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Predicting injury risk using machine learning in male youth soccer players 

Abstract 

The aim of this study was twofold: a) to build models using machine learning techniques on data from 

an extensive screening battery to prospectively predict lower extremity soft tissue (LE-ST) injuries in 

non-elite male youth soccer players, and b) to compare models´ performance scores (i.e., predictive 

accuracy) to select the best fit. A sample of 260 male youth soccer players from the academies of five 

different Spanish non-professional clubs completed the follow-up. Players were engaged in a pre-

season assessment that covered several personal characteristics (e.g., anthropometric measures), 

psychological constructs (e.g., trait-anxiety), and physical fitness and neuromuscular measures (e.g., 

range of motion [ROM], landing kinematics). Afterwards, all LE-ST injuries were monitored over one 

competitive season. The predictive ability (i.e., area under the receiver operating characteristic curve 

[AUC] and F-score) of several screening models was analysed and compared to select the one with the 

highest scores. A total of 45 LE-ST injuries were recorded over the season. The best fit screening 

model developed (AUC = 0.700, F-score = 0.380) allowed to successfully identify one in two (True 

Positive rate = 53.7%) and three in four (True Negative rate = 73.9%) players at high or low risk of 

suffering a LE-ST injury throughout the in-season phase, respectively, using a subset of six field-based 

measures (knee medial displacement in the drop jump, asymmetry in the peak vertical ground reaction 

force during landing, body mass index, asymmetry in the frontal plane projection angle assessed 

through the tuck jump, asymmetry in the passive hip internal rotation ROM, and ankle dorsiflexion 

with the knee extended ROM). Given that these measures require little equipment to be recorded and 

can be employed quickly (approximately 5-10 min) and easily by trained staff in a single player, the 

model developed might be included in the injury management strategy for youth soccer. 

Keywords: screen, associated football, prediction model, adolescent, prevention. 
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Highlights 

▪ The screening model identified six field-based measures that interact to influence injury risk. 

▪ These measures were based on movement control, asymmetry, range of motion and size features. 

▪ Given that all are modifiable risk factors, at risk players may benefit from interventions. 

▪ The risk factors identified are relatively easy and quick to assess in applied settings. 

▪ The screening model built should be included in the injury management strategy for youth soccer. 
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1 Introduction 

Despite the numerous health-related benefits, the participation in a very physically demanding team 

sport such as soccer (i.e., associated football) results in a notable increase in injury risk [1]. 

Epidemiological studies have reported that the frequency and severity of injuries among youth soccer 

players accelerate and peak during adolescence [2,3], when periods of rapid and non-uniform growth 

in skeletal structures are experienced, leading to alterations in both physical performance and motor 

control/function [4,5]. Thigh muscle/tendon strains (hamstring and quadriceps) and knee and ankle 

ligament sprains and tears (anterior cruciate ligament [ACL] of the knee, anterior inferior tibiofibular 

ligament of the ankle) are the most commonly diagnosed types of injury in youth soccer players [1,6]. 

These lower extremity soft tissue (LE-ST) injuries frequently result in players missing sport 

participation for an extensive period of time [6]. In addition, young players who sustain LE-ST 

injuries during soccer participation may experience important residual symptoms that can have major 

negative consequences in their long-term athlete development and limit their ability to engage in 

exercise and athlete activities later in life [7]. Consequently, soccer-related LE-ST injuries can counter 

the beneficial health related effects of sport participation at a young age if a child or adolescent is 

unable to continue participating because of the effects of injury [8].  

Most of the LE-ST injuries documented in youth soccer have shown a non-contact mechanism [1] and 

hence, they might be considered as preventable [9]. Thus, the implementation of multicomponent 

strategies aimed at mitigating the risk of injury in such cohorts is a big challenge that coaches and 

physical trainers need to consider. It has been suggested that for an injury prevention measure to be 

highly effective, its design must be targeted on each player’s individual needs [10]. Therefore, the use 

of a valid field-based screening method that allows coaches and physical trainers to profile injury risk 

and identify those factors that impact most on the likelihood of sustaining a LE-ST injury in each of 

their youth soccer players may be a valuable tool to help design tailored preventive measures. 

There is a general agreement that LE-ST injury is a multifactorial phenomenon in which several 

factors of different nature (e.g., personal characteristics, psychological constructs, neuromechanical 
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parameters) might interact among them in a non-linear fashion (complex relationships) and have an 

impact on the likelihood (i.e., risk) of this one appears (or not) in an athlete (i.e., soccer players) [11–

14]. Likewise, epidemiological studies in soccer have documented that the LE-ST injury is an 

imbalanced phenomenon so that in a typical team the number of players who sustain a LE-ST every 

competitive season (minority class) is much lower than the non-injured players (majority class) [15]. 

Most of the screening models available currently to make prospective predictions on new cases of LE-

ST injuries in soccer have been built using traditional statistical techniques (mainly binary logistic 

regression) that were not originally conceived to manage complex (non-linear) and imbalanced 

phenomena (as the LE-ST is) [16–18]. Furthermore, these models have been designed using 

information coming from one in isolation or a few factors (no more than six) assessed in a limited 

sample of soccer players. Consequently, it is not surprising that these traditional models present 

inadequate performance scores (i.e., predictive accuracy) so that in most of them a clear bias (for 

many reasons) toward the majority class (known as the negative class) is shown, and therefore, there is 

a higher misclassification rate for the minority class instances (called the positive examples), which 

represent the most important concept [19]. In other words, these models usually report high specificity 

(also called true negative rate [non-injured players who were well-classified]) but very low sensitivity 

(also called true positive rate [injured players who were well-classified]). Therefore, it has been argued 

that the complexity of injury means a broader statistical and conceptual approach is needed to make 

more accurate prospective predictions of new cases of injuries and better understand relationships 

between risk factors [14,20]. 

