Analysis (to test odd/even parity of the file size)

Table 1: Count of File Length Modulo 10

 OS and

Filetype

File length Modulo 10 Count

 0 1 2 3 4 5 6 7 8 9

W-XP.dll 2108 113 2331 104 2229 73 2094 66 1952 135

W-XP.exe 477 29 581 22 616 14 587 26 777 30

W-8.dll* 2808 0 3161 0 2657 0 2659 2 2643 4

W-8.exe* 428 0 396 0 434 0 418 0 413 0

W-10.exe* 609 5 660 11 651 8 659 9 654 16

W-10.dll 16481 2334 14596 2140 14994 2134 14944 2152 15448 2232

W-10.exe 1076 183 1041 204 1092 169 1047 192 1027 172

W-10.dll+ 10501 3960 10509 4182 10620 4059 10106 3862 10304 3941

W-10.exe+ 1430 538 1408 661 1387 671 1469 589 1358 601

Page 4 of 6

© 2023 Peter Bentley All Rights Reserved.

(* New or almost new builds. Data for Windows 10 executables were gathered when this

paper was an idea and not a fully formed piece of research, hence no data for Windows 10

new build .dlls)

 (+ Operational frozen system)

It can be seen that there is at least a deficit of odd length files and for new builds a dearth.

However, if there were a non-biased odd/even split of file lengths this should be

reflected in the data. It is clear that there is a distinct odd/even split in file lengths. This

observation is consistent with the work of Evans and Kuenning: “… file-size distributions are

“polluted” by large collections of similarly sized files, such as icons or configuration files

associated with a particular application.” [8].

V Discussion and Application to Malware Discovery

It can be seen from Table 1 that there is a significant split between the counts of odd

and even file sizes.

For the Windows 10 new build there are 3233 even length .exe files and 49 odd .exe

files which, therefore make up just under 1.5% of all files. After a lot of use this percentage

rises to just over 12.5%. It may be inferred from this that many updates and/or non-Microsoft

.exes compile to an odd length.

Further analysis reveals that many of the odd length files have names that contain x86

(E.G. C:\Program Files (x86)), AMD or “uninstaller”. Some are from the SysWOW64

Windows subdirectory. The existence of duplicates of files and files of similar name and

identical length which are files for associated software.

The most significant discovery was the existence on one of the analysed machine of a

suite of programs that had not been authorised for installation by the legitimate owner. Six

.dlls from this suite had odd file lengths.

It may be inferred from the data that the compiler Microsoft is using in its supply

chain compiles code to multiples of two for the file size (i.e. even length executables) but

other compilers, and suppliers compile code to both odd and even length.

Page 5 of 6

© 2023 Peter Bentley All Rights Reserved.

VI A Critique of this Work

No previous analysis of exe and dll files could be found and this, together with the

results, led to the suspicion that perhaps there was a problem with the methodology: where

could it have gone wrong and mistakes been made? The use of two different ways of

collecting the data (dir and forfiles) means that it would be difficult to make the same mistake

across all operating systems. Similarly, using two different spreadsheets (Microsoft Excel and

OpenOffice) across operating systems provides independence. Digit extraction from the file

length field is easily checked across the data sets.

This paper suggests that the use of two different sets of analysis software (Microsoft

Excel and OpenOffice) provides an independent check for the methodology. The only

commonality across both sets of analysis is the Microsoft program forfiles.

 Another way to collect data would be to access the Master File Table directly from

storage e.g. hard disk drive (HDD) or solid-state device (SSD).

VII Suggested Further Lines of Work

Not all Microsoft operating systems have been analysed. It is suggested that the

analysis be done on all Microsoft operating systems, using a new build, under admin rights.

It is also suggested that the work be performed on other operating systems e.g. Linux.

VIII Concluding Remarks

There is sufficient evidence to suggest that the compiled length of files in Microsoft

Windows operating systems are restricted to an even length by the OEM. It is possible that all

compilers used by Microsoft have this feature as a default or a setting. This feature may, or

may not, be present in different compilers used by the wider IT profession but clearly some

of these compilers will compile .exe and .dll files to an odd length.

Although an even length file size does not rule out infection by malware, an odd

length file size may indicate malware infection. This feature may be used as part of a wider

indicator of compromise for APTs.

Page 6 of 6

© 2023 Peter Bentley All Rights Reserved.

REFERENCES

[1] Microsoft (2018) PE Format Available at: https://msdn.microsoft.com/en-

us/library/windows/desktop/ms680547(v=vs.85).aspx (Accessed: 20th May 2023).

[2] Downey, A. B. (2001) 'The Structural Cause of File Size Distributions', Proceedings of

the 2001 ACM SIGMETRICS international conference on Measurement and modeling

of computer systems Cambridge, Massachusetts, USA: ACM New York, NY, USA.

pp. 328-329. Available at: https://dl.acm.org/citation.cfm?id=378824

[3] Pietrek, Matt (1994) Peering Inside the PE: A Tour of the Win32 Portable Executable File

Format Available at: https://msdn.microsoft.com/en-us/library/ms809762.aspx

(Accessed: 20th May 2023)

[4] Pietrek, Matt (2002) An In-Depth Look into the Win32 Portable Executable File Format

MSDN Magazine February 2002, Available at: https://msdn.microsoft.com/en-

us/magazine/bb985992(printer).aspx (Accessed: 20th May 2023)

[5] Microsoft. (2018) PE Format. Available at: https://msdn.microsoft.com/en-

us/library/windows/desktop/ms680547(v=vs.85).aspx (Accessed: 20th May 2023)

[6] Microsoft (2018) forfiles Available at: https://docs.microsoft.com/en-us/windows-

server/administration/windows-commands/forfiles (Accessed: 20th May 2023)

[7] Microsoft (2018) dir Available at: https://docs.microsoft.com/en-us/windows-

server/administration/windows-commands/dir (Accessed: 20th May 2023)

[8] Evans, Kylie M. and Kuenning, Geoffrey H.. (2002) A study of irregularities in file-size

distributions. In Proceedings of the International Symposium on Performance

Evaluation of Computer and TelecommunicationSystems (SPECTS), San Diego, CA.

Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.2569&rep=rep1&type=pd

f

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
https://dl.acm.org/citation.cfm?id=378824
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://msdn.microsoft.com/en-us/magazine/bb985992(printer).aspx
https://msdn.microsoft.com/en-us/magazine/bb985992(printer).aspx
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/forfiles
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/forfiles
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/dir
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/dir
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.2569&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.2569&rep=rep1&type=pdf