In the last five years, a growing number of studies have used contemporary Machine Learning 

algorithms (mainly classification [e.g., Random Forest and ADTree] and regression algorithms [e.g., 

Naïve Bayes and Neural Networks]) which have been specifically designed to deal with imbalanced 

problems where a large number of factors are involved and resampling methods (e.g., K-fold cross 

validation, leave-one-out, bootstrapping) to build screening models to profile athletes’ injury risk in 

team sport showing, in most of the cases, promising predictive accuracy [11–13]. Only two recent 

studies [14,21] have developed screening models using field-based tests to predict injuries through the 
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use of decision tree based classifiers (XGBoost [21] and bagging ensemble method with a J48con 

decision tree as base classifier [14]) in youth soccer players. In particular, these two studies have built 

models to classify youth players into two groups, positives (high risk of injury) and negatives (low risk 

of injury), based on anthropometric (e.g., age, standing and sitting height, body mass), physical fitness 

(e.g., sprint and jump [vertical and horizontal] performance, agility, lower back and posterior chain 

flexibility) and neuromuscular (e.g., tuck jump knee valgus angle, unilateral landing peak vertical 

ground reaction force and asymmetry) measures in elite young male players from the youth academies 

of six English [14] and seven Belgium [21] premier league soccer clubs, reporting moderate to high 

levels of sensitivity and specificity, respectively. Furthermore, these studies [14,21] have also 

identified interactions of asymmetry, knee valgus angle and body size as contributing factors to an 

injurious profile in elite youth soccer players. 

However, it should be acknowledged that a limitation of any prediction model developed through the 

use of classification algorithms is that its generalisation to individuals with different characteristics 

(e.g., sport background, exposure to casual factors of injury, physical performance) to those who were 

employed in its building and validation process may be sub-optimal. In this sense, the well-

documented differences in several physical performance measurements [22] between elite and non-

elite (i.e., sub-elite or amateur) youth soccer players may lead to a dramatic reduction in the ability of 

these two currently available screening models to predict LE-ST injuries in the latter cohort. Given 

that a large proportion of the young participants play for non-professional clubs, engaged in local and 

regional leagues, and that the injury incidence and severity is still high in this cohort [1], studies aimed 

at building injury risk factor models to identify non-elite youth soccer players at high risk of LE-ST 

injury are urgently warranted. 

Therefore, the aim of this study was twofold: a) to build models using machine learning techniques on 

data from an extensive screening battery to prospectively predict LE-ST injuries in non-elite male 

youth soccer players, and b) to compare models´ performance scores (i.e., predictive accuracy) to 

select the best fit.. 
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2 Materials and Methods 

This study was carried out following the Transparent Reporting of a multivariable prediction model 

for Individual Prognosis or Diagnosis (TRIPOD) guidelines [23]. The TRIPOD checklist is provided 

in online supplementary file 1. 

2.1 Participants 

A total sample of 301 male youth soccer players from the academies of five different Spanish non-

professional soccer clubs were recruited for this study. All players were engaged in regional (non-

national) youth soccer leagues of the south-east of Spain. Participants routinely completed from two 

(most of the weeks in the U11-12 age group) to three (most of the weeks in U13-14, U15-16, and U17-

19 age groups) training sessions (90 min each) per week on non-consecutive days and played one 

competitive match (match duration: U11-12 = 60 min, U13-14 = 70 min, U15-16 = 80 min, U17-19 = 

90 min) per week (usually at the weekend) during the season. Participants were included in this study 

if they met the following criteria: 1) they were free from pain, illness and/or injury during the whole 

data collection phase and 2) they were regularly involved in soccer training and competition. Players 

who conveyed the presence of orthopaedic problems that did not allow them to carry out one or more 

of the field-based tests, or who were transferred to a different club and were not available for follow-

up testing at the end of 9-months were excluded. Coaches, parents and children were informed in both 

oral and written forms, and parental consent to participate in the study was obtained together with 

assent from participants. Ethical approval was granted by the Ethics and Scientific Committee of the 

University of Murcia (ID: 1551/2017) in accordance with the Declaration of Helsinki. 

Finally, a sample of 260 male youth soccer players of four different age categories (age-based 

categories [n]: U11-12 [78], U13-14 [69], U15-16 [50], U17-19 [63]) completed this study (Table 1). 

Forty-one players were removed from the initial sample of 301 young based on the exclusion criteria 

(n = 11 players reported a presence of pain and orthopaedic problems, n = 14 players did not provide 

the required signed informed consent before the start of the study, and n = 16 players were transferred 

to another club or left their club before the end of the follow up period). 
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Table 1. Descriptive anthropometric values (mean ± standard deviation) by age group. 

Group N 

Age  

(years) 

Body mass (kg) 

Stature  

(cm) 

Leg length 

(cm) 

Maturity 

offset 

U11-12 78 11.1 ± 0.5 39.8 ± 7.4 148.1 ± 6.6 72.8 ± 4.2 -2.4 ± 0.6 

U13-14 69 13.3 ± 0.4 51.9 ± 8.6 162.3 ± 7.8 80.8 ± 5.4 -0.7 ± 0.6 

U15-16 50 15.0 ± 0.5 62.6 ± 8.5 173.2 ± 6.3 84.9 ± 3.9 1.1 ± 0.6 

U17-19 63 17.3 ± 0.8 68.7 ± 8.4 176.6 ± 7.3 86.2 ± 5.5 2.6 ± 0.7 

U: under. 

2.2 Study design 

This study used a prospective cohort design. Particularly, all LE-ST injuries sustained in training and 

competition during a period of 9 months following the initial assessment session (in-season phase) 

were tracked for all players. Participants were required to attend their respective club’s training 

facilities during the pre-season phase (September) of the years 2017 (n = 175 players) and 2018 (n = 

85 players) to undergo an assessment of several personal characteristics, psychological constructs, and 

physical fitness/neuromuscular measures. 

2.3 Procedure 

The assessment session was split into three different parts. The first part was designed to get data 

concerning the participants’ personal or individual characteristics. Secondly, a number of 

psychological constructs related to anxiety and mood state were evaluated. Finally, in the third part 

several physical performance, neuromuscular capability and biomechanical measures were assessed 

through 10 field-based tests. All measures were taken by six trained and experienced testers (one 

master and two PhD students and three senior researchers with three, six and more than ten years of 

experience, respectively), coordinated by the principal investigator (FJR-P) to guarantee 

standardisation of protocols. All measurements have demonstrated moderate to good reliability 

(intraclass correlation coefficients [ICCs] > 0.80 and standard error of measurements expressed as 

percentage [%SEM] < 10%) as it has been described elsewhere [24–29].  
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2.3.1 Personal or individual characteristics 

Personal or individual measures (player position [goalkeeper, defender, midfielder or forward], years 

of playing soccer, training frequency, dominant leg [determined by the player’s preferred kicking leg], 

self-reported 12 months LE-ST time loss injury history [yes or no], and chronological age) were 

recorded using an ad hoc questionnaire. 

Anthropometric measures (body mass, stature [i.e., standing height], sitting height, body mass index 

[BMI], and leg and tibia lengths) and maturity status were also measured. Body mass was measured on 

a calibrated physician scale (SECA 799, Hamburg, Germany). Standing and sitting height were 

recorded to the nearest 0.1 cm on a measurement platform (SECA 799, Hamburg, Germany) with 

seated height measured using a box. Leg length was calculated as the length measured in centimetres 

from the anterior superior iliac spine to the most distal portion of the medial tibial malleolus [25]. 

Tibia length was defined as the distance between the lateral knee joint line and the lateral malleolus 

[30]. Stage of maturation was calculated in a non-invasive manner using a regression equation 

comprising measures of age, body mass, standing height and sitting height [31]. Using this method, 

maturity offset (calculation of years from peak height velocity [PHV]) was determined (for more 

information on the personal or individual risk factors recorded, please see online supplementary file 

2). 

2.3.2 Psychological constructs 

The Spanish version of the State-Trait Anxiety Inventory (STAI) questionnaire was used to measure 

the current state and trait anxiety of the players [32]. This questionnaire consists of 40 items (20 for 

state and 20 for trait). The state items describe how the athletes feel just at the specific moment when 

the questionnaire is completed, whereas the trait items describe the athletes’ general anxiety level. For 

the purposes of this research, only the trait anxiety was analysed. 

Mood states were evaluated using the Spanish adapted version for adolescent athletes of the Profile of 

Mood States (POMS) scale [33]. This version comprises seven different psychological factors 

(tension, depression, anger, vigour, fatigue, confusion, and friendliness) in a 33-item scale. 



10 

 

The Spanish version of the Psychological Characteristics Related to Sport Performance questionnaire 

(CPRD) was used to measure the following psychological characteristics: stress control, influence of 

performance evaluation, motivation, team cohesion and mental skills [34]. The questionnaire consists 

of 55 items graded in a 5-option Likert scale (from totally disagree to totally agree) (for more 

information on psychological risk factors recorded, please see online supplementary file 3). 

2.3.3 Physical fitness, neuromuscular capability and biomechanical measures 

Players completed a standardised dynamic warm-up, which included whole body exercises 

emphasising dynamic mobilisation and gradually progressing in intensity [35], before the physical 

performance, neuromuscular capability and biomechanical measures were taken. In particular, these 

measures were concurrently recorded using a randomised circuit style approach (due to time 

constraints) (Figure 1) from six jump tests, a linear 30 m sprint test, the ROM-Sport battery, Y-

Balance test and Illinois agility test.  

 

Figure 1. Circuit style approach. 
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Jump tests 

Four vertical and two horizontal jump tests were performed and several measures of performance, 

kinematic and kinetic variables and neuromuscular parameters were extracted from them. Three to five 

attempts of each jump test were performed. For each variable, the best absolute score recorded in the 

attempts carried out was selected for the subsequent analysis (for more information on measures 

obtained from the Jump tests, please see online supplementary file 4). 

Vertical jump tests: 

Tuck jump assessment (TJA). Tuck jumps were performed in place for 10 consecutive seconds 

following the procedure previously suggested by Myer et al. [36]. Each participant’s technique was 

assessed at frontal and sagittal planes. A 2-dimensional video cameras (model: Lumix DMC-FZ200; 

Panasonic, Japan) were positioned in both planes at a height of 0.70 m and a distance of 5 m from the 

landing area to capture the test and grade each player’s technique retrospectively. Afterwards, frontal 

plane projection angles (FPPA) at the point of maximum knee flexion were analysed, and the presence 

of knee valgus was subjectively classified as minor (<10°), moderate (10°–20°) or severe (>20°) 

following the methodology described by Read et al. [27]. Additionally, hip flexion (HF), knee flexion 

(KF), and ankle flexion (AF) was assessed at initial contact and peak maximum flexion in the sagittal 

plane [29]. All scores were marked by two experienced testers in 2-D landing kinematic assessments.  

Drop vertical jump (DVJ). A double leg drop vertical jump from a box height of 40 cm and without 

arm swing was performed on a contact platform connected to the Ergo tester (Ergo Jump Bosco 

System, Italia) unit [37]. Both jump height and reactive strength index (RSI = jump height/contact 

time) were considered to assess stretch-shortening cycle (SSC) function and hence, recorded. A 2-

dimensional landing kinematic analysis following the methodology described for the TJA was also 

carried out. In addition to the FPPA, the knee medial displacement (KMD) (expressed as the 

displacement measure [d2–d1] between the initial contact [d1] and the maximal peak knee flexion 

[d2]) [30] the knee-to-ankle separation ratio (KASR) (defined as the ratio of distance between knees 

and ankles during peak knee flexion [KASR = knee/ankle]) [28] and the knee separation distance 
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(KSD) (expressed as the difference [d2-d1] between knee separation distance at the initial contact [d1] 

and the peak knee flexion [d2]) [28] were also used to assess knee valgus during DVJ tests. All trials 

were retrospectively analysed by the same two experienced testers in 2-D landing kinematics 

assessments. 

Countermovement jump (CMJ). A double leg countermovement jump without arm swing was 

performed on a contact platform connected to the Ergo tester (Ergo Jump Bosco System, Italia) unit. 

Jump height was recorded for subsequent analyses. 

Single leg countermovement jump (SLCMJ). A single leg (dominant and non-dominant) 

countermovement jump was also performed on a force platform (9286AA, Kistler, Switzerland). 

Height, peak vertical ground reaction force (pVGRF) during take-off and landing, and peak landing 

force timing (pLFT) were captured at a sampling rate of 1000 Hz. A threshold of >10 N to determine 

contact and <10 N to determine flight moments was used, and no filter was applied to the data 

obtained for subsequent analyses [38]. The pVGRF at take-off and landing were normalised to body 

weight (BW), and side-to-side differences for each of these variables were calculated. Asymmetries in 

all SLCMJ variables were determined when bilateral differences were ≥ 10%. 

Horizontal jump tests: 

Standing long jump (SLJ). Jump distance in a SLJ was measured to the nearest centimetre from the 

starting line to the player’s heel with a standard tape measure. Free movement of the arms was allowed 

during the test.  

Single hop for distance (SHD). Jump performance in a SHD was also measured for dominant and non-

dominant legs [39]. The jump distance in cm was then normalised and presented as percentage of leg 

length (SHD/leg length*100 = %leg length). Bilateral differences were calculated and asymmetry was 

considered when differences ≥ 10%. 
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Sprint  

Time during a 10-20 and 30 m sprint in a straight line was measured by means of three pairs of 

Microgate Witty photocells (Microgate, Italy) placed 1.0 m above the ground level. Each sprint was 

initiated from an individually chosen standing position, 50 cm behind the photocell gate, which started 

a digital timer. The theoretical maximal force (F0), velocity (V0), maximal power output (Pmax) and 

mechanical effectiveness of ground force application (ratio of force [RF] and decrease in the RF over 

acceleration [DRF]) during a 30m-sprint were also analysed. For this purpose, all sprint trials were 

recorded through an iPad Air (Apple Inc., USA) and retrospectively analysed by a single tester using 

the MySprint app [26]. The analysis of sprint force-velocity profile in youth athletes has proven to be 

reliable in previous research [40] (for more information on measures obtained from the Sprint, please 

see online supplementary file 5). 

ROM-Sport battery 

The passive hip extension (PHE), hip adduction with hip flexed 90° (PHADHF90°), hip flexion with 

knee flexed (PHFKF) and extended (PHFKE), hip abduction with hip neutral (PHABD) and hip flexed 

90° (PHABDHF90°), hip external (PHER) and internal (PHIR) rotation, knee flexion (PKF), ankle 

dorsiflexion with knee flexed (ADFKF) and extended (ADFKE) ROM measures of the dominant and 

non-dominant legs were evaluated according to the methodology suggested by Cejudo et al. [24]. For 

each joint ROM measure, side-to-side differences were also calculated. When a side-to-side difference 

≥ 8° was found, players were categorised as showing bilateral asymmetries [41] (for more information 

on data collected with the ROM-Sport battery, please see online supplementary file 6). 

Y-Balance test 

Dynamic postural control was evaluated using the Y-Balance test [25]. The distance obtained in each 

direction (anterior, posteromedial, and posterolateral) was normalised by dividing by the previously 

measured leg length to standardise the reach distance ([excursion distance/leg length] x 100 = % leg 

length) [25]. Bilateral differences between dominant and non-dominant legs were also calculated for 

each distance, and differences ≥ 10% for anterior, posteromedial, and posterolateral directions were 
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considered as asymmetries. Finally, to obtain a global measure of the balance test for each leg, data 

from each direction were averaged to calculate a composite score (for more information on measures 

obtained from the Y-Balance test, please see online supplementary file 7). 

Illinois agility test 

Players’ agility was assessed using the Illinois agility test, which has been commonly used in 

measuring agility in soccer [42]. The length of the zone was 10 m, while the width (distance between 

the start and finish points) was 5 m. Four cones were placed in the centre of the testing area at a 

distance of 3.3 m from one another. Four cones were used to mark the start, finish, and two turning 

points. The participants started the test lying face down, with their hands at shoulder level. The trial 

started on the “go” command, and the participants began to run as fast as possible. The trial was 

completed when the players crossed the finish line without having knocked any cones over. Time was 

measured using a photocell system (Microgate Witty photocells; Microgate, Italy).  

2.3.4 Injury surveillance 

The procedures for data collection and reporting injury occurrences described in the International 

Consensus Statement were followed in the current research [43]. For the purpose of this research, an 

injury was defined as any non-contact, soft tissue (muscle, tendon, and/or ligament) injury sustained 

by a player during a training session or competition which resulted in a player being unable to take a 

full part in future soccer training or match play (time loss injury definition). Injuries were classified as 

non-contact where no clear contact or collision with another player, object or ball occurred. Only 

lower extremity injuries were considered for the analysis as these incidents are the most common at 

youth soccer practice [1]. All injuries were recorded by team doctors and physiotherapists of each 

club, and players were considered injured until the medical staff allowed them to fully participate in 

training and competition. Injury severity was defined as slight/minimal (1-3 days), minor/mild (4-7 

days), moderate (8-28 days), and severe (>28 days) based on lay-off time from soccer. 

The club medical staff documented LE-ST injuries on an injury report form described elsewhere [43]. 

As some inconsistencies in the diagnosis of minimal LE-ST injuries by medical staff teams were 
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found at the end of the 9-month follow-up period, only LE-ST injuries showing a time loss of ≥ 4 days 

were chosen for the subsequent statistical analysis. Due to the confounding effects of previous injuries, 

only the first occurring injury for each player during the season was considered in the analyses 

[14,21].  

2.4 Statistical analysis 

Data from questionnaires and field-based tests were collected in paper format and transferred into a 

spreadsheet using a double manual data entry processing technique [44]. Identified discrepancies were 

corrected upon agreement to reach an error level of 0%. After having performed a rigorous data 

cleaning process (identified anomalies or errors were corrected [32 cases]) we had an imbalanced 

(displaying an imbalance ratio of 0.21) and a high-dimensional data set comprising of 260 male youth 

soccer players and 135 potential risk factors. In this research, an anomaly or error was defined as a 

value or score that could not be classified as true or real because of the consequence of a human error 

or a machine failure. An example of an error was a jumping height value of 256 cm since it is 

impossible for an adolescent to jump as such height. 

To assess the performance of the algorithms selected, the fivefold stratified cross-validation technique 

was applied. The fivefold stratified cross validation was repeated a hundred times and results were 

averaged over the runs to obtain a more reliable estimate for the predictive ability. A wide variety of 

classification performance measures may be obtained from the stratified cross-validation technique. A 

well-known approach to produce an evaluation criterion is to use the receiver operating characteristic 

(ROC) curve. Thus, the area under the ROC curve (AUC) was employed as a measure of a classifier’s 

performance for evaluating which models showed high (0.90–1.00), moderate (0.70-0.90), low (0.50-

0.70) and fail (<50) scores [45]. For the purpose of this study, only algorithms with performance 

scores (AUC) above 0.70 were considered acceptable. Also, two extra measures from the confusion 

matrix were selected as evaluation criteria: true positive (TP) rate and true negative (TN) rate. In 

imbalanced domains, when the AUC has reached a high score (> 0.70), the classification performance 

may not be as good as the AUC value reflects because plenty of “clear” negative samples (instances 
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that can be clearly classified into the negative label of the class variable) exist in the dataset. These 

clear negative samples may increase the AUC score, but a few other “border line” negative samples 

remain mixed with the positive samples (i.e., class overlapping and/or small disjuncts), which are 

difficult to distinguish and classify by the algorithms. These few remaining border line negative 

samples may decrease performance (when some of them are wrongly classified [i.e., false positive]), 

including precision and recall, while very slightly influencing the AUC score. In consequence, Zou et 

al. [46] recommend using the F-score together with the AUC as a classification measurement for 

imbalanced problems. 

Similar to previously published studies aimed at building prediction models to identify elite soccer 

[11,13] and futsal [12] players at high (or low) risk of injury based on a supervised learning 

perspective (i.e., it is defined by its use of labeled datasets according to the class variable [injury yes 

vs. injury no] to train algorithms that classify data or predict outcomes), the taxonomy for external 

(resampling techniques), internal (ensemble techniques) and cost-sensitive methods for learning with 

imbalanced data sets suggested by López et al. [19] and Elkarami et al. [47] was applied. A brief 

description of each of the techniques employed is provided in online supplementary file 8 as well as in 

previous studies [12,13]. According to Robertson [48] four different subsets or categories of base 

learning algorithms can be defined according to their internal functioning to help sports practitioners 

improve their decision-making processes on training prescription to optimise sports performance and 

mitigate injury risk: a) regression algorithms (estimating relationships between variables on a 

continuous scale [e.g., linear regression, neural networks]), clustering algorithms (grouping sets of 

items based on their levels of similarity to one another [e.g., K-means and hierarchical]), rule-based 

algorithms (extracting rules from data based on frequency and predictability [e.g., support vector 

machines and decision rules]) and classification algorithms (identifying which category an instance 

belongs to and base on a training set of data [e.g., decision trees and Random Forest]). Therefore, six 

well-known learning algorithms (C4.5, ADTree, SMO, KNN, and Random Forest [RF]) from the 

categories established by Robertson [48] were selected as base classifiers to be used in the resampling, 

ensemble, and cost sensitive methods. With all algorithms applied to all base classifiers, a total of 72 
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models were generated. To allow comparison of the constructed models to a baseline model, a ZeroR 

classifier was also used. 

Some specific pre-processing tasks (missing data imputation and feature selection) were exclusively 

carried out in the training folds so that the classification task could be performed appropriately. In 

particular, missing data were substituted by the mean value of the corresponding variable according to 

the age category of the players. 

Due to the high dimensionality of the data set, before running the algorithms included in the taxonomy 

described in online supplementary file 8, a feature selection process was conducted with the aim of 

helping base classifiers to reduce the feature space and eliminate irrelevant, weakly relevant and/or 

redundant features. Particularly, the metaclassifier “attribute selected classifier” available in Weka’s 

repository was employed. We used as attribute evaluator the classify subset evaluator filter [49] and 

the GreedyStepwise as search technique. To interpret and visualise the behaviour and relevance of the 

variables selected, the Shapley Additive exPlanations (SHAP) approach (SHAP summary plot) was 

used [50]. This approach visualises every single player or injury case and gives an overview of the 

variables in the model by order of importance (vertically listed features), with the top ones having a 

higher global impact on the model than bottom ones. The SHAP-values represent the impact of a 

variable in the decision-making process. Dots representing the SHAP-values for each feature value of 

a player in the dataset are plotted horizontally next to the feature. Negative SHAP-values represent a 

higher probability of a positive prediction (i.e., being injured). Each dot is coloured by the value (i.e., 

measured value) of the feature for an individual. 

3 Results 

3.1 Lower extremity soft-tissue injuries epidemiology  

There were 61 LE-ST injuries over the 9-month follow-up period. Of them, 36 were classified as thigh 

muscle (18 hamstrings, 8 quadriceps, and 10 adductors) injuries, 9 as knee (5 ligament sprains) 

injuries, and 7 as ankle (all ligament sprains) injuries. The distribution of injuries between legs was 43 
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dominant leg and 18 non-dominant leg. A total of 26 injuries happened during training sessions and 35 

during matches. With regard to severity, most injuries were categorised as moderate (n = 40), while 

only 6 incidents were classified as severe injuries and 15 as minor/mild injuries. Thirteen players 

sustained multiple LE-ST injuries during the observation period (10 players were injured twice and 

three players three times) and thus, only their first incident (i.e., the index injury) was used for the 

analyses. Consequently, 45 LE-ST injuries were finally used to build the prediction models. 

3.2 Prediction models for lower extremity soft tissue injuries 

As all the algorithms employed in this study can be found in the Weka experimenter, only the scheme 

(and not the full code) of the algorithm finally selected is displayed in online supplementary file 9 and 

the model is publicly available on https://data.mendeley.com/datasets/2mw6w556yg/1 in order to 

allow practitioners to use it with their male youth soccer players.  

The feature selection process conducted in the data set identified a subset of six measures as the most 

relevant (considering the individual predictive ability of each feature as well as the degree of 

redundancy among them) (Table 2) on which was subsequently applied the taxonomy of learning 

algorithms explained in the “Materials and Methods” section.  

Table 2. Features selected after having applied the classify subset evaluator filter to the data set. 

Name Labels 

KMD (dominant leg) [DVJ] 

0 (varus), 1 (slight valgus), 2 (moderate valgus) or 3 

(severe valgus) 

BMI Numeric 

ROM-ADFKE (dominant leg) Numeric 

Landing BIL-pVGRF [SLCMJ] 0 (Asymmetry) or 1 (No Asymmetry) 

ROM-BIL-PHIR 0 (Asymmetry) or 1 (No Asymmetry) 

BIL-FPPA [TJA] 0 (Asymmetry) or 1 (No Asymmetry) 

DVJ: drop vertical jump; KMD: knee medial displacement; BMI: body mass index; ROM: range of 

https://data.mendeley.com/datasets/2mw6w556yg/1
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motion; ADFKE: ankle dorsiflexion with the knee extended; pVGRF: peak vertical ground reaction 

force; SLCMJ: single-leg countermovement jump; PHIR: passive hip internal rotation; FPPA: frontal 

plane projection angle; TJA: tuck jump assessment; BIL: bilateral ratio. 

The baseline ZeroR classifier achieved an AUC of 0.5 ± 0, specificity of 100% and sensitivity of 0%. 

Table 3 shows the average AUC results for all resampling, ensemble and cost-sensitive learning 

methods separately for each decision base classifiers, nearly all of which have greater accuracy and 

sensitivity than the baseline model. As a result, a total of 3 algorithms built (using this subset of 

features) prediction models with AUC scores ≥0.7 (Table 4). Among these 3 algorithms, the UBAG 

with SMO as base classifier technique was the one that showed the highest F-score (0.380 ± 0.105) 

and hence, it was considered as the “best fit model”. Therefore, the final screening model to 

prospectively classify male youth soccer players as having a high or low risk of suffering a LE-ST 

injury in the following 9 months of competitive season comprised 100 different SMO (rule-based) 

classifiers (an example of one of these SMO classifiers can be found in Figure 2, and the rest may be 

obtained upon request to the authors). In terms of practical applications, each classifier has a vote (yes 

[high risk of LE-ST injury] or no [lower risk of LE-ST injury]), and the final decision regarding 

whether or not a player might sustain an injury is determined by the combination of the votes of each 

individual classifier to each class (yes or no). 
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Table 3. AUC results (mean ± standard deviation) for the five base classifiers in isolation and after 

applying in them the resampling, ensemble (Classic, Boosting-based, Bagging-based, and Class-balanced 

ensembles), and cost-sensitive learning techniques selected. 

Technique 

Base classifiers 

C4.5 ADTree SMO KNN RF 

AUC AUC AUC AUC AUC 

None 0.600 ± 0.105 0.619 ± 0.100 0.499 ± 0.005 0.613 ± 0.097 0.605 ± 0.101 

  Resampling Techniques 

SMOTE 0.606 ± 0.098 0.620 ± 0.098 0.631 ± 0.088 0.615 ± 0.099 0.613 ± 0.099 

ROS 0.603 ± 0.100 0.617 ± 0.098 0.625 ± 0.088 0.613 ± 0.100 0.608 ± 0.099 

RUS 0.603 ± 0.100 0.623 ± 0.097 0.619 ± 0.088 0.631 ± 0.096 0.624 ± 0.096 

ENN 0.599 ± 0.097 0.619 ± 0.098 0.499 ± 0.007 0.609 ± 0.097 0.618 ± 0.011 

  Classic Ensembles 

ADB1 0.636 ± 0.091 0.614 ± 0.098 0.610 ± 0.076 0.575 ± 0.106 - - 

M1 0.636 ± 0.092 0.610 ± 0.100 0.682 ± 0.085 0.598 ± 0.095 - - 

BAG 0.636 ± 0.096 0.628 ± 0.096 0.568 ± 0.094 0.640 ± 0.098 - - 

  Boosting-based Ensembles 

SBO 0.614 ± 0.097 0.611 ± 0.100 0.671 ± 0.091 0.609 ± 0.095 - - 

RUSB 0.623 ± 0.098 0.610 ± 0.101 0.677 ± 0.088 0.634 ± 0.092 - - 

  Bagging-based Ensembles 

OBAG 0.685 ± 0.079 0.637 ± 0.095 0.697 ± 0.089 0.649 ± 0.096 - - 

UBAG 0.653 ± 0.089 0.631 ± 0.096 0.700 ± 0.088 0.667 ± 0.091 - - 

SBAG 0.632 ± 0.094 0.638 ± 0.095 0.695 ± 0.089 0.650 ± 0.094 - - 

  Cost-sensitive Classification 

MetaCost 0.577 ± 0.099 0.623 ± 0.103 0.500 ± 0.011 0.604 ± 0.097 - - 

CS-Classifier 0.597 ± 0.101 0.618 ± 0.098 0.539 ± 0.066 0.621 ± 0.096 - - 
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  Class-balanced Ensembles with a Cost-sensitive Classifier 

CS-OBAG 0.631 ± 0.096 0.640 ± 0.095 0.704 ± 0.085 0.648 ± 0.097 - - 

CS-UBAG 0.648 ± 0.092 0.637 ± 0.095 0.703 ± 0.084 0.662 ± 0.092 - - 

CS-SBAG 0.639 ± 0.092 0.640 ± 0.095 0.699 ± 0.087 0.658 ± 0.094 - - 

Highlighted in bold are the algorithms that built prediction models with AUC scores ≥0.7.  

 

Table 4. Sub-set of algorithms that allowed building predictive models with AUC scores ≥0.7. 

Technique 

Performance measures 

AUC TP rate (%) TN rate (%) F-score 

UBAG [SMO] 0.700 ± 0.088 53.7 ± 17.0 73.9 ± 7.7 0.380 ± 0.105 

CS-UBAG [SMO] 0.703 ± 0.084 75.2 ± 14.9 51.0 ± 9.4 0.368 ± 0.060 

CS-OBAG [SMO] 0.704 ± 0.085 72.8 ± 15.2 55.1 ± 9.3 0.379 ± 0.066 

Highlighted in bold is the algorithm with the highest F-score. AUC: area under the receiver 

operating characteristic curve; TP: true positive; TN: true negative. 
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Figure 2. Description of the first UBAG [SMO] classifier. BMI: body mass index; ROM: range of 

motion; ADFKE: ankle dorsiflexion with the knee extended; BIL: bilateral ratio; PHIR: passive hip 

internal rotation; pVGRF: peak vertical ground reaction force; SLCMJ: single-leg countermovement 

jump; FPPA: frontal plane projection angle; TJA: tuck jump assessment; KMD: knee medial 

displacement; DVJ: drop vertical jump. 

For the model finally selected (UBAG with SMO as base classifier), an analysis of the average 

influence that each of its six variables has in the decision-making process regarding whether or not a 

player might suffer an injury was carried out by the SHAP approach and can be visualised in Figure 3. 

The variable that demonstrated the biggest impact was knee medial displacement (dominant leg) in the 

DVJ, followed by asymmetry in the peak vertical ground reaction force during landing in the SLCMJ, 

body mass index, asymmetry in the frontal plane projection angle assessed through the TJA, 

asymmetry in the passive hip internal rotation ROM, and ankle dorsiflexion with the knee extended 

(dominant leg) ROM. In Figure 4, the SHAP values for each feature value of an individual in the 

dataset are displayed.  
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Figure 3. SHAP values for each feature. KMD: knee medial displacement; DVJ: drop vertical jump; 

BIL: bilateral ratio; pVGRF: peak vertical ground reaction force; SLCMJ: single-leg 

countermovement jump; BMI: body mass index; FPPA: frontal plane projection angle; TJA: tuck 

jump assessment; ROM: range of motion; PHIR: passive hip internal rotation; ADFKE: ankle 

dorsiflexion with the knee extended. 

 

Figure 4. SHAP summary plot. The features in the model are listed from the most (top) to least 

(bottom) important by their global impact on the model. Dots representing the SHAP values for each 

feature value of an individual in the dataset are plotted horizontally next to the feature. Overlapping 

points are jittered in y-axis direction, so a sense of the distribution of the Shapley values per variable is 

achieved. The higher the absolute value (either positive or negative), the higher the importance in the 
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classification decision-making process. Positive SHAP values represent a higher probability of a 

negative prediction (i.e., No injured). Each dot is colored by the value (i.e., measured value) of the 

feature for an individual, where blue represents the lower values (e.g., lower BMI score) and red the 

higher values (e.g., higher BMI scores). 

4 Discussion 

The aim of this study was twofold: a) to build models using machine learning techniques on data from 

an extensive screening battery to prospectively predict LE-ST injuries in non-elite male youth soccer 

players, and b) to compare their performance scores (i.e., accuracy) to select the best fit prediction 

model. In this sense, the present study has built a screening model (AUC = 0.700) based on six pre-

season field-based measures to predict LE-ST injuries in male youth soccer players. In particular, the 

model developed successfully identifies one out of every two (TP rate = 53.7%) and three out of every 

four (TN rate = 73.9%) male youth soccer players at high or low risk of suffering a LE-ST injury 

throughout the in-season phase, respectively.  

The ability of the derived model in the current study to predict LE-ST injuries is similar to the model 

developed by Oliver et al. [14] (AUC = 0.663, TP rate = 55.6%, TN rate = 74.2%) but lower than the 

model reported by Rommers et al. [21] (AUC = 0.850, TP rate = 85%), albeit both using elite-level 

male youth soccer players. Three different arguments may explain the higher performance scores 

reported by Rommers et al.’s [21] model compared to those shown in the current prediction models 

and that built by Oliver et al. [14]:  

The first argument that may be used to explain these differences in the models’ performance is the 

larger number of players that were enrolled in the study conducted by Rommers et al. [21] (n = 734) in 

comparison with Oliver et al.’s [14] study (n = 355) and the current research (n = 260). In studies 

dealing with class imbalance problems, such as the LE-ST injury phenomenon, in which the number 

of injured players (minority class) prospectively reported is always much lower than the non-injured 

participants (majority class) [19,51], large sample sizes may be required to ensure having enough 

instances in the minority class to avoid them being considered as noise by the learning algorithms 
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during the process of building models. In this sense, Japkowicz & Stephen [52] demonstrated that the 

error rate caused by imbalanced class distribution decreases when the number of examples of the 

minority class is representative. While Rommers et al. [21] identified 368 injured players throughout 

the follow up, Oliver et al. [14] and the current study used 99 and 45 injuries respectively to develop 

the prediction models. Therefore, in the model built by Rommers et al. [21], patterns that were defined 

by injury players could have been better learned and this may have positively impacted on its 

predictive ability.  

The second argument is linked to the fact that the imbalance ratios (IR = ∑injured players / ∑non-

injured players) of the dichotomic class variable (injury yes or no) in Oliver et al.’s [14] study (IR = 

0.39) and the current study (IR = 0.21) were much higher than the one observed in Rommers et al.’s 

[21] study (IR = 1.00). In fact, the data set used by Rommers et al. [21] to build their injury prediction 

model did not show an imbalanced distribution in the class variable as the number of injured (n = 368) 

and non-injured (n = 366) players was almost the same. Class distribution (i.e., the proportion of 

instances [e.g., soccer players] belonging to each class [injured vs non-injured] in a data-set) plays a 

key role in classification problems. Highly imbalance data sets usually tend to suffer from class 

overlapping and/or small disjuncts, which difficult classifier learning [51]. Thus, although Oliver et al. 

[14] and the current study have used learning algorithms specially designed to deal with class 

imbalance problems and acceptable predictive accuracy results were reported, the lower IR in the 

study of Rommers et al. [21] may have allowed lower misclassification rates and hence, better 

accuracy scores. In this sense, the different weekly exposure (in terms of frequency and physical 

demands) to the soccer play that could have occurred between our sample of amateur youth soccer 

players and the elite ones used by Rommers et al [21] and Oliver et al. [14] might be one of the main 

reasons for the lower injury rates and consequently the higher imbalance ratio found in the current 

research. The participants of our study routinely completed a total of two (U11-12 players) and three 

(U13-14, U15-16, and U17-19 players) 90-min training sessions per week on non-consecutive days 

and played one competitive match usually at the weekend. In addition, in all age groups, the 

competitive season was divided into three blocks of 9-12 weeks separated by a 2-3-week break 
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(coinciding with Christmas and Easter festivities). On the contrary, it is plausible that the elite youth 

soccer players (mainly those belonging to the more advanced age groups) who took part in both Oliver 

et al.’s [14] and Rommers et al.’s [21] studies could have shown larger (i.e., number of training 

session per week) and higher physically demanding weekly exposures to the game of soccer than our 

participants. This higher frequency and intensity in the exposure to soccer that usually elite adolescent 

(>14 years old) players have in comparison with their counterpart non-elite players might be attributed 

to the early sport specialisation process that usually is observed in the youth academies of professional 

soccer clubs. Furthermore, it is also possible that the participants in Oliver et al.’s [14] and Rommers 

et al.’s [21] studies may have had shorter Christmas and Easter breaks (in case they had any of them) 

than our amateur youth soccer players. Therefore, the larger and higher physically demanding weekly 

exposure alongside the shorter resting periods that may have had the elite youth soccer players that 

took part in these two studies may have led them to a progressive and chronic accumulation of fatigue 

that could have dramatically increased their risk of injury. However, as neither Oliver et al. [14] nor 

Rommers et al. [21] reported the weekly exposure to the game of soccer in their participants, this 

hypothesis should be considered with a degree of caution. 

Finally, the last aspect that might have also played a key role in the higher predictive ability observed 

in the model published by Rommers et al. [21] is the less exigent resampling method applied to 

determine its ability to predict injuries. In particular, Rommers et al. [21] used a hold out with 20% of 

the same as test data to assess the predictive ability of its model whereas Oliver et al. [14] employed a 

five-fold cross validation technique and the present study repeated 100 times this five-fold cross 

validation procedure in an attempt to achieve a more accurate estimation of the models’ performance. 

It has been suggested that the k-fold cross validation is a more powerful preventive technique against 

model performance overfitting than the hold out because the validation metrics calculated for each 

fold are combined to give an overall estimate of the model’s performance, reducing the risk of 

accidentally obtaining a really optimistic test data [53]. Unlike the current study, neither Rommers et 

al. [21] nor Oliver et al. [14] uploaded their respective data sets into a public repository. Consequently, 

we were not able to apply the resampling technique used in the current study to assess the prediction 
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ability of their models in order to inform whether (or not) their performance scores could have 

suffered from overfitting (and specify to some extent) due to a less exigent validation technique.  

Another main finding of the current study is that of the 135 potential risk factors obtained from the 

several questionnaires and field-based tests carried out during the pre-season testing session conducted 

in each soccer team, only six (Table 2) were finally selected as the most important features related to 

LE-ST injuries. This subset comprised of an anthropometric parameter (BMI), three neuromuscular 

measures (KMD in the dominant leg [DVJ], landing BIL-pVGRF [SLCMJ] and BIL-FPPA [TJA]) and 

two joint ROMs (ROM-BIL-PHIR and ROM-ADFKE in the dominant leg) allowed us to build a model 

to predict LE-ST injuries in male youth soccer players. Therefore, one of the main advantages of the 

model presented in this study is that it only needs five to ten minutes to run the screen in a single 

player, unlike Rommers et al.’s [21] model where 20 measures recorded from a questionnaire and five 

different field-based tests are required, which can take longer than 45 min to collect all data in a single 

athlete. The six measures selected have been consistently proposed as primary injury risk factors for 

LE-ST injuries in several prospective and biomechanical studies conducted in paediatric athlete 

population [14,54,55]. As it is shown in Figure 3, a higher knee medial displacement (i.e., dynamic 

knee valgus) of the dominant leg in DVJ (SHAP score = 0.32) and the presence of asymmetries in 

pVGRF at landing from SLCMJ (SHAP score = 0.17) were identified as the two most important 

predictors for LE-ST injury. A higher body mass index (SHAP score = 0.05), bilateral differences ≥ 

10% in FPPA measured through the TJA manoeuvre (SHAP score = 0.03) and ≥ 8ᵒ in PHIR ROM 

(SHAP score = 0.03), and lower ADFKE ROM of the dominant leg (SHAP score = 0.02) had a smaller 

effect on the prediction model. It is beyond the scope of this study to describe into detail the potential 

mechanisms that justify the reasons why each of these six measures themselves might increase the 

vulnerability to LE-ST injury in this cohort of soccer players. However, the proposed mechanisms 

might include altered frontal (i.e., the adoption of an excessive dynamic valgus motion at the knee 

[high KMD and FPPA scores]), sagittal (ankle ROM) and transverse (hip internal rotation ROM) 

planes during the execution of high intensity weight-bearing dynamic tasks (e.g., landing from a jump, 

side-stepping, pressing and tackling) that may produce increased loading of the knee and ankle 



28 

 

[54,56]. Likewise, it has been suggested that increased BMI scores may imply changes in moments of 

inertia, forces and deformations experienced by various soft tissues during high intensity movements 

(e.g., high speed running, change of direction) [4], which may be associated with injury risk, 

particularly muscle strains [55]. Asymmetries in pVGRF at landing from SLCMJ have been also 

identified by previous studies as a primary injury risk factor in male youth soccer players [14] and it is 

deemed to place additional stress on the weaker leg predisposing it to increased injury risk. 

Importantly, these six measures are considered modifiable risk factors and hence, some strategies can 

be implemented to optimise these factors in each player to lower the probability of suffering a LE-ST 

injury. In this regard, previous studies have demonstrated that the regular application of short (not 

more than 20-25 min) bouts of multi-component exercises during training sessions can significantly 

improve, among other aspects, neuromuscular control and performance and help to control body 

weight in team sport athletes (including young soccer players) [42,57]. Therefore, these multi-

component programs may be powerful tools to be used by practitioners as preventive measures in 

those soccer players categorised at high risk of LE-ST injury. 

Finally, it should be highlighted that simulations ran in our laboratory showed that giving the four 

basic algorithms used in this study (C4.5, ADTree, SMO and KNN) the opportunity to select by 

themselves (according to their own criteria) the most relevant variables did not improve the predictive 

performance of the models but increased its complexity. Furthermore, simulations were also run with 

other attribute evaluators (such as InfoGain and Correlations) to select relevant features and none of 

them improved the performance scores presented in this study. 

4.1 Limitations 

This study has also some limitations that should be acknowledged. Even though all the variables 

collected during the screening session are considered as risk factors for LE-ST injuries, there are 

additional measures from various questionnaires and field-based tests that were not assessed in this 

research (due to time restrictions) and that may have enhanced the ability to predict LE-ST injuries in 

this cohort of young athletes (e.g., trunk stability measures, relative leg stiffness, and change of 
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direction kinematics). Likewise, the complex interaction of growth, maturity timing and tempo across 

players of varying age and maturity along with the fact that a non-single type of injury (e.g., hamstring 

strains, ACL tears) was analysed may have reduced the ability of the feature selection algorithm 

applied to the data set to reduce its dimensionality (through removing redundant and not relevant 

measures), and thus could have penalised the performance of the model. Future studies should assess 

whether (or not) the use of more homogeneous samples, in terms of maturity status, and focusing the 

attention on single types of injury may increase the predictive ability of the screening models. Another 

limitation of the current study is that only the first occurring injury of every player was considered in 

the analysis. Consequently, because players can sustain multiple injuries over one season, the analysis 

does not reflect the complete picture. Furthermore, players were only tested at the end of the pre-

season with subsequent injuries monitored over the entire season. Anthropometric, physical fitness, 

neuromuscular capability and biomechanical measures change over the course of the season due to 

training and natural development [21,55], which may have negatively impacted on the models ability 

to predict injuries. Therefore, future studies should conduct screening session every few months in 

order to obtain accurate screening data that is closer to the time of injury, mitigating the effects of 

training, growth and maturation.  

5 Conclusions 

Due to the application of machine learning techniques, the current study has developed a screening 

model based on six field-based measures that showed moderate validity (AUC score = 0.700, TPrate = 

53.7% and TNrate = 73.9% determined through the exigent repeated cross-validation resampling 

technique) for identifying youth soccer players at risk of LE-ST injury. Furthermore, and thanks to the 

SHAP approach, it is possible to determine the influence of each risk factor selected (i.e., KMD 

[dominant leg] in the DVJ, landing BIL-pVGRF [SLCMJ], BMI, BIL-FPPA [TJA], ROM-BIL-PHIR 

and ROM-ADFKE [dominant leg]) in the prediction model (injury yes vs. injury no). Given that these 

measures require little equipment to be obtained and can be employed quickly (approximately 5-10 
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min) and easily by trained staff in a single player, the model developed in this study might be included 

as an essential component of the injury management strategy in youth soccer.  
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